Computing Fundamentals
&

C Programiming
Second Edition

About the Author

————— R —

E Balagurusamy is presently the Chairman of EBG Foundation, Coimbatore. In the past he held the
positions of member, Union Public Service Commission, New Delhi and Vice-Chancellor, Anna University,
Chennai, Tamil Nadu. He is a teacher, trainer and consultant in the fields of Information Technology and
Management. He holds an ME (Hons) in Electrical Engineering and PhD in Systems Engineering from
the Indian Institute of Technology, Roorkee, Uttarakhand. His areas of interest include Object-Oriented
Software Engineering, E-Governance: Technology Management, Business Process Re-engineering and
Total Quality Management.

A prolific writer, he has authored a large number of research papers and several books. His best-selling
books, among others include:

Programming in ANSIC, 7/e

Fundamentals of Computers

Programming in C#, 3/e

Programming in Java, 5/e

Object-Oriented Programming with C++, 6/e

Programming in BASIC, 3/e

Numerical Methods

Reliability Engineering

Introduction to Computing & Problem Solving using Python, le

A recipient of numerous honour and awards, he has been listed in the Directory of Who’s Who of
Intellectuals and in the Directory of Distinguished Leaders in Education.

Computing Fundamentals
&

C Programming
Second Edition

E. Balagurusamy
Chairman
EBG Foundation
Coimbatore

Mc
Graw

Hill

Education

McGraw Hill Education (India) Private Limited
CHENNAI

McGraw Hill Education Offices

Chennai New York StlLouis San Francisco Auckland Bogota Caracas
Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal
San Juan Santiago Singapore Sydney Tokyo Toronto

LI McGraw Hill Education (India) Private Limited

Published by McGraw Hill Education (India) Private Limited
444/1, Sri Ekambara Naicker Industrial Estate, Alapakkam, Porur, Chennai 600 116

Computing Fundamentals & C Programming, 2e

Copyright © 2018, 2008 by McGraw Hill Education (India) Private Limited.

No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise or stored in a database or retrieval system without the prior written permission of the publishers. The
program listings (if any) may be entered, stored and executed in a computer system, but they may not be reproduced for
publication.

This edition can be exported from India only by the publishers,
McGraw Hill Education (India) Private Limited.

[1]23456789 DI02739 22 21 20 19 [i§
Printed and bound in India.

Print Edition
ISBN (13): 978-93-5260-416-6
ISBN (10): 93-5260-416-4

e-Edition
ISBN (13): 978-93-5260-417-3
ISBN (10): 93-5260-417-2

Managing Director: Kaushik Bellani

Director—Science & Engineering Portfolio: Vibha Mahajan
Senior Portfolio Manager—Science & Engineering: Hemant K Jha
Associate Portfolio Manager—Science & Engineering: Md. Salman Khurshid

Content Development Lead: Shalini Jha
Content Developer: Ranjana Chaube

Production Head: Satinder S Baveja
Copy Editor: Taranpreet Kaur
Assistant Manager—Production: Anuj K Shriwastava

General Manager—Production: Rajender P Ghansela
Manager—Production: Reji Kumar

Information contained in this work has been obtained by McGraw Hill Education (India), from sources believed to be
reliable. However, neither McGraw Hill Education (India) nor its authors guarantee the accuracy or completeness of any
information published herein, and neither McGraw Hill Education (India) nor its authors shall be responsible for any errors,
omissions, or damages arising out of use of this information. This work is published with the understanding that McGraw
Hill Education (India) and its authors are supplying information but are not attempting to render engineering or other
professional services. If such services are required, the assistance of an appropriate professional should be sought.

Typeset at Text-o-Graphics, B-1/56, Aravali Apartment, Sector-34, Noida 201 301, and printed at

Cover Printer:

Visit us at: www.mheducation.co.in

B ——

Preface Xiii
Visual Walkthrough xv
1. Understanding Fundamentals of the Computer 1

1.1 Introduction 1

1.2 Generations of Computers 2

1.3 Classification of Computers 6

1.4 Basic Anatomy of a Computer System 7
1.5 Input Devices 8

1.6 Processor 9

1.7 Output Devices 10

1.8 Memory Management 1/

1.9 Types of Computer Software /3
1.10 Overview of Operating System /4
1.11 MSWord 19

1.12 MS Excel System 2]

1.13 MS Powerpoint System 22

1.14 Networking Concepts 23

1.15 Network Topologies 26

1.16 Network Protocols and Software 29
Learning Outcomes 31

Key Terms to Remember 32

Review Questions 33

Discussion Questions 42

2. Computing Concepts 45
2.1 Introduction 45
2.2 Decimal System 46
2.3 Binary System 47
24 Hexadecimal System 48
2.5 Octal System 49
2.6 Conversion of Numbers 50
2.7 Binary Arithmetic Operations 60
2.8 Logic Gates 68
2.9 Programming Languages 71

Vi

Contents

2.10 Translator Programs 74

2.11 Problem-Solving Techniques 75
2.12 Using the Computer 87
Learning Outcomes 87

Key Terms to Remember 88

Review Questions 89

Discussion Questions 92

Overview of C

3.1 Introduction 93

32 Importance of C 95

33 Sample Program 1: Printing a Message 95
34 Sample Program 2: Adding Two Numbers 98
35 Sample Program 3: Interest Calculation 99
3.6 Sample Program 4: Use of Subroutines 101
3.7 Sample Program 5: Use of Math Functions 702
3.8 Basic Structure of C Programs 104

39 Programming Style 105

3.10 Executing a ‘C’ Program 105

3.11 UNIX System 107

3.12 MS-DOS System 109

Learning Outcomes 109

Key Terms to Remember 110

Review Questions 110

Discussion Questions 111

Debugging Exercises 112

Programming Exercises 112

Constants, Variables and Data Types
4.1 Introduction 715

4.2 Character Set 115

4.3 C Tokens 117

4.4 Keywords and Identifiers 178

4.5 Constants 718

4.6 Variables 122

4.7 Data Types 123

4.8 Declaration of Variables 126

4.9 Declaration of Storage Class 129
4.10 Assigning Values to Variables 730
4.11 Defining Symbolic Constants 735
4.12 Declaring a Variable as Constant /37
4.13 Declaring a Variable as Volatile 137
Learning Outcomes 137

Key Terms to Remember 138

Brief Cases 139

Review Questions 141

Discussion Questions 143

93

115

Debugging Exercises 143
Programming Exercises 143

Operators and Expressions

5.1
5.2
53
54
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14
5.15

Introduction 745

Arithmetic Operators 146

Relational Operators 148

Logical Operators 149

Assignment Operators 150

Increment and Decrement Operators 152
Conditional Operator 153

Bitwise Operators 153

Special Operators 154

Arithmetic Expressions 155

Evaluation of Expressions 156
Precedence of Arithmetic Operators 157
Some Computational Problems 159
Type Conversions in Expressions 16/

Operator Precedence and Associativity 164

Learning Outcomes 167
Key Terms to Remember 167
Brief Cases 168

Review Questions 170
Discussion Questions 171
Debugging Exercises 173
Programming Exercises 174

Managing Input and Output Operations

6.1
6.2
6.3
6.4
6.5

Introduction 177
Reading a Character 178
Writing a Character 181
Formatted Input 782
Formatted Output 791

Learning Outcomes 198
Key Terms to Remember 198
Brief Cases 199

Review Questions 202
Discussion Questions 203
Debugging Exercises 205
Programming Exercises 205

Decision Making and Branching

7.1
7.2
7.3
7.4
7.5
7.6

Introduction 207

Decision Making with If Statement 208
Simple If Statement 208

The If.....Else Statement 272

Nesting of If....Else Statements 215
The Else If Ladder 218

Contents

vii

145

177

207

viii Contents

10.

7.7 The Switch Statement 222
7.8 The ?: Operator 226

7.9 The Goto Statement 230
Learning Outcomes 233

Key Terms to Remember 233

Brief Cases 234

Review Questions 238

Discussion Questions 239
Debugging Exercises 243
Programming Exercises 243

Decision Making and Looping
8.1 Introduction 247

8.2 The While Statement 249
8.3 The Do Statement 251
8.4 The For Statement 254
8.5 Jumps in Loops 264

8.6 Concise Test Expressions 271
Learning Outcomes 272

Key Terms to Remember 272
Brief Cases 273

Review Questions 280

Discussion Questions 280
Debugging Exercises 283
Programming Exercises 284

Array

9.1 Introduction 287

9.2 One-Dimensional Arrays 289

9.3 Declaration of One-dimensional Arrays 290
94 Initialization of One-dimensional Arrays 292
9.5 Two-Dimensional Arrays 298

9.6 Initializing Two-Dimensional Arrays 302
9.7 Multi-Dimensional Arrays 311

9.8 Dynamic Arrays 312

9.9 More About Arrays 312

Learning Outcomes 312

Key Terms to Remember 313

Brief Cases 313

Review Questions 326

Discussion Questions 328

Debugging Exercises 328

Programming Exercises 330

Character Arrays and Strings

10.1 Introduction 334

10.2 Declaring and Initializing String Variables 335
10.3 Reading Strings from Terminal 336

247

287

334

11.

12.

Contents

10.4 Writing Strings to Screen 343
10.5 Arithmetic Operations on Characters 347
10.6 Putting Strings Together 349
10.7 Comparison of Two Strings 350
10.8 String-Handling Functions 350
10.9 Table of Strings 357

10.10 Other Features of Strings 359
Learning Outcomes 359

Key Terms to Remember 359

Brief Cases 360

Review Questions 364

Discussion Questions 365

Debugging Exercise 366

Programming Exercises 366

User-Defined Functions

11.1 Introduction 369

11.2 Need for User-Defined Functions 370
11.3 A Multi-Function Program 370

114 Elements of User-Defined Functions 373
11.5 Definition of Functions 374

11.6 Return Values and their Types 376
11.7 Function Calls 377

11.8 Function Declaration 379

11.9 Category of Functions 380

11.10 Recursion 394

11.11 Passing Arrays to Functions 395
11.12 Passing Strings to Functions 399
11.13 The Scope, Visibility, and Lifetime of Variables 400
11.14 Multifile Programs 410

Learning Outcomes 411

Key Terms to Remember 412

Brief Cases 413

Review Questions 416

Discussion Questions 417

Debugging Exercises 420

Programming Exercises 420

Structures and Unions

12.1 Introduction 423

12.2 Defining a Structure 424

12.3 Declaring Structure Variables 425

124 Accessing Structure Members 427

12.5 Copying and Comparing Structure Variables 430
12.6 Operations on Individual Members 432

127 Arrays of Structures 433

12.8 Arrays within Structures 435

369

423

X

13.

14.

Contents

12.9 Structures within Structures 437
12.10 Structures and Functions 439
12.11 Unions and Structures 442
Learning Outcomes 445

Key Terms to Remember 446

Brief Cases 447

Review Questions 450

Discussion Questions 451

Debugging Exercises 454

Programming Exercises 454

Pointers

13.1 Introduction 457

13.2 Understanding Pointers 458

13.3 Accessing the Address of a Variable 460
13.4 Declaring Pointer Variables 461

13.5 Initialization of Pointer Variables 462
13.6 Accessing a Variable through its Pointer 463
13.7 Chain of Pointers 466

13.8 Pointer Expressions 466

13.9 Pointer Increments and Scale Factor 468
13.10 Pointers and Arrays 469

13.11 Pointers and Character Strings 472
13.12 Array of Pointers 474

13.13 Pointers as Function Arguments 475
13.14 Functions Returning Pointers 479

13.15 Pointers to Functions 479

13.16 Pointers and Structures 482

13.17 Troubles with Pointers 484

Learning Outcomes 485

Key Terms to Remember 486

Brief Cases 486

Review Questions 492

Discussion Questions 493

Debugging Exercises 494

Programming Exercises 495

File Management in C

14.1 Introduction 497

14.2 Defining and Opening a File 498

14.3 Closing a File 499

14.4 Input/Output Operations on Files 500

14.5 Error Handling During I/O Operations 506
146 ~ Random Access to Files 509

14.7 Command Line Arguments 515

Learning Outcomes 518

Key Terms to Remember 518

457

497

Review Questions 518
Discussion Questions 519
Debugging Exercise 520
Programming Exercises 520

15. The Preprocessor
15.1 Introduction 521
15.2 Macro Substitution 522
15.3 File Inclusion 526
154 Compiler Control Directives 526
15.5 ANSI Additions 529
Learning Outcomes 532
Key Terms to Remember 532
Review Questions 532
Discussion Questions 533
Debugging Exercises 533
Programming Exercises 534

Appendix1 ASCII Values of Characters
Appendix I ANSI C Library Functions
Appendix Il Database Management System
Appendix IV Projects

Index

Contents

Xi

521

535
537
541
549
605

We live in a technology-driven world, where almost everything is automated. The last two decades have
witnessed a lot of innovations. It can be perplexing for a beginner to keep pace with such developments.
To be lost in the world of codes and bytes can be nerve-racking. And this is where a textbook of this nature
comes into picture. Written assuming absolutely no prior knowledge of computers, this book carries the
reader through the world of computers in a simple and structured manner.

Computer cannot understand human language thus, a communication medium in form of the computer
programming language is required to interact with computer. C is a powerful, flexible, portable and
elegantly-structured programming language. Since C combines the features of high-level language with the
elements of the assembler, it is suitable for both systems and applications programming. It is undoubtedly
the most widely used general-purpose language today in operating systems and embedded system
development. Its influence is evident in almost all modern programming languages. Since its standardization
in 1989, C has undergone a series of changes and improvements in order to enhance the usefulness of the
language. The version that incorporates the new features is now referred to as C11. This book ensures a
smooth and successful transition to being a skilled C-programmer.

Organization of the Book

Fundamentals of Computers and C-Programming starts with basics of a computer system in Chapter 1 and
Computing Concepts in Chapter 2. Gradually it proceeds towards C concepts with Chapter 3 - Overview
of C, Basic Structure of C Programs and Execution. Chapter 4 discusses how to declare the Constants,
Variables, and Data Types. Operators and Expressions are presented in Chapter 5. Chapter 6 deals with
Managing of Input and Output Operations. Chapter 7 talks about Branching. The concept of Decision
Making and Looping is explained in Chapter 8. Arrays, Character Arrays, and Strings have been discussed in
Chapters 9 and 10. User-Defined Functions, Structures and Union are covered in Chapters 11 and 12.
While Chapter 13 covers Pointers, Chapter 14 describes File Management in C. Preprocessor is explained
in Chapter 15.

Salient Features of the Book
< Learning Objectives (LOs)
% Key Terms
< Content Tagged with LOs and Level of Difficulty (LOD)
< Database Management System (covered as Appendix III)
< Rich Pedagogy:
4 Solved and unsolved problems: Approximately 500
4 Review Questions: Above 700

Xiv Preface

Programming Exercises: Above 200
Debugging Exercises: Above 40
Brief Case Studies: Above 20
Projects: 2

++e e

Digital Supplements

The digital supplement can be accessed at the given link (http.//www.mhhe.com/balagurusamy/cfcp2e)
It contains the following components:

< Notes

% e-case studies

Acknowledgements

I owe special thanks to the entire team of McGraw Hill Education India.
A note of acknowledgement is due to the following reviewers for their valuable feedback. Their suggestions
have helped in making the book more useful.

Dr Sandeep Jain Jaypee Institute of Information Technology, Noida, UP

Dr Narendra Kohli HBTI, Kanpur, UP

Vivek Pandey AKTU, Farah, UP

Saikut Basu Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal
K S Patnaik BITS Mesra, Ranchi, Jharkhand

Nirmala Sharma RTU, Kota, Rajasthan

Hardik K Molia Government Engineering College, Rajkot, Gujarat

R Kiruba Buri Anna University, Trichy, Tamil Nadu

S Hariharan TRP Engineering College, Trichy, Tamil Nadu

Rekha K S National Institute of Engineering, Mysore, Karnataka

This book is my sincere attempt to make a footprint on the immensely vast and infinite sands of knowledge.
I would request the readers to utilize this book to the maximum extent.
E BALAGURUSAMY

Publisher’s Note

McGraw Hill Education (India) invites suggestions and comments from you, all of which can be sent to
info.india @mheducation.com (kindly mention the title and author name in the subject line).
Piracy-related issues may also be reported.

VISUAL WALKTHROUGH

Computing Concepts

S
tagged with
chapter help
ng goals even
er.

pter, you will be able to
various positional number systems
umber conversions from one number system to another

binary arithmetic operations are performed
imary logic gates
ious levels of programming languages
us problem solving i and computer

LEARNING OBJECTIVES

' Computing Fundamentals & C Programming. /

2.7 BINARY ARITHMETIC OPERATIONS @oz3l

The computer arithmetic is also referred as binary arithmetic because the computer system stores and
processes the data in the binary form only. Various binary arithmetic operations can be performed in the
same way as the decimal arithmetic operations, but by following a predefined set of rules. Each binary
arithmetic operation has an associated set of rules that should be adhered to while carrying out that
operation. The binary arithmetic operations are usually simpler to carry out as compared to the decimal
operations because one needs to deal with only two digits, 0 and 1. in the binary operations. The different
binary arithmetic operations performed in a computer system are:

%" Binary addition

% Binary multiplication

% Binary subtraction

% Binary division

2.7.1 Binary Addition
Binary addition is the simplest arithmetic operation performed in the computer system. Like decimal
system, we can start the addition of two binary numbers column-wise from the right-most bit and move
towards the left-most bit of the given numbers. However, we need to follow certain rules while carrying out
the binary addition of the given numbers. Table 2.8 lists the rules for binary addition.

3.1 INTRODUCTION

C is one of the most popular computer languages today because it is a structured, high-level,
P machine independent language. It allows software developers to develop programs without
worrying about the hardware platforms where they will be implemented.

The root of all modern languages is ALGOL, introduced in the early 1960s. ALGOL was
introduction the first c9mputer languagg to.use a block structure. ALqOL gave Lhé.: f:oncepl of slruﬁlured
programming. Computer scientists like Corrado Bohm, Guiseppe Jacopini and Edsger Dijkstra
f the topics popularized this concept during 1960s.

In 1967, Martin Richards developed a language called BCPL (Basic Combined Programming
Language) primarily for writing system software. In 1970, Ken Thompson created a language
using many features of BCPL and called it simply B. B was used to create early versions of UNIX
operating system at Bell Laboratories. Both BCPL and B were “typeless” system programming
languages.

C was evolved from ALGOL, BCPL and B by Dennis Ritchie at the Bell Laboratories in
1972. C uses many concepts from these languages and added the concept of data types and other
powerful features. UNIX operating system, which was also developed at Bell Laboratories, was
coded almost entirely in C.

Visual Walkthrough

blems

with worked-out
learn technique of
ractical problems.

Digi
Al decimal digits 09
Special Characters
& ampersand
» caret
* asterisk
~ minus sign
2 question mark +plus sign
* apostrophe < opening angle bracket
* quotation mark (or less than sign)
! exclamation mark > closing angle bracket
I vertical bar (or greater than sign)
/slash (left parenthesis
\backslash) right parenthesis
~ ilde [left bracket
_ under score] right bracket
$ dollar sign (left brace
% percent sign } right brace
number sign
White Spaces
Blank space
Horizontal tab
Carriage return

"WORKED-OUT PROBLEN o
WORKED-OUT PROBLEM 13.2
Write a program to illustrate the use of indirection operator “*’ to access the value pointed to by a pointer.
‘The program and output are shown in Fig. 13.5. The program clearly shows how we can access the value of
a variable using a pointer. You may notice that the value of the pointer ptr is 4104 and the value it points to
is 10. Further, you may also note the following equivalences:

x = *(&x) = *ptr =y

&x = &*ptr
Progran
main()
{
it X, y;
int *ptr;
x = 10;
ptr = &;
¥ = *ptr;

of x is %d\n\n",x);
stored at addr %u\n", x, &x);
stored at addr %u\n", *&, &x);
stored at addr %u\n", *ptr, ptr);
stored at addr %u\n", ptr, &ptr);
stored at addr %u\n", y, &);

’ Computing Fundamentals & C Programming

2.7 BINARY ARITHMETIC OPERATIONS

binary arithmetic operations performed in a computer system are:
Binary addition
% Binary multiplication
% Binary subtraction
% Binary division

2.7.1 Binary Addition

towards the lef
the binary addition of the given numbers. Table 2.8 lists the rules for binary addition.

The computer arithmetic is also referred as binary arithmetic because the computer system stores and
processes the data in the binary form only. Various binary arithmetic operations can be performed in the
same way as the decimal arithmetic operations, but by following a predefined set of rules. Each binary
arithmetic operation has an associated set of rules that should be adhered to while carrying out that
operation. The binary arithmetic operations are usually simpler to carry out as compared to the decimal
operations because one needs to deal with only two digits, 0 and 1, in the binary operations. The different

Binary addition is the simplest arithmetic operation performed in the computer system. Like decimal
system, we can start the addition of two binary numbers column-wise from the right-most bit and move
st bit of the given numbers. However, we need to follow certain rules while carrying out

Program

unsigned K ;
DECLARATIONS AND ASSIGNMENTS. .
m = 54321 ;

Tong int n = 1234567890

ASSIGNMENTS
.234567890000 ;
y = 9.87654321 ;
k = 54321 ;

printf('m = s
printf("n = 51d\n", n) ;
printf("x = %.121f\n", x) ;

printf("x = %f\n", x) ;

printf("y = %.121f\n",y) ;

printf("y = 1f\n", y) ;

printf("k = %u p = %f q = %.1217\n", k, p, q) ;

Output
m = -11215

1234567890
234567880630

x

x 234568
¥ = 9.876543210000

= 1.00000 q = 1.000000000000

ated Text

ith figures, tables,
grams, which are
sustain readers’

DEBUGGING EXERCISES

1. Find errors, if any, in each of the following looping segments. Assume that all the variables
have been declared and assigned values.
() while (count
{

count = 1;
sum = sum + x;
count = count + 13

(b) name = 0;
do { name = name + 1;
printf("My name is John\n");}
while (name = 1)

(©) dos
total = total + value;
scanf("%f", &value);
while (value != 999);

@ for (x =1, x> 10; x = x + 1)

0 JLosa ™

|
—
|
|
[
Visual Walkthrough ,

1. Write a program to determine and print the sum of the following harmonic series for a M
given value of n:

PROGRAMMING EXERCISES

1412413 4ot Un
‘The value of n should be given interactively through the terminal.

2. Write a program (o read the price of an item in decimal form (like 15.95) and print the JLLO 4./

output in paise (like 1595 paisc).

4. Write a program that requests two float type numbers from the user and then divides the JLLO du/™
first number by the second and display the result along with the numbers. -

3. Write a program that prints the even numbers from 1 to 100.

Pedagogy

B REVIEW QUESTIONS

Fill in the Blanks

1. The most common system used by computer systems is

2. The weight of any digit in the number system generally depends upon ts in the
given number.

3. The binary system represents each type of data in the form of and

4. The digits in binary system are referred as

5. The base of any number system depends upon the number of in the system.

6. Computer designers and professionals generally deal with number system.

7. The octal system is also known as system.

8. The octal number 5624 is equivalent to in decimal system.

9. The binary number 1001010 represents a decimal value of

10. The hexadecimal system consists of symbols.

11. Human beings usually supply data to the computer system in the form.

ember

ct

definition of

cluding Review
Questions,

learning level.
1 of difficulty
ging from low
h Intermediate
complexity (H)

3 KEeY TERMS TO REMEMBER

« Computer codes: The computer codes are the codes that help in converting the data entered by the
users into the binary form.

P« Positional number system: The positional number system is a system in which numbers are
represented using certain symbols called digits and the values of these numbers is determined by
taking the position of digits into consideration.

« Decimal system: The decimal system is a positional number system that uses base 10 to represent
different values.

Binary system: The binary system is a positional number system that uses base 2 to represent
different values.

Hexadecimal system: The hexadecimal system is a positional number system that uses base 16 to
represent different values.

 Octal system: The octal system is a positional number system that uses base § to represent different
values.

« Number system conversions: The different type of number system conversions can be divided into
three major categories: non-decimal to decimal, decimal to non-decimal and octal to hexadecimal.

« ALU: ALU is an important component of CPU that is used to perform various arithmetic and logical
operations in the computer system.

« Integer arithmetic: Integer arithmetic refers to various arithmetic operations involving integer
operands only.

Floating-point arithmetic: Floating-point arithmetic refers to various arithmetic operations

involving floating-point operands only.

Unsigned binary number: Unsigned binary number is the number with a magnitude of either zero
or greater than zero.

« Basic logic gates: Basic logic gates are the building blocks of digital circuits that perform logical
operations such as AND, OR and NOT, on the binary inputs.

« Machine Language: The computer instructions written using binary codes 1 and 0 are machine code

or machine language.

Visual Walkthrough

_(» LEARNING OUTCOMES

o Weneed to specify three things, namely, name, type and size, when we declare an array. j7619.1]
B ¢ Use of invalid subscript is one of the common errors. An incorrect or invalid index may cause LOJENA

at we need to
ter.

unexpected results.

o Always remember that subscripts begin at 0 (not 1) and end at size ~1.

o Defining the size of an array as a symbolic constant makes a program more scalable.

« Be aware of the difference between the “kth element” and the “element K”. The kih element has a
subseript k-1, whereas the element k has a subscript of k itself.
Do not forget to initialize the elements: otherwise they will contain “garbage”.

BRIEF CASES

1. Range of Numbers [LO7.1,7.2M]

Problem: A survey of the computer market shows that personal computers are sold at varying costs by the
vendors. The following is the list of costs (in hundreds) quoted by some vendors:
35.00, 40.50, 25.00, 3125, 68.15,
47.00, 26,65, 29.00, 53.45, 62.50
Determine the average cost and the range of values.
Problem analysis: Range is one of the measures of dispersion used in statistical analysis of a series o
values. The range of any series is the difference between the highest and the lowest values in the series.
That is
Range = highest value — lowest value
Itis therefore necessary to find the highest and the lowest values in the series.
Program: A program to determine the range of values and the average cost of a personal computer in the
market is given in Fig. 7.16.

Program
main()

int count;

float value, high, low, sum, average, range;

sum = 03

count = 03

printf("Enter numbers in a line :
input a NEGATIVE number to end\n

AllLL1 INTRODUCTION

Data storage is an important function of a computer system. While the facility of storing the data is provided
by hardware storage devices, we cannot simply dump the entire data in them. We must logically organize
the data in such a way that future data access and manipulation becomes simpler and efficient. Database
system is one such dedicated program that manages the collection of a large number of data elements in a
systematic manner. Computer applications and users simply interact with the database system through an
interface while the later works behind the scenes to access and retrieve the required data elements. There
are different data models on which we can base the design of our database. The choice of 4 particular data
‘model is made on the basis of the type of the data to be stored and its associated relationships.

Alll.2 DATA MODELS

Data model refers 1o the structure of a database system describing how data objects are arranged inside
the database. Its also describes several other concepts related to the database system, such as constraints,
relationships, etc. The various types of data models are:

te real-time
ng in solving

APPENDIX

ASCII %ﬂrﬂ@scﬂ@aﬂg I

AscIl AscIl AscIl

Value Characte Character Character

APPENDIX

The C language is accompanied by number of library functions that perform various tasks. The ANSI comiitie has

files where they are defined. For a more complet list,the reader should refer to the manual of the version of C that is
used,

luded in thi

<ctyped> Character testing and conversion functions
<mathh> Mathematical functions.

<stdioh> Standard 1O library functions

<stlibh> Uity funci h

<stringh> String manipulation functions
<time> Time manipulation functions
Note: The following function parameters are used:
© - character type argument
d - double precision argument
f - flc argument

CHAPTER

Understanding ' 1
Fundamentals of the

Computer

EARNING OBJECTIVES

ill be able to

nerations of computers

the basis of different criteria
r system

uter software

ting systems

ware

ing concepts and protocols

1.1 INTRODUCTION

A computer is an electronic machine that takes input from the user, processes the given input and
generates output in the form of useful information. A computer accepts input in different forms
such as data, programs and user reply. Data refer to the raw details that need to be processed to
generate some useful information. Programs refer to the set of instructions that can be executed
by the computer in sequential or non-sequential manner. User reply is the input provided by the
user in response to a question asked by the computer.

A computer includes various devices that function as an integrated system to perform several
tasks described above (Fig. 1.1). These devices are:

Central Processing Unit (CPU) 1t is the processor of the computer that is responsible for
controlling and executing instructions in the computer. It is considered as the most significant
component of the computer.

Monitor It is a screen, which displays information in visual form, after receiving the video
signals from the computer.

Keyboard and Mouse These are the devices, which are used by the computer, for receiving
input from the user.

|
—
[|
|
[
, Computing Fundamentals & C Programming

CPU ——>

Monitor

= Keyboard
\ y

Mouse

Fig. 1.1 The components of computer

1.1

1.2 GENERATIONS OF COMPUTERS o011

The history of computer development is often discussed in terms of different generation of computers, as

listed below.
< First generation computers
< Second generation computers
< Third generation computers
< Fourth generation computers
< Fifth generation computers

1.2.1 First Generation Computers

These computers used the vacuum tubes
technology (Fig. 1.2) for calculation as well
as for storage and control purposes. Therefore,
these computers were also known as vacuum
tubes or thermionic valves based machines.
Some examples of first generation computers are
ENIAC, EDVAC, EDSAC and UNIVAC.

Advantages
< Fastest computing devices of their time.
2

< Able to execute complex mathematical
problems in an efficient manner.

Disadvantages

< These computers were not very easy to

program being machine dependent.

< They were not very flexible in running
different types of applications as
designed for special purposes.
The use of vacuum tube technology
made these computers very large and

K2
»

Glass encolsure

Plate (anode)
Filament
Cathode
Grid
Heater — / Insulated
& element
support
Tube base

f

Connection
pins

Fig. 1.2 A vacuum tube

|

—

[|

(|

[
Understanding Fundamentals of the Computer ,

bulky and also required to be placed in cool places.
< They could execute only one program at a time and hence, were not very productive.

2

< They generated huge amount of heat and hence were prone to hardware faults.

1.2.2 Second Generation Computers

These computers use transistors in place of vacuum tubes in building the basic logic circuits. A transistor is
a semiconductor device that is used to increase the power of the incoming signals by preserving the shape
of the original signal (Fig. 1.3).

Some examples of second generation computers are PDP-8, IBM
1401 and IBM 7090.

Advantages
< Fastest computing devices of their time.
< Easy to program because of the use of assembly language.
< Small and light weight computing devices.
< Required very less power in carrying out operations.

Disadvantages
< Input and output media for these computers were not
improved to a considerable extent. Emitter Collector
< Required to be placed in air-conditioned places.
< Very expensive and beyond the reach of home users.
< Being special-purpose computers they could execute only Base
specific applications. Fig. 1.3 A transistor

1.2.3 Third Generation Computers

The major characteristic feature of third generation computer systems was the use of Integrated Circuits
(ICs). ICs are the circuits that combine various electronic components, such as transistors, resistors,
capacitors, etc. onto a single small silicon chip.

Some examples of third generation computers are NCR 395, B6500, IBM 370, PDP 11 and CDC 7600.

Advantages
< Computational time for these computers was usually in nanoseconds hence were the fastest
computing devices
< Easily transportable because of their small size.
< They used high-level languages which is machine
independent hence very easy to use.
% Easily installed and required less space.
% Being able to execute any type of application
(business and scientific) these were considered as
general-purpose computers.

Disadvantages
% Very less storage capacity.
% Degraded performance while executing complex
computations because of the small storage capacity.
< Very expensive. Fig. 1.4 An integrated circuit

4 Computing Fundamentals & C Programming

1.2.4 Fourth Generation Computers

The progress in LSI and VLSI technologies led to the
development of microprocessor, which became the major
characteristic feature of the fourth generation computers. The
LSI and VLSI technology allowed thousands of transistors to @
be fitted onto one small silicon chip.

A microprocessor incorporates various components
of a computer—such as CPU, memory and Input/Output
(I/0) controls—onto a single chip. Some popular later
microprocessors include Intel 386, Intel 486 and Pentium.

Some of the examples of fourth generation computers are
IBM PC, IBM PC/AT, Apple and CRAY-1. Fig. 1.5 The Intel P4004 microprocessor chip

Advantages
« LSI and VLSI technologies made them small, cheap, compact and powerful.
< high storage capacity
< highly reliable and required very less maintenance.
« provided a user-friendly environment with the development of GUIs and interactive I/O devices.
< programs written on these computers were highly portable because of the use of high-level
languages.
< very versatile and suitable for every type of applications.
% required very less power to operate.

Disadvantages
< the soldering of LSI and VLSI chips on the wiring board was complicated
< still dependent on the instructions given by the programmer.

1.2.5 Fifth Generation Computers

Fifth generation computers are based on the Ultra Large Scale Integration (ULSI) technology that allows
almost ten million electronic components to be fabricated on one small chip.

Advantages
< faster, cheaper and most efficient computers till date.
< They are able to execute a large number of applications at the same time and that too at a very high
speed.
% The use of ULSI technology helps in decreasing the size of these computers to a large extent.
< very comfortable to use because of the several additional multimedia features.
% versatile for communications and resource sharing.

Disadvantage

They are not provided with an intelligent program that could guide them in performing different operations.
Figure 1.6 shows a tree of computer family that illustrates the area-wise developments during the last

four decades and their contributions to the various generations of computers.

Calculating
devices

Y

Abacus
(prehistoric)

Napier: bones,
logarithms (1614)

Pascal:
calculator (1642)

Leibnitz:
calculator (1671)

Programs

Information
storage

—
—
.
|
I
Understanding Fundamentals of the Computer ’

Jacquard: punched

cards for looms (1801)

—

Y

Cash register

Y

Babbage: difference
engine (1822)

analytical engine
(1834)

'

[

Principles of
computers

Boole: mathematics
and logic (1854)

Y

Y

Poulsen: magnetic
data storage (1900)

A

Ada Lovelace: Hollerith: punched Shannon: circuits Turing: instruction De Forest:
programs (1834) cards for data (1890)|| and logic (1938) sets (1936) valves (1906)
Y Computer Y
generation
Machine language Von Neumann: principles
of computers (1945)
I

Assembly First generation Schokley:
language] 1944 to 1955 transistors (1947)

High level L>

language

4 GLs \—r

Second generation
> 1955 to 1965

Integrated circuits
(1959)

Third generation

1

Microprocessors

1965 to 1975 (1971)
e
Al language Microcomputers |
Parallel processing Y
» Fourth generation | LSIVLSI
197510 technology

Fifth generation
1980 to -

Fig. 1.6 Tree of computer family

Il uLsl

6 Computing Fundamentals & C Programming

(
1.3 CLASSIFICATION OF COMPUTERS 1012

Computers can be classified into several categories depending on their computing ability and processing
speed. These include

< Microcomputer

< Minicomputer

< Mainframe computers

< Supercomputers

Microcomputers
A microcomputer is defined as a computer that has a microprocessor as its CPU and can perform the
following basic operations:
< Inputting — entering data and instructions into the microcomputer system.
< Storing — saving data and instructions in the memory of the microcomputer system, so that they
can be use whenever required.
< Processing — performing arithmetic or logical operations on data, where data, such as addition,
subtraction, multiplication and division.
< QOutputting — It provides the results to the user, which could be in the form of visual display and/
or printed reports.
< Controlling — It helps in directing the sequence and manner in which all the above operations are
performed.

Minicomputers

A minicomputer is a medium-sized computer that is more powerful than a microcomputer. It is usually
designed to serve multiple users simultaneously, hence called a multiterminal, time-sharing system.
Minicomputers are popular among research and business organizations today. They are more expensive than
microcomputers.

Mainframe Computers

Mainframe computers help in handling the information processing of various organizations like banks,
insurance companies, hospitals and railways. Mainframe computers are placed on a central location and
are connected to several user terminals, which can act as access stations and may be located in the same
building. Mainframe computers are larger and expensive in comparison to the workstations.

Supercomputers

In supercomputers, multiprocessing and parallel processing technologies are used to promptly solve
complex problems. Here, the multiprocessor can enable the user to divide a complex problem into smaller
problems. A supercomputer also supports multiprogramming where multiple users can access the computer
simultaneously. Presently, some of the popular manufacturers of supercomputers are IBM, Silicon Graphics,
Fujitsu, and Intel.

Understanding Fundamentals of the Computer 7

1.4 BASIC ANATOMY OF A COMPUTER SYSTEM 1013 [

A computer system comprises hardware and software components. Hardware refers to the physical

parts of the computer system and software is the set of instructions or programs that are necessary for the

functioning of a computer to perform certain tasks. Hardware includes the following components:

< Input devices — They are used for accepting the data on which the operations are to be performed.

The examples of input devices are keyboard, mouse and track ball.

< Processor — Also known as CPU, it is used to perform the calculations and information processing
on the data that is entered through the input device.

< Output devices — They are used for providing the output of a program that is obtained after
performing the operations specified in a program. The examples of output devices are monitor and
printer.

< Memory — It is used for storing the input data as well as the output of a program that is obtained
after performing the operations specified in a program. Memory can be primary memory as well
as secondary memory. Primary memory includes Random Access Memory (RAM) and secondary
memory includes hard disks and floppy disks.

Magnetic Magnetic
Tape Disk

EXTERNAL STORAGE UNITS

Input Input Memory Output Output
Media Unit Unit Unit Media

Arithmetic
Unit

ik it Control | :
FEUPIPPPY PR Unit

CPU
Data and results flow
<<<<<<<<<<<<<<<<<<<<<<< Control Instructions to units

---------- Instructions to control unit

Fig. 1.7 Interaction among hardware components

8 Computing Fundamentals & C Programming

Software supports the functioning of a computer system internally and cannot be seen. It is stored
on secondary memory and can be an application software as well as system software. The application
software is used to perform a specific task according to requirements and the system software (operating
system and networking system) is mandatory for running application software.

1.5 INPUT DEVICES 1013

Input devices are electromechanical devices that are used to provide data to a computer for storing and
further processing, if necessary. Depending upon the type or method of input, the input device may belong
to one of the following categories:

1.5.1 Keyboard

Keyboard is used to type data and text and execute commands. A standard keyboard, as shown in Fig. 1.8,
consists of the following groups of keys:

Alphanumeric Keys include the number keys and alphabet keys arranged in QWERTY layout.
Function Keys help perform specific tasks, such as searching a file or refreshing a web page.

Central Keys include arrow keys (for moving the cursor) and modifier keys such as SHIFT, ALT and
CTRL (for modifying the input).

Numeric Keypad looks like a calculator’s keypad with its 10 digits and mathematical operators.

Special Purpose Keys The special purpose keys help perform a certain kind of operation, like exiting a
program (Escape) or deleting some characters (Delete) in a document, etc.

Function keys

Special purpose keys

o] 5] o
]

1

EE

Modifier
keys<

5
M E
=1

Arrow Numeric

Alphanumeric keys
keys keys

Fig. 1.8 The presently used keyboard

1.5.2 Mouse

Mouse is a small hand-held pointing device that basically controls the two-dimensional movement of
the cursor on the displayed screen. It is an important part of the Graphical User Interface (GUI) based
Operating Systems (OS) as it helps in selecting a portion of the screen and copying and pasting the text.

Understanding Fundamentals of the Computer 9

The mouse, on moving, also moves the pointer appearing on the display device (Fig. 1.9).

Wheel

/— Right Button
Left Button ﬁ\A 3

7

Fig. 1.9 A mechanical mouse

1.5.3 Scanning Device

Scanning devices are the input devices that can electronically capture
text and images, and convert them into computer readable form
(Fig. 1.10).

There are the following types of scanners that can be used to
produce digitized images:

2
o

1.6

Flatbed scanner — It contains a scanner head that moves
across a page from top to bottom to read the page and
converts the image or text available on the page in digital
form. The flatbed scanner is used to scan graphics, oversized
documents, and pages from books.

Drum scanner — In this type of scanner, a fixed scanner
head is used and the image to be scanned is moved across
the head. The drum scanners are used for scanning prepress
materials.

Slide scanner — It is a scanner that can scan photographic slides directly to produce files
understandable by the computer.

Handheld scanner — It is a scanner that is moved by the end user across the page to be scanned.
This type of scanner is inexpensive and small in size.

Fig. 1.10 A Scanner

PROCESSOR \&1-3.(

The CPU consists of Control Unit (CU) and ALU. CU stores the instruction set, which specifies the
operations to be performed by the computer. CU transfers the data and the instructions to the ALU for
an arithmetic operation. ALU performs arithmetical or logical operations on the data received. The CPU
registers store the data to be processed by the CPU and the processed data also. Apart from CU and ALU,
CPU seeks help from the following hardware devices to process the data:

Motherboard

It refers to a device used for connecting the CPU with the input and output devices. The components on the
motherboard are connected to all parts of a computer and are kept insulated from each other. Some of the
components of a motherboard are:

10 Computing Fundamentals & C Programming

% Buses: Electrical pathways that transfer data and instructions among different parts of the computer.
For example, the data bus is an electrical pathway that transfers data among the microprocessor,
memory and input/output devices connected to the computer.

% System clock: It is a clock used for synchronizing the activities performed by the computer. The
electrical signals that are passed inside a computer are timed, based on the tick of the clock.

% Microprocessor: CPU component that performs the processing and controls the activities performed
by the different parts of the computer.

s ROM: Chip that contains the permanent memory of the computer that stores information, which
cannot be modified by the end user.

RAM
It refers to primary memory of a computer that stores information and programs, until the computer is used.
RAM is available as a chip that can be connected to the RAM slots in the motherboard.

Video Card/Sound Card

The video card is an interface between the monitor and the CPU. Video cards also include their own RAM
and microprocessors that are used for speeding up the processing and display of a graphic. A sound card is
a circuit board placed on the motherboard and is used to enhance the sound capabilities of a computer.

1.7 OUTPUT DEVICES 1013

The main task of an output device is to convert the machine-readable information into human-readable form
which may be in the form of text, graphics, audio or video.

1.7.1 Display Monitors

A monitor produces visual displays generated by the computer. The monitor is connected to the video card
placed on the expansion slot of the motherboard.

The monitors can be classified as cathode ray tube (CRT) monitors or liquid crystal display (LCD)
monitors. The CRT monitors are large, occupy more space in the computer, whereas LCD monitors are
thin, light weighted, and occupy lesser space. Both the monitors are available as monochrome, gray scale
and color models.

— Cathode Ray Tube]

» Cathode Sty

Ray Tube - -1
Elef‘trzol 7777777 —> Screen

Screen 9 CIITITIIIIIoNTTTTTTTmooo

Electron beam

Reway Electromagnetic
\ coils

(a) CRT Monitor (b) Internal Components of CRT
Fig. 1.11 A CRT monitor and the internal components of a CRT

|

—

[|

[

[
Understanding Fundamentals of the Computer ’

A monitor can be characterized by its monitor size and resolution. The monitor size is the length of
the screen that is measured diagonally. The resolution of the screen is expressed as the number of picture
elements or pixels of the screen. The resolution of the monitor is also called the dot pitch. The monitor with
a higher resolution produces a clearer image.

1.7.2 Printer

The printer is an output device that transfers the text displayed on the screen, onto paper sheets that can

be used by the end user. Printers can be classified based on the technology they use to print the text and

images:

< Dot matrix printers — Dot matrix printers are impact printers that use perforated sheet to print the

text. Dot matrix printers are used to produce multiple copies of a print out.

< Inkjet printers — Inkjet printers are slower than dot matrix printers and are used to generate high
quality photographic prints.

< Laser printers — The laser printer may or may not be connected to a computer, to generate an
output. These printers consist of a microprocessor, ROM and RAM, which can be used to store the
textual information.

1.7.3 Voice Output Systems

These systems record the simple messages in human speech form and then combine all these simple
messages to form a single message. The voice response system is of two types—one uses a reproduction of
human voice and other sounds, and the other uses speech synthesis.

The basic application of a voice output system is in Interactive Voice Response (IVR) systems, which are
used by the customer care or customer support departments of an organization, such as telecommunication
companies, etc.

1.7.4 Projectors

A projector is a device that is connected to a
computer or a video device for projecting an
image from the computer or video device onto
the big white screen. The images projected by
a projector are larger in size as compared to
the original images. A projector consists of an
optic system, a light source and displays, which
contain the original images. Projectors were
initially used for showing films but now they are
used on a large scale for displaying presentations
in business organizations and for viewing movies
at home.

Control
buttons

Lens

Fig. 1.12 A portable projector

1.8 MEMORY MANAGEMENT 013"

The memory unit of a computer is used to store data, instructions for processing data, intermediate results
of processing and the final processed information. The memory units of a computer are classified as primary
and secondary memory. Computers also use a third type of storage location known as the internal process

12

Computing Fundamentals & C Programming

memory. This memory is placed either inside the CPU or near the CPU (connected through special fast

bus).

Memory
Secondary Primary gxggi
Memory Memory Memory
Low Cost > High
Slow Speed > Fast
C it
High — apacty Low

Fig. 1.13 Memory unit categories of computer

1.8.1 Primary Memory

The primary memory is available in the computer as a built-in unit of the computer. The primary memory is
represented as a set of locations with each location occupying 8 bits. Each bit in the memory is identified by
a unique address. The data is stored in the machine-understandable binary form in these memory locations.
The commonly used primary memories are as follows:

2
**

K2
%

K2
%

ROM — ROM represents Read Only Memory that stores data and instructions, even when the
computer is turned off. It is the permanent memory of the computer where the contents cannot be
modified by an end user. ROM is a chip that is inserted into the motherboard. It is generally used to
store the Basic Input/Output system (BIOS), which performs the Power On Self Test (POST).

RAM — RAM is the read/write memory unit in which the information is retained only as long
as there is a regular power supply. When the power supply is interrupted or switched off, the
information stored in the RAM is lost. RAM is volatile memory that temporarily stores data and
applications as long as they are in use. When the use of data or the application is over, the content in
RAM is erased.

Cache memory — Cache memory is used to store the data and the related application that was
last processed by the CPU. When the processor performs processing, it first searches the cache
memory and then the RAM, for an instruction. The cache memory can be either soldered into the
motherboard or is available as a part of RAM.

1.8.2 Secondary Memory

Secondary memory represents the external storage devices that are connected to the computer. They provide
a non-volatile memory source used to store information that is not in use currently. A storage device is
either located in the CPU casing of the computer or is connected externally to the computer. The secondary
storage devices can be classified as:

Understanding Fundamentals of the Computer 13

R

< Magnetic storage device — The magnetic storage devices store information that can be read, erased
and rewritten a number of times. These include floppy disk, hard disk and magnetic tapes.

< Optical storage device — The optical storage devices are secondary storage devices that use laser
beams to read the stored data. These include CD-ROM, rewritable compact disk (CD-RW), digital
video disks with read only memory (DVD-ROM), etc.

< Magneto-optical storage device — The magneto-optical devices are generally used to store

information, such as large programs, files and back-up data. The end user can modify the

information stored in magneto-optical storage devices multiple times. These devices provide higher

storage capacity as they use laser beams and magnets for reading and writing data to the device.

1.9 TYPES OF COMPUTER SOFTWARE 1014’

A computer program is basically a set of logical instructions, written in a computer programming language
that tells the computer how to accomplish a task. The software is therefore an essential interface between
the hardware and the user (Fig. 1.14).

A computer software performs two distinctive tasks. The first task is to control and coordinate the
hardware components and manage their performances and the second one is to enable the users to
accomplish their required tasks. The software that is used to achieve the first task is known as the system
software and the software that is used to achieve the second task is known as the application software.

Users

Application Software

System Software

Hardware

> <<

A

Y

—~—

Fig. 1.14 Layers of software and their interactions

1.9.1 System Software

System software consists of many different programs that manage and support different tasks. Depending
upon the task performed, the system software can be classified into two major groups (Fig. 1.15):
< System management programs used for managing both the hardware and software systems. They
include:
e Operating system
e Utility programs
e Device drivers

14

Computing Fundamentals & C Programming

System development programs are used for developing and executing application software. These are:
e Language translators

e Linkers
e Debuggers
e Editors
Computer
Software
System Application
Software Software
System System Standard Unique
Management Development Application Application
Programs Programs Programs Programs

Fig. 1.15 Major categories of computer software

1.9.2 Application Software

Application software includes a variety of programs that are designed to meet the information processing
needs of end users. They can be broadly classified into two groups:

R
**

Standard application programs that are designed for performing common application jobs.
Examples include:

e Word processor

e Spreadsheet

e Database Manager

e Desktop Publisher

e Web Browser

Unique application programs that are developed by the users themselves to support their specific
needs. Examples include:

e Managing the inventory of a store

e Preparing pay-bills of employees in an organization

e Reserving seats in trains or airlines

1.10 OVERVIEW OF OPERATING SYSTEM 1015’

An operating system (OS) is a software that makes the computer hardware to work. While the hardware
provides ‘raw computer power’ , the OS is responsible for making the computer power useful for the users.
OS is the main component of system software and therefore must be loaded and activated before we can
accomplish any other task. The main functions include:

R
**
R
**

R
**

Operates CPU of the computer.
Controls input/output devices that provide the interface between the user and the computer.
Handles the working of application programs with the hardware and other software systems.

Understanding Fundamentals of the Computer 15

Manages the storage and retrieval of information using storage devices such as disks.

Input/Output

devi CPU
evices

/gperates

Controls

Operating
system

Handles N/I\anages
Programs Files and
directories

Fig. 1.16 The roles of an operating system

Based on their capabilities and the types of applications supported, the operating systems can be divided
into the following six major categories:

Batch operating system — This is the earliest operating system, where only one program is
allowed to run at one time. We cannot modify any data used by the program while it is being run. If
an error is encountered, it means starting the program from scratch all over again. A popular batch
operating system is MS DOS.

Interactive operating system — This operating system comes after the batch operating system,
where also only one program can run at one time. However, here, modification and entry of data
are allowed while the program is running. An example of an interactive operating system is Multics
(Multiplexed Information and Computing Service).

Multiuser operating system — A multiuser operating system allows more than one user to use
a computer system either at the same time or at different times. Examples of multiuser operating
systems include Linux and Windows 2000.

Multi-tasking operating system — A multi-tasking operating system allows more than one
program to run at the same time. Examples of multi-tasking operating systems include Unix and
Windows 2000.

Multithreading operating system — A multithreading operating system allows the running of
different parts of a program at the same time. Examples of multithreading operating system include
UNIX and Linux.

Real-time operating systems — These operating systems are specially designed and developed for
handling real-time applications or embedded applications. Example include MTOS,Lynx,RTX
Multiprocessor operating systems — The multiprocessor operating system allows the use of
multiple CPUs in a computer system for executing multiple processes at the same time. Example
include Linux, Unix, Windows 7.

Embedded operating systems — The embedded operating system is installed on an embedded
computer system, which is primarily used for performing computational tasks in electronic devices.
Example include Palm OS, Windows CE

1.10.1 MS DOS Operating System

MS DOS or Microsoft Disk Operating System, which is marketed by Microsoft Corporation and is one of
the most commonly used members of the DOS family of operating systems. MS DOS is a command line

16 Computing Fundamentals & C Programming

user interface, which was first introduced in 1981 for IBM computers. Although MS DOS, nowadays, is not
used as a stand-alone product, but it comes as an integrated product with the various versions of Windows.
In MS DOS, unlike Graphical User Interface (GUI)-based operating systems, there is a command line
interface, which is known as MS DOS prompt. Here, we need to type the various commands to perform
the operations in MS DOS operating system. The MS DOS commands can be broadly categorized into the
following three classes:
< Environment command — These commands usually provide information on or affects operating
system environment. Some of these commands are:
e CLS: It allows the user to clear the complete content of the screen leaving only the MS-DOS
prompt.
e TIME: It allows the user to view and edit the time of the computer.
e DATE: It allows the user to view the current date as well as change the date to an alternate date.
e VER: It allows us to view the version of the MS-DOS operating system.
File manipulation command — These commands help in manipulating files, such as copying a file
or deleting a file. Some of these commands include:
e COPY: It allows the user to copy one or more files from one specified location to an alternate
location.
e DEL: It helps in deleting a file from the computer.
e TYPE: It allows the user to view the contents of a file in the command prompt.
e DIR: It allows the user to view the files available in the current and/or parent directories.
« Utilities — These are special commands that perform various useful functions, such as formatting a
diskette or invoking the text editor in the command prompt. Some of these commands include:
e FORMAT: It allows the user to erase all the content from a computer diskette or a fixed drive.
e EDIT: It allows the user to view a computer file in the command prompt, create and modify the
computer files.

1.10.2 MS Windows Operating System

K2
%

Windows Architecture
The architecture of Windows operating system comprises a modular structure that is compatible with a
variety of hardware platforms. Figure 1.17 shows the architecture of Windows 2000; the later releases of
Windows operating systems are based on similar architecture.

At a high level, the architecture is divided into three layers, viz.

< User mode: Comprises application and I/O specific software components

< Kernel mode: Has complete access to system resources and hardware

< Hardware: Comprises underlying hardware platform

User Mode
The various subsystems in the user mode are divided into the following two categories:
< Environment subsystems: Comprise subsystems that run applications written for other operating
systems. These subsystems cannot directly request hardware access; instead such requests are
processed by virtual memory manager present in the kernel mode. The three main environment
subsystems include Win32, OS/2 and POSIX. Each of these subsystems possess dynamic link
libraries for converting user application calls to Windows calls.
< Integral subsystems: Takes care of the operating system specific functions on behalf of the
environment subsystems. The various integral subsystems include workstation service, server
service and security.

|

—

[|

[

[
Understanding Fundamentals of the Computer ’

Workst.atlon Ser\{er Secut.'lty Win32 POSIX 0s/2
Service Service Service
Integral Subsystems Environment Subsystems

User mode 4 A

Executive Services

S it Virtual Windows

1/0 ECUHILY. IPC Process PnP Power Manager
Reference Memory

Manager 7 Manager Manager || Manager || Manager
Monitor Manager GDI
| Object Manager |
Executive ¢ ¢
| Kernel Mode Drivers | | Micro Kernel |

| Hardware Abstraction Layer (HAL) |
Kernel mode $

Hardware

Fig. 1.17 The architecture of Windows 2000

Kernel Mode

The kernel mode comprises various components with each component managing specific system function.
Each of the components is independent and can be removed, upgraded or replaced without rewriting the
entire system. The various kernel-mode components include:

R
**

R
**

R
**

R
**

R
**
R
**
R

**

Executive: Comprises the core operating system services including memory management, process
management, security, I/O, inter process communication etc.

Kernel: Comprises the core components that help in performing fundamental operating system
operations including thread scheduling, exception handling, interrupt handling, multiprocessor
synchronization, etc.

HAL: Acts as a bridge between generic hardware communications and those specific to the
underlying hardware platform. It helps in presenting a consistent view of system bus, DMA,
interrupt controllers, timers, etc. to the kernel.

I/0 manager: Handles requests for accessing I/O devices by interacting with the relevant device
drivers.

Security reference monitor: Performs access validation and audit checks for Windows objects
including files, processes, I/O devices, etc.

Virtual Memory Manager: Performs virtual memory management by mapping virtual addresses to
actual physical pages in computer’s memory.

Process Manager: Creates and deletes objects and threads throughout the life cycle of a process.

Computing Fundamentals & C Programming

PnP manager: Supports plug-and-play devices by determining the correct driver for a device and
further loading the driver.

Power manager: Performs power management for the various devices. It also optimizes power
utilization by putting the devices to sleep that are not in use.

GDI: Stands for Graphics Device Interface and is responsible for representing graphical objects in
Windows environment. It also transfers the graphical objects to the output devices such as printer
and monitor.

Object manager: Manages Windows Executive objects and abstract data types that represent the
various resources such as processes, threads, etc.

1.10.3 Unix Operating System

UNIX operating system was developed by a group of AT&T employees at Bell Labs in the year 1969. UNIX
is primarily designed to allow multiple users access the computer at the same time and share resources. The
UNIX operating system is written in C language. The significant properties of UNIX include:

<
<
<
<

R
%

Multi-user capability
Multi-tasking capability
Portability

Flexibility

Security

Architecture of UNIX
UNIX has a hierarchical architecture consisting of several layers, where each layer provides a unique
function as well as maintains interaction with its lower layers. The layers of the UNIX operating system

are:
<

2
**

2
**

R
**

Kernel

Service

Shell

User applications

Figure 1.18 shows the various layers of the UNIX operating system.

R
%

K2
%

Kernel Kernel is the core of the UNIX operating system and it gets loaded into memory whenever
we switch on the computer. Three components of kernel are:

e Scheduler — It allows scheduling the processing of various jobs.

e Device driver — It helps in controlling the Input/Output devices attached to the computer.

¢ 1/O buffer — It controls the I/O operations in the computer.

Various functions performed by the kernel are:

e Initiating and executing different programs at the same time

e Allocating memory to various user and system processes

e Monitoring the files that reside on the disk

¢ Sending and receiving information to and from the network

Service In the service layer, requests are received from the shell and they are then transformed
into commands to the kernel. The service layer, which is also known as the resident module layer,
is indistinguishable from the kernel and consists of a collection of programs providing various
services, which include:

e Providing access to various I/O devices, such as keyboard and monitor

e Providing access to storage devices, such as disk drives

e Controlling different file manipulation activities, such as reading from a file and writing to a file

|

—

[|

[

[
Understanding Fundamentals of the Computer ’

User Applications

Shell

Service Layer

Kernel

Hardware

(Scheduler, Device Driver, /0O Buffers)

(Process Management, Memory Management, 1/0
services, and File System

(Library Routines)

Fig. 1.18 The layers of UNIX operating system

K2
»

Shell The third layer in the UNIX architecture is the shell, which acts as an interface between a
user and the computer for accepting the requests and executing programs. The shell is also known as
the command interpreter that helps in controlling the interaction with the UNIX operating system.
The primary function of the shell is to read the data and instructions from the terminal, and then
execute commands and finally display the output on the monitor. The shell is also termed as the
utility layer as it contains various library routines for executing routine tasks. The various shells that
are found in the UNIX operating system are:

e Bourne shell

e Cshell

e Korn shell

e Restricted shell

User applications The last layer in the UNIX architecture is the user applications, which are
used to perform several tasks and communicating with other users of UNIX. Some of the important
examples of user applications include text processing, software development, database management
and electronic communication.

K2
**

1.11 MS WORD \LO_“.(

MS Word is application software that can be used to create, edit, save and print personal as well as
professional documents in a very simple and efficient manner. MS Word is an important tool of the MS
office suite that is mainly designed for word processing. Other word processing applications available are,
Open Office Writer and Google Docs.

|
—
[|
|
[
’ Computing Fundamentals & C Programming

1.11.1 Accessing MS Word

For working in MS Word, we need to install MS Office in a computer system. After installing MS Office,
we can start MS Word by using any of the following two ways:

< Start menu

< Run command

We can start MS Word by performing the following steps using the Start menu:

1. Select Start — All Programs — Microsoft Office,

2. Select the Microsoft Office Word 2007 option to display the Graphical User Interface (GUI) of MS

Word, as shown in Fig. 1.19.

Document
Tabs Title Bar window
l' Ribbon
P— A
‘@ Meme UM Poge Layout Reterences. Masngn Renew View -
YA ammm (K8 (B RS [ancn] st AaBbC natioce AQB assce] sosocin s - AR B

ponter (BT bk Are A WM S e | twems 1Metos Messmgl Wassngd Tme svme setetn tmpnsn , Cnoe
-3 Pont L0 Perganh Sttes g

Ruler —_— S—— : =l

Status Bar Scroll Bar

Fig. 1.19 The Document1 — Microsoft Word window

Using Run command We can also start MS Word by performing the following steps using the Run
command:
1. Select Start — All Programs — Accessories — Run to display the Run dialog box.
2. Type winword in the Open text box and click OK to display the Documentl — Microsoft Word
window.

1.11.2 Basic Operations Performed in MS Word

The following are the key operations that we can perform in MS Word:
< Creating a document
< Saving a document

« Editing a document

< Formatting a document

< Printing a document

Understanding Fundamentals of the Computer 21

1.12 MS EXCEL SYSTEM 1016

MS Excel is an application program that allows us to create spreadsheets, which are represented in the form
of a table containing rows and columns. The horizontal sequence in which the data is stored is referred to as
a row. The vertical sequence in which the data is stored is referred to as a column. In a spreadsheet, a row
is identified by a row header and a column is identified by a column header. Each value in a spreadsheet is
stored in a cell, which is the intersection of rows and columns. A cell can contain either numeric value or a
character string. We can also specify the contents of a cell using formulas. In a spreadsheet, we can perform
various mathematical operations using formulas, such as addition, subtraction, multiplication, division,
average, percentage, etc.

MS Excel also allows us to represent the complex data pictorially in the form of graphs. These are
generally used to represent the information with the help of images, colours, etc., so that their presentation
is simple and more meaningful. Some of the graphs available in spreadsheet are bar graphs, line graphs,
3-D graphs, area graphs, etc.

1.12.1 Accessing MS Excel

For working with MS Excel, we first need to install MS Office in our computer system. After installing MS
Office, we can start MS Excel using any of the following two ways:

< Start menu

< Run command

Using Start menu We can start MS Excel by performing the following steps using the Start menu:
1. Select Start — All Programs — Microsoft Office, as shown in Fig. 1.20.
2. Select the Microsoft Office Excel 2007 option to display the GUI of MS Excel,

Column

Tabs Title Bar

Ribbon
o) . l i

=
T | nome | et Dgeimsd Tomdn s Wewem Vew Tom
A (™ (B et

- Gomes
(S A W EE EHveorscom S % AA

) £ C G

c
i)

401 Shout - Sheatd Shaetd T3 .

o *_ 1‘ s - . . -

Worksheettab Status bar

Scroll Bar

Fig. 1.20 The Microsoft Excel—Book1 window

22 Computing Fundamentals & C Programming

Figure 1.20 shows the initial workbook of MS Excel, which in turn contains worksheets. Each worksheet
contains rows and columns where we can enter data.

Using Run command We can also start MS Excel by performing the following steps using the Run
command:

1. Select Start — All Programs — Accessories — Run to display the Run dialog box.

2. Type excel in the Open text box and click OK to display the Microsoft Excel — Book1 window.

1.12.2 Basic Operations Performed in MS Excel

Worksheet is the actual working area consisting of rows and columns. The worksheets are also known as
the spreadsheets. A workbook in MS Excel is a combination of several worksheets. Each workbook of MS
Excel contains three worksheets by default. The key operations that are performed in MS Excel include:
Creating a worksheet

Saving a worksheet

Modifying a worksheet

Renaming a worksheet

Deleting a worksheet

Moving a worksheet

Editing a worksheet

K2 K2 K2 K2 K2 K2 K2
L XA X X G X I X S X SR %4

r
1.13 MS POWERPOINT SYSTEM 1016

MS PowerPoint is a software application included in the MS Office package that allows us to create
presentations. PowerPoint provides a GUI with the help of which we can create attractive presentations
quickly and easily. The presentation may include slides, handouts, notes, outlines, graphics and animations.
A slide in PowerPoint is a combination of images, text, graphics, charts, etc., that is used to convey some
meaning information. The presentations in MS PowerPoint are usually saved with the extension .ppt.
The interface of MS PowerPoint is similar to the other interfaces of MS Office applications. PowerPoint
presentations are commonly used in business, schools, colleges, training programmes, etc.

1.13.1 Accessing MS PowerPoint

For working in MS PowerPoint, we need to first install the MS Office package in our computer system.
After installing MS Office, we can start MS PowerPoint using any of the following two ways:

< Start menu

< Run command

Using Start menu We can start MS PowerPoint by performing the following steps using the Start menu:
1. Select Start — All Programs — Microsoft Office,
2. Select the Microsoft Office PowerPoint 2007 option to display the GUI of MS PowerPoint, as shown
in Fig. 1.21.

|
—
|
|
[
Understanding Fundamentals of the Computer ,

Slide Pane
Tabs Title Bar

VL Ribbon
) 00 l Presertaton] - Mcrosoft Powerdont L T ER
3
1

"/ | vome | Wuet Oesign Anmstions SedeShow Resew View

e T N 21 Duyeut - = R P 1 = s 1A Test Ouvection] / (o m B | o [snepera N rea
:3 2 Copn "j B L — -"A) |,= - “?:‘!“*]Ju-m Val DG - ‘é 2 B shsos O - &, Replace +
P | rormat it | s 30te | (B b W A A [0 W] o a vatta- | §SNAL) s o 8 L - | G seea

@ rrerer3reriasigeses

Slides
Tab

Click to add title

Click to add subtitle

Click to add notes
'Ii I

Status bar Notes Pane

Fig. 1.21 The Microsoft PowerPoint—[Presentation1] Window

Using Run command We can also start MS PowerPoint by performing the following steps using the
Run command:
1. Select Start — All Programs — Accessories — Run to display the Run dialog box.
2. Type powerpnt in the Open text box and click OK to display the Microsoft PowerPoint —
[Presentation1] window.

1.13.2 Basic Operations Performed on a Presentation

The following are the key operations that can be performed in MS PowerPoint:
< Creating a new presentation

Designing the presentation

< Saving a new presentation

% Adding slides to the presentation

% Printing the presentation

K2
%

1.14 NETWORKING CONCEPTS M

Computer network is a system of interconnected computers that enable the computers to communicate
with each other and share their resources, data and applications. The physical location of each computer is
tailored to personal and organisational needs. A network may include only personal computers or a mix of

24 Computing Fundamentals & C Programming

PCs, minis and mainframes spanning a particular geographical area. Computer networks that are commonly
used today may be classified as follows:

< Based on geographical area:
e Local Area Networks (LANSs)
¢ Wide Area Networks (WANs)
e Metropolitan Area Networks (MAN5)
e International Network (Internet)
e Intranet
< Based on how computer nodes are used:
e C(Client Server Networks (CSNs)
e Peer-to-peer Networks (PPNs)
e Value-added Networks (VANs)

1.14.1 Local Area Network (LAN)

LAN is a group of computers, as shown in Fig. 1.22, that are connected in a small area such as building,
home, etc. Through this type of network, users can easily communicate with each other by sending and
receiving messages. LAN is generally used for connecting two or more personal computers through some
medium such as twisted pair, coaxial cable, etc. Though the number of computers connected in a LAN is
limited, the data is transferred at an extremely faster rate.

LAN

Fig.1.22 ALAN

1.14.2 Wide Area Network (WAN)

WAN is a group of computers that are connected in a large area such as continent, country, etc. WAN
is generally used for connecting two or more LANs through some medium such as leased telephone
lines, microwaves, etc. In WAN, data is transferred at slow rate. A typical WAN network is shown in Fig. 1.23.

|

—

[|

[

[
Understanding Fundamentals of the Computer ’

WAN

Fig. 1.23 A WAN system

1.14.3 Metropolitan Area Network (MAN)

MAN is a network of computers that covers a large area like a city. The size of the MAN generally lies
between that of LAN and WAN, typically covering a distance of 5 km to 50 km. The geographical area
covered by MAN is comparatively larger than LAN but smaller than WAN. MAN is generally owned by
private organisations. MAN is generally connected with the help of optical fibres, copper wires etc. One
of the most common example of MAN is cable television network within a city as shown in Fig. 1.24. A
network device known as router is used to connect the LANs together. The router directs the information
packets to the desired destination.

| LAN | | LAN |

Cable television
network

Fig. 1.24 A typical MAN system

26 Computing Fundamentals & C Programming

1.15 NETWORK TOPOLOGIES 1017

Network topology refers to the arrangement of computers connected in a network through some physical
medium such as cable, optical fibre etc. Topology generally determines the shape of the network and the
communication path between the various computers (nodes) of the network. The various types of network
topologies are as follows:

< Hierarchical topology

< Bus topology

2

< Star topology
< Ring topology
< Mesh topology

< Hybrid topology

1.15.1 Hierarchical Topology

The hierarchical topology is also known as tree topology, which is divided into different levels connected
with the help of twisted pair, coaxial cable or fibre optics. Figure 1.25 shows the arrangement of computers
in hierarchical topology.

Top level

Second level

— —— Third level
e———N W e—————N E

Fig. 1.25 The hierarchical topology

Advantages of hierarchical topology are:

< The hierarchical topology is generally supported by most hardware and software.

< In the hierarchical topology, data is received by all the nodes efficiently because of point-to-point
link.

The following are the disadvantages of hierarchical topology:

< In the hierarchical topology, when the root node fails, the whole network crashes.

< The hierarchical topology is difficult to configure.

Understanding Fundamentals of the Computer 27

1.15.2 Linear Bus Topology
In the linear bus topology, all the nodes are connected to the Cable end
single backbone or bus with some medium such as twisted
pair, coaxial cable, etc. Figure 1.26 shows the arrangement of
computers in the linear bus topology.

Advantages of linear bus topology are:

« The linear bus topology usually requires less cabling. ——

< The linear bus topology is relatively simple to configure -

and install.
< In the linear bus topology, the failure of one computer

does not affect the other computers in the network.
The following are the disadvantages of linear bus topology:

« In the linear bus topology, the failure of the backbone
cable results in the breakdown of entire network.
—\

\m

< Addition of computers in the linear bus topology results

in the performance degradation of the network.
< The bus topology is difficult to reconstruct in case of

faults. ::
— Cable end
1.15.3 Star Topology E
In the star topology, all the nodes are connected to a Fig. 1.26 A linear bus topology

common device known as hub. Nodes are connected with
the help of twisted pair, coaxial cable or optical fibre.
Figure 1.27 shows the arrangement of computers in star
topology.

Advantages of star topology are:

)]
[

< This topology allows easy error detection and
correction. Hub
< In the star topology, the failure of one computer -: —

does not affect the other computers in the network.
< Star topology is easy to install.
The following are the disadvantages of star topology:
< In the star topology, the hub failure leads to the

overall network crash. — —
N . —— (—
< The star topology requires more amount of cable

for connecting the nodes. Fig. 1.27 A star topology

< Itis expensive due to the cast of hub.

1.15.4 Ring Topology

In the ring topology, the nodes are connected in the form of a ring with the help of twisted pair. Each
node is connected directly to the other two nodes in the network. Figure 1.28 shows the arrangement of
computers in the ring topology.

|
—
[|
|
[
, Computing Fundamentals & C Programming

—\

Fig. 1.28 A ring topology

Advantages of ring topology are:

< Each node has an equal access to other nodes in the network.

< Addition of new nodes does not degrade the performance of the network.

< Ring topology is easy to configure and install.

The following are the disadvantages of ring topology:

< It is relatively expensive to construct the ring topology.

< The failure of one node in the ring topology affects the other nodes in the ring.

1.15.5 Mesh Topology

In mesh topology, each computer is connected
to every other computer in point-to-point mode
as shown in Fig. 1.29. If we have n computers,
we must have n(n — 1)/2 links.
Advantages of mesh topology are:
< Message delivery is more reliable.
< Network congestion is minimum due to
large number of links.
The following are the disadvantages:
« Itis very expensive to implement.
% It is very difficult to configure and
install.

1.15.6 Hybrid Topology

The hybrid topology is the combination of Fig. 1.29 Mesh topology
multiple topologies, used for constructing a
single large topology. Figure 1.30 shows a typical arrangement of computers in hybrid topology.

|

—

[|

[

[
Understanding Fundamentals of the Computer ’

Fig. 1.30 A hybrid topology

Advantages of hybrid topology are:

< The hybrid topology is more effective as it uses multiple topologies.

< The hybrid topology contains the best and efficient features of the combined topologies from which
it is constructed.

The following are the disadvantages of hybrid topology:

< The hybrid topology is relatively more complex than the other topologies.

2

< The hybrid topology is difficult to install and configure.

1.16 NETWORK PROTOCOLS AND SOFTWARE 1017 17,

In order to share data between computers, it is essential to have appropriate network protocols and software.
With the help of network protocol, computers can easily communicate with each other and can share data,
resources, etc.

1.16.1 Network Protocol

Network protocols are the set of rules and regulations that are generally used for communication between
two networks. Using network protocol, the following tasks can be performed:

Identification of the type of the physical connection used

Error detection and correction of the improper message

Initiation and termination of the communication session

Message formatting

K2 K2 K2 K2
XA X R X i X4

30 Computing Fundamentals & C Programming

Some of the commonly used network protocols are Hyper Text Transfer protocol (HTTP), Simple Mail
Transfer Protocol (SMTP), File Transfer Protocol (FTP), Transmission Control Protocol/ Internet Protocol
(TCP/1P), Telecommunications Network (Telnet), Domain Name System (DNS) etc.

HTTP
Hyper Text Transfer Protocol (HTTP) is the communication protocol used by the World Wide Web. It acts
as a request-response protocol where the client browser and the Web server interact with each other through
HTTP protocol rules. These rules define how messages are formatted and transmitted and what actions
should the browser and Web server take in response to these messages. For example, when we type a URL
in the address bar of a browser, then an HTTP request is sent to the Web server to fetch the requested
Web page. The Web page details are transmitted to the client browser and rendered on the browser window
through HTML.

In a typical situation, the client browser submits an HTTP request to the server and the server processes
the request and returns an HTTP response to the client. The response contains status information pertaining
to the request as well as the requested content (Figs 1.31-1.32).

i StatusLine
Bequesibine Request Message Response
Request Header Response Message Header
Headers Headers
Blank line Blankline
Message Message

: Request . Response
Body (Optional) Messags Bory Body (Optional) Mezssage Body

Fig. 1.31 HTTP Request Message format Fig. 1.32 HTTP Response Message format

HTTP protocol supports various methods that are used by the client browsers to send request messages
to the server. Some of the common HTTP methods are:

< GET: Gets information from the specified resource

< HEAD: Gets only the HTTP headers

< POST: Posts information to the specified resource

< DELETE: Deletes the specified resource

< OPTIONS: Returns the list of HTTP methods that are supported by the Web server

< TRACE: Returns a diagnostic trace of the actions taken at the server end

The first line in an HTTP response object comprises a status line, which carries the response status code
indicating the outcome of the HTTP request processed by the server. The status code is a 3-digit number
and carries specific meaning, as described below:

< 1xx: Comprises information status messages indicating that the server is still processing the request

< 2xx: Comprises success status messages indicating that the request was received, accepted and

processed by the server
<% 3xx: Comprises redirection status messages indicating that further action needs to be taken in order
to process the request
< 4xx: Comprises error status messages indicating error at client side, for example incorrect request
syntax
< Sxx: Comprises error status messages indicating error at server side, for example inability of the
server to process the request

Understanding Fundamentals of the Computer 31

SMTP

Simple Mail Transfer Protocol (SMTP) is an e-mail protocol that is widely used for sending e-mail
messages between mail servers. While SMTP supports capabilities for both sending and receiving e-mail
messages, e-mail systems primarily used SMTP protocol for sending e-mail messages. For receiving, they
use other protocols such as POP3 of IMAP. In Unix-based systems, sendmail is the most widely used SMTP
server for e-mail. In Windows-based systems, Microsoft Exchange comes with an SMTP server and can be
configured to include POP3 support.

FTP
File Transfer Protocol (FTP) is a standard protocol used for sharing files over the Internet. FTP is based
on the client-server architecture and uses Internet’s TCP/IP protocol for file transfer. The users need to
authenticate themselves by specifying user name/password in order to establish a connection with the
FTP server. However, some FTP sites also support anonymous login where users are not required to enter
their credentials. To facilitate secure transfer of user’s credentials and file contents over the Internet, FTP
encrypts the content using cryptographic protocols such as TLS/SSL.
The following steps illustrate how file transfer happens through FTP:
1. The client machine uses Internet to connect to the FTP server’s IP address.
2. User authentication happens by entering relevant user name and password.
3. Once the connection is established, the client machine sends FTP commands to access and transfer
files. Now-a-days, various GUI-based FTP software are available that enable transfer of files through
simple operations, such as drag and drop.

Telnet
Telnet is a protocol that allows users to connect to remote computers over a TCP/IP network, such as
intranet or internet. While HTTP and FTP protocols are used for transferring Web pages and files over the
Internet, the Telnet protocol is used for logging onto a remote computer and performing operations just as a
normal user. The users need to enter their credentials before logging on the remote host machine.

Command-line based telnet access is available in major operating systems such as Windows, Mac OS,
Unix and Linux. Generic format of the telnet command is given below:

Telnet host port

Here,

KD

< telnet: Is the command that establishes telnet connection

< host: Is the address of the host machine
% port: Is the port number on which telnet services are available on the host machine

K2

(& LEARNING OUTCOMES

e There are five generations of computer development which have seen tremendous shift in technology, LO
size, and speed.

e On the basis of the size and capability, computers are categorized into microcomputers, mini L()
computers, super computers and mainframe computers.

e Input devices help in inputting the data from any outside source into the computer system and output LO
devices are used to pass on the processed data to the end users.

e Computer systems use two types of memory, namely primary memory and secondary memory. LO

32 Computing Fundamentals & C Programming

System software is responsible for managing and controlling the hardware resources of a computer
system. Application software is specially designed to cater the information processing needs of end
users.

Operating system is system software installed on a computer system that performs several key tasks,
such as process management, memory management, device management, file management, etc.

MS Word is used for creating professional as well as personal documents, MS Excel is a spreadsheet
application program and MS PowerPoint is application software for creating presentations.

A cluster of computers connected together in order to share resources is termed as a computer
network. The computers connected in a network generally communicate with the help of network
protocols.

Q KEY TERMS TO REMEMBER

1501 1.4

Lo g
150 1.6
Loiwd

Transistor: A semiconductor device that is used to increase the power of the incoming signals by
preserving the shape of the original signal.

Microprocessor: An integrated circuit that contains the entire central processing unit of a computer
on a single chip.

Vacuum Tube: An electron tube from which all or most of the gas has been removed, permitting
electrons to move with low interaction with any remaining gas molecules.

LSI: Large Scale Integration.

VLSI: Very large-scale integration (VLSI) refers to an IC or technology with many devices on one
chip.

ICs: The circuits that combine various electronic components, such as transistors, resistors,
capacitors, etc. onto a single small silicon chip.

Microcomputer: A small digital computer that is designed to be used by individuals.

Super computer: The fastest type of computer that can perform complex operations at a very high
speed.

Mainframe computer: A very large computer that is employed by large business organisations for
handling major applications, such as financial transaction processing applications and ERP.

Input device: It is an electromechanical device that is generally used for entering information into a
computer system.

Keyboard: It is a computer input device consisting of keys or buttons arranged in the similar fashion
as they are arranged in a typewriter.

Mouse: It is a pointing device that basically controls the two-dimensional movement of the cursor on
the displayed screen.

Scanning devices: These are the input devices that electronically capture text and images and convert
them into computer readable form.

Monitor: Monitor is the most commonly used output device, which displays the soft copy output of
text and graphics to the users.

Printers: Printers are the output devices that are used to produce a hard copy output of the text or the
documents stored in a computer.

Speakers: Speakers are the output devices used to generate output in an audio format from the
computer.

1501 1.1
150 1.1
1501 1.1

50 1.1
1501 1.1

150] 1.1

501 1.2]
Loi#

100]1.2|
100] 1.3 |
100]1.3 |
100] 1.3 |
LOKE]
100] 1.3 |
LOKE]
LOKE]

Understanding Fundamentals of the Computer 33

e Projectors: Projectors are the output devices that are used to project big picture of the data stored on LO
some storage device such as CD and DVD on a white screen.

e Primary memory: It refers to the storage locations that are used to hold the programs and data LO
temporarily in a computer system. The primary memory is usually known as memory.

e Secondary memory: It refers to the storage locations that are used to hold the data and programs LO
permanently. The secondary memory of a computer system is popularly known as storage.

e Application software: The programs, which are designed to perform a specific task for the user. LO

e System software: The programs, which are designed to control the different operations of the LO
computer system.

e Operating system: Operating system is a set of various small system software, which control the LO
execution of various sub processes in a computer system.

e MS-DOS: It is an operating system that makes use of Command Line Interface (CLI) for interacting LO
with the users.

e Command: It can be defined as an instruction provided by a user in order to perform some specific LO
task on the computer system.

e MS Word: It is an application software bundled in MS Office package that allows us to create edit, LO
save and print personal as well as professional documents in a very simple and efficient manner.

e MS Excel: MS Excel is a spreadsheet application program that enables the users to create the LO
spreadsheets.

e MS PowerPoint: MS PowerPoint is an application software included in the MS Office package that LO
allows us to create presentations.

e Data communication: It is the process of transmission of data from the source computer to the LO
destination computer.

e Network topology: The network topology is the physical arrangement of the computers connected LO
with each other in a network such as ring, star, bus, hierarchical and hybrid.

e Network protocol: The network protocol is the standard according to which different computers LO [l
over the network communicate with each other.

REVIEW QUESTIONS

Fill in the Blanks
1. A is an electronic machine that takes input from the user and stores and ; LO 1.1 ;/FH
processes the given input to generate the output in the form of useful information to the -

user.

2. The raw details that need to be processed to generate some useful information is known as ; LO 1.1 ;/H

3. The set of instructions that can be executed by the computer is known as . ; LO 1.1 ,\/ﬂ

4. is the processor of the computer that is responsible for controlling and Lln 1.1 ,\fh
executing the various instructions. -

Levels of Difficulty

‘% : Low; ‘@ : Medium; *Li : High

H

5.

10.
11.
12.
13.
14.
15.
16.

17.
18.

19.

20.
21.

22,

23.
24.

25.

Computing Fundamentals & C Programming

is a screen, which displays the information in visual form, after receiving the
video signals from the computer.

computers were also known as vacuum tubes or thermionic valves based
machines.

A is a semiconductor device that is used to increase the power of the
incoming signals by preserving the shape of the original signal.

is a low-level language that allows the programmer to use simple English
words, called mnemonics, to represent different instructions in a program.

The main characteristic feature of third generation computers was the use of

The invention of and

fourth generation computers.

technology led to the development of the

The fifth generation computers are based on the technology that allows
almost ten million electronic components to be fabricated on one small chip.

, also known as digital information processing system, is a type of computer
that stores and processes data in digital form.

A is the fastest type of computer that can perform complex operations at a
very high speed.
The term refers to the programs and instructions that help the computer in

carrying out their processing.

The programs, which are designed to perform a specific task for the user, are known as

The programs, which are designed to control the different operations of the computer, are
known as

An input device generally acts as an interface between and

The arrow keys used for controlling the movement of are known as

keys.

Keyboards are also classified as and

additional keys present on them.

keyboards, based on

devices are used for changing the position of the cursor on the screen.

A mechanical mouse basically consists of and

buttons.

An optical mouse consists of and
for moving the position of the pointer on the screen.

Hand-held scanners are also called

The methods used for recognising the voice of the users are and

Computer software is classified into two categories, namely, and

26.

217.

28.

29.

30.

31.

32.

33.

34.
3s.
36.
37.
38.

39.
40.
41.
42,

43.

44.
45.
46.

47.

48.

49.

|

—

[|

(|

[
Understanding Fundamentals of the Computer ,

System software consists of two groups of programs: and

is responsible for managing the allocation of devices and resources to the
various processes.

Application software includes two and

types programs:

is a system software that allows the users to interact with the hardware and
other resources of a computer system.

In operating system, jobs are grouped into groups called batches and assigned
to the computer system with the help of a card reader.

In operating system, multiple users can make use of computer system’s
resources simultaneously.

Ul facilitates communication between a and its

intermediary between them.

by acting as an

is the central part of the UNIX operating system that manages and controls

the communication between the various hardware and software components.
MS-DOS is an operating system that makes use of interface.
commands are stored in the command interpreter of MS-DOS.
RD, TYPE and DEL are commands.

and are external commands.

is an application software included in MS Office for working with
documents.

MS Word can be accessed either using or

MS Word uses a interface to interact with the users.
The horizontal bar at the top of the MS Word window is called

The blinking bar in MS Word that indicates the position of the next key stroke or the
character to be inserted is called

is a spreadsheet application program that is widely used in business

applications.
The horizontal sequence of data stored in a spreadsheet is known as
The vertical sequence of data stored in a spreadsheet is known as

is an application software included in MS Office package for creating
presentations.

The presentations in the MS PowerPoint are usually saved with the
extension.

When computers are connected together in order to share resources, they are said to be in a

is used for connecting the computers within a few kilometres of area.

JL014./"
JLo14.7"
JLo14.7"

y

1.

wn

wn

5S.

56.

57.
58.

2.
53.

Computing Fundamentals & C Programming

is used for connecting the computers in a large geographical area.

The size of the MAN generally lies between that of LAN and WAN, typically covering a
distance of to

Hierarchical topology is also known as

is the common point where all the nodes of the network are connected in
the bus topology.

is used for connecting the nodes in the star topology.

The combination of multiple topologies connected in a network is known as

is the set of rules and regulations based on which computers in a network
communicate.

is one of the tasks that can be performed using network protocol.

is used for transferring files from one computer to another over the
network.

Multiple Choice Questions

Which component of the computer is known as the brain of computer?
A. Monitor B. CPU

C. Memory D. None of the above
Which of the following is an input device?

A. Printer B. Monitor

C. Mouse D. None of the above

Which of the following is a characteristic of the modern digital computer?
A. High speed B. Large storage capacity

C. Greater accuracy D. All of the above
Who is known as the father of modern digital computers?

A. Gottfried Wilhem Von Leibriz B. Charles Babbage
C. Alan Mathison D. John Mauchly
What are the different number of computer generations?

A. Four B. Five

C. Six D. Seven

Which technology was used in the first generation computers?
A. Transistors B. Vacuum tubes
C. ICs D. None of the above

Which technology was used in the second generation computers?
A. Transistors B. Vacuum tubes
C. Microprocessors D. ICs

Which technology was used in the third generation computers?
A. Transistors B. Vacuum tubes
C. ICs D. All of the above

PAT R E AL

JLo17./"

PAT R R AL

JLo17./"

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

|

—

[|

[

[
Understanding Fundamentals of the Computer ’

Which technology was used in the fourth generation computers?
A. Microprocessors B. Vacuum tubes
C. ICs D. Transistors

Which semiconductor device is used to increase the power of the incoming signals by
preserving the shape of the original signal?
A. Sand table

C. Vacuum tubes

B. Transistor
D. None of the above

In which generation of computers, assembly language was introduced?

A. First B. Second

C. Third D. Fourth

Which generation uses the ULSI technology?

A. Second B. Third

C. Fourth D. Fifth

On what basis computers can be classified?

A. Operating principles B. Applications

C. Size and capability D. All of the above

What is the main function of an input device in a computer?
A. Receiving data from a computer B. Providing data to a computer
C. Storing data for processing D. Processing the data

Which of the following devices is not an input device?

A. Scanner B. Keyboard
C. Disk D. Joystick
Which one of the following is a modifier key?

A. Tab B. ALT

C. Insert D. Pause
Which of the following belongs to the category of special purpose keys?
A. Tab B. SHIFT

C. ALT D. CTRL

Which of the following statements is not true for a mouse?

A. It controls the two-dimensional movement of the cursor on the displayed screen.
B. Itis usually of two different types: mechanical mouse and optical mouse.

C. It can be used as an alternate to keyboard for all purposes.

D. Itis an input device.

What is the other name of a hand-held scanner?
A. Drum scanner
C. Half page scanner

B. Slide scanner
D. Full page scanner

Which of the following devices is not an optical recognition device?
A. MICR B. OMR
C. OCR D. Microphone

What does MICR stand for?
A. Magnetic Ink Character Recognition
C. Magnetic Ink Column Recognition

B. Magnetic Input Column Reader
D. Magnetic Ink Character Reader

JLoL1."
1011y

oLl g
JLoLL,
JLoLi,
JLoLa. ™
JLo1a.
013 g
JLoL3. ™

L1013 "

J1L013./"

11013 "
11013 'y

|
—
[|
|
[
, Computing Fundamentals & C Programming

[N

N

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

2.

3.

Which of the following devices are used for recognising the characters in the supermarkets? M\-@

A. OCR device
C. MICR device

B. OMR device
D. Bar code reader

Which of the following is not an output device?
A. Scanner
C. Printer

B. Plotter
D. Speaker

. Which of the following monitors are commonly used with desktop computers?

A. CBT monitors B. CRT monitors
C. CPT monitors D. None of the above

Which of the following are the properties of a printer?

A. Resolution B. Speed

C. Pages per minute D. All of the above
Which of the following is a hard copy output device?

A. Printer B. Speaker

C. Display monitor D. Projector
Which of the following is an impact printer?

A. Dot matrix printer B. Ink-jet printer
C. Laser printer D. All of the above

Which of the following is a non-impact printer?
A. Daisy wheel printer B.
C. Laser printer D.

Dot matrix printer
All of the above

Which of the following is one of the components of a CRT?
A. Toner B. Liquid crystals
C. Electromagnetic coils D. None of the above

Which of the following are the components of a projector?
A. Optic system B.
C. Electron beam D.

Displays
Both A and B

Which of the following are portable projectors?

A. Conference room projectors B. Fixed installation projectors
C. Ultralight projectors D. All of the above

Which of the following devices are included in a terminal?

A. Monitor and printer B. Printer and keyboard

C. Keyboard and monitor D. All of the above

Which of the following is a type of terminal?
A. Intelligent terminal B.
C. BothA and B D.

Dumb terminal
All of the above

Which of the following can be considered as both an input and an output device?
A. Printer B. Projector
C. Terminal D. Plotter

Jo1a,
JLo1a,
JLo13. /"
JLo1a,
JLo13. /"
JLoL3. ™
11013,/
1013 -y
1013,/

L1013 =

pRTRE G

pRTRE G

Which of the following display device uses an electron given as one of the components for m»@

generating the output?
A. CRT monitor
C. LCD monitor

B. TFT monitor
D. None of the above

36.

37.

38.

39.

40.

41.

42,

43.

44.

45.

46.

47.

|

—

[|

[

[
Understanding Fundamentals of the Computer ’

Which of the following is not a system software?
A. Linkers
C. Operating system

B. Device drivers
D. Word processor

Which of the following software helps the users to detect the errors while executing a
program?

A. Language Translator
C. Loader

B. Debugger
D. Linker

A software, which links different elements of an object code with the library files, is known
as:

A. Editor
C. Loader

B. Linker
D. Debugger

Which of the following options is not a utility system?
A. Virus scanner
C. Disk defragmenter

B. System profiler
D. Debugger

Which of the following is a system tool provided by Windows operating system for making
necessary changes in the registry?
A. System profiler
C. Registry Editor

B. Disk Defragmenter
D. Registry Manager

Which of the following is not an example of unique application program?
A. Inventory Management System B. Pay-roll system
C. Income tax calculator D. Database Management System

Which of the following activities are performed by a user while solving a problem using a
computer?

A. Identifying parameters and constraints
C. Debugging the program

B. Identifying logical structure
D. All of the above

Which of the following program is essential for the functioning of a computer system?
A. MS Word B. Operating system
C. MS Excel D. System software

Which of the following operating systems makes use of CLI?
A. MS-DOS B. Windows 2000
C. Windows Server 2003 D. None of the above

Which of the following operating systems makes use of GUI?
A. Windows 2000 B. Windows Server 2003
C. Windows Vista D. All of the above

Which of the following operating systems makes use of both command line interface and
GUI?

A. Windows 2000
C. Windows Vista

B. Linux
D. None of the above

Which one of the following types of the operating systems allows multiple users to work
simultaneously?

A. Multi-tasking operating system
C. Multiprocessor operating system

B. Multi-user operating system
D. None of the above

J1014. ™
11014 g

[l014 g

l1014 g

JioLa.

11014,
JL014.7"

RRECRE I
11015,
1105,/
1105

[1015 g

H

48.

N

51.

52.

53.

54.

5S.

56.

57.

58.

59.

60.

61.

9.

Computing Fundamentals & C Programming

Which of the following type of Ul allows a user to enter commands at command line?
A. GUI B. CLI
C. Both GUI and CLI D. Neither GUI nor CLI

Which of the following is a part of MS-DOS?
A. DOS.SYS
C. EXEC.BAT

B. CONFIGURATION.SYS
D. COMMAND.COM

. Which of the following is the core component of UNIX?

A. Command shell
C. Directories and programs

B. Kernel
D. None of the above

Which of the following is a feature of MS-DOS operating system?
A. 16-bit B. Single-user
C. Single tasking D. All of the above

Which of the following commands are used in MS-DOS operating system?
A. Internal commands B. External commands
C. Batch commands D. All of the above

Which of the following commands is used for viewing the contents of a file in MS-DOS
operating system?
A. DIR
C. MD

B. TYPE
D. CD

Which of the following commands is used to print a message on the command prompt?
A. %DIGIT B. %VARIABLE%
C. ECHO D. REM

Which of the following makes use of CLI?
A. MS Excel
C. MS-DOS

B. MS PowerPoint
D. MS Access

Which one of the following is typed in the Run dialog box to access MS Word?
A. winword B. word
C. msword D. wordprogram

Which of the following is a word processing program?

A. MS Excel B. MS-DOS

C. MS Word D. MS PowerPoint
Which of the following is a spreadsheet application program?

A. MS Access B. MS Word

C. MS Excel D. MS-DOS

MS Word is basically used for .
A. Analysing the data
C. Preparing the slides

B. Preparing the various documents
D. None of the above

What text should be typed in the Run dialog box for accessing MS Excel?
A. msexcel B. excel

C. xcel D. msspreadsheet
What text should be typed in the Run dialog box for accessing MS PowerPoint?
A. powerpoint B. powerpnt

C. mspowerpnt D. ppt

RRECRE IR
o015 g
JLoL5. ™
JLOL6. ™

11016,/
11016 'y

016 g
JLOL6. ™
JLoL6.
JLoL6.,
JLoL6.,
JLoL6.
JLOL6. ™

11016,/

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

|

—

[|

[

[
Understanding Fundamentals of the Computer ’

What is the name of the task pane used for designing slides in MS PowerPoint? M\@
A. Slide Design B. Slide Layout

C. Design Slide D. None of the above

What is the intersection of row and column called in MS Excel? M\%
A. Cell B. Worksheet

C. Workbook D. None of the above

What is correct expansion of MS DOS? m»@
A. Microsoft Data Operating system B. Microsoft Disk Operating system

C. Microsoft Digital Operating system D. None of the above

What is the combination of worksheets in MS Excel called? M\@
A. Workbook B. Spread sheet

C. Excel sheet D. None of the above

Which one of the following uses light pulses for carrying information? M\@
A. Satellite B. Microwave

C. Optical fibre D. Coaxial cable

Which of the following network is used for connecting the computers in a small M\@

geographical area?

A. MAN B. WAN

C. LAN D. Internet

What is the full form of TCP? M\@
A. Transfer Control Protocol B. Transmission Control Protocol

C. Transmit Control Protocol D. Transfer Communication Protocol

Which one of the following Internet services provides one to one communication? M\@
A. Online chat B. Online messaging

C. E-mail D. Usenet

A network that is restricted to use by a single organisation is referred to as: xl “ I b\@
A. LAN B. WAN

C. Internet D. Intranet

Which type network cannot work under heavy load? M\@
A. MAN B. LAN

C. PPN D. VAN

Which topology is arranged in the form of a tree structure? M\%
A. Hybrid topology B. Bus topology

C. Star topology D. Hierarchical topology

Which one of the following topologies is not easy to reconstruct when a fault occurs?) Iﬂ I z ,\-@
A. Star topology B. Bus topology

C. Ring topology D. Hybrid topology

Which one of the following topologies allow easy error detection and correction?) Iﬂ I z ,»@
A. Linear bus topology B. Hybrid topology

C. Ring topology D. Star topology

Which device is used for connecting the computers in a star topology? m»@
A. Router B. Bridge

C. Hub D. Repeater

H

76.

Computing Fundamentals & C Programming

Which topology is the combination of multiple topologies?

A. Star topology

C. Hybrid topology

B. Bus topology
D. Mesh topology

PATR R AL
PR EAE

JLo17./"

77. In which topology data is transferred in a circular pattern?

A. Star topology B. Ring topology

C. Bus topology D. Hybrid topology
78. Which of the following topologies is the most complex but efficient?

A. Star topology B. Bus topology

C. Ring topology D. Hybrid topology
79. What is the technique used for routing the packets to the destination according to their

addresses?

A. Circuit switching B. Packet switching

C. Routing D. None of the above
80. Which one of the following is not a network protocol?

A. FTP B. HTTP

C. SMTP D. NMP

81. A set of rules that are used for communication between two networks is referred to as:
A. Network software B. Network media
C. Network protocol D. Network operating system

DISCUSSION QUESTIONS

What are the different components of a computer? Explain, each of them.
Discuss briefly the various generations of a computer.
Describe the various types of computers on the basis of size and capability.

Draw the block diagram of a microcomputer.

U

What is meant by an input device? What is the importance of an input device in a computer
system?

List different categories of input devices.
Explain all the categories of keys found on a typical keyboard with the help of a diagram.

Explain the basic functioning of mechanical and optical mouses with the help of sketches.

e v A

What are scanning devices? Explain the basic characteristics of these devices.
10. What does voice recognition system mean?

11. Explain the different methods used for identifying the voice of the user in the voice
recognition system.

12. What is an output device? Why is it a vital part of computer hardware?
13. Name some of the output devices, which are commonly used with the computer system.
14. Define a display monitor.

15. Name the different types of monitors available in the market.

16.
17.
18.
19.

20.
21.
22,
23.
24,
25.
26.
27.
28.
29.

30.
31.
32.
33.

34.
3s.
36.

37.

38.
39.
40.

41.
42,

|

—

[|

(|

[
Understanding Fundamentals of the Computer ,

Explain the use of a printer in a computer system. M

What are the advantages and disadvantages of a CRT monitor? M
Which is a better monitor—a CRT or a TFT? State the reasons as well. M
What is a voice response system? List the different types of voice response systems that are M

used today.

What is a projector? Why is it needed? M
Explain the different types of computer software. M
What do you understand by the term system software? M
Explain the major functions of an operating system. M
Explain the application of system development programs. M
What does utility program mean? M

What is an operating system? Explain briefly with the help of examples. M

Briefly explain the various functions of an operating system. M
Explain the core components of UNIX operating system. M

Briefly explain why Windows operating system is one of the most popular operating M
systems.

Explain the features of MS-DOS operating system. M

Differentiate between internal and external commands of MS-DOS. M

What do you mean by command interpreter? M
Write a short note on the following commands: M

A. DIR B. COPY

C. MD D. TREE

E. COMP.

What is the basic use of MS Word? Explain with the help of an example. M

What are the different methods of accessing MS Word? M

What are the basic operations performed on a word document? Explain all of them in M
detail.

What do you mean by MS-Excel? Explain the different ways of starting MS-Excel from M
our computer system?

What are the different operations possible on a worksheet in MS-Excel? M

What are the different methods of accessing MS PowerPoint? M

What is the difference between creating and designing a new presentation in MS M
PowerPoint?

How can a new slide be added to a presentation in MS PowerPoint? M

What is a computer network? M

|
—
[|
|
[
’ Computing Fundamentals & C Programming

43.
4.
5.
46.

P

47.
48.
49.

Describe different types of computer networks with the help of illustrations.
What is the difference between LAN and WAN?
‘What is network topology?

What are the different types of network topologies? Explain any two network topologies
through suitable illustrations.

How network protocol helps in the communication of messages over the network?
What is the difference between ring topology and bus topology?

Differentiate among ring, star, bus and hybrid topology with the help of diagrams.

CHAPTER

-

Computing

ble to

| number systems

s from one number system to another
c operations are performed

ramming languages

g techniques and computer applications

2.1 INTRODUCTION

Computers store and process numbers, letters and words that are often referred to as data.

« How do we communicate data to computers?

« How do the computers store and process data?

Since the computers cannot understand the Arabic numerals or the English alphabets, we
should use some ‘codes’ that can be easily understood by them.

In all modern computers, storage and processing units are made of a set of silicon chips, each
containing a large number of transistors. A transistor is a two-state device that can be put ‘off’
and ‘on’ by passing an electric current through it. Since the transistors are sensitive to currents
and act like switches, we can communicate with the computers using electric signals, which are
represented as a series of ‘pulse’ and ‘no-pulse’ conditions. For the sake of convenience and ease
of use, a pulse is represented by the code ‘1’ and a no-pulse by the code ‘0’. They are called
bits, an abbreviation of ‘binary digits’. A series of 1s and Os are used to represent a number or
a character and thus they provide a way for humans and computers to communicate with one
another. This idea was suggested by John Von Neumann in 1946. The numbers represented by

46 Computing Fundamentals & C Programming

binary digits are known as binary numbers. Computers not only store numbers but also perform operations
on them in binary form.

In this chapter, we discuss how the numbers are represented using what are known as binary codes, how
computers perform arithmetic operations using the binary representation, how digital circuits known as
logic gates are used to manipulate data, how instructions are designed using what are known as program-
ming languages and how algorithms and flow charts might help us in developing programs.

4
2.2 DECIMAL SYSTEM L1021

The decimal system is the most common number system used by human beings. It is a positional number
system that uses 10 as a base to represent different values. Therefore, this number system is also known as
baselO number system. In this system, 10 symbols are available for representing the values. These symbols
include the digits from O to 9. The common operations performed in the decimal system are addition (+),
subtraction (—), multiplication (x) and division (/).

The decimal system can be used to represent both the integer as well as floating point values. The
floating point values are generally represented in this system by using a period called decimal point. The
decimal point is used to separate the integer part and the fraction part of the given floating point number.
However, there is no need to use a decimal point for representing integer values. The value of any number
represented in the decimal system can be determined by first multiplying the weight associated with each
digit in the given number with the digit itself and then adding all these values produced as a result of
multiplication operation. The weight associated with any digit depends upon the position of the digit itself
in the given number. The most common method to determine the weight of any digit in any number system
is to raise the base of the number system to a power that initially starts with a O and then increases by 1 as
we move from right to left in the given number. To understand this concept, let us consider the following
floating point number represented in the decimal system:

Decimal point

l

6543.124

In the above example, the value 6543, which comes before the decimal point, is called integer value
and the value 124, which comes after the decimal point, is called fraction value. Table 2.1 lists the weights
associated with each digit in the given decimal number.

Table 2.1 Place values in decimal system

Digit 6 5 4 3 . 1 2 4
Weight 10° 102 10! 10° 10-! 102 103

The above table shows that the powers to the base increases by 1 towards the left for the integer part
and decreases by 1 towards the right for the fraction part. Using the place values, the floating point number
6543.124 in decimal system can be computed as:

6X103+5x102+4x10"+3x100+1x 101 +2x102+4x 1073
= 6000 + 500 + 40 + 3 + 0.1 + 0.02 + 0.004
=6543.124

Computing Concepts 47

(
2.3 BINARY SYSTEM L1021

Among all the positional number systems, the binary system is the most dominant number system that is
employed by almost all the modern digital computer systems. The binary system uses base 2 to represent
different values. Therefore, the binary system is also known as base-2 system. As this system uses base 2,
only two symbols are available for representing the different values in this system. These symbols are 0 and
1, which are also known as bits in computer terminology. Using binary system, the computer systems can
store and process each type of data in terms of Os and 1s only.

The following are some of the technical terms used in binary system:

< Bit. It is the smallest unit of information used in a computer system. It can either have the value 0 or

1. Derived from the words Binary digit.
% Nibble. It is a combination of 4 bits.
% Byte. It is a combination of 8 bits. Derived from words ‘by eight’.
< Word. It is a combination of 16 bits.
< Double word. It is a combination of 32 bits.
< Kilobyte (KB). It is used to represent the 1024 bytes of information.

< Megabyte (MB). It is used to represent the 1024 KBs of information.

< Gigabyte (GB). It is used to represent the 1024 MBs of information.

We can determine the weight associated with each bit in the given binary number in the similar manner
as we did in the decimal system. In the binary system, the weight of any bit can be determined by raising
2 to a power equivalent to the position of bit in the number. To understand this concept, let us consider the
following binary number:

Binary point

l

101001.0101

In binary system, the point used to separate the integer and the fraction part of a number is known as
binary point. Table 2.2 lists the weights associated with each bit in the given binary number.

Table 2.2 Place values in binary system

Digit 1 0 1 0 0 1 . 0 1 0 1
Weight 2’ ¢ 23 22 21 20 Pl 22 2= 24

Like the decimal system, the powers to the base increases by 1 towards the left for the integer part
and decreases by 1 towards the right for the fraction part. The value of the given binary number can be
determined as the sum of the products of the bits multiplied by the weight of the bit itself. Therefore, the
value of the binary number 101001.0101 can be obtained as:

IX2+0x24+1x2240x22+0x21+1x2040x21+1x22+0x23+1x2*
=32+8+1+0.25+0.0625
=41.3125
The binary number 101001.0101 represents the decimal value 41.3125.

48 Computing Fundamentals & C Programming

Table 2.3 lists the 4-bit binary representation of decimal numbers 0 through 15.

Table 2.3 Binary representation of first 16 numbers

Decimal number 4-bit binary

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111
2.4 HEXADECIMAL SYSTEM 1021

The hexadecimal system is a positional number system that uses base 16 to represent different values.
Therefore, this number system is known as base-16 system. As this system uses base 16, 16 symbols are
available for representing the values in this system. These symbols are the digits 0-9 and the letters A, B, C,
D, E and F. The digits 0-9 are used to represent the decimal values 0 through 9 and the letters A, B, C, D, E
and F are used to represent the decimal values 10 through 15.

The weight associated with each symbol in the given hexadecimal number can be determined by raising
16 to a power equivalent to the position of the digit in the number. To understand this concept, let us
consider the following hexadecimal number:

Hexadecimal point

:

4A9.2B

In hexadecimal system, the point used to separate the integer and the fraction part of a number is known
as hexadecimal point. Table 2.4 lists the weights associated with each digit in the given hexadecimal
number.

Computing Concepts 49

Table 2.4 Place values in hexadecimal system

Digit 4 A 9 . 2 B
Weight 162 16! 16° 167! 1672

The value of the hexadecimal number can be computed as the sum of the products of the symbol
multiplied by the weight of the symbol itself. Therefore, the value of the given hexadecimal number is:

4X162+ 10X 16! +9x 169+2x 1671 + 11 x 162
=1024 + 160 + 9 + 0.125 + 0.0429
=1193 +0.1679
=1193.1679
The hexadecimal number 4A9. 2B represents the decimal value 1193.1679.

4
2.5 OCTAL SYSTEM L1021

The octal system is the positional number system that uses base 8 to represent different values. Therefore,
this number system is also known as base-8 system. As this system uses base 8, eight symbols are available
for representing the values in this system. These symbols are the digits 0 to 7.

The weight associated with each digit in the given octal number can be determined by raising 8 to a
power equivalent to the position of digit in the number. To understand this concept, let us consider the
following octal number:

Octal point

|

215.43

In octal system, the point used to separate the integer and the fraction part of a number is known as
octal point. Table 2.5 lists the weights associated with each digit in the given octal number.

Table 2.5 Place values in octal system

Digit 2 1 5 . 4 3
Weight 82 8! 80 8! 82

Using these place values, we can now determine the value of the given octal number as:
2x82+1x8 +5%x8 +4x81+3x8?2
=128 + 8+ 5+ 0.5+ 0.0469
=141 + 0.5469
=141.5469

The octal number 215.43 represents the decimal value 141.5469.
Table 2.6 lists the octal representation of decimal numbers O through 15.

50 Computing Fundamentals & C Programming

Table 2.6 Octal representation of first 16 numbers

Decimal number Octal representation

0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 10
9 11
10 12
11 13
12 14
13 15
14 16
15 17
2.6 CONVERSION OF NUMBERS M_/

The computer systems accept the data in decimal form, whereas they store and process the data in binary
form. Therefore, it becomes necessary to convert the numbers represented in one system into the numbers
represented in another system. The different types of number system conversions can be divided into the
following major categories:

< Non-decimal to decimal

< Decimal to non-decimal

< Octal to hexadecimal

2.6.1 Non-Decimal to Decimal

The non-decimal to decimal conversions can be implemented by taking the concept of place values into
consideration. The non-decimal to decimal conversion includes the following number system conversions:

< Binary to decimal conversion
« Hexadecimal to decimal conversion
% Octal to decimal conversion

Binary to decimal conversion A binary number can be converted to equivalent decimal number by
calculating the sum of the products of each bit multiplied by its corresponding place value.

Computing Concepts

51

Example 2.1 Convert the binary number 10101101 into its corresponding decimal number.

Solution

The given binary number is 10101101.

Now, calculate the sum of the products of each bit multiplied by its place value as:
(IX2)+(O0x29+ (1 x2)+(O0x2H+ (1 x2%)+(1x2%) + (1 x2hH +(1x2%
=128+0+32+0+8+4+0+1
=173

Therefore, the binary number 10101101 is equivalent to 173 in the decimal system.

Example 2.2 Convert the binary number 1101 into its equivalent in decimal system.

Solution
The given binary number is 1101.
Now, calculate the sum of the products of each bit multiplied by its place value as:
(IXx23)+(1x2%)+(1x2"+(1x29
=8+4+1
=13
Therefore, the binary number 1101 is equivalent to 13 in the decimal system.

Example 2.3 Convert the binary number 10110001 into its equivalent in decimal system.

Solution

The given binary number is 10110001.

Now, calculate the sum of the products of each bit multiplied by its place value as:
Ax2)+(Ax29+ (A x2)+ (A x2H+(0%x2)+(0%x22) + (0x2H) +(0%x29
=128+0+32+16+0+0+0+1
=177

Therefore, the binary number 10110001 is equivalent to 177 in the decimal system.

| Example 2.4 Convert the binary number 1011.010 into its equivalent in decimal system.

Solution
The given binary number is 1011.010.
Now, calculate the sum of the products of each bit multiplied by its place value as:
Ax2)+O0x2)+(Ax2H+ (A X299+ (O0x2H+ (1 x22)+(0x23)

=8+2+1+l
4

=11+0.25
=11.25
Therefore, the binary number 1011.010 is equivalent to 11.25 in the decimal system.

Example 2.5 Convert the binary number 11011.0110 to its equivalent in decimal system.

Solution
The given binary number is 11011.0110.
Now, calculate the sum of the products of each bit multiplied by its place value as:

52 Computing Fundamentals & C Programming

(IX2H+(Ax2)+O0%x2)+(Ax2H+ (1 x29+(O0x2)+ (1 %22+ (1x23)+(0x2%
:16+8+1+l+l
4 8

=27+0.25+0.125
=27.375
Therefore, the binary number 11011.0110 is equivalent to 27.375 in the decimal system.

Hexadecimal to decimal conversion A hexadecimal number can be converted into its equivalent
number in decimal system by calculating the sum of the products of each symbol multiplied by its
corresponding place value.

| Example 2.6 Convert the hexadecimal number A53 into its equivalent in decimal system.

Solution
The given hexadecimal number is A53.
Now, calculate the sum of the products of each symbol multiplied by its place value as:
(10x 162) + (5 x 161) + (3 x 16%)
=2560+80+3
=2643
Therefore, the hexadecimal number A53 is equivalent to 2643 in the decimal system.

| Example 2.7 Convert the hexadecimal number 6B39 into its equivalent in the decimal system.

Solution
The given hexadecimal number is 6B39.
Now, calculate the sum of the products of each symbol multiplied by its place value as:
(6x16%) + (11 x162) + (3 x 161) + (9 x 16Y)
=24576 + 2816+ 48 +9
=27449
Therefore, the hexadecimal number 6B39 is equivalent to 27449 in the decimal system.

Example 2.8 Convert the hexadecimal number 5A6D into its equivalent in the decimal system.

Solution
The given hexadecimal number is SA6D.
Now, calculate the sum of the products of each symbol multiplied by its place value as:
(5% 16%) + (10 x 162) + (6 x 161) + (13 x 16°)
=20480 + 2560 + 96 + 13
=23149.
Therefore, the hexadecimal number 5A6D is equivalent to 23149 in the decimal system.

Example 2.9 Convert the hexadecimal number AB21.34 into its equivalent in the decimal system.

Solution
The given hexadecimal number is AB21.34.
Now, calculate the sum of the products of each symbol multiplied by its place value as:
10x16H+(11x16)+(2x16H) + (1 x 169 + 3 x 167 + (4 x 1672)

Computing Concepts 53

40960+ 2816 +32 414 -+ -
16" 256

=43809 + 0.1875 + 0.015625
=43809.203
Therefore, the hexadecimal number AB21.34 is equivalent to 43809.203 in the decimal system.

Example 2.10 Convert the hexadecimal number 6A11.3B into its equivalent in the decimal system.

Solution
The given hexadecimal number is 6A11.3B.
Now, calculate the sum of the products of each symbol multiplied by its place value as:
(6x163)+(10%x162) + (1 x16™H) +(1x16% + (3 x 167 + (11 x 1672)

=24576+2560+16+1+i+l
16 256

=27153 +0.1875 + 0.043

=27153.2305
Therefore, the hexadecimal number 6A11.3B is equivalent to 27153.2305 in the decimal system.

Octal to decimal conversion An octal number can be converted into its equivalent number in
decimal system by calculating the sum of the products of each digit multiplied by its corresponding place
value.

Example 2.11 Convert the octal number 5324 into its equivalent in decimal system.

Solution
The given octal number is 5324.
Now, calculate the sum of the products of each digit multiplied by its place value as:
(5x8)+(3x8)+(2x8")+(4x8Y
=2560+192 +16+4
=2772
Therefore, the octal number 5324 is equivalent to 2772 in the decimal system.

Example 2.12 Convert the octal number 13256 into its equivalent in decimal system.

Solution
The given octal number is 13256.
Now, calculate the sum of the products of each digit multiplied by its place value as:
Ax8H+Bx8)+(2x82)+(5%x8H)+(6x8%
=4096 + 1536 + 128 + 40 + 6
= 5806
Therefore, the octal number 13256 is equivalent to 5806 in the decimal system.

Example 2.13 Convert the octal number 4567 into its equivalent in decimal system.

Solution
The given octal number is 4567.
Now, calculate the sum of the products of each digit multiplied by its place value as:

54 Computing Fundamentals & C Programming

(4x8)+(5x8%)+(6x8Y)+(7x8%
=2048 +320+48 +7
= 2423
Therefore, the octal number 4567 is equivalent to 2423 in the decimal system.

Example 2.14 Convert the octal number 325.12 into its equivalent in decimal system.

Solution
The given octal number is 325.12.
Now, calculate the sum of the products of each digit multiplied by its place value as:
Bx8)+(2x8H+(5x8)+(1x8H+(2x8?)

= 192+16+5+l+i
8 64
=213 +0.125 + 0.03125

=213.15625
Therefore, the octal number 325.12 is equivalent to 213.15625 in the decimal system.

Example 2.15 Convert the octal number 7652.01 into its equivalent in decimal system.

Solution
The given octal number is 7652.01.
Now, calculate the sum of the products of each digit multiplied by its place value as:

(Tx8)+(6x8)+(5x8H)+(2x8)+(0x8H+(1x82
:3»584+384+40+2+i
64

=4010 + 0.015625
=4010.0156
Therefore, the octal number 7652.01 is equivalent to 4010.0156 in the decimal system.

2.6.2 Decimal to Non-Decimal

The decimal to non-decimal conversions are carried out by continually dividing the decimal number by
the base of the desired number system till the decimal number becomes zero. After the decimal number
becomes zero, we may note down the remainders calculated at each successive division from last to first
to obtain the decimal number into the desired system. The decimal to non-decimal conversion includes the
following number system conversions:

< Decimal to binary conversion

KD

% Decimal to hexadecimal conversion

R

< Decimal to octal conversion

Decimal to binary conversion The decimal to binary conversion is performed by repeatedly dividing
the decimal number by 2 till the decimal number becomes zero and then reading the remainders from last
to first to obtain the binary equivalent of the given decimal number. The following examples illustrate the
method of converting decimal number to its binary equivalent:

Computing Concepts 55

Example 2.16 Convert the decimal number 30 into its equivalent binary number.

Solution

The given decimal number is 30.

The following table lists the steps showing the conversion of the given decimal number to its binary
equivalent:

Decimal number Divisor Quotient Remainder
30 2 15 0
15 2 7 1
7 2 3 1
2 1 1
1 2 0 1

Now, read the remainders calculated in the above table in upward direction to obtain the binary
equivalent, which is 11110.

Therefore, the binary equivalent of the decimal number 30 is 11110.

Example 2.17 Convert the decimal number 111 into its equivalent binary number.

Solution

The given decimal number is 111.

The following table lists the steps showing the conversion of the given decimal number to its binary
equivalent:

Decimal number Divisor Quotient Remainder

111 2 55 1

55 2 27 1

27 2 13 1

13 2 6 1

6 2 3 0

3 2 1 1

1 2 0 1

Now, read the remainders calculated in the above table in upward direction to obtain the binary
equivalent, which is 1101111.
Therefore, the binary equivalent of the decimal number 111 is 1101111.

Example 2.18 Convert the decimal number 215 into its equivalent binary number.

Solution
The given decimal number is 215.

56 Computing Fundamentals & C Programming

The following table lists the steps showing the conversion of the given decimal number to its binary
equivalent:

Decimal number Divisor Quotient Remainder

215 2 107 1

107 2 53 1

53 2 26 1

26 2 13 0

13 2 6 1

6 2 3 0

3 2 1 1

1 2 0 1

Now, read the remainders calculated in the above table in upward direction to obtain the binary
equivalent, which is 11010111.

Therefore, the binary equivalent of the decimal number 215 is 11010111.

The procedure of converting the fractional part of the given decimal number to its binary equivalent is
different. In this procedure, we need to continually multiply the fractional part by 2 and then note down the
whole number part of the result. The multiplication process will terminate when the fractional part becomes
zero or when we have achieved the desired number of bits.

Example 2.19 Convert the decimal number 45796 to its equivalent octal number.

Solution

The given decimal number is 45796.

The following table lists the steps showing the conversion of the given decimal number to its octal
equivalent:

Decimal number Divisor Quotient Remainder
45796 8 5724 4
5724 8 715 4
715 8 89 3
89 8 11 1
11 8 1 3
1 8 0 1

Now, read the remainders calculated in the above table in upward direction to obtain the octal equivalent,
which is 131344.
Therefore, the corresponding octal equivalent of 45796 is 131344.

Example 2.20 Convert the decimal number 9547 into its equivalent octal number.

Solution
The given decimal number is 9547.

Computing Concepts 57

The following table lists the steps showing the conversion of the given decimal number to its octal
equivalent:

Decimal number Divisor Quotient Remainder
9547 8 1193 3
1193 8 149 1
149 8 18 5
18 8 2 2
2 8 0 2

Now, read the remainders calculated in the above table in upward direction to obtain the octal equivalent,
which is 22513.
Therefore, the corresponding octal equivalent of 9547 is 22513.

Example 2.21 Convert the decimal number 1567 into its equivalent hexadecimal number.

Solution

The given decimal number is 1567.

The following table lists the steps showing the conversion of the given decimal number to its
hexadecimal equivalent:

Decimal number Divisor Quotient Remainder
1567 16 97 15
97 16 6 1
6 16 0 6

Now, read the remainders calculated in the above table in upward direction to obtain the hexadecimal
equivalent, which is 61F.
Therefore, the hexadecimal equivalent of the given decimal number is 61F.

Example 2.22 Convert the decimal number 9463 into its equivalent hexadecimal number.

Solution

The given decimal number is 9463.

The following table lists the steps showing the conversion of the given decimal number to its
hexadecimal equivalent:

Decimal number Divisor Quotient Remainder
9463 16 591 7
591 16 36 15
36 16 2 4
2 16 0

Now, read the remainders calculated in the above table in upward direction to obtain the hexadecimal
equivalent, which is 24F7.
Therefore, the hexadecimal equivalent of the given decimal number is 24F7.

58 Computing Fundamentals & C Programming

Decimal to octal conversion The decimal to octal conversion is performed by repeatedly dividing
the decimal number by 8 till the decimal number becomes zero and reading the remainders from last to first
to obtain the octal equivalent of the given decimal number. The following examples illustrate the method of
converting decimal number to its octal equivalent:

Example 2.23 Convert the decimal number 45796 to its equivalent octal number.

Solution

The given decimal number is 45796.

The following table lists the steps showing the conversion of the given decimal number to its octal
equivalent:

Decimal number | Divisor | Quotient | Remainder
45796 8 5724 4
5724 8 715 4
715 8 89 3
89 8 11 1
11 8 1 3
1 8 0 1

Now, read the remainders calculated in the above table in upward direction to obtain the octal equivalent,
which is 131344.
Therefore, the corresponding octal equivalent of 45796 is 131344.

Example 2.24 Convert the decimal number 9547 into its equivalent octal number.

Solution

The given decimal number is 9547.

The following table lists the steps showing the conversion of the given decimal number to its octal
equivalent:

Decimal number Divisor Quotient Remainder
9547 8 1193 3
1193 8 149 1
149 8 18 5
18 8 2 2
2 8 0 2

Now, read the remainders calculated in the above table in upward direction to obtain the octal equivalent,
which is 22513.
Therefore, the corresponding octal equivalent of 9547 is 22513.

2.6.3 Octal to Hexadecimal

Computing Concepts 59

The given octal number can be converted into its equivalent hexadecimal number in two different steps.
Firstly, we need to convert the given octal number into its binary equivalent. After obtaining the binary
equivalent, we need to divide the binary number into 4-bit sections starting from the LSB.

The octal to binary conversion is a simple process. In this type of conversion, we need to represent each
digit in the octal number to its equivalent 3-bit binary number. Table 2.7 lists the binary representation of all

the digits used in an octal system.

Table 2.7 Binary representation of octal symbols

Octal ‘ Binary representation
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Example 2.25 Convert the octal number 365 into its equivalent hexadecimal number.

Solution

Octal number: 3 6 5
\A \2 |2 |2

Binary equivalent: 011 110 101
l

Regrouping into 4-bit sections: 0000 1111 0101
l l | |

Hexadecimal equivalent: 0 F 5

Hexadecimal number is F5

Step 1

Step 2

Step 3

Example 2.26 Convert the octal number 6251 into its equivalent hexadecimal number.

Solution

Octal number: 6 2 5
A l | l

Binary equivalent: 110 010 101
!

4-bits grouping: 1100 1010 1001
l l | \:

Hexadecimal equivalent: C A 9

Hexadecimal number is CA9

\
001 Step 1
Step 2
Step 3

60 Computing Fundamentals & C Programming

y
2.7 BINARY ARITHMETIC OPERATIONS LO23

The computer arithmetic is also referred as binary arithmetic because the computer system stores and
processes the data in the binary form only. Various binary arithmetic operations can be performed in the
same way as the decimal arithmetic operations, but by following a predefined set of rules. Each binary
arithmetic operation has an associated set of rules that should be adhered to while carrying out that
operation. The binary arithmetic operations are usually simpler to carry out as compared to the decimal
operations because one needs to deal with only two digits, 0 and 1, in the binary operations. The different
binary arithmetic operations performed in a computer system are:

< Binary addition

< Binary multiplication

< Binary subtraction

< Binary division

2.7.1 Binary Addition

Binary addition is the simplest arithmetic operation performed in the computer system. Like decimal
system, we can start the addition of two binary numbers column-wise from the right-most bit and move
towards the left-most bit of the given numbers. However, we need to follow certain rules while carrying out
the binary addition of the given numbers. Table 2.8 lists the rules for binary addition.

Table 2.8 Binary addition rules

A

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

In the above table, the first three entries do not generate any carry. However, a carry would be generated
when both A and B contain the value, 1. The carry, if it is generated, while performing the binary addition
in a column would be forwarded to the next most significant column.

Example 2.27 Perform the binary addition operation on the following binary numbers:
0010
0111

Solution
The given binary numbers are 0010 and O111.
Now, perform the binary addition of the given numbers as:

Binary number Decimal value
0010 2
0111 7
1 001 9

Therefore, the result of the binary addition performed on 0010 and 0111 is 1001.

Note In the above example, a carry is generated in the 2" and the 3™ column only.

Computing Concepts

61

Example 2.28 Perform the binary addition of the following binary numbers:

Solution

The given binary numbers are 101010 and 010011.
Now, perform the binary addition of the given numbers as:

Binary number Decimal value
101010 42
010011 19
111101 61

Therefore, the result of the binary addition performed on 101010 and 010011 is 111101.

Note In the above example, a carry is generated in the 2@ column only.

Example 2.29 Evaluate the binary sum of the following numbers:
00011010
10001100

Solution
The given binary numbers are 00011010 and 10001100.
Now, perform the binary addition of the given numbers as:

Binary number Decimal value
00011010 26
10001100 140
10100110 166

Therefore, the result of the binary addition performed on 00011010 and 10001100 is 10100110.

Note In the above example, a carry is generated in the 4™ and the 5™ column only.

We can also perform the binary addition on more than two binary numbers. Table 2.9 lists the rules for

adding three binary numbers.

Table 2.9 Rules for adding three binary numbers

A | B | C | A+B+C | Carry
0 0 0 0 0
0 0 1 1 0
0 ! 0 ! 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
] 1 0 0 1
1 1 1 1 1

62 Computing Fundamentals & C Programming

To understand the concept of triple binary addition, let us consider the following examples:

Example 2.30 Perform the binary addition operation on the following three numbers:

0010
0 001
0111

Solution
The given binary numbers are 0010, 0001 and 0111.
Now, perform the binary addition of the given numbers as:

Binary number Decimal value
0010 2
0001 1
0111 7
1010 10

Therefore, the result of the binary addition performed on 0010, 0001 and 0111 is 1010.

Note In the above example, a carry is generated in the 15 and the 2" column only.

Example 2.31 Evaluate the binary sum of the following numbers:
01010
00110
0 1111

Solution
The given binary numbers are 01010, 00110 and 01111.
Now, perform the binary addition of the given numbers as:

Binary number Decimal value
01010 10
00110 6
01111 15
11111 31

Therefore, the result of the binary addition performed on 01010, 00110 and 01111 is 11111.

Note In the above example, a carry is generated in the 2", 3@ and 4™ column only.

2.7.2 Binary Multiplication

The multiplication of two binary numbers can be carried out in the same manner as the decimal
multiplication. However, unlike decimal multiplication, only two values are generated as the outcome
of multiplying the multiplicand bit by 0 or 1 in the binary multiplication. These values are either O or
1. The binary multiplication can also be considered as repeated binary addition. For instance, when we
are multiplying 7 with 3, it simply means that we are adding 7 to itself 3 times. Therefore, the binary
multiplication is performed in conjunction with the binary addition operation. Table 2.10 lists the rules for
binary multiplication.

Computing Concepts 63

Table 2.10 Binary multiplication rules

>
=
>
=

e k= =R E=N X

= | |=|O

= = =N =]

The above table clearly shows that binary multiplication does not involve the concept of carry. To
understand the concept of binary multiplication, let us consider the following examples:

Example 2.32 Perform the binary multiplication of the decimal numbers 12 and 10.

Solution
The equivalent binary representation of the decimal number 12 is 1100.
The equivalent binary representation of the decimal number 10 is 1010.
Now, perform the binary multiplication of the given numbers as:

1100 Multiplicand
1010 Multiplier
0000O0 First partial product
1100
0000O0
1100
1111000 Final product

Therefore, the result of the binary multiplication performed on the decimal numbers 12 and 10 is
1111000.

Example 2.33 Evaluate the binary product of the decimal numbers 15 and 14.

Solution
The equivalent binary representation of the decimal number 15 is 1111.
The equivalent binary representation of the decimal number 14 is 1110.
Now, perform the binary multiplication of the given numbers as:

1 111 Multiplicand
1110 Multiplier
0000O0 First partial product
1111
1111
1111
11010010 Final product

Therefore, the result of the binary multiplication performed on the decimal numbers 15 and 14 is
11010010.

64 Computing Fundamentals & C Programming

Example 2.34 Perform the binary multiplication of the following numbers:
1101
111

Solution
The given binary numbers are 1101 and 111.
Now, perform the binary multiplication of the given numbers as:

1101 Multiplicand
111 Multiplier
1101 First partial product
1101
1101
1011011 Final product

Therefore, the result of the binary multiplication performed on the numbers 1101 and 111 is 1011011.

Example 2.35 Evaluate the binary product of the following numbers:
100010
10010

Solution
The given binary numbers are 100010 and 10010.
Now, perform the binary multiplication of the given numbers as:

100010 Multiplicand
10010 Multiplier
000O0O0O First partial product
100010
00000O00O0
00000O00O0
100010
1001100100 Final product

Therefore, the result of the binary multiplication performed on the numbers 100010 and 10010 is
1001100100.

2.7.3 Binary Subtraction

The binary subtraction is performed in the same way as the decimal subtraction. Like binary addition and
binary multiplication, binary subtraction is also associated with a set of rules that need to be followed while
carrying out the operation. Table 2.11 lists the rules for binary subtraction.

Table 2.11 Binary subtraction rules

0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 0

Computing Concepts 65

The above table shows that the binary subtraction like the decimal subtraction uses the borrow method
to subtract one number from another. To understand the concept of binary subtraction, let us consider the
following examples:

Example 2.36 Subtract the following binary numbers:
0101
0010

Solution
The given binary numbers are 0101 and 0010.
Now, perform the binary subtraction of the given numbers as:

1 Borrow
0101 Minuend
0010 Subtrahend
0011 Difference

Therefore, the result of the binary subtraction performed on the numbers 0101 and 0010 is 0011.

Example 2.37 Perform the binary subtraction of the following numbers:
10101
01110

Solution
The given binary numbers are 10101 and 01110.
Now, perform the binary subtraction of the given numbers as:

111 Borrow
10101 Minuend
01110 Subtrahend

00111 Difference

Therefore, the result of the binary subtraction performed on the numbers 10101 and 01110 is 00111

Example 2.38 Perform the binary subtraction of the following numbers:
10111011
01001001

Solution
The given binary numbers are 10111011 and 01001001.
Now, perform the binary subtraction of the given numbers as:

1 Borrow
10111011 Minuend
01001001 Subtrahend
01110010 Difference

Therefore, the result of the binary subtraction performed on the numbers 10111011 and 01001001 is
1110010.

66 Computing Fundamentals & C Programming

Example 2.39 Perform the binary subtraction of the following numbers:
101110101010
001111011100

Solution
The given binary numbers are 101110101010 and 001111011100.
Now, perform the binary subtraction of the given numbers as:

11111 111 Borrow
101110101010 Minuend
001111011100 Subtrahend
011111001110 Difference

Therefore, the result of the binary subtraction performed on the numbers 101110101010 and
0011110111001s 11111001110.

2.7.4 Binary Division

Binary division is also performed in the same way as we perform decimal division. Like decimal division,
we also need to follow the binary subtraction rules while performing the binary division. The dividend
involved in binary division should be greater than the divisor. The following are the two important points,
which need to be remembered while performing the binary division:
« If the remainder obtained by the division process is greater than or equal to the divisor, put 1 in the
quotient and perform the binary subtraction.
« If the remainder obtained by the division process is less than the divisor, put O in the quotient and
append the next most significant digit from the dividend to the remainder.

Example 2.40 Divide 14 by 7 in binary form.

Solution
The equivalent binary representation of the decimal number 14 is 1110.
The binary representation of 7 is 111.
Now, perform the binary division of the given numbers as:

111) 1110 (10 (Quotient)
111

0000

Therefore, the result of the binary division performed on the decimal numbers 14 and 7 is 10.

Example 2.41 Perform the binary division of the decimal numbers 18 and 8.

Solution
The equivalent binary representation of the decimal number 18 is 10010.
The equivalent binary representation of the decimal number 8 is 1000.

Computing Concepts 67

Now, perform the binary division of the given numbers as:
1000) 1T0010CT10O0 (Quotient)

1000
00010
000O00O0
00010 (Remainder)

Therefore, the result of the binary division performed on the decimal numbers 18 and 8 is 10 with a
remainder of 10.

Example 2.42 Perform the binary division of the decimal numbers 11011 and 1001.

Solution
The given binary numbers are 11011 and 1001.
Now, perform the binary division of the given binary numbers as:

1001) 11011 (11 (Quotient)
1001
1001
1001

0000

[l N

Therefore, the result of the binary division performed on the numbers 11011 and 1001 is 11.

Example 2.43 Perform the binary division of 217 and 12.

Solution
The equivalent binary representation of the decimal number 217 is 11011001.
The equivalent binary representation of the decimal number 12 is 1100.
Now, perform the binary division of the given numbers as:

1100) 11011001 (10010 (Quotient)

11 0

00
00

—__ OO0 OO (O

—_— [l [

SO O = (O =
— OO OO

(Remainder)

Therefore, the result of the binary division performed on the decimal number 217 and 12 is 10010 with a
remainder of 1.

68 Computing Fundamentals & C Programming

2.8 LOGIC GATES 1024

Logic gates are the basic building blocks of a digital computer. In general, all the logic gates have two input
signals and one output signal. These two input signals are nothing but two binary values, O or 1 that helps
represent different voltage levels. In all logic gates, the binary value O represents the low state of voltage
that is approximately O volt and the binary value 1 represents the high state of voltage that is approximately
+5 volts. The three basic logic gates are:

< AND
< OR
< NOT

All logic gates have a logical expression, symbol, and truth table. The logical expression helps find the
output of the logic gate on the basis of its inputs. A symbol is the pictorial presentation of a logic gate that
can have one or more than one input and one output. The truth table helps find the final logical state, such
as true/false or 1/0 of the logic gate in the form of its output.

2.8.1 AND Gate

The AND gate is one of the basic logic gates that give an output signal of value 1 only when all its input
signals are of value 1. In other words, the AND gate gives an output signal of value O whenever its one input
signal is of value 0.

Logical Expression

The logical expression for the AND function is:
F=AB
where, F is the output that depends on inputs, A and B.
Symbo1
The symbol of the AND gate is shown in Fig. 2.1.

*——

o——]

Fig. 2.1 AND gate

Truth Table

Table 2.12 Truth Table for AND Gate

Output F

|
—
[
[|
[
Computing Concepts ’

Example 2.44 Consider the following system that has two AND gates:
Iy

o
I 2

e
.

I3

Solution
Assuming
I,=1, I,=0 and I;=0

Outputs would be
0,=1-1,=1.0=0

0,=1,0,=00=0

Example 2.45 Consider the following system with three AND gates:

]
O1
0,

4\ o
JI 3

I
I3

Solution
Assuming

Outputs would be:
O0,=1,=11=1
0,=1,;,0,=11=1
0,=1,;0,=11=1

2.8.2 OR Gate

The OR gate is another basic logic gate that gives an output signal of value 1 whenever its one input signal
is of value 1. In other words, the OR gate gives an output signal of value O when all its input signals are of
value 0.

Logical Expression
The logical expression for the OR function is:
F=A+B
where, F is the output that depends on inputs A and B.
Symbol
The symbol of the OR gate is shown in Fig. 2.2.

70 Computing Fundamentals & C Programming

o

Fig. 2.2 OR Gate

Truth Table

Table 2.13 Truth Table for OR Gate

Input B Output F

Example 2.46 Consider the following configuration of OR gates:

14 04
I I O2
3
Solution
When
I,=1,1,=0 and I;=1
Outputs

0,=11, =1.0=1
0,=1,;0,=1-1=1

Example 2.47 Consider the following system three OR gates,
14 04
I

02

I3 03
Iy

Solution
Assuming
1,=0,1,=0,I;=1 and I,=1
Outputs O,, O, and O, would be
0,=1-1, =00=0
0,=1,0,=10=1
0,=1,0,=11=1

2.8.3 NOT Gate

The third basic logic gate is NOT gate which produces an output of the opposite state to its input. This logic
gate always has only one input signal and one output signal.

Computing Concepts 71

Logical Expression

The logical expression for the NOT function is:
F=A
where, F is the output that depends on input, A.

Symbol
The symbol of the NOT gate is shown in Fig. 2.3.

o] e

Fig. 2.3 NOT gate

Truth Table

Table 2.14 Truth Table for NOT Gate

Example 2.48 Consider two NOT gates configured is shown below:

11 01 =]2 02
Solution 3
If I, =1then O0,=1=1=0
and therefore
L=0=0
0,=1,=0 =1
Y
2.9 PROGRAMMING LANGUAGES Qo234

The operations of a computer are controlled by a set of instructions (called a computer program). These
instructions are written to tell the computer:

1. what operation to perform

2. where to locate data

3. how to present results

4. when to make certain decisions

The communication between two parties, whether they are machines or human beings, always needs a
common language or terminology. The language used in the communication of computer instructions is

72 Computing Fundamentals & C Programming

known as the programming language. The computer has its own language and any communication with the
computer must be in its language or translated into this language.

Three levels of programming languages are available. They are:

1. machine languages (low level languages)

2. assembly (or symbolic) languages

3. procedure-oriented languages (high level languages)

2.9.1 Machine Language

As computers are made of two-state electronic devices they can understand only pulse and no-pulse (or ‘1’
and ‘0’) conditions. Therefore, all instructions and data should be written using binary codes 1 and 0. The
binary code is called the machine code or machine language.

Computers do not understand English, Hindi or Tamil. They respond only to machine language. Added
to this, computers are not identical in design, therefore, each computer has its own machine language.
(However, the script 1 and 0, is the same for all computers). This poses two problems for the user.

First, it is difficult to understand and remember the various combinations of 1s and Os representing
numerous data and instructions. Also, writing error-free instructions is a slow process.

Secondly, since every machine has its own machine language, the user cannot communicate with other
computers (If he does not know its language). Imagine a Tamilian making his first trip to Delhi. He would
face enormous obstacles as the language barrier would prevent him from communicating.

Machine languages are usually referred to as the first generation languages.

2.9.2 Assembly Language

The Assembly language, introduced in 1950s, reduced programming complexity and provided some
standardization to build an application. The assembly language, also referred to as the second-generation
programming language, is also a low-level language. In an assembly language, the Os and Is of machine
language are replaced with abbreviations or mnemonic code.

The main advantages of an assembly language over a machine language are:

< As we can locate and identify syntax errors in assembly language, it is easy to debug it.

< It is easier to develop a computer application using assembly language in comparison to machine

language.

< Assembly language operates very efficiently.

An assembly language program consists of a series of instructions and mnemonics that correspond to a
stream of executable instructions. An assembly language instruction consists of a mnemonic code followed
by zero or more operands. The mnemonic code is called the operation code or opcode, which specifies the
operation to be performed on the given arguments. Consider the following machine code:

10110000 01100001
Its equivalent assembly language representation is:
mov al, 061h

In the above instruction, the opcode “move” is used to move the hexadecimal value 61 into the processor
register named ‘al’. The following program shows the assembly language instructions to subtract two
numbers:

ORG 500 /Origin of program is location 500

LDA SUB /Load subtrahend to AC

Computing Concepts 73

CMA /Complement AC
INC /Increment AC

ADD MIN /Add minuend to AC
STA DIF /Store difference
HLT /Halt computer

MIN, DEC 56 /Minuend

SUB, DEC-2 /subtrahend

DIF, HEX 0 /Difference stored here

END /End of symbolic program

It should be noted that during execution, the assembly language program is converted into the
machine code with the help of an assembler. The simple assembly language statements had one-to-one
correspondence with the machine language statements. This one-to-one correspondence still generated
complex programs. Then, macroinstructions were devised so that multiple machine language statements
could be represented using a single assembly language instruction. Even today programmers prefer to use
an assembly language for performing certain tasks such as:

< To initialize and test the system hardware prior to booting the operating system. This assembly
language code is stored in ROM
To write patches for disassembling viruses, in anti-virus product development companies
To attain extreme optimization, for example, in an inner loop in a processor-intensive algorithm
For direct interaction with the hardware
In extremely high-security situations where complete control over the environment is required
To maximize the use of limited resources, in a system with severe resource constraints

K2 K2 K2 K2 K2
R XA X R X QI X I X 4

2.9.3 High-Level Languages

High level languages further simplified programming tasks by reducing the number of computer operation
details that had to be specified. High level languages like COBOL, Pascal, FORTRAN, and C are more
abstract, easier to use, and more portable across platforms, as compared to low-level programming
languages. Instead of dealing with registers, memory addresses and call stacks, a programmer can
concentrate more on the logic to solve the problem with the help of variables, arrays or Boolean expressions.
For example, consider the following assembly language code:

LOAD A

ADD B

STORE C

Using FORTRAN, the above code can be represented as:

C=A+BHB

The above high-level language code is executed by translating it into the corresponding machine
language code with the help of a compiler or interpreter.
High-level languages can be classified into the following three categories:

< Procedure-oriented languages (third generation)
% Problem-oriented languages (fourth generation)

R

« Natural languages (fifth generation)

R

Procedure-oriented Languages

High-level languages designed to solve general-purpose problems are called procedural languages or
third-generation languages. These include BASIC, COBOL, FORTRAN, C, C++, and JAVA, which are

74 Computing Fundamentals & C Programming

designed to express the logic and procedure of a problem. Although, the syntax of these programming
languages is different, they use English-like commands that are easy to follow. Another major advantage
of third-generation languages is that they are portable. We can put the compiler (or interpreter) on any
computer and create the object code. The following program represents the source code in the C language:
if(n>10)
{
do
{

n++;

}while (n<50);

Problem-oriented Languages

Problem-oriented languages are used to solve specific problems and are known as the fourth-generation
languages. These include query Languages, Report Generators and Application Generators which have
simple, English-like syntax rules. Fourth-generation languages (4 GLs) have reduced programming efforts
and overall cost of software development. These languages use either a visual environment or a text
environment for program development similar to that of third-generation languages. A single statement in
a fourth-generation language can perform the same task as multiple lines of a third-generation language.
Further, the programmer just needs to drag and drop from the toolbar, to create various items like buttons,
text boxes, labels, etc. Also, the programmer can quickly create the prototype of the software application.

Natural Languages

Natural languages are designed to make a computer to behave like an expert and solve problems. The
programmer just needs to specify the problem and the constraints for problem-solving. Natural languages
such as LISP and PROLOG are mainly used to develop artificial intelligence and expert systems. These
languages are widely known as fifth generation languages.

4
2.10 TRANSLATOR PROGRAMS 1025

2.10.1 Assembler

An assembler is a computer program that translates assembly language statements into machine language
codes. The assembler takes each of the assembly language statements from the source code and generates a
corresponding bit stream using Os and 1s. The output of the assembler in the form of sequence of Os and 1s
is called object code or machine code. This machine code is finally executed to obtain the results.

A modern assembler translates the assembly instruction mnemonics into opcodes and resolves symbolic
names for memory locations and other entities to create the object code. Several sophisticated assemblers
provide additional facilities that control the assembly process, facilitate program development, and aid
debugging. The modern assemblers like Sun SPARC and MIPS based on RISC architectures, optimizes
instruction scheduling to attain efficient utilization of CPU. The modern assemblers generally include a
macro facility and are called macro assemblers.

Assemblers can be classified as single-pass assemblers and two-pass assemblers. The single-pass
assembler was the first assembler that processes the source code once to replace the mnemonics with the

Computing Concepts 75

binary code. The single-pass assembler was unable to support advanced source-code optimization. As a
result, the two-pass assembler was developed that read the program twice. During the first pass, all the
variables and labels are read and placed into the symbol table. On the second pass, the label gaps are filled
from the table by replacing the label name with the address. This helps to attain higher optimization of the
source code. The translation process of an assembler consists of the following tasks:

« Replacing symbolic addresses like LOOP, by numeric addresses
Replacing symbolic operation code by machine operation codes
Reserving storage for the instructions and data
Translating constants into their machine representation

2.10.2 Compiler

The compiler is a computer program that translates the source code written in a high-level language into
the corresponding object code of the low-level language. This translation process is called compilation. The
entire high-level program is converted into the executable machine code file. A program that translates from
a low-level language to a high-level one is a decompiler. Compiled languages include COBOL, FORTRAN,
C, C++, etc.

In 1952, Grace Hopper wrote the first compiler for the A-O programming language. In 1957, John Backus
at IBM introduced the first complete compiler. With the increasing complexity of computer architectures
and expanding functionality supported by newer programming languages, compilers have become more
and more complex. Though early compilers were written in assembly languages, nowadays it has become
common practice to implement a compiler in the language it compiles. Compilers are also classified as
single-pass compilers and multi-pass compilers. Though single-pass compilers are generally faster than
multi-pass compilers, for sophisticated optimization, multi-pass assemblers are required to generate high-
quality code.

2.10.3 Interpreter

The interpreter is a translation program that converts each high-level program statement into the
corresponding machine code. This translation process is carried out just before the program statement is
executed. Instead of the entire program, one statement at a time is translated and executed immediately.
The commonly used interpreted language is BASIC and PERL. Although, interpreters are easier to create as
compared to compilers, the compiled languages can be executed more efficiently and are faster.

K2 K2 K2
XA X X4

4
2.11 PROBLEM-SOLVING TECHNIQUES 1208

In today’s world, a computer is used to solve various types of problems because it takes very less time as
compared to a human being. The following steps are performed while solving a problem:
1. Analyse the given problem.
. Divide the process used to solve the problem in a series of elementary tasks.
. Formulate the algorithm to solve the problem.
. Express the algorithm as a precise notation, which is known as a computer program.
. Feed the computer program in the computer. CPU interprets the given program, processes the data
accordingly, and generates the result.
6. Send the generated result to the output unit, which displays it.

W B~ W N

76 Computing Fundamentals & C Programming

Algorithms and flow charts are two important techniques that help users in solving problems or
accomplishing tasks using a computer.

2.11.1 Algorithms

An algorithm is a complete, detailed, and precise step-by-step method for solving a problem independently
of the software or hardware of the computer. Algorithms are very essential, as they instruct the computer
what specific steps it needs to perform to carry out a particular task or to solve a problem. To understand
how an algorithm works, let us consider the following example:

Let us assume that XYZ company gives each of its salespersons Rs 5000 at the starting of the month for
covering various expenses, such as food, lodge, and travel. At the end of the month, the salesperson must
submit the receipts of his/her total expenditures to the company. If the amount is less than Rs 5000, then the
remaining amount must be returned to the company. Now, a simple algorithm can be developed to find out
how much money, if any, should be returned to the company.

1. Calculate the total expense receipts of the month.

2. Subtract this amount from Rs 5000.

3. If the remainder is greater than 0, return the amount to the company.

2.11.2 Top-down Approach of Algorithms

The top-down approach of an algorithm to solve a given problem is also known as divide and conquer. In
this approach, the given problem is divided into two or more sub problems, each of which resembles the
original problem. The solution of each sub problem is taken out independently. Finally, the solution of all
sub problems is combined to obtain the solution of the main problem. One of the most common examples
of the implementation of top-down approach is binary search.

Binary search is a method, which helps search the required data from a given list of data. This method
involves comparing the data to be searched and the data present at the middle position of the list. If the
data available at the middle position of the list is similar to the data to be searched, the search is considered
successful. Otherwise, the list is divided into two parts, left half and right half. The data to be searched is
compared with the data present at the mid position. If it is lesser than the data available at the mid position,
the left half of the list is searched and if it is greater than the data at the mid position, the right half of the
list is searched. This process is repeated until the data to be searched is found or the whole list has been
searched. If the data to be searched is found then the search is successful, otherwise the search becomes
unsuccessful.

2.11.3 Program Verification

Computer programs are regarded as formal mathematical objects and the properties of these computer
programs are subjected to mathematical proofs. Program verification refers to the use of formal,
mathematical techniques to debug a program and its specifications. For example, suppose we have coded a
program for implementing binary search. Now, we want to verify whether the coded program is correct or
not. This can be verified by implementing the program on a given list of data.

Consider an array of 11 elements X[11] = {8,18,26,40,47,69,84,115,126,136,177}. Use the binary search
technique to find whether the element ‘26’ is present in this array or not. Now, perform the steps of binary
search method to search the required elements. Here, ‘Low’ represents the location of the first element in
the list, ‘High’ represents the location of the last element in the list, and ‘Mid’ represents the location of the
element available at the middle position in the list. First, search the element 26’ in the given array. During
the first iteration, the values of Low, High, and Mid are as follows:

Computing Concepts 77

< Low=1

< High=11

% Mid=6

The element at the 6 position is ‘69, which is not the required element. Since, the value of the element
at the 6™ position is greater than ‘26°, the algorithm searches the left half of the array. During the second
iteration, the values of Low, High, and Mid are as follows:

< Low=1

< High=5

% Mid=3

The element at the 3" position is ‘26°, which is the required element. Thus, the search is successful as
the element ‘26’ is present in the array.

Implement the same program twice or thrice on the given list for different elements. If the program gives
the correct result, then it is verified that the program is correct.

2.11.4 Efficiency of an Algorithm

Efficiency of an algorithm means how fast it can produce the correct result for the given problem. The
efficiency of an algorithm depends upon its time complexity and space complexity. The complexity of an
algorithm is a function that provides the running time and space for data, depending on the size provided by
us. The two important factors for judging the complexity of an algorithm are as follows:

< Space complexity

< Time complexity

Space complexity of an algorithm refers to the amount of memory required by the algorithm for its
execution and generation of the final output.

Time complexity of an algorithm refers to the amount of computer time required by an algorithm for
its execution. This time includes both compile time and run time. The compile time of an algorithm does
not depend on the instance characteristics of the algorithm. The run time of an algorithm is estimated by
determining the number of various operations, such as addition, subtraction, multiplication, division, load,
and store, executed by it.

Analysis of Algorithm The analysis of an algorithm determines the amount of resources, such as time
and space required by it for its execution. Generally, the algorithms are formulated to work with the inputs
of arbitrary length. Algorithm analysis provides theoretical estimates required by an algorithm to solve a
problem.

In theoretical notation, the complexity of an algorithm is estimated in asymptotic notations. Asymptotic
notations are used to represent the asymptotic run time of an algorithm. These notations are represented in
terms of function T(n), where n is the set of natural numbers, 1, 2, 3, 4,..., n. The basic notations used to
represent the complexity of an algorithm are:

< O-notation — It is used to represent the worst case running time of an algorithm.

< O-notation — It is used to provide upper boundary constraints over a given function.

< Q-notation — It is used to provide an asymptotic lower bound on the given function.

< o-notation — It is used to denote asymptotic loose upper bound.

< m-notation — It is used to denote asymptotic loose lower bound.

2.11.5 Flow Charts

Now to visualize the working of an algorithm, one needs to take the help of a flow chart, which is the
pictorial representation of the algorithm depicting the flow of the various steps. If we consider the above

|
—
[|
|
[
, Computing Fundamentals & C Programming

example of the expenses of the salesperson, then the flow chart of the algorithm can be represented, as
shown in Fig. 2.4.

Start

Tital
expenses

Subtract expegrses
expenses from
Rs 5000 < Rs 5000

!

Print “Due
amount”

oo

Fig. 2.4 Flow chart representation of an algorithm

Print “No
dues”

Example 2.49 Write an algorithm for finding greatest among three numbers.

Let x, y and z be the numbers. Now, we can follow the algorithm below to determine the greatest number
among the three:
1. Read the three numbers.
2. Ifx>y
a. If x>z, then x is the greatest number.
b. Else, z is the greatest number
3. Else,
a. Ify> gz, then y is the greatest number.
b. Else, z is the greatest number.

Example 2.50 Write the algorithm for converting the degree in Celsius from Fahrenheit

Let us consider x to be the temperature given in Celsius. Now, we need to follow the algorithm below to
determine the temperature in Fahrenheit:

1. Read x

2. Multiply x with 9/5.

3. Add 32 to the multiplied result.

4. Print the final value which is the temperature in Fahrenheit.

Example 2.51 Write the algorithm for calculating the average of n integers.

Computing Concepts 79

The algorithm for calculating the average of n integers is as follows:
1. Read n integers.
2. Calculate the sum of the integers.
3. Divide the sum by the total number of integers, that is, 7.
4. Print the final value which is the average of n integers.

Example 2.52 Write the algorithm for checking whether a number is odd or even.

The following is the algorithm to determine whether a number is odd or even:
1. Read the given number, say x.
2. Divide x by 2.
3. If the remainder is 1, then print x is odd.
4. FElse, print x is even.

Example 2.53 Write the algorithm to determine whether a number is positive, negative or zero.

1. Read the given number, say x.
2. Ifx#0,
a. If x>0, the value of x is positive.
b. Else, the value of x is negative.
3. Else, the value of x is zero.

Example 2.54 Write an algorithm to find the factorial of a given number.

The factorial of a non-negative integer n, which is denoted by #n! is the product of all positive integers less
than or equal to 1. The algorithm for determining the factorial of a given number is:

1. Read the given number, say x.

2. Multiply the number x with x-1, and store the resultant, say m.

3. Repeat the step 2, until the value of x becomes 1.

4. Print the final value, which gives the factorial of the given number.

Example 2.55 Write an algorithm to generate the Fibonacci series.

The Fibonacci series is defined by the following expression:
0 ifn=0;
F(n)= 11 ifn=1;
F(n-1) + Fn-2) ifn>1;

The above expression states that after two starting values, each number is the sum of two preceding

numbers. The algorithm for generating the Fibonacci series is:
1. Read the number of terms in the series, say n.

.Seta=0andb=1.
. Print the value of a and b.
. Set count = 2.
. While count<n,c=a+b.
. Print the value of c.
.Seta=bandb=c.

~N N B W

80 Computing Fundamentals & C Programming

8. Increase the value of count by 1.
9. Repeat steps 5 to 8, until count becomes equal to n.

Example 2.56 Write an algorithm to find the factors of a given number.

1. Read a number, say num.
2. If num<=0, then go to step 11.
3. Set i=1.
4. Repeat step 5 to 10.
5. If i> num, then go to 10.
6. Else
7. Divide num by i.
8. If the remainder of the division is 0, print i.
9. Increment i by 1 and go to step 5.
10. Endif.
11. Exit.
A program to implement this algorithm using C language is given in Fig. 2.5
Program
#include <stdio.h>
#include <conio.h>
void main()
{
int num,i,J;
clrscr();
printf("Enter a number to find its factors: ");
scanf("%d",&num) ;
printf("\nFactors of the number %d are: ",num);
for(i=1;i<=num;i++)
{
if(num%i==0)
printf("%d\t",i);
}
getch();
}
Output

Enter a number to find its factor:12
Factors of the number 12 are:1 2 3 4 6 12
Fig. 2.5 Program to find factors of a given number

Example 2.57 Write an algorithm to find the prime factor of a number.

1. Read a number, say n.
2. If n<=1, then go to step 12.
3. Set x=2.

A program to implement this algorithm using C language is given in Fig. 2.6

4. Repeat step S to 11.
5. If n<=x num, then go to 12
6. Else
7. Divide n by x.
8. If the remainder of the division is O, print x.
9. Set n=n/x.
10. Increment x by 1 and go to step 5.
11. Endif
12. Exit.
Program
#include <stdio.h>
#include <conio.h>
void main()
{
int n,x;
clrscr();
scanf("%d",&n);
if(n<=1)
{
getch();
exit(0);
}
X=2;
do
{

if(n%x==0)

{
printf("%d\t",x);
n/=x;

}

else
X++3

}
while (x<=n);
getch();
}
Output

Enter a number to find its prime factors:

72

printf("Enter a number to find its prime factors:");

printf("Enter a value greater than 1.");

Computing Concepts

81

82

Computing Fundamentals & C Programming

The prime factors of 72 are:

22233

Enter a number to find its prime factors:
1

Enter a value greater than 1.

Fig. 2.6 Program to find prime factors of a given number

Example 2.58 Write an algorithm to find the square root of a number.

Ne)

. Read a number, say s.

. If s<0, then go to step 16.
. Else if s=0

. Print the value of sq as 0.
. Else

Set n=1.

. While (!(s>=n*n && s<(n+1)*(n+1))
. Do increment n by 1

. End while

10.
11.
12.
13.
14.
15.
16.

d=s-(n*n)
P=(double)d/(2*n).
a=(double)n+p
root=(double)a-((p*p)/(2*a));
Print the value of root.

Program

Endif
Exit.
The program in Fig. 2.7 implements above algorithm in C language.
#include <stdio.h>
int main()
{
int s,n;
doubTe d,p,a,root;
clrscr();

printf("Enter a number:");
scanf("%d",&s);
if(s<0)
printf("Enter a positive integer value.");
else if(s==0)
printf("Square root of 0 is 0");
else
{

n=1;

Computing Concepts 83

while(!(s>=n*n && s<(n+1)*(n+1)))
{

n++;

1

d=s-(n*n);

p=(double)d/(2*n);

a=(double)n+p;

root=(double)a-((p*p)/(2*a));

printf("\nSquare root of %d is %.3f",s,root);
1
getch();

Output
Enter a number:16
Square root of the 16 is 4.000.

Fig. 2.7 Program to find square root of a given number

Example 2.59 Write an algorithm to find whether the given number is prime or not.

1. Read a number, say n up to which you want to print the prime numbers.
2. Since 1 and 2 are prime numbers, so print them.

3. Check each number up to n whether it is prime number or not.

4. Print all the prime numbers up to n.

The program in Fig. 2.8 illustrates the implementation of this algorithm.

Program
#include <stdio.h>
#include <conio.h>
#include <math.h>
void main()
{
int n,i,j;
clrscr();
printf("Enter a number up to which you want prime numbers:");
scanf("%d",&n);
if(n<=1)
{
printf("Enter a number greater than 1.");
getch();
exit(0);
}
printf("Prime numbers between 1 and %d are:",n);
printf("\n2");

|
—
|
[|
[
’ Computing Fundamentals & C Programming

for(i=3;i<=n;i++)
{
for(j=2;3<=sqrt(i);j++)
{
if(i%j==0)
break;
1
if(j>sqrt(i))
printf("\n%d",i);
}

getch();
}
Output

Enter a number up to which you want prime numbers:
5

Prime numbers between 1 and 5 are:

2

3

5

Fig. 2.8 Program to find prime numbers up to a given number

Example 2.60 Give a flow chart for addition of two numbers.

Start |
Input x
Input y

Sum=x+y

Print
Sum
Stop '

|

—

|

[|

[
Computing Concepts ,

Example 2.61 Give a flow chart to print he average of three numbers.

Start

Input x
Input y
Input z

Sum=x+y+z
Average = Sum/3

Print
Average

Stop

Example 2.62 Give a flow chart for Example 2.49

Print
x is the
largest
number

Print
zis the
largest
number

Print
yis the
largest
number

Yes

No

Print
zis the
largest
number

|
—
[|
|
[
’ Computing Fundamentals & C Programming

Example 2.63 Give a flow chart for Example 2.52

Start

{ Input x ;

Divide x by
2,i.e.x2

If
remainder
=1

No
Print
X is even

Example 2.64 Give a flow chart to determine the average of 10 numbers.

Start
i=0
Sum =0
average = False ,.<IS10
sum/10 5
True

i Print average i /
Input x

sum = x + sum

Stop iis incremented by 1

2.12 USING THE COMPUTER

Computing Concepts 87

1026

_

Computers can be used to solve specific problems that may be scientific or commercial in nature. In either
case, there are some basic steps involved in using the computers. These are as follows:
< Problem analysis Identify the known and unknown parameters and state the constraints under

which the problem is to be solved. Select a method of solution.

< Collecting information Collect data, information and the documents necessary for
problem and also plan the layout of output results.

< Preparing the computer logic Identify the sequence of operations to be performed in

solving the

the process

of solving the problem and plan the program logic, preferably using a program flow chart.

language.

either in using the language or in the logic.
% Preparing the data Prepare input data in the required form.

computations are performed by the computer and the results are given out.

< Writing the computer program Write the program of instructions for the computer in a suitable

< Testing the program There are usually errors(bugs) in it. Remove all these errors which may be

% Running the program This may be done either in batch mode or interactive mode. The

The use of a particular input/output device depends upon the nature of the problem, type of input data in
the form of output required.

(& LEARNING OUTCOMES

Computer codes help the computer system to convert the data received in a different number system
to the data in the binary form so that it can be stored and processed in an efficient manner.

In computer terminology, the number system used to represent data is generally known as positional
number system, because the value of the number represented in this system depends upon the
position of the digits in the given number.

The positional number system can be of four different types, namely, decimal system, binary system,
hexadecimal system and octal system.

We can easily convert the number represented in one system to its equivalent in another system. The
major number system conversions are non-decimal to decimal, decimal to non-decimal and octal to
hexadecimal.

The basic arithmetic operations performed by the computer system are binary addition, binary
multiplication, binary subtraction and binary division.

The basic unit of the hardware components of a computer system is the logic gate.
There are three Basic Logic gates — AND gate, OR gate and NOT gate.

Three levels of programming languages are available — machine languages, assembly languages and
procedure-oriented languages.

Algorithms and flow charts are two important techniques that help in solving problem using a
computer.

1501 2.1
1501 2.1

1501 2.1
LOE#

501 2.3 |

Lopx
Lopx
Lo

150 2.6

88 Computing Fundamentals & C Programming

Q KEY TERMS TO REMEMBER

Computer codes: The computer codes are the codes that help in converting the data entered by the
users into the binary form.

Positional number system: The positional number system is a system in which numbers are
represented using certain symbols called digits and the values of these numbers is determined by
taking the position of digits into consideration.

Decimal system: The decimal system is a positional number system that uses base 10 to represent
different values.

Binary system: The binary system is a positional number system that uses base 2 to represent
different values.

Hexadecimal system: The hexadecimal system is a positional number system that uses base 16 to
represent different values.

Octal system: The octal system is a positional number system that uses base 8 to represent different
values.

Number system conversions: The different type of number system conversions can be divided into
three major categories: non-decimal to decimal, decimal to non-decimal and octal to hexadecimal.

ALU: ALU is an important component of CPU that is used to perform various arithmetic and logical
operations in the computer system.

Integer arithmetic: Integer arithmetic refers to various arithmetic operations involving integer
operands only.

Floating-point arithmetic: Floating-point arithmetic refers to various arithmetic operations
involving floating-point operands only.

Unsigned binary number: Unsigned binary number is the number with a magnitude of either zero
or greater than zero.

Basic logic gates: Basic logic gates are the building blocks of digital circuits that perform logical
operations such as AND, OR and NOT, on the binary inputs.

Machine Language: The computer instructions written using binary codes 1 and 0 are machine code
or machine language.

Assembly Language: In an assembly language, the Os and 1s of machine language are replaced with
abbreviations or mnemonic code.

High Level Language: High level language code is executed by translating it into corresponding
machine language code with the help of a compiler or interpreter.

Algorithms: An algorithm is a complete, detailed and precise step-by-step method for solving a
problem independently of the software or hardware of the computer.

Flow charts: A flow chart is the pictorial representation of the algorithm depicting the flow of the
various steps.

501 2.1
10)2.1

100)2.1 |
LOFX1
100)2.1 |
LOPXY
LOF¥]
LOPE]
LOPE]
100]2.3 |
LOPE]
100)2.4
100]2.5 |
LOP
LOP]
100]2.6 |
LOFX]

|

—

|

[|

[
Computing Concepts ,

REVIEW QUESTIONS

N

° ® A0 RW

10.
11.
12.
13.
14.
15.

16.
17.

18.
19.
20.

21.

22,
23.
24.

Fill in the Blanks

The most common system used by computer systems is

The weight of any digit in the number system generally depends upon its in the

given number.

The binary system represents each type of data in the form of and

The digits in binary system are referred as

The base of any number system depends upon the number of in the system.
Computer designers and professionals generally deal with number system.
The octal system is also known as system.
The octal number 5624 is equivalent to in decimal system.
The binary number 1001010 represents a decimal value of

The hexadecimal system consists of symbols.
Human beings usually supply data to the computer system in the form.
Computer codes help computer systems convert the decimal data into data.
The hexadecimal number B45A is equivalent to in decimal system.
The hexadecimal representation of the octal number 2564 is

The arithmetic operations are usually performed in the computer system by and

unit of the CPU.
The computer arithmetic is also referred to as the arithmetic.

The binary multiplication can be considered as the process of binary

Unsigned binary number is a number with a magnitude of either or

The different arithmetic laws hold true for as well

operations.

Logic gates are the building blocks of digital circuits that perform various
on the binary input.

The values of the input and the corresponding output of the logic gates can be represented
using a table called

The output of the gate is true if any one of the inputs is true.
The inverts the value of the input for producing the output.
The output of gate is true if both the inputs are same.

Levels of Difficulty

‘/% : Low;

‘/U : Medium; ‘/i : High

1021 =

JLo21 "
J1021.,/"
1021 ™
J1021./"
1022 g
11022 g
JL022 "
11022,/
11022,/
11022,/
1022 g
11023 "

1023 =
1023 =
11024 "

1024 ™
1024 ™

H

5.

N

[\

27.

10.

11.

6.

Computing Fundamentals & C Programming

The is a translation program that converts each high-level program statement
into the corresponding machine code.

An is a complete, detailed and precise step-by-step method for solving a
problem independently of the software or hardware of the computer.

A flow chart is the of the algorithm depicting the flow of the various steps.

Multiple Choice Questions

Which of the following is not a positional number system?
A. Octal system B. Decimal system
C. Binary system D. Roman number system

Human beings usually employ the following number system for their routine computations:
A. Decimal system B. Octal system
C. Binary system D. Hexadecimal system

The number system with base 2 is known as:

A. Decimal system B. Binary system

C. Octal system D. Hexadecimal system
The 4-bit binary equivalent of the decimal number 6 is:

A. 0111 B. 1000

C. 0010 D. 0110

The octal representation of 15 is:

A. 17 B. 16

C. 15 D. 14

Which of the following form of data is processed more efficiently by the computer system?
A. Binary data B. Octal data

C. Hexadecimal data D. Decimal data

E. Hexadecimal point F. None of the above

The system implemented by the computer systems to convert the decimal numbers into
equivalent binary numbers is known as:

A. BCD system B. Octal system

C. Weighted system D. Gray code system
Which of the following codes is a type of digital code?

A. ASCII code B. Packed code

C. 8421 code D. None of the above

Which of the following is not a valid computer number system conversion?
A. Non-decimal to decimal B. Decimal to non-decimal
C. Octal to hexadecimal D. Roman to decimal

The hexadecimal equivalent of the octal number 4263 is:

A. 8B3 B. A42

C. 923 D. BA3l

Which of the following is not an appropriate operand for arithmetic operations?
A. Integers B. Strings

C. Real D. None of the above

11025,/
110267
11026,/

JLo2a.,7
JLo21.,
JLo2a.,
JLo22./"
JL022./"

L1022 ™

L1022 ™

llo22 ®
llo22
(1022 g

11023 g

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

Which of the following is not a valid binary addition rule?

A. 0+0=0 B. 1+0=1

C. 1+1=0withacarry 1 D. 1+ 1=0 with no carry
What is the result of the binary addition performed on the numbers 1001 and 0101?
A. 0010 B. 1110

C. 1010 D. 1111

The binary multiplication can be considered as the repetitive process of:
A. Binary addition B. Binary subtraction
C. Binary division D. Binary multiplication

Which of the following is not a valid binary multiplication rule?

A. 0x0=1 B. 0x1=0
C. 1x1=1 D. 1x0=0
What is the result of the binary multiplication performed on the numbers 12 and 10?
A. 101011 B. 0111101
C. 1111000 D. 1010000

Which of the following is not a valid binary subtraction rule?
A. 0-0=0 B. 1-0=1 with no borrow
C. 1-1=0 D. 0-1=1 with no borrow

What is the result of binary subtraction performed on the numbers 1001 and 0101?
A. 0001 B. 0101
C. 1000 D. 0011

Binary division is closely related with the arithmetic operation:

A. Binary addition B. Binary subtraction
C. Binary multiplication D. Binary division

E. Whether the number is zero F. None of the above

Which of the following is not an arithmetic law?
A. Identity law
C. Commutative law

B. Distributive law
D. Law of negation

Which of the following components is actually responsible for executing an instruction?

B. Hardware
D. Counter

A. Software
C. Flip-flops

Which of the following are the building blocks of digital circuit?
A. Flip-flops B. Logic gates
C. Register D. None of the above

Which of the following types of operations can be performed by logic gates?
A. Assignment operation B. Arithmetical operation
C. Logical operation D. Shift operation

Which of the following digital circuits is used to add binary numbers?

A. Register B. Logic gates

C. Adder D. All of the above
Which of the following logic gates is also known as inverter?

A. AND B. OR

C. NAND D. NOT

|

—

[

[|

[
Computing Concepts ’

1023,/
1023,
1023 g
1023,/
1023 g
1023,/

L1023 "

1023 g
JLo2a,
Jo2a.
Jo24.
JLo2a. /"

11024,/

H

Computing Fundamentals & C Programming

DISCUSSION QUESTIONS

1.

° ® A RW

10.
11.
12.
13.
14.

15.

16.
17.
18.
19.
20.
21.
22,
23.

24.
25.
26.
217.
28.
29.

What do you understand by positional number system and why is it called a positional
system?

What are the different types of positional number systems? Which of the positional systems
is mostly used by the computer systems?

Explain the different technical terms associated with the binary system.
What is the weight of digit 5 in the decimal number 95367

What is the 4-bit binary representation of the decimal number 12?

Explain in detail the concept of hexadecimal system.

Why are binary codes used by computer systems

What do you understand by digital codes? Explain the two different types of digital codes.
Why are the number system conversions implemented in a computer system?
Explain in detail the different categories of number system conversions.

How is binary number converted into its decimal equivalent?

What is the hexadecimal representation of octal number 6235?

What is the binary equivalent of 859.238?

What do you understand by computer arithmetic? Are the rules for performing computer
arithmetic and decimal arithmetic same?

What are the different computer arithmetic operations? Explain all of them with their
associated set of rules.

Perform the binary addition of 1000010, 0111010 and 11110101.

Why is binary multiplication considered as the process of repetitive addition?
Perform the binary multiplication of 15 and 17.

Perform the binary division of 141 and 21.

What are the different laws of arithmetic?

What are logic gates? Why are they important?

Explain the different types of basic logic gates.

Explain the basic concept of truth table and also describe the truth tables of all the basic
logic gates.

Explain the basic steps required to convert a Boolean expression into logic gates.
What is assembly language? What are its main advantages?

What is high level language? What are the different types of high level languages?
What do we understand by a compiler and an assembler?

What is flow chart? How is it different from an algorithm?

What are the functions of a flow chart?

1021 "
J1022.,7"
11022,/
11022,/
11022,/
11022,/
11022,/
JL022.,7"
1022 g
11022 g
11023,/

11023 g
11023 g
11023 g
J1023.7"
11024 "
JL024."
11024,/

1025 /™
11025,/
1025 g
11026 g
11026 "

CHAPTER

= 3

ble to

ramming language

oncepts through sample programs

fined functions and math functions through
of C program
style of C language

compiled and executed

3.1 INTRODUCTION

C is one of the most popular computer languages today because it is a structured, high-level,
machine independent language. It allows software developers to develop programs without
worrying about the hardware platforms where they will be implemented.

The root of all modern languages is ALGOL, introduced in the early 1960s. ALGOL was
the first computer language to use a block structure. ALGOL gave the concept of structured
programming. Computer scientists like Corrado Bohm, Guiseppe Jacopini and Edsger Dijkstra
popularized this concept during 1960s.

In 1967, Martin Richards developed a language called BCPL (Basic Combined Programming
Language) primarily for writing system software. In 1970, Ken Thompson created a language
using many features of BCPL and called it simply B. B was used to create early versions of UNIX
operating system at Bell Laboratories. Both BCPL and B were “typeless” system programming
languages.

C was evolved from ALGOL, BCPL and B by Dennis Ritchie at the Bell Laboratories in
1972. C uses many concepts from these languages and added the concept of data types and other
powerful features. UNIX operating system, which was also developed at Bell Laboratories, was
coded almost entirely in C.

94 Computing Fundamentals & C Programming

During 1970s, C had evolved into what is now known as “traditional C”. After publication of the book ‘The
C Programming Language’ by Brian Kerningham and Dennis Ritchie in 1978, C came to be known as “K&R
C” among the programming community.

To assure that the C language remains standard, in 1983, American National Standards Institute (ANSI)
appointed a technical committee to define a standard for C, which approved a version of C in December
1989 which is now known as ANSI C. It was then approved by the International Standards Organization
(ISO) in 1990. This version of C is also referred to as C89.

During 1990s, C++, a language entirely based on C, underwent a number of improvements and changes
and became an ANSI/ISO approved language in November 1977. C++ added several new features to C to
make it not only a true object-oriented language but also a more versatile language. During the same period,
Sun Microsystems of USA created a new language Java modelled on C and C++.

Although C++ and Java were evolved out of C, the standardization committee of C felt that a few
features of C++/Java, if added to C, would enhance the usefulness of the language. The result was the 1999
standard for C. This version is usually referred to as C99. The history and development of C is illustrated in
Fig. 3.1.

1960 ALGOL International Group

1967 BCPL Martin Richards

1970 B Ken Thompson

1972 Traditional C Dennis Ritchie

1978 K&R C Kernigham and Ritchie
1989 ANSI C ANSI Committee

1990 ANSI/ISO C ISO Committee

1999 C99 Standardization Committee

Fig. 3.1 History of ANSI C

Overview of C 95

4
3.2 IMPORTANCE OF C L03.1

The increasing popularity of C is probably due to its many desirable qualities. It is a robust language
whose rich set of built-in functions and operators can be used to write any complex program. The C
compiler combines the capabilities of an assembly language with the features of a high-level language and
therefore it is well suited for writing both system software and business packages. In fact, many of the C
compilers available in the market are written in C.

Programs written in C are efficient and fast. This is due to its variety of data types and powerful
operators. It is many times faster than BASIC. For example, a program to increment a variable from 0 to
15000 takes about one second in C while it takes more than 50 seconds in an interpreter BASIC.

There are only 32 keywords in ANSI C and its strength lies in its built-in functions. Several standard
functions are available which can be used for developing programs.

C is highly portable. This means that C programs written for one computer can be run on another with
little or no modification. Portability is important if we plan to use a new computer with a different operating
system.

C language is well suited for structured programming, thus requiring the user to think of a problem
in terms of function modules or blocks. A proper collection of these modules would make a complete
program. This modular structure makes program debugging, testing and maintenance easier.

Another important feature of C is its ability to extend itself. A C program is basically a collection of
functions that are supported by the C library. We can continuously add our own functions to C library. With
the availability of a large number of functions, the programming task becomes simple.

Before discussing specific features of C, we shall look at some sample C programs, and analyse and
understand how they work.

3.3 SAMPLE PROGRAM 1: PRINTING A MESSAGE 1032’

Consider a very simple program given in Fig. 3.2.

main()

{

y— printing begins...... =Y
printf("I see, I remember");

j — printing ends....... =/

Fig. 3.2 A program to print one line of text

This program when executed will produce the following output:
I see, I remember
Let us have a close look at the program. The first line informs the system that the name of the program is
main and the execution begins at this line. The main() is a special function used by the C system to tell the
computer where the program starts. Every program must have exactly one main function. If we use more
than one main function, the compiler cannot understand which one marks the beginning of the program.

96 Computing Fundamentals & C Programming

The empty pair of parentheses immediately following main indicates that the function main has no
arguments (Or parameters).

The opening brace “{ ” in the second line marks the beginning of the function main and the closing
brace “}” in the last line indicates the end of the function. In this case, the closing brace also marks the end
of the program. All the statements between these two braces form the function body. The function body
contains a set of instructions to perform the given task.

In this case, the function body contains three statements out of which only the printf line is an
executable statement. The lines beginning with /* and ending with */ are known as comment lines. These
are used in a program to enhance its readability and understanding. Comment lines are not executable
statements and therefore anything between /* and */ is ignored by the compiler. In general, a comment can
be inserted wherever blank spaces can occur—at the beginning, middle or end of a line—*“but never in the
middle of a word”.

Although comments can appear anywhere, they cannot be nested in C. That means, we cannot have
comments inside comments. Once the compiler finds an opening token, it ignores everything until it finds a
closing token. The comment line

/*====/~k====*/====*/
is not valid and therefore results in an error.

Since comments do not affect the execution speed and the size of a compiled program, we should use
them liberally in our programs. They help the programmers and other users in understanding the various
functions and operations of a program and serve as an aid to debugging and testing. We shall see the use of
comment lines more in the examples that follow.

Let us now look at the printf() function, the only executable statement of the program.

printf("I see, I remember");
printf is a predefined standard C function for printing output. Predefined means that it is a function that
has already been written and compiled, and linked together with our program at the time of linking.
The concepts of compilation and linking are explained later in this chapter. The printf function causes
everything between the starting and the ending quotation marks to be printed out. In this case, the output
will be:
I see, I remember

Note that the print line ends with a semicolon. Every statement in C should end with a semicolon (;)
mark.

Suppose we want to print the above quotation in two lines as

I see,
I remember!
This can be achieved by adding another printf function as shown below:
printf("I see, \n");
printf("I remember !");

The information contained between the parentheses is called the argument of the function. This argument
of the first printf function is “I see, \n” and the second is “I remember !”. These arguments are simply
strings of characters to be printed out.

Notice that the argument of the first printf contains a combination of two characters \ and n at the end
of the string. This combination is collectively called the newline character. A newline character instructs the
computer to go to the next (new) line. It is similar in concept to the carriage return key on a typewriter. After
printing the character comma (,) the presence of the newline character \n causes the string “I remember !”
to be printed on the next line. No space is allowed between \ and n.

Overview of C 97

If we omit the newline character from the first printf statement, then the output will again be a single
line as shown below.
I see, I remember !
This is similar to the output of the program in Fig. 3.2. However, note that there is no space between and

It is also possible to produce two or more lines of output by one printf statement with the use of newline
character at appropriate places. For example, the statement
printf("I see,\n I remember !");
will output

I see,
I remember !
while the statement
printf("I\n.. see,\n.. I\n.. remember !");
will print out
I
. see,
.1
.. remember !

Note Some authors recommend the inclusion of the statement.

#include <stdio.h>

at the beginning of all programs that use any input/output library functions. However, this is not necessary
for the functions printf and scanf which have been defined as a part of the C language.

Before we proceed to discuss further examples, we must note one important point. C does make
a distinction between uppercase and lowercase letters. For example, printf and PRINTF are not the
same. In C, everything is written in lowercase letters. However, uppercase letters are used for symbolic
names representing constants. We may also use uppercase letters in output strings like “I SEE” and “I
REMEMBER”.

The above example that printed I see, I remember is one of the simplest programs. Figure 3.3 highlights
the general format of such simple programs. All C programs need a main function.

main () Function name

{ Start of program

Program statements

} End of program

Fig. 3.3 Format of simple C programs

3.3.1 The main Function

The main is a part of every C program. C permits different forms of main statement. Following forms are
allowed.

98 Computing Fundamentals & C Programming

< main()

< int main()

< void main()

< main(void)

% void main(void)
< int main(void)

The empty pair of parentheses indicates that the function has no arguments. This may be explicitly
indicated by using the keyword void inside the parentheses. We may also specify the keyword int or void
before the word main. The keyword void means that the function does not return any information to the
operating system and int means that the function returns an integer value to the operating system. When int
is specified, the last statement in the program must be “return 0”. For the sake of simplicity, we use the first

form in our programs.

3.4 SAMPLE PROGRAM 2: ADDING TWO NUMBERS

032

Consider another program, which performs addition on two numbers and displays the result. The complete

program is shown in Fig. 3.4.

/* Programm ADDITION
/* Written by EBG
main()

{

int number;

float amount;

number = 100;

amount = 30.75 + 75.35;
printf("%d\n",number) ;
printf("%5.2f",amount);
}

Fig. 3.4 Program to add two numbers

This program when executed will produce the following output:
100
106.10

The first two lines of the program are comment lines. It is a good practice to use comment lines in the
beginning to give information such as name of the program, author, date, etc. Comment characters are also

used in other lines to indicate line numbers.

The words number and amount are variable names that are used to store numeric data. The numeric
data may be either in integer form or in real form. In C, all variables should be declared to tell the compiler

/*
/*
/*
/-k
/*
/*
/*
/*
/*
/-k
/*

line-1 */
line-2 */
line-3 */
line-4 */
lTine-5 */
lTine-6 */
line-7 */
line-8 */
line-9 */
Tine-10 */
lTine-11 */
line-12 */
1ine-13 */

Overview of C 99

what the variable names are and what type of data they hold. The variables must be declared before they
are used. In lines 5 and 6, the declarations

int number;

float amount;
tell the compiler that number is an integer (int) and amount is a floating (float) point number. Declaration
statements must appear at the beginning of the functions as shown in Fig. 3.4. All declaration statements
end with a semicolon; C supports many other data types and they are discussed in detail in Chapter 4.

The words such as int and float are called the keywords and cannot be used as variable names. A list of
keywords is given in Chapter 4.

Data is stored in a variable by assigning a data value to it. This is done in lines 8 and 10. In line-8, an
integer value 100 is assigned to the integer variable number and in line-10, the result of addition of two
real numbers 30.75 and 75.35 is assigned to the floating point variable amount. The statements

number = 100;
amount = 30.75 + 75.35;
are called the assignment statements. Every assignment statement must have a semicolon at the end.
The next statement is an output statement that prints the value of number. The print statement
printf("%d\n", number);
contains two arguments. The first argument “%d” tells the compiler that the value of the second argument
number should be printed as a decimal integer. Note that these arguments are separated by a comma. The
newline character \n causes the next output to appear on a new line.

The last statement of the program

printf("%5.2f", amount);
prints out the value of amount in floating point format. The format specification %35.2f tells the compiler
that the output must be in floating point, with five places in all and two places to the right of the decimal
point.

r
3.5 SAMPLE PROGRAM 3: INTEREST CALCULATION o322

The program in Fig. 3.5 calculates the value of money at the end of each year of investment, assuming an
interest rate of 11 percent and prints the year, and the corresponding amount, in two columns. The output
is shown in Fig. 3.6 for a period of 10 years with an initial investment of 5000.00. The program uses the
following formula:
Value at the end of year = Value at start of year (1 + interest rate)

In the program, the variable value represents the value of money at the end of the year while amount

represents the value of money at the start of the year. The statement
amount = value ;

makes the value at the end of the current year as the value at start of the next year.

/*—————— INVESTMENT PROBLEM ———*/
#define PERIOD 10

#define PRINCIPAL 5000.00

/*—————— MAIN PROGRAM BEGINS ———*/

100~ Computing Fundamentals & C Programming

main()

{ /*———— DECLARATION STATEMENTS ——*/
int year;
float amount, value, inrate;

/*—————— ASSIGNMENT STATEMENTS ——*/

amount = PRINCIPAL;
inrate = 0.11;

year = 0;
/*————— COMPUTATION STATEMENTS ——*/
J# COMPUTATION USING While LOOP ————*/
while(year <= PERIOD)
{ printf("%2d %8.2f\n",year, amount);
value = amount + inrate * amount;
year = year + 1;
amount = value;
}
/*——— while LOOP ENDS ———*/
}
/*—————— PROGRAM ENDS ——*/

Fig. 3.5 Program for investment problem

Let us consider the new features introduced in this program. The second and third lines begin with
#define instructions. A #define instruction defines value to a symbolic constant for use in the program.
Whenever a symbolic name is encountered, the compiler substitutes the value associated with the
name automatically. To change the value, we have to simply change the definition. In this example, we
have defined two symbolic constants PERIOD and PRINCIPAL and assigned values 10 and 5000.00
respectively. These values remain constant throughout the execution of the program.

5000.00
5550.00
6160.50
6838.15
7590.35
8425.29
9352.07
10380.00
11522.69
12790.00
14197.11

O 0 N O U1 & W N — O

—_
(=)

Fig. 3.6 Output of the investment program

Overview of C 101

3.5.1 The #define Directive

A #define is a preprocessor compiler directive and not a statement. Therefore #define lines should not end
with a semicolon. Symbolic constants are generally written in uppercase so that they are easily distinguished
from lowercase variable names. #define instructions are usually placed at the beginning before the main()
function. Symbolic constants are not declared in declaration section.

We must note that the defined constants are not variables. We may not change their values within the
program by using an assignment statement. For example, the statement

PRINCIPAL = 10000.00;
is illegal.

The declaration section declares year as integer and amount, value and inrate as floating point numbers.
Note all the floating-point variables are declared in one statement. They can also be declared as

float amount;
float value;
float inrate;

When two or more variables are declared in one statement, they are separated by a comma.

All computations and printing are accomplished in a while loop. while is a mechanism for evaluating
repeatedly a statement or a group of statements. In this case as long as the value of year is less than or equal
to the value of PERIOD, the four statements that follow while are executed. Note that these four statements
are grouped by braces. We exit the loop when year becomes greater than PERIOD.

C supports the basic four arithmetic operators (—, +, *, /) along with several others. They are discussed in
Chapter 5.

r
3.6 SAMPLE PROGRAM 4: USE OF SUBROUTINES 1033

So far, we have used only printf function that has been provided for us by the C system. The program
shown in Fig. 3.7 uses a user-defined function. A function defined by the user is equivalent to a subroutine
in FORTRAN or subprogram in BASIC.
Figure 3.7 presents a very simple program that uses a mul () function. The program will print the
following output.
Multiplication of 5 and 10 is 50

/*——— PROGRAM USING FUNCTION ———*/

int mul (int a, int b); /*—— DECLARATION &

/*——— MAIN PROGRAM BEGINS ———*/
main ()

{
int a, b, c;
a = b;
b = 10;
c = mul (a,b);

printf ("multiplication of %d and %d is %d",a,b,c);

102~ Computing Fundamentals & C Programming

J¥— MAIN PROGRAM ENDS
MUL() FUNCTION STARTS — M */
int mul (int x, int y)
int p;
{
p = x*y;

return(p);

/¥ ————— MUL () FUNCTION ENDS ——— M/

Fig. 3.7 A program using a user-defined function

The mul () function multiplies the values of x and y and the result is returned to the main () function
when it is called in the statement
c =mul (a, b);
The mul () has two arguments x and y that are declared as integers. The values of a and b are passed on
to x and y respectively when the function mul () is called.

7
3.7 SAMPLE PROGRAM 5: USE OF MATH FUNCTIONS LO 3.3

We often use standard mathematical functions such as cos, sin, exp, etc. We shall see now the use of a
mathematical function in a program. The standard mathematical functions are defined and kept as a part
of C math library. If we want to use any of these mathematical functions, we must add an #include
instruction in the program. Like #define, it is also a compiler directive that instructs the compiler to link the
specified mathematical functions from the library. The instruction is of the form
#include <math.h>

math.h is the filename containing the required function. Figure 3.8 illustrates the use of cosine function.
The program calculates cosine values for angles 0, 10, 20............. 180 and prints out the results with
headings.

V& PROGRAM USING COSINE FUNCTION
#include <math.h>

#define PI 3.1416

#define MAX 180

main ()

{

*/

int angle;

float x,y;

angle = 0;

printf(" Angle Cos(angle)\n\n");
while(angle <= MAX)

Overview of C 103

x = (PI/MAX)*angle;
y = cos(x);
printf("%15d %13.4f\n", angle, y);

angle = angle + 10;

Output
Angle Cos(angle)

0 1.0000
10 0.9848
20 0.9397
30 0.8660
40 0.7660
50 0.6428
60 0.5000
70 0.3420
80 0.1736
90 —0.0000
100 -0.1737
110 —0.3420
120 —0.5000
130 -0.6428
140 —0.7660
150 —0.8660
160 —0.9397
170 —0.9848
180 -1.0000

Fig. 3.8 Program using a math function

Another #include instruction that is often required is
#include <stdio.h>
stdio.h refers to the standard 1/0 header file containing standard input and output functions

3.7.1 The #include Directive

As mentioned earlier, C programs are divided into modules or functions. Some functions are written by
users, like us, and many others are stored in the C library. Library functions are grouped category-wise and
stored in different files known as header files. If we want to access the functions stored in the library, it is
necessary to tell the compiler about the files to be accessed.
This is achieved by using the preprocessor directive #include as follows:
#include<filename>

104>~ Computing Fundamentals & C Programming

filename is the name of the library file that contains the required function definition. Preprocessor directives
are placed at the beginning of a program.
A list of library functions and header files containing them are given in Appendix III.

r
3.8 BASIC STRUCTURE OF C PROGRAMS o34’

The examples discussed so far illustrate that a C program can be viewed as a group of building blocks
called functions. A function is a subroutine that may include one or more statements designed to perform a
specific task. To write a C program, we first create functions and then put them together. A C program may
contain one or more sections as shown in Fig. 3.9.

Documentation Section

Link Section

Definition Section

Global Declaration Section

main () Function Section

{

Declaration part
Executable part

}

Subprogram section

Function 1

Function 2

(User-defined functions)

Function n

Fig. 3.9 An overview of a C program

The documentation section consists of a set of comment lines giving the name of the program, the author
and other details, which the programmer would like to use later. The link section provides instructions to
the compiler to link functions from the system library. The definition section defines all symbolic constants.

There are some variables that are used in more than one function. Such variables are called global
variables and are declared in the global declaration section that is outside of all the functions. This section
also declares all the user-defined functions.

Every C program must have one main() function section. This section contains two parts, declaration
part and executable part. The declaration part declares all the variables used in the executable part. There
is at least one statement in the executable part. These two parts must appear between the opening and the
closing braces. The program execution begins at the opening brace and ends at the closing brace. The

Overview of C 105

closing brace of the main function section is the logical end of the program. All statements in the declaration
and executable parts end with a semicolon(;).

The subprogram section contains all the user-defined functions that are called in the main function.
User-defined functions are generally placed immediately after the main function, although they may appear
in any order.

All sections, except the main function section may be absent when they are not required.

3.9 PROGRAMMING STYLE L1035

Unlike some other programming languages (COBOL, FORTRAN, etc.,) C is a free-form_language. That
is, the C compiler does not care, where on the line we begin typing. While this may be a licence for bad
programming, we should try to use this fact to our advantage in developing readable programs. Although
several alternative styles are possible, we should select one style and use it with total consistency.

First of all, we must develop the habit of writing programs in lowercase letters. C program statements
are written in lowercase letters. Uppercase letters are used only for symbolic constants.

Braces, group program statements together and mark the beginning and the end of functions. A proper
indentation of braces and statements would make a program easier to read and debug. Note how the braces
are aligned and the statements are indented in the program of Fig. 3.5.

Since C is a free-form language, we can group statements together on one line. The statements

a = b;
x=y+1;
z=a+Xx;

can be written on one line as
a=Db;x=y+l; z = a+x;
The program
main()
{
printf("hello C");

may be written in one line like
main() {printf("Hello C")};
However, this style makes the program more difficult to understand and should not be used. In this book,
each statement is written on a separate line.
The generous use of comments inside a program cannot be overemphasized. Judiciously inserted
comments not only increase the readability but also help to understand the program logic. This is very
important for debugging and testing the program.

r
3.10 EXECUTING A ‘C PROGRAM 103.6

Executing a program written in C involves a series of steps. These are:
1. Creating the program;
2. Compiling the program;

106~ Computing Fundamentals & C Programming

3. Linking the program with functions that are needed from the C library; and

4. Executing the program.

Figure 3.10 illustrates the process of creating, compiling and executing a C program. Although these
steps remain the same irrespective of the operating system, system commands for implementing the steps
and conventions for naming files may differ on different systems.

System Ready

’ Program Code H Enter Program ’

Source Program

Edit
Source Program

- Compile
C Compiler Source Program

No Object Code

- Link with
SRR) System Library

Executable Object Code

Execute
oL (Bl Object Code

Data Error Logic Error

Logic and Data
Errors ?

No Errors

CORRECT OUTPUT

Fig. 3.10 Process of compiling and running a C program

An operating system is a program that controls the entire operation of a computer system. All input/
output operations are channelled through the operating system. The operating system, which is an interface
between the hardware and the user, handles the execution of user programs.

The two most popular operating systems today are UNIX (for minicomputers) and MS-DOS (for
microcomputers). We shall discuss briefly the procedure to be followed in executing C programs under both
these operating systems in the following sections.

Overview of C 107

(
3.11 UNIX SYSTEM LO 3.6

3.11.1 Creating the Program

Once we load the UNIX operating system into the memory, the computer is ready to receive program.
The program must be entered into a file. The file name can consist of letters, digits and special characters,
followed by a dot and a letter ¢. Examples of valid file names are:
hello.c
program.c
ebgl.c
The file is created with the help of a text editor, either ed or vi. The command for calling the editor and
creating the file is
ed filename
If the file existed before, it is loaded. If it does not yet exist, the file has to be created so that it is ready
to receive the new program. Any corrections in the program are done under the editor. (The name of your
system’s editor may be different. Check your system manual.)
When the editing is over, the file is saved on disk. It can then be referenced any time later by its file
name. The program that is entered into the file is known as the source program, since it represents the
original form of the program.

3.11.2 Compiling and Linking

Let us assume that the source program has been created in a file named ebgl.c. Now the program is ready
for compilation. The compilation command to achieve this task under UNIX is
cc ebgl.c

The source program instructions are now translated into a form that is suitable for execution by the
computer. The translation is done after examining each instruction for its correctness. If everything is
alright, the compilation proceeds silently and the translated program is stored on another file with the name
ebgl.o. This program is known as object code.

Linking is the process of putting together other program files and functions that are required by the
program. For example, if the program is using exp() function, then the object code of this function should
be brought from the math library of the system and linked to the main program. Under UNIX, the linking
is automatically done (if no errors are detected) when the cc command is used.

If any mistakes in the syntax and semantics of the language are discovered, they are listed out and the
compilation process ends right there. The errors should be corrected in the source program with the help of
the editor and the compilation is done again.

The compiled and linked program is called the executable object code and is stored automatically in
another file named a.out.

Note that some systems use different compilation command for linking mathematical functions.

cc filename - Tm

is the command under UNIPLUS SYSTEM V operating system.

3.11.3 Executing the Program

Execution is a simple task. The command
a.out

108~ Computing Fundamentals & C Programming

would load the executable object code into the computer memory and execute the instructions. During
execution, the program may request for some data to be entered through the keyboard. Sometimes the
program does not produce the desired results. Perhaps, something is wrong with the program logic or
data. Then it would be necessary to correct the source program or the data. In case the source program is
modified, the entire process of compiling, linking and executing the program should be repeated.

3.11.4 Creating Your Own Executable File

Note that the linker always assigns the same name a.out. When we compile another program, this file will
be overwritten by the executable object code of the new program. If we want to prevent from happening, we
should rename the file immediately by using the command.
mv a.out name
We may also achieve this by specifying an option in the cc command as follows:
cc —0 name source-file

This will store the executable object code in the file name and prevent the old file a.out from being

destroyed.

3.11.5 Multiple Source Files

To compile and link multiple source program files, we must append all the files names to the cc command.
cc filename-1.c ... filename-n.c
These files will be separately compiled into object files called
filename-i.o
and then linked to produce an executable program file a.out as shown in Fig. 3.11.

e) e] ¢]
Compiler and
preprocessor
| o | | o | | o | | ubray
/ Linker

a.out
Fig. 3.11 Compilation of multiple files

It is also possible to compile each file separately and link them later. For example, the commands
cc —c modl.c
cc —c mod2.c
will compile the source files modi.c and mod?2.c into objects files modl.o and mod2.o0. They can be linked
together by the command
cc modl.o mod2.0
we may also combine the source files and object files as follows:
cc modl.c mod2.0
Only modI.c is compiled and then linked with the object file mod2.0. This approach is useful when one
of the multiple source files need to be changed and recompiled or an already existing object files is to be
used along with the program to be compiled.

Overview of C 109

3.12 MS-DOS SYSTEM 1036

The program can be created using any word processing software in non-document mode. The file name
should end with the characters “.c” like program.c, pay.c, etc. Then the command
MSC pay.c
under MS-DOS operating system would load the program stored in the file pay.c and generate the object
code. This code is stored in another file under name pay.obj. In case any language errors are found, the
compilation is not completed. The program should then be corrected and compiled again.
The linking is done by the command
LINK pay.obj
which generates the executable code with the filename pay.exe. Now the command

pay
would execute the program and give the results.
Q LEARNING OUTCOMES
e Cis astructured, high-level, machine independent language. LOEX]
e ANSIC and C99 are the standardized versions of C language. LOEX
e Ccombines the capabilities of assembly language with the features of a high level language. LO
e Cis robust, portable and structured programming language. LOEX

e Every C program requires a main() function (Use of more than one main() is illegal). The place Lom
main is where the program execution begins.

e The execution of a function begins at the opening brace of the function and ends at the corresponding Lom
closing brace.

e C programs are written in lowercase letters. However, uppercase letters are used for symbolic names LOEJY
and output strings.

e All the words in a program line must be separated from each other by at least one space, or a tab, or a Lom
punctuation mark.

e Every program statement in a C language must end with a semicolon. Lom
e All variables must be declared for their types before they are used in the program. Lom

e A comment can be inserted almost anywhere a space can appear. Use of appropriate comments in Lom
proper places increases readability and understandability of the program and helps users in debugging
and testing. Remember to match the symbols /* and * appropriately.

e Compiler directives such as define and include are special instructions to the compiler to help it LOEIJ
compile a program. They do not end with a semicolon.

e The sign # of compiler directives must appear in the first column of the line. Lom

e We must make sure to include header files using #include directive when the program refers to LOEJEY
special names and functions that it does not define.

e The structure of a C program comprises various sections including Documentation, Link, Definition, Lom
Global Declaration, main () function and Sub program section.

e Cis a free-form language and therefore a proper form of indentation of various sections would Lom
improve legibility of the program.

110

Computing Fundamentals & C Programming

The execution of a C program involves a series of steps including: creating the program, compiling

the program, linking the program with functions from C library and executing the program.

The command used for running a C program in UNIX system is a.out.

The command used for running a C program in MS-DOS system is file.exe where file is the name of

the program that has already been compiled.

When braces are used to group statements, make sure that the opening brace has a corresponding

closing brace.

9 KEY TERMS TO REMEMBER

LOEX]

150 3.6
LOEX]

LOEX]

#DEFINE: A preprocessor compiler directive.

Printf: A predefined standard C function that writes the output to the stdout (standard output)

stream.

Scanf: A predefined standard C function that reads formatted input from stdin (standard input)

stream.

Program: A sequence of instructions written to perform a specific task in the computer.

LOE#M
LOE#

LOEM
LOEX

REVIEW QUESTIONS
Fill in the Blanks
1. Every program statement in a C program must end with a m\%
2. The Function is used to display the output on the screen. m%
3. The header file contains mathematical functions. M\/B
4. The escape sequence character causes the cursor to move to the next line on m@
the screen.
True or False Statements
1. Every line in a C program should end with a semicolon. m*-%
2. The closing brace of the main() in a program is the logical end of the program. mﬁ
3. Comments cause the computer to print the text enclosed between /* and */ when executed. mﬁ
4. Every C program ends with an END word. m*fb
5. A printf statement can generate only one line of output. m*-@
6. The purpose of the header file such as stdio.h is to store the source code of a program. mﬁ
7. Aline in a program may have more than one statement. m*fb
8. Syntax errors will be detected by the compiler. m\%

Levels of Difficulty

‘% : Low;

"@ : Medium; ‘@ : High

9.
10.
11.
12.
13.
14.
15.
16.
17.

|
—
|
[
[|
Overview of C ,

In C language lowercase letters are significant.

main() is where the program begins its execution.

Every C program must have at least one user-defined function.
Declaration section contains instructions to the computer.
Only one function may be named main().

Comments serve as internal documentation for programmers.
In C, we can have comments inside comments.

Use of comments reduces the speed of execution of a program.

A comment can be inserted in the middle of a statement.

DISCUSSION QUESTIONS

1.

NS R

10.
11.
12.
13.

Remove the semicolon at the end of the printf statement in the program of Fig. 3.2 and
execute it. What is the output?

In the Sample Program 2, delete line-5 and execute the program. How helpful is the error
message?

Modity the Sample Program 3 to display the following output:

Year Amount
5500.00

2 6160.00
10 14197.11

Why and when do we use the #define directive?
Why and when do we use the #include directive?
What does void main(void) mean?

Distinguish between the following pairs:

(a) main() and void main(void)

(b) int main() and void main()

Why do we need to use comments in programs?
Why is the look of a program is important?

Where are blank spaces permitted in a C program?
Describe the structure of a C program.

Describe the process of creating and executing a C program under UNIX system.

How do we implement multiple source program files?

|
—
[|
|
[
, Computing Fundamentals & C Programming

DEBUGGING EXERCISES

1. Find errors, if any, in the following program:
/* A simple program
int main()

{
/* Does nothing */
}

2. Find errors, if any, in the following program:
#include (stdio.h)
void main(void)

{
print("Hello C");
}

3. Find errors, if any, in the following program:

Include <math.h>

main { }
(
FLOAT X;
X = 2.5;
Y = exp(x);

Print(x,y);

PROGRAMMING EXERCISES

1. Write a program to display the equation of a line in the form
ax+by=c
for a=5b=8 and c=18.

2. Write a program that will print your mailing address in the following form:

First line : Name
Second line : Door No, Street
Third line : City, Pin code

3. Write a program to output the following multiplication table:

5x1=5
5x2=10
5x3=15
L] []
o o

5x10=50

L1032 "

l1032 ™

11033 g

L1032 -t

L1032 ™

L1032 ™

10.

11.

|
—
|
[
[|
Overview of C ,

Given the values of three variables a, b and c, write a program to compute and display the
value of x, where

a
b-c
Execute your program for the following values:

(a) a=250,b=85,c=25
(b) a=300,b=70,c=70

X =

Comment on the output in each case.
Relationship between Celsius and Fahrenheit is governed by the formula

F=£+32
5

Write a program to convert the temperature
(a) from Celsius to Fahrenheit and
(b) from Fahrenheit to Celsius.

Given the radius of a circle, write a program to compute and display its area. Use a
symbolic constant to define the 7 value and assume a suitable value for radius.

Given two integers 20 and 10, write a program that uses a function add() to add these two
numbers and sub() to find the difference of these two numbers and then display the sum
and difference in the following form:

20+10=30
20-10=10

Modify the above program to provide border lines to the address.

Write a program using one print statement to print the pattern of asterisks as shown below:

*

* *
* * *
* * * *

Write a program that will print the following figure using suitable characters.

>

Area of a triangle is given by the formula

A=S(S-a)(S-b)(S—¢)

where a, b and c are sides of the triangle and 2S = a + b + c. Write a program to compute
the area of the triangle given the values of a, b and c.

1032 =

1032 =
1033 =

11032 'y

|
—
|
[|
[
’ Computing Fundamentals & C Programming

12. Write a program to display the following simple arithmetic calculator M
sum |:| Difference = |:|
Product = |:| Division = |:|
13 Distance between two points (X,, y,) and (X,, y,) is governed by the formula M
D2 = (x, - X)) + (¥, — y)?
Write a program to compute D given the coordinates of the points.

14 A point on the circumference of a circle whose center is (0, 0) is (4,5). Write a program to M
compute perimeter and area of the circle. (Hint: use the formula given in the Ex. 3.11)

15 The line joining the points (2,2) and (5,6) which lie on the circumference of a circle is the M
diameter of the circle. Write a program to compute the area of the circle.

CHAPTER

Constants, Variables and
Data

ble to
keywords
bles
pes
d in a program
ed in a program

4.1 INTRODUCTION

A programming language is designed to help process certain kinds of data consisting of numbers,
characters and strings and to provide useful output known as information. The task of processing
of data is accomplished by executing a sequence of precise instructions called a program. These
instructions are formed using certain symbols and words according to some rigid rules known as
syntax rules (or grammar). Every program instruction must confirm precisely to the syntax rules
of the language.

Like any other language, C has its own vocabulary and grammar. In this chapter, we will
discuss the concepts of constants and variables and their types as they relate to C programming
language.

4.2 CHARACTER SET 1041’

The characters that can be used to form words, numbers and expressions depend upon the
computer on which the program is run. However, a subset of characters is available that can be

116”™ Computing Fundamentals & C Programming

used on most personal, micro, mini and mainframe computers. The characters in C are grouped into the

following categories:

1. Letters
2. Digits

3. Special characters

4. White

spaces

The entire character set is given in Table 4.1.

The compiler ignores white spaces unless they are a part of a string constant. White spaces may be used

to separate words, but are prohibited between the characters of keywords and identifiers.

Uppercase A

Lowercase a.

..... zZ

, comma
. period

; semicolon

: colon

? question mark

‘ apostrophe

“ quotation mark

! exclamation mark
| vertical bar

/ slash

\ backslash

~ tilde

_ under score

$ dollar sign

% percent sign

Table 4.1 C Character Set

Letters Digits

Special Characters

White Spaces
Blank space
Horizontal tab
Carriage return
New line

Form feed

All decimal digits O

& ampersand

A caret

* asterisk

— minus sign

+ plus sign

< opening angle bracket
(or less than sign)

> closing angle bracket
(or greater than sign)

(left parenthesis

) right parenthesis

[left bracket

] right bracket

{ left brace

} right brace

number sign

Constants, Variables and Data Types 117

4.2.1 Trigraph Characters

Many non-English keyboards do not support all the characters mentioned in Table 4.1. ANSI C introduces
the concept of “trigraph” sequences to provide a way to enter certain characters that are not available on some
keyboards. Each trigraph sequence consists of three characters (two question marks followed by another
character) as shown in Table 4.2.

For example, if a keyboard does not support square brackets, we can still use them in a program using
the trigraphs ??(and ?7?).

Table 4.2 ANSI C Trigraph Sequences

Trigraph sequence Translation

7= # number sign
7 [left bracket
?7)] right bracket
1< { left brace
77> } right brace
m | vetical bar
7 \ back slash
2 A caret
- ~ tilde
4.3 C TOKENS 1041’

In a passage of text, individual words and punctuation marks are called fokens. Similarly, in a C program
the smallest individual units are known as C tokens. C has six types of tokens as shown in Fig. 4.1.
C programs are written using these tokens and the syntax of the language.

C TOKENS
J [
[\

Keywords Constants Strings Operators
float -15.5 "ABC" + -
while 100 "year" o

Identifiers Special Symbols

main
amount

~——
—~——

Fig. 4.1 C tokens and examples

118~ Computing Fundamentals & C Programming

1041
4.4 KEYWORDS AND IDENTIFIERS .

Every C word is classified as either a keyword or an identifier. All keywords have fixed meanings and these
meanings cannot be changed. The list of all keywords of ANSI C are listed in Table 4.3. All keywords must
be written in lowercase. Some compilers may use additional keywords that must be identified from the C
manual.

Note (99 adds some more keywords. See the Appendix “C99 Features”.

Table 4.3 ANSI C Keyword

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

Identifiers refer to the names of variables, functions and arrays. These are user-defined names. Both
uppercase and lowercase letters are permitted. The underscore character is also permitted in identifiers.

Rules for Identifiers
1. First character must be an alphabet (or underscore).
2. Must consist of only letters, digits or underscore.
3. Only first 31 characters are significant.
4. Cannot use a keyword.
5. Must not contain white space.

y
4.5 CONSTANTS LO 4.2

Constants in C refer to fixed values that do not change during the execution of a program. C supports
several types of constants as illustrated in Fig. 4.2.

4.5.1 Integer Constants

An integer constant refers to a sequence of digits. There are three types of integers, namely, decimal integer,
octal integer and hexadecimal integer.
Decimal integers consist of a set of digits, O through 9, preceded by an optional — or + sign. Valid
examples of decimal integer constants are:
123 =321 0 654321 +78

Constants, Variables and Data Types 119

CONSTANTS
Numeric constants Character constants
Integer Real Single character | | String
constants constants constants constants

Fig. 4.2 Basic types of C constants

Embedded spaces, commas, and non-digit characters are not permitted between digits. For example,
15750 20,000 $1000

are illegal numbers.
Note ANSI C supports unary plus which was not defined earlier.

An octal integer constant consists of any combination of digits from the set O through 7, with a leading
0. Some examples of octal integer are:
037 0 0435 0551
A sequence of digits preceded by Ox or 0X is considered as hexadecimal integer. They may also
include alphabets A through F or a through f. The letter A through F represent the numbers 10 through 15.
Following are the examples of valid hex integers:
0X2 O0x9F 0Xbcd Ox
We rarely use octal and hexadecimal numbers in programming.
The largest integer value that can be stored is machine-dependent. It is 32767 on 16-bit machines and
2,147,483,647 on 32-bit machines. It is also possible to store larger integer constants on these machines by
appending qualifiers such as U,L and UL to the constants. Examples:

56789U or 56789%u (unsigned integer)
987612347UL or 98761234ul (unsigned long integer)
9876543L or 98765431 (long integer)

The concept of unsigned and long integers are discussed in detail in Section 4.7.

WORKED-OUT PROBLEM 4.1

Representation of integer constants on a 16-bit computer.

The program in Fig. 4.3 illustrates the use of integer constants on a 16-bit machine. The output in
Fig. 4.3 shows that the integer values larger than 32767 are not properly stored on a 16-bit machine.
However, when they are qualified as long integer (by appending L), the values are correctly stored.

Levels of Difficulty
L: Low; M: Medium; H: High

120~ Computing Fundamentals & C Programming

Program
main ()
{
printf("Integer values\n\n");
printf("%d %d %d\n", 32767,32767+1,32767+10) ;
printf("\n");
printf("Long integer values\n\n");
printf("%1d %1d %1d\n", 32767L,32767L+1L,32767L+10L);
}
Output

Integer values
32767 -32768 -32759
Long integer values
32767 32768 3777

Fig. 4.3 Representation of integer constants on 16-bit machine

4.5.2 Real Constants

Integer numbers are inadequate to represent quantities that vary continuously, such as distances, heights,
temperatures, prices, and so on. These quantities are represented by numbers containing fractional parts like
17.548. Such numbers are called real (or floating point) constants. Further examples of real constants are:
0.0083 —0.75 435.36 +247.0

These numbers are shown in decimal notation, having a whole number followed by a decimal point and
the fractional part. It is possible to omit digits before the decimal point, or digits after the decimal point.
That is,

215. 95 =71 +5

are all valid real numbers.

A real number may also be expressed in exponential (or scientific) notation. For example, the value
215.65 may be written as 2.1565¢2 in exponential notation. e2 means multiply by 102. The general for is:

mantissa e exponent

The mantissa is either a real number expressed in decimal notation or an integer. The exponent is an
integer number with an optional plus or minus sign. The letter e separating the mantissa and the exponent
can be written in either lowercase or uppercase. Since the exponent causes the decimal point to “float”, this
notation is said to represent a real number in floating point form. Examples of legal floating-point constants
are:

0.65e4 12e-2 1.5e+5 3.18E3 -1.2E-1

Embedded white space is not allowed.

Exponential notation is useful for representing numbers that are either very large or very small in
magnitude. For example, 7500000000 may be written as 7.5E9 or 75E8. Similarly, -0.000000368 is
equivalent to —3.68E-7.

Floating-point constants are normally represented as double-precision quantities. However, the suffixes
or F may be used to force single-precision and 1 or L to extend double precision further.

Some examples of valid and invalid numeric constants are given in Table 4.4.

Constants, Variables and Data Types 121

Table 4.4 Examples of Numeric Constants

Constant Valid? Remarks

698354L Yes Represents long integer
25,000 No Comma is not allowed
+5.0E3 Yes (ANSI C supports unary plus)
3.5e-5 Yes
7.1e 4 No No white space is permitted
-4.5e-2 Yes

1.5E+2.5 No Exponent must be an integer

$255 No $ symbol is not permitted

0X7B Yes Hexadecimal integer

4.5.3 Single-Character Constants

A single character constant (or simply character constant) contains a single character enclosed within a pair
of single quote marks. Example of character constants are:
D G
Note that the character constant ‘5’ is not the same as the number 5. The last constant is a blank space.
Character constants have integer values known as ASCII values. For example, the statement
printf("%d", 'a');
would print the number 97, the ASCII value of the letter a. Similarly, the statement
printf("%c", '97');
would output the letter ‘a’. ASCII values for all characters are given in Appendix II.
Since each character constant represents an integer value, it is also possible to perform arithmetic
operations on character constants.

4.5.4 String Constants

A string constant is a sequence of characters enclosed in double quotes. The characters may be letters,
numbers, special characters and blank space. Examples are:
“Hello!” “1987” “WELL DONE” “?...1” “543” “X”

Remember that a character constant (e.g., ‘X’) is not equivalent to the single character string constant
(e.g., “X”). Further, a single character string constant does not have an equivalent integer value while a
character constant has an integer value. Character strings are often used in programs to build meaningful
programs.

4.5.5 Backslash Character Constants

C supports some special backslash character constants that are used in output functions. For example, the
symbol “\n’ stands for newline character. A list of such backslash character constants is given in Table
4.5. Note that each one of them represents one character, although they consist of two characters. These
characters combinations are known as escape sequences.

122> Computing Fundamentals & C Programming

Table 4.5 Backslash Character Constants

Constant Meaning

“\a’ audible alert (bell)
b’ back space
Af? form feed
“\n’ new line
A\r’ carriage return
A horizontal tab
v’ vertical tab
A\ single quote
N double quote
\? question mark
AV backslash
‘10° null
4.6 VARIABLES 1042

A variable is a data name that may be used to store a data value. A variable may take different values at
different times during execution.
Some examples of variables’ names are:
Average
height
Total
Counter_1
class_strength
As mentioned earlier, variable names may consist of letters, digits, and the underscore(_) character,
subject to the following conditions:

1. They must begin with a letter. Some systems permit underscore as the first character.

2. ANSI standard recognizes a length of 31 characters. However, length should not be normally more than
eight characters, since only the first eight characters are treated as significant by many compilers. (In C99,
at least 63 characters are significant.)

3. Uppercase and lowercase are significant. That is, the variable Total is not the same as total or
TOTAL.

4. It should not be a keyword.

5. White space is not allowed.

Some examples of valid variable names are:

John Value T raise
Delhi x1 ph_value
mark suml distance

Constants, Variables and Data Types 123

Invalid examples include:
123 (area)
% 25th
Further examples of variable names and their correctness are given in Table 4.6.

Table 4.6 Examples of Variable Names

Variable name Valid ? Remark
First_tag Valid
char Not valid char is a keyword
Price$ Not valid Dollar sign is illegal
group one Not valid Blank space is not permitted
average_number Valid First eight characters are significant
int_type Valid Keyword may be part of a name

If only the first eight characters are recognized by a compiler, then the two names
average_height
average_weight
mean the same thing to the computer. Such names can be rewritten as
avg_height and avg_weight
or
ht_average and wt_average
without changing their meanings.

/-
4.7 DATA TYPES LO 4.3

C language is rich in its data types. The variety of data types available allow the programmer to select the
type appropriate to the needs of the application as well as the machine.
ANSI C supports three classes of data types:

1. Primary (or fundamental) data types

2. Derived data types

3. User-defined data types

The primary data types and their extensions are discussed in this section. The user-defined data types are
defined in the next section while the derived data types such as arrays, functions, structures and pointers are
discussed as and when they are encountered.

All C compilers support five fundamental data types, namely integer (int), character (char), floating
point (float), double-precision floating point (double) and void. Many of them also offer extended data
types such as long int and long double. Various data types and the terminology used to describe them are
given in Fig. 4.4. The range of the basic four types are given in Table 4.7. We discuss briefly each one of
them in this section.

Note (99 adds three more data types, namely _Bool, _Complex, and _Imaginary. See the Appendix
“C99Fatures”.

124> Computing Fundamentals & C Programming

PRIMARY DATA TYPES

Integral Type

Integer Character
signed unsigned type char
int unsigned int signed char
short int unsigned short int unsigned char
long int unsigned long int

Floating point Type

void

‘ float ‘ double Long double

Fig. 4.4 Primary data types in C

Table 4.7 Size and Range of Basic Data Types on 16-bit Machines

Range of values

char -128 to 127

int —32,768 to 32,767
float 3.4e-38 to 3.4e+e38
double 1.7e-308 to 1.7e+308

4.7.1 Integer Types

Integers are whole numbers with a range of values supported by a particular machine. Generally, integers
occupy one word of storage, and since the word sizes of machines vary (typically, 16 or 32 bits) the size
of an integer that can be stored depends on the computer. If we use a 16 bit word length, the size of the
integer value is limited to the range —32768 to +32767 (that is, —2!5 to +215—1). A signed integer uses one
bit for sign and 15 bits for the magnitude of the number. Similarly, a 32 bit word length can store an integer
ranging from -2,147,483,648 to 2,147,483,647.

In order to provide some control over the range of numbers and storage space, C has three classes of
integer storage, namely short int, int, and long int, in
both signed and unsigned forms. ANSI C defines these short int
types so that they can be organized from the smallest to
the largest, as shown in Fig. 4.5. For example, short int
represents fairly small integer values and requires half long int
the amount of storage as a regular int number uses.
Unlike signed integers, unsigned integers use all the Fig. 4.5 Integer types

int

Constants, Variables and Data Types 125

bits for the magnitude of the number and are always positive. Therefore, for a 16 bit machine, the range of
unsigned integer numbers will be from 0 to 65,535.

We declare long and unsigned integers to increase the range of values. The use of qualifier signed
on integers is optional because the default declaration assumes a signed number. Table 4.8 shows all the
allowed combinations of basic types and qualifiers and their size and range on a 16-bit machine.

Note (99 allows long long integer types. See the Appendix “C99 Features”.

Table 4.8 Size and Range of Data Types on a 16-bit Machine

Type Size (bits) Range
char or signed char 8 -128 to 127
unsigned char 8 0to 255
int or signed int 16 —32,768 to 32,767
unsigned int 16 0 to 65535
short int or
signed short int 8 —128 to 127
unsigned short int 8 0to 255
long int or
signed long int 32 —2,147,483,648 to 2,147,483,647
unsigned long int 32 0 to 4,294,967,295
float 32 3.4E -38to 3.4E + 38
double 64 1.7E — 308 to 1.7E + 308
long double 80 3.4E - 4932 to 1.1E + 4932

4.7.2 Floating Point Types

Floating point (or real) numbers are stored in 32 bits (on all 16 bit and 32 bit machines), with 6 digits of
precision. Floating point numbers are defined in C by the keyword float. When the accuracy provided by a
float number is not sufficient, the type double can be used to define the number. A double data type number
uses 64 bits giving a precision of 14 digits. These are
known as double precision numbers. Remember that
double type represents the same data type that float double
represents, but with a greater precision. To extend the
precision further, we may use long double which uses
80 bits. The relationship among floating types is
illustrated Fig. 4.6. Fig. 4.6 Floating-point types

4.7.3 Void Types

The void type has no values. This is usually used to specify the type of functions. The type of a function
is said to be void when it does not return any value to the calling function. It can also play the role of a
generic type, meaning that it can represent any of the other standard types.

float

long double

126~ Computing Fundamentals & C Programming

4.7.4 Character Types

A single character can be defined as a character(char) type data. Characters are usually stored in 8 bits
(one byte) of internal storage. The qualifier signed or unsigned may be explicitly applied to char. While
unsigned chars have values between 0 and 255, signed chars have values from —128 to 127.

4
4.8 DECLARATION OF VARIABLES LO 4.4

After designing suitable variable names, we must declare them to the compiler. Declaration does two things:

1. It tells the compiler what the variable name is.
2. It specifies what type of data the variable will hold.

The declaration of variables must be done before they are used in the program.

4.8.1 Primary Type Declaration

A variable can be used to store a value of any data type. That is, the name has nothing to do with its type.
The syntax for declaring a variable is as follows:
data-type v1,v2,....vn ;

vl, v2,vn are the names of variables. Variables are separated by commas. A declaration statement must
end with a semicolon. For example, valid declarations are:

int count;

int number, total;

double ratio;
int and double are the keywords to represent integer type and real type data values respectively.
Table 4.9 shows various data types and their keyword equivalents.

Table 4.9 Data Types and Their Keywords

Data type Keyword equivalent

Character char

Unsigned character unsigned char
Signed character signed char
Signed integer signed int (or int)
Signed short integer signed short int

(or short int or short)
Signed long integer signed long int

(or long int or long)
Unsigned integer unsigned int (or unsigned)
Unsigned short integer unsigned short int

(or unsigned short)

Unsigned long integer unsigned long int

(or unsigned long)

Constants, Variables and Data Types 127

Floating point float
Double-precision
floating point double

Extended double-precision

floating point long double

The program segment given in Fig. 4.7 illustrates declaration of variables. main() is the beginning of
the program. The opening brace { signals the execution of the program. Declaration of variables is usually
done immediately after the opening brace of the program. The variables can also be declared outside (either
before or after) the main function. The importance of place of declaration will be dealt in detail later while
discussing functions.

Note (99 permits declaration of variables at any point within a function or block, prior to their use.

main() /*......... Program Name........ccovvininnnnenn. =Y
{
/Foo000000000a0000 Declaration.....oeeeeeeeeennnnnn.. =)
float X, Y3
int code;
short int count;
long int amount
double deviation;
unsigned n;
char ©3
/Zo00000000000000 Computation....oeeeeeeeeeeennennnn =)
} /Foo00000000000 Program ends........ooeeeiiennnnnn.. =)

Fig. 4.7 Declaration of variables

When an adjective (qualifier) short, long, or unsigned is used without a basic data type specifier, C
compilers treat the data type as an int. If we want to declare a character variable as unsigned, then we must
do so using both the terms like unsigned char.

Default Values of Constants
Integer constants, by default, represent int type data. We can override this default by specifying unsigned or
long after the number (by appending U or L) as shown below:

Literal Type Value
+111 int 111
222 int 222

45678U unsigned int 45,678

128~ Computing Fundamentals & C Programming

-56789L long int -56,789

987654UL unsigned long int 9,87,654
Similarly, floating point constants, by default represent double type data. If we want the resulting data
type to be float or long double, we must append the letter f or F to the number for float and letter 1 or L
for long double as shown below:

Literal Type Value

0. double 0.0

.0 double 0.0

12.0 double 12.0

1.234 double 1.234

—1.2f float -1.2
1.23456789L long double 1.23456789

4.8.2 User-Defined Type Declaration

C supports a feature known as “type definition” that allows users to define an identifier that would represent
an existing data type. The user-defined data type identifier can later be used to declare variables. It takes the
general form:

typedef type identifier;

Where type refers to an existing data type and “identifier” refers to the “new” name given to the data
type. The existing data type may belong to any class of type, including the user-defined ones. Remember
that the new type is ‘new’ only in name, but not the data type. typedef cannot create a new type. Some
examples of type definition are:

typedef int units;
typedef float marks;

Here, units symbolizes int and marks symbolizes float. They can be later used to declare variables as
follows:

units batchl, batch2;

marks namel[50], name2[50];
batchl and batch2 are declared as int variable and namel[50] and name2[50] are declared as 50 element
floating point array variables. The main advantage of typedef is that we can create meaningful data type
names for increasing the readability of the program.

Another user-defined data type is enumerated data type provided by ANSI standard. It is defined as
follows:

enum identifier {valuel, value2, ... valuen},

The “identifier” is a user-defined enumerated data type which can be used to declare variables that can have
one of the values enclosed within the braces (known as enumeration constants). After this definition, we can
declare variables to be of this ‘new’ type as below:

enum identifier vl, v2, ... vn;

The enumerated variables v1, v2, ... vn can only have one of the values valuel, value2, ... valuen. The

assignments of the following types are valid:
vl
vh

value3;

valuel;

Constants, Variables and Data Types 129

An example:
enum day {Monday,Tuesday, ... Sunday};
enum day week st, week end;
week st = Monday;
week end = Friday;
if(week st == Tuesday)
week_end = Saturday;

The compiler automatically assigns integer digits beginning with O to all the enumeration constants. That
is, the enumeration constant valuel is assigned 0, value2 is assigned 1, and so on. However, the automatic
assignments can be overridden by assigning values explicitly to the enumeration constants. For example:

enum day {Monday = 1, Tuesday, ... Sunday};

Here, the constant Monday is assigned the value of 1. The remaining constants are assigned values that
increase successively by 1.

The definition and declaration of enumerated variables can be combined in one statement. Example:

enum day {Monday, ... Sunday} week st, week end;

4.9 DECLARATION OF STORAGE CLASS 1044 [

Variables in C can have not only data type but also storage class that provides information about their
location and visibility. The storage class decides the portion of the program within which the variables are
recognized. Consider the following example:

/* Example of storage classes */
int m;
main()
{
int i;
float balance;

functionl();
1
functionl()
{

int i;

float sum;

}

The variable m which has been declared before the main is called global variable. It can be used in all
the functions in the program. It need not be declared in other functions. A global variable is also known as
an external variable.

The variables i, balance and sum are called local variables because they are declared inside a function.
Local variables are visible and meaningful only inside the functions in which they are declared. They are

130~ Computing Fundamentals & C Programming

not known to other functions. Note that the variable i has been declared in both the functions. Any change
in the value of i in one function does not affect its value in the other.

C provides a variety of storage class specifiers that can be used to declare explicitly the scope and
lifetime of variables. The concepts of scope and lifetime are important only in multifunction and multiple
file programs and therefore the storage classes are considered in detail later when functions are discussed.
For now, remember that there are four storage class specifiers (auto, register, static, and extern) whose
meanings are given in Table 4.10.

The storage class is another qualifier (like long or unsigned) that can be added to a variable declaration
as shown below:

auto int count;
register char ch;
static int x;
extern long total;

Static and external (extern) variables are automatically initialized to zero. Automatic (auto) variables
contain undefined values (known as ‘garbage’) unless they are initialized explicitly.

Table 4.10 Storage Classes and Their Meaning

Storage class Meaning
auto Local variable known only to the function in which it is declared. Default is auto.
static Local variable which exists and retains its value even after the control is transferred to the

calling function.

extern Global variable known to all functions in the file.
register Local variable which is stored in the register.
4
4.10 ASSIGNING VALUES TO VARIABLES oL

Variables are created for use in program statements such as,
value = amount + inrate * amount;
while (year <= PERIOD)

{

year = year + 1;
}

In the first statement, the numeric value stored in the variable inrate is multiplied by the value stored
in amount and the product is added to amount. The result is stored in the variable value. This process
is possible only if the variables amount and inrate have already been given values. The variable value is
called the target variable. While all the variables are declared for their type, the variables that are used in
expressions (on the right side of equal (=) sign of a computational statement) must be assigned values before
they are encountered in the program. Similarly, the variable year and the symbolic constant PERIOD in the
while statement must be assigned values before this statement is encountered.

Constants, Variables and Data Types 131

4.10.1 Assignment Statement
Values can be assigned to variables using the assignment operator = as follows:
variable_name = constant;

We have already used such statements in Chapter 3. Further examples are:

initial_value = 0;
final_value = 100;
balance = 75.84;
yes = 'x';

C permits multiple assignments in one line. For example
initial_value = 0; final_value = 100;

are valid statements.

An assignment statement implies that the value of the variable on the left of the ‘equal sign’ is set equal
to the value of the quantity (or the expression) on the right. The statement

year = year + 1;

means that the ‘new value’ of year is equal to the ‘old value’ of year plus 1.

During assignment operation, C converts the type of value on the right-hand side to the type on the left.
This may involve truncation when real value is converted to an integer.

It is also possible to assign a value to a variable at the time the variable is declared. This takes the
following form:

data-type variable_name = constant;
Some examples are:

int final_value = 100;
char yes = 'x';
double balance = 75.84;

The process of giving initial values to variables is called initialization. C permits the initialization of
more than one variables in one statement using multiple assignment operators. For example the statements
p=9g=s=0;
X =y =2z = MAX;
are valid. The first statement initializes the variables p, q, and s to zero while the second initializes X, y, and
z with MAX. Note that MAX is a symbolic constant defined at the beginning.
Remember that external and static variables are initialized to zero by default. Automatic variables that
are not initialized explicitly wll contain garbage.

WORKED-OUT PROBLEM 4.2

The program in Fig. 4.8 illustrates the use of scanf function.
The first executable statement in the program is a printf, requesting the user to enter an integer number.
This is known as “prompt message” and appears on the screen like
Enter an integer number

As soon as the user types in an integer number, the computer proceeds to compare the value with 100.

If the value typed in is less than 100, then a message
Your number is smaller than 100
is printed on the screen. Otherwise, the message
Your number contains more than two digits

is printed. Outputs of the program run for two different inputs are also shown in Fig. 4.9.

|
—
[|
|
[
, Computing Fundamentals & C Programming

Program
main()
{

int number;

printf("Enter an integer number\n");
scanf ("%d", &number);

if (number < 100)
printf("Your number is smaller than 100\n\n");
else
printf("Your number contains more than two digits\n");

Output
Enter an integer number
54
Your number is smaller than 100
Enter an integer number
108
Your number contains more than two digits

Fig. 4.8 Use of scanf function for interactive computing

Some compilers permit the use of the ‘prompt message’ as a part of the control string in scanf, like
scanf("Enter a number %d",&number);
In Fig. 4.8 we have used a decision statement if...else to decide whether the number is less than 100.

Program in Fig. 4.9 shows typical declarations, assignments and values stored in various types of
variables.

The variables x and p have been declared as floating-point variables. Note that the way the value of
1.234567890000 that we assigned to x is displayed under different output formats. The value of x is
displayed as 1.234567880630 under %.12If format, while the actual value assigned is 1.234567890000.
This is because the variable x has been declared as a float that can store values only up to six decimal
places.

The variable m that has been declared as int is not able to store the value 54321 correctly. Instead, it
contains some garbage. Since this program was run on a 16-bit machine, the maximum value that an int
variable can store is only 32767. However, the variable k (declared as unsigned) has stored the value
54321 correctly. Similarly, the long int variable n has stored the value 1234567890 correctly.

The value 9.87654321 assigned to y declared as double has been stored correctly but the value is
printed as 9.876543 under %If format. Note that unless specified otherwise, the printf function will
always display a float or double value to six decimal places. We will discuss later the output formats for
displaying numbers.

Program

/*

/*

/7\'

Output

Constants, Variables and Data Types

DECLARATIONS. ...cvvuiiiiiieinninnnennns =)

Xs P s

unsigned

int

long int

m
n = 1234567890 ;
ASSTGNMENTS . e e eeeeieeeeeeernnnnns */

Y, q ;
k3
DECLARATIONS AND ASSIGNMENTS............ =)

= 54321 ;

1.234567890000 ;
9.87654321 ;

54321 ;
qg=1.0

PRI 6 0 0 00000006000000000000000000000 =)

printf("m = %d\n", m) ;
printf("n =
printf("x =
printf("x =
printf("y =
printf("y =
printf("k =

~ < < X X S5 3

-11215

%1d\n", n) ;
%.121f\n", x) ;
%f\n", x) ;
%.121f\n",y) ;
%1f\n", y) ;
%up = %f q = %.121f\n", k, p, q) ;

1234567890
1.234567880630

1.234568

9.876543210000

9.876543

54321 p

= 1.00000 g = 1.000000000000

Fig. 4.9 Examples of assignments

4.10.2 Reading Data from Keyboard

Another way of giving values to variables is to input data through keyboard using the scanf function. It is
a general input function available in C and is very similar in concept to the printf function. It works much
like an INPUT statement in BASIC. The general format of scanf is as follows:

scanf(‘“‘control string”, &variablel,&variable2,....);

133

The control string contains the format of data being received. The ampersand symbol & before each
variable name is an operator that specifies the variable name’s address. We must always use this operator,
otherwise unexpected results may occur. Let us look at an example:

134> Computing Fundamentals & C Programming

scanf("%d", &number);

When this statement is encountered by the computer, the execution stops and waits for the value of
the variable number to be typed in. Since the control string “%d” specifies that an integer value is to be
read from the terminal, we have to type in the value in integer form. Once the number is typed in and the
‘Return’ Key is pressed, the computer then proceeds to the next statement. Thus, the use of scanf provides
an interactive feature and makes the program ‘user friendly’. The value is assigned to the variable number.

WORKED-OUT PROBLEM 4.4 m

Sample program 3 discussed in Chapter 3 can be converted into a more flexible interactive program using

scanf as shown in Fig. 4.10.
In this case, computer requests the user to input the values of the amount to be invested, interest rate and

period of investment by printing a prompt message

Input amount, interest rate, and period
and then waits for input values. As soon as we finish entering the three values corresponding to the three
variables amount, inrate, and period, the computer begins to calculate the amount at the end of each year,
up to ‘period’ and produces output as shown in Fig. 4.10.

Program
main()
{
int year, period ;
float amount, inrate, value ;

printf("Input amount, interest rate, and period\n\n") ;
scanf ("%f %f %d", &amount, &inrate, &period) ;
printf("\n") ;

year = 1 ;

while(year <= period)

{
value = amount + inrate * amount ;
printf("%2d Rs %8.2f\n", year, value) ;
amount = value ;
year = year + 1 ;

Output
Input amount, interest rate, and period

10000 0.14 5

Constants, Variables and Data Types 135

1 Rs 11400.00
2 Rs 12996.00
3 Rs 14815.44
4 Rs 16889.60
5 Rs 19254.15
Input amount, interest rate, and period

20000 0.12 7

Rs 22400.00
Rs 25088.00
Rs 28098.56
Rs 31470.39
Rs 35246.84
Rs 39476.46
Rs 44213.63

N o o1 B W N~

Fig. 4.10 Interactive investment program

Note that the scanf function contains three variables. In such cases, care should be exercised to see
that the values entered match the order and type of the variables in the list. Any mismatch might lead to
unexpected results. The compiler may not detect such errors.

y
4.11 DEFINING SYMBOLIC CONSTANTS LO 4.5

We often use certain unique constants in a program. These constants may appear repeatedly in a number of
places in the program. One example of such a constant is 3.142, representing the value of the mathematical
constant “pi”’. Another example is the total number of students whose mark-sheets are analysed by a
‘test analysis program’. The number of students, say 50, may be used for calculating the class total, class
average, standard deviation, etc. We face two problems in the subsequent use of such programs. These are

1. problem in modification of the program and
2. problem in understanding the program.

4.11.1 Modifiability

We may like to change the value of “pi” from 3.142 to 3.14159 to improve the accuracy of calculations or
the number 50 to 100 to process the test results of another class. In both the cases, we will have to search
throughout the program and explicitly change the value of the constant wherever it has been used. If any
value is left unchanged, the program may produce disastrous outputs.

4.11.2 Understandability

When a numeric value appears in a program, its use is not always clear, especially when the same value
means different things in different places. For example, the number 50 may mean the number of students at

136~ Computing Fundamentals & C Programming

one place and the ‘pass marks’ at another place of the same program. We may forget what a certain number
meant, when we read the program some days later.

Assignment of such constants to a symbolic name frees us from these problems. For example, we may
use the name STRENGTH to define the number of students and PASS_ MARK to define the pass marks
required in a subject. Constant values are assigned to these names at the beginning of the program.
Subsequent use of the names STRENGTH and PASS_MARK in the program has the effect of causing
their defined values to be automatically substituted at the appropriate points. A constant is defined as
follows:

#define symbolic-name value of constant

Valid examples of constant definitions are:
#define STRENGTH 100
#define PASS_MARK 50
#define MAX 200
#define PI 3.14159
Symbolic names are sometimes called constant identifiers. Since the symbolic names are constants (not
variables), they do not appear in declarations. The following rules apply to a #define statement which define
a symbolic constant:

1. Symbolic names have the same form as variable names. (Symbolic names are written in CAPITALS to
visually distinguish them from the normal variable names, which are written in lowercase letters. This is
only a convention, not a rule.)

2. No blank space between the pound sign ‘#’ and the word define is permitted.

3. “#” must be the first character in the line.

4. A blank space is required between #define and symbolic name and between the symbolic name and
the constant.

5. #define statements must not end with a semicolon.

6. After definition, the symbolic name should not be assigned any other value within the program by
using an assignment statement. For example, STRENGTH = 200; is illegal.

7. Symbolic names are NOT declared for data types. Its data type depends on the type of constant.

8. #define statements may appear anywhere in the program but before it is referenced in the program
(the usual practice is to place them in the beginning of the program).

#define statement is a preprocessor compiler directive and is much more powerful than what has been

mentioned here. More advanced types of definitions will be discussed later. Table 4.11 illustrates some
invalid statements of #define.

Table 4.11 Examples of Invalid #define Statements

Statement Validity Remark
#define X =2.5 Invalid ‘=’ sign is not allowed
define MAX 10 Invalid No white space between # and define
#define N 25; Invalid No semicolon at the end
#define N 5, M 10 Invalid A statement can define only one name.
#Define ARRAY 11 Invalid define should be in lowercase letters
#define PRICES$ 100 Invalid $ symbol is not permitted in name

Constants, Variables and Data Types 137

'4
4.12 DECLARING A VARIABLE AS CONSTANT o444

We may like the value of certain variables to remain constant during the execution of a program. We can
achieve this by declaring the variable with the qualifier const at the time of initialization. Example:

const int class_size = 40;
const is a new data type qualifier defined by ANSI standard. This tells the compiler that the value of the int
variable class_size must not be modified by the program. However, it can be used on the right_hand side of
an assignment statement like any other variable.

»
4.13 DECLARING A VARIABLE AS VOLATILE o044

ANSI standard defines another qualifier volatile that could be used to tell explicitly the compiler that a
variable’s value may be changed at any time by some external sources (from outside the program). For
example:

volatile int date;

The value of date may be altered by some external factors even if it does not appear on the left-hand side
of an assignment statement. When we declare a variable as volatile, the compiler will examine the value of
the variable each time it is encountered to see whether any external alteration has changed the value.

Remember that the value of a variable declared as volatile can be modified by its own program as well.
If we wish that the value must not be modified by the program while it may be altered by some other
process, then we may declare the variable as both const and volatile as shown below:

volatile const int location = 100;

Note (99 adds another qualifier called restrict. See the Appendix “C99 Features”.

4.13.1 Overflow and Underflow of Data

Problem of data overflow occurs when the value of a variable is either too big or too small for the data type
to hold. The largest value that a variable can hold also depends on the machine. Since floating-point values
are rounded off to the number of significant digits allowed (or specified), an overflow normally results in the
largest possible real value, whereas an underflow results in zero.

Integers are always exact within the limits of the range of the integral data types used. However, an
overflow which is a serious problem may occur if the data type does not match the value of the constant. C
does not provide any warning or indication of integer overflow. It simply gives incorrect results. (Overflow
normally produces a negative number.) We should therefore exercise a greater care to define correct data
types for handling the input/output values.

(& LEARNING OUTCOMES

e Do not use the underscore as the first character of identifiers (or variable names) because many of the LO
identifiers in the system library start with underscore.

e Use only 31 or less characters for identifiers. This helps ensure portability of programs. LO

138~ Computing Fundamentals & C Programming

Do not use keywords or any system library names for identifiers.
Use meaningful and intelligent variable names.
Do not create variable names that differ only by one or two letters.

Integer constants, by default, assume int types. To make the numbers long or unsigned, we must
append the letters L and U to them.

Floating point constants default to double. To make them to denote float or long double, we must
append the letters F or L to the numbers.

Use single quote for character constants and double quotes for string constants.

A character is stored as an integer. It is therefore possible to perform arithmetic operations on
characters.

Do not use lowercase 1 for long as it is usually confused with the number 1.

C does not provide any warning or indication of overflow. It simply gives incorrect results. Care
should be exercised in defining correct data type.

Each variable used must be declared for its type at the beginning of the program or function.
All variables must be initialized before they are used in the program.

Do not combine declarations with executable statements.

Do not use semicolon at the end of #define directive.

The character # should be in the first column.

Do not give any space between # and define.

A variable defined before the main function is available to all the functions in the program.

A variable defined inside a function is local to that function and not available to other functions.

A variable can be made constant either by using the preprocessor command #define at the beginning
of the program or by declaring it with the qualifier const at the time of initialization.

_g KEY TERMS TO REMEMBER

10141
501 4.2
10)4.2
1501 4.2]

10)4.2

1501 4.2
10]4.2

Lo¥l
Lo¥]

Lo
Lo
Lo
Lo
Lo
Lo
Lo
Lo
Lo g

Identifiers: Refer to the names of variables, functions and arrays.
Constants: Refer to fixed values that do not change during the execution of a program.

String constant: Is a sequence of characters enclosed in double quotes where characters could be
letters, numbers, special characters or blank space.

Variable: Is a data name that may be used to store a data value.
Storage class: Provides information related to the location and visibility of a variable.

scanf: Is a predefined standard C function that reads formatted input from stdin (standard input)
stream.

501 4.1
10)4.2
15014.2

10)4.2
Lo
Lo

Constants, Variables and Data Types 139

BRIEF CASES

1. Calculation of Average of Numbers [LO 4.4, 4.5 M]

A program to calculate the average of a set of N numbers is given in Fig. 4.11.

Program
#define N 10 /* SYMBOLIC CONSTANT */
main()
{
int count ; /* DECLARATION OF */
float sum, average, number ; /* VARIABLES */
sum =0; /* INITIALIZATION */
count =0 3 /* OF VARIABLES */
while(count < N)
{
scanf ("%f", &number) ;
sum = sum + number ;
count = count + 1 ;
}
average = sum/N ;
printf("N = %d Sum = %f", N, sum);
printf(" Average = %f", average);
1
Output
1
2.3
4.67
1.42
7
3.67
4.08
2.2
4.25
8.21

N =10 Sum = 38.799999 Average = 3.880
Fig. 4.11 Average of N numbers

The variable number is declared as float and therefore it can take both integer and real numbers. Since
the symbolic constant N is assigned the value of 10 using the #define statement, the program accepts ten

140” Computing Fundamentals & C Programming

values and calculates their sum using the while loop. The variable count counts the number of values and
as soon as it becomes 11, the while loop is exited and then the average is calculated.

Notice that the actual value of sum is 38.8 but the value displayed is 38.799999. In fact, the actual value
that is displayed is quite dependent on the computer system. Such an inaccuracy is due to the way the floating
point numbers are internally represented inside the computer.

2. Temperature Conversion Problem [LO 4.5 M]

The program presented in Fig. 4.12 converts the given temperature in fahrenheit to celsius using the
following conversion formula:

c.F-n
1.8
Program
#define F_ LOW 0 [=)
#define F_MAX 250 /* SYMBOLIC CONSTANTS */
#define STEP 25 [* ————————— =
main ()
{
typedef float REAL ; /* TYPE DEFINITION */
REAL fahrenheit, celsius ; /* DECLARATION */
fahrenheit = F_LOW ; /* INITIALIZATION */
printf("Fahrenheit Celsius\n\n") ;
while(fahrenheit <= F_MAX)
{
celsius = (fahrenheit - 32.0) / 1.8 ;
printf(" %5.1f %7.2f\n", fahrenheit, celsius);
fahrenheit = fahrenheit + STEP ;
}
}
Output
Fahrenheit Celsius
0.0 -17.78
25.0 -3.89
50.0 10.00
75.0 23.89
100.0 37.78
125.0 51.67

150.0 65.56

|

—

[

[|

[|
Constants, Variables and Data Types ’

175.0 79.44
200.0 93.33
225.0 107.22
250.0 121.11

Fig. 412 Temperature conversion—fahrenheit-celsius

The program prints a conversion table for reading temperature in celsius, given the fahrenheit values.
The minimum and maximum values and step size are defined as symbolic constants. These values can be
changed by redefining the #define statements. An user-defined data type name REAL is used to declare the
variables fahrenheit and celsius.

The formation specifications %5.1f and %7.2 in the second printf statement produces two-column
output as shown.

REVIEW QUESTIONS

L AR WD =

[
g

11.
12.

Fill in the Blanks

A variable can be made constant by declaring it with the qualifier
initialization.

is the largest value that an unsigned short int type variable can store.
A global variable is also known as variable.
The keyword ____ can be used to create a data type identifier.

True or False Statements

All variables must be given a type when they are declared.
ANSI C treats the variables name and Name to be same.
Character constants are coded using double quotes.

The keyword void is a data type in C.

Declarations can appear anywhere in a program.

Initialization is the process of assigning a value to a variable at the time of declaration.

The scanf function can be used to read only one value at a time.
Any valid printable ASCII character can be used in an identifier.
The underscore can be used anywhere in an identifier.

Floating point constants, by default, denote float type values.
Like variables, constants have a type.

All static variables are automatically initialized to zero.

Levels of Difficulty

“% : Low;

‘IU : Medium; ‘@ : High

__ at the time of M‘/@

1043 ™
11043 ™
11044 g

JL042.7"
1042 "
JL042.7"
L043 "
JL044.,/"
1044 "
JL044.,/"
1041 /™
11041, /™
1042 =
11042,/
1044 ™

H

Computing Fundamentals & C Programming

DISCUSSION QUESTIONS

1.
2.

N ke

e

10.

11.
12.

13.

14.

15.

16.

17.

What are trigraph characters? How are they useful?

Describe the four basic data types. How could we extend the range of values they
represent?

What is an unsigned integer constant? What is the significance of declaring a constant
unsigned?

Describe the characteristics and purpose of escape sequence characters.
What is a variable and what is meant by the “value” of a variable?
How do variables and symbolic names differ?

State the differences between the declaration of a variable and the definition of a symbolic
name.

What are the qualifiers that an int can have at a time?

A programmer would like to use the word DPR to declare all the double-precision floating
point values in his program. How could he achieve this?

What are enumeration variables? How are they declared? What is the advantage of using
them in a program?

Describe the purpose of the qualifiers const and volatile.

When dealing with very small or very large numbers, what steps would you take to improve
the accuracy of the calculations?

Which of the following are invalid constants and why?

0.0001 5x1.5 99999
+100 75.45 E-2 “15.75”
—45.6 -1.79e+4 0.00001234
Which of the following are invalid variable names and why?
Minimum First.name nl+n2 &name
doubles 3rd_row n$ Rowl
float Sum Total Row Total Column-total

What would be the value of x after execution of the following statements?

intx,y=10;
charz = ‘a’;
X=y+1z;

Explain the following with examples:
(a) Enumerated types
(b) Type def

Distinguish between the following:
(a) Global and local variables
(b) Initialization and assignment of variables

(c) Automated and static variables

(1043

L1042 "
JL045. "
11045,/

1044 ™

1044
/1044 ™

|

—

[

[|

[|
Constants, Variables and Data Types ’

DEBUGGING EXERCISES
1. Find errors, if any, in the following declaration statements. m@

Int x;
float letter,DIGIT;
double = p,q

exponent alpha,beta;
m,n,z: INTEGER
short char c;
long int m; count;
long float temp;
2. Identify syntax errors in the following program. After corrections, what output would you m@
expect when you execute it?
#define PI 3.14159

main()
{
int R,C; /* R-Radius of circle
float perimeter; /* Circumference of circle */
float area; /* Area of circle */
C =PI
R =15;
Perimeter = 2.0 * C *R;
Area = C*R*R;

printf("%f", "%d",&perimeter,&area)

}

PROGRAMMING EXERCISES

1. Write a program to determine and print the sum of the following harmonic series for a M\@
given value of n:

1+ 124173 +...+ 1/n
The value of n should be given interactively through the terminal.

2. Write a program to read the price of an item in decimal form (like 15.95) and print the M\%
output in paise (like 1595 paise).

3. Write a program that prints the even numbers from 1 to 100. M\%

4. Write a program that requests two float type numbers from the user and then divides the Mﬁ
first number by the second and display the result along with the numbers.

|
—
[|
|
[
, Computing Fundamentals & C Programming

5.

10.

The price of one kg of rice is Rs. 16.75 and one kg of sugar is Rs. 15. Write a program to
get these values from the user and display the prices as follows:

*#% LIST OF ITEMS ***

Item Price
Rice Rs 16.75
Sugar Rs 15.00

Write program to count and print the number of negative and positive numbers in a given
set of numbers. Test your program with a suitable set of numbers. Use scanf to read the
numbers. Reading should be terminated when the value 0 is encountered.

Write a program to do the following:

(a) Declare x and y as integer variables and z as a short integer variable.
(b) Assign two 6 digit numbers to x and y

(c) Assignthe sumof x andy to z

(d) Output the values of x, y and z

Comment on the output.

Write a program to read two floating point numbers using a scanf statement, assign their
sum to an integer variable and then output the values of all the three variables.

Write a program to illustrate the use of typedef declaration in a program.

Write a program to illustrate the use of symbolic constants in a real-life application.

11042,/

11044,/

11044,/

l10a2 "

11044,/
1045 g

e

CHAPTER

5.1 INTRODUCTION

An operator is a symbol that tells the computer to perform certain mathematical or logical
manipulations. Operators are used in programs to manipulate data and variables. They usually
form a part of the mathematical or logical expressions.

C operators can be classified into a number of categories. They include:

1.

Arithmetic operators

. Relational operators
. Logical operators

Assignment operators

. Increment and decrement operators
. Conditional operators
. Bitwise operators

Special operators

An expression is a sequence of operands and operators that reduces to a single value. For example,

10+ 15

is an expression whose value is 25. The value can be any type other than void.

146~ Computing Fundamentals & C Programming

4
5.2 ARITHMETIC OPERATORS LO 5.1

C provides all the basic arithmetic operators. They are listed in Table 5.1. The operators +, —, *, and / all
work the same way as they do in other languages. These can operate on any built-in data type allowed in C.
The unary minus operator, in effect, multiplies its single operand by —1. Therefore, a number preceded by a
minus sign changes its sign.

Table 5.1 Arithmetic Operators

Operator Meaning

+ Addition or unary plus

- Subtraction or unary minus

* Multiplication
/ Division
% Modulo division

Integer division truncates any fractional part. The modulo division operation produces the remainder of
an integer division. Examples of use of arithmetic operators are:

a-b a+b
a*b al/b
a%b -a*b

Here a and b are variables and are known as operands. The modulo division operator % cannot be used
on floating point data. Note that C does not have an operator for exponentiation. Older versions of C does
not support unary plus but ANSI C supports it.

5.2.1 Integer Arithmetic

When both the operands in a single arithmetic expression such as a+b are integers, the expression is called
an integer expression, and the operation is called integer arithmetic. Integer arithmetic always yields
an integer value. The largest integer value depends on the machine, as pointed out earlier. In the above
examples, if a and b are integers, then for a = 14 and b = 4 we have the following results:

a-b=10
a+b=18
a*b=>56

a/b =3 (decimal part truncated)
a % b = 2 (remainder of division)

During integer division, if both the operands are of the same sign, the result is truncated towards zero. If
one of them is negative, the direction of trunction is implementation dependent. That is,
6/7=0and -6/-7=0
but —6/7 may be zero or —1. (Machine dependent)
Similarly, during modulo division, the sign of the result is always the sign of the first operand (the
dividend). That is
14 %3 =-2

Operators and Expressions

14%-3=-2
14%-3=2

Fig. 5.1 lllustration of integer arithmetic

The variables months and days are declared as integers. Therefore, the statement
months = days/30;
truncates the decimal part and assigns the integer part to months. Similarly, the statement
days = days%30;
assigns the remainder part of the division to days. Thus the given number of days is converted into an
equivalent number of months and days and the result is printed as shown in the output.

5.2.2 Real Arithmetic

An arithmetic operation involving only real operands is called real arithmetic. A real operand may assume
values either in decimal or exponential notation. Since floating point values are rounded to the number of

Levels of Difficulty
L: Low; M: Medium; H: High

148~ Computing Fundamentals & C Programming

significant digits permissible, the final value is an approximation of the correct result. If x, y, and z are
floats, then we will have:
x =6.0/7.0=0.857143
y =1.0/3.0 = 0.333333
z =-2.0/3.0 =-0.666667
The operator % cannot be used with real operands.

5.2.3 Mixed-mode Arithmetic

When one of the operands is real and the other is integer, the expression is called a mixed-mode arithmetic
expression. If either operand is of the real type, then only the real operation is performed and the result is
always a real number. Thus
15/10.0 =1.5
whereas
15/10 =1
More about mixed operations will be discussed later when we deal with the evaluation of expressions.

4
5.3 RELATIONAL OPERATORS LO 5.1

We often compare two quantities and depending on their relation, take certain decisions. For example,
we may compare the age of two persons, or the price of two items, and so on. These comparisons can be
done with the help of relational operators. We have already used the symbol ‘<‘, meaning ‘less than’. An
expression such as

a<borl<20
containing a relational operator is termed as a relational expression. The value of a relational expression is
either one or zero. It is one if the specified relation is frue and zero if the relation is false. For example

10 <20 is true
but

20 < 10 is false

C supports six relational operators in all. These operators and their meanings are shown in Table 5.2.

Table 5.2 Relational Operators

Operator Meaning

< is less than

<= is less than or equal to

> is greater than

>= is greater than or equal to
== is equal to

1= is not equal to

A simple relational expression contains only one relational operator and takes the following form:

ae-1 relational operator ae-2

Operators and Expressions 149

ae-1 and ae-2 are arithmetic expressions, which may be simple constants, variables or combination of them.
Given below are some examples of simple relational expressions and their values:
4.5 <=10 TRUE
4.5 <-10 FALSE
-35>=0FALSE
10 < 7+5 TRUE
a+b = c+d TRUE only if the sum of values of a and b is equal to the sum of values of ¢ and d.
When arithmetic expressions are used on either side of a relational operator, the arithmetic expressions
will be evaluated first and then the results compared. That is, arithmetic operators have a higher priority
over relational operators.
Relational expressions are used in decision statements such as if and while to decide the course of action
of a running program. We have already used the while statement in Chapter 3. Decision statements are
discussed in detail in Chapters 7 and 8.

Relational Operator Complements

Among the six relational operators, each one is a complement of another operator.
> is complement of <=
< is complement of >=
= is complement of 1=

We can simplify an expression involving the not and the less than operators using the complements as
shown below:

Actual one Simplified one

I(x<y) X>=y

I(x>y) X <=y

I(x!=y) X==y

I(x<=Yy) X>y

I(x>=Yy) X<y

I(x==y) x!l=y

4

5.4 LOGICAL OPERATORS LO5.1.

In addition to the relational operators, C has the following three logical operators.
&& meaning logical AND
Il meaning logical OR
! meaning logical NOT
The logical operators && and Il are used when we want to test more than one condition and make
decisions. An example is:
a>b&&x==10
An expression of this kind, which combines two or more relational expressions, is termed as a logical
expression or a compound relational expression. Like the simple relational expressions, a logical expression
also yields a value of one or zero, according to the truth table shown in Table 5.3. The logical expression
given above is true only if a > b is frue and x == 10 is true. If either (or both) of them are false, the
expression is false.

150~ Computing Fundamentals & C Programming

Some examples of the usage of logical expressions are:

1. if (age > 55 && salary < 1000)
2. if (number < O |l number > 100)

We shall see more of them when we discuss decision statements.

Table 5.3 Truth Table

Value of the expression

op-1 && op-2 op-1 Il op-2
Non-zero Non-zero 1 1
Non-zero 0 0 1
0 Non-zero 0 1
0 0 0 0

Note Relative precedence of the relational and logical operators is as follows:

Highest !
> >= < <=
== l=
&&

Lowest ||
It is important to remember this when we use these operators in compound expressions.

1051

5.5 ASSIGNMENT OPERATORS

Assignment operators are used to assign the result of an expression to a variable. We have seen the
usual assignment operator, ‘=". In addition, C has a set of ‘shorthand ° assignment operators of the form

v op= exp;

Where v is a variable, exp is an expression and op is a C binary arithmetic operator. The operator op= is
known as the shorthand assignment operator.
The assignment statement
Vv op= exp;
is equivalent to
v =v op (exp);
with v evaluated only once. Consider an example
X += y+l;
This is same as the statement
x = x+ (y+1);
The shorthand operator += means ‘add y+1 to X’ or ‘increment x by y+1’. For y = 2, the above statement
becomes
X += 33
and when this statement is executed, 3 is added to x. If the old value of x is, say 5, then the new value of x
is 8. Some of the commonly used shorthand assignment operators are illustrated in Table 5.4.

Operators and Expressions 151

Table 5.4 Shorthand Assignment Operators

Statement with simple Statement with
assignment operator shorthand operator
a=a+1 a+=1
a=a-—1 a—=1
a=a* (n+l) a *=n+1
a=a/(n+l) a/=n+1
a=a%b a%=>b

The use of shorthand assignment operators has three advantages:

1. What appears on the left-hand side need not be repeated and therefore it becomes easier to write.
2. The statement is more concise and easier to read.
3. The statement is more efficient.

These advantages may be appreciated if we consider a slightly more involved statement like
value(5*j-2) = value(5*j-2) + delta;
With the help of the += operator, this can be written as follows:
value(5*j-2) += delta;
It is easier to read and understand and is more efficient because the expression 5*j-2 is evaluated only
once.

WORKED-OUT PROBLEM 5.2 !

Program of Fig. 5.2 prints a sequence of squares of numbers. Note the use of the shorthand
operator *=.

The program attempts to print a sequence of squares of numbers starting from 2. The statement
a *= aj;
which is identical to
a = a*a;
replaces the current value of a by its square. When the value of a becomes equal or greater than N (=100)
the while is terminated. Note that the output contains only three values 2, 4, and 16.

Program
#define N 100
#define A 2
main()
{
int a;
a = A;

while(a < N)
{

152~ Computing Fundamentals & C Programming

printf("%d\n", a);
a *= a;

Output
2
4
16
Fig. 5.2 Use of shorthand operator *=
y
5.6 INCREMENT AND DECREMENT OPERATORS LOs5.1

C allows two very useful operators not generally found in other languages. These are the increment and

decrement operators:
++ and ——

The operator ++ adds 1 to the operand, while —— subtracts 1. Both are unary operators and takes the
following form:

+HM; Or mt+;

——m; or m——;

++m; is equivalent to m = m+l; (or m += 1;)
—-m; is equivalent to m = m=1; (or m —= 13;)

We use the increment and decrement statements in for and while loops extensively.

While ++m and m++ mean the same thing when they form statements independently, they behave
differently when they are used in expressions on the right-hand side of an assignment statement. Consider
the following:

m = 5;
y = ++m;
In this case, the value of y and m would be 6. Suppose, if we rewrite the above statements as
m=5;
y = s
then, the value of y would be 5 and m would be 6. A prefix operator first adds 1 to the operand and then the
result is assigned to the variable on left. On the other hand, a postfix operator first assigns the value to the
variable on left and then increments the operand.
Similar is the case, when we use ++ (or ——) in subscripted variables. That is, the statement

ali++] = 10;
is equivalent to
alil = 10
i= i+l

The increment and decrement operators can be used in complex statements. Example:
m = n++ —j+10;
Old value of n is used in evaluating the expression. n is incremented after the evaluation. Some compilers
require a space on either side of n++ or ++n.

Operators and Expressions 153

Rules for ++ and —- Operators
< Increment and decrement operators are unary operators and they require variable as their operands.

’0

% When postfix ++ (or ——) is used with a variable in an expression, the expression is evaluated first
using the original value of the variable and then the variable is incremented (or decremented) by
one.

When prefix ++(or ——) is used in an expression, the variable is incremented (or decremented) first
and then the expression is evaluated using the new value of the variable.

The precedence and associativity of ++ and —— operators are the same as those of unary + and unary —.

K2
»

R
»

4
5.7 CONDITIONAL OPERATOR LO 5.1

A ternary operator pair “? :” is available in C to construct conditional expressions of the form

expl ? exp2 : exp3
where expl, exp2, and exp3 are expressions.

The operator ? : works as follows: expl is evaluated first. If it is nonzero (true), then the expression
exp2 is evaluated and becomes the value of the expression. If expl is false, exp3 is evaluated and its
value becomes the value of the expression. Note that only one of the expressions (either exp2 or exp3) is
evaluated. For example, consider the following statements:

a = 10;
b = 15;
x=(a>b) ?2a:b;

In this example, x will be assigned the value of b. This can be achieved using the if..else statements as

follows:

if (a > b)
X = aj;
else
X = b;
L1052
5.8 BITWISE OPERATORS m——

C has a distinction of supporting special operators known as bitwise operators for manipulation of data at bit
level. These operators are used for testing the bits, or shifting them right or left. Bitwise operators may not
be applied to float or double. Table 5.5 lists the bitwise operators and their meanings.

Table 5.5 Bitwise Operators

Operator Meaning

& bitwise AND

| bitwise OR

A bitwise exclusive OR
<< shift left
>> shift right

154> Computing Fundamentals & C Programming

5.9 SPECIAL OPERATORS 1052

C supports some special operators of interest such as comma operator, sizeof operator, pointer operators (&
and *) and member selection operators (. and —>). The comma and sizeof operators are discussed in this
section while the pointer operators are discussed in Chapter 13. Member selection operators which are used
to select members of a structure are discussed in Chapters 12 and 13. ANSI committee has introduced two
preprocessor operators known as “string-izing” and “token-pasting” operators (# and ##).

5.9.1 The Comma Operator

The comma operator can be used to link the related expressions together. A comma-linked list of
expressions are evaluated left to right and the value of right-most expression is the value of the combined
expression. For example, the statement
value = (x = 10, y = 5, x+y);

first assigns the value 10 to x, then assigns 5 to y, and finally assigns 15 (i.e. 10 + 5) to value. Since comma
operator has the lowest precedence of all operators, the parentheses are necessary. Some applications of
comma operator are:

In for loops:

for (n =1, m =10, n <=m; n++, m++)
In while loops:
while (c = getchar(), c != '10")
Exchanging values:
t=x,x=y,y=t;

5.9.2 The sizeof Operator

The sizeof is a compile time operator and, when used with an operand, it returns the number of bytes the
operand occupies. The operand may be a variable, a constant or a data type qualifier.
Examples: m = sizeof (sum);

n = sizeof (long int);

k = sizeof (235L);

The sizeof operator is normally used to determine the lengths of arrays and structures when their sizes

are not known to the programmer. It is also used to allocate memory space dynamically to variables during
execution of a program.

WORKED-OUT PROBLEM 5.3 m

In Fig. 5.3, the program employs different kinds of operators. The results of their evaluation are also
shown for comparison.

Notice the way the increment operator ++ works when used in an expression. In the statement

c = ++a — b;
new value of a (= 16) is used thus giving the value 6 to c. That is, a is incremented by 1 before it is used in
the expression. However, in the statement

d = b+t + a;

|
—
||
|
[
Operators and Expressions ’

the old value of b (=10) is used in the expression. Here, b is incremented by 1 after it is used in the
expression.

We can print the character % by placing it immediately after another % character in the control string.
This is illustrated by the statement

printf("a%%b = %d\n", a%b);
The program also illustrates that the expression
c>d?1:0
assumes the value 0 when c is less than d and 1 when c is greater than d.

Fig. 5.3 Further illustration of arithmetic operators

5.10 ARITHMETIC EXPRESSIONS -

An arithmetic expression is a combination of variables, constants, and operators arranged as per the syntax
of the language. We have used a number of simple expressions in the examples discussed so far. C can
handle any complex mathematical expressions. Some of the examples of C expressions are shown in
Table 5.6. Remember that C does not have an operator for exponentiation.

156~ Computing Fundamentals & C Programming

Table 5.6 Expressions

Algebraic expression C expression

axb-c a*b-c
(m+n) (x+y) (m+n) * (x+y)
)
— a*blc
c
3x2 +2x+1 3*Fx*x 2%¥x+1
3
—|+c x/y+c
y
4
5.11 EVALUATION OF EXPRESSIONS Jo3:30

Expressions are evaluated using an assignment statement of the form:
variable = expression;

Variable is any valid C variable name. When the statement is encountered, the expression is evaluated
first and the result then replaces the previous value of the variable on the left-hand side. All variables used
in the expression must be assigned values before evaluation is attempted. Examples of evaluation statements
are

Xx=a*bhb-c;
y=b/c*a;
z=a-b/c+d;

The blank space around an operator is optional and adds only to improve readability. When these
statements are used in a program, the variables a, b, ¢, and d must be defined before they are used in the
expressions.

WORKED-OUT PROBLEM 5.4

The program in Fig. 5.4 illustrates the use of variables in expressions and their evaluation.

Output of the program also illustrates the effect of presence of parentheses in expressions. This is discussed
in the next section.

Program
main ()
{
float a, b, ¢, X, y, z;
a=9;
b = 12;
c = 3;

Operators and Expressions 157

a-b/3+c*2-1;
a-b/ @B+c)*(2-1);
a-(b/(3+¢c)*2)-1;

N <
1l

printf("x = %f\n", x);
printf("y = %f\n", y);
printf("z = %f\n", z);

Output
= 10.000000
= 7.000000
= 4.000000
Fig. 5.4 lllustrations of evaluation of expressions
y
5.12 PRECEDENCE OF ARITHMETIC OPERATORS 023

An arithmetic expression without parentheses will be evaluated from left to right using the rules of
precedence of operators. There are two distinct priority levels of arithmetic operators in C:

High priority * / %

Low priority + —

The basic evaluation procedure includes ‘two’ left-to-right passes through the expression. During the
first pass, the high priority operators (if any) are applied as they are encountered. During the second pass,
the low priority operators (if any) are applied as they are encountered. Consider the following evaluation
statement that has been used in the program of Fig. 5.4.

X = a-b/3 + c*2-1
When a=9, b =12, and ¢ = 3, the statement becomes

X =9-12/3 + 3*2-1
and is evaluated as follows

First pass
Stepl: x = 9-4+3%2-1
Step2: x = 9-4+6-1

Second pass
Step3: x = 5+6-1
Step4: x = 11-1
Step5: x =10
These steps are illustrated in Fig. 5.5. The numbers inside parentheses refer to step numbers.

158~ Computing Fundamentals & C Programming

/

9 - 1273 + 3*2 _

4
(3)

| { (4)
11

10

Fig. 5.5 lllustration of hierarchy of operations

However, the order of evaluation can be changed by introducing parentheses into an expression. Consider
the same expression with parentheses as shown below:
9-12/(3+3)*(2-1)
Whenever parentheses are used, the expressions within parentheses assume highest priority. If two or
more sets of parentheses appear one after another as shown above, the expression contained in the left-most
set is evaluated first and the right-most in the last. Given below are the new steps.

First pass
Stepl: 9-12/6 * (2-1)
Step2: 9-12/6 * 1

Second pass
Step3: 9-2 * 1
Step4: 9-2

Third pass

Step5: 7

This time, the procedure consists of three left-to-right passes. However, the number of evaluation steps
remains the same as 5 (i.e., equal to the number of arithmetic operators).

Parentheses may be nested, and in such cases, evaluation of the expression will proceed outward from
the innermost set of parentheses. Just make sure that every opening parenthesis has a matching closing
parenthesis. For example

9-(12/(3+3) *2)-1=4
whereas
9-((12/3)+3*2)-1=-2

While parentheses allow us to change the order of priority, we may also use them to improve
understandability of the program. When in doubt, we can always add an extra pair just to make sure that the
priority assumed is the one we require.

Rules for Evaluation of Expression
< First, parenthesized sub expression from left to right are evaluated.
< If parentheses are nested, the evaluation begins with the innermost sub-expression.

Operators and Expressions 159

< The precedence rule is applied in determining the order of application of operators in evaluating
sub-expressions.

< The associativity rule is applied when two or more operators of the same precedence level appear in
a sub-expression.

< Arithmetic expressions are evaluated from left to right using the rules of precedence.

< When parentheses are used, the expressions within parentheses assume highest priority.

WORKED-OUT PROBLEM 5.5 M|

Write a C program for the following expression: a=5<=8 && 6!=5.

#include <stdio.h>
#include <conio.h>
void main()
{
int a;
a = 5<=8 && 6!=5;
printf("%d", a);

getch();
}
Output
1
Fig. 5.6 Program for the expression:a=5<=8&&6!/=5
y
5.13 SOME COMPUTATIONAL PROBLEMS 023

When expressions include real values, then it is important to take necessary precautions to guard against
certain computational errors. We know that the computer gives approximate values for real numbers and
the errors due to such approximations may lead to serious problems. For example, consider the following
statements:

a=1.0/3.0;

b=a*3.0;

We know that (1.0/3.0) 3.0 is equal to 1. But there is no guarantee that the value of b computed in a
program will equal 1.

Another problem is division by zero. On most computers, any attempt to divide a number by zero will
result in abnormal termination of the program. In some cases such a division may produce meaningless
results. Care should be taken to test the denominator that is likely to assume zero value and avoid any
division by zero.

The third problem is to avoid overflow or underflow errors. It is our responsibility to guarantee that
operands are of the correct type and range, and the result may not produce any overflow or underflow.

Computing Fundamentals & C Programming

Fig. 5.7 Round-off errors in floating point computations

We know that the sum of n terms of 1/n is 1. However, due to errors in floating point representation, the
result is not always 1.

Operators and Expressions 161

y
5.14 TYPE CONVERSIONS IN EXPRESSIONS L1054
5.14.1 Implicit Type Conversion

C permits mixing of constants and variables of different types in an expression. C automatically converts
any intermediate values to the proper type so that the expression can be evaluated without losing any
significance. This automatic conversion is known as implicit type conversion.

During evaluation it adheres to very strict rules of type conversion. If the operands are of different types,
the ‘lower’ type is automatically converted to the ‘higher’ type before the operation proceeds. The result is
of the higher type. A typical type conversion process is illustrated in Fig. 5.8.

int i, X;
float f;
double d;
long int 1
X = 1 /i + i *f — d
long float
long float
float
L, fioat
L double —
int double

Fig. 5.8 Process of implicit type conversion

Given below is the sequence of rules that are applied while evaluating expressions.
All short and char are automatically converted to int; then

1. if one of the operands is long double, the other will be converted to long double and the result will
be long double;

2. else, if one of the operands is double, the other will be converted to double and the result will be

double;

. else, if one of the operands is float, the other will be converted to float and the result will be float;

4. else, if one of the operands is unsigned long int, the other will be converted to unsigned long int and
the result will be unsigned long int;

5. else, if one of the operands is long int and the other is unsigned int, then

(O8]

(a) if unsigned int can be converted to long int, the unsigned int operand will be converted as such
and the result will be long int;

(b) else, both operands will be converted to unsigned long int and the result will be unsigned long
int;

162~ Computing Fundamentals & C Programming

6. else, if one of the operands is long int, the other will be converted to long int and the result will be
long int;

7. else, if one of the operands is unsigned int, the other will be converted to unsigned int and the result
will be unsigned int.

Conversion Hierarchy
Note that, C uses the rule that, in all expressions except assignments, any implicit type conversions are
made from a lower size type to a higher size type as shown below:

long double

double

float

Conversion

unsigned long int
Hierarchy

long int

unsigned int

int

short char

Note that some versions of C automatically convert all floating-point operands to double precision.
The final result of an expression is converted to the type of the variable on the left of the assignment sign
before assigning the value to it. However, the following changes are introduced during the final assignment.

1. float to int causes truncation of the fractional part.
2. double to float causes rounding of digits.
3. long int to int causes dropping of the excess higher order bits.

5.14.2 Explicit Conversion

We have just discussed how C performs type conversion automatically. However, there are instances when
we want to force a type conversion in a way that is different from the automatic conversion. Consider, for
example, the calculation of ratio of females to males in a town.
ratio = female_number/male_number

Since female_number and male_number are declared as integers in the program, the decimal part of
the result of the division would be lost and ratio would represent a wrong figure. This problem can be
solved by converting locally one of the variables to the floating point as shown below:

ratio = (float) female_number/male_number

The operator (float) converts the female_number to floating point for the purpose of evaluation of the
expression. Then using the rule of automatic conversion, the division is performed in floating point mode,
thus retaining the fractional part of result.

Note that in no way does the operator (float) affect the value of the variable female number. And also,
the type of female number remains as int in the other parts of the program.

Operators and Expressions 163

The process of such a local conversion is known as explicit conversion or casting a value. The general
form of a cast is:

(type-name) expression

where type-name is one of the standard C data types. The expression may be a constant, variable or an
expression. Some examples of casts and their actions are shown in Table 5.7.

Table 5.7 Use of Casts

Example Action

x = (int) 7.5 7.5 is converted to integer by truncation.

a = (int) 21.3/(int)4.5 Evaluated as 21/4 and the result would be 5.
b = (double)sum/n Division is done in floating point mode.

y = (int) (a+b) The result of a+b is converted to integer.

z = (int)a+b a is converted to integer and then added to b.
p = cos((double)x) Converts x to double before using it.

Casting can be used to round-off a given value. Consider the following statement:
X = (int) (y+0.5);
If y is 27.6, y+0.5 is 28.1 and on casting, the result becomes 28, the value that is assigned to x. Of
course, the expression, being cast is not changed.

WORKED-OUT PROBLEM 5.7 H |

Figure 5.9 shows a program using a cast to evaluate the equation

sum = Y (1/i)

i=1

Program
main ()
{
float sum ;
int n ;
sum = 0 ;
for(n=13;n<=10; ++n)
{
sum = sum + 1/(float)n ;
printf("%2d %6.4f\n", n, sum) ;
1
1
Output

1 1.0000

164 Computing Fundamentals & C Programming

.5000
.8333
.0833
.2833
.4500
.5929
L7179
.8290
2.9290

O 0O N o o1 B W N
N NN N NN =

—_
o

Fig. 5.9 Use of a cast

y
5.15 OPERATOR PRECEDENCE AND ASSOCIATIVITY LO 5.5

As mentioned earlier each operator, in C has a precedence associated with it. This precedence is used
to determine how an expression involving more than one operator is evaluated. There are distinct levels
of precedence and an operator may belong to one of these levels. The operators at the higher level of
precedence are evaluated first. The operators of the same precedence are evaluated either from ‘left to right’
or from ‘right to left’, depending on the level. This is known as the associativity property of an operator.
Table 5.8 provides a complete list of operators, their precedence levels, and their rules of association. The
groups are listed in the order of decreasing precedence. Rank 1 indicates the highest precedence level and
15 the lowest. The list also includes those operators, which we have not yet been discussed.

It is very important to note carefully, the order of precedence and associativity of operators. Consider the
following conditional statement:

if(x==10+ 15 && y < 10)

The precedence rules say that the addition operator has a higher priority than the logical operator (&&)
and the relational operators (== and <). Therefore, the addition of 10 and 15 is executed first. This is
equivalent to :

if (x ==25 && y < 10)

The next step is to determine whether x is equal to 25 and y is less than 10. If we assume a value of 20

for x and 5 for y, then
x == 25 is FALSE (0)
y < 101is TRUE (1)

Note that since the operator < enjoys a higher priority compared to ==, y < 10 is tested first and then x
== 25 is tested.

Finally we get:

if (FALSE && TRUE)

Because one of the conditions is FALSE, the complex condition is FALSE.

In the case of &&, it is guaranteed that the second operand will not be evaluated if the first is zero and in
the case of Il, the second operand will not be evaluated if the first is non-zero.

Rules of Precedence and Associativity
< Precedence rules decide the order in which different operators are applied
< Associativity rule decides the order in which multiple occurrences of the same level operator are

applied

Operator

O

sizeof

(type)

+=—— =]

A= |=

<<= >>=

Operators and Expressions

Table 5.8 Summary of C Operators

Description
Function call
Aray element reference
Unary plus
Unary minus
Increment
Decrement
Logical negation
Ones complement
Pointer reference (indirection)
Address
Size of an object
Type cast (conversion)
Multiplication
Division
Modulus
Addition
Subtraction
Left shift
Right shift
Less than
Less than or equal to
Greater than
Greater than or equal to
Equality
Inequality
Bitwise AND
Bitwise XOR
Bitwise OR
Logical AND
Logical OR
Conditional expression

Assignment operators

Comma operator

Associativity
Left to right

Right to left

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right
Left to right
Left to right
Left to right
Left to right
Right to left
Right to left

Left to right

10
11
12
13
14

15

Rank

165

166~ Computing Fundamentals & C Programming

5.15.1 Mathematical Functions

Mathematical functions such as cos, sqrt, log, etc. are frequently used in analysis of real-life problems.
Most of the C compilers support these basic math functions. However, there are systems that have a more
comprehensive math library and one should consult the reference manual to find out which functions are
available. Table 5.9 lists some standard math functions.

Table 5.9 Math functions

Function Meaning

Other functions

Trigonometric

acos(x) Arc cosine of x
asin(x) Arc sine of x

atan(x) Arc tangent of x

atan 2(Xx,y) Arc tangent of x/y
cos(x) Cosine of x

sin(x) Sine of x

tan(x) Tangent of x
Hyperbolic

cosh(x) Hyperbolic cosine of x
sinh(x) Hyperbolic sine of x
tanh(x) Hyperbolic tangent of x

ceil(x) x rounded up to the nearest integer
exp(x) e to the x power (e¥)

fabs(x) Absolute value of x.

floor(x) x rounded down to the nearest integer
fmod(x,y) Remainder of x/y

log(x) Natural log of x, x>0

log10(x) Base 10 log of x, x >0

pow(X,y) X to the power y (x¥)

sqrt(x) Square root of x, x > =0

Note: 1. x and y should be declared as double.

In trigonometric and hyperbolic functions, x and y are in radians.
All the functions return a double.

C99 has added float and long double versions of these functions.
C99 has added many more mathematical functions.

s

6. See the Appendix “C99 Features” for details.

As pointed out earlier in Chapter 3, to use any of these functions in a program, we should include the

line:

Operators and Expressions

include <math.h>

in the beginning of the program.

Q LEARNING OUTCOMES

167

Use decrement and increment operators carefully. Understand the difference between postfix and
prefix operations before using them.

Do not use increment or decrement operators with any expression other than a variable identifier.
It is illegal to apply modules operator % with anything other than integers.

The result of an expression is converted to the type of the variable on the left of the assignment
before assigning the value to it. Be careful about the loss of information during the conversion.

It is an error if any space appears between the two symbols of the operators ==, |=, <= and >=.
It is an error if the two symbols of the operators !=, <= and >= are reversed.

Use spaces on either side of binary operator to improve the readability of the code.

Do not use increment and decrement operators to floating point variables.

Do not confuse the equality operator == with the assignment operator =.

Use sizeof operator to determine the length of arrays and structures where their sizes are not already
known.

Be aware of side effects produced by some expressions.

Avoid any attempt to divide by zero. It is normally undefined. It will either result in a fatal error or in
incorrect results.

Do not forget a semicolon at the end of an expression.
Do not use a variable in an expression before it has been assigned a value.

Integer division always truncates the decimal part of the result. Use it carefully. Use casting where
necessary.

Add parentheses wherever you feel they would help to make the evaluation order clear.
Understand clearly the precedence of operators in an expression. Use parentheses, if necessary.

Associativity is applied when more than one operator of the same precedence are used in an
expression. Understand which operators associate from right to left and which associate from left to
right.

_g KEY TERMS TO REMEMBER

LOEM

LOEM
LOEM
LOEM

LOEXA
LOE
LOEXA
LOE
LOEXA
LOE¥A

LOEH]
LOEH]

LOEH]
150]5.3
1501 5.4

150]5.5
50]5.5
150]5.5]

Operator: Is a symbol that is used to perform mathematical or logical operation on data and
variables.

Expression: Is a combination of operands and operators that reduce to a single value.
Integer expression: Is an arithmetic expression involving integer operands.
Real arithmetic: Is an arithmetic expression involving real operands.

Relational operators: Are used to compare two operands and result in either one (true) or zero
(false).

Logical operators: Are used to combine two or more relational expressions.

LOENE

LOEXA
LOE
LOEX
LOE

LOEM

168 Computing Fundamentals & C Programming

e Assignment operators: Are used to assign an expression value to a variable. LOEXN]
e Bitwise operators: Are special operators that are used to manipulate data at bit level. LOE¥]
e Arithmetic operation: Refers to the evaluation of arithmetic expression as per operator precedence LOJEJRY
rules.
BRIEF CASES

1. Salesman’s Salary [LO 5.3 M]
A computer manufacturing company has the following monthly compensation policy to their sales-persons:

Minimum base salary : 1500.00

Bonus for every computer sold : 200.00

Commission on the total monthly sales : 2 percent

Since the prices of computers are changing, the sales price of each computer is fixed at the beginning of
every month. A program to compute a sales-person’s gross salary is given in Fig. 5.10.

Program

#define BASE_SALAR 1500.00

#define BONUS_RATE 200.00

#define COMMISSION 0.02

main()

{
int quantity ;
float gross_salary, price ;
float bonus, commission ;
printf("Input number sold and price\n") ;
scanf("%d %f", &quantity, &price) ;
bonus = BONUS_RATE * quantity ;
commission = COMMISSION * quantity * price ;
gross_salary = BASE_SALARY + bonus + commission ;
printf("\n");
printf("Bonus = %6.2f\n", bonus) ;
printf("Commission = %6.2f\n", commission) ;
printf("Gross salary = %6.2f\n", gross salary) ;

}

Output

Input number sold and price

5 20450.00

Bonus = 1000.00

Commission = 2045.00

Gross salary = 4545.00

Fig. 5.10 Program of salesman’s salary

Operators and Expressions

<

Given the base salary, bonus, and commission rate, the inputs necessary to calculate the gross salary are,
the price of each computer and the number sold during the month.
The gross salary is given by the equation:
Gross salary = base salary + (quantity * bonus rate)
+ (quantity * Price) * commission rate

2. Solution of the Quadratic Equation [LO 5.5 H]

An equation of the form

ax?+bx+c=0
is known as the quadratic equation. The values of x that satisfy the equation are known as the roots of the
equation. A quadratic equation has two roots which are given by the following two formulae:

—b +sqrt(b? — 4ac)

1=
root 2a
—-b —sqrt (b2 —4ac)
root 2 =
2a

A program to evaluate these roots is given in Fig. 5.11. The program requests the user to input the values
of a, b and ¢ and outputs root 1 and root 2.

|
—
|
[|
[
, Computing Fundamentals & C Programming

123
ROOTS ARE IMAGINARY

Fig. 5.11 Solution of a quadratic equation

The term (b>—dac) is called the discriminant. If the discriminant is less than zero, its square roots
cannot be evaluated. In such cases, the roots are said to be imaginary numbers and the program outputs an
appropriate message.

REVIEW QUESTIONS
Fill in the Blanks
1. The expression containing all the integer operands is called expression. M\%
2. C supports as many as relational operators. m@
3. The operator returns the number of bytes the operand occupies. m@
4. is used to determine the order in which different operators in an expression are M\%
evaluated.
5. An expression that combines two or more relational expressions is termed as M\@
expression.
6. The use of on a variable can change its type in the memory. M\fg
7. The order of evaluation can be changed by using in an expression. M\fg
8. The operator cannot be used with real operands. mx@
True or False Statements
1. The expression /(x<=y) is same as the expression x>y. M\/B
2. A unary expression consists of only one operand with no operators. M\/B
3. All arithmetic operators have the same level of precedence. m%
4. An expression statement is terminated with a period. M\%
5. The operators <=, >= and != all enjoy the same level of priority. M\%
6. The modulus operator % can be used only with integers. M\/B
7. In C, if a data item is zero, it is considered false. M\/B
8. During the evaluation of mixed expressions, an implicit cast is generated automatically. M\/B
9. An explicit cast can be used to change the expression. M\/B
10. Associativity is used to decide which of several different expressions is evaluated first. M\/B
11. Parentheses can be used to change the order of evaluation expressions. m@

Levels of Difficulty

‘% : Low;

‘/U : Medium; ‘@ : High

12.

3.

Operators and Expressions 171

During modulo division, the sign of the result is positive, if both the operands are of the
same sign.

Multiple Choice Questions
Given the statement
inta=10, b =20, c;

determine whether each of the following statements are true or false.
(a) The statement a = + 10, is valid.

(b) The expression a + 4/6 * 6/2 evaluates to 11.

(c) The expression b + 3/2 * 2/3 evaluates to 20.

(d) The statement a + = b; gives the values 30 to a and 20 to b.

(e) The statement ++a++; gives the value 12 to a

(f) The statement a = 1/b; assigns the value 0.5 to a

Declared a as int and b as float, state whether the following statements are true or false.
(a) The statement a = 1/3 + 1/3 + 1/3; assigns the value 1 to a.

(b) The statement b = 1.0/3.0 + 1.0/3.0 + 1.0/3.0; assigns a value 1.0 to b.

(c) The statement b = 1.0/3.0 * 3.0 gives a value 1.0 to b.

(d) The statement b = 1.0/3.0 + 2.0/3.0 assigns a value 1.0 to b.

(e) The statement a = 15/10.0 + 3/2; assigns a value 3 to a.

Which of the following expressions are true?
(a) 1(5+5>=10)

(b) 5+5==10111+3==

() 5>101110<20&& 3 <5

(d) 10!=15&& 1(10<20) 11 15> 30

DISCUSSION QUESTIONS

1.

2.

Which of the following arithmetic expressions are valid? If valid, give the value of the
expression; otherwise give reason.

(a) 25/3%2 () -14 %3

(b) +9/4 +5 (f) 1525+-5.0

©) 7.5%3 (2 (53)*3+5%3
d) 14%3+7%2 (h) 21 % (int)4.5

Write C assignment statements to evaluate the following equations:

(a) Area=rmr2+2 wth
m,im,
b) T =—"
(b) Torque +m,

() Side=[32 1 H? _ 2ab cos(x)

locity)”
(d) Energy = mass | acceleration X height + (velocity)”

Identify unnecessary parentheses in the following arithmetic expressions.
(@) ((x=(y/5)+2)%8) + 25

(1051 g

[1053 "

11053 g

1053 "

1055 "

11055 g

11055 g

|
—
|
[|
[
’ Computing Fundamentals & C Programming

() ((x-y) *p)+q
(¢) (m*n) + (=x/y)
(d) x/(3*y)
4. Determine the value of each of the following logical expressions if a =5, b = 10 and M
c=-6
(a) a>b&&a<c
(b) a<b&&a>c
(c) a==cllb>a
(d b>15&&c<0lla>0
(e) (a/2.0==0.0 && b/2.0!=0.0)llc<0.0

5. What is the output of the following program? M

main ()
{
char x;
int y;
x = 100;
y = 125;
printf ("%c\n", x) ;
printf ("%c\n", y) ;
printf ("%d\n", x) ;
1

6. Find the output of the following program? M

main ()

{
int x = 100;
printf("%d/n", 10 + x++);
printf("%d/n", 10 + ++x);

}

7. What is printed by the following program? M

main

{
int x =5, y=10, z =10 ;
X =y == z;
printf("%d",x) ;

}

8. What is the output of the following program? M

main ()

{
int x = 100, y = 200;
printf ("%d", (x > y)? x : y);

|
—
[
[
Operators and Expressions ’

9. What is the output of the following program? Mﬁ

main ()

{
unsigned x =1 ;
signed char y = -1 ;

if(x >y)
printf(" x > y");
else
printf("x<= y") ;
}
Did you expect this output? Explain.
10. What is the output of the following program? Explain the output. m@
main ()
{
int x = 10 ;
if(x = 20) printf("TRUE") ;
else printf("FALSE") ;
}

11. What is printed when the following is executed? m@

for (m = 0; m <3; ++m)
printf("%d/n", (m%2) ? m: m+2);
12. What is the output of the following segment when executed? mu%
intm=- 14, n = 3;
printf("%d\n", m/n * 10) ;
n=-n;
printf("%dn", m/n * 10);

DEBUGGING EXERCISES
1. What is the error, if any, in the following segment? m%

int x = 10 ;
float y = 4.25 ;
X = y%X 3

2. What is the error in each of the following statements? m@

(a) if(m==1&n!=0)
printf(“OK”);

(b) if (x=<5)
printf (“Jump”);

3. Find errors, if any, in the following assignment statements and rectify them. mﬂ
(@) x =y =12z=20.5, 2.0. -5.75;
(b) m = ++a * 5;
(¢) y = sqrt(100);

174

Computing Fundamentals & C Programming

@ p * = x/y;
@ s = /5
() a = b++ —c*2

PROGRAMMING EXERCISES

1.

Given the values of the variables X, y and z, write a program to rotate their values such that
x has the value of y, y has the value of z, and z has the value of x.

Write a program that reads a floating-point number and then displays the right-most digit of
the integral part of the number.

Modify the above program to display the two right-most digits of the integral part of the
number.

Write a program that will obtain the length and width of a rectangle from the user and
compute its area and perimeter.

Given an integer number, write a program that displays the number as follows:

First line : all digits

Second line : all except first digit
Third line : all except first two digits
Last line : The last digit

For example, the number 5678 will be displayed as:
5678

678

78

8

The straight-line method of computing the yearly depreciation of the value of an item is
given by

Purchase Price — Salvage Value

Depreciation = -
Years of Service

Write a program to determine the salvage value of an item when the purchase price, years
of service, and the annual depreciation are given.

Write a program that will read a real number from the keyboard and print the following
output in one line:

Smallest integer The given Largest integer
not less than number not greater than
the number the number

The total distance travelled by a vehicle in ¢ seconds is given by
distance = ut + (at?)/2

Where u is the initial velocity (metres per second), a is the acceleration (metres per
second?). Write a program to evaluate the distance travelled at regular intervals of time,
given the values of u and a. The program should provide the flexibility to the user to select
his own time intervals and repeat the calculations for different values of u and a.

053
o Los1 "
Los1 "
L33
1053 g

[1053 "

10.

11.

12.
13.

14.

15.

16.

17.

Operators and Expressions 175

In inventory management, the Economic Order Quantity for a single item is given by

EOQ = 2 >< demand ra.te X setup c?st-s
holding cost per item per unit time

and the optimal Time Between Orders

TBO = \/ 2 x setup costs

demand rate x holding cost per unit time

Write a program to compute EOQ and TBO, given demand rate (items per unit time), setup
costs (per order), and the holding cost (per item per unit time).

For a certain electrical circuit with an inductance L and resistance R, the damped natural
frequency is given by
F |1 R?
requency = |— — ——
LC 4cC?

It is desired to study the variation of this frequency with C (capacitance). Write a program
to calculate the frequency for different values of C starting from 0.01 to 0.1 in steps of
0.01.

Write a program to read a four digit integer and print the sum of its digits.
Hint: Use / and % operators.
Write a program to print the size of various data types in C.

Given three values, write a program to read three values from keyboard and print out the
largest of them without using if statement.

Write a program to read two integer values m and n and to decide and print whether m is a
multiple of n.

Write a program to read three values using scanf statement and print the following results:
(a) Sum of the values

(b) Average of the three values

(c) Largest of the three

(d) Smallest of the three

The cost of one type of mobile service is Rs. 250 plus Rs. 1.25 for each call made over and
above 100 calls. Write a program to read customer codes and calls made and print the bill
for each customer.

Write a program to print a table of sin and cos functions for the interval from O to 180
degrees in increments of 15 a shown here.

x (degrees)

s

8o

1055 g

(1055 g

1052 =
1052 g

1051 =
1053 =

11055 g

051 "

|
—
[|
[|
[
, Computing Fundamentals & C Programming

8. Write a program to compute the values of square-roots and squares of the numbers 0 to 100
in steps 10 and print the output in a tabular form as shown below.

[

Number Square-root Square

1055 '™

100 10 10000

19. Write a program that determines whether a given integer is odd or even and displays the
number and description on the same line.

20. Write a program to illustrate the use of cast operator in a real life situation.

Jos1
(1054

CHAPTER

Managing Input'and
Output

be able to
is read
s written

6.1 INTRODUCTION

Reading, processing, and writing of data are the three essential functions of a computer
program. Most programs take some data as input and display the processed data, often known
as information or results, on a suitable medium. So far we have seen two methods of providing
data to the program variables. One method is to assign values to variables through the assignment
statements such as x = 5; a = 0; and so on. Another method is to use the input function scanf
which can read data from a keyboard. We have used both the methods in most of our earlier
example programs. For outputting results we have used extensively the function printf which
sends results out to a terminal.

Unlike other high-level languages, C does not have any built-in input/output statements as part
of its syntax. All input/output operations are carried out through function calls such as printf
and scanf. There exist several functions that have more or less become standard for input and
output operations in C. These functions are collectively known as the standard I/O library. In this
chapter we shall discuss some common I/O functions that can be used on many machines without
any change. However, one should consult the system reference manual for exact details of these
functions and also to see what other functions are available.

178~ Computing Fundamentals & C Programming

It may be recalled that we have included a statement
#include <math.h>
in the Sample Program 5 in Chapter 3, where a math library function cos(x) has been used. This is
to instruct the compiler to fetch the function cos(x) from the math library, and that it is not a part of C
language. Similarly, each program that uses a standard input/output function must contain the statement
#include <stdio.h>
at the beginning. However, there might be exceptions. For example, this is not necessary for the functions
printf and scanf which have been defined as a part of the C language.
The file name stdio.h is an abbreviation for standard input-output header file. The instruction #include
<stdio.h> tells the compiler ‘to search for a file named stdio.h and place its contents at this point in the
program’. The contents of the header file become part of the source code when it is compiled.

6.2 READING A CHARACTER 1061 4

The simplest of all input/output operations is reading a character from the ‘standard input’ unit (usually the
keyboard) and writing it to the ‘standard output’ unit (usually the screen). Reading a single character can
be done by using the function getchar. (This can also be done with the help of the scanf function which is
discussed in Section 6.4.) The getchar takes the following form:

variable name = getchar();

variable_name is a valid C name that has been declared as char type. When this statement is encountered,
the computer waits until a key is pressed and then assigns this character as a value to getchar function.
Since getchar is used on the right-hand side of an assignment statement, the character value of getchar is
in turn assigned to the variable name on the left. For example

char name;

name = getchar();
will assign the character ‘H’ to the variable name when we press the key H on the keyboard. Since getchar
is a function, it requires a set of parentheses as shown.

WORKED-OUT PROBLEM 6.1 ﬂ

The program in Fig. 6.1 shows the use of getchar function in an interactive environment.

The program displays a question of YES/NO type to the user and reads the user’s response in a single
character (Y or N). If the response is Y or y, it outputs the message

My name is BUSY BEE
otherwise, outputs

You are good for nothing

Note There is one line space between the input text and output message.

Levels of Difficulty
L: Low; M: Medium; H: High

Managing Input and Output Operations 179

Program
#include <stdio.h>
main()
{
char answer;
printf("Would you like to know my name?\n");
printf("Type Y for YES and N for NO: ");
answer = getchar(); /* Reading a character...*/
if(answer == 'Y' || answer == 'y')
printf("\n\nMy name is BUSY BEE\n");
else
printf("\n\nYou are good for nothing\n");
1
Output

Would you Tike to know my name?
Type Y for YES and N for NO: Y
My name is BUSY BEE

Would you Tike to know my name?
Type Y for YES and N for NO: n
You are good for nothing

Fig. 6.1 Use of getchar function to read a character from keyboard

The getchar function may be called successively to read the characters contained in a line of text.

For example, the following program segment reads characters from keyboard one after another until the
‘Return’ key is pressed.

char character;
character = ' ';
while(character != '\n')

{
}

character = getchar();

Warning: The getchar() function accepts any character keyed in. This includes RETURN and TAB.
This means when we enter single character input, the newline character is waiting in the input queue after
getchar() returns. This could create problems when we use getchar() in a loop interactively. A dummy
getchar() may be used to ‘eat’ the unwanted newline character. We can also use the fflush function to
flush out the unwanted characters.

Note We shall be using decision statements like if, if...else and while extensively in this chapter. They
are discussed in detail in Chapters 7 and 8.

180~ Computing Fundamentals & C Programming

WORKED-OUT PROBLEM 6.2 M|

The program of Fig. 6.2 requests the user to enter a character and displays a message on the screen telling
the user whether the character is an alphabet or digit, or any other special character.

This program receives a character from the keyboard and tests whether it is a letter or digit and prints out a
message accordingly. These tests are done with the help of the following functions:
isalpha(character)
isdigit(character)
For example, isalpha assumes a value non-zero (TRUE) if the argument character contains an alphabet;
otherwise it assumes O (FALSE). Similar is the case with the function isdigit.

Program
#include <stdio.h>
#include <ctype.h>
main()
{
char character;
printf("Press any key\n");
character = getchar();
if (isalpha(character) > 0)/* Test for letter */
printf("The character is a letter.");
else
if (isdigit (character) > 0)/* Test for digit */
printf("The character is a digit.");
else
printf("The character is not alphanumeric.");
}
Output

Press any key

h

The character is a letter.
Press any key

5

The character is a digit.
Press any key

*

The character is not alphanumeric.

Fig. 6.2 Program to test the character type

C supports many other similar functions, which are given in Table 6.1. These character functions are
contained in the file ctype.h and therefore the statement

#include <ctype.h>
must be included in the program.

Managing Input and Output Operations 181

Table 6.1 Character Test Functions

Function Test

isalnum(c) Is ¢ an alphanumeric character?

isalpha(c) Is ¢ an alphabetic character?

isdigit(c) Is c a digit?

islower(c) Is ¢ lower case letter?

isprint(c) Is c a printable character?

ispunct(c) Is ¢ a punctuation mark?

isspace(c) Is ¢ a white space character?

isupper(c) Is ¢ an upper case letter?

1062

6.3 WRITING A CHARACTER

Like getchar, there is an analogous function putchar for writing characters one at a time to the terminal. It
takes the form as shown below:
putchar (variable name) ;

where variable_name is a type char variable containing a character. This statement displays the character
contained in the variable_name at the terminal. For example, the statements

answer = 'Y';

putchar (answer);
will display the character Y on the screen. The statement

putchar ('\n');

would cause the cursor on the screen to move to the beginning of the next line.

WORKED-OUT PROBLEM 6.3 M|

A program that reads a character from keyboard and then prints it in reverse case is given in Fig. 6.3. That
is, if the input is upper case, the output will be lower case and vice versa.

The program uses three new functions: islower, toupper, and tolower. The function islower is a conditional
function and takes the value TRUE if the argument is a lowercase alphabet; otherwise takes the value
FALSE. The function toupper converts the lowercase argument into an uppercase alphabet while the
function tolower does the reverse.

Program
#include <stdio.h>
#include <ctype.h>
main()
{
char alphabet;
printf("Enter an alphabet");

182~ Computing Fundamentals & C Programming

putchar('\n'); /* move to next Tine */

alphabet = getchar();

if (islower(alphabet))

putchar(toupper(alphabet));/* Reverse and display */
else

putchar(tolower(alphabet)); /* Reverse and display */
1

Output

Enter an alphabet

a

A

Enter an alphabet

Q

q

Enter an alphabet

z

V4

Fig. 6.3 Reading and writing of alphabets in reverse cast

r
6.4 FORMATTED INPUT LO 6.3

Formatted input refers to an input data that has been arranged in a particular format. For example, consider
the following data:
15.75 123 John

This line contains three pieces of data, arranged in a particular form. Such data has to be read conforming
to the format of its appearance. For example, the first part of the data should be read into a variable float,
the second into int, and the third part into char. This is possible in C using the scanf function. (scanf means
scan formatted.)

We have already used this input function in a number of examples. Here, we shall explore all of the
options that are available for reading the formatted data with scanf function. The general form of scanf is

scanf (“control string”, argl, arg2, argn);

The control string specifies the field format in which the data is to be entered and the arguments argl,
arg2,, argn specify the address of locations where the data is stored. Control string and arguments are
separated by commas.

Control string (also known as format string) contains field specifications, which direct the interpretation
of input data. It may include:

< Field (or format) specifications, consisting of the conversion character %, a data type character (or type

specifier), and an optional number, specifying the field width.

< Blanks, tabs, or newlines.

Blanks, tabs and newlines are ignored. The data type character indicates the type of data that is to be
assigned to the variable associated with the corresponding argument. The field width specifier is optional.
The discussions that follow will clarify these concepts.

Managing Input and Output Operations 183

6.4.1 Inputting Integer Numbers
The field specification for reading an integer number is:
% w sd
The percentage sign (%) indicates that a conversion specification follows. w is an integer number that
specifies the field width of the number to be read and d, known as data type character, indicates that the
number to be read is in integer mode. Consider the following example:
scanf ("%2d %5d", &numl, &num2);

Data line:
50 31426
The value 50 is assigned to num1 and 31426 to num?2. Suppose the input data is as follows:
31426 50

The variable num1 will be assigned 31 (because of %2d) and num?2 will be assigned 426 (unread part of
31426). The value 50 that is unread will be assigned to the first variable in the next scanf call. This kind of
errors may be eliminated if we use the field specifications without the field width specifications. That is, the
statement

scanf("%d %d", &numl, &num2);
will read the data
31426 50
correctly and assign 31426 to num1 and 50 to num?2.

Input data items must be separated by spaces, tabs or newlines. Punctuation marks do not count as
separators. When the scanf function searches the input data line for a value to be read, it will always bypass
any white space characters.

What happens if we enter a floating point number instead of an integer? The fractional part may be
stripped away! Also, scanf may skip reading further input.

When the scanf reads a particular value, reading of the value will be terminated as soon as the number
of characters specified by the field width is reached (if specified) or until a character that is not valid for the
value being read is encountered. In the case of integers, valid characters are an optionally signed sequence
of digits.

An input field may be skipped by specifying * in the place of field width. For example, the statement

scanf("%d %*d %d", &a, &b)
will assign the data

123 456 789
as follows:
123 to a
456 skipped (because of *)
789 to b

The data type character d may be preceded by ‘I’ (letter ell) to read long integers and h to read short
integers.

Note We have provided white space between the field specifications. These spaces are not necessary
with the numeric input, but it is a good practice to include them.

184~ Computing Fundamentals & C Programming

WORKED-OUT PROBLEM 6.4

Various input formatting options for reading integers are experimented in the program shown in

Fig. 6.4.

Program

Output

main()

{

int a,b,c,x,y,z;

int p,q,r;

printf("Enter three integer numbers\n");
scanf("%d %*d %d",&a,&b,&c);

printf("%d %d %d \n\n",a,b,c);
printf("Enter two 4-digit numbers\n");
scanf("%2d %4d",&x,8y);

printf("%d %d\n\n", x,y);

printf("Enter two integers\n");
scanf("%d %d", &a,&x);

printf("%d %d \n\n",a,x);

printf("Enter a nine digit number\n");
scanf("%3d %4d %3d",&p,8q,&r);
printf("%d %d %d \n\n",p,q,r);
printf("Enter two three digit numbers\n");
scanf ("%d %d",&x,&y);

printf("%d %d",x,y);

Enter three integer numbers
123

1 3 -3577

Enter two 4-digit numbers
6789 4321

67 89

Enter two integers

44 66

4321 44

Enter a nine-digit number
123456789

66 1234 567

Enter two three-digit numbers
123 456

89 123

Fig. 6.4 Reading integers using scanf

Managing Input and Output Operations 185

The first scanf requests input data for three integer values a, b, and ¢, and accordingly three values 1, 2,
and 3 are keyed in. Because of the specification %*d the value 2 has been skipped and 3 is assigned to the
variable b. Notice that since no data is available for ¢, it contains garbage.

The second scanf specifies the format %2d and %4d for the variables x and y respectively. Whenever
we specify field width for reading integer numbers, the input numbers should not contain more digits than
the specified size. Otherwise, the extra digits on the right-hand side will be truncated and assigned to the
next variable in the list. Thus, the second scanf has truncated the four digit number 6789 and assigned 67
to x and 89 to y. The value 4321 has been assigned to the first variable in the immediately following scanf
statement.

NOTE: It is legal to use a non-whitespace character between field specifications. However, the scanf
expects a matching character in the given location. For example,

scanf("%d-%d", &a, &b);
accepts input like
123-456
to assign 123 to a and 456 to b.

6.4.2 Inputting Real Numbers

Unlike integer numbers, the field width of real numbers is not to be specified and therefore scanf reads real
numbers using the simple specification %f for both the notations, namely, decimal point notation and
exponential notation. For example, the statement
scanf ("%f %f %f", &x, &y, &z);
with the input data
475.89 43.21E-1 678

will assign the value 475.89 to x, 4.321 to y, and 678.0 to z. The input field specifications may be separated
by any arbitrary blank spaces.

If the number to be read is of double type, then the specification should be %If instead of simple %f. A
number may be skipped using % *f specification.

WORKED-OUT PROBLEM 6.5

Reading of real numbers (in both decimal point and exponential notation) is illustrated in Fig. 6.5.

Program

main()

{
float x,y;
double p,q;
printf("Values of x and y:");
scanf ("%f %e", &x, &y);
printf("\n");
printf("x = %f\ny = %f\n\n", x, y);
printf("Values of p and q:");
scanf("%1f %1f", &p, &q);

186~ Computing Fundamentals & C Programming

printf("\n\np = %.121f\np = %.12e", p,q);

Output
Values of x and y:12.3456 17.5e-2
x = 12.345600
y = 0.175000

Values of p and q:4.142857142857 18.5678901234567890
p = 4.142857142857
q = 1.856789012346e+001

Fig. 6.5 Reading of real numbers

6.4.3 Inputting Character Strings

We have already seen how a single character can be read from the terminal using the getchar function.
The same can be achieved using the scanf function also. In addition, a scanf function can input strings
containing more than one character. Following are the specifications for reading character strings:
Jows or Yowc
The corresponding argument should be a pointer to a character array. However, %c may be used to read
a single character when the argument is a pointer to a char variable.

WORKED-OUT PROBLEM 6.6 H |

Reading of strings using % wc and % ws is illustrated in Fig. 6.6.

The program in Fig. 6.6 illustrates the use of various field specifications for reading strings. When we use
% wc for reading a string, the system will wait until the wt character is keyed in.

Note that the specification %s terminates reading at the encounter of a blank space. Therefore, name2
has read only the first part of “New York™ and the second part is automatically assigned to name3. However,
during the second run, the string “New-York™ is correctly assigned to name2.

Program

main()

{
int no;
char namel[15], name2[15], name3[15];
printf("Enter serial number and name one\n");
scanf("%d %15c", &no, namel);
printf("%d %15s\n\n", no, namel);
printf("Enter serial number and name two\n");
scanf("%d %s", &no, name2);
printf("%d %15s\n\n", no, name2);
printf("Enter serial number and name three\n");
scanf("%d %15s", &no, name3);

printf("%d %15s\n\n",

Output
Enter serial number and
1 123456789012345
1 123456789012345r
Enter serial number and

2 New York

2 New
Enter serial number and
2 York

Enter serial number and
1 123456789012

1 123456789012r

Enter serial number and

2 New-York

2 New-York
Enter serial number and
3 London

3 London

Managing Input and Output Operations

no, name3);

name one

name two

name three

name one

name two

name three

Fig. 6.6 Reading of strings

Some versions of scanf support the following conversion specifications for strings:

%[characters]
%[~characters]

187

The specification %][characters] means that only the characters specified within the brackets are
permissible in the input string. If the input string contains any other character, the string will be terminated
at the first encounter of such a character. The specification %[”characters] does exactly the reverse. That
is, the characters specified after the circumflex (") are not permitted in the input string. The reading of the
string will be terminated at the encounter of one of these characters.

WORKED-OUT PROBLEM 6.7

The program in Fig. 6.7 illustrates the function of %[] specification.

Program-A
main()
{
char address[80];

printf("Enter address\n");
scanf("%[a-z]", address);
printf("%-80s\n\n", address);

188~ Computing Fundamentals & C Programming

Output
Enter address
new delhi 110002
new delhi
Program-B
main()
{
char address[80];
printf("Enter address\n");
scanf("%[~\n]", address);
printf("%-80s", address);

Output
Enter address
New Delhi 110 002
New Delhi 110 002

Fig. 6.7 lllustration of conversion specification%/] for strings

Reading Blank Spaces

We have earlier seen that %s specifier cannot be used to read strings with blank spaces. But, this can be
done with the help of %[] specification. Blank spaces may be included within the brackets, thus enabling
the scanf to read strings with spaces. Remember that the lowercase and uppercase letters are distinct. See
Fig. 6.7.

6.4.4 Reading Mixed Data Types

It is possible to use one scanf statement to input a data line containing mixed mode data. In such cases, care
should be exercised to ensure that the input data items match the control specifications in order and type.
When an attempt is made to read an item that does not match the type expected, the scanf function does not
read any further and immediately returns the values read. The statement
scanf ("%d %c %f %s", &count, &code, &ratio, name);
will read the data
15 p 1.575 coffee

correctly and assign the values to the variables in the order in which they appear. Some systems accept
integers in the place of real numbers and vice versa, and the input data is converted to the type specified in
the control string.

Note A space before the %c specification in the format string is necessary to skip the white space
before p.

6.4.5 Detection of Errors in Input

When a scanf function completes reading its list, it returns the value of number of items that are
successfully read. This value can be used to test whether any errors occurred in reading the input. For
example, the statement

Managing Input and Output Operations 189

scanf("%d %f %s, &a, &b, name);
will return the value 3 if the following data is typed in:
20 150.25 motor
and will return the value 1 if the following line is entered
20 motor 150.25
This is because the function would encounter a string when it was expecting a floating-point value, and
would therefore terminate its scan after reading the first value.

WORKED-OUT PROBLEM 6.8 H

The program presented in Fig. 6.8 illustrates the testing for correctness of reading of data by scanf
function.

The function scanf is expected to read three items of data and therefore, when the values for all the three
variables are read correctly, the program prints out their values. During the third run, the second item does
not match with the type of variable and therefore the reading is terminated and the error message is printed.
Same is the case with the fourth run.

In the last run, although data items do not match the variables, no error message has been printed. When
we attempt to read a real number for an int variable, the integer part is assigned to the variable, and the
truncated decimal part is assigned to the next variable.

Note The character 2’ is assigned to the character variable c.

Program
main()
{
int a;
float b;
char c;
printf("Enter values of a, b and c\n");
if (scanf("%d %f %c", &a, &b, &c) == 3)
printf("a = %d b = %f ¢ = %c\n" , a, b, c);
else
printf("Error in input.\n");
}
Output

Enter values of a, b and c
12 3.45 A

a =12 b = 3.450000 c=A
Enter values of a, b and c

23 78 9

a =23 b = 78.000000 c =9

Enter values of a, b and c
8 A 5.25
Error in input.

190~ Computing Fundamentals & C Programming

Enter values of a, b and c
Y 12 67
Error in input.
Enter values of a, b and c
15.75 23 X
a =15 b = 0.750000 = 2
Fig. 6.8 Detection of errors in scanf input

Commonly used scanf format codes are given in Table 6.2.

Table 6.2 Commonly used scanf Format Codes

Code Meaning

Yoc read a single character

%d read a decimal integer

Yoe read a floating point value

9ot read a floating point value

%g read a floating point value

%%h read a short integer

o1 read a decimal, hexadecimal or octal integer
%0 read an octal integer

Yos read a string

%ou read an unsigned decimal integer
Jox read a hexadecimal integer
%l..] read a string of word(s)

The following letters may be used as prefix for certain conversion characters.
h for short integers
1 for long integers or double
L for long double

Note (99 adds some more format codes. See the Appendix “C99 Features”.

6.4.6 Points to Remember while Using scanf

If we do not plan carefully, some ‘crazy’ things can happen with scanf. Since the I/O routines are not a
part of C language, they are made available either as a separate module of the C library or as a part of the
operating system (like UNIX). New features are added to these routines from time to time as new versions
of systems are released. We should consult the system reference manual before using these routines. Given
below are some of the general points to keep in mind while writing a scanf statement.

1. All function arguments, except the control string, must be pointers to variables.

2. Format specifications contained in the control string should match the arguments in order.

3. Input data items must be separated by spaces and must match the variables receiving the input in the
same order.

Managing Input and Output Operations 191

4. The reading will be terminated, when scanf encounters a ‘mismatch’ of data or a character that is not
valid for the value being read.

5. When searching for a value, scanf ignores line boundaries and simply looks for the next appropriate
character.

6. Any unread data items in a line will be considered as part of the data input line to the next scanf call.

7. When the field width specifier w is used, it should be large enough to contain the input data size.

Rules for scanf
< Each variable to be read must have a filed specification.

< For each field specification, there must be a variable address of proper type.
< Any non-whitespace character used in the format string must have a matching character in the user
input.
< Never end the format string with whitespace. It is a fatal error!
< The scanf reads until:
— A whitespace character is found in a numberic specification, or
— The maximum number of characters have been read or
— An error is detected, or
— The end of file is reached
6.5 FORMATTED OUTPUT Lo6a’

We have seen the use of printf function for printing captions and numerical results. It is highly desirable
that the outputs are produced in such a way that they are understandable and are in an easy-to-use form. It
is therefore necessary for the programmer to give careful consideration to the appearance and clarity of the
output produced by his program.

The printf statement provides certain features that can be effectively exploited to control the alignment
and spacing of print-outs on the terminals. The general form of printf statement is:

printf("control string", argl, arg2,, argn);
Control string consists of following three types of items:

1. Characters that will be printed on the screen as they appear.
2. Format specifications that define the output format for display of each item.
3. Escape sequence characters such as \n, \t, and \b.

The control string indicates how many arguments follow and what their types are. The arguments argl,
arg2,, argn are the variables whose values are formatted and printed according to the specifications of
the control string. The arguments should match in number, order and type with the format specifications.

A simple format specification has the following form:

% w.p type-specifier
where w is an integer number that specifies the total number of columns for the output value and p
is another integer number that specifies the number of digits to the right of the decimal point (of a real
number) or the number of characters to be printed from a string. Both w and p are optional. Some examples
of formatted printf statement are:

192 Computing Fundamentals & C Programming

printf("Programming in C");
printf(" ");
printf("\n");
printf("%d", x);
printf("a = %f\n b = %f", a, b);
printf("sum = %d", 1234);
printf("\n\n");
printf never supplies a newline automatically and therefore multiple printf statements may be used to build

one line of output. A newline can be introduced by the help of a newline character \n’ as shown in some of
the examples above.

6.5.1 Output of Integer Numbers
The format specification for printing an integer number is:
9o wd

where w specifies the minimum field width for the output. However, if a number is greater than the specified
field width, it will be printed in full, overriding the minimum specification. d specifies that the value to be
printed is an integer. The number is written right-justified in the given field width. Leading blanks will
appear as necessary. The following examples illustrate the output of the number 9876 under different
formats:

Format Output

printf(“%d”, 9876) 9 [8 [7 |6 |
printf(“%6d”, 9876) 9o [8 |7 |6 |
printf(“%2d”, 9876) 9 [8 |7 |6
printf(“%06d” 9876) 9 [8 [7 |6
printf(“%06d” 9876) 0o |9 [8 [7 |6

It is possible to force the printing to be left-justified by placing a minus sign directly after the %
character, as shown in the fourth example above. It is also possible to pad with zeros the leading blanks by
placing a 0 (zero) before the field width specifier as shown in the last item above. The minus (=) and zero
(0) are known as flags.

Long integers may be printed by specifying ld in the place of d in the format specification. Similarly, we
may use hd for printing short integers.

WORKED-OUT PROBLEM 6.9 M |

The program in Fig. 6.9 illustrates the output of integer numbers under various formats.

Program
main()
{
int m = 12345;
long n = 987654;
printf("%d\n",m);

Managing Input and Output Operations 193

printf("%10d\n",m);
printf("%010d\n",m);
printf("%-10d\n",m);
printf("%101d\n",n);
printf("%101d\n",-n);

Output
12345
12345
0000012345
12345
987654
— 987654

Fig. 6.9 Formatted output of integers

6.5.2 Output of Real Numbers
The output of a real number may be displayed in decimal notation using the following format specification:
% w.p f
The integer w indicates the minimum number of positions that are to be used for the display of the value
and the integer p indicates the number of digits to be displayed after the decimal point (precision). The
value, when displayed, is rounded to p decimal places and printed right-justified in the field of w columns.
Leading blanks and trailing zeros will appear as necessary. The default precision is 6 decimal places. The
negative numbers will be printed with the minus sign. The number will be displayed in the form [—] mmm-nnn.
We can also display a real number in exponential notation by using the specification:
% w.p e
The display takes the form
[-] m.nnnne[= Jxx
where the length of the string of n’s is specified by the precision p. The default precision is 6. The field
width w should satisfy the condition.
w = p+7
The value will be rounded off and printed right justified in the field of w columns.
Padding the leading blanks with zeros and printing with left-justification are also possible by using flags
0 or — before the field width specifier w.
The following examples illustrate the output of the number y = 98.7654 under different format
specifications:

Format Output

printf(“%7.4f y) 9 |8 7 6 5 4

printf(“%7.2”,y) 9 |8 7 |7
printf(“%-7.2",y) 9 3 7

printf*“%f”,y) 9 18 7 5 |4
printf(“%10.2¢”,y) 9o |. [8 [8 [e [+ Jo [1 |

194>~ Computing Fundamentals & C Programming

printf(“%11.4¢”,-y) -9 . [8 |7 |6 |5 Je [+ [0 [1]
printf(“%-10.2¢”,y) 9. [8 [8 [e [+ [0 [1
printf*%e”,y) 9. |8 |7 [6 [5 [4 [o |e |+ |o |1

Some systems also support a special field specification character that lets the user define the field size at
run time. This takes the following form:
printf(“%%*.*f”, width, precision, number);
In this case, both the field width and the precision are given as arguments which will supply the values
for w and p. For example,
printf("%*.*f",7,2,number);
is equivalent to
printf("%7.2f",number);
The advantage of this format is that the values for width and precision may be supplied at run time, thus
making the format a dynamic one. For example, the above statement can be used as follows:
int width = 7;
int precision = 2;

printf("%*.*f", width, precision, number);

WORKED-OUT PROBLEM 6.10
All the options of printing a real number are illustrated in Fig. 6.10.
Program
main()
{
float y = 98.7654;
printf("%7.4f\n", y);
printf("%f\n", y);
printf("%7.2f\n", y);
printf("%-7.2f\n", y);
printf("%07.2f\n", y);
printf("s*.*f", 7, 2, y);
printf("\n");
printf("%10.2e\n", y);
printf("%12.4e\n", -y);
printf("%-10.2e\n", y);
printf("%e\n", y);
}
Output

98.7654
98.765404

Managing Input and Output Operations 195

98.77

98.77

0098.77

98.77
9.88e+001
-9.8765e+001
9.88e+001
9.876540e+001

Fig. 6.10 Formatted output of real numbers

6.5.3 Printing of a Single Character

A single character can be displayed in a desired position using the format:
Jowc

The character will be displayed right-justified in the field of w columns. We can make the display /eft-
Jjustified by placing a minus sign before the integer w. The default value for wis 1.

6.5.4 Printing of Strings
The format specification for outputting strings is similar to that of real numbers. It is of the form
Yow.ps

where w specifies the field width for display and p instructs that only the first p characters of the string are
to be displayed. The display is right-justified.

The following examples show the effect of variety of specifications in printing a string “NEW DELHI
1100017, containing 16 characters (including banks).

Specification Output

123 456 78 90123456 78 90
e NJefw] [ofefifnfr] [1]r]ofofofa] [| [|
woos [| [| [N[elw] [plefcinfi] [1][1]ofofo]1]
weotos [| [[| [[[[| [n[e[w] |o[e[t[n[i] |
wes [NJEfw] [of [[[[[[][]][]

%2010s [N[efw| [plefufufi] [[[[[[[[]]

wes [NJefw| Jofefcln|] [1]1]olofofr] | | |

196 Computing Fundamentals & C Programming

WORKED-OUT PROBLEM 6.11 M|

Printing of characters and strings is illustrated in Fig. 6.11.

Program

main()

{
char x = 'A';
char name[20] = "ANIL KUMAR GUPTA";
printf("OUTPUT OF CHARACTERS\n\n");
printf("%c\n%3c\n%5c\n", x,x,X);
printf("%3c\n%c\n", x,x);
printf("\n");
printf("OUTPUT OF STRINGS\n\n");
printf("%s\n", name);
printf("%20s\n", name);
printf("%20.10s\n", name);
printf("%.5s\n", name);
printf("%-20.10s\n", name);
printf("%5s\n", name);

Output
OUTPUT OF CHARACTERS

OUTPUT OF STRINGS

ANIL KUMAR GUPTA

ANIL KUMAR GUPTA
ANIL KUMAR

ANIL

ANIL KUMAR

ANIL KUMAR GUPTA

Fig. 6.11 Printing of characters and strings

6.5.5 Mixed Data Output

It is permitted to mix data types in one printf statement. For example, the statement of the type
printf("%d %f %s %c", a, b, c, d);
is valid. As pointed out earlier, printf uses its control string to decide how many variables to be printed and

what their types are. Therefore, the format specifications should match the variables in number, order, and
type. If there are not enough variables or if they are of the wrong type, the output results will be incorrect.

Managing Input and Output Operations 197

Table 6.3 Commonly used printf Format Codes

Code Meaning

Yoc print a single character

%d print a decimal integer

Yoe print a floating point value in exponent form

Yot print a floating point value without exponent

%g print a floating point value either e-type or f-type depending on
Yoi print a signed decimal integer

%0 print an octal integer, without leading zero

%os print a string

You print an unsigned decimal integer

Jox print a hexadecimal integer, without leading Ox

The following letters may be used as prefix for certain conversion characters.
h for short integers
1 for long integers or double
L for long double.

Table 6.4 Commonly used Output Format Flags

Flag Meaning

- Output is left-justified within the field. Remaining field will be blank.

+ + or — will precede the signed numeric item.

0 Causes leading zeros to appear.

(with o or x) Causes octal and hex items to be preceded by O and Ox, respectively.

(withe, for g) Causes a decimal point to be present in all floating point numbers, even if it is whole number.
Also prevents the truncation of trailing zeros in g-type conversion.

Note (99 adds some more format codes. See the Appendix “ C99 Features” .

6.5.6 Enhancing the Readability of Output

Computer outputs are used as information for analysing certain relationships between variables and for
making decisions. Therefore the correctness and clarity of outputs are of utmost importance. While the
correctness depends on the solution procedure, the clarity depends on the way the output is presented.
Following are some of the steps we can take to improve the clarity and hence the readability and
understandability of outputs.

1. Provide enough blank space between two numbers.

2. Introduce appropriate headings and variable names in the output.

3. Print special messages whenever a peculiar condition occurs in the output.
4. Introduce blank lines between the important sections of the output.

198~ Computing Fundamentals & C Programming

The system usually provides two blank spaces between the numbers. However, this can be increased

by selecting a suitable field width for the numbers or by introducing a ‘tab’ character between the
specifications. For example, the statement

printf("a = %d\t b = %d", a, b);

will provide four blank spaces between the two fields. We can also print them on two separate lines by
using the statement

printf("a = %d\n b = %d", a, b);

Examples:

printf("\n OUTPUT RESULTS \n");
printf("Code\t Name\t Age\n");
printf("Error in input data\n");
printf("Enter your name\n");

_9 LEARNING OUTCOMES

Messages and headings can be printed by using the character strings directly in the printf statement.

While using getchar function, care should be exercised to clear any unwanted characters in the input
stream.

Do not forget to include <stdio.h> headerfiles when using functions from standard input/output
library.

Do not forget to include <ctype.h> header file when using functions from character handling library.
Provide proper field specifications for every variable to be read or printed.

Enclose format control strings in double quotes.

Do not forget to use address operator & for basic type variables in the input list of scanf.

Do not specify any precision in input field specifications.

Do not provide any white-space at the end of format string of a scanf statement.

Do not use commas in the format string of a scanf statement.

Use double quotes for character string constants.

Use single quotes for single character constants.

Provide sufficient field width to handle a value to be printed.

Be aware of the situations where output may be imprecise due to formatting.

Do not forget to close the format string in the scanf or printf statement with double quotes.
Using an incorrect conversion code for data type being read or written will result in runtime error.
Do not forget the comma after the format string in scanf and printf statements.

Not separating read and write arguments is an error.

Using an address operator & with a variable in the printf statement will result in runtime error.

_9 KEY TERMS TO REMEMBER

rorm
Loy

1501 6.2
Lo¥l
Lo¥
Lo¥l
Lo¥
Lo¥l
Lo¥
Lo
Lo
Lo
Lo
Lo
Lo
Lo
Lo
Lo

getchar: Reads one character from standard input.

Loy

Managing Input and Output Operations 199

e putchar: Reads one character from standard input. 170 6.2 |
e Formatted input: Reads one character from standard input. LOK]

e Control string: Is a combination of format specifications, escape sequences and characters that are Lom
to be printed on the screen.

e Formatted output: Refers to the output data that has been arranged in a specific format to enhance Lom
readability.

BRIEF CASES

1. Inventory Report [LO 6.3, 6.4 M]

Problem: The ABC Electric Company manufactures four consumer products. Their inventory position on a
particular day is given below:

Quantity Rate (Rs)
F105 275 575.00
H220 107 99.95
1019 321 215.50
M315 89 725.00

It is required to prepare the inventory report table in the following format:

INVENTORY REPORT
Code Quantity Rate Value
Total Value: e —

The value of each item is given by the product of quantity and rate.

Program: The program given in Fig. 6.12 reads the data from the terminal and generates the required
output. The program uses subscripted variables which are discussed in Chapter 9.

Program
#define ITEMS 4
main ()
{ /* BEGIN */
int i, quantity[5];
float rate[5], value, total value;
char code[5][5];

200

Output

Computing Fundamentals & C Programming

/* READING VALUES */

i=1;
while (i <= ITEMS)
{

printf("Enter code, quantity, and rate:");
scanf("%s %d %f", code[i], &quantity[i],&rate[i]);

i+t
}
JFo000000 Printing of Table and Column Headings....... “f
printf("\n\n");
printf(" INVENTORY REPORT \n");
printf(" \n");
printf(" Code Quantity Rate Value \n");
printf(" \n");
JFo0a0000 Preparation of Inventory Position.......... =
total value = 0;
i=1;
while (i <= ITEMS)
{
value = quantity[i] * rate[i];
printf("%5s %10d %10.2f %e\n",code[i],quantity[i],
rate[i],value);
total value += value;
i+t
1
JFococaoa Printing of End of Table.................. =
printf(" \n");
printf(" Total Value = %e\n",total value);
printf(" \n");
} /* END */

Enter code, quantity, and rate:F105 275 575.00
Enter code, quantity, and rate:H220 107 99.95
Enter code, quantity, and rate:1019 321 215.50
Enter code, quantity, and rate:M315 89 725.00

INVENTORY REPORT

Code Quantity Rate Value

F105 275 575.00 1.581250e+005
H220 107 99.95 1.069465e+004
1019 321 215.50 6.917550e+004
M315 89 725.00 6.452500e+004

Total Value = 3.025202e+005

Fig. 6.12 Program for inventory report

|
—
.
.
[
Managing Input and Output Operations !

2. Reliability Graph [LO 6.4 H]

Problem: The reliability of an electronic component is given by

reliability (r) = e ~*t
where A is the component failure rate per hour and t is the time of operation in hours. A graph is required
to determine the reliability at various operating times, from 0 to 3000 hours. The failure rate A (lambda) is
0.001.

202> Computing Fundamentals & C Programming

Output

|**#
|***#
|*************************************#
|********************************#
|***************************#
|************************#
|********************#
|*****************#
|***************#
|*************#
|***********#
|**********#
|********#
|*******#
|******#
|*****#
|*****#
|****#
|***#
|***#
|**#
Fig. 6.13 Program to draw reliability graph

Program: The program given in Fig. 6.13 produces a shaded graph. The values of t are self-generated by
the for statement
for (t=0; t <= 3000; t = t+150)
in steps of 150. The integer 50 in the statement
R = (int) (50*r+0.5)
is a scale factor which converts r to a large value where an integer is used for plotting the curve. Remember
ris always less than 1.

REVIEW QUESTIONS

Fill in the Blanks
1. The specification is used to read or write a short integer. L LO 6.3 ,\Eﬁ
2. For reading a double type value, we must use the specification . m@

Levels of Difficulty

‘fEﬁ : Low; ‘fﬁ : Medium; ‘ﬁi : High

AN S o

~

10.

NS, R W=

10.

11.

|

—

|

[|

[
Managing Input and Output Operations ,

For using character functions, we must include the header file in the program.

To print the data left-justified, we must use in the field specification.
The conversion specifier is used to print integers in hexadecimal form.

The specification
assigning it to many variable.

is used to read a data from input list and discard it without

The specification %]] is used for reading strings that contain
By default, the real numbers are printed with a precision of decimal places.
The specifier prints floating-point values in the scientific notation.

The specification
a particular character.

may be used in scanf to terminate reading at the encounter of

True or False Statements
The purpose of the header file <studio.h> is to store the programs created by the users.
The C standard function that receives a single character from the keyboard is getchar.
The input list in a scanf statement can contain one or more variables.
The scanf function cannot be used to read a single character from the keyboard.
The getchar cannot be used to read a line of text from the keyboard.
Variables form a legal element of the format control string of a printf statement.

The format specification %+ —8d prints an integer left-justified in a field width of 8 with a
plus sign, if the number is positive.

If the field width of a format specifier is larger than the actual width of the value, the value
is printed right-justified in the field.

The format specification %35s will print only the first 5 characters of a given string to be
printed.

When an input stream contains more data items than the number of specifications in a scanf
statement, the unused items will be used by the next scanf call in the program.

Format specifiers for output convert internal representations for data to readable characters.

12 The print list in a printf statement can contain function calls.

DISCUSSION QUESTIONS

1.

Distinguish between the following pairs:
(a) getchar and scanf functions.

(b) %s and %c specifications for reading.
(c) %g and %f specification for printing.
(d) %s and %[] specifications for reading.

(e) %f and %e specifications for printing.

1064 "
1064 "
11064, /™
1063 ™

1063 ™
1064 ™
11064, /™
1063 'y

110617
11061 "
11063 "
11063 "
11061 /™
1064 ™
11064 ™

1064 ™
1064 '™
1063 g

11064 g
1064 g

110617
11063 "
11064 "
11063 /™
11064 ™

|
—
[|
|
[
’ Computing Fundamentals & C Programming

2.

10.

Write scanf statements to read the following data lists:
(a) 78 B 45 (b) 123 1.2345A
(c) 15-10-2002 (d) 10 TRUE 20

State the outputs produced by the following printf statements.
(a) printf (“%d%c%t”, 10, x’, 1.23);

(b) printf (“%2d %c %4.2f”, 1234,, ‘x’, 1.23);

(c) printf (“%d\t%4.2f”, 1234, 456);

(d) printf (“*%08.21*”, 123.4);

(e) printf (“%d%d %d”, 10, 20);

For questions 6 to 10 assume that the following declarations have been made in the program:

int year, count;
float amount, price;
char code, city[10];
double root;

What will be the values stored in the variables year and code when the data
1988, x

is keyed in as a response to the following statements:
(a) scanf(“%d %c”, &year, &code);
(b) scanf(“%c %d”, &year, &code);
(c) scanf(“%d %c”, &code, &year);
(d) scanf(“%s %c”, &year, &code);

The variables count, price, and city have the following values:
count <—— 1275

price <—— -235.74

city <—— Cambridge

Show the exact output that the following output statements will produce:
(a) printf(“%d %1, count, price);

(b) printf(“%2d\n%f”, count, price);

(c) printf(“%d %1, price, count);

(d) printf("%10dxxxx%5.2f",count, price);

(e) printf(“%s”, city);

(f) printf(%-10d %-15s”, count, city);

In response to the input statement
scanf(“%4d%*%d”, &year, &code, &count);

the following data is keyed in:
19883745

What values does the computer assign to the variables year, code, and count?
How can we use the getchar() function to read multicharacter strings?
How can we use the putchar () function to output multicharacter strings?

What is the purpose of scanf() function?

Describe the purpose of commonly used conversion characters in a scanf() function.

11063,/

1064 g

11063 'y

11064 'y

11063 ™

1061 g
1062 g
11063 "
11063 "

11.

12.
13.
14.

15.

16.

|

—

[

[|

[
Managing Input and Output Operations ’

What happens when an input data item contains
(a) more characters than the specified field width and
(b) fewer characters than the specified field width?

What is the purpose of print() function?
Describe the purpose of commonly used conversion characters in a printf() function.

How does a control string in a printf() function differ from the control string in a scanf()
function?

What happens if an output data item contains
(a) more characters than the specified field width and
(b) fewer characters than the specified field width?

How are the unrecognized characters within the control string are interpreted in
(a) scanf function; and
(b) printf function?

DEBUGGING EXERCISES

1.

State errors, if any, in the following input statements.
(a) scanf(“%c%f%d”, city, &price, &year);

(b) scanf(“%s%d”, city, amount);

(c) scanf(“%f, %d, &amount, &year);

(d) scanf(\n”%f”, root);

(e) scanf(“%c %d %1d”, *code, &count, Root);

State what (if anything) is wrong with each of the following output statements:
(a) printf(%d 7.2%f, year, amount);

(b) printf(“%-s, %c’\n, city, code);

(c) printf(“%ft, %d, %s, price, count, city);

(d) printf(“%c%d%t\n”, amount, code, year);

PROGRAMMING EXERCISES

1.

2.

3.

Given the string “WORDPROCESSING”, write a program to read the string from the
terminal and display the same in the following formats:
(a) WORD PROCESSING
(b) WORD
PROCESSING
(c) WP

Write a program to read the values of x and y and print the results of the following
expressions in one line:

x+y X+
(b) u

(@)

xX—=y 2
Write a program to read the following numbers, round them off to the nearest integers and
print out the results in integer form:

(©) (x+y)(x=y)

35.7 50.21 -23.73 —46.45

1063 g

L0644 "
1 L064 "
1064 ™

1064 g

1064 g

11063,/

11064,/

11064,/

11063,/

1064 g

H

4.

10.

Computing Fundamentals & C Programming

Write a program that reads 4 floating point values in the range, 0.0 to 20.0, and prints a
horizontal bar chart to represent these values using the character as the fill character. For
the purpose of the chart, the values may be rounded off to the nearest integer. For example,
the value 4.36 should be represented as follows.

* * * *
* * * * 4.36
% % % %

Note that the actual values are shown at the end of each bar.

Write an interactive program to demonstrate the process of multiplication. The program
should ask the user to enter two two-digit integers and print the product of integers as
shown below.

45

X 37

Tx45 s 315
3x45 is 135
Add them 1665

Write a program to read three integers from the keyboard using one scanf statement and
output them on one line using:

(a) three printf statements,

(b) only one printf with conversion specifiers, and

(c) only one printf without conversion specifiers.

Write a program that prints the value 10.45678 in exponential format with the following
specifications:

(a) correct to two decimal places;

(b) correct to four decimal places; and

(c) correct to eight decimal places.

Write a program to print the value 345.6789 in fixed-point format with the following
specifications:

(a) correct to two decimal places;

(b) correct to five decimal places; and

(c) correct to zero decimal places.

Write a program to read the name ANIL KUMAR GUPTA in three parts using the scanf
statement and to display the same in the following format using the printf statement.

(a) ANIL K. GUPTA

(b) AK. GUPTA

(c) GUPTA AK.

Write a program to read and display the following table of data.

Name Code Price
Fan 67831 1234.50
Motor 450 5786.70

The name and code must be left-justified and price must be right-justified.

1063 g
11064 'y

1064 g

1064 g

1064 ™

11064 ™

11063 'y

11064 g

11063 'y
11064 g

CHAPTER

7.1 INTRODUCTION

C program is a set of statements which are normally executed sequentially in the order in which
they appear. This happens when no options or no repetitions of certain calculations are necessary.
However, in practice, we have a number of situations where we may have to change the order of
execution of statements based on certain conditions, or repeat a group of statements until certain
specified conditions are met. This involves a kind of decision making to see whether a particular
condition has occurred or not and then direct the computer to execute certain statements
accordingly.

C language possesses such decision-making capabilities by supporting the following
statements:

1. if statement

2. switch statement

3. Conditional operator statement

4. goto statement

These statements are popularly known as decision-making statements. Since these statements
‘control’ the flow of execution, they are also known as control statements.

208~ Computing Fundamentals & C Programming

We have already used some of these statements in the earlier examples. Here, we shall discuss their
features, capabilities and applications in more detail.

r
7.2 DECISION MAKING WITH IF STATEMENT Lo71

The if statement is a powerful decision-making statement and is used to control the flow of execution of
statements. It is basically a two-way decision statement and is used in conjunction with an expression. It
takes the following form

if (test expression)

It allows the computer to evaluate the expression first and then, depending on whether the value of the
expression (relation or condition) is ‘true’ (or non-zero) or
‘false’ (zero), it transfers the control to a particular statement.
This point of program has two paths to follow, one for the true
condition and the other for the false condition as shown in
Fig. 7.1.

Some examples of decision making, using if statements are:

test expression
?

1.if (bank balance is zero)
borrow money

2.if (room is dark)
put on lights

3.if (codeis 1)
person is male

4.if (age is more than 55)
person is retired

True

Fig. 7.1 Two-way branching

The if statement may be implemented in different forms depending on the complexity of conditions to be
tested. The different forms are:

1. Simple if statement

2. if.....else statement

3. Nested if....else statement
4. else if ladder.

We shall discuss each one of them in the next few section.

4
7.3 SIMPLE IF STATEMENT LO 7.1

The general form of a simple if statement is
if (test expression)

{

statement-block;

}

statement-x;

Decision Making and Branching ~<209

The ‘statement-block’ may be a single statement or a group of statements. If the fest expression is true,
the statement-block will be executed; otherwise the statement-block will be skipped and the execution will

jump to the statement-x. Remember, when the condition is
true both the statement-block and the statement-x are
executed in sequence. This is illustrated in Fig. 7.2.

Consider the following segment of a program that is
written for processing of marks obtained in an entrance
examination.

if (category == SPORTS)
{

}
printf("%f", marks);

marks = marks + bonus marks;

The program tests the type of category of the student.
If the student belongs to the SPORTS category, then
additional bonus_marks are added to his marks before they
are printed. For others, bonus_marks are not added.

test

expression
2

True

statement-block ‘

statement - x

Next statement

Fig. 7.2 Flow chart of simple if control

WORKED-OUT PROBLEM 7.1

The program in Fig. 7.3 reads four values a, b, ¢, and d from the terminal and evaluates the ratio of (a+b)

to (c—d) and prints the result, if c—d is not equal to zero.

The program given in Fig. 7.3 has been run for two sets of data to see that the paths function properly. The

result of the first run is printed as,

Ratio =-3.181818

Program
main()
{
int a, b, ¢, d;
float ratio;

printf("Enter four integer values\n");
scanf ("%d %d %d %d", &a, &b, &c, &d);

if (c-d != 0) /* Execute statement block */

{

ratio = (float) (a+b)/(float) (c-d);

printf("Ratio = %f\n", ratio);

Levels of Difficulty
L: Low; M: Medium; H: High

210™ Computing Fundamentals & C Programming

Output
Enter four integer values
12 23 34 45
Ratio = -3.181818

Enter four integer values
12 23 34 34

Fig. 7.3 lllustration of simple if statement

The second run has neither produced any results nor any message. During the second run, the value of
(c—d) is equal to zero and therefore, the statements contained in the statement-block are skipped. Since no
other statement follows the statement-block, program stops without producing any output.

Note the use of float conversion in the statement evaluating the ratio. This is necessary to avoid
truncation due to integer division. Remember, the output of the first run —3.181818 is printed correct to
six decimal places. The answer contains a round off error. If we wish to have higher accuracy, we must use
double or long double data type.

The simple if is often used for counting purposes. The Worked-Out Problem 7.2 illustrates this.

WORKED-OUT PROBLEM 7.2 M

The program in Fig. 7.4 counts the number of boys whose weight is less than 50 kg and height is greater
than 170 cm.

The program has to test two conditions, one for weight and another for height. This is done using the
compound relation
if (weight < 50 && height > 170)
This would have been equivalently done using two if statements as follows:
if (weight < 50)
if (height > 170)
count = count +1;
If the value of weight is less than 50, then the following statement is executed, which in turn is another if
statement. This if statement tests height and if the height is greater than 170, then the count is incremented
by 1.

Program
main()
{
int count, i;
float weight, height;

count = 0;
printf("Enter weight and height for 10 boys\n");

|
—
.
.
I
Decision Making and Branching ’

Fig. 7.4 Use of if for counting

7.3.1 Applying De Morgan's Rule

While designing decision statements, we often come across a situation where the logical NOT operator
is applied to a compound logical expression, like !(x&&yll!z). However, a positive logic is always
easy to read and comprehend than a negative logic. In such cases, we may apply what is known as
De Morgan’s rule to make the total expression positive. This rule is as follows:

“Remove the parentheses by applying the NOT operator to every logical expression component, while
complementing the relational operators”

That is,
X becomes !x
!X becomes x
&& becomes ||
Il becomes &&
Examples:

I(x && y Il !z) becomes !x Il ly && z
I(x <=0l !condition) becomes x >0&& condition

212> Computing Fundamentals & C Programming

'4
7.4 THE IE....ELSE STATEMENT 1072

The if...else statement is an extension of the simple if statement. The general form is

If (test expression)

{
}

else

{
}

statement-x

True-block statement(s)

False-block statement(s)

If the test expression is true, then the true-block statement(s), immediately following the if statements
are executed; otherwise, the false-block statement(s) are executed. In either case, either true-block or false-
block will be executed, not both. This is illustrated in Fig. 7.5. In both the cases, the control is transferred
subsequently to the statement-x.

test

expression
?

True False

True-block False-block
statement statement

e

Fig. 7.5 Flow chart of if......else control

Let us consider an example of counting the number of boys and girls in a class. We use code 1 for a boy
and 2 for a girl. The program statement to do this may be written as follows:

if (code == 1)
boy = boy + 1;
if (code == 2)

girl = girl+l;

Decision Making and Branching ~%213

The first test determines whether or not the student is a boy. If yes, the number of boys is increased by 1
and the program continues to the second test. The second test again determines whether the student is a girl.
This is unnecessary. Once a student is identified as a boy, there is no need to test again for a girl. A student
can be either a boy or a girl, not both. The above program segment can be modified using the else clause as
follows:

if (code == 1)

boy = boy + 1;
else

girl = girl + 1;
XXXXXXXXXX

..........

Here, if the code is equal to 1, the statement boy = boy + 1; is executed and the control is transferred
to the statement xxxxxx, after skipping the else part. If the code is not equal to 1, the statement
boy = boy + 1; is skipped and the statement in the else part girl = girl + 1; is executed before the control
reaches the statement XXXXXXXX.

Consider the program given in Fig. 7.3. When the value (c—d) is zero, the ratio is not calculated and the
program stops without any message. In such cases we may not know whether the program stopped due to a
zero value or some other error. This program can be improved by adding the else clause as follows:

ratio = (float) (a+b)/(float) (c-d);
printf("Ratio = %f\n", ratio);
1
else
printf("c-d is zero\n");

WORKED-OUT PROBLEM 7.3 H
A program to evaluate the power series.
2 2 %0
ef=1+x+ —+—+-+—,0<x<1
21 3! n!

is given in Fig. 7.6. It uses if......else to test the accuracy.

|
—
|
I
[
, Computing Fundamentals & C Programming

The power series contains the recurrence relationship of the type
T,=T,, (i) forn>1
n
T, =xforn=1
T,=1
If T, (usually known as previous term) is known, then T, (known as present term) can be easily found
by multiplying the previous term by x/n. Then

ef=Ty+T +Ty+... + T, = sum

Fig. 7.6 lllustration of if...else statement

Decision Making and Branching ~%215

The program uses count to count the number of terms added. The program stops when the value of the
term is less than 0.0001 (ACCURACY). Note that when a term is less than ACCURACY, the value of n is
set equal to 999 (a number higher than 100) and therefore the while loop terminates. The results are printed
outside the while loop.

r
7.5 NESTING OF IE....ELSE STATEMENTS Lo72

When a series of decisions are involved, we may have to use more than one if...else statement in nested
form as shown below:

if (test condition-1)
if (test condition-2);

{ statement -1;

}

else

statement -2; ———

else

{ statement -3;

}

statement -x;

The logic of execution is illustrated in Fig. 7.7. If the condition-1 is false, the statement-3 will be
executed; otherwise it continues to perform the second test. If the condition-2 is true, the statement-1 will be
evaluated; otherwise the statement-2 will be evaluated and then the control is transferred to the statement-x.

A commercial bank has introduced an incentive policy of giving bonus to all its deposit holders. The
policy is as follows: A bonus of 2 per cent of the balance held on 31st December is given to every one,
irrespective of their balance, and 5 per cent is given to female account holders if their balance is more than
Rs. 5000. This logic can be coded as follows:

if (sex is female)

if (balance > 5000)
bonus = 0.05 * balance;

else
bonus = 0.02 * balance;
1
else
{
bonus = 0.02 * balance;

}
balance = balance + bonus;

|
—
|
[|
[
, Computing Fundamentals & C Programming

test

condition 1
?

False True

test
condition 2
?

True

statement-1

statement-3 statement-2
statement - x

Next Statement

Fig. 7.7 Flow chart of nested if...else statements

When nesting, care should be exercised to match every if with an else. Consider the following alternative
to the above program (which looks right at the first sight):

if (sex is female)
if (balance > 5000)
bonus = 0.05 * balance;
else
bonus = 0.02 * balance;
balance = balance + bonus;

There is an ambiguity as to over which if the else belongs to. In C, an else is linked to the closest non-
terminated if. Therefore, the else is associated with the inner if and there is no else option for the outer if.
This means that the computer is trying to execute the statement

balance = balance + bonus;

without really calculating the bonus for the male account holders.

Decision Making and Branching

> [

Consider another alternative, which also looks correct:

In this case, else is associated with the outer if and therefore bonus is calculated for the male account
holders. However, bonus for the female account holders, whose balance is equal to or less than 5000 is not
calculated because of the missing else option for the inner if.

Fig. 7.8 Selecting the largest of three numbers

218" Computing Fundamentals & C Programming

7.5.1 Dangling Else Problem

One of the classic problems encountered when we start using nested if....else statements is the dangling else.
This occurs when a matching else is not available for an if. The answer to this problem is very simple.
Always match an else to the most recent unmatched if in the current block. In some cases, it is possible that
the false condition is not required. In such situations, else statement may be omitted

“else is always paired with the most recent unpaired if”’

4
7.6 THE ELSE IF LADDER LO7.2

There is another way of putting ifs together when multipath decisions are involved. A multipath decision is
a chain of ifs in which the statement associated with each else is an if. It takes the following general form:

if (condition 1)
statement-1;

else if (condition 2)
statement-2;

else if (condition 3)
statement-3;

else if (condition n)
statement-n; ———

else
default-statement ;>

statement-x;

This construct is known as the else if ladder. The conditions are evaluated from the top (of the ladder),
downwards. As soon as a true condition is found, the statement associated with it is executed and the control
is transferred to the statement-x (skipping the rest of the ladder). When all the n conditions become false,
then the final else containing the default-statement will be executed. Figure 7.9 shows the logic of execution
of else if ladder statements.

Let us consider an example of grading the students in an academic institution. The grading is done
according to the following rules:

Average marks Grade

80 to 100 Honours

60 to 79 First Division
50 to 59 Second Division
40 to 49 Third Division

0to 39 Fail

|

—

[|

(|

I
Decision Making and Branching ,

Condition-1

statement-1

Condition-2

statement-2
statement-3

Condition-3 >-----~

statement-n default
statement
T —

next statement

Fig. 7.9 Flow chart of else..if ladder

This grading can be done using the else if ladder as follows:
if (marks > 79)
grade = "Honours";
else if (marks > 59)
grade = "First Division";
else if (marks > 49)
grade = "Second Division";
else if (marks > 39)
grade = "Third Division";
else
grade = “Fail”;
printf (“%s\n”, grade);
Consider another example given below:

if (code == 1)
colour = "RED";

220" Computing Fundamentals & C Programming

else if (code == 2)
colour = "GREEN";
else if (code == 3)
colour = "WHITE";
else
colour

"YELLOW";

Code numbers other than 1, 2 or 3 are considered to represent YELLOW colour. The same results can be
obtained by using nested if...else statements.

if (code != 1)
if (code != 2)
if (code != 3)
colour = "YELLOW";
else
colour = "WHITE";
else

colour = "GREEN";
else
colour = "RED";

In such situations, the choice is left to the programmer. However, in order to choose an if structure that is
both effective and efficient, it is important that the programmer is fully aware of the various forms of an if
statement and the rules governing their nesting.

WORKED-OUT PROBLEM 7.5 H

An electric power distribution company charges its domestic consumers as follows:

Consumption Units Rate of Charge

0-200 Rs. 0.50 per unit

201 — 400 Rs. 100 plus Rs. 0.65 per unit excess of 200
401 - 600 Rs. 230 plus Rs. 0.80 per unit excess of 400
601 and above Rs. 390 plus Rs. 1.00 per unit excess of 600

The program in Fig. 7.10 reads the customer number and power consumed and prints the amount to be paid
by the customer.

Program
main ()
{
int units, custnum;
float charges;
printf("Enter CUSTOMER NO. and UNITS consumed\n");

Decision Making and Branching ~%221

scanf("%d %d", &custnum, &units);
if (units <= 200)
charges = 0.5 * units;
else if (units <= 400)
charges = 100 + 0.65 * (units - 200);
else if (units <= 600)
charges = 230 + 0.8 * (units - 400);
else
charges = 390 + (units - 600);
printf("\n\nCustomer No: %d: Charges = %.2f\n",
custnum, charges);

Output

Enter CUSTOMER NO. and UNITS consumed 101 150
Customer No:101 Charges = 75.00

Enter CUSTOMER NO. and UNITS consumed 202 225
Customer No:202 Charges = 116.25

Enter CUSTOMER NO. and UNITS consumed 303 375
Customer No:303 Charges = 213.75

Enter CUSTOMER NO. and UNITS consumed 404 520
Customer No:404 Charges = 326.00

Enter CUSTOMER NO. and UNITS consumed 505 625
Customer No:505 Charges = 415.00

Fig. 7.10 lllustration of else..if ladder

7.6.1 Rules for Indentation

When using control structures, a statement often controls many other statements that follow it. In such
situations it is a good practice to use indentation to show that the indented statements are dependent on the
preceding controlling statement. Some guidelines that could be followed while using indentation are listed

below:

R
R4

K2 K2 K2 K2 K2 K2 K2
LS X R X G X I X SR X 4

Indent statements that are dependent on the previous statements; provide at least three spaces of
indentation.

Align vertically else clause with their matching if clause.

Use braces on separate lines to identify a block of statements.

Indent the statements in the block by at least three spaces to the right of the braces.

Align the opening and closing braces.

Use appropriate comments to signify the beginning and end of blocks.

Indent the nested statements as per the above rules.

Code only one clause or statement on each line.

222" Computing Fundamentals & C Programming

y
7.7 THE SWITCH STATEMENT Lo73

We have seen that when one of the many alternatives is to be selected, we can use an if statement to control
the selection. However, the complexity of such a program increases dramatically when the number of
alternatives increases. The program becomes difficult to read and follow. At times, it may confuse even the
person who designed it. Fortunately, C has a built-in multiway decision statement known as a switch. The
switch statement tests the value of a given variable (or expression) against a list of case values and when a
match is found, a block of statements associated with that case is executed. The general form of the switch
statement is as shown below:

switch (expression)

{

case value-1:

block-1
break;
case value-2:
block-2
break;
default:
default-block
break;
}
statement-x;
The expression is an integer expression or characters. Value-1, value-2 are constants or constant

expressions (evaluable to an integral constant) and are known as case labels. Each of these values should
be unique within a switch statement. block-1, block-2 are statement lists and may contain zero or more
statements. There is no need to put braces around these blocks. Note that case labels end with a colon (:).

When the switch is executed, the value of the expression is successfully compared against the values
value-1, value-2,.... If a case is found whose value matches with the value of the expression, then the block
of statements that follows the case are executed.

The break statement at the end of each block signals the end of a particular case and causes an exit from
the switch statement, transferring the control to the statement-x following the switch.

The default is an optional case. When present, it will be executed if the value of the expression does not
match with any of the case values. If not present, no action takes place if all matches fail and the control
goes to the statement-x. (ANSI C permits the use of as many as 257 case labels).

The selection process of switch statement is illustrated in the flow chart shown in Fig. 7.11.

|
—
.
.
I
Decision Making and Branching ’

Entry

| | | Expression = value-1

Expression = value-2

(no match) default

Fig. 7.11 Selection process of the switch statement

The switch statement can be used to grade the students as discussed in the last section. This is illustrated
below:

|
—
|
I
[
, Computing Fundamentals & C Programming

Note that we have used a conversion statement
index = marks / 10;
where, index is defined as an integer. The variable index takes the following integer values.

Marks Index
100 10
90-99 9
80-89 8
70-79 7
60-69 6
50-59 5
40-49 4
0 0

This segment of the program illustrates two important features. First, it uses empty cases. The first three
cases will execute the same statements
grade = “Honours”;
break;
Same is the case with case 7 and case 6. Second, default condition is used for all other cases where
marks is less than 40.
The switch statement is often used for menu selection. For example:

Decision Making and Branching %225

It is possible to nest the switch statements. That is, a switch may be part of a case statement. ANSI C
permits 15 levels of nesting.

7.7.1 Rules for Switch Statement

< The switch expression must be an integral type.

< Case labels must be constants or constant expressions.

< Case labels must be unique. No two labels can have the same value.
< Case labels must end with colon.

< The break statement transfers the control out of the switch statement.

R

< The break statement is optional. That is, two or more case labels may belong to the same

statements.

< The default label is optional. If present, it will be executed when the expression does not find a
matching case label.

< There can be at most one default label.

< The default may be placed anywhere but usually placed at the end.

R

< Itis permitted to nest switch statements.

WORKED-OUT PROBLEM 7.6

Write a complete C program that reads a value in the range of 1 to 12 and print the name of that month
and the next month. Print error for any other input value.

Program

#include<stdio.h>

#include<conio.h>

#include<stdlib.h>

void main()

{
char month[12][20] = {"January","February","March","April","May","June",
"July","August","September","October", "November", "December"};
int i;

printf("Enter the month value: ");
scanf ("%d",&i);

if(i<l || i>12)

{
printf("Incorrect value!!\nPress any key to terminate the program...");
getch();
exit(0);

}

if(il=12)
printf("%s followed by %s",month[i-1],month[i]);

226~ Computing Fundamentals & C Programming

else
printf("%s followed by %s",month[i-1],month[0]);

getch();
1
Output
Enter the month value: 6
June followed by July

Fig. 7.12 Program to read and print name of months in the range of 1 and 12

y
7.8 THE ? : OPERATOR Lo74

The C language has an unusual operator, useful for making two-way decisions. This operator is a
combination of ? and :, and takes three operands. This operator is popularly known as the conditional
operator. The general form of use of the conditional operator is as follows:

conditional expression ? expressionl : expression2

The conditional expression is evaluated first. If the result is non-zero, expressionl is evaluated and is
returned as the value of the conditional expression. Otherwise, expression2 is evaluated and its value is
returned. For example, the segment

if (x <0)
flag = 0;
else
flag = 1;

can be written as
flag=(x<0)?20:1;
Consider the evaluation of the following function:
y=15x+3forx<2
y=2x+5forx>2
This can be evaluated using the conditional operator as follows:
y=(x>2)?2(@2*x+5):(1.5*x+3);
The conditional operator may be nested for evaluating more complex assignment decisions. For example,
consider the weekly salary of a salesgirl who is selling some domestic products. If x is the number of
products sold in a week, her weekly salary is given by

4x+ 100 for x < 40
Salary = 300 for x =40
4.5x+150 for x <40

This complex equation can be written as
salary = (x != 40) ? ((x < 40) ? (4*x+100) : (4.5*x+150)) : 300;

Decision Making and Branching

>[I

The same can be evaluated using if...else statements as follows:

if (x <= 40)
if (x < 40)
salary = 4 * x+100;
else
salary = 300;
else
salary = 4.5 * x+150;

When the conditional operator is used, the code becomes more concise and perhaps, more efficient.
However, the readability is poor. It is better to use if statements when more than a single nesting of
conditional operator is required.

A program to process loan applications and to sanction loans is given in Fig. 7.13.

Computing Fundamentals & C Programming

Fig. 7.13 lllustration of the conditional operator

The program uses the following variables:

loan3 -
loan2 -
loanl -
sum23 -
sancloan -

present loan amount requested
previous loan amount pending
previous to previous loan pending
sum of loan2 and loan3

loan sanctioned

The rules for sanctioning new loan are:

1. loanl1 should be zero.
2. loan2 + loan3 should not be more than MAXLOAN.

Note the use of long int type to declare variables.

A program to determine GCD of two numbers is given in Fig. 7.14.

|
—
.
.
I
Decision Making and Branching ’

230" Computing Fundamentals & C Programming

Output
Enter the two numbers whose GCD is to be found: 18 12
GCD of 18 and 12 is 6

Fig. 7.14 Program to determine GCD of two numbers

7.8.1 Some Guidelines for Writing Multiway Selection Statements

Complex multiway selection statements require special attention. The readers should be able to understand
the logic easily. Given below are some guidelines that would help improve readability and facilitate
maintenance.

< Avoid compound negative statements. Use positive statements wherever possible.

« Keep logical expressions simple. We can achieve this using nested if statements, if necessary (KISS -
Keep It Simple and Short).

< Try to code the normal/anticipated condition first.

< Use the most probable condition first. This will eliminate unnecessary tests, thus improving the
efficiency of the program.

< The choice between the nested if and switch statements is a matter of individual’s preference.
A good rule of thumb is to use the switch when alternative paths are three to ten.

< Use proper indentations (See Rules for Indentation).

< Have the habit of using default clause in switch statements.

< Group the case labels that have similar actions.

4
7.9 THE GOTO STATEMENT LO 7.5

So far we have discussed ways of controlling the flow of execution based on certain specified conditions.
Like many other languages, C supports the goto statement to branch unconditionally from one point to
another in the program. Although it may not be essential to use the goto statement in a highly structured
language like C, there may be occasions when the use of goto might be desirable.

The goto requires a label in order to identify the place where the branch is to be made. A label is any
valid variable name, and must be followed by a colon. The label is placed immediately before the statement
where the control is to be transferred. The general forms of goto and label statements are shown below:

goto label; label: <——
__________ statement;
label; <——— | | -
statement;
goto label;
Forward jump Backward jump

The label: can be anywhere in the program either before or after the goto label; statement.

Decision Making and Branching ~%231

During running of a program when a statement like
goto begin;
is met, the flow of control will jump to the statement immediately following the label begin:. This happens
unconditionally.

Note that a goto breaks the normal sequential execution of the program. If the label: is before the
statement goto label; a loop will be formed and some statements will be executed repeatedly. Such a jump is
known as a backward jump. On the other hand, if the label: is placed after the goto label; some statements
will be skipped and the jump is known as a forward jump.

A goto is often used at the end of a program to direct the control to go to the input statement, to read
further data. Consider the following example:

main()
{
double x, y;
read:
scanf ("%f", &x);
if (x < 0) goto read;
y = sqrt(x);
printf("%f %f\n", x, y);
goto read;

}

This program is written to evaluate the square root of a series of numbers read from the terminal. The
program uses two goto statements, one at the end, after printing the results to transfer the control back to
the input statement and the other to skip any further computation when the number is negative.

Due to the unconditional goto statement at the end, the control is always transferred back to the input
statement. In fact, this program puts the computer in a permanent loop known as an infinite loop. The
computer goes round and round until we take some special steps to terminate the loop. Such infinite loops
should be avoided. Worked-Out Problem 7.9 illustrates how such infinite loops can be eliminated.

WORKED-OUT PROBLEM 7.9

Program presented in Fig. 7.15 illustrates the use of the goto statement. The program evaluates the square
root for five numbers. The variable count keeps the count of numbers read. When count is less than or
equal to 5, goto read; directs the control to the label read; otherwise, the program prints a message and
stops.

Program
#include <math.h>
main ()
{
double x, y;
int count;
count = 1;
printf("Enter FIVE real values in a LINE \n");
read:

Computing Fundamentals & C Programming

Fig. 7.15 Use of the goto statement

Another use of the goto statement is to transfer the control out of a loop (or nested loops) when certain
peculiar conditions are encountered. Example:

while (-—--)
{
for (———-)
{

if (-—--)goto end_of_program;

} Jumping
I out of
I loops

}

end_of_program:

€

Decision Making and Branching %233

We should try to avoid using goto as far as possible. But there is nothing wrong, if we use it to enhance
the readability of the program or to improve the execution speed.

Q LEARNING OUTCOMES

e Be aware of any side effects in the control expression such as if(x++). LO
e Check the use of =operator in place of the equal operator = =. LO
e Do not give any spaces between the two symbols of relational operators = =, |=, >= and <=. 1970)7.1]
e Writing !=, >= and <= operators like =!, => and =< is an error. 170]7.1)

e Remember to use two ampersands (&&) and two bars (II) for logical operators. Use of single LO
operators will result in logical errors.

e Do not forget to place parentheses for the if expression. LO
e [tis an error to place a semicolon after the if expression. LO
e Do not use the equal operator to compare two floating-point values. They are seldom exactly equal. LO

e Avoid using operands that have side effects in a logical binary expression such as (x——&&++y). The LO
second operand may not be evaluated at all.

e Be aware of dangling else statements. LOE#A
e Use braces to encapsulate the statements in if and else clauses of an if.... else statement. LOE#I
e Do not forget to use a break statement when the cases in a switch statement are exclusive. LO

e Although it is optional, it is a good programming practice to use the default clause in a switch LO
statement.

e It is an error to use a variable as the value in a case label of a switch statement. (Only integral LO
constants are allowed.)

e Do not use the same constant in two case labels in a switch statement. LO
e Try to use simple logical expressions. 156)7.4]
e Be careful while placing a goto label in a program as it may lead to an infinite loop condition. LO

Q KEY TERMS TO REMEMBER

e Decision-making statements: Are the statements that control the flow of execution in a program. LOEAN

e switch statement: Is a multi-way decision making statement that chooses the statement block to be LOJZIEY
executed by matching the given value with a list of case values.

e Conditional operator: Is a two-way decision making statement that returns one of the two LOJgRY
expression values based on the result of the conditional expression.

° goto statement: Is used for unconditional branching. It transfers the flow of control to the place LO
where matching label is found.

e Infinite loop: Is a condition where a set of instructions is repeatedly executed. LO

Computing Fundamentals & C Programming

<

1. Range of Numbers [LO7.1,7.2 M]

Problem: A survey of the computer market shows that personal computers are sold at varying costs by the
vendors. The following is the list of costs (in hundreds) quoted by some vendors:

35.00, 40.50, 25.00, 31.25, 68.15,

47.00, 26.65, 29.00, 53.45, 62.50

Determine the average cost and the range of values.

Problem analysis: Range is one of the measures of dispersion used in statistical analysis of a series of
values. The range of any series is the difference between the highest and the lowest values in the series.
That is

Range = highest value — lowest value
It is therefore necessary to find the highest and the lowest values in the series.
Program: A program to determine the range of values and the average cost of a personal computer in the
market is given in Fig. 7.16.

Decision Making and Branching ~%235

printf("Highest-value: %f\nLowest-value : %f\n",
high, Tow);

printf("Range : %f\nAverage : %f\n",
range, average);

Output
Enter numbers in a line : input a NEGATIVE number to end
35 40.50 25 31.25 68.15 47 26.65 29 53.45 62.50 -1
Total values : 10
Highest-value : 68.150002
Lowest-value : 25.000000
Range : 43.150002
Average : 41.849998

Fig. 7.16 Calculation of range of values

When the value is read the first time, it is assigned to two buckets, high and low, through the statement

high = Tow = value;

For subsequent values, the value read is compared with high; if it is larger, the value is assigned to high.
Otherwise, the value is compared with low; if it is smaller, the value is assigned to low. Note that at a given
point, the buckets high and low hold the highest and the lowest values read so far.

The values are read in an input loop created by the goto input; statement. The control is transferred out
of the loop by inputting a negative number. This is caused by the statement

if (value < 0) goto output;
Note that this program can be written without using goto statements. Try.

2. Pay-Bill Calculations [LO7.2,7.5 M]

Problem: A manufacturing company has classified its executives into four levels for the benefit of certain
perks. The levels and corresponding perks are shown below:

Conveyance allowance Entertainment allowance

1 1000 500
2 750 200
3 500 100
4 250 -

236~ Computing Fundamentals & C Programming

An executive’s gross salary includes basic pay, house rent allowance at 25% of basic pay and other perks.
Income tax is withheld from the salary on a percentage basis as follows:

Gross salary Tax rate
Gross <= 2000 No tax deduction
2000 < Gross <= 4000 3%
4000 < Gross <= 5000 5%
Gross > 5000 8%

Write a program that will read an executive’s job number, level number, and basic pay and then compute
the net salary after withholding income tax.

Problem analysis

Gross salary = basic pay + house rent allowance + perks

Net salary = Gross salary — income tax.

The computation of perks depends on the level, while the income tax depends on the gross salary. The
major steps are:

1. Read data.
. Decide level number and calculate perks.
. Calculate gross salary.
. Calculate income tax.
. Compute net salary.
6. Print the results.
Program: A program and the results of the test data are given in Fig. 7.17. Note that the last statement
should be an executable statement. That is, the label stop: cannot be the last line.

[I SOSN8

Program
#define CA1 1000
#define CA2 750
#define CA3 500
#define CA4 250
#define EA1 500
#define EA2 200
#define EA3 100
#define EA4 0
main()
{
int Tevel, jobnumber;
float gross,
basic,
house_rent,
perks,
net,
incometax;

|
—
.
.
I
Decision Making and Branching ’

Computing Fundamentals & C Programming

Fig. 7.17 Pay-bill calculations

Fill in the Blanks

1. The operator is true only when both the operands are true.

2. Multiway selection can be accomplished using an else if statement or the
statement.

3. The statement when executed in a switch statement causes immediate exit from the -6
structure.

4. The expression ! (x ! =y) can be replaced by the expression

5. The ternary conditional expression using the operator ?: could be easily coded using
statement.

True or False Statements
1. A switch expression can be of any type.
2. A program stops its execution when a break statement is encountered.

3. Each case label can have only one statement.

Levels of Difficulty

“'% : Low; "/U : Medium; “@ : High

|

—

[|

[

I
Decision Making and Branching ’

4. The default case is required in the switch statement. M\%
5. When if statements are nested, the last else gets associated with the nearest if without an else. Mﬁ
6. One if can have more than one else clause. Mﬁ
7. Each expression in the else if must test the same variable. M\/G
8. A switch statement can always be replaced by a series of if..else statements. Mﬁ
9. Any expression can be used for the if expression. m@
10. The predicate !((x >=10)i(y ==15)) is equivalent to (x < 10) && (y !=5). mu@

DISCUSSION QUESTIONS

1.

The following is a segment of a program:
x = 1;
y=1
if (n > 0)
X =x+1;
y=y-1
printf(" %d %d", x, y);
What will be the values of x and y if n assumes a value of (a) 1 and (b) 0.

Rewrite each of the following without using compound relations:

(a) if (grade <= 59 && grade >= 50)
second = second + 1;

(b) if (number > 100 || number < 0)
printf(" Out of range");
else
sum = sum + number;

() if ((M1 > 60 8&& M2 > 60) || T > 200)
printf(" Admitted\n");
else
printf(" Not admitted\n");

11071 7"

71 "
11072 /"

11072 /"

3. Assuming x = 10, state whether the following logical expressions are true or false.
(a) x==10&& x> 10 && !x (b) x==1011x>10&& ! x
() x==10&&x>101I!x (d) x==101Ix>101'x

4. Find errors, if any, in the following switch related statements. Assume that the variables x m@
andy are of int typeand x =1 andy =2
(a) switch (y);
(b) case 10;
(c) switch (x + y)
(d) switch (x) {case 2: y = x + y; break};

1071 g

5. Simplify the following compound logical expressions Mﬁ
(a) !(x<=10) b)) (x==10)I1 ((y==5)11(z<0))
©) ((x+y==2)&& (z>)5) (d) ((x<=5)&& (y==10) & & (z<5))

|
—
|
[|
[
’ Computing Fundamentals & C Programming

6. Assuming that x =5, y =0, and z = 1 initially, what will be their values after executing the M
following code segments?
(@ if (x && y)

x = 10;
else
y = 10;
® if x [[y [l 2)
y = 10;
else
z = 0;
(© if (x)
if (y)
z = 10;
else
z = 0;
@ if (x==0]| x & &y)
if (ly)
z = 0;
else
y =1;

7. Assuming that x =2, y = 1 and z = 0 initially, what will be their values after executing the M
following code segments?
(a) switch (x)

case 2:
x = 1;
y=x+1;
case 1:
x = 0;
break;
default:
x = 1;
y = 0;

}
(b) switch (y)

case 0:
x = 0;
y = 0;

case 2:
X = 23
z = 2;

default:
x = 1;
y = 2;

}
8. What is the output of the following program? M
main ()

{

}

intm=5;

if (m < 3) printf("%d" , m+l) ;
else if(m < 5) printf("%d", m+2);
else if(m < 7) printf("%d", m+3);
else printf("%d", m+4);

9. What is the output of the following program?

main ()

{

}

intm=1;

if (m==1)

{
printf (" Delhi ") ;
if (m==2)
printf("Chennai") ;
else
printf("Bangalore") ;

1

else;

printf(" END");

10. What is the output of the following program?

main()

{

}

int m;
for (m = 1; m<5; m++)

printf(%d\n", (m%2) ? m : m*2);

11. What is the output of the following program?

main()

{

intm, n, p;

for (m=0; m< 3; mH+)
for (n = 0; n<3; n++)

for (p=0; p <335 p++)
if (m+n+p==2)

goto print;

print :
printf("%sd, %d, %d", m, n, p);

|

—

[|

(|

I
Decision Making and Branching ,

|
—
|
[|
[
, Computing Fundamentals & C Programming

12. What will be the value of x when the following segment is executed?
int x = 10, y = 15;
x = (x<y)? (y+x) = (y-x) 3

13. What will be the output when the following segment is executed?

int x = 0;
if (x >=0)
if (x>0)

printf("Number is positive");
else
printf("Number is negative");

14. What will be the output when the following segment is executed?
char ch = 'a' ;
switch (ch)

i
case 'a'
printf("A") ;
case'b':
Printf ("B") ;
default :
printf(" C ") ;
}

15. What will be the output of the following segment when executed?
int x = 10, y = 20;
if((x<y) || (x+5) > 10)
printf("%d", x);
else
printf("%d", y);

16. What will be output of the following segment when executed?
int a = 10, b = 5;

if (a > b)
{
if(b > 5)
printf("%d", b);
1
else

printf("%d", a);

|

—

[|

[

I
Decision Making and Branching ’

DEBUGGING EXERCISES

1.

2.

Find errors, if any, in each of the following segments:
(a) if (x+y=2z28y>0)
printf(" ");

() if (p<0) || (g <0)
printf (" sign is negative");

(c) if (code > 1);
a=hb+c
else
a=20

Find the error, if any, in the following statements:
(a) if (x >=10) then
printf ("\n") ;
() if x > = 10
printf ("OK") ;
() if (x = 10)
printf ("Good") ;
d if (x = < 10)
printf ("Welcome") ;

PROGRAMMING EXERCISES

1.

3.

Write a program to determine whether a given number is ‘odd’ or ‘even’ and print the
message

NUMBER IS EVEN

or

NUMBER IS ODD

(a) without using else option
(b) with else option.

Write a program to find the number of and sum of all integers greater than 100 and less
than 200 that are divisible by 7.

A set of two linear equations with two unknowns x1 and x2 is given below:
ax, +bx, =m
cx; +dx,=n

The set has a unique solution

md — bn
xh= ad —cb
na — mc
x2= ad —cb

provided the denominator ad — cb is not equal to zero.

Write a program that will read the values of constants a, b, ¢, d, m, and n and compute the
values of x, and x,. An appropriate message should be printed if ad — cb = 0.

So71
So71
o072 "

(1071 g

So71
072
So71 "

(1072 g

244> Computing Fundamentals & C Programming

4.

5.

6.

7.

Given a list of marks ranging from O to 100, write a program to compute and print the
number of students:

(a) who have obtained more than 80 marks,

(b) who have obtained more than 60 marks,

(c) who have obtained more than 40 marks,

(d) who have obtained 40 or less marks,

(e) in the range 81 to 100,

(f) in the range 61 to 80,

(g) in the range 41 to 60, and

(h) in the range O to 40.

The program should use a minimum number of if statements.

Admission to a professional course is subject to the following conditions:
(a) Marks in Mathematics >= 60
(b) Marks in Physics >= 50
(c) Marks in Chemistry >= 40
(d) Total in all three subjects >= 200
or
Total in Mathematics and Physics >= 150

Given the marks in the three subjects, write a program to process the applications to list the
eligible candidates.

Write a program to print a two-dimensional Square Root Table as shown below, to provide
the square root of any number from O to 9.9. For example, the value x will give the square
root of 3.2 and y the square root of 3.9.

Square Root Table

Number
0.0

1.0
2.0
3.0 X
9.0

(1072 g

Shown below is a Floyd’s triangle.
1
23
456
78910
I1......15

79 .. o091
(a) Write a program to print this triangle.
(b) Modify the program to produce the following form of Floyd’s triangle.
1
01
101
0101
10101

(1072

8.

10.

11.

12.

Decision Making and Branching ~“<245

A cloth showroom has announced the following seasonal discounts on purchase of items:

Purchase amount Discount
Mill cloth Handloom items
0-100 - 5%
101 - 200 5% 7.5%
201 - 300 7.5% 10.0%
Above 300 10.0% 15.0%

Write a program using switch and if statements to compute the net amount to be paid by a
customer.

Write a program that will read the value of x and evaluate the following function

1 for x <0
y=40 forx=0
-1 forx<O0

using

(a) nested if statements,

(b) else if statements, and

(c) conditional operator ? :

Write a program to compute the real roots of a quadratic equation
ax?+bx+c=0

The roots are given by the equations

\lb2 —4 ac

X, =-b+ 2a

b? —4ac
2a

The program should request for the values of the constants a, b and ¢ and print the values of
X, and x,. Use the following rules:

(a) No solution, if both a and b are zero

(b) There is only one root, if a = 0 (x = —c/b)

(c) There are no real roots, if b2 — 4 ac is negative

(d) Otherwise, there are two real roots

Test your program with appropriate data so that all logical paths are working as per your
design. Incorporate appropriate output messages.

X, =—-b-

Write a program to read three integer values from the keyboard and displays the output
stating that they are the sides of right-angled triangle.

An electricity board charges the following rates for the use of electricity:
For the first 200 units: 80 P per unit

For the next 100 units: 90 P per unit

Beyond 300 units: Rs 1.00 per unit

1071 g
1073 g

1071 "
1072 "
1074 '
1072 g

So72 ®
(1072 g

246~ Computing Fundamentals & C Programming

13.

14.

15.

All users are charged a minimum of Rs. 100 as meter charge. If the total amount is more
than Rs. 400, then an additional surcharge of 15% of total amount is charged.

Write a program to read the names of users and number of units consumed and print out the
charges with names.

Write a program to compute and display the sum of all integers that are divisible by 6 but
not divisible by 4 and lie between 0 and 100. The program should also count and display
the number of such values.

Write an interactive program that could read a positive integer number and decide whether
the number is a prime number and display the output accordingly.

Modify the program to count all the prime numbers that lie between 100 and 200.

NOTE: A prime number is a positive integer that is divisible only by 1 or by itself.

Write a program to read a double-type value x that represents angle in radians and a
character-type variable T that represents the type of trigonometric function and display the
value of

(a) sin(x), if s or S is assigned to T,

(b) cos (x), if c or C is assigned to T, and

(c) tan (x), if tor T is assigned to T

using (i) if......else statement, and

(i) switch statement.

1072 "
1073 "

CHAPTER

Making and
Looping

0
loops

8.1 INTRODUCTION

We have seen in Chapter 7 that it is possible to execute a segment of a program repeatedly
by introducing a counter and later testing it using the if statement. While this method is quite
satisfactory for all practical purposes, we need to initialize and increment a counter and test
its value at an appropriate place in the program for the completion of the loop. For example,
suppose we want to calculate the sum of squares of all integers between 1 and 10, we can write
a program using the if statement as follows:

goto print;
else

T O O

n = 10,
end of Toop

n = n+l;
L goto Toop;

248~ Computing Fundamentals & C Programming

This program does the following things:

1. Initializes the variable n.

2. Computes the square of n and adds it to sum.

3. Tests the value of n to see whether it is equal to 10 or not. If it is equal to 10, then the program prints

the results.

4. If n is less than 10, then it is incremented by one and the control goes back to compute the sum again.

The program evaluates the statement

sum = sum + n*n;
10 times. That is, the loop is executed 10 times. This number can be increased or decreased easily by
modifying the relational expression appropriately in the statement if (n == 10). On such occasions where
the exact number of repetitions are known, there are more convenient methods of looping in C. These
looping capabilities enable us to develop concise programs containing repetitive processes without the use
of goto statements.

In looping, a sequence of statements are executed until some conditions for termination of the loop are
satisfied. A program loop therefore consists of two segments, one known as the body of the loop and the
other known as the control statement. The control statement tests certain conditions and then directs the
repeated execution of the statements contained in the body of the loop.

Depending on the position of the control statement in the loop, a control structure may be classified
either as the entry-controlled loop or as the exit-controlled loop. The flow charts in Fig. 8.1 illustrate
these structures. In the entry-controlled loop, the control conditions are tested before the start of the loop
execution. If the conditions are not satisfied, then the body of the loop will not be executed. In the case of
an exit-controlled loop, the test is performed at the end of the body of the loop and therefore the body is
executed unconditionally for the first time. The entry-controlled and exit-controlled loops are also known as
pre-test and post-test loops respectively.

Entry Entry

Body of
the loop

test
condition
?

False

test

condition
?

Body of
the loop

False

I
!

(a) Entry controlled loop (b) Exit controlled loop

Fig. 8.1 Loop control structures

Decision Making and Looping ~<249

The test conditions should be carefully stated in order to perform the desired number of loop executions.
It is assumed that the test condition will eventually transfer the control out of the loop. In case, due to some
reason it does not do so, the control sets up an infinite loop and the body is executed over and over again.

A looping process, in general, would include the following four steps:

1. Setting and initialization of a condition variable.

2. Execution of the statements in the loop.

3. Test for a specified value of the condition variable for execution of the loop.

4. Incrementing or updating the condition variable.

The test may be either to determine whether the loop has been repeated the specified number of times or
to determine whether a particular condition has been met.

The C language provides for three constructs for performing loop operations. They are:

1. The while statement.

2. The do statement.

3. The for statement.

We shall discuss the features and applications of each of these statements in this chapter.

8.1.1 Sentinel Loops

Based on the nature of control variable and the kind of value assigned to it for testing the control expression,
the loops may be classified into following two general categories:

1. Counter-controlled loops

2. Sentinel-controlled loops

When we know in advance exactly how many times the loop will be executed, we use a counter-
controlled loop. We use a control variable known as counter. The counter must be initialized, tested and
updated properly for the desired loop operations. The number of times we want to execute the loop may
be a constant or a variable that is assigned a value. A counter-controlled loop is sometimes called definite
repetition loop.

In a sentinel-controlled loop, a special value called a sentinel value is used to change the loop control
expression from true to false. For example, when reading data we may indicate the “end of data” by a
special value, like —1 and 999. The control variable is called sentinel variable. A sentinel-controlled loop is
often called indefinite repetition loop because the number of repetitions is not known before the loop begins
executing.

4
8.2 THE WHILE STATEMENT Lo8.1

The simplest of all the looping structures in C is the while statement. We have used while in many of our
earlier programs. The basic format of the while statement is

while (test condition)
{

body of the loop
1

The while is an entry-controlled loop statement. The test-condition is evaluated and if the condition is
true, then the body of the loop is executed. After execution of the body, the test-condition is once again
evaluated and if it is true, the body is executed once again. This process of repeated execution of the body

|
—
[|
|
[
, Computing Fundamentals & C Programming

continues until the test-condition finally becomes false and the control is transferred out of the loop. On
exit, the program continues with the statement immediately after the body of the loop.

The body of the loop may have one or more statements. The braces are needed only if the body
contains two or more statements. However, it is a good practice to use braces even if the body has only one
statement.

We can rewrite the program loop discussed in Section 8.1 as follows:

sum = 0;
n=1; /* Initialization */
—> while(n <= 10) /* Testing */
{
loop sum = sum + n * n;
n = nt+l; /* Incrementing */
>

printf("sum = %d\n", sum);

The body of the loop is executed 10 times for n =1, 2,, 10, each time adding the square of the value
of n, which is incremented inside the loop. The test condition may also be written as n < 11; the result
would be the same. This is a typical example of counter-controlled loops. The variable n is called counter
or control variable.

Another example of while statement, which uses the keyboard input is shown below:

character = ' ' ;

while (character != 'Y')
character = getchar();

XXXXXXX 3

First the character is initialized to * *. The while statement then begins by testing whether character is

not equal to Y. Since the character was initialized to *, the test is true and the loop statement
character = getchar();

is executed. Each time a letter is keyed in, the test is carried out and the loop statement is executed until
the letter Y is pressed. When Y is pressed, the condition becomes false because character equals Y, and
the loop terminates, thus transferring the control to the statement xxxxxxx;. This is a typical example of
sentinel-controlled loops. The character constant ‘y’ is called sentinel value and the variable character is
the condition variable, which often referred to as the sentinel variable.

A program to evaluate the equation
y=x"
when n is a non-negative integer, is given in Fig. 8.2

Levels of Difficulty
L: Low; M: Medium; H: High

251

Decision Making and Looping

The variable y is initialized to 1 and then multiplied by x, n times using the while loop. The loop control
variable count is initialized outside the loop and incremented inside the loop. When the value of count

becomes greater than n, the control exists the loop.

Program

main()

{
int count, n;
float x, y;
printf("Enter the values of x and n : ");
scanf("%f %d", &x, &n);
y = 1.0;
count = 1; /* Initialisation */
/* LOOP BEGINs */
while (count <= n) /* Testing */
{

Yy = Y%
count++; /* Incrementing */
}
/* END OF LOOP */
printf("\nx = %f; n = %d; x to power n = %f\n",x,n,y);
}
Output

Enter the values of x and n : 2.5 4

x = 2.500000; n = 4; x to power n = 39.062500

Enter the values of x and n : 0.5 4

x = 0.500000; n = 4; x to power n = 0.062500

Fig. 8.2 Program to compute x to the power n using while loop

8.3 THE DO STATEMENT

1082

The while loop construct that we have discussed in the previous section, makes a test of condition before
the loop is executed. Therefore, the body of the loop may not be executed at all if the condition is not
satisfied at the very first attempt. On some occasions it might be necessary to execute the body of the loop
before the test is performed. Such situations can be handled with the help of the do statement. This takes

the form:

do
{

body of the Toop

}

while (test-condition);

On reaching the do statement, the program proceeds to evaluate the body of the loop first. At the end
of the loop, the test-condition in the while statement is evaluated. If the condition is true, the program

|
—
[|
|
[
, Computing Fundamentals & C Programming

continues to evaluate the body of the loop once again. This process continues as long as the condition is
true. When the condition becomes false, the loop will be terminated and the control goes to the statement
that appears immediately after the while statement.

Since the fest-condition is evaluated at the bottom of the loop, the do...while construct provides an exit-
controlled loop and therefore the body of the loop is always executed at least once.

A simple example of a do...while loop is:

{ printf ("Input a number\n");
Toop number = getnum ();

while (number > 0);

This segment of a program reads a number from the keyboard until a zero or a negative number is keyed
in, and assigned to the sentinel variable number.
The test conditions may have compound relations as well. For instance, the statement
while (number > 0 &% number < 100);
in the above example would cause the loop to be executed as long as the number keyed in lies between 0
and 100.
Consider another example:

I=1; /* Initializing */
sum = 0;
do

—> {

sum = sum + I;
Toop I = I+2; /* Incrementing */

}

——> while(sum < 40 || I < 10); /* Testing */

printf("%d %d\n", I, sum);

The loop will be executed as long as one of the two relations is true.

Decision Making and Looping %253

This program contains two do.... while loops in nested form. The outer loop is controlled by the variable
row and executed 12 times. The inner loop is controlled by the variable column and is executed 10 times,
each time the outer loop is executed. That is, the inner loop is executed a total of 120 times, each time
printing a value in the table.

Program:

#define COLMAX 10

#define ROWMAX 12

main()

{
int row,column, y;
row = 1;
printf(" MULTIPLICATION TABLE \n");
printf("--—— - \n");
do /*...... OUTER LOOP BEGINS........ =
{

y = row * column;
printf("%4d", y);
column = column + 1;

while (column <= COLMAX); /*...INNER LOOP ENDS...*/
printf("\n");
row = row + 1;
1
while (row <= ROWMAX);/*..... OUTER LOOP ENDS =)
printf("- \n");

Output
MULTIPLICATION TABLE

12 24 36 48 60 72 84 96 108 120

Fig. 8.3 Printing of a multiplication table using do...while loop

254> Computing Fundamentals & C Programming

Notice that the printf of the inner loop does not contain any new line character (\n). This allows the
printing of all row values in one line. The empty printf in the outer loop initiates a new line to print the
next row.

4
8.4 THE FOR STATEMENT L0383

Simple ‘for’ Loops
The for loop is another entry-controlled loop that provides a more concise loop control structure. The
general form of the for loop is

for (initialization ; test-condition ; increment)
{
body of the Toop

}

The execution of the for statement is as follows:

1. Initialization of the control variables is done first, using assignment statements such as i = 1 and
count = 0. The variables i and count are known as loop-control variables.

2. The value of the control variable is tested using the test-condition. The test-condition is a relational
expression, such as i < 10 that determines when the loop will exit. If the condition is true, the body
of the loop is executed; otherwise the loop is terminated and the execution continues with the
statement that immediately follows the loop.

3. When the body of the loop is executed, the control is transferred back to the for statement after
evaluating the last statement in the loop. Now, the control variable is incremented using an
assignment statement such as i = i+1 and the new value of the control variable is again tested
to see whether it satisfies the loop condition. If the condition is satisfied, the body of the loop is
again executed. This process continues till the value of the control variable fails to satisfy the test-
condition.

Note (99 enhances the for loop by allowing declaration of variables in the initialization
permits portion. See the Appendix “C99 Features”.

Consider the following segment of a program:

for (x =0 3 x <=9 ; x = x+1)

Toop {
printf("%d", x);
1

printf("\n");

This for loop is executed 10 times and prints the digits O to 9 in one line. The three sections enclosed
within parentheses must be separated by semicolons. Note that there is no semicolon at the end of the
increment section, X = x+1.

The for statement allows for negative increments. For example, the loop discussed above can be written
as follows:

Decision Making and Looping ~%255

for (x =9 ;x>0 3 x =x=1)
printf("%d", x);
printf("\n");
This loop is also executed 10 times, but the output would be from 9 to O instead of 0 to 9. Note that
braces are optional when the body of the loop contains only one statement.
Since the conditional test is always performed at the beginning of the loop, the body of the loop may not
be executed at all, if the condition fails at the start. For example,
for (x = 9; x < 9; x = x-1)
printf("%d", x);
will never be executed because the test condition fails at the very beginning itself.

Let us again consider the problem of sum of squares of integers discussed in Section 8.1. This problem
can be coded using the for statement as follows:

for (n = 1; n <= 10; n = n+l)

sum = sum+ n*n;

The body of the loop
sum = sum + n*n;
is executed 10 times for n = 1, 2,, 10 each time incrementing the sum by the square of the value of n.
One of the important points about the for loop is that all the three actions, namely initialization, testing,
and incrementing, are placed in the for statement itself, thus making them visible to the programmers and
users, in one place. The for statement and its equivalent of while and do statements are shown in Table 8.1.

Table 8.1 Comparison of the Three Loops

for while do

for (n=1; n<=10; ++n) n=1; n=1;
{ while (n<=10) do

{ {
{

n=n+l; n=n+l;

} }

while(n<=10);

Computing Fundamentals & C Programming

Decision Making and Looping

Fig. 8.4 Program to print ‘Power of 2’ table using for loop

The program evaluates the value
p=2"
successively by multiplying 2 by itself n times.

ozl
p

Note that we have declared p as a long int and as a double.

Fig. 8.5 Program to print nth fibonacci number

Computing Fundamentals & C Programming

Decision Making and Looping ~%259

return(num) ;

Output
Enter the value of n: 20
Prime numbers between 1 and 20 are:
2 3 5 7 11 13 17 19

Fig. 8.6 Program to print all prime numbers between 1 and n

8.4.1 Additional Features of for Loop

The for loop in C has several capabilities that are not found in other loop constructs. For example, more
than one variable can be initialized at a time in the for statement. The statements
p=1;
for (n=0; n<17; ++n)
can be rewritten as,
for (p=1, n=0; n<17; ++n)
Note that the initialization section has two parts p = 1 and n = 1 separated by a comma.
Like the initialization section, the increment section may also have more than one part. For example, the
loop
for (n=1, m=50; n<=m; n=n+1, m=m-1)
{
p=m/n;
printf("%d %d %d\n", n, m, p);
}

is perfectly valid. The multiple arguments in the increment section are separated by commas.
The third feature is that the test-condition may have any compound relation and the testing need not be
limited only to the loop control variable. Consider the example below:
sum = 0;
for (i = 1; i < 20 && sum < 100; ++i)
{
sum = sum+i;
printf("%d %d\n", i, sum);

}

The loop uses a compound test condition with the counter variable i and sentinel variable sum. The loop
is executed as long as both the conditions i < 20 and sum < 100 are true. The sum is evaluated inside the
loop.

It is also permissible to use expressions in the assignment statements of initialization and increment
sections. For example, a statement of the type

for (x = (m+n)/2; x > 0; x = x/2)
is perfectly valid.

260~ Computing Fundamentals & C Programming

Another unique aspect of for loop is that one or more sections can be omitted, if necessary. Consider the
following statements:
m=5;
for (3 m!=100 ;)
{
printf("%d\n", m);
m = mt5;

Both the initialization and increment sections are omitted in the for statement. The initialization has been
done before the for statement and the control variable is incremented inside the loop. In such cases, the
sections are left ‘blank’. However, the semicolons separating the sections must remain. If the test-condition
is not present, the for statement sets up an ‘infinite’ loop. Such loops can be broken using break or goto
statements in the loop.

We can set up time delay loops using the null statement as follows:

for (j =1000; j > 05 j = j-1)

This loop is executed 1000 times without producing any output; it simply causes a time delay. Notice
that the body of the loop contains only a semicolon, known as a null statement. This can also be written as
following:

for (j=1000; j > 0; j = j-1)

This implies that the C compiler will not give an error message if we place a semicolon by mistake at the
end of a for statement. The semicolon will be considered as a null statement and the program may produce
some nonsense.

8.4.2 Nesting of for Loops

Nesting of loops, that is, one for statement within another for statement, is allowed in C. For example, two
loops can be nested as follows:

{ Inner | Quter
————————— Toop loop

Decision Making and Looping ~%261

The nesting may continue up to any desired level. The loops should be properly indented so as to enable
the reader to easily determine which statements are contained within each for statement. (ANSI C allows
up to 15 levels of nesting. However, some compilers permit more).

The program to print the multiplication table discussed in Program 8.2 can be written more concisely
using nested for statements as follows:

for (row = 1; row <= ROWMAX ; ++row)
{
for (column = 1; column <= COLMAX ; ++column)
{
y = row * column;
printf("%4d", y);
1
printf("\n");

The outer loop controls the rows while the inner loop controls the columns.

WORKED-OUT PROBLEM 8.6 m

A class of n students take an annual examination in m subjects. A program to read the marks obtained
by each student in various subjects and to compute and print the total marks obtained by each of them is
given in Fig. 8.7.

The program uses two for loops, one for controlling the number of students and the other for controlling
the number of subjects. Since both the number of students and the number of subjects are requested
by the program, the program may be used for a class of any size and any number of subjects.

The outer loop includes three parts which are as follows:

1. reading of roll-numbers of students, one after another;

2. inner loop, where the marks are read and totalled for each student; and

3. printing of total marks and declaration of grades.

Program
#define FIRST 360
#define SECOND 240
main ()
{
int n, m, i, Jj,
roll _number, marks, total;
printf("Enter number of students and subjects\n");
scanf ("%d %d", &n, &m);
printf("\n");

262" Computing Fundamentals & C Programming

for (i = 1; i <= n ; ++i)

{
printf("Enter roll_number : ");
scanf("%d", &roll _number);
total = 0 ;
printf("\nEnter marks of %d subjects for ROLL NO %d\n",
m,rol1_number) ;
for (3 = 15 j <= m; j++)
{
scanf("%d", &marks);
total = total + marks;
1
printf("TOTAL MARKS = %d ", total);
if (total >= FIRST)
printf("(First Division)\n\n");
else if (total >= SECOND)
printf("(Second Division)\n\n");
else
printf("(*** F A I L ***)\n\n");
}

Output
Enter number of students and subjects
36
Enter roll_number : 8701
Enter marks of 6 subjects for ROLL NO 8701
81 75 83 45 61 59
TOTAL MARKS = 404 (First Division)
Enter roll_number : 8702
Enter marks of 6 subjects for ROLL NO 8702
51 49 55 47 65 41
TOTAL MARKS = 308 (Second Division)
Enter roll_number : 8704
Enter marks of 6 subjects for ROLL NO 8704

40 19 31 47 39 25
TOTAL MARKS = 201 (*** F A I L ***)

Fig. 8.7 lllustration of nested for loops

WORKED-OUT PROBLEM 8.7

The program in Fig. 8.8 shows how to write a program to display a pyramid.

Decision Making and Looping %263

Program
#include <stdio.h>
#include <conio.h>
void main()
{
int num,i,y,x=40;
clrscr();
printf("\nEnter a number for \ngenerating the
pyramid:\n");
scanf("%d",&num) ;
for(y=0;y<=num;y++)
{
gotoxy (x,y+1);
for(i=0-y;i<=y;i++)
printf("%3d",abs(i));
X=X-3;
}
getch();
}
Output
Enter a number for
generating the pyramid:
7

e e
O O O O O o o
e
w w w w

2
2
2
2
2
2

N NN N NN

3
3
3
3
3

B R

4
4
4
4

(o) o))
(S NS NS,
(S NS NS,

6
0 6

3 7

Fig. 8.8 Program to build a pyramid

Selecting a Loop
Given a problem, the programmer’s first concern is to decide the type of loop structure to be used. To
choose one of the three loop supported by C, we may use the following strategy:

Analyse the problem and see whether it required a pre-test or post-test loop.

If it requires a post-test loop, then we can use only one loop, do while.

If it requires a pre-test loop, then we have two choices: for and while.

Decide whether the loop termination requires counter-based control or sentinel-based control.

Use for loop if the counter-based control is necessary.

Use while loop if the sentinel-based control is required.

Note that both the counter-controlled and sentinel-controlled loops can be implemented by all the
three control structures.

K2 K2 K2 K2 K2 K2 K2
L XA X R X SR X R X S X 4

264~ Computing Fundamentals & C Programming

{
8.5 JUMPS IN LOOPS LO 8.4

Loops perform a set of operations repeatedly until the control variable fails to satisfy the test-condition.
The number of times a loop is repeated is decided in advance and the test condition is written to achieve
this. Sometimes, when executing a loop it becomes desirable to skip a part of the loop or to leave the loop
as soon as a certain condition occurs. For example, consider the case of searching for a particular name in
a list containing, say, 100 names. A program loop written for reading and testing the names 100 times must
be terminated as soon as the desired name is found. C permits a jump from one statement to another within
a loop as well as a jump out of a loop.

8.5.1 Jumping Out of a Loop

An early exit from a loop can be accomplished by using the break statement or the goto statement.
We have already seen the use of the break in the switch statement and the goto in the if...else construct.
These statements can also be used within while, do, or for loops. They are illustrated in Figs 8.9 and 8.10.

while (--------) do
{ {
if (condition) if (condition)
break; break;
EE || 0 seeseeees B || 0 seeeeeees
from| from|
loop } loop Jwhile (-);
(a) (b)
ff@p (F======-) ff@p (F======-)
{
————————— for (--------)
if (error) {
Exit ,Pt?fk; if(condition)
from| Exit ?t?fkf
loop } from }
fffffffff inner
loop —>
(c) (d)

Fig. 8.9 Exiting a loop with break statement

When a break statement is encountered inside a loop, the loop is immediately exited and the program
continues with the statement immediately following the loop. When the loops are nested, the break would
only exit from the loop containing it. That is, the break will exit only a single loop.

Decision Making and Looping ~%265

Since a goto statement can transfer the control to any place in a program, it is useful to provide
branching within a loop. Another important use of goto is to exit from deeply nested loops when an error
occurs. A simple break statement would not work here.

while (-=------) ol (e)
{ T
if(error) P)
goto stop; —— {
if (condition) Exit £ (error)
—— goto abc; from .
Jump Toop , goto error;
within| Bt || 00 e
leen || = e from } 77777777
L abc two }
"""""" loops
} error;
StOp R e
(a) (b)

Fig. 8.10 Jumping within and exiting from the loops with goto statement

WORKED-OUT PROBLEM 8.8

The program in Fig. 8.11 illustrates the use of the break statement in a C program.

The program reads a list of positive values and calculates their average. The for loop is written to read 1000
values. However, if we want the program to calculate the average of any set of values less than 1000, then
we must enter a ‘negative’ number after the last value in the list, to mark the end of input.

Program

main ()

{
int m;
float x, sum, average;
printf("This program computes the average of a

set of numbers\n");

printf("Enter values one after another\n");
printf("Enter a NEGATIVE number at the end.\n\n");
sum = 0;
for (m=1; m< = 1000 ; ++m)
{

scanf("%f", &x);

266~ Computing Fundamentals & C Programming

if (x <0)
break;
sum += X ;
}
average = sum/(float) (m-1);
printf("\n");

%d\n", m-1);
%f\n", sum);

printf("Number of values

printf("Sum

printf("Average %f\n", average);
Output
This program computes the average of a set of numbers
Enter values one after another
Enter a NEGATIVE number at the end.
21 23 24 22 26 22 -1

Number of values = 6
Sum = 138.000000
Average = 23.000000

Fig. 8.11 Use of break in a program

Each value, when it is read, is tested to see whether it is a positive number or not. If it is positive,
the value is added to the sum; otherwise, the loop terminates. On exit, the average of the values read is
calculated and the results are printed out.

WORKED-OUT PROBLEM 8.9 H

A program to evaluate the series.

=14+x+x2+x3+ e+ XD
1-x

for —1 < x < 1 with 0.01 per cent accuracy is given in Fig. 8.12. The goto statement is used to exit the loop
on achieving the desired accuracy.

We have used the for statement to perform the repeated addition of each of the terms in the series. Since
it is an infinite series, the evaluation of the function is terminated when the term x® reaches the desired
accuracy. The value of n that decides the number of loop operations is not known and therefore we have
decided arbitrarily a value of 100, which may or may not result in the desired level of accuracy.

—
|
—
.
.
[
Decision Making and Looping !

Fig. 8.12 Use of goto to exit from a loop

268~ Computing Fundamentals & C Programming

The test of accuracy is made using an if statement and the goto statement exits the loop as soon as the
accuracy condition is satisfied. If the number of loop repetitions is not large enough to produce the desired
accuracy, the program prints an appropriate message.

Note that the break statement is not very convenient to use here. Both the normal exit and the break exit
will transfer the control to the same statement that appears next to the loop. But, in the present problem, the
normal exit prints the message

“FINAL VALUE OF N IS NOT SUFFICIENT
TO ACHIEVE DESIRED ACCURACY”

and the forced exit prints the results of evaluation. Notice the use of a null statement at the end. This is
necessary because a program should not end with a label.

8.5.2 Structured Programming

Structured programming is an approach to the design and development of programs. It is a discipline of
making a program’s logic easy to understand by using only the following basic three control structures:

< Sequence (straight line) structure

< Selection (branching) structure

< Repetition (looping) structure

While sequence and loop structures are sufficient to meet all the requirements of programming, the
selection structure proves to be more convenient in some situations.

The use of structured programming techniques helps ensure well-designed programs that are easier to
write, read, debug and maintain compared to those that are unstructured.

Structured programming discourages the implementation of unconditional branching using jump
statements such as goto, break and continue. In its purest form, structured programming is synonymous
with “goto less programming” .

Do not go to goto statement!

Skipping a Part of a Loop

During the loop operations, it may be necessary to skip a part of the body of the loop under certain
conditions. For example, in processing of applications for some job, we might like to exclude the processing
of data of applicants belonging to a certain category. On reading the category code of an applicant, a test
is made to see whether his application should be considered or not. If it is not to be considered, the part of
the program loop that processes the application details is skipped and the execution continues with the next
loop operation.

Like the break statement, C supports another similar statement called the continue statement. However,
unlike the break which causes the loop to be terminated, the continue, as the name implies, causes the loop
to be continued with the next iteration after skipping any statements in between. The continue statement
tells the compiler, “SKIP THE FOLLOWING STATEMENTS AND CONTINUE WITH THE NEXT
ITERATION”. The format of the continue statement is simply

continue;
The use of the continue statement in loops is illustrated in Fig. 8.13. In while and do loops, continue

causes the control to go directly to the test-condition and then to continue the iteration process. In the case
of for loop, the increment section of the loop is executed before the test-condition is evaluated.

Decision Making and Looping ~%269

— 5 while (test-condition) do
{ {
if (-mmmmeee-) if (-mmmmoe-)
continue; continue;
} —> } while (test-condition);
(a) (b)

—y for (initialization; test condition; increment)

Fig. 8.13 Bypassing and continuing i loops

WORKED-OUT PROBLEM 8.10 i

The program in Fig. 8.14 illustrates the use of continue statement.

The program evaluates the square root of a series of numbers and prints the results. The process stops when
the number 9999 is typed in.

In case, the series contains any negative numbers, the process of evaluation of square root should be
bypassed for such numbers because the square root of a negative number is not defined. The continue
statement is used to achieve this. The program also prints a message saying that the number is negative and
keeps an account of negative numbers.

The final output includes the number of positive values evaluated and the number of negative items
encountered.

Program:

#include <math.h>

main()

{
int count, negative;
double number, sqroot;
printf("Enter 9999 to STOP\n");
count = 0 ;
negative = 0 ;

Computing Fundamentals & C Programming

Fig. 8.14 Use of continue statement

Decision Making and Looping ~%271

Avoiding goto

As mentioned earlier, it is a good practice to avoid using goto. There are many reasons for this. When goto
is used, many compilers generate a less efficient code. In addition, using many of them makes a program
logic complicated and renders the program unreadable. It is possible to avoid using goto by careful program
design. In case any goto is absolutely necessary, it should be documented. The goto jumps shown in
Fig. 8.15 would cause problems and therefore must be avoided.

= I [ek

Fig. 8.15 goto jumps to be ovoided

—)

Jumping out of the Program

We have just seen that we can jump out of a loop using either the break statement or goto statement. In a
similar way, we can jump out of a program by using the library function exit(). In case, due to some reason,
we wish to break out of a program and return to the operating system, we can use the exit() function, as
shown below:

The exit() function takes an integer value as its argument. Normally zero is used to indicate normal
termination and a nonzero value to indicate termination due to some error or abnormal condition. The use
of exit() function requires the inclusion of the header file <stdlib.h>.

r
8.6 CONCISE TEST EXPRESSIONS Losa’

We often use test expressions in the if, for, while and do statements that are evaluated and compared with
zero for making branching decisions. Since every integer expression has a true/false value, we need not
make explicit comparisons with zero. For instance, the expression x is true whenever x is not zero, and
false when x is zero. Applying! operator, we can write concise test expressions without using any relational
operators.

if (expression ==0)
is equivalent to

if(!expression)
Similarly,

if (expression! = 0)
is equivalent to

if (expression)

For example,
if (Mm% 5==0 & & n%5==0) is same as if ({(M%5)&&!(n%5))

272" Computing Fundamentals & C Programming

Q LEARNING OUTCOMES

It is a common error to use wrong relational operator in test expressions. Ensure that the loop is
evaluated exactly the required number of times.

Avoid a common error using = in place of = = operator.
Do not compare floating-point values for equality.

When performing an operation on a variable repeatedly in the body of a loop, make sure that the
variable is initialized properly before entering the loop.

Indent the statements in the body of loops properly to enhance readability and understandability.
Use of blank spaces before and after the loops and terminating remarks are highly recommended.
Do not forget to place the semicolon at the end of dowhile statement.

Do not forget to place the increment statement in the body of a while or do...while loop.

Avoid using while and for statements for implementing exit-controlled (post-test) loops. Use do...
while statement. Similarly, do not use do...while for pre-test loops.

Placing a semicolon after the control expression in a while or for statement is not a syntax error but
it is most likely a logic error.

Using commas rather than semicolon in the header of a for statement is an error.

Do not change the control variable in both the for statement and the body of the loop. It is a logic
error.

Although it is legally allowed to place the initialization, testing, and increment sections outside the
header of a for statement, avoid them as far as possible.

Although it is permissible to use arithmetic expressions in initialization and increment section, be
aware of round off and truncation errors during their evaluation.

Although statements preceding a for and statements in the body can be placed in the for header,
avoid doing so as it makes the program more difficult to read.

The use of break and continue statements in any of the loops is considered unstructured
programming. Try to eliminate the use of these jump statements, as far as possible.

Avoid the use of goto anywhere in the program.

Use the function exit() only when breaking out of a program is necessary.

_g KEY TERMS TO REMEMBER

5] 8.1

LOEM
LoEMl
LOEM

LoEMl
LOEM
LOE#M
LOEM
LOEM

LOEX]

8¢ 8.3 |
LOEX]

LOEE]
LOEK]
LOEE]
LOEXA

Lo
LoEX

Control statement: Tests certain conditions and directs the repeated execution of the body of the
loop.

Program loop: Executes a sequence of statements repeatedly until some conditions for termination
of the loop are satisfied.

while statement: Is an entry-controlled loop that evaluates the test-condition first and then executes
the body of the loop if the condition is true.

do statement: Executes the body of the loop first and then evaluates the test-condition in the
subsequent while statement.

break statement: Terminates the loop and takes the program control to the statement immediately
following the loop.

LOEX1
LOEXN
LOEX1
LOEM™
170]8.4 |

Decision Making and Looping ~%273

e continue statement: Skips the remaining part of the loop and takes the program control to the next Lom
loop iteration.

BRIEF CASES

1. Table of Binomial Coefficients [LO 8.1, 8.2 M]

Problem: Binomial coefficients are used in the study of binomial distributions and reliability of
multicomponent redundant systems. It is given by,
m!

Bmx) =()= — o m>=x
X x!(m—x)!

A table of binomial coefficients is required to determine the binomial coefficient for any set of m and x.
Problem Analysis: The binomial coefficient can be recursively calculated as follows:

B(m,0) =1
m—x+1

B(m,x) = B(m,x-1) {
X

} ,x=1,23,....m

Further,
B(o,0)=1

That is, the binomial coefficient is one when either x is zero or m is zero. The program in Fig. 8.16 prints
the table of binomial coefficients for m = 10. The program employs one do loop and one while loop.

Program
#define MAX 10
main()
{
int m, x, binom;
printf(" m x");
for (m = 03 m <= 10 ; ++m)
printf("%4d", m);
printf("\n--————-——— o \n");
m = 0;
do
{
printf("%2d ", m);
X = 0; binom = 1;
while (x <= m)
{
if(m==0 || x == 0)
printf("%4d", binom);
else
{
binom = binom * (m - x + 1)/x;
printf("%4d", binom);

274

Computing Fundamentals & C Programming

}
X =x+1;
}
printf("\n");
m=m+ 13
1
while (m <= MAX);

PRIREF (P cem e

Output

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1
5 1 5 10 10 5
6 1 6 15 20 15
7 1 7 21 35 35
8 1 8 28 56 70
9 1 9 36 84 126
10 1 10 45 120 210

1
6 1
21 7 1

Fig. 8.16 Program to print binomial coefficient table

2. Histogram

[LO 8.3 M]

Problem: In an organization, the employees are grouped according to their basic pay for the purpose of
certain perks. The pay-range and the number of employees in each group are as follows:

Group Pay-Range
1 750 — 1500
2 1501 - 3000
3 3001 — 4500
4 4501 - 6000
5 above 6000

Draw a histogram to highlight the group sizes.

Number of Employees

12
23
35
20
11

Problem Analysis: Given the size of groups, it is required to draw bars representing the sizes of various
groups. For each bar, its group number and size are to be written.

Program in Fig. 8.17 reads the number of employees belonging to each group and draws a histogram.
The program uses four for loops and two if.....else statements.

—
|
—
.
.
[
Decision Making and Looping !

276~ Computing Fundamentals & C Programming

20
Enter Employees in Group - 5 : 11
11

|************

Group_l |************(12)
|************

|***********************

Group_z |***********************(23)
|***********************
|***********************************

Group_3 |***********************************(35)
|***********************************
|********************

Group_4 |********************(20)
|********************

|***********

Group_s |***********(11)
|**********

Fig. 8.17 Program to draw a histogram

3. Minimum Cost [LO 8.3, 8.4 M]

Problem: The cost of operation of a unit consists of two components C1 and C2 which can be expressed as
functions of a parameter p as follows:

Cl1=30-38p
C2=10+p?
The parameter p ranges from O to 10. Determine the value of p with an accuracy of +0.1 where the cost
of operation would be minimum.
Problem Analysis:
Total cost = C, + C, =40 - 8p + p?
The cost is 40 when p = 0, and 33 when p = 1 and 60 when p = 10. The cost, therefore, decreases first
and then increases. The program in Fig. 8.18 evaluates the cost at successive intervals of p (in steps of 0.1)

and stops when the cost begins to increase. The program employs break and continue statements to exit
the loop.

Decision Making and Looping ~“277

Program
main()
{
float p, cost, pl, costl;
for (p=0; p<=10; p=p + 0.1)
{
cost =40 - 8 *p + p * p;
if(p == 0)
{
costl = cost;
continue;
}
if (cost >= costl)
break;
costl = cost;
pl = p;
}
p=(p+pl)/2.0;
cost =40 - 8 *p + p * p;
printf("\nMINIMUM COST = %.2f AT p = %.1f\n",
cost, p);

Output
MINIMUM COST = 24.00 A p = 4.0

Fig. 8.18 Program of minimum cost problem

4. Plotting of Two Functions [LO 8.3, 8.4 H]

Problem: We have two functions of the type
y1l = exp (—ax)
y2 = exp (-ax*/2)
Plot the graphs of these functions for x varying from 0 to 5.0.

Problem Analysis: Initially when x = 0, yl = y2 =1 and the graphs start from the same point. The curves
cross when they are again equal at x = 2.0. The program should have appropriate branch statements to print
the graph points at the following three conditions:

1. yl>y2
2. yl<y2
3. yl=y2

The functions y1 and y2 are normalized and converted to integers as follows:
yl =50exp (—ax) + 0.5
y2=50exp (-ax¥2)+ 0.5

Computing Fundamentals & C Programming

The program in Fig. 8.19 plots these two functions simultaneously. (O for y1, * for y2, and # for the
common point).

i

Decision Making and Looping

0--- %

[0 [
*

o P

!
>

*.0
-
L
*¥oeeeen0
cmee-0
|

*
L
cmee-0

Fig. 8.19 Plotting of two functions

H

Computing Fundamentals & C Programming

REVIEW QUESTIONS

1. The sentinel-controlled loop is also known as

2. In a counter-controlled loop, variable known as

il

® 2 R

10.

Fill in the Blanks
loop.
is used to count the loop operations.

In an exit-controlled loop, if the body is executed n times, the test condition is evaluated
times.

A for loop with the no test condition is known as loop.

The statement is used to skip a part of the statements in a loop.

True or False Statements

In a pretest loop, if the body is executed n times, the test expression is executed n + 1
times.

The number of times a control variable is updated always equals the number of loop
iterations.

The do...while statement first executes the loop body and then evaluate the loop control
expression.

An exit-controlled loop is executed a minimum of one time.

The three loop expressions used in a for loop header must be separated by commas.
while loops can be used to replace for loops without any change in the body of the loop.
Both the pretest loops include initialization within the statement.

In a for loop expression, the starting value of the control variable must be less than its
ending value.

The initialization, test condition and increment parts may be missing in a for statement.

The use of continue statement is considered as unstructured programming.

DISCUSSION QUESTIONS

1.

Can we change the value of the control variable in for statements? If yes, explain its
consequences.

What is a null statement? Explain a typical use of it.

Use of goto should be avoided. Explain a typical example where we find the application of
goto becomes necessary.

How would you decide the use of one of the three loops in C for a given problem?

How can we use for loops when the number of iterations are not known?

Levels of Difficulty

"% : Low;

“'/G : Medium; "@ : High

JLo81./"
1081 "
11082, /™

1083 ™
l1084

LL081 ™
L1081 g
ll082

L1082
1083
1083 ™
1083 ™
[L083 ™

1083 g
l108a ™

11083 "

L1081 ™
1084 g

1083 g
. L083 ™

|

—

[|

(|

[
Decision Making and Looping ,

6. Explain the operation of each of the following for loops.
(@ for (n=1; n !=10; n += 2)
sum = sum + n;
(b) for (n = 5; n <=m; n -=1)
sum = sum + n;
(c) for (n = 1; n <= 53)

sum = sum + n;

d for (n=1; 3 n=n+1)
sum = sum + n;

(e) for (n = 13 n <5; n ++)
n=n-1

7. What would be the output of each of the following code segments?

(a) count = 5;
while (count -- > 0)
printf(count);

(b) count = 5;
while (-- count > 0)
printf(count);

(c) count = 5;
do printf(count);
while (count > 0);

(d for (m=10; m> 7, m -=2)
printf(m);

8. Compare, in terms of their functions, the following pairs of statements:
(a) while and do...while
(b) while and for
(c) break and continue
(d) break and goto
(e) continue and goto

9. Analyse each of the program segments that follow and determine how many times the body
of each loop will be executed.

(a) x = 53
y = 503
while (x <= y)

(b) int m = 10;
intn=17;
while (m % n >= 0)

11083,/

|
—
[|
|
[
’ Computing Fundamentals & C Programming

10.

11.

12.
13.

14.

m=m+1;
n=n+2;
}
(©) m=1;
do
{
m=m+2;
}

while (m < 10);

for (i = 0; i <= 55 i = i+2/3)

Write a for statement to print each of the following sequences of integers:

(@) 1,2,4,8,16,32

(b) 1,3,9,27,81,243

(c) —-4,-2,0,2,4

(d) -10,-12,-14,-18, -26, - 42

Change the following for loops to while loops:

(a) for (m=1; m<10; m=m+ 1)
printf(m);

(b) for (; scanf("%d", & m) != -1;)
printf(m);

Change the for loops in Exercise 8.11 to do loops.

What is the output of following code?
int m = 100, n = 0;
while (n==0)
{
if (m<10)
break;
m = m-10;
What is the output of the following code?
intm=20 ;
do

{
if (m> 10)

|

—

[|

(|

[
Decision Making and Looping ,

continue ;
m=m+ 10 ;
} while (m<50) ;
printf("%d", m);

15. What is the output of the following code? M

intn=0,m=1;

do

{
printf(m) ;
m++

1

while (m <= n) ;
16. What is the output of the following code? M
int n=0, m;
for (m=1;m<=n+1; m+)
printf(m);

17. When do we use the following statement? M

for (5 ;)

DEBUGGING EXERCISES

1. Find errors, if any, in each of the following looping segments. Assume that all the variables
have been declared and assigned values.

(a) while (count != 10); 1L08.1 =

{
count = 1;
sum = sum + X;
count = count + 1;
}

(b) name = 0; o082 ™

do { name = name + 1;
printf("My name is John\n");}
while (name = 1)

© do; 71083.7"

total = total + value;
scanf("%f", &value);
while (value != 999);

(d for (x =1, x > 10; x = x + 1) M

|
—
[|
|
[
, Computing Fundamentals & C Programming

}

(e m=1;

n=0;

for (3 mén < 10; ++n);
printf("Hello\n");

m = m+10
() for (p = 10; p > 0;)
p=p-1

printf("%f", p);

PROGRAMMING EXERCISES

. Given a number, write a program using while loop to reverse the digits of the number. For
example, the number

12345
should be written as

54321
(Hint: Use modulus operator to extract the last digit and the integer division by 10 to get
the n—1 digit number from the n digit number.)

. The factorial of an integer m is the product of consecutive integers from 1 to m. That is,
factorial m=m!=m x (m-1) x x 1.
Write a program that computes and prints a table of factorials for any given m.

. Write a program to compute the sum of the digits of a given integer number.

. The numbers in the sequence

1123581321

are called Fibonacci numbers. Write a program using a do....while loop to calculate and
print the first m Fibonacci numbers.

(Hint: After the first two numbers in the series, each number is the sum of the two
preceding numbers.)

. Rewrite the program of the Example 8.1 using the for statement.

. Write a program to evaluate the following investment equation

V =P(1+r)"

and print the tables which would give the value of V for various combination of the
following values of P, r, and n.

P : 1000, 2000, 3000,........ , 10,000
r:0.10,0.11,0.12, ,0.20
n:1,2,3,...,10

(Hint: P is the principal amount and V is the value of money at the end of n years. This
equation can be recursively written as

V =P(1+r)

P=V
That is, the value of money at the end of first year becomes the principal amount for the
next year and so on.)

11083 "

11083 =

11081 g

L1081 =

L1081 "
(1082 g

1083 g
. L083 ™

10.

11.

12.

Decision Making and Looping ~%285

Write programs to print the following outputs using for loops.

(@ 1 (b) * * % % x %
22 * % % %
333 * % %
4444 * ok
55555 *

Write a program to read the age of 100 persons and count the number of persons in the age
group 50 to 60. Use for and continue statements.

Rewrite the program of case study 8.4 (plotting of two curves) using else...if constructs
instead of continue statements.

Write a program to print a table of values of the function
y =exp (-x)
for x varying from 0.0 to 10.0 in steps of 0.10. The table should appear as follows:

Table for Y = EXP(-X)

2.0
3.0

9.0

Write a program that will read a positive integer and determine and print its binary
equivalent.

(Hint: The bits of the binary representation of an integer can be generated by repeatedly
dividing the number and the successive quotients by 2 and saving the remainder, which is
either O or 1, after each division.)

Write a program using for and if statement to display the capital letter S in a grid of 15

rows and 18 columns as shown below.

B R L o o e e e e e e e e e e — - k%

$okoskosk ok skoskokosk L ____ & ok

koK sk sk

koK sk sk

koK sk sk

S okokok ok _ _ _ _ _ _______. .- & 3k sk ok

______________________ &k sk ok

_____________________ & ok sk ok
EE S S
EE S S S
EE S S S

11083 g

11083 =

11083 g

|
—
[|
|
[
, Computing Fundamentals & C Programming

13.

15.

16.

17.

18.

19.

20.

Write a program to compute the value of Euler’s number e, that is used as the base of
natural logarithms. Use the following formula

e=1+1/11+1/2'+1/31+..... +1/n!

Use a suitable loop construct. The loop must terminate when the difference between two
successive values of e is less than 0.00001.

Write programs to evaluate the following functions to 0.0001% accuracy.
(a) sinx =x —x3/3! +x3/5! = x"/T' +......

(b) cosx =1—x%2! +x%4! —x6/6! +

() SUM =1+ (1/2)2 + (1133 + (1/4)* +

The present value (popularly known as book value) of an item is given by the relationship.

P=c(1-d)"

where ¢ = original cost

d =rate of depreciation (per year)

n =number of years

p = present value after y years.
If P is considered the scrap value at the end of useful life of the item, write a program to
compute the useful life in years given the original cost, depreciation rate, and the scrap
value.
The program should request the user to input the data interactively.

Write a program to print a square of size 5 by using the character S as shown below:

@S S S S S S S S S S
S S S S S S S
S S S S S S S
S S S S S S S
S S S S S S S S S S

Write a program to graph the function

y = sin (x)
in the interval O to 180 degrees in steps of 15 degrees. Use the concepts discussed in the
Case Study 4 in Chapter 8.

Write a program to print all integers that are not divisible by either 2 or 3 and lie between 1
and 100. Program should also account the number of such integers and print the result.

Modify the program of Exercise 8.16 to print the character O instead of S at the centre of
the square as shown below.

S S S S S
S S S S S
S S O S S
S S S S S
S S S S S

Given a set of 10 two-digit integers containing both positive and negative values, write a
program using for loop to compute the sum of all positive values and print the sum and the
number of values added. The program should use scanf to read the values and terminate
when the sum exceeds 999. Do not use goto statement.

1083 g

11083 g

1083 g

11083, /™

1083 ™

1083 ™
11083 ™

1083 g

CHAPTER

9.1 INTRODUCTION

So far we have used only the fundamental data types, namely char, int, float, double and
variations of int and double. Although these types are very useful, they are constrained by the
fact that a variable of these types can store only one value at any given time. Therefore, they
can be used only to handle limited amounts of data. In many applications, however, we need to
handle a large volume of data in terms of reading, processing and printing. To process such large
amounts of data, we need a powerful data type that would facilitate efficient storing, accessing
and manipulation of data items. C supports a derived data type known as array that can be used
for such applications.

An array is a fixed-size sequenced collection of elements of the same data type. It is simply
a grouping of like-type data. In its simplest form, an array can be used to represent a list of
numbers, or a list of names. Some examples where the concept of an array can be used:

« List of temperatures recorded every hour in a day, or a month, or a year.

« List of employees in an organization.

« List of products and their cost sold by a store.

«» Test scores of a class of students.

288~ Computing Fundamentals & C Programming

R

< List of customers and their telephone numbers.

< Table of daily rainfall data.
and so on.

Since an array provides a convenient structure for representing data, it is classified as one of the data
structures in C. Other data structures include structures, lists, queues and trees. A complete discussion of all
data structures is beyond the scope of this text. However, we shall consider structures in Chapter 12.

As we mentioned earlier, an array is a sequenced collection of related data items that share a common
name. For instance, we can use an array name salary to represent a set of salaries of a group of employees
in an organization. We can refer to the individual salaries by writing a number called index or subscript in
brackets after the array name. For example,

salary [10]
represents the salary of 10t employee. While the complete set of values is referred to as an array, individual
values are called elements.

The ability to use a single name to represent a collection of items and to refer to an item by specifying
the item number enables us to develop concise and efficient programs. For example, we can use a loop
construct, discussed earlier, with the subscript as the control variable to read the entire array, perform
calculations, and print out the results.

We can use arrays to represent not only simple lists of values but also tables of data in two, three or more
dimensions. In this chapter, we introduce the concept of an array and discuss how to use it to create and
apply the following types of arrays.

< One-dimensional arrays
% Two-dimensional arrays
% Multidimensional arrays

»

K2

K2
*

9.1.1 Data Structures

C supports a rich set of derived and user-defined data types in addition to a variety of fundamental types
as shown below:

Data Types
Derived Fundamental User-defined
Types Types Types
- Arrays - Integral Types - Structures
- Functions - Float Types - Unions
- Pointers - Character Types - Enumerations

Arrays and structures are referred to as structured data types because they can be used to represent data
values that have a structure of some sort. Structured data types provide an organizational scheme that shows
the relationships among the individual elements and facilitate efficient data manipulations. In programming
parlance, such data types are known as data structures.

Array ~<289

In addition to arrays and structures, C supports creation and manipulation of the following data
structures:

% Linked Lists
% Stacks
< Queues
% Trees
4
9.2 ONE-DIMENSIONAL ARRAYS Lo9.1

A list of items can be given one variable name using only one subscript and such a variable is called a
single-subscripted variable or a one-dimensional array. In mathematics, we often deal with variables that
are single-subscripted. For instance, we use the equation

n
in
i=1

A=t

n

to calculate the average of n values of x. The subscripted variable x; refers to the ith element of x. In C,
single-subscripted variable x; can be expressed as
x[11, x[2], x[3],eeeeeeeee x[n]
The subscript can begin with number 0. That is
x[0]
is allowed. For example, if we want to represent a set of five numbers, say (35, 40, 20, 57, 19), by an array
variable number, then we may declare the variable number as follows
int number[5];

and the computer reserves five storage locations as shown below:
number [0]
number [1]
number [2]

]

]

number [3
number [4

The values to the array elements can be assigned as follows:
number[0] = 35;
number[1] = 40;
number[2] = 20;
number[3] = 57;
number[4] = 19;
This would cause the array number to store the values as shown below:

number [0] 35
number [1] 40
number [2] 20
number [3] 57
number [4] 19

290" Computing Fundamentals & C Programming

These elements may be used in programs just like any other C variable. For example, the following are
valid statements:
a = number[0] + 10;
number[4] = number[0] + number [2];
number[2] = x[5] + y[10];
value[6] = number[i] * 3;
The subscripts of an array can be integer constants, integer variables like i, or expressions that yield
integers. C performs no bounds checking and, therefore, care should be exercised to ensure that the array
indices are within the declared limits.

y
9.3 DECLARATION OF ONE-DIMENSIONAL ARRAYS LO 9.2

Like any other variable, arrays must be declared before they are used so that the compiler can allocate space
for them in memory. The general form of array declaration is
type variable-name] size |;

The type specifies the type of element that will be contained in the array, such as int, float, or char and

the size indicates the maximum number of elements that can be stored inside the array. For example,
float height[50];
declares the height to be an array containing 50 real elements. Any subscripts 0 to 49 are valid. Similarly,
int group[10];

declares the group as an array to contain a maximum of 10 integer constants. Remember:

R

< Any reference to the arrays outside the declared limits would not necessarily cause an error. Rather,
it might result in unpredictable program results.

< The size should be either a numeric constant or a symbolic constant.

The C language treats character strings simply as arrays of characters. The size in a character string
represents the maximum number of characters that the string can hold. For instance,

char name[10];
declares the name as a character array (string) variable that can hold a maximum of 10 characters. Suppose
we read the following string constant into the string variable name.
“WELL DONE”

Each character of the string is treated as an element of the array name and is stored in the memory as
follows:

Array

When the compiler sees a character string, it terminates it with an additional null character. Thus, the
element name[10] holds the null character \O’. When declaring character arrays, we must allow one extra
element space for the null terminator.

Program in Fig. 9.1 uses a one-dimensional array x to read the values and compute the sum of their squares.

Levels of Difficulty
L: Low; M: Medium; H: High

292" Computing Fundamentals & C Programming

Output
ENTER 10 REAL NUMBERS

1.1 2.2 3.3 4.45.56.6 7.7 8.8 9.9 10.10

x[1] = 1.10
x[2] = 2.20
x[3] = 3.30
x[4] = 4.40
x[5] = 5.50
x[6] = 6.60
x[7] = 7.70
x[8] = 8.80
x[9] = 9.90
x[10] = 10.10

Total = 446.86
Fig. 9.1 Program to illustrate one-dimensional array

Note (99 permits arrays whose size can be specified at run time. See Appendix “C99 Features” .

9.4 INITIALIZATION OF ONE-DIMENSIONAL ARRAYS 109.2

After an array is declared, its elements must be initialized. Otherwise, they will contain “garbage”. An array
can be initialized at either of the following stages:
< At compile time

RS

% Atrun time

9.4.1 Compile Time Initialization
We can initialize the elements of arrays in the same way as the ordinary variables when they are declared.
The general form of initialization of arrays is:
type array-name[size] = { list of values };
The values in the list are separated by commas. For example, the statement
int number[3] = { 0,0,0 };
will declare the variable number as an array of size 3 and will assign zero to each element. If the number of
values in the list is less than the number of elements, then only that many elements will be initialized. The
remaining elements will be set to zero automatically. For instance,
float total[5] = {0.0,15.75,-10};
will initialize the first three elements to 0.0, 15.75, and —10.0 and the remaining two elements to zero.

Array ~%293

The size may be omitted. In such cases, the compiler allocates enough space for all initialized elements.

For example, the statement

int counter[] = {1,1,1,1};
will declare the counter array to contain four elements with initial values 1. This approach works fine as
long as we initialize every element in the array.

Character arrays may be initialized in a similar manner. Thus, the statement

char name[] = {'J','0', 'h', 'n', '"\0'};
declares the name to be an array of five characters, initialized with the string “John” ending with the null
character. Alternatively, we can assign the string literal directly as under:
char name [] = "John";
(Character arrays and strings are discussed in detail in Chapter 10.)

Compile time initialization may be partial. That is, the number of initializers may be less than the
declared size. In such cases, the remaining elements are inilialized to zero, if the array type is numeric and
NULL if the type is char. For example,

int number [5] = {10, 20};
will initialize the first two elements to 10 and 20 respectively, and the remaining elements to 0. Similarly,
the declaration.
char city [5] = {'B'};
will initialize the first element to ‘B’ and the remaining four to NULL. It is a good idea, however, to declare
the size explicitly, as it allows the compiler to do some error checking.

Remember, however, if we have more initializers than the declared size, the compiler will produce an
error. That is, the statement

int number [3] = {10, 20, 30, 40};
will not work. It is illegal in C.

9.4.2 Run Time Initialization

An array can be explicitly initialized at run time. This approach is usually applied for initializing large
arrays. For example, consider the following segment of a C program.

if i< 50

sum[i] = 0.0; /* assignment statement */
else

sum[i] = 1.0;

The first 50 elements of the array sum are initialized to zero while the remaining 50 elements are
initialized to 1.0 at run time.
We can also use a read function such as scanf to initialize an array. For example, the statements
int x [3];

Computing Fundamentals & C Programming

scanf ("%d%d%d", &x[0], &[1], &x[2]);
will initialize array elements with the values entered through the keyboard.

The program coded in Fig. 9.2 uses the array group containing 11 elements, one for each range of
marks. Each element counts those values falling within the range of values it represents.

For any value, we can determine the correct group element by dividing the value by 10. For example,
consider the value 59. The integer division of 59 by 10 yields 5. This is the element into which 59 is
counted.

Array

Fig. 9.2 Program for frequency counting

Note that we have used an initialization statement.
int group [COUNTER] = {0,0,0,0,0,0,0,0,0,0,0};
which can be replaced by
int group [COUNTER] = {0};
This will initialize all the elements to zero.

Computing Fundamentals & C Programming

Read binary number a[]

len = strlen(a)
k=0

Is a[k]!=0

Display "Incorrect
binary number format"

Display a[] as
the two's compliment

Fig. 9.3 Algorithm, flow chart and C program to find two’s compliment of a binary number

9.4.3 Searching and Sorting

Searching and sorting are the two most frequent operations performed on arrays. Computer Scientists have
devised several data structures and searching and sorting techniques that facilitate rapid access to data
stored in lists.

Sorting 1is the process of arranging elements in the list according to their values, in ascending or
descending order. A sorted list is called an ordered list. Sorted lists are especially important in list searching
because they facilitate rapid search operations. Many sorting techniques are available. The three simple and
most important among them are:

298~ Computing Fundamentals & C Programming

< Bubble sort

R

% Selection sort

2

« Insertion sort

Other sorting techniques include Shell sort, Merge sort and Quick sort.

Searching is the process of finding the location of the specified element in a list. The specified element
is often called the search key. If the process of searching finds a match of the search key with a list element
value, the search said to be successful; otherwise, it is unsuccessful. The two most commonly used search
techniques are:

< Sequential search

< Binary search

A detailed discussion on these techniques is beyond the scope of this text. However you may refer the
QR section for additional information.

r
9.5 TWO-DIMENSIONAL ARRAYS Lo93

So far we have discussed the array variables that can store a list of values. There could be situations where
a table of values will have to be stored. Consider the following data table, which shows the value of sales of
three items by four sales girls:

Item2 Item3
Salesgirl #1 310 275 365
Salesgirl #2 210 190 325
Salesgirl #3 405 235 240
Salesgirl #4 260 300 380

The table contains a total of 12 values, three in each line. We can think of this table as a matrix consisting
of four rows and three columns. Each row represents the values of sales by a particular salesgirl and each
column represents the values of sales of a particular item.

In mathematics, we represent a particular value in a matrix by using two subscripts such as v;;. Here v
denotes the entire matrix and v;; refers to the value in the i row and j™ column. For example, in the above
table v, refers to the value 325.

C allows us to define such tables of items by using two-dimensional arrays. The table discussed above
can be defined in C as

v[41[3]

Two-dimensional arrays are declared as follows:

type array_name [row_size][column_size];

Note that unlike most other languages, which use one pair of parentheses with commas to separate array
sizes, C places each size in its own set of brackets.

Two-dimensional arrays are stored in memory, as shown in Fig. 9.4. As with the single-dimensional
arrays, each dimension of the array is indexed from zero to its maximum size minus one; the first index
selects the row and the second index selects the column within that row.

|
—
.
.
I
Array ’

ColumnO Column1 Column2

| l l

[ol[o] [olr1] [ol[2]

Row 0 ---->

[1110] [1101] [1102]

Row 1>

[2]10] [2][1] [2][2]

Row 2 ---->

[3]0] [3101] [31[2]

Row 3>

Fig. 9.4 Representation of a two-dimensional array in memory

The program shown in Fig. 9.5 uses a two-dimensional array to store the table values. Each value is
calculated using the control variables of the nested for loops as follows:
product[i] [j] = row * column
where i denotes rows and j denotes columns of the product table. Since the indices i and j range from O to 4,
we have introduced the following transformation:
row = i+1
column = j+1

Computing Fundamentals & C Programming

Fig. 9.5 Program to print multiplication table using two-dimensional array

The program and its output are shown in Fig. 9.6. The program uses the variable value in two-dimensions
with the index i representing girls and j representing items. The following equations are used in computing
the results:

|
—
.
.
I
Array ’

2
(a) Total sales by m™ girl = z value [m][j] (girl_total[m])
j=0

3
(b) Total value of n' item = z value [i][n] (item_total[n])
i=0

3 2
(c) Grand total = Y > valuelil[j]
i=0j=0

girl_total[i]

1]
.Mw

1]
(=}

item_total[j]

~
1]
(=]

1]
.MN

Computing Fundamentals & C Programming

Fig. 9.6 [llustration of two-dimensional arrays

9.6 INITIALIZING TWO-DIMENSIONAL ARRAYS

A Like the one-dimensional arrays, two-dimensional arrays may be initialized by following their declaration
with a list of initial values enclosed in braces. For example,

int table[2][3] = { 0,0,0,1,1,1};

Array ~<303

initializes the elements of the first row to zero and the second row to one. The initialization is done row by
row. The above statement can be equivalently written as
int table[2][3] = {{0,0,0}, {1,1,1}};
by surrounding the elements of the each row by braces.
We can also initialize a two-dimensional array in the form of a matrix as shown below:
int table[2][3] = {

Note the syntax of the above statements. Commas are required after each brace that closes off a row,
except in the case of the last row.
When the array is completely initialized with all values, explicitly, we need not specify the size of the
first dimension. That is, the statement
int table [] [3] = {

is permitted.
If the values are missing in an initializer, they are automatically set to zero. For instance, the statement

int table[2][3] = {

will initialize the first two elements of the first row to one, the first element of the second row to two, and
all other elements to zero.
When all the elements are to be initialized to zero, the following short-cut method may be used.
int m[3]1[5] = { {0}, {0}, {0}};
The first element of each row is explicitly initialized to zero while other elements are automatically
initialized to zero. The following statement will also achieve the same result:
int m [3] [5] = { 0, 0};

WORKED-OUT PROBLEM 9.6 M

A survey to know the popularity of four cars (Ambassador, Fiat, Dolphin and Maruti) was conducted
in four cities (Bombay, Calcutta, Delhi and Madras). Each person surveyed was asked to give his city
and the type of car he was using. The results, in coded form, are tabulated as follows:

M 1 C 2 B 1 D 3 M 2 B 4
C 1 D 3 M 4 B 2 D 1 C 3
D 4 D 4 M 1 M 1 B 3 B 3
C 1 C 1 C 2 M 4 M 4 C 2
D 1 C 2 B 3 M 1 B 1 C 2
D 3 M 4 C 1 D 2 M 3 B 4

|
—
|
I
[
, Computing Fundamentals & C Programming

Codes represent the following information:

M - Madras 1 — Ambassador
D - Delhi 2 — Fiat

C - Calcutta 3 — Dolphin

B — Bombay 4 — Maruti

Write a program to produce a table showing popularity of various cars in four cities.

A two-dimensional array frequency is used as an accumulator to store the number of cars used, under
various categories in each city. For example, the element frequency [i][j] denotes the number of cars of type
j used in city i. The frequency is declared as an array of size 5 x 5 and all the elements are initialized to zero.

The program shown in Fig. 9.7 reads the city code and the car code, one set after another, from the
terminal. Tabulation ends when the letter X is read in place of a city code.

Fig. 9.7 Program to tabulate a survey data

306~ Computing Fundamentals & C Programming

9.6.1 Memory Layout

The subscripts in the definition of a two-dimensional array represent rows and columns. This format maps
the way that data elements are laid out in the memory. The elements of all arrays are stored contiguously in
increasing memory locations, essentially in a single list. If we consider the memory as a row of bytes, with
the lowest address on the left and the highest address on the right, a simple array will be stored in memory
with the first element at the left end and the last element at the right end. Similarly, a two-dimensional array
is stored “row-wise, starting from the first row and ending with the last row, treating each row like a simple
array. This is illustrated below.

Column
0 1 2

0| 10 | 20 |30

row 1] 40 | 50 |60 3 x 3 array
21 70 | 80 |90

row 0 row 1 row 2
\ 10 \ 20 \ 30]\ 40 \ 50 \ 60 y\ 70 \ 80 \ 90 \
o] [of1 o2 - [iol o il 2] [21[o] 21017 (2102
1 2 3 4 5 6 7 8 9
Memory Layout

For a multi-dimensional array, the order of storage is that the first element stored has O in all its
subscripts, the second has all of its subscripts 0 except the far right which has a value of 1 and so on.
The elements of a 2 x 3 x 3 array will be stored as under
1 2 3 4 5 6 7 8 9

000 |001 002 010 | 011 [012 |020 |021 [022 |

10 11 12 13 14 15 16 17 18
\100‘101\102‘110\111‘112]120‘121]122\

The far right subscript increments first and the other subscripts increment in order from right to left. The

sequence numbers 1, 2,...... , 18 represents the location of that element in the list.
WORKED-OUT PROBLEM 9.7
The program in Fig. 9.9 shows how to find the transpose of a matrix.
Algorithm
Step 1 — Start
Step 2 — Read a 3 X 3 matrix (a[3][3])
Step 3 — Initialize the looping counter i = 0

Step 4

Repeat Steps 5-9 while i<3

Computing Fundamentals & C Programming

Fig. 9.8 Program to find transpose of a matrix

Computing Fundamentals & C Programming

Fig. 9.9 Program for N x N matrix multiplication

Array <311

'4
9.7 MULTI-DIMENSIONAL ARRAYS 1095

C allows arrays of three or more dimensions. The exact limit is determined by the compiler. The general
form of a multi-dimensional array is

type array_name[s1] [s2] [s3]....[sm];

where s, is the size of the ith dimension. Some examples are:
int survey[3][5][12];
float table[5][4][5][3];
survey is a three-dimensional array declared to contain 180 integer type elements. Similarly table is a four-
dimensional array containing 300 elements of floating-point type.
The array survey may represent a survey data of rainfall during the last three years from January to
December in five cities.
If the first index denotes year, the second city and the third month, then the element survey[2][3][10]
denotes the rainfall in the month of October during the second year in city-3.
Remember that a three-dimensional array can be represented as a series of two-dimensional arrays as
shown below:

month city 1 2 12
1

Year 1

month city 1 2 | 12
1

Year 2

5

ANSI C does not specify any limit for array dimension. However, most compilers permit seven to ten
dimensions. Some allow even more.

312> Computing Fundamentals & C Programming

4
9.8 DYNAMIC ARRAYS LO 9.6

So far, we created arrays at compile time. An array created at compile time by specifying size in the source
code has a fixed size and cannot be modified at run time. The process of allocating memory at compile time
is known as static memory allocation and the arrays that receive static memory allocation are called static
arrays. This approach works fine as long as we know exactly what our data requirements are.

Consider a situation where we want to use an array that can vary greatly in size. We must guess what will
be the largest size ever needed and create the array accordingly. A difficult task in fact! Modern languages
like C do not have this limitation. In C it is possible to allocate memory to arrays at run time. This feature
is known as dynamic memory allocation and the arrays created at run time are called dynamic arrays. This
effectively postpones the array definition to run time.

Dynamic arrays are created using what are known as pointer variables and memory management
functions malloe, calloc and realloc. These functions are included in the header file <stdlib.h>. The
concept of dynamic arrays is used in creating and manipulating data structures such as linked lists, stacks
and queues. We discuss in detail pointers and pointer variables in Chapter 13.

9.9 MORE ABOUT ARRAYS

What we have discussed in this chapter are the basic concepts of arrays and their applications to a limited
extent. There are some more important aspects of application of arrays. They include:

< using printers for accessing arrays;

< passing arrays as function parameters;

< arrays as members of structures;

< using structure type data as array elements;
< arrays as dynamic data structures; and

< manipulating character arrays and strings.
These aspects of arrays are covered later in the following chapters:

Chapter 10 : Strings
Chapter 11 : Functions
Chapter 12 : Structures
Chapter 13 : Pointers

Q LEARNING OUTCOMES

e We need to specify three things, namely, name, type and size, when we declare an array. LO

e Use of invalid subscript is one of the common errors. An incorrect or invalid index may cause LOENN
unexpected results.

e Always remember that subscripts begin at 0 (not 1) and end at size —1. LOEM
e Defining the size of an array as a symbolic constant makes a program more scalable. Lom

e Be aware of the difference between the “kth element” and the “element k. The kth element has a Lom
subscript k-1, whereas the element k has a subscript of k itself.

e Do not forget to initialize the elements; otherwise they will contain “garbage”. LOEMI

Array

Supplying more initializers in the initializer list is a compile time error.

When using expressions for subscripts, make sure that their results do not go outside the permissible
range of 0 to size —1. Referring to an element outside the array bounds is an error.

When using control structures for looping through an array, use proper relational expressions to
eliminate “off-by-one” errors. For example, for an array of size 5, the following for statements are
wrong:

fori=1;i<=5;i++)

fori=0;1i<=5;i++)

fori=0;1i==5;i++)

for(i=0;i<4; i++)
Referring a two-dimensional array element like x[i, j] instead of x[i][j] is a compile time error.
Leaving out the subscript reference operator [] in an assignment operation is compile time error.
When initializing character arrays, provide enough space for the terminating null character.
Make sure that the subscript variables have been properly initialized before they are used.

During initialization of multi-dimensional arrays, it is an error to omit the array size for any
dimension other than the first.

While using static arrays, choose the array size in such a way that the memory space is efficiently
utilized and there is no overflow condition.

_Q KEY TERMS TO REMEMBER

313

LOEM
LOEM

LOEM

LOEE]
LOEK]
LOEXA
LOEX]
LOEX

LOEX]

Array: Is a fixed-size sequenced collection part of elements of the same data type.

One-dimensional array: Is a list of items that has one variable name and one subscript to access the
items.

Structured data types: Represent data values that have a structure of some sort. For example,
arrays, structures, etc.

Searching: Is the process of finding the location of the specified element in the list.
Sorting: Is the process of rearranging elements in the list as per ascending or descending order.

Two-dimensional array: Is an array of arrays that has two subscripts for accessing its values. It is
used to represent table or matrix data.

Multi-dimensional array: Is an array with more than one dimension. Examples of multi-
dimensional arrays are two-dimensional array, three-dimensional array and so on.

Dynamic arrays: Are the arrays declared using dynamic memory allocation technique.
Dynamic memory allocation: Is the process of allocating memory at run time.
Static arrays: Are the arrays declared using static memory allocation technique.

Static memory allocation: Is the process of allocating memory at compile time.

BRIEF CASES

LoEMl
LOEM

15019.1

LOEM
LOEM
LOEX]

LoEd

LOEX]
1501 9.6
LoEX]
1501 9.6

1. Median of a List of Numbers

[LO 9.2, M]

When all the items in a list are arranged in an order, the middle value which divides the items into two
parts with equal number of items on either side is called the median. Odd number of items have just one

314~ Computing Fundamentals & C Programming

middle value while even number of items have two middle values. The median for even number of items is
therefore designated as the average of the two middle values.

The major steps for finding the median are as follows:

1. Read the items into an array while keeping a count of the items.

2. Sort the items in increasing order.

3. Compute median.

The program and sample output are shown in Fig. 9.10. The sorting algorithm used is as follows:

1. Compare the first two elements in the list, say a[l], and a[2]. If a[2] is smaller than a[l], then

interchange their values.

2. Compare a[2] and a[3]; interchange them if a[3] is smaller than a[2].

3. Continue this process till the last two elements are compared and interchanged.

4. Repeat the above steps n—1 times.

In repeated trips through the array, the smallest elements ‘bubble up’ to the top. Because of this bubbling
up effect, this algorithm is called bubble sorting. The bubbling effect is illustrated below for four items.

Initial After After After
values step 1 step 2 step 3
80 -~ & 85) 85
35 ~ 80 -~ 65 65

Trip-1
65 65 -~ 80 -~ 15
10 10 10 ~ 80 R
35 -~ 35) &
65 ~ 80 -~ 80
Trip-2
10 65 -~ 65 -~
80 10 10
85 ~ 10
10 e 35) -~
Trip-3
65 65
80 80

Array

> [

During the first trip, three pairs of items are compared and interchanged whenever needed. It should
be noted that the number 80, the largest among the items, has been moved to the bottom at the end of the
first trip. This means that the element 80 (the last item in the new list) need not be considered any further.
Therefore, trip-2 requires only two pairs to be compared. This time, the number 65 (the second largest
value) has been moved down the list. Notice that each trip brings the smallest value 10 up by one level.

The number of steps required in a trip is reduced by one for each trip made. The entire process will be
over when a trip contains only one step. If the list contains n elements, then the number of comparisons
involved would be n(n-1)/2.

Computing Fundamentals & C Programming

Fig. 9.10 Program to sort a list of numbers and to determine median

2. Calculation of Standard Deviation [LO 9.2, M]

In statistics, standard deviation is used to measure deviation of data from its mean. The formula for
calculating standard deviation of n items is

S = 4/variance
where

. 1 % 2
variance = — Y (x; —m)
0=

and

m =mean =

=R

n
ZXi
i=1

The algorithm for calculating the standard deviation is as follows:

1. Read nitems.

2. Calculate sum and mean of the items.
3. Calculate variance.

4. Calculate standard deviation.

Complete program with sample output is shown in Fig. 9.11.

Fig. 9.11 Program to calculate standard deviation

|
—
|
I
[
, Computing Fundamentals & C Programming

3. Evaluating a Test [LO 9.2, H]

A test consisting of 25 multiple-choice items is administered to a batch of 3 students. Correct answers and
student responses are tabulated as shown below:

ltems

12 3 456 7 8 9 012 3 45 6 78 9 01 2 3 45

Correct
answers

Student 1
Student 2
Student 3

The algorithm for evaluating the answers of students is as follows:

1. Read correct answers into an array.

2. Read the responses of a student and count the correct ones.
3. Repeat step-2 for each student.

4. Print the results.

A program to implement this algorithm is given in Fig. 9.12. The program uses the following arrays:
key[i] - To store correct answers of items
response[i] - To store responses of students
correct[i] - To identify items that are answered correctly.

320" Computing Fundamentals & C Programming

Input responses of student-2
abcddcbaabcdabcdddddddddd

Student-2

Score is 14 out of 25

Response to the following items are wrong
567 817 18 19 21 22 23 25

Input responses of student-3
aaaaaaaaaaaaaaaaaaaaaaaaa

Student-3

Score is 7 out of 25

Response to the following items are wrong
2346781011 12 14 15 16 18 19 20 22 23 24

Fig. 9.12 Program to evaluate responses to a multiple-choice test

4. Production and Sales Analysis [LO 9.3,9.4, H]

A company manufactures five categories of products and the number of items manufactured and sold are
recorded product-wise every week in a month. The company reviews its production schedule at every
month-end. The review may require one or more of the following information:

(a) Value of weekly production and sales.

(b) Total value of all the products manufactured.

(c) Total value of all the products sold.

(d) Total value of each product, manufactured and sold.

Let us represent the products manufactured and sold by two two-dimensional arrays M and S
respectively. Then,

Ml1 MI12 M13 M14 MI5
M=| M2l M22 M23 M24 M25
M31 M32 M33 M34 M35
M41 M42 M43 M44 M45
S11 S12 S13 S14 S15
S=| S21 S22 $23 S24 S25
S31 $32 S33 S34 S35
S41 S42 S43 S44 S45

where Mij represents the number of jth type product manufactured in ith week and Sij the number of jth
product sold in ith week. We may also represent the cost of each product by a single dimensional array C as
follows:

c= | C1 C2 | C3 | C4 | C5

where Cj is the cost of jth type product.

Array <321

We shall represent the value of products manufactured and sold by two value arrays, namely, Mvalue
and Svalue. Then,
Mvalue[i][j] = Mijj x Cj
Svalue[i][jl = Sij x Cj
A program to generate the required outputs for the review meeting is shown in Fig. 9.13. The following
additional variables are used:
Mweek[i] = Value of all the products manufactured in week i

5
= 2 Mvaluel[i][j]
I=1
Sweek[i] = Value of all the products in week i

5
= > Svaluefi][j]

I=1
Mproduct[j]

Value of jth type product manufactured during the month

4
= 2 Mvalue[i][j]
i=1

Sproduct[j] = Value of jth type product sold during the month
4
= Y Svaluelil[j]

i=1

Mtotal = Total value of all the products manufactured during the month

4 5
= Mweek[i] = Mproduct(j]
Y)Y

i=1 j=1
Stotal = Total value of all the products sold during the month

4 5
= 2 Sweek[i] = 2 Sproduct[j]
i=1 i=1

Program
main()
{
int M[5][6],S[5][6],C[6],
Mvalue[5] [6],Svalue[5][6],
Mweek[5], Sweek[5],
Mproduct[6], Sproduct[6],
Mtotal, Stotal, i,j,number;
/* Input data =)
printf (" Enter products manufactured week wise \n");
printf (" M11,M12,—, M21,M22,— etc\n");

for(i=1; i<=4; i++)
for(j=1;j<=5; j+t+)
scanf("%d",&M[1]1[31);

Computing Fundamentals & C Programming

Computing Fundamentals & C Programming

Computing Fundamentals & C Programming

Fig. 9.13 Program for production and sales analysis

Fill in the Blanks

1. The variable used as a subscript in an array is popularly known as variable.

2. An array that uses more than two subscripts is referred to as array.

3. is the process of arranging the elements of an array in order.
4. An array can be initialized either at compile time or at
5. An array created using malloc function at run time is referred to as array.

Levels of Difficulty

‘% : Low; "/U : Medium; “@ : High

10.
11.
12.

|

—

[|

(|

I
Array ,

We want to declare a two-dimensional integer type array called matrix for 3 rows and 5 M
columns. Which of the following declarations are correct?

A. int maxtrix [3],[5]; B. int matrix [5] [3];

C. int matrix [1+2] [2+3]; D. int matrix [3,5];

E. int matrix [3] [5];

Which of the following initialization statements are correct? M

A. char str1[4] = "GOOD"; B. char str2[] = "C";
C. char str3[5] = "Moon"; D. char str4[] {'s', 'u', 'N'};
E. char str5[10] = "Sun";

Multiple Choice Questions

True or False Statements

An array can store infinite data of similar type. M

In declaring an array, the array size can be a constant or variable or an expression. M
The declaration int x[2] = {1,2,3}; is illegal. M
When an array is declared, C automatically initializes its elements to zero. M
An expression that evaluates to an integral value may be used as a subscript. M

In C, by default, the first subscript is zero. M

When initializing a multidimensional array, not specifying all its dimensions is an error. M
When we use expressions as a subscript, its result should be always greater than zero. M

In C, we can use a maximum of 4 dimensions for an array. M

Accessing an array outside its range is a compile time error. M
A char type variable cannot be used as a subscript in an array. M
An unsigned long int type can be used as a subscript in an array. M

|
—
[|
[|
[
’ Computing Fundamentals & C Programming

DISCUSSION QUESTIONS

1.
2.

What is a data structure? Why is an array called a data structure?

What is a dynamic array? How is it created? Give a typical example of use of a dynamic
array.

What happens when an array with a specified size is assigned
(a) with values fewer than the specified size; and
(b) with values more than the specified size.

Discuss how initial values can be assigned to a multidimensional array.

DEBUGGING EXERCISES

1.

2.

Identify errors, if any, in each of the following array declaration statements, assuming that
ROW and COLUMN are declared as symbolic constants:

(a) int score (100);

(b) float values [10,15];

(c) char name[15];

(d) float average[ROW],[COLUMN];

(e) double salary [i + ROW]

(f) Tong int number [ROW]
(g) int sum[T;

(h) int array x[COLUMN];

Identify errors, if any, in each of the following initialization statements.
(a) int number[] = {0,0,0,0,0};

(b) float item[3][2] = {0,1,2,3,4,5};

(c) char word[] = {'A','R', 'R', 'A', 'Y'};

(d) int m[2,4] = {(0,0,0,0)(1,1,1,1)};

(e) float result[10] = 0;
3. Assume that the arrays A and B are declared as follows:
int A[5][4];
float B[4];
Find the errors (if any) in the following program segments.
(a) for (i=1; i<4; i++)
scanf("%f", B[i]);
(b) for (i=1; i<=b; i++)
for(j=1; j<=4; j++)
ALiT[3] = 05
(c) for (i=0; i<=4; i++)
B[] = B[i]+i;

(d) for (i=4; i>=0; i--)
for (j=0; j<4; j++)
A[i1[3] = B3] + 1.0;

4. What is the error in the following program?

main ()
{
int x ;
float y [] 3
}
5. What is the output of the following program?
main ()
{
intm []={1,2,3,4,5}
int x, y = 0;
for (x = 0; x < 5; x++)
y=y+m[x];
printf("%d", y) ;
}
6. What is the output of the following program?
main ()
{

chart string [] = "HELLO WORLD" ;

330" Computing Fundamentals & C Programming

int m;
for (m = 0; string [m] !'= '\0'; m++)
if ((m%2) == 0)

oAl

printf("%c", string [m]);

PROGRAMMING EXERCISES

1.

3.

4.

Write a program for fitting a straight line through a set of points (x;, y;),i= L,....,n.
The straight line equation is

y=mx+c

and the values of m and c are given y
_n2(xpy;) — (2x)) (Zy;)
O nExh) - (x,)

1
c=—(Xy,-mZXx,)
n
All summations are from 1 to n.

The daily maximum temperatures recorded in 10 cities during the month of January (for all
31 days) have been tabulated as follows:

1094 g

1094 ™

City
Day 1 2 K 10
) e
2
3
31

Write a program to read the table elements into a two-dimensional array temperature, and
to find the city and day corresponding to

(a) the highest temperature and

(b) the lowest temperature.

An election is contested by 5 candidates. The candidates are numbered 1 to 5 and the voting
is done by marking the candidate number on the ballot paper. Write a program to read the
ballots and count the votes cast for each candidate using an array variable count. In case, a
number read is outside the range 1 to 5, the ballot should be considered as a ‘spoilt ballot’
and the program should also count the number of spoilt ballots.

The following set of numbers is popularly known as Pascal’s triangle.
1
1 1
1 2 1

L1092 ™

11095 g

1 3 3 1
1 4 6 1
1 5 10 10 1

If we denote rows by i and columns by j, then any element (except the boundary elements)
in the triangle is given by

Pij=Pitj1TPip
Write a program to calculate the elements of the Pascal triangle for 10 rows and print the
results.

. The annual examination results of 100 students are tabulated as follows:

Roll No. Subject 1 Subject 2 Subject 3

Write a program to read the data and determine the following:

(a) Total marks obtained by each student.

(b) The highest marks in each subject and the Roll No. of the student who secured it.
(c) The student who obtained the highest total marks.

. Given are two one-dimensional arrays A and B which are sorted in ascending order. Write a
program to merge them into a single sorted array C that contains every item from arrays A
and B, in ascending order.

. Two matrices that have the same number of rows and columns can be multiplied to produce
a third matrix. Consider the following two matrices.

a;; Agp.eelyy
Ay Agpeennyy
A =
ENEEST a,,
by byp.rnby,
by byyennnbyy
B =
By Ban |

The product of A and B is a third matrix C of size nxn where each element of C is given by
the following equation:

Array <331

1092 g

11094 ™

332

10.

11.
12.

13.
14.

15.

Computing Fundamentals & C Programming

Cij Z =aikbkj

Write a program that will read the values of elements of A and B and produce the product
matrix C.

Write a program that fills a five-by-five matrix as follows: m‘f@

e Upper left triangle with +1s
e Lower right triangle with —1s
e Right to left diagonal with zeros

Display the contents of the matrix using not more than two printf statements

Selection sort is based on the following idea: m‘f@

Selecting the largest array element and swapping it with the last array element leaves an unsorted list
whose size is 1 less than the size of the original list. If we repeat this step again on the unsorted list we
will have an ordered list of size 2 and an unordered list size n—2. When we repeat this until the size of
the unsorted list becomes one, the result will be a sorted list.

Write a program to implement this algorithm.

Develop a program to implement the binary search algorithm. This technique compares the m\-@
search key value with the value of the element that is midway in a “sorted” list. Then;
(a) If they match, the search is over.
(b) If the search key value is less than the middle value, then the first half of the list contains the key
value.
(c) If the search key value is greater than the middle value, then the second half contains the key value.

Repeat this “divide-and-conquer” strategy until we have a match. If the list is reduced to
one non-matching element, then the list does not contain the key value.

Use the sorted list created in Exercise 9.9 or use any other sorted list.

Write a program that will compute the length of a given character string. mz'*f@

Write a program that will count the number occurrences of a specified character in a given m‘f@
line of text. Test your program.

Write a program to read a matrix of size m X n and print its transpose. m*f@

Every book published by international publishers should carry an International Standard m\fg
Book Number (ISBN). It is a 10 character 4 part number as shown below.
0-07-041183-2
The first part denotes the region, the second represents publisher, the third identifies the
book and the fourth is the check digit. The check digit is computed as follows:
Sum = (1 X first digit) + (2 X second digit) + (3 X third digit) + - - - - + (9 X ninth digit).
Check digit is the remainder when sum is divided by 11. Write a program that reads a given
ISBN number and checks whether it represents a valid ISBN.

Write a program to read two matrices A and B and print the following: m*%
(a) A+B;and
(b) A-B.

16. Write a for loop statement that initializes all the diagonal elements of an array to one and
others to zero as shown below. Assume 5 rows and 5 columns.

CHAPTER

>
1 0
and Strings

to

e declared and initialized
m terminal

n to screen

ulated

10.1 INTRODUCTION

A string is a sequence of characters that is treated as a single data item. We have used strings in
a number of examples in the past. Any group of characters (except double quote sign) defined
between double quotation marks is a string constant. Example:
“Man is obviously made to think.”
If we want to include a double quote in the string to be printed, then we may use it with a back
slash as shown below.
“\” Man is obviously made to think,\” said Pascal.”
For example,
printf ("\" Well Done !"\");
will output the string
“Well Done !”
while the statement
printf(" Well Done !");
will output the string
Well Done!

Character Arrays and Strings ~%335

Character strings are often used to build meaningful and readable programs. The common operations
performed on character strings include the following:

« Reading and writing strings.
Combining strings together.
Copying one string to another.
Comparing strings for equality.
Extracting a portion of a string.

In this chapter, we shall discuss these operations in detail and examine library functions that implement
them.

K2 K2 K2 K2
XA X X i X4

y
10.2 DECLARING AND INITIALIZING STRING VARIABLES 1O10.1

C does not support strings as a data type. However, it allows us to represent strings as character arrays. In
C, therefore, a string variable is any valid C variable name and is always declared as an array of characters.
The general form of declaration of a string variable is:

char string name[size |;

The size determines the number of characters in the string_name. Some examples are as follows:

char city[10];
char name[30];

When the compiler assigns a character string to a character array, it automatically supplies a null
character (\O) at the end of the string. Therefore, the size should be equal to the maximum number of
characters in the string plus one.

Like numeric arrays, character arrays may be initialized when they are declared. C permits a character
array to be initialized in either of the following two forms:

char city [9] = " NEW YORK ";
char city [91={'N',"E',"W'," ','Y','0",'R","K",'\0'};

The reason that city had to be 9 elements long is that the string NEW YORK contains 8 characters and
one element space is provided for the null terminator. Note that when we initialize a character array by
listing its elements, we must supply explicitly the null terminator.

C also permits us to initialize a character array without specifying the number of elements. In such cases,
the size of the array will be determined automatically, based on the number of elements initialized. For
example, the statement

char string [] = {'G','0','0','D','\0"'};
defines the array string as a five element array.
We can also declare the size much larger than the string size in the initializer. That is, the statement.
char str[10] = "GOOD";
is permitted. In this case, the computer creates a character array of size 10, places the value “GOOD” in it,
terminates with the null character, and initializes all other elements to NULL. The storage will look like

G 0| O | D \O | \O | \O | \O | \O |\O

However, the following declaration is illegal.

336~ Computing Fundamentals & C Programming

char str2[3] = "GOOD";
This will result in a compile time error. Also note that we cannot separate the initialization from
declaration. That is,
char str3[5];
str3 = "GOOD";
is not allowed. Similarly,
char s1[4] = "abc";
char s2[4];
s2 = sl; /* Error */
is not allowed. An array name cannot be used as the left operand of an assignment operator.

Terminating Null Character

You must be wondering, “why do we need a terminating null character?” As we know, a string is not a data
type in C, but it is considered a data structure stored in an array. The string is a variable-length structure and
is stored in a fixed-length array. The array size is not always the size of the string and most often it is much
larger than the string stored in it. Therefore, the last element of the array need not represent the end of the
string. We need some way to determine the end of the string data and the null character serves as the “end-
of-string” marker.

r
10.3 READING STRINGS FROM TERMINAL L0 10.2

Using scanf Function
The familiar input function scanf can be used with %s format specification to read in a string of characters.
Example:

char address[10]

scanf("%s", address);

The problem with the scanf function is that it terminates its input on the first white space it finds. A
white space includes blanks, tabs, carriage returns, form feeds, and new lines. Therefore, if the following
line of text is typed in at the terminal,

NEW YORK
then only the string “NEW” will be read into the array address, since the blank space after the word ‘NEW’
will terminate the reading of string.

The scanf function automatically terminates the string that is read with a null character and therefore,
the character array should be large enough to hold the input string plus the null character. Note that unlike
previous scanf calls, in the case of character arrays, the ampersand (&) is not required before the variable
name.

The address array is created in the memory as shown below:

N E| W/[\O ?0? ? ? ? ?

0 1 2 3 4 5 6 7 8 9

Note that the unused locations are filled with garbage.
If we want to read the entire line “NEW YORK?”, then we may use two character arrays of appropriate
sizes. That is,

Character Arrays and Strings ~<337

char adrl[5], adr2[5];
scanf("%s %s", adrl, adr2);
with the line of text
NEW YORK
will assign the string “NEW” to adr1 and “YORK” to adr2.

WORKED-OUT PROBLEM 10.1 n

Write a program to read a series of words from a terminal using scanf function.

The program shown in Fig. 10.1 reads four words and displays them on the screen. Note that the string ‘Oxford
Road’ is treated as two words while the string ‘Oxford-Road’ as one word.

Program
main()
{
char word1[40], word2[40], word3[40], word4[40];
printf("Enter text : \n");
scanf("%s %s", wordl, word2);
scanf("%s", word3);
scanf("%s", word4);
printf("\n");
printf("wordl = %s\nword2 = %s\n", wordl, word2);
printf("word3 = %s\nword4 = %s\n", word3, word4);
1
Output
Enter text :
Oxford Road, London M17ED
wordl = Oxford
word2 = Road,
word3 = London

word4 = M17ED

Enter text :
Oxford-Road, London-M17ED United Kingdom

wordl = Oxford-Road
word2 = London-M17ED
word3 = United
word4 = Kingdom

Fig. 10.1 Reading a series of words using scanf function

Levels of Difficulty
L: Low; M: Medium; H: High

338" Computing Fundamentals & C Programming

We can also specify the field width using the form %ws in the scanf statement for reading a specified
number of characters from the input string. Example:
scanf("%ws", name);
Here, the two following things may happen:

1. The width w is equal to or greater than the number of characters typed in. The entire string will be
stored in the string variable.
2. The width w is less than the number of characters in the string. The excess characters will be
truncated and left unread.
Consider the following statements:
char name[10];
scanf("%5s", name);
The input string RAM will be stored as:

R Al M|\ ?2 07 ? ? ? ?

0 1 2 3 4 5 6 7 8 9
The input string KRISHNA will be stored as:

K R | I S H |\ | ? ? ? ?

0 1 2 3 4 5 6 7 8 9

Reading a Line of Text
We have seen just now that scanf with %s or %ws can read only strings without whitespaces. That is,
they cannot be used for reading a text containing more than one word. However, C supports a format
specification known as the edit set conversion code %[. .] that can be used to read a line containing a
variety of characters, including whitespaces. Recall that we have used this conversion code in Chapter 6.
For example, the program segment

char Tine [80];

scanf("%[™\n]", 1ine);

printf("%s", Tine);
will read a line of input from the keyboard and display the same on the screen. We would very rarely use
this method, as C supports an intrinsic string function to do this job. This is discussed in the next section.

Using getchar and gets Functions

We have discussed in Chapter 6 as to how to read a single character from the terminal, using the function
getchar. We can use this function repeatedly to read successive single characters from the input and place
them into a character array. Thus, an entire line of text can be read and stored in an array. The reading is
terminated when the newline character (‘\n’) is entered and the null character is then inserted at the end of
the string. The getchar function call takes the following form:

char ch;
ch = getchar();

Note that the getchar function has no parameters.

Character Arrays and Strings

339

WORKED-OUT PROBLEM 10.2

Write a program to read a line of text containing a series of words from the terminal.

The program shown in Fig. 10.2 can read a line of text (up to a maximum of 80 characters) into the string
line using getchar function. Every time a character is read, it is assigned to its location in the string line
and then tested for newline character. When the newline character is read (signalling the end of line), the
reading loop is terminated and the newline character is replaced by the null character to indicate the end of

character string.

When the loop is exited, the value of the index ¢ is one number higher than the last character position
in the string (since it has been incremented after assigning the new character to the string). Therefore, the
index value c¢-1 gives the position where the null character is to be stored.

Program

Output

#include <stdio.h>

main()

{

char 1ine[81], character;
int c;
c = 0;
printf("Enter text. Press <Return> at end\n");
do
{
character = getchar();
line[c] = character;

[0k
}
while(character != '\n');
c=c-1;

line[c] = '"\0';
printf("\n%s\n", line);

}

Enter text. Press <Return> at end

Programming in C is interesting.

Programming in C is interesting.

Enter text. Press <Return> at end

National Centre for Expert Systems, Hyderabad.
National Centre for Expert Systems, Hyderabad.

Fig. 10.2 Program to read a line of text from terminal

340™ Computing Fundamentals & C Programming

Another and more convenient method of reading a string of text containing whitespaces is to use the
library function gets available in the <stdio.h> header file. This is a simple function with one string
parameter and called as under:

gets (str);
str is a string variable declared properly. It reads characters into str from the keyboard until a new-line
character is encountered and then appends a null character to the string. Unlike scanf, it does not skip
whitespaces. For example the code segment
char line [80];
gets (line);
printf ("%s", line);

reads a line of text from the keyboard and displays it on the screen.
The last two statements may be combined as follows:
printf("%s", gets(1line));
(Be careful not to input more character that can be stored in the string variable used. Since C does not
check array-bounds, it may cause problems.)
C does not provide operators that work on strings directly. For instance we cannot assign one string to
another directly. For example, the assignment statements.
string = "ABC";
stringl = string2;
are not valid. If we really want to copy the characters in string2 into stringl, we may do so on a character-
by-character basis.

WORKED-OUT PROBLEM 10.3 i

Write a program to copy one string into another and count the number of characters copied.

The program is shown in Fig. 10.3. We use a for loop to copy the characters contained inside string2 into
the stringl. The loop is terminated when the null character is reached. Note that we are again assigning a
null character to the stringl.

Program

main()

{
char stringl[80], string2[80];
int i;
printf("Enter a string \n");
printf("?");
scanf("%s", string2);
for(i=0 ; string2[i] != '\0'; i++)

stringl[i] = string2[i];

Character Arrays and Strings

stringl[i] = '\0';
printf("\n");
printf("%s\n", stringl);

printf("Number of characters = %d\n", i);

Output

Enter a string
?Manchester

Manchester

Number of characters = 10

Enter a string
?Westminster

Westminster

Number of characters = 11

Fig. 10.3 Copying one string into another

341

WORKED-OUT PROBLEM 10.4

The program in Fig. 10.4 shows how to write a program to find the number of vowels and consonants in a
text string. Elucidate the program and flow chart for the program.

Algorithm
Step 1 — Start
Step 2 — Read a text string (str)
Step 3 — Set vow = 0, cons =0, i =0
Step 4 — Repeat steps 5-8 while (str[i]!='\0")
Step 5 — if str[i] = 'a' OR str[i] = 'A' OR str[i] = 'e' OR str[i]
OR str[i] = '"I' OR str[i] = 'o' OR str[i] = '0"' OR str[i]

Step
Step
Step
Step
Step

goto Step 6 else goto Step 7

6 — Increment the vowels counter by 1 (vow=vow+l)

7 — Increment the consonants counter by 1 (cons=cons+1)
8-1i=1+1

9 — Display the number of vowels and consonants (vow, cons)

10 - Stop

'"E' OR str[i]
'u' OR str[il

lul

Computing Fundamentals & C Programming

Character Arrays and Strings ~<343

char str[30];
int vow=0,cons=0,i=0;
clrscr();
printf("Enter a string: ");
gets(str);
while(str[i] != '\0")
{
if(str[i]== a' || str[i]l=='A" || str[i]l=='e' || str[i]=="E' || str[i]=='i"
|| strlil=='I1"' || str[il=='0" || str[i]l=='0" || str[i]l=='u' || str[i]=='U")
vowt+;
else
cons++;
i+t

printf("\nNumber of Vowels = %d",vow);
printf("\nNumber of Consonants = %d",cons);
getch();

Output
Enter a string: Chennai
Number of Vowels = 3
Number of Consonants = 4

Fig. 10.4 Program to find the number of vowel and consonants in a text string

L010.3
10.4 WRITING STRINGS TO SCREEN e
Using printf Function
We have used extensively the printf function with %s format to print strings to the screen. The format
%s can be used to display an array of characters that is terminated by the null character. For example, the
statement

printf("%s", name);
can be used to display the entire contents of the array name.
We can also specify the precision with which the array is displayed. For instance, the specification
%10.4
indicates that the first four characters are to be printed in a field width of 10 columns.
However, if we include the minus sign in the specification (e.g., %-10.4s), the string will be printed left-
justified. The Program 10.4 illustrates the effect of various %s specifications.

WORKED-OUT PROBLEM 10.5 M

Write a program to store the string “United Kingdom” in the array country and display the string under
various format specifications.

344> Computing Fundamentals & C Programming

The program and its output are shown in Fig. 10.5. The output illustrates the following features of the %s
specifications.

1. When the field width is less than the length of the string, the entire string is printed.

2. The integer value on the right side of the decimal point specifies the number of characters to be
printed.

3. When the number of characters to be printed is specified as zero, nothing is printed.

4. The minus sign in the specification causes the string to be printed left-justified.

5. The specification % .ns prints the first n characters of the string.

Program
main()
{
char country[15] = "United Kingdom";
printf("\n\n");
printf("*123456789012345*\n") ;
printf(" ————- \n");
printf("%15s\n", country);
printf("%5s\n", country);
printf("%15.6s\n", country);
printf("%-15.6s\n", country);
printf("%15.0s\n", country);
printf("%.3s\n", country);
printf("%s\n", country);
printf("—— \n");
}
Output
123456789012345

United Kingdom

United Kingdom
United

United

Uni

United Kingdom

Fig. 10.5 Writing strings using %s format

The printf on UNIX supports another nice feature that allows for variable field width or precision. For
instance
printf("%*.*s\n", w, d, string);
prints the first d characters of the string in the field width of w.
This feature comes in handy for printing a sequence of characters. Program 10.5 illustrates this.

Character Arrays and Strings

The outputs of the program in Fig. 10.6, for variable specifications %12.%s, %.*s, and % *.1s are shown in
Fig. 10.7, which further illustrates the variable field width and the precision specifications.

346~ Computing Fundamentals & C Programming

Fig. 10.6

C

cpP

CPr

CPro

CProg
CProgr
CProgra
CProgram
CProgramm
CProgrammi
CProgrammin
CProgramming

CPro

CProg
CProgr
CProgra
CProgram
CProgramm
CProgrammi
CProgrammin
CProgramming
CProgramming
CProgrammin
CProgrammi
CProgramm
CProgram
CProgra
CProgr
CProg

CPro

CPr

CP

C

lllustration of variable field specifications by printing sequences of characters

Cl

CP|

CPr|

CPro|

CProg|
CProgr|
CProgra |
CProgram|
CProgramm|
CProgrammi |
CProgrammin|
CProgramming|

CProgramming
CProgrammin
CProgrammi
CProgramm
CProgram
CProgra
CProgr
CProg

CPro

CPr

Cp

C

(a) %12.*s

CProgramming|
CProgrammin |
CProgrammi |
CProgramm|
CProgram|
CProgra|
CProgr|
CProg|
CPro|
CPr|
CP|
Cl

(b) %.*s

(C) %*.1s

Fig. 10.7 Further illustrations of variable specifications

Character Arrays and Strings ~“347

Using putchar and puts Functions
Like getchar, C supports another character handling function putchar to output the values of character
variables. It takes the following form:
char ch = 'A’;
putchar (ch);
The function putchar requires one parameter. This statement is equivalent to
printf("%c", ch);
We have used putchar function in Chapter 6 to write characters to the screen. We can use this function
repeatedly to output a string of characters stored in an array using a loop. Example:
char name[6] = "PARIS"
for (i=0, i<h; i++)
putchar(name[i];
putchar('\n');
Another and more convenient way of printing string values is to use the function puts declared in the
header file <stdio.h>. This is a one parameter function and invoked as under
puts (str);
where str is a string variable containing a string value. This prints the value of the string variable str and
then moves the cursor to the beginning of the next line on the screen. For example, the program segment
char line [80];
gets (line);
puts (line);
reads a line of text from the keyboard and displays it on the screen. Note that the syntax is very simple
compared to using the scanf and printf statements.

4
10.5 ARITHMETIC OPERATIONS ON CHARACTERS L0 10.4

C allows us to manipulate characters the same way we do with numbers. Whenever a character constant or
character variable is used in an expression, it is automatically converted into an integer value by the system.
The integer value depends on the local character set of the system.
To write a character in its integer representation, we may write it as an integer. For example, if the
machine uses the ASCII representation, then,
x ="'a';
printf("%d\n",x);
will display the number 97 on the screen.
It is also possible to perform arithmetic operations on the character constants and variables. For example,
x = 'z'-1;
is a valid statement. In ASCII, the value of ‘z’ is 122 and therefore, the statement will assign the value 121
to the variable x.
We may also use character constants in relational expressions. For example, the expression
ch >= 'A' && ch <= 'Z'
would test whether the character contained in the variable ch is an upper-case letter.
We can convert a character digit to its equivalent integer value using the following relationship:
x = character - '0';
where x is defined as an integer variable and character contains the character digit. For example, let us
assume that the character contains the digit 7,

348~ Computing Fundamentals & C Programming

Then,
x = ASCII value of ‘7’ — ASCII value of ‘0’
=55-48
=7

The C library supports a function that converts a string of digits into their integer values. The function
takes the form
X = atoi(string);
X is an integer variable and string is a character array containing a string of digits. Consider the following

segment of a program:

number = "1988";

year = atoi(number);
number is a string variable which is assigned the string constant “1988”. The function atoi converts the
string “1988” (contained in number) to its numeric equivalent 1988 and assigns it to the integer variable
year. String conversion functions are stored in the header file <std.lib.h>.

WORKED-OUT PROBLEM 10.7 ﬂ

Write a program which would print the alphabet set a to z and A to Z in decimal and character form.

The program is shown in Fig. 10.8. In ASCII character set, the decimal numbers 65 to 90 represent upper
case alphabets and 97 to 122 represent lower case alphabets. The values from 91 to 96 are excluded using
an if statement in the for loop.

Program
main ()
{
char c;
printf("\n\n");
for(c=653; c<=122 ; c=c+1)
{
if(c>90 && c < 97)
continue;
printf("|%4d - %c ", c, c);
1
printf("|\n");
1
Output

| 65 -A | 66-B|67-C|68-D]69-E]70-
| 71-G | 72-H|73-1]74-3]75-K]|76-
| 77 -M| 78 - N| 79 -0 80 -P| 81 -0Q| 82 -
| 83 -S| 8 -T| 85-Ul 8 -V| 87 - W 88 -
| 89 - Y| 90 -2Z| 97 -a| 98 -b| 99 - c| 100 -
|101 - e| 102 - f| 103 - g| 104 - h| 105 - i| 106 -
|107 - k| 108 - 1| 109 - m| 110 - n| 111 - o] 112 -
|113 - q| 114 - r| 115 - s| 116 - t| 117 - u| 118 -
|119 - w| 120 - x| 121 - y| 122 - z]|

< T @. a X oD r— =7

Fig. 10.8 Printing of the alphabet set in decimal and character form

Character Arrays and Strings ~<349

10.6 PUTTING STRINGS TOGETHER LO 104°

Just as we cannot assign one string to another directly, we cannot join two strings together by the simple
arithmetic addition. That is, the statements such as

string3 = stringl + string2;

string2 = stringl + "hello";
are not valid. The characters from stringl and string2 should be copied into the string3 one after the other.
The size of the array string3 should be large enough to hold the total characters.

The process of combining two strings together is called concatenation. Program 10.9 illustrates the

concatenation of three strings.

WORKED-OUT PROBLEM 10.8 m

The names of employees of an organization are stored in three arrays, namely first_name, second_name,
and last_name. Write a program to concatenate the three parts into one string to be called name.

The program is given in Fig. 10.9. Three for loops are used to copy the three strings. In the first loop, the
characters contained in the first_name are copied into the variable name until the null character is reached.
The null character is not copied; instead it is replaced by a space by the assignment statement
name[i] = ' ' ;
Similarly, the second_name is copied into name, starting from the column just after the space created by
the above statement. This is achieved by the assignment statement
name[i+j+1] = second name[j];

If first_name contains 4 characters, then the value of i at this point will be 4 and therefore the first
character from second_name will be placed in the fifth cell of name. Note that we have stored a space in
the fourth cell.

In the same way, the statement

name[i+j+k+2] = Tast_name[k];
is used to copy the characters from last_name into the proper locations of name.

At the end, we place a null character to terminate the concatenated string name. In this example, it is

important to note the use of the expressions i+j+1 and i+j+k+2.

Program

main()

{
int i, j, k 3
char first name[10] = {"VISWANATH"} ;
char second name[10] = {"PRATAP"} ;
char last name[10] = {"SINGH"} ;
char name[30] ;

/* Copy first _name into name */
for(i = 0 ; first name[i] != '\0' ; i++)

name[i] = first name[i] ;

350 Computing Fundamentals & C Programming

/* End first_name with a space */
name[i] = ' ' ;
/* Copy second name into name */
for(j = 0 ; second name[j] != '\0' ; j++)
name[i+j+1] = second name[j] ;
/* End second_name with a space */
name[i+j+1] = ' ' ;
/* Copy last_name into name */
for(k = 0 ; last name[k] != '\0'; k+t+)
name[i+j+k+2] = Tast name[k] ;
/* End name with a null character */
name[i+j+k+2] = '\0' ;
printf("\n\n") ;
printf("%s\n", name) ;

Output
VISWANATH PRATAP SINGH

Fig. 10.9 Concatenation of strings

y
10.7 COMPARISON OF TWO STRINGS LO 10.4

Once again, C does not permit the comparison of two strings directly. That is, the statements such as
if(namel == name2)
if(name == "ABC")
are not permitted. It is therefore necessary to compare the two strings to be tested, character by character.
The comparison is done until there is a mismatch or one of the strings terminates into a null character,
whichever occurs first. The following segment of a program illustrates this.
i=0;
while(stri[i] == str2[i] && stri[i] != '\0'
8& str2[i] 1= '\0')
i= i+l
if (stri[i] == '\0' && str2[i] == '\0"')
printf("strings are equal\n");
else
printf("strings are not equal\n");

y
10.8 STRING-HANDLING FUNCTIONS LO 10.4

Fortunately, the C library supports a large number of string-handling functions that can be used to carry out
many of the string manipulations discussed so far. Following are the most commonly used string-handling

functions:

Character Arrays and Strings ~%351

Function
strcat() concatenates two strings
stremp() compares two strings
strepy() copies one string over another
strlen() finds the length of a string

We shall discuss briefly how each of these functions can be used in the processing of strings.

strcat() Function
The strecat function joins two strings together. It takes the following form:

strcat(stringl, string2);

stringl and string2 are character arrays. When the function strcat is executed, string2 is appended to
stringl. It does so by removing the null character at the end of stringl and placing string2 from there. The
string at string2 remains unchanged. For example, consider the following three strings:

0o 1 2 3 4 5 6 7 8 9 0 1

lefelv] Jof [T [1]}

Part1 =

v [0 o] oo 0] | |

o olo] T 1

vy)

Part3 = ‘

Execution of the statement
strcat(partl, part2);

will result in:

el =l el s Lelm el |]]

Part1=‘V‘E‘R‘Y‘

0 1 2
rwa- [] 0]

w
N
)]
(o]

o
)

while the statement
will result in:

0 1 2 3 4 5 6 7 8 9 0 1 2

Part1=‘V‘E‘R‘Y‘

ewo- (e [ATo[w] T T |

352" Computing Fundamentals & C Programming

We must make sure that the size of stringl (to which string2 is appended) is large enough to
accommodate the final string.
strcat function may also append a string constant to a string variable. The following is valid:
strcat(partl,"GOOD");
C permits nesting of strcat functions. For example, the statement
strcat(strcat(stringl,string2), string3);
is allowed and concatenates all the three strings together. The resultant string is stored in stringl.

strcmp() Function
The stremp function compares two strings identified by the arguments and has a value 0 if they are equal.
If they are not, it has the numeric difference between the first nonmatching characters in the strings. It takes
the form:
stremp(stringl, string2);

stringl and string2 may be string variables or string constants. Examples are:

strcmp(namel, name2);

strcmp(namel, "John");

strcmp("Rom", "Ram");

Our major concern is to determine whether the strings are equal; if not, which is alphabetically above.
The value of the mismatch is rarely important. For example, the statement
strcmp("their", "there");

will return a value of -9 which is the numeric difference between ASCII “i” and ASCII “r”. That is,
minus “r” in ASCII code is —9. If the value is negative, stringl is alphabetically above string2.

[13%2]
1

strcpy() Function
The strepy function works almost like a string-assignment operator. It takes the following form:
strepy(stringl, string2);
and assigns the contents of string2 to stringl. string2 may be a character array variable or a string
constant. For example, the statement
strcpy(city, "DELHI");
will assign the string “DELHI” to the string variable city. Similarly, the statement
strcpy(cityl, city2);
will assign the contents of the string variable city2 to the string variable cityl. The size of the array cityl
should be large enough to receive the contents of city2.

strlen() Function
This function counts and returns the number of characters in a string. It takes the form

n = strlen(string);

Where n is an integer variable, which receives the value of the length of the string. The argument may
be a string constant. The counting ends at the first null character.

WORKED-OUT PROBLEM 10.9 m

s1, s2, and s3 are three string variables. Write a program to read two string constants into s1 and s2 and
compare whether they are equal or not. If they are not, join them together. Then copy the contents of s1
to the variable s3. At the end, the program should print the contents of all the three variables and their
lengths.

Character Arrays and Strings ~%353

The program is shown in Fig. 10.10. During the first run, the input strings are “New” and “York”. These
strings are compared by the statement

x = strcmp(sl, s2);

Since they are not equal, they are joined together and copied into s3 using the statement

strcpy(s3, sl);

The program outputs all the three strings with their lengths.
During the second run, the two strings s1 and s2 are equal, and therefore, they are not joined together. In
this case all the three strings contain the same string constant “London”.

Program

Output

#include <string.h>

main()

{

/*

char s1[20], s2[20], s3[20];
int x, 11, 12, 13;
printf("\n\nEnter two string constants \n");
printf("?");
scanf("%s %s", sl, s2);
comparing sl and s2 */
x = strcmp(sl, s2);
if(x != 0)
{ printf("\n\nStrings are not equal \n");
strcat(sl, s2); /* joining sl and s2 */
}
else
printf("\n\nStrings are equal \n");
copying sl to s3
strcpy(s3, sl1);
Finding Tength of strings */
11 = strlen(sl);
12 = strlen(s2);
13 = strlen(s3);
output */
printf("\nsl = %s\t length
printf("s2 = %s\t length = %d characters\n", s2, 12);
printf("s3 = %s\t length = %d characters\n", s3, 13);

%d characters\n", sl1, 11);

Enter two string constants

Computing Fundamentals & C Programming

Fig. 10.10 /llustration of string handling functions

Character Arrays and Strings ~%355

if(chk=="t")
printf("\nThe string %s is a palindrome",str);
else
printf("\nThe string %s is not a palindrome",str);
getch();
}

Output
Enter a string: nitin
The string nitin is a palindrome

Fig. 10.11 Program to check if a string is palindrome or not

Other String Functions

The header file <string.h> contains many more string manipulation functions. They might be useful in
certain situations.

strncpy
In addition to the function strcpy that copies one string to another, we have another function strncpy
that copies only the left-most n characters of the source string to the target string variable. This is a three-
parameter function and is invoked as follows:

strncpy(sl, s2, 5);
This statement copies the first 5 characters of the source string s2 into the target string s1. Since the first 5
characters may not include the terminating null character, we have to place it explicitly in the 6th position
of s2 as shown below:

s1[6] ='\0";

Now, the string s1 contains a proper string.

strncmp
A variation of the function stremp is the function strnemp. This function has three parameters as illustrated
in the function call below:
strncmp (s1, s2, n);

this compares the left-most n characters of s1 to s2 and returns.

(a) 0 if they are equal;

(b) negative number, if s1 sub-string is less than s2; and

(c) positive number, otherwise.

strncat
This is another concatenation function that takes three parameters as shown below:
strncat (sl, s2, n);

This call will concatenate the left-most n characters of s2 to the end of s1. Example:

|
—
|
[|
[
’ Computing Fundamentals & C Programming

S1:| B A L A | \0

S2:| G u R| U S| A| M| Y|\

After strncat (s1, s2, 4); execution:

S1: | B A L| A G| U|R u | \0

strstr
It is a two-parameter function that can be used to locate a sub-string in a string. This takes the following
forms:

strstr (sl, s2);

strstr (s1, "ABC");

The function strstr searches the string s1 to see whether the string s2 is contained in sl. If yes, the
function returns the position of the first occurrence of the sub-string. Otherwise, it returns a NULL pointer.
Example:

if (strstr (sl, s2) == NULL)
printf("substring is not found");
else
printf("s2 is a substring of s1");
We also have functions to determine the existence of a character in a string. The function call
strchr(sl, 'm');
will locate the first occurrence of the character ‘m’ and the call
strrchr(sl, 'm');
will locate the last occurrence of the character ‘m’ in the string s1.

‘Warning

e When allocating space for a string during declaration, remember to count the terminating
null character.
e When creating an array to hold a copy of a string variable of unknown size, we can
compute the size required using the expression
strlen (stringname) +1.

e When copying or concatenating one string to another, we must ensure that the target (destination)
string has enough space to hold the incoming characters. Remember that no error message will be
available even if this condition is not satisfied. The copying may overwrite the memory and the
program may fail in an unpredictable way.

e When we use strncpy to copy a specific number of characters from a source string, we must ensure
to append the null character to the target string, in case the number of characters is less than or
equal to the source string.

Character Arrays and Strings ~<357

10.9 TABLE OF STRINGS 10104

We often use lists of character strings, such as a list of the names of students in a class, list of the names
of employees in an organization, list of places, etc. A list of names can be treated as a table of strings
and a two-dimensional character array can be used to store the entire list. For example, a character array
student[30][15] may be used to store a list of 30 names, each of length not more than 15 characters. Shown
below is a table of five cities:

C|lh|a|n|d ilglajl|r]|h
M|la|d|r |a|s
Alh|m|e|d|a|b|a]|d
Hlfy|d|e|r |a|b|a]|d
Blo|m|b|a]|y

This table can be conveniently stored in a character array city by using the following declaration:
char city[] []
{
"Chandigarh",
"Madras",
"Ahmedabad",
"Hyderabad",
"Bombay"
b
To access the name of the ith city in the list, we write
city[i-1]
and therefore, city[0] denotes “Chandigarh”, city[1] denotes “Madras” and so on. This shows that once an
array is declared as two-dimensional, it can be used like a one-dimensional array in further manipulations.
That is, the table can be treated as a column of strings.

WORKED-OUT PROBLEM 10.11 ﬂ

Write a program that would sort a list of names in alphabetical order.

A program to sort the list of strings in alphabetical order is given in Fig. 10.12. It employs the method of
bubble sorting described in Case Study 1 in Chapter 9.

Program

#define ITEMS 5
#define MAXCHAR 20
main()

{
char string[ITEMS] [MAXCHAR], dummy[MAXCHAR];
int i =0, j = 0;

358 Computing Fundamentals & C Programming

/* Reading the Tlist */
printf ("Enter names of %d items \n ",ITEMS);
while (i < ITEMS)
scanf ("%s", string[i++]);
/* Sorting begins */
for (i=1; i < ITEMS; i++) /* Outer loop begins */
{
for (j=1; j <= ITEMS-i ; j++) /*Inner loop begins*/
{
if (strcmp (string[j-1], string[j]) > 0)
{ /* Exchange of contents */
strcpy (dummy, string[j-1]);
strcpy (string[j-1], string[j]l);
strcpy (string[j]l, dummy);
1
} /* Inner loop ends */
} /* Outer Toop ends */
/* Sorting completed */
printf ("\nAlphabetical 1ist \n\n");
for (i=0; i < ITEMS ; i++)
printf ("%s", string[i]);

Output
Enter names of 5 items
London Manchester Delhi Paris Moscow
Alphabetical Tist
Delhi
London
Manchester
Moscow
Paris

Fig. 10.12 Sorting of strings in alphabetical order

Note that a two-dimensional array is used to store the list of strings. Each string is read using a scanf
function with %s format. Remember, if any string contains a white space, then the part of the string after
the white space will be treated as another item in the list by the scanf. In such cases, we should read the
entire line as a string using a suitable algorithm. For example, we can use gets function to read a line of text
containing a series of words. We may also use puts function in place of scanf for output.

Character Arrays and Strings ~<359

r
10.10 OTHER FEATURES OF STRINGS L0 10.4

Other aspects of strings we have not discussed in this chapter include the following:
< Manipulating strings using pointers.
< Using string as function parameters.
< Declaring and defining strings as members of structures.
These topics will be dealt with later when we discuss functions, structures, and pointers.

(& LEARNING OUTCOMES

e Character constants are enclosed in single quotes and string constants are enclosed in double quotes.
e Allocate sufficient space in a character array to hold the null character at the end.

e Avoid processing single characters as strings.

e [tisacompile time error to assign a string to a character variable.

e The header file <stdio.h> is required when using standard I/O functions.

e The header file <stdlib.h> is required when using general utility functions.

e Using the address operator & with a string variable in the scanf function call is an error.

e Use %s format for printing strings or character arrays terminated by null character.

e Using a string variable name on the left of the assignment operator is illegal.

e When accessing individual characters in a string variable, it is logical error to access outside the array
bounds.

e Strings cannot be manipulated with operators. Use string functions.
e Do not use string functions on an array char type that is not terminated with the null character.

e Do not forget to append the null character to the target string when the number of characters copied
is less than or equal to the source string.

e Be aware the return values when using the functions stremp and strnemp for comparing strings.

e When using string functions for copying and concatenating strings, make sure that the target string
has enough space to store the resulting string. Otherwise memory overwriting may occur.

e The header file <ctype.h> is required when using character handling functions.

e The header file <string.h> is required when using string manipulation functions.

_g KEY TERMS TO REMEMBER

1901101
1901101
1901101
1901101
1901101
1901101
190]10.2
LOE]
Lo
Lo

Lo
190]10.4]
Lo

190]10.4]
Lo

190]10.4]
Lo

e String: Is a sequence of characters that is considered as a single data item.

e Strcat: Concatenates two strings.

e stremp: Compares two strings and determines whether they are equal or not.
e strepy: Copies one string into another.

e strstr: Determines whether one string is a subset of another.

1901101
190]10.4]
Lot
190]10.4]
Lo

360~ Computing Fundamentals & C Programming

BRIEF CASES

1. Counting Words in a Text [LO 10.1, 10.2 M]

One of the practical applications of string manipulations is counting the words in a text. We assume that a
word is a sequence of any characters, except escape characters and blanks, and that two words are separated
by one blank character. The algorithm for counting words is as follows:

1. Read a line of text.
2. Beginning from the first character in the line, look for a blank. If a blank is found, increment words
by 1.

3. Continue steps 1 and 2 until the last line is completed.

The implementation of this algorithm is shown in Fig. 10.13. The first while loop will be executed once
for each line of text. The end of text is indicated by pressing the ‘Return’ key an extra time after the entire
text has been entered. The extra ‘Return’ key causes a newline character as input to the last line and as a
result, the last line contains only the null character.

The program checks for this special line using the test

if (line[0] == \0’)
and if the first (and only the first) character in the line is a null character, then counting is terminated. Note
the difference between a null character and a blank character.

Program
#include <stdio.h>
main()
{
char line[81], ctr;
int i,c,
end = 0,
characters = 0,
words = 0,
lines = 0;
printf("KEY IN THE TEXT.\n");
printf("GIVE ONE SPACE AFTER EACH WORD.\n");
printf("WHEN COMPLETED, PRESS 'RETURN'.\n\n");
while(end == 0)
{
/* Reading a line of text */
c =0;
while((ctr=getchar()) != '\n')
line[c++] = ctr;
line[c] = '\0';
/* counting the words in a Tine */
if(1ine[0] == '\0")
break ;

Character Arrays and Strings ~%361

else
{
words++;
for(i=0; line[i] != '\0';i++)
if(1ine[i] == "' ' || line[i] == '\t')
words++;

}

/* counting lines and characters */

lines = lines +1;

characters = characters + strlen(line);
1
printf ("\n");
printf("Number of lines = %d\n", lines);
printf("Number of words = %d\n", words);
printf("Number of characters = %d\n", characters);

Output
KEY IN THE TEXT.
GIVE ONE SPACE AFTER EACH WORD.
WHEN COMPLETED, PRESS 'RETURN'.
Admiration is a very short-Tived passion.
Admiration involves a glorious obliquity of vision.
Always we Tike those who admire us but we do not
like those whom we admire.
Fools admire, but men of sense approve.
Number of lines = 5
Number of words = 36
Number of characters = 205

Fig. 10.13 Counting of characters, words and lines in a text
The program also counts the number of lines read and the total number of characters in the text.

Remember, the last line containing the null string is not counted.
After the first while loop is exited, the program prints the results of counting.

2. Processing of a Customer List [LO 10.1, 10.2, 10.3, 10.4 M]
Telephone numbers of important customers are recorded as follows:

Full name Telephone number

Joseph Louis Lagrange 869245

Jean Robert Argand 900823

Carl Freidrich Gauss 806788

362" Computing Fundamentals & C Programming

It is desired to prepare a revised alphabetical list with surname (last name) first, followed by a comma
and the initials of the first and middle names. For example,

Argand, J.R

We create a table of strings, each row representing the details of one person, such as first_name, middle_
name, last_name, and telephone_number. The columns are interchanged as required and the list is sorted on
the last_name. Figure 10.14 shows a program to achieve this.

Program
#define CUSTOMERS 10

main()

{
char first name[20][10], second name[20][10],

surname[20] [10], name[20] [20],
telephone[20] [10], dummy[20];

int 1,3

printf("Input names and telephone numbers \n");
printf("2");
for(i=0; i < CUSTOMERS ; i++)
{
scanf("%s %s %s %s", first_name[i],
second name[i], surname[i], telephone[i]);

/* converting full name to surname with initials */

strcpy(name[i], surname[i]);
strcat(name[i], ",");

dummy [0] = first name[i][0];
dummy[1] = "\O';
strcat(name[i], dummy);
strcat(name[i], ".");
dummy[0] = second name[i][0];
dummy[1] = '\0';
strcat(name[i], dummy);

/* Alphabetical ordering of surnames */

for(i=1; i <= CUSTOMERS-1; i++)
for(j=1; j <= CUSTOMERS-i; j++)

Output

Character Arrays and Strings

if(strcmp (name[j-1], name[j]) > 0)

{

/* Swaping names */
strcpy (dummy, name[j-1]);
strcpy(name[j-1], name[j]);
strcpy(name[j], dummy);

/* Swaping telephone numbers */
strcpy (dummy, telephone[j-1]);
strcpy(telephone[j-1],telephone[j]);
strcpy(telephone[j], dummy);
1
/* printing alphabetical list */
printf("\nCUSTOMERS LIST IN ALPHABETICAL ORDER \n\n");
for(i=0; i < CUSTOMERS ; i++)
printf(" %-20s\t %-10s\n", name[i], telephone[i]);

Input names and telephone numbers
?Gottfried WiThelm Leibniz 711518
Joseph Louis Lagrange 869245

Jean Robert Argand 900823

Carl Freidrich Gauss 806788

Simon Denis Poisson 853240
Friedrich WiThelm Bessel 719731
Charles Francois Sturm 222031
George Gabriel Stokes 545454
Mohandas Karamchand Gandhi 362718
Josian Willard Gibbs 123145

CUSTOMERS LIST IN ALPHABETICAL ORDER

Argand,J.R 900823
Bessel ,F.W 719731
Gandhi ,M.K 362718
Gauss,C.F 806788
Gibbs,J.W 123145

Lagrange,J.L 869245
Leibniz,G.W 711518
Poisson,S.D 853240
Stokes,G.G 545454
Sturm,C.F 222031

Fig. 10.14 Program to alphabetize a customer list

363

H

Computing Fundamentals & C Programming

REVIEW QUESTIONS

=

2. The function

10.

° L X AW

10.
11.
12.
13.

® N 0 kW

Fill in the Blanks

We can use the conversion specification in scanf to read a line of text.

does not require any conversion specification to read a string from
the keyboard.

The printf may be replaced by function for printing strings.

The function strncat has parameters.

The function is used to determine the length of a string.
We can initialize a string using the string manipulation function

To use the function atoi in a program, we must include the header file .

The string manipulation function determines if a character is contained in a
string.

The function call strcat (s2, s1); appends to

The function is used to sort the strings in alphabetical order.

True or False Statements
When initializing a string variable during its declaration, we must include the null character
as part of the string constant, like “GOOD\0”.

The gets function automatically appends the null character at the end of the string read
from the keyboard.

When reading a string with scanf, it automatically inserts the terminating null character.
The input function gets has one string parameter.

The function scanf cannot be used in any way to read a line of text with the white-spaces.
The function getchar skips white-space during input.

In C, strings cannot be initialized at run time.

String variables cannot be used with the assignment operator.

We cannot perform arithmetic operations on character variables.

The ASCII character set consists of 128 distinct characters.

In the ASCII collating sequence, the uppercase letters precede lowercase letters.

In C, it is illegal to mix character data with numeric data in arithmetic operations.

The function call strepy(s2, s1); copies string s2 into string s1.

Levels of Difficulty

‘/% : Low;

‘/U : Medium; ‘/@ : High

‘L0102
‘L0102

L0104 "
L0104 "
L0102 ™
JLO10.4,/™
L0104 ™

‘L0104 ®
L0104 g

JL010.1,/™
JL0102./"

10102 "
10102 "
JL010.2, /™
L0102 ™
L0102 'y
10104 "
JL0104,7"
10104 "
JLo 104, /™
L0104 ™
L0104 /™

14.
15.

|

—

[|

[

[
Character Arrays and Strings ’

The function call stremp(‘“abc”, “ABC”); returns a positive number.

We can assign a character constant or a character variable to an int type variable.

DiscuUSsSION QUESTIONS

1.
2.

Describe the limitations of using getchar and scanf functions for reading strings.

Character strings in C are automatically terminated by the null character. Explain how this
feature helps in string manipulations.

Strings can be assigned values as follows:

(a) During type declaration char string[] = {“......"};
(b) Using strepy function strepy(string, “.......");
(c) Reading using scanf function scanf(“%s”, string);

(d) Reading using gets function gets(string);

Compare them critically and describe situations where one is superior to the others.

Assuming the variable string contains the value “The sky is the limit.”, determine what
output of the following program segments will be.
(a) printf("%s", string);
(b) printf("%25.10s", string);
(c) printf("%s", string[0]);
(d) for (i=0; string[i] != "."; i++)
printf("%c", string[i]);

(e) for (i=0; string[i] != '\0'; i++;)

printf("%d\n", string[i]);
(f) for (i=0; i <= strlen[string]; ;)

{
string[i++] = i;
printf("%s\n", string[i]);
1

(g) printf("%c\n", string[10] + 5);
(h) printf("%c\n", string[10] + 5')

Which of the following statements will correctly store the concatenation of strings s1 and
s2 in string s3?

(a) s3 = strcat (s1, s2);

(b) strcat (s1, s2, s3);

(c) strcat (s3, s2, s1);

(d) strepy (s3, strcat (s1, s2));

(e) stremp (s3, strcat (s1, s2));

(f) strepy (streat (s1, s2), s3);

What will be the output of the following statement?
printf ("%d", strcmp ("push", "pull"));
Assume that s1, s2 and s3 are declared as follows:

char s1[10] = "he", s2[20] = "she", s3[30], s4[30];

L0104 '™
L0104 g

L0102 ™
L0104 g

L0101 "
10102 *
L0104 "

L0103 g

L0104 '™

L0103 '™
L0104 g

|
—
[|
|
[
, Computing Fundamentals & C Programming

What will be the output of the following statements executed in sequence?
printf("%s", strcpy(s3, s1));
printf("%s", strcat(strcat(strcpy(s4, s1), "or"), s2));
printf("%d %d", strlen(s2)+strlen(s3), strlen(s4));

8. What will be the output of the following segment? M"%

char s1[] = "Kolkotta" ;
char s2[] = "Pune" ;
strcpy (sl, s2) ;
printf("%s", s1) ;

9. What will be the output of the following segment? M"%

char s1[] = "NEW DELHI" ;
char s2[] = "BANGALORE" ;
strncpy (sl, s2, 3) ;
printf("%s", s1) ;

10. What will be the output of the following code? M"%

char s1[] = "Jabalpur" ;
char s2[] = "Jaipur" ;
printf(strncmp(sl, s2, 2));

11. What will be the output of the following code? M"%

char s1[] = "ANIL KUMAR GUPTA";
char s2[1 = "KUMAR";
printf (strstr (sl, s2));

12. Compare the working of the following functions: M‘-@

(a) strcpy and strncpys;
(b) strcat and strncat; and
(c) strcmp and strncmp.

DEBUGGING EXERCISE
1. Find errors, if any, in the following code segments: M‘-@

(a) char str[10]
strnepy(str, “GOD”, 3);
printf(“%s”, str);
(b) char str[10];
strepy(str, “Balagurusamy”);
(c) if strstr(“Balagurusamy”, “guru”) == 0);
printf(“Substring is found”);
(d) char s1[5], s2[10],
gets(sl, s2);

PROGRAMMING EXERCISES

1. Write a program, which reads your name from the keyboard and outputs a list of ASCII m@
codes, which represent your name.

10.

Character Arrays and Strings ~<367

Write a program to do the following:)IQ 10.3 ﬁ

(a) To output the question “Who is the inventor of C ?”

(b) To accept an answer.

(c) To print out “Good” and then stop, if the answer is correct.

(d) To output the message ‘try again’, if the answer is wrong.

(e) To display the correct answer when the answer is wrong even at the third attempt and stop.

Write a program to extract a portion of a character string and print the extracted string. m*%
Assume that m characters are extracted, starting with the nth character.

Write a program which will read a text and count all occurrences of a particular word. m‘/@

Write a program which will read a string and rewrite it in the alphabetical order. For m*/@
example, the word STRING should be written as GINRST.

Write a program to replace a particular word by another word in a given string. For m*/@
example, the word “PASCAL” should be replaced by “C” in the text “It is good to program

in PASCAL language.”
A Maruti car dealer maintains a record of sales of various vehicles in the following form: m*%

Vehicle type Month of sales Price

MARUTI-800 02/01 210000
MARUTI-DX 07/01 265000
GYPSY 04/02 315750
MARUTI-VAN 08/02 240000

Write a program to read this data into a table of strings and output the details of a particular
vehicle sold during a specified period. The program should request the user to input the
vehicle type and the period (starting month, ending month).

Write a program that reads a string from the keyboard and determines whether the string m*%
is a palindrome or not. (A string is a palindrome if it can be read from left and right

with the same meaning. For example, Madam and Anna are palindrome strings. Ignore

capitalization).

Write program that reads the cost of an item in the form RRRR.PP (Where RRRR denotes m*/@
Rupees and PP denotes Paise) and converts the value to a string of words that expresses

the numeric value in words. For example, if we input 125.75, the output should be “ONE

HUNDRED TWENTY FIVE AND PAISE SEVENTY FIVE”.

Develop a program that will read and store the details of a list of students in the format m*/@
Roll No. Name Marks obtained

and produce the following output list:

(a) Alphabetical list of names, roll numbers and marks obtained.
(b) List sorted on roll numbers.

(c) List sorted on marks (rank-wise list)

|
—
|
[|
[
’ Computing Fundamentals & C Programming

11.

[

13.

15.

2.

Write a program to read two strings and compare them using the function strnemp ()
and print a message that the first string is equal, less, or greater than the second one.

Write a program to read a line of text from the keyboard and print out the number of
occurrences of a given substring using the function strstr ().

Write a program that will copy m consecutive characters from a string s1 beginning at
position n into another string s2.

. Write a program to create a directory of students with roll numbers. The program should

display the roll number for a specified name and vice-versa.

Given a string
charstr []=123456789";
Write a program that displays the following:

1
232
34543
4567654
567898765

10104 "

L0104 '™
10104 "

L0104 '™

e

User-Defined Functions

CHAPTER

11

11.1 INTRODUCTION

We have mentioned earlier that one of the strengths of C language is C functions. They are easy to
define and use. We have used functions in every program that we have discussed so far. However,
they have been primarily limited to the three functions, namely, main, printf, and scanf. In this
chapter, we shall consider in detail the following:

< How a function is designed?

« How a function is integrated into a program?

« How two or more functions are put together? and
« How they communicate with one another?

C functions can be classified into two categories, namely, library functions and user-defined

functions. main is an example of user-defined functions. printf and scanf belong to the category
of library functions. We have also used other library functions such as sqrt, cos, strcat, etc.
The main distinction between these two categories is that library functions are not required to
be written by us whereas a user-defined function has to be developed by the user at the time of
writing a program. However, a user-defined function can later become a part of the C program
library. In fact, this is one of the strengths of C language.

370" Computing Fundamentals & C Programming

4
11.2 NEED FOR USER-DEFINED FUNCTIONS LO 11.1

As pointed out earlier, main is a specially recognized function in C. Every program must have a main
function to indicate where the program has to begin its execution. While it is possible to code any program
utilizing only main function, it leads to a number of problems. The program may become too large and
complex and as a result the task of debugging, testing, and maintaining becomes difficult. If a program is
divided into functional parts, then each part may be independently coded and later combined into a single
unit. These independently coded programs are called subprograms that are much easier to understand,
debug, and test. In C, such subprograms are referred to as ‘functions’.

There are times when certain type of operations or calculations are repeated at many points throughout
a program. For instance, we might use the factorial of a number at several points in the program. In such
situations, we may repeat the program statements wherever they are needed. Another approach is to design
a function that can be called and used whenever required. This saves both time and space.

This “division” approach clearly results in a number of advantages.

1. It facilitates top-down modular programming as shown in Fig. 11.1. In this programming style, the
high level logic of the overall problem is solved first while the details of each lower-level function are
addressed later.

2. The length of a source program can be reduced by using functions at appropriate places. This factor is
particularly critical with microcomputers where memory space is limited.

3. Itis easy to locate and isolate a faulty function for further investigations.

4. A function may be used by many other programs. This means that a C programmer can build on what
others have already done, instead of starting all over again from scratch.

Main Program

Function Function Function
A B (@

B1 B2

Fig. 11.1 Top-down modular programming using functions

4
11.3 A MULTI-FUNCTION PROGRAM LO11.1

A function is a self-contained block of code that performs a particular task. Once a function has been
designed and packed, it can be treated as a ‘black box’ that takes some data from the main program and

User-Defined Functions 371

returns a value. The inner details of operation are invisible to the rest of the program. All that the program
knows about a function is: What goes in and what comes out. Every C program can be designed using a
collection of these black boxes known as functions.
Consider a set of statements as shown below:
void printline(void)
{
int i;
for (i=1; i<40; i++)
printf("-");
printf("\n");
}

The above set of statements defines a function called printline, which could print a line of 39-character
length. This function can be used in a program as follows:

void printline(void); /* declaration */
main()
{
printline();
printf("This illustrates the use of C functions\n");
printline();

void printline(void)

int i;
for(i=1; i<40; i++)
printf("-");
printf("\n");

}

This program will print the following output:

This illustrates the use of C functions

The above program contains two user-defined functions:
main() function
printline() function
As we know, the program execution always begins with the main function. During execution of the
main, the first statement encountered is
printline();
which indicates that the function printline is to be executed. At this point, the program control is transferred
to the function printline. After executing the printline function, which outputs a line of 39 character length,
the control is transferred back to the main. Now, the execution continues at the point where the function
call was executed. After executing the printf statement, the control is again transferred to the printline
function for printing the line once more.

372

The main function calls the user-defined printline function two times and the library function printf
once. We may notice that the printline function itself calls the library function printf 39 times repeatedly.

Any function can call any other function. In fact, it can call itself. A ‘called function’ can also call
another function. A function can be called more than once. In fact, this is one of the main features of using

Computing Fundamentals & C Programming

functions. Figure 11.2 illustrates the flow of control in a multi-function program.

Except the starting point, there are no other predetermined relationships, rules of precedence, or
hierarchies among the functions that make up a complete program. The functions can be placed in any
order. A called function can be placed either before or after the calling function. However, it is the usual

practice to put all the called functions at the end. See the box “Modular Programming”.

Main ()

{

function1();

function 2();

function1();

return

function1();

{

function2();

function3();

call

return

function3();

j

call

Fig. 11.2 Flow of control in a multi-function program

User-Defined Functions 373

Modular Programming

Modular programming is a strategy applied to the design and development of software systems. It is defined
as organizing a large program into small, independent program segments called modules that are separately
named and individually callable program units. These modules are carefully integrated to become a
software system that satisfies the system requirements. It is basically a “divide-and-conquer” approach to
problem solving.

Modules are identified and designed such that they can be organized into a top-down hierarchical
structure (similar to an organization chart). In C, each module refers to a function that is responsible for a
single task.

Some characteristics of modular programming are as follows:

1. Each module should do only one thing.

2. Communication between modules is allowed only by a calling module.
3. A module can be called by one and only one higher module.
4

. No communication can take place directly between modules that do not have calling — called
relationship.
5. All modules are designed as single-entry, single-exit systems using control structures.

4
11.4 ELEMENTS OF USER-DEFINED FUNCTIONS LO 11.2

We have discussed and used a variety of data types and variables in our programs so far. However,
declaration and use of these variables were primarily done inside the main function. As we mentioned in
Chapter 6, functions are classified as one of the derived data types in C. We can therefore define functions
and use them like any other variables in C programs. It is therefore not a surprise to note that there exist
some similarities between functions and variables in C.

+ Both function names and variable names are considered identifiers and therefore, they must adhere to
the rules for identifiers.
+ Like variables, functions have types (such as int) associated with them.
+ Like variables, function names and their types must be declared and defined before they are used in a
program.
In order to make use of a user-defined function, we need to establish three elements that are related to
functions.

1. Function definition.
2. Function call.
3. Function declaration.

The function definition is an independent program module that is specially written to implement the
requirements of the function. In order to use this function we need to invoke it at a required place in the
program. This is known as the function call. The program (or a function) that calls the function is referred
to as the calling program or calling function. The calling program should declare any function (like
declaration of a variable) that is to be used later in the program. This is known as the function declaration
or function prototype.

374~ Computing Fundamentals & C Programming

y
11.5 DEFINITION OF FUNCTIONS LO 11.2

A function definition, also known as function implementation shall include the following elements:

1. function name;
. function type;
. list of parameters;
. local variable declarations;
. function statements; and
a return statement.

[©)RS SRS I

All the six elements are grouped into two parts, namely,
< function header (First three elements); and

2

< function body (Second three elements).
A general format of a function definition to implement these two parts is given below:

function_type function name(parameter 1ist)

{
local variable declaration;
executable statementl;
executable statement2;

return statement;

}

The first line function_type function_name(parameter list) is known as the function header and
the statements within the opening and closing braces constitute the function body, which is a compound
statement.

11.5.1 Function Header

The function header consists of three parts: the function type (also known as return type), the function
name, and the formal parameter list. Note that a semicolon is not used at the end of the function header.

11.5.2 Name and Type

The function type specifies the type of value (like float or double) that the function is expected to return
to the program calling the function. If the return type is not explicitly specified, C will assume that it is
an integer type. If the function is not returning anything, then we need to specify the return type as void.
Remember, void is one of the fundamental data types in C. It is a good programming practice to code
explicitly the return type, even when it is an integer. The value returned is the output produced by the
function.

The function name is any valid C identifier and therefore must follow the same rules of formation as
other variable names in C. The name should be appropriate to the task performed by the function. However,
care must be exercised to avoid duplicating library routine names or operating system commands.

User-Defined Functions 375

11.5.3 Formal Parameter List

The parameter list declares the variables that will receive the data sent by the calling program. They serve
as input data to the function to carry out the specified task. Since they represent the actual input values, they
are often referred to as formal parameters. These parameters can also be used to send values to the calling
programs. This aspect will be covered later when we discuss more about functions. The parameters are also
known as arguments.

The parameter list contains declaration of variables separated by commas and surrounded by parentheses.
Examples:

float quadratic (int a, int b, intc) {....}
double power (double x, intn) {.....}
float mul (float x, floaty) {....}

int sum (int a,intb) {....}

Remember, there is no semicolon after the closing parenthesis. Note that the declaration of parameter
variables cannot be combined. That is, int sum (int a,b) is illegal.

A function need not always receive values from the calling program. In such cases, functions have
no formal parameters. To indicate that the parameter list is empty, we use the keyword void between the
parentheses as in

void printline (void)

{
}

This function neither receives any input values nor returns back any value. Many compilers accept an
empty set of parentheses, without specifying anything as in
void printline ()
But, it is a good programming style to use void to indicate a nil parameter list.

11.5.4 Function Body

The function body contains the declarations and statements necessary for performing the required task. The
body enclosed in braces, contains three parts, in the order given below:

1. Local declarations that specify the variables needed by the function.

2. Function statements that perform the task of the function.

3. A return statement that returns the value evaluated by the function.

If a function does not return any value (like the printline function), we can omit the return statement.
However, note that its return type should be specified as void. Again, it is nice to have a return statement
even for void functions.

Some examples of typical function definitions are:

(a) float mul (float x, float y)
{
float result; /* local variable */
result = x * y; /* computes the product */
return (result); /* returns the result */

376" Computing Fundamentals & C Programming

(b) void sum (int a, int b)
{
printf ("sum = %s", a + b); /* no local variables */
return; /* optional */
1

(c) void display (void)
{ /* no local variables */

printf ("No type, no parameters");
/* no return statement */

Note

1. When a function reaches its return statement, the control is transferred back to the calling
program. In the absence of a return statement, the closing brace acts as a void return.

2. A local variable is a variable that is defined inside a function and used without having any

role in the communication between functions.

Yy
11.6 RETURN VALUES AND THEIR TYPES LO11.2

As pointed out earlier, a function may or may not send back any value to the calling function. If it does, it is
done through the return statement. While it is possible to pass to the called function any number of values,
the called function can only return one value per call, at the most.
The return statement can take one of the following forms:
return;
or

return(expression);
The first, the ‘plain’ return does not return any value; it acts much as the closing brace of the function.
When a return is encountered, the control is immediately passed back to the calling function. An example

of the use of a simple return is as follows:
if(error)
return;

Note (99, if a function is specified as returning a value, the return must have value associated with it.

The second form of return with an expression returns the value of the expression. For example, the function
int mul (int x, int y)
{
int p;
P = x*y;
return(p);

}

returns the value of p which is the product of the values of x and y. The last two statements can be combined

into one statement as follows:

User-Defined Functions 377

return (x*y);
A function may have more than one return statements. This situation arises when the value returned is
based on certain conditions. For example:

if(x <=0)
return(0);
else

return(l);

What type of data does a function return? All functions by default return int type data. But what happens
if a function must return some other type? We can force a function to return a particular type of data by
using a type specifier in the function header as discussed earlier.

When a value is returned, it is automatically cast to the function’s type. In functions that do computations
using doubles, yet return ints, the returned value will be truncated to an integer. For instance, the function

int product (void)
{
return (2.5 * 3.0);

}

will return the value 7, only the integer part of the result.

4
11.7 FUNCTION CALLS LO 11.2

A function can be called by simply using the function name followed by a list of actual parameters (or
arguments), if any, enclosed in parentheses. Example:
main()
{
int y;
y = mul(10,5); /* Function call */
printf("%d\n", y);
}
When the compiler encounters a function call, the control is transferred to the function mul(). This
function is then executed line by line as described and a value is returned when a return statement is
encountered. This value is assigned to y. This is illustrated below:

main ()

int y;
—> y = mul(10,5); /* call*/ ——
AN
AN
} ~,
PR
int mul(int x,int y)=———-

1

int p; /*Tocal variable*/
p=X*y; J* x= 10, y = 5%/
return (p);

378 Computing Fundamentals & C Programming

The function call sends two integer values 10 and 5 to the function.
int mul(int x, int y)
which are assigned to x and y respectively. The function computes the product x and y, assigns the result to
the local variable p, and then returns the value 25 to the main where it is assigned to y again.

There are many different ways to call a function. Listed below are some of the ways the function mul
can be invoked.

mul (10, 5)

mul (m, 5)

mul (10, n)

mul (m, n)

mul (m + 5, 10)

mul (10, mul(m,n))

mul (expressionl, expression2)

Note that the sixth call uses its own call as its one of the parameters. When we use expressions, they
should be evaluated to single values that can be passed as actual parameters.

A function which returns a value can be used in expressions like any other variable. Each of the
following statements is valid:

printf("%d\n", mul(p,q));
y = mul(p,q) / (p+q);
if (mul(m,n)>total) printf("large");
However, a function cannot be used on the right side of an assignment statement. For instance,
mul(a,b) = 15;
is invalid.

A function that does not return any value may not be used in expressions; but can be called in to perform
certain tasks specified in the function. The function printline() discussed in Section 11.3 belongs to this
category. Such functions may be called in by simply stating their names as independent statements.

Example:

main()
{

printline();
}

Note the presence of a semicolon at the end.

11.7.1 Function Call

A function call is a postfix expression. The operator (. .) is at a very high level of precedence (see Table
5.8). Therefore, when a function call is used as a part of an expression, it will be evaluated first, unless
parentheses are used to change the order of precedence.

In a function call, the function name is the operand and the parentheses set (. .) which contains the actual
parameters is the operator. The actual parameters must match the function’s formal parameters in type,
order and number. Multiple actual parameters must be separated by commas.

Note
1. Ifthe actual parameters are more than the formal parameters, the extra actual arguments will
be discarded.
2. On the other hand, if the actuals are less than the formals, the unmatched formal arguments
will be initialized to some garbage.
3. Any mismatch in data types may also result in some garbage values.

User-Defined Functions 379

4
11.8 FUNCTION DECLARATION LO 11.2

Like variables, all functions in a C program must be declared, before they are invoked. A function
declaration (also known as function prototype) consists of four parts.

< Function type (return type).
< Function name.
Parameter list.
< Terminating semicolon.

They are coded in the following format:

Function-type function-name (parameter list);

This is very similar to the function header line except the terminating semicolon. For example, mul

function defined in the previous section will be declared as:
int mul (int m, int n); /* Function prototype */

K2
% %

.

Points to Note
1. The parameter list must be separated by commas.
2. The parameter names do not need to be the same in the prototype declaration and the function
definition.
. The types must match the types of parameters in the function definition, in number and order.
. Use of parameter names in the declaration is optional.
. If the function has no formal parameters, the list is written as (void).
. The return type is optional, when the function returns int type data.
. The retype must be void if no value is returned.
. When the declared types do not match with the types in the function definition, compiler will produce
an error.
Equally acceptable forms of declaration of mul function are as follows:
int mul (int, int);
mul (int a, int b);
mul (int, int);

0NN bW

When a function does not take any parameters and does not return any value, its prototype is written as:

void display (void);

A prototype declaration may be placed in two places in a program.

1. Above all the functions (including main).

2. Inside a function definition.

When we place the declaration above all the functions (in the global declaration section), the prototype
is referred to as a global prototype. Such declarations are available for all the functions in the program.

When we place it in a function definition (in the local declaration section), the prototype is called a local
prototype. Such declarations are primarily used by the functions containing them.

The place of declaration of a function defines a region in a program in which the function may be used
by other functions. This region is known as the scope of the function. (Scope is discussed later in this
chapter.) It is a good programming style to declare prototypes in the global declaration section before main.
It adds flexibility, provides an excellent quick reference to the functions used in the program, and enhances
documentation.

380~ Computing Fundamentals & C Programming

Prototypes: Yes or No

Prototype declarations are not essential. If a function has not been declared before it is used, C will assume
that its details available at the time of linking. Since the prototype is not available, C will assume that the
return type is an integer and that the types of parameters match the formal definitions. If these assumptions
are wrong, the linker will fail and we will have to change the program. The moral is that we must always
include prototype declarations, preferably in global declaration section.

Parameters Everywhere!

Parameters (also known as arguments) are used in following three places:
1. in declaration (prototypes),
2. in function call, and
3. in function definition.

The parameters used in prototypes and function definitions are called formal parameters and those used
in function calls are called actual parameters. Actual parameters used in a calling statement may be simple
constants, variables, or expressions.

The formal and actual parameters must match exactly in type, order and number. Their names, however,
do not need to match.

4
11.9 CATEGORY OF FUNCTIONS LO 11.3

A function, depending on whether arguments are present or not and whether a value is returned or not, may
belong to one of the following categories:

Category 1: Functions with no arguments and no return values.

Category 2: Functions with arguments and no return values.

Category 3: Functions with arguments and one return value.

Category 4: Functions with no arguments but return a value.

Category 5: Functions that return multiple values.

In the sections to follow, we shall discuss these categories with examples. Note that, from now on, we
shall use the term arguments (rather than parameters) more frequently.

11.9.1 No Arguments and No Return Values

When a function has no arguments, it does not receive any data from the calling function. Similarly, when
it does not return a value, the calling function does not receive any data from the called function. In effect,
there is no data transfer between the calling function and the called function. This is depicted in Fig. 11.3.
The dotted lines indicate that there is only a transfer of control but not data.

control
function () /—\ function 2 ()
{ No input {
,,,,,,,,,,,,,,,,,,, »l
function2 () | |
. Nooutput | ..
control

Fig. 11.3 No data communication between functions

User-Defined Functions

> [

As pointed out earlier, a function that does not return any value cannot be used in an expression. It can
only be used as an independent statement.

A program with three user-defined functions is given in Fig. 11.4. main is the calling function that calls
printline and value functions. Since both the called functions contain no arguments, there are no argument
declarations. The printline function, when encountered, prints a line with a length of 35 characters as
prescribed in the function. The value function calculates the value of principal amount after a certain period
of years and prints the results. The following equation is evaluated repeatedly:

value = principal(1+interest-rate)

Levels of Difficulty
L: Low; M: Medium; H: High

382" Computing Fundamentals & C Programming

scanf("%f", &inrate);
printf("Period? ")
scanf("%d", &period);

sum = principal;
year = 1;
while(year <= period)
{
sum = sum *(1+inrate);
year = year +1;
}
printf("\n%8.2f %5.2f %5d %12.2f\n",
principal,inrate,period,sum);

Output
Principal amount? 5000
Interest rate? 0.12
Period? 5
5000.00 0.12 5 8811.71

Fig. 11.4 Functions with no arguments and no return values

It is important to note that the function value receives its data directly from the terminal. The input data
include principal amount, interest rate and the period for which the final value is to be calculated. The while
loop calculates the final value and the results are printed by the library function printf. When the closing
brace of value() is reached, the control is transferred back to the calling function main. Since everything
is done by the value itself there is in fact nothing left to be sent back to the called function. Return types of
both printline and value are declared as void.

Note that no return statement is employed. When there is nothing to be returned, the return statement
is optional. The closing brace of the function signals the end of execution of the function, thus returning the
control, back to the calling function.

11.9.2 Arguments But No Return Values

In Fig. 11.4 the main function has no control over the way the functions receive input data. For example,
the function printline will print the same line each time it is called. Same is the case with the function
value. We could make the calling function to read data from the terminal and pass it on to the called
function. This approach seems to be wiser because the calling function can check for the validity of data, if
necessary, before it is handed over to the called function.

The nature of data communication between the calling function and the called function with arguments
but no return value is shown in Fig. 11.5.

User-Defined Functions 383

function1 () Values function 2 (f)
{ of arguments |

.................. No return value

Fig. 11.5 One-way data communication

We shall modify the definitions of both the called functions to include arguments as follows:
void printline(char ch)
void value(float p, float r, int n)
The arguments ch, p, 1, and n are called the formal arguments. The calling function can now send values
to these arguments using function calls containing appropriate arguments. For example, the function call
value(500,0.12,5)
would send the values 500,0.12 and 5 to the function
void value(float p, float r, int n)
and assign 500 to p, 0.12 to r and 5 to n. The values 500, 0.12, and 5 are the actual arguments, which
become the values of the formal arguments inside the called function.
The actual and formal arguments should match in number, type, and order. The values of actual
arguments are assigned to the formal arguments on a one fo one basis, starting with the first argument as
shown in Fig. 11.6.

main ()
{ actual arguments
Function | -—------- ‘ D
call — functionl (al, a2, a3, .. , am)
functionl (f1, f2, f3, - , fn)
Called formal arguments
function——= {

Fig. 11.6 Arguments matching between the function call and the called function

384> Computing Fundamentals & C Programming

We should ensure that the function call has matching arguments. In case, the actual arguments are more
than the formal arguments (m > n), the extra actual arguments are discarded. On the other hand, if the
actual arguments are less than the formal arguments, the unmatched formal arguments are initialized to
some garbage values. Any mismatch in data type may also result in passing of garbage values. Remember,
no error message will be generated.

While the formal arguments must be valid variable names, the actual arguments may be variable names,
expressions, or constants. The variables used in actual arguments must be assigned values before the
function call is made.

Remember that, when a function call is made, only a copy of the values of actual arguments is passed
into the called function. What occurs inside the function will have no effect on the variables used in the
actual argument list.

WORKED-OUT PROBLEM 11.2 i

Modify the program of Program 11.1 to include the arguments in the function calls.

The modified program with function arguments is presented in Fig. 11.7. Most of the program is identical
to the program in Fig. 11.4. The input prompt and scanf assignment statement have been moved from value
function to main. The variables principal, inrate, and period are declared in main because they are used
in main to receive data. The function call

value(principal, inrate, period);
passes information it contains to the function value.

The function header of value has three formal arguments p,r, and n which correspond to the actual
arguments in the function call, namely, principal, inrate, and period. On execution of the function call, the
values of the actual arguments are assigned to the corresponding formal arguments. In fact, the following
assignments are accomplished across the function boundaries:

p = principal;
r = inrate;
n = period;

Program
/* prototypes */
void printline (char c);
void value (float, float, int);

main()

{
float principal, inrate;
int period;

printf("Enter principal amount, interest");
printf(" rate, and period \n");

scanf("%f %f %d",&principal, &inrate, &period);
printline('Z');

value(principal,inrate,period);

|

—

|

[|

[|
User-Defined Functions ’

Fig. 11.7 Functions with arguments but no return values

The variables declared inside a function are known as local variables and therefore their values are local
to the function and cannot be accessed by any other function. We shall discuss more about this later in the
chapter.

The function value calculates the final amount for a given period and prints the results as before. Control
is transferred back on reaching the closing brace of the function. Note that the function does not return any
value.

The function printline is called twice. The first call passes the character ‘Z’, while the second passes
the character ‘C’ to the function. These are assigned to the formal argument ch for printing lines (see the
output).

386~ Computing Fundamentals & C Programming

Variable Number of Arguments

Some functions have a variable number of arguments and data types which cannot be known at compile time.

The printf and scanf functions are typical examples. The ANSI standard proposes new symbol called the

ellipsis to handle such functions. The ellipsis consists of three periods (...) and used as shown below:
double area(float d,...)

Both the function declaration and definition should use ellipsis to indicate that the arguments are arbitrary

both in number and type.

11.9.3 Arguments with Return Values

The function value in Fig. 11.7 receives data from the calling function through arguments, but does not send
back any value. Rather, it displays the results of calculations at the terminal. However, we may not always
wish to have the result of a function displayed. We may use it in the calling function for further processing.
Moreover, to assure a high degree of portability between programs, a function should generally be coded
without involving any I/O operations. For example, different programs may require different output formats
for display of results. These shortcomings can be overcome by handing over the result of a function to its
calling function where the returned value can be used as required by the program.

A self-contained and independent function should behave like a ‘black box’ that receives a predefined
form of input and outputs a desired value. Such functions will have two-way data communication as shown
in Fig. 11.8.

function1() Values function 2 (f)
of arguments {

.................. return (e)

} J

Fig. 11.8 Two-way data communication between functions

Function result

We shall modify the program in Fig. 11.7 to illustrate the use of two-way data communication between
the calling and the called functions.

WORKED-OUT PROBLEM 11.3 m

In the program presented in Fig. 11.7 modify the function value, to return the final amount calculated to the
main, which will display the required output at the terminal. Also extend the versatility of the function
printline by having it to take the length of the line as an argument.

The modified program with the proposed changes is presented in Fig. 11.9. One major change is the
movement of the printf statement from value to main.

|

—

|

[|

[|
User-Defined Functions ’

Fig. 11.9 Functions with arguments and return values

388~ Computing Fundamentals & C Programming

The calculated value is passed on to main through statement:
return(sum) ;

Since, by default, the return type of value function is int, the ‘integer’ value of sum at this point is
returned to main and assigned to the variable amount by the functional call

amount = value (principal, inrate, period);
The following events occur, in order, when the above function call is executed:

1. The function call transfers the control along with copies of the values of the actual arguments to
the function value where the formal arguments p, r, and n are assigned the actual values of principal,
inrate and period respectively.
2. The called function value is executed line by line in a normal fashion until the return(sum);
statement is encountered. At this point, the integer value of sum is passed back to the function-call in
the main and the following indirect assignment occurs:
value(principal, inrate, period) = sum;
3. The calling statement is executed normally and the returned value is thus assigned to amount, a
float variable.
4. Since amount is a float variable, the returned integer part of sum is converted to floating-point
value. See the output.
Another important change is the inclusion of second argument to printline function to receive the value
of length of the line from the calling function. Thus, the function call
printline('*', 52);
will transfer the control to the function printline and assign the following values to the formal arguments
ch, and len:
ch = 'x'
len = 52;

Returning Float Values
We mentioned earlier that a C function returns a value of the type int as the default case when no other type
is specified explicitly. For example, the function value of Program 11.3 does all calculations using floats
but the return statement
return(sum) ;

returns only the integer part of sum. This is due to the absence of the type-specifier in the function header.
In this case, we can accept the integer value of sum because the truncated decimal part is insignificant
compared to the integer part. However, there will be times when we may find it necessary to receive the
float or double type of data. For example, a function that calculates the mean or standard deviation of a set
of values should return the function value in either float or double.

In all such cases, we must explicitly specify the return type in both the function definition and the
prototype declaration.

If we have a mismatch between the type of data that the called function returns and the type of data that
the calling function expects, we will have unpredictable results. We must, therefore, be very careful to make
sure that both types are compatible.

User-Defined Functions

Figure 11.10 shows a power function that returns a double. The prototype declaration
double power(int, int);
appears in main, before power is called.

Fig. 11.10 Power functions: llilustration of return of float values

Computing Fundamentals & C Programming

User-Defined Functions 391

Output
Enter the value of n: 5
Within the first 5 elements of array, the first minimum value is stored at index 1

Fig. 11.11 Program to return the position of the first minimum value in an array

Another way to guarantee that power’s type is declared before it is called in main is to define the power
function before we define main. Power’s type is then known from its definition, so we no longer need its
type declaration in main.

11.9.4 No Arguments But Returns a Value

There could be occasions where we may need to design functions that may not take any arguments but
returns a value to the calling function. A typical example is the getchar function declared in the header
file <stdio.h>. We have used this function earlier in a number of places. The getchar function has no
parameters but it returns an integer type data that represents a character.
We can design similar functions and use in our programs. Example:
int get number(void);
main
{
int m = get number();
printf("%d",m);
}
int get number(void)
{
int number;
scanf("%d", &number);
return(number) ;

}
11.9.5 Functions that Return Multiple Values

We have till now illustrated functions that return just one value using a return statement. That is because, a
return statement can return only one value. Suppose, however, that we want to get more information from a
function. We can achieve this in C using the arguments not only to receive information but also to send back
information to the calling function. The arguments that are used to “send out” information are called output
parameters.

The mechanism of sending back information through arguments is achieved using what are known as the
address operator (&) and indirection operator (*). Let us consider an example to illustrate this.

void mathoperation (int x, int y, int *s, int *d);
main()

{
int x = 20, y = 10, s, d;
mathoperation(x,y, &s, &d);

printf("s=%d\n d=%d\n", s,d);

392> Computing Fundamentals & C Programming

void mathoperation (int a, int b, int *sum, int *diff)
{

*sum = atb;

*diff = a-bs

}

The actual arguments x and y are input arguments, s and d are output arguments. In the function call,
while we pass the actual values of x and y to the function, we pass the addresses of locations where the
values of s and d are stored in the memory. (That is why, the operator & is called the address operator.)
When the function is called the following assignments occur:

value of xtoa
value of ytob
address of s to sum
address of d to diff

Note that indirection operator * in the declaration of sum and diff in the header indicates these variables
are to store addresses, not actual values of variables. Now, the variables sum and diff point to the memory
locations of s and d respectively.

(The operator * is known as indirection operator because it gives an indirect reference to a variable
through its address.)

In the body of the function, we have two statements:

* sum = atb;
* diff = a-b;

The first one adds the values a and b and the result is stored in the memory location pointed to by sum.
Remember, this memory location is the same as the memory location of s. Therefore, the value stored in the
location pointed to by sum is the value of s.

Similarly, the value of a-b is stored in the location pointed to by diff, which is the same as the location
d. After the function call is implemented, the value of s is a+b and the value of d is a—b. Output will be:

s=230
d=10

The variables *sum and *diff are known as pointers and sum and diff as pointer variables. Since they
are declared as int, they can point to locations of int type data.

The use of pointer variables as actual parameters for communicating data between functions is called
“pass by pointers” or “call by address or reference”. Pointers and their applications are discussed in detail
in Chapter 13.

Rules for Pass by Pointers
1. The types of the actual and formal arguments must be same.
2. The actual arguments (in the function call) must be the addresses of variables that are local to the

calling function.

. The formal arguments in the function header must be prefixed by the indirection operator *.

. In the prototype, the arguments must be prefixed by the symbol *.

5. To access the value of an actual argument in the called function, we must use the corresponding formal
argument prefixed with the indirection operator *.

B~ W

User-Defined Functions 393

11.9.6 Nesting of Functions

C permits nesting of functions freely. main can call functionl, which calls function2, which calls
function3, and so on. There is in principle no limit as to how deeply functions can be nested.
Consider the following program:

float ratio (int x, int y, int z);
int difference (int x, int y);
main()
{
int a, b, c;
scanf("%d %d %d", &a, &b, &c);
printf("%f \n", ratio(a,b,c));
1

float ratio(int x, int y, int z)
{
if(difference(y, z))
return(x/(y-z));
else
return(0.0);
1
int difference(int p, int q)
{

if(p != q)
return (1);
else

return(0);

}

The above program calculates the ratio

a
b-c
and prints the result. We have the following three functions:
main()
ratio()

difference()
main reads the values of a, b, and ¢ and calls the function ratio to calculate the value a/(b—c). This ratio
cannot be evaluated if (b—c) = 0. Therefore, ratio calls another function difference to test whether the
difference (b—c) is zero or not; difference returns 1, if b is not equal to c; otherwise returns zero to the
function ratio. In turn, ratio calculates the value a/(b—c) if it receives 1 and returns the result in float. In
case, ratio receives zero from difference, it sends back 0.0 to main indicating that (b—c) = 0.
Nesting of function calls is also possible. For example, a statement like
P = mul(mul(5,2),6);

is valid. This represents two sequential function calls. The inner function call is evaluated first and the
returned value is again used as an actual argument in the outer function call. If mul returns the product of
its arguments, then the value of p would be 60 (=5 x 2 x 6).

394~ Computing Fundamentals & C Programming

Note that the nesting does not mean defining one function within another. Doing this is illegal.

4
11.10 RECURSION LO 11.4

When a called function in turn calls another function a process of ‘chaining’ occurs. Recursion is a special
case of this process, where a function calls itself. A very simple example of recursion is presented below:
main()
{
printf("This is an example of recursion\n")
main();
}
When executed, this program will produce an output something like this:
This is an example of recursion
This is an example of recursion
This is an example of recursion
This is an ex
Execution is terminated abruptly; otherwise the execution will continue indefinitely.
Another useful example of recursion is the evaluation of factorials of a given number. The factorial of a
number n is expressed as a series of repetitive multiplications as shown below:
factorial of n = n(n—1)(n-2)......... 1.
For example,
factorial of 4 =4 x3 x2 x 1 =24
A function to evaluate factorial of n is as follows:

factorial (int n)
{
int fact;
if (n==1)
return(1);
else
fact = n*factorial(n-1);
return(fact);

}

Let us see how the recursion works. Assume n = 3. Since the value of n is not 1, the statement
fact = n * factorial(n-1);
will be executed with n = 3. That is,
fact = 3 * factorial(2);
will be evaluated. The expression on the right-hand side includes a call to factorial with n = 2. This call will
return the following value:
2 * factorial(1)

Once again, factorial is called with n = 1. This time, the function returns 1. The sequence of operations

can be summarized as follows:

fact = 3 * factorial(2)

User-Defined Functions 395

= 3 * 2 * factorial(1)
=3%2%]
=6
Recursive functions can be effectively used to solve problems where solution is expressed in terms of
successively applying the same solution to subsets of the problem. When we write recursive functions,
we must have an if statement somewhere to force the function to return without the recursive call being
executed. Otherwise, the function will never return.

4
11.11 PASSING ARRAYS TO FUNCTIONS LO11.5

11.11.1 One-Dimensional Arrays
Like the values of simple variables, it is also possible to pass the values of an array to a function. To pass
a one-dimensional an array to a called function, it is sufficient to list the name of the array, without any
subscripts, and the size of the array as arguments. For example, the call
largest(a,n)
will pass the whole array a to the called function. The called function expecting this call must be
appropriately defined. The largest function header might look like:
float largest(float array[], int size)

The function largest is defined to take two arguments, the array name and the size of the array to specify

the number of elements in the array. The declaration of the formal argument array is made as follows:
float array[]1;

The pair of brackets informs the compiler that the argument array is an array of numbers. It is not
necessary to specify the size of the array here.

Let us consider a problem of finding the largest value in an array of elements. The program is as follows:

main()
{
float Targest(float a[], int n);
float value[4] = {2.5,-4.75,1.2,3.67};
printf("%f\n", largest(value,4));
}
float Targest(float a[], int n)
{
int i;
float max;
max = a[0];
for(i = 1; i < n; i++)
if(max < a[i])
max = a[i];
return(max) ;

Computing Fundamentals & C Programming

<

When the function call largest(value,4) is made, the values of all elements of array value become the
corresponding elements of array a in the called function. The largest function finds the largest value in the
array and returns the result to the main.

In C, the name of the array represents the address of its first element. By passing the array name, we are, in
fact, passing the address of the array to the called function. The array in the called function now refers to the
same array stored in the memory. Therefore, any changes in the array in the called function will be reflected in
the original array.

Passing addresses of parameters to the functions is referred to as pass by address (or pass by pointers).
Note that we cannot pass a whole array by value as we did in the case of ordinary variables.

Standard deviation of a set of n values is give by

SD= /12(5 -x)
oy

Where X is the mean of the values.

User-Defined Functions 397

float mean(float a[],int n)

int i ;

float sum = 0.0;

for(i=0 ; i <n ; i++)
sum = sum + a[i];

return(sum/(float)n);

Qutput
Enter 5 float values
35.0 67.0 79.5 14.20 55.75

Std.deviation is 23.231582

Fig. 11.12 Passing of arrays to a function

A multifunction program consisting of main, std_dev, and mean functions is shown in Fig. 11.12. main
reads the elements of the array value from the terminal and calls the function std_dev to print the standard
deviation of the array elements. Std_deyv, in turn, calls another function mean to supply the average value
of the array elements.

Both std_dev and mean are defined as floats and therefore they are declared as floats in the global
section of the program.

Three Rules to Pass an Array to a Function
1. The function must be called by passing only the name of the array.
2. In the function definition, the formal parameter must be an array type; the size of the array does not
need to be specified.
3. The function prototype must show that the argument is an array.

When dealing with array arguments, we should remember one major distinction. If a function changes
the values of the elements of an array, then these changes will be made to the original array that passed to
the function. When an entire array is passed as an argument, the contents of the array are not copied into
the formal parameter array; instead, information about the addresses of array elements are passed on to the
function. Therefore, any changes introduced to the array elements are truly reflected in the original array
in the calling function. However, this does not apply when an individual element is passed on as argument.
Program 11.6 highlights these concepts.

WORKED-OUT PROBLEM 11.7 i

Write a program that uses a function to sort an array of integers.

A program to sort an array of integers using the function sort() is given in Fig. 11.13. Its output clearly
shows that a function can change the values in an array passed as an argument.

Program
void sort(int m, int x[]);

main()

{

Computing Fundamentals & C Programming

Fig. 11.13 Sorting of array elements using a function

11.11.2 Two-Dimensional Arrays

Like simple arrays, we can also pass multi-dimensional arrays to functions. The approach is similar to the
one we did with one-dimensional arrays. The rules are simple.
1. The function must be called by passing only the array name.
2. In the function definition, we must indicate that the array has two-dimensions by including two sets of
brackets.

|

—

|

[|

[|
User-Defined Functions ’

The function given below calculates the average of the values in a two-dimensional matrix.

3. The size of the second dimension must be specified.
4. The prototype declaration should be similar to the function header.

double average(int x[J[N], int M, int N)
{
int i, Jj;
double sum = 0.0;
for (i=0; i<M; i++)
for(j=1; j<N; j++)
sum += x[i]1[j]s
return(sum/(M*N));
}

This function can be used in a main function as illustrated below:

11.12 PASSING STRINGS TO FUNCTIONS -

The strings are treated as character arrays in C and therefore the rules for passing strings to functions are
very similar to those for passing arrays to functions.
Basic rules are:
1. The string to be passed must be declared as a formal argument of the function when it is defined.
Example:
void display(char item_name[])

400~ Computing Fundamentals & C Programming

2. The function prototype must show that the argument is a string. For the above function definition, the
prototype can be written as
void display(char str[]);
3. A call to the function must have a string array name without subscripts as its actual argument.
Example:
display (names);
where names is a properly declared string array in the calling function.
We must note here that, like arrays, strings in C cannot be passed by value to functions.

Pass by Value versus Pass by Pointers
The technique used to pass data from one function to another is known as parameter passing. Parameter
passing can be done in following two ways:

< Pass by value (also known as call by value).

< Pass by pointers (also known as call by pointers).

In pass by value, values of actual parameters are copied to the variables in the parameter list of the called
function. The called function works on the copy and not on the original values of the actual parameters.
This ensures that the original data in the calling function cannot be changed accidentally.

In pass by pointers (also known as pass by address), the memory addresses of the variables rather than
the copies of values are sent to the called function. In this case, the called function directly works on the
data in the calling function and the changed values are available in the calling function for its use.

Pass by pointers method is often used when manipulating arrays and strings. This method is also used
when we require multiple values to be returned by the called function.

11.13 THE SCOPE, VISIBILITY, AND y
LIFETIME OF VARIABLES LO11.6

Variables in C differ in behaviour from those in most other languages. For example, in a BASIC program,
a variable retains its value throughout the program. It is not always the case in C. It all depends on the
‘storage’ class a variable may assume.

In C not only do all variables have a data type, they also have a storage class. The following variable
storage classes are most relevant to functions:

1. Automatic variables.

2. External variables.

3. Static variables.

4. Register variables.

We shall briefly discuss the scope, visibility, and longevity of each of the above class of variables.
The scope of variable determines over what region of the program a variable is actually available for use
(‘active’). Longevity refers to the period during which a variable retains a given value during execution of
a program (‘alive’). So longevity has a direct effect on the utility of a given variable. The visibility refers to
the accessibility of a variable from the memory.

The variables may also be broadly categorized, depending on the place of their declaration, as internal
(local) or external (global). Internal variables are those which are declared within a particular function,
while external variables are declared outside of any function.

It is very important to understand the concept of storage classes and their utility in order to develop
efficient multifunction programs.

User-Defined Functions <401

11.13.1 Automatic Variables

Automatic variables are declared inside a function in which they are to be utilized. They are created when
the function is called and destroyed automatically when the function is exited, hence the name automatic.
Automatic variables are therefore private (or local) to the function in which they are declared. Because of
this property, automatic variables are also referred to as local or internal variables.
A variable declared inside a function without storage class specification is, by default, an automatic

variable. For instance, the storage class of the variable number in the example below is automatic.

main()

{

int number;

We may also use the keyword auto to declare automatic variables explicitly.
main()
{

auto int number;

One important feature of automatic variables is that their value cannot be changed accidentally by what
happens in some other function in the program. This assures that we may declare and use the same variable
name in different functions in the same program without causing any confusion to the compiler.

WORKED-OUT PROBLEM 11.8 (M|

Write a multifunction to illustrate how automatic variables work.

A program with two subprograms functionl and function2 is shown in Fig. 11.14. m is an automatic
variable and it is declared at the beginning of each function. m is initialized to 10, 100, and 1000 in
functionl, function2, and main respectively.

When executed, main calls function2 which in turn calls functionl. When main is active, m = 1000; but
when function2 is called, the main’s m is temporarily put on the shelf and the new local m = 100 becomes
active. Similarly, when functionl1 is called, both the previous values of m are put on the shelf and the latest
value of m (=10) becomes active. As soon as functionl (m=10) is finished, function2 (m=100) takes over
again. As soon it is done, main (m=1000) takes over. The output clearly shows that the value assigned to m
in one function does not affect its value in the other functions; and the local value of m is destroyed when it
leaves a function.

Program
void functionl(void);
void function2(void);
main()

{

Computing Fundamentals & C Programming

Fig. 11.14 Working of automatic variables

There are two consequences of the scope and longevity of auto variables worth remembering. First,
any variable local to main will be normally alive throughout the whole program, although it is active only
in main. Secondly, during recursion, the nested variables are unique auto variables, a situation similar to
function-nested auto variables with identical names.

11.13.2 External Variables

Variables that are both alive and active throughout the entire program are known as external variables. They
are also known as global variables. Unlike local variables, global variables can be accessed by any function
in the program. External variables are declared outside a function. For example, the external declaration of
integer number and float length might appear as:

int number;

float Tength = 7.5;

main()

403

User-Defined Functions

The variables number and length are available for use in all the three functions. In case a local variable
and a global variable have the same name, the local variable will have precedence over the global one in the

function where it is declared. Consider the following example:
int count;
main()

function()
{
int count = 0;

count = count+l;

}

When the function references the variable count, it will be referencing only its local variable, not the

global one. The value of count in main will not be affected.

WORKED-OUT PROBLEM 11.9

Write a multifunction program to illustrate the properties of global variables.

A program to illustrate the properties of global variables is presented in Fig. 11.15. Note that variable x is
used in all functions but none except fun2, has a definition for x. Because x has been declared ‘above’ all
the functions, it is available to each function without having to pass x as a function argument. Further, since
the value of x is directly available, we need not use return(x) statements in funl and fun3. However, since
fun2 has a definition of x, it returns its local value of x and therefore uses a return statement. In fun2, the

global x is not visible. The local x hides its visibility here.

Program
int funl(void);
int fun2(void);
int fun3(void);
int x ; /* global */
main()

{

Computing Fundamentals & C Programming

Fig. 11.15 lllustration of properties of global variables

Once a variable has been declared as global, any function can use it and change its value. Then,
subsequent functions can reference only that new value.

Global Variables as Parameters
Since all functions in a program source file can access global variables, they can be used for passing values
between the functions. However, using global variables as parameters for passing values poses certain
problems.
< The values of global variables which are sent to the called function may be changed inadvertently
by the called function.
< Functions are supposed to be independent and isolated modules. This character is lost, if they use
global variables.
« It is not immediately apparent to the reader which values are being sent to the called function.
< A function that uses global variables suffers from reusability.
One other aspect of a global variable is that it is available only from the point of declaration to the end of
the program. Consider a program segment as shown below:

User-Defined Functions <405

main()
{
y =5;
}
int y; /* global declaration */
funcl()
{
y = ytly

}
We have a problem here. As far as main is concerned, y is not defined. So, the compiler will issue an
error message. Unlike local variables, global variables are initialized to zero by default. The statement
y = y+l;
in fun1 will, therefore, assign 1 to y.

11.13.3 External Declaration

In the program segment above, the main cannot access the variable y as it has been declared after the main
function. This problem can be solved by declaring the variable with the storage class extern.
For example:

main()
{
extern int y; /* external declaration */

funcl()
{

extern int y; /* external declaration */

int y; /* definition */

Although the variable y has been defined after both the functions, the external declaration of y inside
the functions informs the compiler that y is an integer type defined somewhere else in the program. Note
that extern declaration does not allocate storage space for variables. In case of arrays, the definition should
include their size as well.

Example:

main()

{ int i;
void print_out(void);
extern float height [1;

406~ Computing Fundamentals & C Programming

print out();

1

void print_out(void)

{
extern float height [];
int i;

float height[SIZE];

An extern within a function provides the type information to just that one function. We can provide type
information to all functions within a file by placing external declarations before any of them.
Example:
extern float height[];
main()
{
int i;
void print_out(void);

print out();
}

void print_out(void)

float height[SIZE];

The distinction between definition and declaration also applies to functions. A function is defined when
its parameters and function body are specified. This tells the compiler to allocate space for the function
code and provides type information for the parameters. Since functions are external by default, we declare
them (in the calling functions) without the qualifier extern. Therefore, the declaration

void print_out(void);
is equivalent to
extern void print_out(void);
Function declarations outside of any function behave the same way as variable declarations.

11.13.4 Static Variables

As the name suggests, the value of static variables persists until the end of the program. A variable can be
declared static using the keyword static like

User-Defined Functions

> [

static int x;
static float y;

A static variable may be either an internal type or an external type depending on the place of declaration.

Internal static variables are those which are declared inside a function. The scope of internal static
variables extend up to the end of the function in which they are defined. Therefore, internal static variables
are similar to auto variables, except that they remain in existence (alive) throughout the remainder of
the program. Therefore, internal static variables can be used to retain values between function calls. For
example, it can be used to count the number of calls made to a function.

The program in Fig. 11.16 explains the behaviour of a static variable.

Fig. 11.16 lllustration of static variable

A static variable is initialized only once, when the program is compiled. It is never initialized again.
During the first call to stat, x is incremented to 1. Because x is static, this value persists and therefore,
the next call adds another 1 to x giving it a value of 2. The value of x becomes three when the third call is
made.

Had we declared x as an auto variable, the output would have been:

x=1
x=1
x=1

408~ Computing Fundamentals & C Programming

This is because each time stat is called, the auto variable x is initialized to zero. When the function
terminates, its value of 1 is lost.

An external static variable is declared outside of all functions and is available to all the functions in that
program. The difference between a static external variable and a simple external variable is that the static
external variable is available only within the file where it is defined while the simple external variable can
be accessed by other files.

It is also possible to control the scope of a function. For example, we would like a particular function
accessible only to the functions in the file in which it is defined, and not to any function in other files. This
can be accomplished by defining ‘that’ function with the storage class static.

11.13.5 Register Variables

We can tell the compiler that a variable should be kept in one of the machine’s registers, instead of keeping
in the memory (where normal variables are stored). Since a register access is much faster than a memory
access, keeping the frequently accessed variables (e.g., loop control variables) in the register will lead to
faster execution of programs. This is done as follows:

register int count;

Although, ANSI standard does not restrict its application to any particular data type, most compilers
allow only int or char variables to be placed in the register.

Since only a few variables can be placed in the register, it is important to carefully select the variables
for this purpose. However, C will automatically convert register variables into non-register variables once
the limit is reached.

Table 11.1 summarizes the information on the visibility and lifetime of variables in functions and files.

Table 11.1 Scope and Lifetime of Variables

Storage Class Where declared Visibility (Active) Lifetime (Alive)
None Before all functions in a file Entire file plus other files where Entire program (Global)
(may be initialized) variable is declared with extern
extern Before all functions in a file Entire file plus other files where Global
(cannot be initialized) variable is declared
extern and the file where origi-
nally declared as global.
static Before all functions in a file Only in that file Global
None or auto Inside a function (or a block) Only in that function or block Until end of function or block
register Inside a function or block Only in that function or block Until end of function or block
static Inside a function Only in that function Global

Nested Blocks

A set of statements enclosed in a set of braces is known a block or a compound statement. Note that all
functions including the main use compound statement. A block can have its own declarations and other
statements. It is also possible to have a block of such statements inside the body of a function or another
block, thus creating what is known as nested blocks as shown below:

User-Defined Functions <409

main()
{
int a = 20;
int b = 10;
----- Outer
{ block
int a = 03 Inner
int ¢ = a + b; block
1
b = a;

}

When this program is executed, the value ¢ will be 10, not 30. The statement b = a; assigns a value of
20 to b and not zero. Although the scope of a extends up to the end of main it is not “visible” inside the
inner block where the variable a has been declared again. The inner a hides the visibility of the outer a in
the inner block. However, when we leave the inner block, the inner a is no longer in scope and the outer a
becomes visible again.

Remember, the variable b is not re-declared in the inner block and therefore it is visible in both the
blocks. That is why when the statement int c = a + b;
is evaluated, a assumes a values of 0 and b assumes a value of 10.

Although main’s variables are visible inside the nested block, the reverse is not true.

Scope Rules
Scope
The region of a program in which a variable is available for use.
Visibility
The program’s ability to access a variable from the memory.
Lifetime
The lifetime of a variable is the duration of time in which a variable exists in the memory during execution.

Rules of use
1. The scope of a global variable is the entire program file.
2. The scope of a local variable begins at point of declaration and ends at the end of the block or
function in which it is declared.
. The scope of a formal function argument is its own function.
4. The lifetime (or longevity) of an auto variable declared in main is the entire program execution time,
although its scope is only the main function.
. The life of an auto variable declared in a function ends when the function is exited.
6. A static local variable, although its scope is limited to its function, its lifetime extends till the end of
program execution.
7. All variables have visibility in their scope, provided they are not declared again.
8. If a variable is redeclared within its scope again, it loses its visibility in the scope of the redeclared
variable.

W

9,1

410~ Computing Fundamentals & C Programming

y
11.14 MULTIFILE PROGRAMS LO 11.6

So far we have been assuming that all the functions (including the main) are defined in one file. However,
in real-life programming environment, we may use more than one source files which may be compiled
separately and linked later to form an executable object code. This approach is very useful because any
change in one file does not affect other files thus eliminating the need for recompilation of the entire
program.

Multiple source files can share a variable provided it is declared as an external variable appropriately.
Variables that are shared by two or more files are global variables and therefore we must declare them
accordingly in one file and then explicitly define them with extern in other files. Figure 11.17 illustrates the
use of extern declarations in a multifile program.

The function main in filel can reference the variable m that is declared as global in file2. Remember,
functionl cannot access the variable m. If, however, the extern int m; statement is placed before main,
then both the functions could refer to m. This can also be achieved by using extern int m; statement inside
each function in filel.

The extern specifier tells the compiler that the following variable types and names have already been
declared elsewhere and no need to create storage space for them. It is the responsibility of the linker to
resolve the reference problem. It is important to note that a multifile global variable should be declared
without extern in one (and only one) of the files. The extern declaration is done in places where secondary
references are made. If we declare a variable as global in two different files used by a single program, then
the linker will have a conflict as to which variable to use and, therefore, issues a warning.

filel.c file2.c

main() int m /* global variable */
{ function2()

extern int m; {

int i; int i;
} }
functionl() function3()
{ {

int j; int count;

Fig. 11.17 Use of extern in a multifile program

User-Defined Functions <411

The multifile program shown in Fig. 11.18 can be modified as shown in Fig. 11.17.

filel.c file2.c

int m; /* global variable */ extern int m;
main() function2()
{ {

int i; int i;
1 1
functionl() function3()
{ {

int j; int count;

} }

Fig. 11.18 Another version of a multifile program

When a function is defined in one file and accessed in another, the later file must include a function
declaration. The declaration identifies the function as an external function whose definition appears
elsewhere. We usually place such declarations at the beginning of the file, before all functions. Although all
functions are assumed to be external, it would be a good practice to explicitly declare such functions with
the storage class extern.

Q LEARNING OUTCOMES

e A function that returns a value can be used in expressions like any other C variable. LO
e A function that returns a value cannot be used as a stand-alone statement. LO
e Where more functions are used, they may be placed in any order. LO
e Itisasyntax error if the types in the declaration and function definition do not match. 170]11.2]

e Itis asyntax error if the number of actual parameters in the function call do not match the number in LO [FFFY
the declaration statement.

e Itis alogic error if the parameters in the function call are placed in the wrong order. LO
e Placing a semicolon at the end of header line is illegal. LO
e Forgetting the semicolon at the end of a prototype declaration is an error. LO
e A return statement can occur anywhere within the body of a function. LO
e A function definition may be placed either after or before the main function. LO
e A return statement is required if the return type is anything other than void. LO
e If a function does not return any value, the return type must be declared void. LO
e Ifa function has no parameters, the parameter list must be declared void. LO
e Using void as return type when the function is expected to return a value is an error. LOVEE)

e Trying to return a value when the function type is marked void is an error. 170]11.3]

412 Computing Fundamentals & C Programming

Defining a function within the body of another function is not allowed.
It is an error if the type of data returned does not match the return type of the function.

It will most likely result in logic error if there is a mismatch in data types between the actual and
formal arguments.

Functions return integer value by default.

A function without a return statement cannot return a value, when the parameters are passed by
value.

When the value returned is assigned to a variable, the value will be converted to the type of the
variable receiving it.

Function cannot be the target of an assignment.

A function with void return type cannot be used in the right-hand side of an assignment statement. It
can be used only as a stand-alone statement.

A function can have more than one return statement.

A recursive function must have a condition that forces the function to return without making the
recursive call; otherwise the function will never return.

It is illegal to use the name of a formal argument as the name of a local variable.

Variables in the parameter list must be individually declared for their types. We cannot use multiple
declarations (like we do with local or global variables).

Use parameter passing by values as far as possible to avoid inadvertent changes to variables of calling
function in the called function.

Although not essential, include parameter names in the prototype declarations for documentation
purposes.

A global variable used in a function will retain its value for future use.

A local variable defined inside a function is known only to that function. It is destroyed when the
function is exited.

A global variable is visible only from the point of its declaration to the end of the program.

When a variable is redeclared within its scope either in a function or in a block, the original variable
is not visible within the scope of the redeclared variable.

A local variable declared static retains its value even after the function is exited.
Static variables are initialized at compile time and therefore, they are initialized only once.

Avoid the use of names that hide names in outer scope.

_Q KEY TERMS TO REMEMBER

190]11.3 |
LOTE]
190]11.3 |

LONE]
190]11.3 |

LO¥¥]

190]11.3 |
LOENE]

100]11.3 |
00111.4)

Lo
00]11.5)

Lo
00]11.5)

170]11.6 |
170111.6)

LoiN3
150111.6)

170111.6 |
170111.6
LoEN3

Arguments: Are the set of values that are passed to a function to enable the function to perform the
desired task.

Block statement: Is a set of statements enclosed within a set of braces.
Function: Is an independently coded subprogram that performs a specific task.

Modular Programming: Is a software development approach that organizes a large program into
small, independent program segments called modules.

Calling program: Is the program or function that calls another function.

Function body: Contains the statement block for performing the required task.

5e]11.1

5e]11.1
5e]11.1
5e]11.1

5e]11.2
5e]11.2

e Function type: Specifies the type of value that the function will return.

User-Defined Functions <413

5e]11.2)

e Parameter list: Is a list of variables that will receive data values at the time of function call. LOEW]

e Program definition: Is an independent program module that is written to perform specific task. It is LO [[l§¢3

also referred as function definition.

° Recursion: Is a scenario where a function calls itself.

70)11.4]

e External variable: Is a variable that is active throughout the program. It is also referred as global LO FIKJ

variable.

e Local variable: Is a variable that is active only within a specific function or statement block. It is LO I3

also referred as internal variable.

BRIEF CASES

1. Calculation of Area under a Curve

[LO 11.1, 11.2, 11.3, 11.6 M]

One of the applications of computers in numerical analysis is computing the area under a curve. One simple
method of calculating the area under a curve is to divide the area into a number of trapezoids of same width
and summing up the area of individual trapezoids. The area of a trapezoid is given by

Area=0.5" (hl + h2)

“b

where hl and h2 are the heights of two sides and b is the width as shown in Fig. 11.19.

The program in Fig. 11.21 calculates the area for a curve of the function

f(x)=x2+1
between any two given limits, say, A and B.
Input
Lower limit (A)
Upper limit (B)

Number of trapezoids

h4

SN

ha

Curve

X —

Fig. 11.19 Area under a curve

|
—
|
I
[
, Computing Fundamentals & C Programming

Output
Total area under the curve between the given limits.

Algorithm
1. Input the lower and upper limits and the number of trapezoids.
. Calculate the width of trapezoids.
. Initialize the total area.
. Calculate the area of trapezoid and add to the total area.
. Repeat step-4 until all the trapezoids are completed.
. Print total area.
The algorithm is implemented in top-down modular form as in Fig. 11.20.

[|
(o

Fig. 11.20 Modular chart

(o)WY B RS S

The evaluation of f(x) has been done using a separate function so that it can be easily modified to allow
other functions to be evaluated.

The output for two runs shows that better accuracy is achieved with larger number of trapezoids. The
actual area for the limits 0 and 3 is 12 units (by analytical method).

|

—

|

[|

[|
User-Defined Functions ’

Computing Fundamentals & C Programming

TOTAL AREA = 12.005000

AREA UNDER A CURVE

Enter lower limit: 0

Enter upper Timit: 3

Enter number of trapezoids: 100
TOTAL AREA = 12.000438

Fig. 11.21 Computing area under a curve
REVIEW QUESTIONS
Fill in the Blanks
1. The parameters used in a function call are called M\%
2. In prototype declaration, specifying is optional. m@
3. A aids the compiler to check the matching between the actual arguments and the m@

10.

N S M

A AR

formal ones.

In passing by pointers, the variables of the formal parameters must be prefixed with
in their declaration.
By default, is the return type of a C function.
A function that calls itself is known as a function.
A variable declared inside a function is called
refers to the region where a variable is actually available for use.

If a local variable has to retain its value between calls to the function, it must be declared as

A variable declared inside a function by default assumes storage class.

True or False Statements
Any name can be used as a function name.
A function without a return statement is illegal.
A function prototype must always be placed outside the calling function.
The variable names used in prototype should match those used in the function definition.
The return type of a function is int by default.

When variable values are passed to functions, a copy of them are created in the memory.

Levels of Difficulty

‘/6 : Low;

‘/5 : Medium; ‘/i : High

o113 "

‘o3 "
o114
‘Lo1Le
‘Lo1Le ®
‘Lo1e ®

L0116 "

Loiii t
o112
o112
o112
o112 "
o112 "

7.
8.
9.
10.
11.
12.

13.

14.

15.

16.
17.

18.

19.
20.

A function can be defined within the main function.

A function can be defined and placed before the main function.
C functions can return only one value under their function name.
A function in C should have at least one argument.

Only a void type function can have void as its argument.

Program execution always begins in the main function irrespective of its location in the
program.

In parameter passing by pointers, the formal parameters must be prefixed with the symbol *
in their declarations.

In parameter passing by pointers, the actual parameters in the function call may be variables
or constants.

An user-defined function must be called at least once; otherwise a warning message will be
issued.

A function can call itself.

In passing arrays to functions, the function call must have the name of the array to be
passed without brackets.

In passing strings to functions, the actual parameter must be name of the string post-fixed
with size in brackets.

Global variables are visible in all blocks and functions in the program.

Global variables cannot be declared as auto variables.

DISCUSSION QUESTIONS

The main is a user-defined function. How does it differ from other user-defined functions?

Describe the two ways of passing parameters to functions. When do you prefer to use each
of them?

What is prototyping? Why is it necessary?
Distinguish between the following:

(a) Actual and formal arguments

(b) & operator and * operator

(c) Global and local variables

(d) Automatic and static variables

(e) Scope and visibility of variables

Explain what is likely to happen when the following situations are encountered in a
program.
(a) Actual arguments are less than the formal arguments in a function.

|

—

[

[|

[|
User-Defined Functions ’

o112 =
L0113
L0113
L0113
L0113 =

L0113 "
L0113 g
L0113 g

o114
o1s

Lo1s "

L0116 "
L0116 g

Lo1L1 g
o5 ™

o1zt

o112 =
o113 =
L0116
L0116 ™
L0116 ™
L0113 g

(b) Data type of one of the actual arguments does not match with the type of the corresponding formal

argument.

418~ Computing Fundamentals & C Programming

(c) Data type of one of the arguments in a prototype does not match with the type of the corresponding
formal parameter in the header line.

(d) The order of actual parameters in the function call is different from the order of formal parameters
in a function where all the parameters are of the same type.

(e) The type of expression used in return statement does not match with the type of the function.

6. Which of the following prototype declarations are invalid? Why? mxfh
(a) int (fun) void; |
(b) double fun (void)

(c) float fun (x, y, n);

(d) void fun (void, void);
(e) int fun (int a, b);

) fun (int, float, char);
(g) void fun (int a, int &b);

7. Which of the following header lines are invalid? Why? mﬁq
(a) float average (float x, float y, float z); |

(b) double power (double a, int n — 1)
(c) int product (int m, 10)

(d) double minimum (double x; double y;)
(e) int mul (int x, y)

(f) exchange (int *a, int *b)

(g) void sum (int a, int b, int &c)

8. A function to divide two floating point numbers is as follows: mxfh
divide (float x, float y)

{
return (x / y);

}

What will be the value of the following “function calls”
(a) divide (10, 2)

(b) divide (9,2)

(c) divide (4.5,1.5)

(d) divide (2.0,3.0)

9. What will be the effect on the above function calls if we change the header line as follows: m@
(a) int divide (int X, int y)
(b) double divide (float x, float y)

10. Determine the output of the following program? m@

int prod(int m, int n);

main ()

{
int x = 10;
int y = 20;
int p, q;

p = prod (x,y);
q = prod (p, prod (x,z));

|
—
|
[|
[|
User-Defined Functions ,

printf ("%d %d\n", p,q);

1
int prod(int a, int b)
{
return (a * b);
1

11. What will be the output of the following program?
void test (int *a);
main ()
{
int x = 50;
test (&x);
printf("%d\n", x);

1
void test (int *a);
{
*a = *a + 50;
1

12. The function test is coded as follows:
int test (int number)

{
int m, n = 0;
while (number)
{
m = number % 10;
if (m% 2)
n=n+1l;
number = number /10;
1
return (n);
}

What will be the values of x and y when the following statements are executed?
int x = test (135);
test (246);

int y
13. Enumerate the rules that apply to a function call.
14. Summarize the rules for passing parameters to functions by pointers.
15. What are the rules that govern the passing of arrays to function?

16. State the problems we are likely to encounter when we pass global variables as parameters
to functions.

o112 =
o113 =
o115 =
L0116 g

|
—
[|
[|
[
, Computing Fundamentals & C Programming

DEBUGGING EXERCISES

1. Find errors, if any, in the following function definitions:

2.

(a) void abc (int a, int b)
{

int c;
return (c);
}
(b) int abc (int a, int b)
{

}
(c) int abc (int a, int b)
{
double ¢ = a + b;
return (c);

}
(d) void abc (void)
{

return;
1
(e) int abc(void)

{

return;

1
Find errors in the following function calls:
(a) void xyz ();
(b) xyx (void);
(¢) xyx (int x, int y);
(d) xyzz ()3
(e xyz () +xyz ();

L0113 g

o3 -

PROGRAMMING EXERCISES

1. Write a function exchange to interchange the values of two variables, say x and y. [llustrate
the use of this function, in a calling function. Assume that x and y are defined as global
variables.

2. Write a function space(x) that can be used to provide a space of x positions between two

‘o1z ®
‘Lo1e ®

output numbers. Demonstrate its application.

Use recursive function calls to evaluate

3 xS x7
fx)= x -+ -+
3157

‘o1z ®
L0114 g

10.

11.
12.

13.

14.

An n_order polynomial can be evaluated as follows:
P =(....(((apx+a,)x+ay)x+a)x+...+a,)

Write a function to evaluate the polynomial, using an array variable. Test it using a main
program.

The Fibonacci numbers are defined recursively as follows:
F =1
F,=1
F,=F +F_,,n>2

Write a function that will generate and print the first n Fibonacci numbers. Test the function for
n=25, 10, and 15.

Write a function that will round a floating-point number to an indicated decimal place.
For example the number 17.457 would yield the value 17.46 when it is rounded off to two
decimal places.

Write a function prime that returns 1 if its argument is a prime number and returns zero
otherwise.

Write a function that will scan a character string passed as an argument and convert all
lowercase characters into their uppercase equivalents.

Develop a top_down modular program to implement a calculator. The program should
request the user to input two numbers and display one of the following as per the desire of
the user:

(a) Sum of the numbers

(b) Difference of the numbers

(c) Product of the numbers

(d) Division of the numbers

Provide separate functions for performing various tasks such as reading, calculating and
displaying. Calculating module should call second level modules to perform the individual
mathematical operations. The main function should have only function calls.

Develop a modular interactive program using functions that reads the values of three sides
of a triangle and displays either its area or its perimeter as per the request of the user. Given
the three sides a, b and c.

Perimeter=a+b +c

Area = /(s —a) (s —b) (s —)
s=(a+b+c)2

where
Write a function that can be called to find the largest element of an m by n matrix.

Write a function that can be called to compute the product of two matrices of size m by n
and n by m. The main function provides the values for m and n and two matrices.

Design and code an interactive modular program that will use functions to a matrix of m by
n size, compute column averages and row averages, and then print the entire matrix with
averages shown in respective rows and columns.

Develop a top-down modular program that will perform the following tasks:
(a) Read two integer arrays with unsorted elements.
(b) Sort them in ascending order

|

—

[

[|

[|
User-Defined Functions ’

o113 "

‘o1zt

o1z "
Lo1L5 g

L0112 g
L0113 g

L0112 g
L0113 g

‘o1s "
‘ous "

RERTE N
‘o1 "
L0113 g
L0115 g

422

15.

16.

17.

18.

19.

20.

Computing Fundamentals & C Programming

(c) Merge the sorted arrays
(d) Print the sorted list

Use functions for carrying out each of the above tasks. The main function should have only
function calls.

Develop your own functions for performing following operations on strings:
(a) Copying one string to another

(b) Comparing two strings

(c) Adding a string to the end of another string

Write a driver program to test your functions.

Write a program that invokes a function called find() to perform the following tasks:
(a) Receives a character array and a single character.
(b) Returns 1 if the specified character is found in the array, O otherwise.

Design a function locate () that takes two character arrays s1 and s2 and one integer value
m as parameters and inserts the string s2 into s1 immediately after the index m.

Write a program to test the function using a real-life situation. (Hint: s2 may be a missing
word in s1 that represents a line of text).

Write a function that takes an integer parameter m representing the month number of the
year and returns the corresponding name of the month. For instance, if m = 3, the month is
March.

Test your program.

In preparing the calendar for a year we need to know whether that particular year is leap
year or not. Design a function leap() that receives the year as a parameter and returns an
appropriate message.

What modifications are required if we want to use the function in preparing the actual
calendar?

Write a function that receives a floating point value x and returns it as a value rounded to
two nearest decimal places. For example, the value 123.4567 will be rounded to 123.46
(Hint: Seek help of one of the math functions available in math library).

‘o3 "
‘Lo1s "

‘Lo1s "
L0115 g

o113 "

o112 "

o112 "

CHAPTER

=12

Structures and Unions

es are declared and accessed in a program
bles and members are manipulated

d ‘structures and functions’
ng value of structures from one function to
d unions differ in terms of their storage

12.1 INTRODUCTION

We have seen that arrays can be used to represent a group of data items that belong to the same
type, such as int or float. However, we cannot use an array if we want to represent a collection of
data items of different types using a single name. Fortunately, C supports a constructed data type
known as structures, a mechanism for packing data of different types. A structure is a convenient
tool for handling a group of logically related data items. For example, it can be used to represent
a set of attributes, such as student_name, roll_number and marks. The concept of a structure is
analogous to that of a ‘record’ in many other languages. More examples of such structures are:

time : seconds, minutes, hours

date : day, month, year

book : author, title, price, year

city : name, country, population
address : name, door-number, street, city
inventory : item, stock, value

customer : name, telephone, city, category

424> Computing Fundamentals & C Programming

Structures help to organize complex data in a more meaningful way. It is a powerful concept that we
may often need to use in our program design. This chapter is devoted to the study of structures and their
applications in program development. Another related concept known as unions is also discussed.

4
12.2 DEFINING A STRUCTURE L0 12.1

Unlike arrays, structures must be defined first for their format that may be used later to declare structure
variables. Let us use an example to illustrate the process of structure definition and the creation of structure
variables. Consider a book database consisting of book name, author, number of pages, and price. We can
define a structure to hold this information as follows:

struct book_bank

{

char title[20];
char author[15];
int pages;

float price;

bs
The keyword struct declares a structure to hold the details of four data fields, namely title, author,
pages, and price. These fields are called structure elements or members. Each member may belong to a
different type of data. book_bank is the name of the structure and is called the structure tag. The tag name
may be used subsequently to declare variables that have the tag’s structure.
Note that the above definition has not declared any variables. It simply describes a format called template
to represent information as shown below:

title array of 20 characters
author array of 15 characters
pages integer

price float

The general format of a structure definition is as follows:

struct tag_name

{
data_type memberl;
data_type member2;

Structures and Unions ~“425

In defining a structure you may note the following syntax:

1. The template is terminated with a semicolon.

2. While the entire definition is considered as a statement, each member is declared independently for its
name and type in a separate statement inside the template.

3. The tag name such as book_bank can be used to declare structure variables of its type, later in the
program.

12.2.1 Arrays vs Structures

Both the arrays and structures are classified as structured data types as they provide a mechanism that
enable us to access and manipulate data in a relatively easy manner. But they differ in a number of ways
which are as follows:

1. An array is a collection of related data elements of same type. Structure can have elements of different

types.

2. An array is derived data type whereas a structure is a programmer-defined one.

3. Any array behaves like a built-in data type. All we have to do is to declare an array variable and use it.
But in the case of a structure, first we have to design and declare a data structure before the variables

of that type are declared and used.

4
12.3 DECLARING STRUCTURE VARIABLES L0 12.2

After defining a structure format we can declare variables of that type. A structure variable declaration is
similar to the declaration of variables of any other data types. It includes the following elements:

1. The keyword struct.
2. The structure tag name.
3. List of variable names separated by commas.
4. A terminating semicolon.
For example, the statement
struct book_bank, bookl, book2, book3;
declares book1, book2, and book3 as variables of type struct book_bank.
Each one of these variables has four members as specified by the template. The complete declaration
might look like this:
struct book_bank
{
char title[20];
char author[15];
int pages;
float price;
bs
struct book bank bookl, book2, book3;
Remember that the members of a structure themselves are not variables. They do not occupy any
memory until they are associated with the structure variables such as bookl. When the compiler comes

|
—
[|
|
[
, Computing Fundamentals & C Programming

across a declaration statement, it reserves memory space for the structure variables. It is also allowed to
combine both the structure definition and variables declaration in one statement.
The declaration
struct book_bank
{
char title[20];
char author[15];
int pages;
flat price;
} bookl, book2, book3;
is valid. The use of tag name is optional here. For example:
struct

} bookl, book2, book3;
declares book1, book2, and book3 as structure variables representing three books, but does not include a
tag name. However, this approach is not recommended for the following two reasons:

1. Without a tag name, we cannot use it for future declarations:

2. Normally, structure definitions appear at the beginning of the program file, before any variables or
functions are defined. They may also appear before the main, along with macro definitions, such as
#define. In such cases, the definition is global and can be used by other functions as well.

12.3.1 Type-Defined Structures

We can use the keyword typedef to define a structure as follows:
typedef struct

type memberl;
type member2;

} type name;
The type_name represents structure definition associated with it and therefore, can be used to declare
structure variables as shown below:
type_name variablel, variable2, ;
Remember that (1) the name type_name is the type definition name, not a variable and (2) we cannot
define a variable with typedef declaration.

WORKED-OUT PROBLEM 12.1 m

Explain how complex number can be represented using structures. Write two C functions: one to return
the sum of to complex numbers passed as parameters.

Levels of Difficulty
L: Low; M: Medium; H: High

Structures and Unions ~“427

A complex number has two parts: real and imaginary. Structures can be used to realize complex numbers in
C, as shown below:

struct complex /*Declaring the complex number datatype using structure*/

{
double real;/*Real part*/
double img;/*Imaginary part*/
he

Function to return the sum of two complex numbers

struct complex add(struct complex cl, struct complex cl)
{

struct complex c3;

c3.real=cl.real+c2.real;

c3.img=cl.img+c2.img;

return(c3);

}

Function to return the product of two complex numbers

struct complex product(struct complex cl, struct complex cl)
{
struct complex c3;
c3.real=cl.real*c2.real-cl.img*c2.img;
c3.img=cl.real*c2.img+cl.img*c2,real;
return(c3);

r
12.4 ACCESSING STRUCTURE MEMBERS LO 12.2

We can access and assign values to the members of a structure in a number of ways. As mentioned earlier,
the members themselves are not variables. They should be linked to the structure variables in order to make
them meaningful members. For example, the word title, has no meaning whereas the phrase ‘title of book3’
has a meaning. The link between a member and a variable is established using the member operator .’
which is also known as ‘dot operator’ or ‘period operator’. For example,
bookl.price

is the variable representing the price of bookl and can be treated like any other ordinary variable. Here is
how we would assign values to the members of book1:

strcpy(bookl.title, "BASIC");

strcpy(bookl.author, "Balagurusamy");

bookl.pages = 250;

bookl.price = 120.50;

428~ Computing Fundamentals & C Programming

We can also use scanf to give the values through the keyboard.
scanf("%s\n", bookl.title);
scanf("%d\n", &bookl.pages);

are valid input statements.

WORKED-OUT PROBLEM 12.2

Define a structure type, struct personal that would contain person name, date of joining and salary. Using
this structure, write a program to read this information for one person from the keyboard and print the
same on the screen

Structure definition along with the program is shown in Fig. 12.1. The scanf and printf functions illustrate
how the member operator ‘.’ is used to link the structure members to the structure variables. The variable
name with a period and the member name is used like an ordinary variable.

Program
struct personal
{
char name[20] ;
int day;
char month[10] ;
int year;
float salary;
b
main()
{
struct personal person;
printf("Input Values\n");
scanf("%s %d %s %d %f",
person.name,
&person.day,
person.month,
&person.year,
&person.salary);
printf("%s %d %s %d %f\n",
person.name,
person.day,
person.month,
person.year,
person.salary);
}
Output

Input Values
M.L.Goel 10 January 1945 4500
M.L.Goel 10 January 1945 4500.00

Fig. 12.1 Defining and accessing structure members

Structures and Unions <429

12.4.1 Structure Initialization
Like any other data type, a structure variable can be initialized at compile time.

main()
{
struct
{
int weight;
float height;
}

student = {60, 180.75};

This assigns the value 60 to student. weight and 180.75 to student. height. There is a one-to-one
correspondence between the members and their initializing values.
A lot of variation is possible in initializing a structure. The following statements initialize two structure
variables. Here, it is essential to use a tag name.
main()
{
struct st_record
{
int weight;
float height;
bs
struct st_record studentl
struct st record student2

{ 60, 180.75 };
{ 53, 170.60 };

Another method is to initialize a structure variable outside the function as shown below:
struct st_record
{
int weight;
float height;
} studentl = {60, 180.75};
main()
{
struct st record student2 = {53, 170.60};

430 Computing Fundamentals & C Programming

C language does not permit the initialization of individual structure members within the template. The
initialization must be done only in the declaration of the actual variables.
Note that the compile-time initialization of a structure variable must have the following elements:

. The keyword struct.

. The structure tag name.

. The name of the variable to be declared.

. The assignment operator =.

. A set of values for the members of the structure variable, separated by commas and enclosed in
braces.

6. A terminating semicolon.

W AW N =

12.4.2 Rules for Initializing Structures

There are a few rules to keep in mind while initializing structure variables at compile-time which are as
follows:

1. We cannot initialize individual members inside the structure template.

2. The order of values enclosed in braces must match the order of members in the structure definition.

3. It is permitted to have a partial initialization. We can initialize only the first few members and leave
the remaining blank. The uninitialized members should be only at the end of the list.

4. The uninitialized members will be assigned default values as follows:

e Zero for integer and floating point numbers.
e \0’ for characters and strings.

12.5 COPYING AND COMPARING STRUCTURE VARIABLES (£0.12:30

Two variables of the same structure type can be copied the same way as ordinary variables. If personl and
person2 belong to the same structure, then the following statements are valid:
personl = person2;
person2 = personl;
Howeyver, the statements such as
personl == person2
personl != person2
are not permitted. C does not permit any logical operations on structure variables. In case, we need to
compare them, we may do so by comparing members individually.

WORKED-OUT PROBLEM 12.3 i

Write a program to illustrate the comparison of structure variables.

The program shown in Fig. 12.2 illustrates how a structure variable can be copied into another of the same
type. It also performs member-wise comparison to decide whether two structure variables are identical.

Structures and Unions <431

Program
struct class
{
int number;
char name[20];
float marks;
he
main()
{
int x;
struct class studentl = {111,"Rao",72.50};
struct class student2 = {222,"Reddy", 67.00};
struct class student3;
student3 = student2;
x = ((student3.number == student2.number) &&
(student3.marks == student2.marks)) ? 1 : 0;
if(x == 1)
{
printf("\nstudent2 and student3 are same\n\n");
printf("%d %s %f\n", student3.number,
student3.name,
student3.marks);
1
else
printf("\nstudent2 and student3 are different\n\n");
b
Output

student2 and student3 are same

222 Reddy 67.000000

Fig. 12.2 Comparing and copying structure variables

12.5.1 Word Boundaries and Slack Bytes

Computer stores structures using the concept of “word boundary”. The size of a word boundary is machine
dependent. In a computer with two bytes word boundary, the members of a structure are stored left_aligned
on the word boundary, as shown below. A character data takes one byte and an integer takes two bytes. One
byte between them is left unoccupied. This unoccupied byte is known as the slack byte.

432> Computing Fundamentals & C Programming

0 1 2 3

|<— char—-| | int \

slack byte

When we declare structure variables, each one of them may contain slack bytes and the values stored in
such slack bytes are undefined. Due to this, even if the members of two variables are equal, their structures
do not necessarily compare equal. C, therefore, does not permit comparison of structures. However, we can
design our own function that could compare individual members to decide whether the structures are equal
or not.

r
12.6 OPERATIONS ON INDIVIDUAL MEMBERS L0123

As pointed out earlier, the individual members are identified using the member operator, the dot.
A member with the dot operator along with its structure variable can be treated like any other variable
name and therefore can be manipulated using expressions and operators. Consider the program in
Fig. 12.2. We can perform the following operations:
if (studentl.number == 111)
studentl.marks += 10.00;
float sum = studentl.marks + student2.marks;
student2.marks * = 0.5;
We can also apply increment and decrement operators to numeric type members. For example, the
following statements are valid:
studentl.number ++;
++ studentl.number;
The precedence of the member operator is higher than all arithmetic and relational operators and
therefore no parentheses are required.

Three Ways to Access Members

We have used the dot operator to access the members of structure variables. In fact, there are two other
ways. Consider the following structure:
typedef struct
{
int x;
int y;
} VECTOR;
VECTOR v, *ptr;
ptr = & v;
The identifier ptr is known as pointer that has been assigned the address of the structure variable n.
Now, the members can be accessed in the following three ways:

< using dot notation : V.X
< using indirection notation : (¥ptr).x

Structures and Unions <433

< using selection notation : ptr = x
The second and third methods will be considered in Chapter 13.

12.7 ARRAYS OF STRUCTURES Lo 124

We use structures to describe the format of a number of related variables. For example, in analyzing the
marks obtained by a class of students, we may use a template to describe student name and marks obtained
in various subjects and then declare all the students as structure variables. In such cases, we may declare an
array of structures, each element of the array representing a structure variable. For example:
struct class student[100];
defines an array called student, that consists of 100 elements. Each element is defined to be of the type
struct class. Consider the following declaration:
struct marks

{
int subjectl;
int subject2;
int subject3;
1
main()
{
struct marks student[3] =
{{45,68,81}, {75,53,69}, {57,36,71}};
This declares the student as an array of three elements student[0], student[1], and student[2] and
initializes their members as follows:
student[0] .subjectl
student[0] .subject2

45;
65;

student[2] .subject3 = 71;

Note that the array is declared just as it would have been with any other array. Since student is an array,
we use the usual array-accessing methods to access individual elements and then the member operator to
access members. Remember, each element of student array is a structure variable with three members.

An array of structures is stored inside the memory in the same way as a multi-dimensional array. The
array student actually looks as shown in Fig. 12.3.

WORKED-OUT PROBLEM 12.4 M

For the student array discussed above, write a program to calculate the subject-wise and student-wise
totals and store them as a part of the structure.

The program is shown in Fig. 12.4. We have declared a four-member structure, the fourth one for keeping
the student-totals. We have also declared an array total to keep the subject-totals and the grand-total. The
grand-total is given by total.total. Note that a member name can be any valid C name and can be the same
as an existing structure variable name. The linked name total.total represents the total member of the
structure variable total.

|
—
|
.
[
, Computing Fundamentals & C Programming

student [0].subject 1 45
.subject 2 68
.subject 3 81
student [1].subject 1 75
.subject 2 53
.subject 3 69
student [2].subject 1 57
.subject 2 36
.subject 3 1

Fig. 12.3 The array student inside memory

Structures and Unions <435

printf("Student [%d] %d\n", i+l,student[i].total);

printf("\n SUBJECT TOTAL\n\n");
printf("%s %d\n%s %d\n%s %d\n",

"Subject 1 ", total.subl,
"Subject 2 ", total.sub2,
"Subject 3 ", total.sub3);

printf("\nGrand Total = %d\n", total.total);

}
Output
STUDENT TOTAL
Student[1] 193
Student[2] 197
Student[3] 164
SUBJECT TOTAL
Subject 1 177
Subject 2 156
Subject 3 221
Grand Total = 554
Fig. 12.4 Arrays of structures: lllustration of subscripted structure variables
L0 12.4
12.8 ARRAYS WITHIN STRUCTURES -

C permits the use of arrays as structure members. We have already used arrays of characters inside a
structure. Similarly, we can use single-dimensional or multi-dimensional arrays of type int or float. For
example, the following structure declaration is valid:

struct marks

int number;
float subject[3];
} student[2];
Here, the member subject contains three elements, subject[0], subject[1], and subject[2]. These
elements can be accessed using appropriate subscripts. For example, the name
student[1] .subject[2];
would refer to the marks obtained in the third subject by the second student.

Computing Fundamentals & C Programming

H

The modified program is shown in Fig. 12.5. You may notice that the use of array name for subjects has
simplified in code.

Structures and Unions <437

Output
STUDENT TOTAL
Student[1] 193
Student[2] 197
Student[3] 164
STUDENT TOTAL
Student-1 177
Student-2 156
Student-3 221
Grand Total = 554
Fig. 12.5 Use of subscripted members arrays in structures
L0 12.5
12.9 STRUCTURES WITHIN STRUCTURES

Structures within a structure means nesting of structures. Nesting of structures is permitted in C. Let us
consider the following structure defined to store information about the salary of employees:
struct salary
{
char name;
char department;
int basic_pay;
int dearness_allowance;
int house_rent_allowance;
int city_allowance;
}
employee;
This structure defines name, department, basic pay and three kinds of allowances. We can group all the
items related to allowance together and declare them under a substructure as shown below:
struct salary
{
char name;
char department;
struct
{
int dearness;
int house_rent;
int city;
}
allowance;

}

employee;

438~ Computing Fundamentals & C Programming

The salary structure contains a member named allowance, which itself is a structure with three members.
The members contained in the inner structure namely dearness, house_rent, and city can be referred to as:
employee.allowance.dearness
employee.allowance.house_rent
employee.allowance.city
An inner-most member in a nested structure can be accessed by chaining all the concerned structure
variables (from outer-most to inner-most) with the member using dot operator. The following are invalid:
employee.allowance (actual member is missing)
employee.house_rent (inner structure variable is missing)
An inner structure can have more than one variable. The following form of declaration is legal:
struct salary

allowance,
arrears;

1
employee[100] ;

The inner structure has two variables, allowance and arrears. This implies that both of them have the
same structure template. Note the comma after the name allowance. A base member can be accessed as
follows:

employee[1].allowance.dearness
employee[1].arrears.dearness

We can also use tag names to define inner structures. Example:

struct pay
{
int dearness;
int house_rent;
int city;
1
struct salary
{
char name;
char department;
struct pay allowance;
struct pay arrears;
1
struct salary employee[100];
pay template is defined outside the salary template and is used to define the structure of allowance and
arrears inside the salary structure.
It is also permissible to nest more than one type of structures.

Structures and Unions <439

struct personal_record

{
struct name_part name;
struct addr_part address;
struct date date_of_birth;

struct personal_record personl;

The first member of this structure is name, which is of the type struct name_part. Similarly, other
members have their structure types.

Note C permits nesting up to 15 levels. However, C99 allows 63 levels of nesting.

4
12.10 STRUCTURES AND FUNCTIONS LO12.6

We know that the main philosophy of C language is the use of functions. And therefore, it is natural that C
supports the passing of structure values as arguments to functions. There are three methods by which the
values of a structure can be transferred from one function to another.

1. The first method is to pass each member of the structure as an actual argument of the function
call. The actual arguments are then treated independently like ordinary variables. This is the most
elementary method and becomes unmanageable and inefficient when the structure size is large.

2. The second method involves passing of a copy of the entire structure to the called function. Since the
function is working on a copy of the structure, any changes to structure members within the function
are not reflected in the original structure (in the calling function). It is, therefore, necessary for the
function to return the entire structure back to the calling function. All compilers may not support this
method of passing the entire structure as a parameter.

3. The third approach employs a concept called pointers to pass the structure as an argument. In this
case, the address location of the structure is passed to the called function. The function can access
indirectly the entire structure and work on it. This is similar to the way arrays are passed to function.
This method is more efficient as compared to the second one.

In this section, we discuss in detail the second method, while the third approach using pointers is
discussed in the next chapter, where pointers are dealt in detail.
The general format of sending a copy of a structure to the called function is:

function_name (structure_variable_name);
The called function takes the following form:

data_type function name(struct type st name)

......

return(expression);

440~ Computing Fundamentals & C Programming

The following points are important to note:

1. The called function must be declared for its type, appropriate to the data type it is expected to return.
For example, if it is returning a copy of the entire structure, then it must be declared as struct with an
appropriate tag name.

2. The structure variable used as the actual argument and the corresponding formal argument in the
called function must be of the same struct type.

3. The return statement is necessary only when the function is returning some data back to the calling
function. The expression may be any simple variable or structure variable or an expression using
simple variables.

4. When a function returns a structure, it must be assigned to a structure of identical type in the calling
function.

5. The called functions must be declared in the calling function appropriately.

WORKED-OUT PROBLEM 12.6 M |

Write a simple program to illustrate the method of sending an entire structure as a parameter to a
function.

A program to update an item is shown in Fig. 12.6. The function update receives a copy of the structure
variable item as one of its parameters. Note that both the function update and the formal parameter
product are declared as type struct stores. It is done so because the function uses the parameter product to
receive the structure variable item and also to return the updated values of item.

The function mul is of type float because it returns the product of price and quantity. However, the
parameter stock, which receives the structure variable item is declared as type struct stores.

The entire structure returned by update can be copied into a structure of identical type. The statement

item = update(item,p increment,q increment);

replaces the old values of item by the new ones.

Program
V& Passing a copy of the entire structure @)
struct stores
{
char name[20] ;
float price;
int quantity;
he
struct stores update (struct stores product, float p, int q);
float mul (struct stores stock);
main()
{
float p_increment, value;
int g_increment;

struct stores item = {"XYZ", 25.75, 12};

Structures and Unions <441

printf("\nInput increment values:");
printf(" price increment and quantity increment\n");
scanf("%f %d", &p_increment, &q_increment);

/7\- ____________________________ */
item = update(item, p_increment, q_increment);

/~k ____________________________ */
printf("Updated values of item\n\n");
printf("Name : %s\n",item.name)
printf("Price : %f\n",item.price);

printf("Quantity : %d\n",item.quantity);

/* ____________________________ */

printf("\nValue of the item = %f\n", value);

}

struct stores update(struct stores product, float p, int q)
{

product.price += p;

product.quantity += q;

return(product);
}

float mul(struct stores stock)

{

return(stock.price * stock.quantity);

Output
Input increment values: price increment and quantity increment
10 12
Updated values of item
Name : XYZ
Price : 35.750000
Quantity : 24
Value of the item = 858.000000

Fig. 12.6 Using structure as a function parameter

You may notice that the template of stores is defined before main(). This has made the data type struct
stores as global and has enabled the functions update and mul to make use of this definition.

442> Computing Fundamentals & C Programming

12.11 UNIONS AND STRUCTURES LO 127

Unions are a concept borrowed from structures and therefore follow the same syntax as structures. However,
there is major distinction between them in terms of storage. In structures, each member has its own storage
location, whereas all the members of a union use the same location. This implies that, although a union may
contain many members of different types, it can handle only one member at a time. Like structures, a union
can be declared using the keyword union as follows:

union item

{
int m;
float x;
char c;

} code;

This declares a variable code of type union item. The union
contains three members, each with a different data type. However,
we can use only one of them at a time. This is due to the fact that
only one location is allocated for a union variable, irrespective of
its size.

The compiler allocates a piece of storage that is large enough | —C >
to hold the largest variable type in the union. In the declaration m
above, the member x requires 4 bytes which is the largest among X ‘
the members. Figure 12.7 shows how all the three variables share \
the same address. This assumes that a float variable requires 4 Fig.12.7 Sharing of a storage locating by
bytes of storage. union members

To access a union member, we can use the same syntax that we
use for structure members. That is,

code.m
code.x
code.c
are all valid member variables. During accessing, we should make sure that we are accessing the member
whose value is currently stored. For example, the statements such as
code.m = 379;
code.x = 7859.36;
printf("%d", code.m);
would produce erroneous output (which is machine dependent).

In effect, a union creates a storage location that can be used by any one of its members at a time. When a
different member is assigned a new value, the new value supersedes the previous member’s value.

Unions may be used in all places where a structure is allowed. The notation for accessing a union
member which is nested inside a structure remains the same as for the nested structures.

Unions may be initialized when the variable is declared. But, unlike structures, it can be initialized only
with a value of the same type as the first union member. For example, with the preceding, the declaration

union item abc = {100};

Storage of 4 bytes
1000 1001 1002 1004

is valid but the declaration
union item abc = {10.75};

Structures and Unions <443

is invalid. This is because the type of the first member is int. Other members can be initialized by either
assigning values or reading from the keyboard.

12.11.1 Size of Structures

We normally use structures, unions, and arrays to create variables of large sizes. The actual size of these
variables in terms of bytes may change from machine to machine. We may use the unary operator sizeof to
tell us the size of a structure (or any variable). The expression
sizeof(struct x)

will evaluate the number of bytes required to hold all the members of the structure x. If y is a simple
structure variable of type struct x, then the expression

sizeof(y)
would also give the same answer. However, if y is an array variable of type struct x, then

sizeof(y)
would give the total number of bytes the array y requires.

This kind of information would be useful to determine the number of records in a database. For example,
the expression
sizeof(y)/sizeof(x)

would give the number of elements in the array y.

12.11.2 Bit Fields

So far, we have been using integer fields of size 16 bits to store data. There are occasions where data items
require much less than 16 bits space. In such cases, we waste memory space. Fortunately, C permits us to
use small bit fields to hold data items and thereby to pack several data items in a word of memory. Bit fields
allow direct manipulation of string of a string of preselected bits as if it represented an integral quantity.

A bit field is a set of adjacent bits whose size can be from 1 to 16 bits in length. A word can therefore be
divided into a number of bit fields. The name and size of bit fields are defined using a structure. The general
form of bit field definition is:

struct tag-name

{
data-type namel: bit-length;
data-type name2: bit-length;

data-type nameN: bit-length;
1

The data-type is either int or unsigned int or signed int and the bit-length is the number of bits used
for the specified name. Remember that a signed bit field should have at least 2 bits (one bit for sign). Note
that the field name is followed by a colon. The bit-length is decided by the range of value to be stored. The
largest value that can be stored is 2™!, where n is bit-length.

The internal representation of bit fields is machine dependent. That is, it depends on the size of int and
the ordering of bits. Some machines store bits from left to right and others from right to left. The sketch
below illustrates the layout of bit fields, assuming a 16-bit word that is ordered from right to left.

444

Computing Fundamentals & C Programming

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

-
name N name 2 name 1

There are several specific points to observe:

1.
2.

The first field always starts with the first bit of the word.

A bit field cannot overlap integer boundaries. That is, the sum of lengths of all the fields in a structure
should not be more than the size of a word. In case, it is more, the overlapping field is automatically
forced to the beginning of the next word.

. There can be unnamed fields declared with size. Example:

Unsigned : bit-length
Such fields provide padding within the word.

. There can be unused bits in a word.
. We cannot take the address of a bit field variable. This means we cannot use scanf to read values into

bit fields. We can neither use pointer to access the bit fields.

. Bit fields cannot be arrayed.
. Bit fields should be assigned values that are within the range of their size. If we try to assign larger

values, behaviour would be unpredicted.

Suppose, we want to store and use personal information of employees in compressed form, this can be
done as follows:

struct personal

{

unsigned sex 1
unsigned age 7
unsigned m_status 1
unsigned children 3
unsigned 4
} emp;
This defines a variable name emp with four bit fields. The range of values each field could have is as
follows:
Bit field Bit length Range of value
sex 1 Oorl
age 7 Oor127(27-1)
m_status 1 Oorl
children 3 0to7 (23-1)
Once bit fields are defined, they can be referenced just as any other structure-type data item would be

referenced. The following assignment statements are valid.

emp.sex = 1;
emp.age = 50;

Remember, we cannot use scanf to read values into a bit field. We may have to read into a temporary
variable and then assign its value to the bit field. For example:

scanf(%d %d", &AGE,&CHILDREN);
emp.age = AGE;

Structures and Unions <445

emp.children = CHILDREN;
One restriction in accessing bit fields is that a pointer cannot be used. However, they can be used in
normal expressions like any other variable. For example:
sum = sum + emp.age;
if(emp.m status). 3
printf("%d\n", emp.age);
are valid statements.
It is possible to combine normal structure elements with bit field elements. For example:
struct personal

{

char name[20] ; /* normal variable */
struct addr address; /* structure variable */
unsigned sex : 1;
unsigned age : 7;

}

emp[100] ;

This declares emp as a 100 element array of type struct personal. This combines normal variable name
and structure type variable address with bit fields.
Bit fields are packed into words as they appear in the definition. Consider the following definition.
struct pack
{
unsigned a:2;
int count;
unsigned b : 3;
bs
Here, the bit field a will be in one word, the variable count will be in the second word and the bit field b
will be in the third word. The fields a and b would not get packed into the same word.

Note Other related topics such as ‘Structures with Pointers’ and ‘Structures and Linked Lists’ are
discussed in Chapter 13 and Chapter 14, respectively.

Q LEARNING OUTCOMES

e Remember to place a semicolon at the end of definition of structures and unions. 170]12.1]
e We can declare a structure variable at the time of definition of a structure by placing it after the LO
closing brace but before the semicolon.

e Do not place the structure tag name after the closing brace in the definition. That will be treated as LO
a structure variable. The tag name must be placed before the opening brace but after the keyword
struct.

e When we use typedef definition, the fype_name comes after the closing brace but before the LO
semicolon.

446~ Computing Fundamentals & C Programming

We cannot declare a variable at the time of creating a typedef definition. We must use the type_name
to declare a variable in an independent statement.

It is an error to use a structure variable as a member of its own struct type structure.
Declaring a variable using the tag name only (without the keyword struct) is an error.
It is illegal to refer to a structure member using only the member name.

When using scanf for reading values for members, we must use address operator & with non-string
members.

Always provide a structure tag name when creating a structure. It is convenient to use tag name to
declare new structure variables later in the program.

Use short and meaningful structure tag names.

Avoid using same names for members of different structures (although it is not illegal).
It is an error to compare two structure variables.

Assigning a structure of one type to a structure of another type is an error.

When accessing a member with a pointer and dot notation, parentheses are required around the
pointer, like (*ptr).number.

The selection operator (—>) is a single token. Any space between the symbols — and > is an error.

Forgetting to include the array subscript when referring to individual structures of an array of
structures is an error.

When structures are nested, a member must be qualified with all levels of structures nesting it.

Passing structures to functions by pointers is more efficient than passing by value. (Passing by
pointers are discussed in Chapter 13.)

A union can store only one of its members at a time. We must exercise care in accessing the correct
member. Accessing a wrong data is a logic error.

It is an error to initialize a union with data that does not match the type of the first member.

We cannot take the address of a bit field. Therefore, we cannot use scanf to read values in bit fields.
We can neither use pointer to access the bit fields.

Bit fields cannot be arrayed.

Q KEY TERMS TO REMEMBER

150]12.2]

50]12.1
50]12.2
00]12.2
50]12.2

100]12.2]

50]12.2
50]12.2
501123
101123
LOIPE]

001123
§0]12.3]

Lot
50]12.5]

Loiv¥

501127
Loiv¥

150]12.7

Array: It is a fixed-size sequenced collection of elements of the same data type.

Dot operator: This links a structure variable with a structure member. It is used to read/write
member values.

Structure: This is a user-defined data type that allows different data types to be combined together to
represent a data record.

Union: It is similar to a structure in syntax but differs in storage technique. Unlike structures, union
members use the same memory location for storing all member values.

Bit field: This refers to a set of adjacent bits with size ranging from 1 to 16 bits.

5e]12.1]
0e]12.2

50]12.2]
0e]12.7
Loiv¥l

Structures and Unions ~“447

BRIEF CASES

1. Book Shop Inventory [LO 12.2,12.3,12.4, 12.5, 12.6, 12.7 M]

A book shop uses a personal computer to maintain the inventory of books that are being sold at the shop.
The list includes details such as author, title, price, publisher, stock position, etc. Whenever a customer
wants a book, the shopkeeper inputs the title and author of the book and the system replies whether it is in
the list or not. If it is not, an appropriate message is displayed. If book is in the list, then the system displays
the book details and asks for number of copies. If the requested copies are available, the total cost of the
books is displayed; otherwise the message “Required copies not in stock™ is displayed.

A program to accomplish this is shown in Fig. 12.8. The program uses a template to define the structure
of the book. Note that the date of publication, a member of record structure, is also defined as a structure.

When the title and author of a book are specified, the program searches for the book in the list using the
function

look_up(table, s1, s2, m)

The parameter table which receives the structure variable book is declared as type struct record. The
parameters s1 and s2 receive the string values of title and author while m receives the total number of
books in the list. Total number of books is given by the expression

sizeof(book)/sizeof(struct record)

The search ends when the book is found in the list and the function returns the serial number of the book
The function returns —1 when the book is not found. Remember that the serial number of the first book in
the list is zero. The program terminates when we respond “NO” to the question

Do you want any other book?
Note that we use the function
get(string)
to get title, author, etc. from the terminal. This enables us to input strings with spaces such as “C Language”.
We cannot use scanf to read this string since it contains two words.

Since we are reading the quantity as a string using the get(string) function, we have to convert it to an

integer before using it in any expressions. This is done using the atoi() function.

Programs

#include <stdio.h>

#include <string.h>

struct record

{
char author[20] ;
char title[30];
float price;
struct

char month[10] ;
int year;

448 Computing Fundamentals & C Programming

date;
char publisher[10];
int quantity;

he
int Took up(struct record table[],char sl1[],char s2[],int m);
void get (char string []);
main()

char title[30], author[20];

int index, no_of records;

char response[10], quantity[10];

struct record book[] = {

{"Ritche","C Language",45.00,"May",1977,"PHI",10},

{"Kochan","Programming in C",75.50,"July",1983,"Hayden",5},

{"Balagurusamy","BASIC",30.00,"January",1984,"TMH",0},

{"Balagurusamy","COBOL",60.00, "December",1988,"Macmillan",25}
he

no of records = sizeof(book)/ sizeof(struct record);
do
{
printf("Enter title and author name as per the Tist\n");
printf("\nTitle: Mg
get(title);
printf("Author: ");
get (author);
index = look up(book, title, author, no of records);
if(index != -1) /* Book found */
{
printf("\n%s %s %.2f %s %d %s\n\n",
book[index] .author,
book[index] .title,
book[index] .price,
book[index] .date.month,
book[index] .date.year,
book[index] .publisher);

printf("Enter number of copies:");
get(quantity);
if(atoi(quantity) < book[index].quantity)

printf("Cost of %d copies = %.2f\n",atoi(quantity),

—
|
—
.
.
Structures and Unions !

450 Computing Fundamentals & C Programming

Balagurusamy BASIC 30.00 January 1984 TMH

Enter number of copies:5

Required copies not in stock

Do you want any other book? (YES / NO):y

Enter title and author name as per the list
Title: COBOL

Author: Balagurusamy

Balagurusamy COBOL 60.00 December 1988 Macmillan
Enter number of copies:7

Cost of 7 copies = 420.00

Do you want any other book? (YES / NO):y
Enter title and author name as per the list
Title: C Programming

Author: Ritche

Book not in list

Do you want any other book? (YES / NO):n

Thank you. Good bye!

Fig. 12.8 Program of bookshop inventory

REVIEW QUESTIONS

2w b=

Fill in the Blanks

The name of a structure is referred to as
The variables declared in a structure definition are called its
The can be used to create a synonym for a previously defined data type.

The selection operator —> requires the use of a to access the members
of a structure.

A is a collection of data items under one name in which the items share
the same storage.

Levels of Difficulty

‘/% : Low; ‘/\ﬁ : Medium; ‘/i : High

JLoa22,7*
JLoa22,7*
JL0122,/"
L0122 g

JLo12.7,/™

N o

~

10.
11.
12.
13.
14.
15.

|

—

|

[|
Structures and Unions ,

True or False Statements

A struct type in C is a built-in data type.

The tag name of a structure is optional.

Structures may contain members of only one data type.

The keyword typedef is used to define a new data type.

A structure variable is used to declare a data type containing multiple fields.

It is legal to copy a content of a structure variable to another structure variable of the same
type.

Pointers can be used to access the members of structure variables.
In accessing a member of a structure using a pointer p, the following two are equivalent:
(*p).member_name and p —> member_name

We can perform mathematical operations on structure variables that contain only numeric
type members.

An array cannot be used as a member of a structure.

A member in a structure can itself be a structure.

Structures are always passed to functions by pointers.

A union may be initialized in the same way a structure is initialized.
A union can have another union as one of the members.

A structure cannot have a union as one of its members.

DISCUSSION QUESTIONS

1.

A structure tag name abc is used to declare and initialize the structure variables of type
struct abc in the following statements. Which of them are incorrect? Why? Assume that
the structure abe has three members, int, float, and char in that order.

(a) struct a,b,c;

(b) struct abc a,b,c

(c) abc x,y,z;

(d) struct abc a[];

(e) struct abc a = { };

(f) struct abc = b, { 1+2, 3.0, "xyz"}
(g) struct abc ¢ = {4,5,6};

(h) struct abc a = 4, 5.0, "xyz";

Given the declaration
struct abc a,b,c;

which of the following statements are legal?
(a) scanf ("%d, &a);
(b) printf ("%d", b);

L0122 "
L0122 "
JL0122,"
L0122 "
JLo12.2, /™
JL012.3,/™

10123 'y
10123 'y

10123 ™

L0124 "
L0125 "
L0125 g
L0127 "
L0127 g
L0127 g

o122 "
L0123 "

JLo12.4.

|
—
|
[|
[
, Computing Fundamentals & C Programming

(c) a =b;
(d a=b+cs
(e) if (a>h)

3. Given the declaration M

struct item_bank
{
int number;
double cost;
}s
which of the following are correct statements for declaring one dimensional array of
structures of type struct item_bank?
(a) int item bank items[10];
(b) struct items[10] item bank;
(c) struct item bank items (10);
(d) struct item bank items [10];
(e) struct items item bank [10];

4. Given the following declaration M
typedef struct abc
{ 10124 &

char x;

int y;

float z[10];
} ABC;

State which of the following declarations are invalid? Why?
(a) struct abc vl;

(b) struct abc v2[10];

(c) struct ABC v3;

(d) ABC a,b,c;

(e) ABC a[10];

5. How does a structure differ from an array? M
6. Explain the meaning and purpose of the following: M‘/U

(a) Template

(b) struct keyword M

(c) typedef keyword
(d) sizeof operator
(e) Tag name

7. Explain what is wrong in the following structure declaration: M

struct

{
int number;
float price;

10.
11.
12.
13.

14.
15.

16.

|

—

|

[|
Structures and Unions ,

When do we use the following? M

(a) Unions
(b) Bit fields
(c) The sizeof operator

What is meant by the following terms?

(a) Array of structures M
(b) Nested structures M
(¢) Unions L0127 *

Give a typical example of use of each of them.

Describe with examples, the different ways of assigning values to structure members. M
State the rules for initializing structures. M
What is a ‘slack byte’? How does it affect the implementation of structures? M

Describe three different approaches that can be used to pass structures as function W
arguments.

What are the important points to be considered when implementing bit-fields in structures? M

Define a structure called complex consisting of two floating-point numbers x and y and M
declare a variable p of type complex. Assign initial values 0.0 and 1.1 to the members.

What will be the output of the following program? M

s
main ()
{
union x
{
int a;
float b;
double c ;
1
printf("%d\n", sizeof(x));

a.x = 10;
printf("%d%f%f\n", a.x, b.x, c.x);
c.x = 1.23;

printf("%d%f%f\n", a.x, b.x, c.x);

|
—
[|
|
[
’ Computing Fundamentals & C Programming

DEBUGGING EXERCISES

1. Given the structure definitions and declarations
struct abc

{
int a;
float b;
}s
struct xyz
{
int x;
float y;
1
abc al, a2;
xyz x1, x2;

find errors, if any, in the following statements:
(a) al = x1;

(b) abc.al = 10.75;

(c) int m=a + x;

(d) int n = x1l.x + 10;

(e) al = a2;

® if (a.al > x.x1) . . .

(g) if (al.a < x1.x) . . .

(h) if (x1 !=x2) . ..

2. What is the error in the following program?
typedef struct product
{
char name [10];
float price ;
} PRODUCT products [10];

PROGRAMMING EXERCISES

1. Define a structure data type called time_struct containing three members integer hour,
integer minute and integer second. Develop a program that would assign values to the

individual members and display the time in the following form:
16:40:51

2. Modify the above program such that a function is used to input values to the members and
another function to display the time.

3. Design a function update that would accept the data structure designed in Exercise 12.1
and increments time by one second and returns the new time. (If the increment results in
60 seconds, then the second member is set to zero and the minute member is incremented

JL0122, /™
L0123 '™

0122

L0122 "

L0122 ™
10125 ™

JLoa22,/™
10123 ™
L0125 ™

10.

|

—

[

[|
Structures and Unions ’

by one. Then, if the result is 60 minutes, the minute member is set to zero and the hour
member is incremented by one. Finally when the hour becomes 24, it is set to zero.)

Define a structure data type named date containing three integer members day, month, and
year. Develop an interactive modular program to perform the following tasks:
e To read data into structure members by a function
e To validate the date entered by another function
e To print the date in the format
April 29, 2002

by a third function.
The input data should be three integers like 29, 4, and 2002 corresponding to day, month,
and year. Examples of invalid data:

31, 4, 2002 — April has only 30 days

29, 2, 2002 — 2002 is not a leap year

Design a function update that accepts the date structure designed in Exercise 12.4 to
increment the date by one day and return the new date. The following rules are applicable:
e If the date is the last day in a month, month should be incremented

e Ifitis the last day in December, the year should be incremented

e There are 29 days in February of a leap year

Modify the input function used in Exercise 10.4 such that it reads a value that represents
the date in the form of a long integer, like 19450815 for the date 15-8-1945 (August 15,
1945) and assigns suitable values to the members day, month, and year.

Use suitable algorithm to convert the long integer 19450815 into year, month and day.

Add a function called nextdate to the program designed in Exercise 12.4 to perform the

following task:

e Accepts two arguments, one of the structure data containing the present date and the
second an integer that represents the number of days to be added to the present date.

e Adds the days to the present date and returns the structure containing the next date
correctly.

Note that the next date may be in the next month or even the next year.

Use the date structure defined in Exercise 12.4 to store two dates. Develop a function that
will take these two dates as input and compares them.

e Itreturns 1, if the datel is earlier than date2

e Itreturns O, if datel is later date

Define a structure to represent a vector (a series of integer values) and write a modular
program to perform the following tasks:
e To create a vector
e To modify the value of a given element
e To multiply by a scalar value
e To display the vector in the form
(10,20, 30,)

Add a function to the program of Exercise 9 that accepts two vectors as input parameters
and return the addition of two vectors.

JL012.2, /™
L0123 '™
L0125 =

H

1.

[

13.

14.

15.

Computing Fundamentals & C Programming

Create two structures named metric and British which store the values of distances. The
metric structure stores the values in metres and centimetres and the British structure stores
the values in feet and inches. Write a program that reads values for the structure variables
and adds values contained in one variable of metric to the contents of another variable of
British. The program should display the result in the format of feet and inches or metres
and centimetres as required.

. Define a structure named census with the following three members:

e A character array city [] to store names

e A long integer to store population of the city

e A float member to store the literacy level

Write a program to do the following:

To read details for 5 cities randomly using an array variable
To sort the list alphabetically

To sort the list based on literacy level

To sort the list based on population

To display sorted lists

Define a structure that can describe an hotel. It should have members that include the name,
address, grade, average room charge, and number of rooms.

Write functions to perform the following operations:

e To print out hotels of a given grade in order of charges

e To print out hotels with room charges less than a given value

Define a structure called cricket that will describe the following information:
player name
team name
batting average

Using cricket, declare an array player with 50 elements and write a program to read the
information about all the 50 players and print a team-wise list containing names of players
with their batting average.

Design a structure student_record to contain name, date of birth, and total marks obtained.
Use the date structure designed in Exercise 4 to represent the date of birth.

Develop a program to read data for 10 students in a class and list them rank-wise.

L0122 ™
JL012.3, /™

JLo122, /™
L0124 '™
L0125 =

L0122 ™
JL012.3, /™

L0122,/
L0123 '™
L0124 ™

JL0122, /™
L0123 '™
L0125 =

CHAPTER

13

13.1 INTRODUCTION

A pointer is a derived data type in C. It is built from one of the fundamental data types available
in C. Pointers contain memory addresses as their values. Since these memory addresses are the
locations in the computer memory where program instructions and data are stored, pointers can
be used to access and manipulate data stored in the memory.

Pointers are undoubtedly one of the most distinct and exciting features of C language. It has
added power and flexibility to the language. Although they appear little confusing and difficult to
understand for a beginner, they are a powerful tool and handy to use once they are mastered.

Pointers are used frequently in C, as they offer a number of benefits to the programmers. They
include:

1. Pointers are more efficient in handling arrays and data tables.

2. Pointers can be used to return multiple values from a function via function arguments.

3. Pointers permit references to functions and thereby facilitating passing of functions as
arguments to other functions.

4. The use of pointer arrays to character strings results in saving of data storage space in
memory.

458~ Computing Fundamentals & C Programming

5. Pointers allow C to support dynamic memory management.

6. Pointers provide an efficient tool for manipulating dynamic data structures such as structures,
linked lists, queues, stacks and trees.

7. Pointers reduce length and complexity of programs.

8. They increase the execution speed and thus reduce the program execution time.

Of course, the real power of C lies in the proper use of pointers. In this chapter, we will examine the
pointers in detail and illustrate how to use them in program development.

4
13.2 UNDERSTANDING POINTERS LO 13.1

The computer’s memory is a sequential collection of storage cells as shown in Fig. 13.1. Each cell,
commonly known as a byfe, has a number called address associated with it. Typically, the addresses are
numbered consecutively, starting from zero. The last address depends on the memory size. A computer
system having 64 K memory will have its last address as 65,535.

Memory Cell Address
0

N o o~ wWwN

65,535

Fig. 13.1 Memory organisation

Whenever we declare a variable, the system allocates, somewhere in the memory, an appropriate location
to hold the value of the variable. Since, every byte has a unique address number, this location will have its
own address number. Consider the following statement

int quantity = 179;

This statement instructs the system to find a location for the integer variable quantity and puts the value

179 in that location. Let us assume that the system has chosen the address location 5000 for quantity. We

Pointers <459

may represent this as shown in Fig. 13.2. (Note that the address
of a variable is the address of the first bye occupied by that
variable.) -~ Value

During execution of the program, the system always associates
the name quantity with the address 5000. (This is something 5000
similar to having a house number as well as a house name.) We
may have access to the value 179 by using either the name
quantity or the address 5000. Since memory addresses are
simply numbers, they can be assigned to some variables, that can be stored in memory, like any other
variable. Such variables that hold memory addresses are called pointer variables. A pointer variable is,
therefore, nothing but a variable that contains an address, which is a location of another variable in memory.

Remember, since a pointer is a variable, its value is also stored in the memory in another location.
Suppose, we assign the address of quantity to a variable p. The link between the variables p and quantity
can be visualized as shown in Fig. 13.3. The address of p is 5048.

Quantity ~«——— Variable

—~— Address

Fig. 13.2 Representation of a variable

Variable Value Address
quantity 179 5000
P 5000 5048

Fig. 13.3 Pointer variable

Since the value of the variable p is the address of the variable quantity, we may access the value of
quantity by using the value of p and therefore, we say that the variable p ‘points’ to the variable quantity.
Thus, p gets the name ‘pointer’. (We are not really concerned about the actual values of pointer variables.
They may be different everytime we run the program. What we are concerned about is the relationship
between the variables p and quantity.)

13.2.1 Underlying Concepts of Pointers

Pointers are built on the three underlying concepts as illustrated below:

Pointer Pointer Pointer
constants values variables
Pointers

Memory addresses within a computer are referred to as pointer constants. We cannot change them; we
can only use them to store data values. They are like house numbers.

460~ Computing Fundamentals & C Programming

We cannot save the value of a memory address directly. We can only obtain the value through the
variable stored there using the address operator (&). The value thus obtained is known as pointer value. The
pointer value (i.e. the address of a variable) may change from one run of the program to another.

Once we have a pointer value, it can be stored into another variable. The variable that contains a pointer
value is called a pointer variable.

y
13.3 ACCESSING THE ADDRESS OF A VARIABLE LO 13.1

The actual location of a variable in the memory is system dependent and therefore, the address of a variable
is not known to us immediately. How can we then determine the address of a variable? This can be done
with the help of the operator & available in C. We have already seen the use of this address operator in
the scanf function. The operator & immediately preceding a variable returns the address of the variable
associated with it. For example, the statement
p = &quantity;
would assign the address 5000 (the location of quantity) to the variable p. The & operator can be
remembered as ‘address of ’.
The & operator can be used only with a simple variable or an array element. The following are illegal
use of address operator:
1. &125 (pointing at constants).
2. int x[10];
&x (pointing at array names).
3. &(x+y) (pointing at expressions).
If x is an array, then expressions such as
&x[0] and &x[i+3]
are valid and represent the addresses of Oth and (i+3)th elements of x.

WORKED-OUT PROBLEM 13.1

Write a program to print the address of a variable along with its value.

The program shown in Fig. 13.4, declares and initializes four variables and then prints out these values with
their respective storage locations. Note that we have used %u format for printing address values. Memory
addresses are unsigned integers.

Program
main ()
{
char a;
int X3
float p, q;
a ="'A';

Levels of Difficulty
L: Low; M: Medium; H: High

Pointers <461

x = 125;

p 10.25, q = 18.76;

printf("%c is stored at addr %u.\n", a, &a);
printf("%d is stored at addr %u.\n", x, 8&x);
printf("%f is stored at addr %u.\n", p, &p);
printf("%f is stored at addr %u.\n", q, &q);

Output

A is stored at addr 4436.

125 is stored at addr 4434.
10.250000 is stored at addr 4442.
18.760000 is stored at addr 4438.

Fig. 13.4 Accessing the address of a variable

y
13.4 DECLARING POINTER VARIABLES LO 13.2

In C, every variable must be declared for its type. Since pointer variables contain addresses that belong to
a separate data type, they must be declared as pointers before we use them. The declaration of a pointer
variable takes the following form:
data_type *pt_name;
This tells the compiler three things about the variable pt_name.

1. The asterisk (¥) tells that the variable pt_name is a pointer variable.

2. pt_name needs a memory location.

3. pt_name points to a variable of type data_type.

For example,

int *p; /* integer pointer */
declares the variable p as a pointer variable that points to an integer data type. Remember that the type
int refers to the data type of the variable being pointed to by p and not the type of the value of the pointer.
Similarly, the statement

float *x; / * float pointer */
declares x as a pointer to a floating-point variable.

The declarations cause the compiler to allocate memory locations for the pointer variables p and x. Since
the memory locations have not been assigned any values, these locations may contain some unknown values
in them and therefore they point to unknown locations as shown:

int *p;

Pl 2 |—> 2

contains points to
grabage unknown location

462~ Computing Fundamentals & C Programming

13.4.1 Pointer Declaration Style

Pointer variables are declared similarly as normal variables except for the addition of the unary * operator.
This symbol can appear anywhere between the type name and the printer variable name. Programmers use
the following styles:

int* p; /* style 1 */
int *p; /* style 2 */
int *p; /* style 3 */

However, the style 2 is becoming increasingly popular due to the following reasons:
1. This style is convenient to have multiple declarations in the same statement. Example:
int *p, X, *q;
2. This style matches with the format used for accessing the target values. Example:
int X, *p, y;
x =10;
p=&x;
y = *p; /* accessing x through p */
p=20; / assigning 20 to x */
We use in this book the style 2, namely,
int *p;

4
13.5 INITIALIZATION OF POINTER VARIABLES LO 13.2

The process of assigning the address of a variable to a pointer variable is known as initialization. As
pointed out earlier, all uninitialized pointers will have some unknown values that will be interpreted as
memory addresses. They may not be valid addresses or they may point to some values that are wrong. Since
the compilers do not detect these errors, the programs with uninitialized pointers will produce erroneous
results. It is therefore important to initialize pointer variables carefully before they are used in the program.
Once a pointer variable has been declared we can use the assignment operator to initialize the variable.
Example:
int quantity;
int *p; /* declaration */
p = &quantity; /* initialization */
We can also combine the initialization with the declaration. That is,
int *p = &quantity;
is allowed. The only requirement here is that the variable quantity must be declared before the initialization
takes place. Remember, this is an initialization of p and not *p.
We must ensure that the pointer variables always point to the corresponding type of data. For example,
float a, b;
int x, *p;
p = &a; /* wrong */
b = *p;
will result in erroneous output because we are trying to assign the address of a float variable to an integer
pointer. When we declare a pointer to be of int type, the system assumes that any address that the pointer
will hold will point to an integer variable. Since the compiler will not detect such errors, care should be
taken to avoid wrong pointer assignments.

Pointers <463

It is also possible to combine the declaration of data variable, the declaration of pointer variable and the
initialization of the pointer variable in one step. For example,
int x, *p = &x; /* three in one */
is perfectly valid. It declares x as an integer variable and p as a pointer variable and then initializes p to the
address of x. And also remember that the target variable x is declared first. The statement
int *p = &x, x;
is not valid.
We could also define a pointer variable with an initial value of NULL or O (zero). That is, the following
statements are valued
int *p = NULL;
int *p = 0;

13.5.1 Pointer Flexibility

Pointers are flexible. We can make the same pointer to point to different data variables in different
statements. Example;
int x, y, z, *p;

X y z

We can also use different pointers to point to the same data variable. Example;

int x;

int *pl = &x; ‘ £ ‘ e ‘ ‘ P3 ‘
int *p2 = &x;

int *p3 = &x;

X

With the exception of NULL and 0, no other constant value can be assigned to a pointer variable. For
example, the following is wrong:
int *p = 5360; / *absolute address */

4
13.6 ACCESSING A VARIABLE THROUGH ITS POINTER 0133

Once a pointer has been assigned the address of a variable, the question remains as to how to access the
value of the variable using the pointer? This is done by using another unary operator * (asterisk), usually
known as the indirection operator. Another name for the indirection operator is the dereferencing operator.
Consider the following statements:

int quantity, *p, n;

quantity = 179;

464 Computing Fundamentals & C Programming

p = &quantity;
n=*p;

The first line declares quantity and n as integer variables and p as a pointer variable pointing to an
integer. The second line assigns the value 179 to quantity and the third line assigns the address of quantity
to the pointer variable p. The fourth line contains the indirection operator *. When the operator * is placed
before a pointer variable in an expression (on the right-hand side of the equal sign), the pointer returns
the value of the variable of which the pointer value is the address. In this case, *p returns the value of the
variable quantity, because p is the address of quantity. The * can be remembered as ‘value at address’.
Thus, the value of n would be 179. The two statements

p = &quantity;
n=*p;

are equivalent to

>
1}

*&quantity;
which in turn is equivalent to
n = quantity;
In C, the assignment of pointers and addresses is always done symbolically, by means of symbolic
names. You cannot access the value stored at the address 5368 by writing *5368. It will not work. Program
13.2 illustrates the distinction between pointer value and the value it points to.

WORKED-OUT PROBLEM 13.2

Write a program to illustrate the use of indirection operator ‘*’ to access the value pointed to by a pointer.

The program and output are shown in Fig. 13.5. The program clearly shows how we can access the value of
a variable using a pointer. You may notice that the value of the pointer ptr is 4104 and the value it points to
is 10. Further, you may also note the following equivalences:

x = *(&) = *ptr =y

& = &*ptr

Program
main()

int x, y;

int *ptr;

x = 10;

ptr = &x;

y = *ptr;

printf("Value of x is %d\n\n",x);

printf("%d is stored at addr %u\n", x, &x);
printf("%d is stored at addr %u\n", *&x, &x);
printf("%d is stored at addr %u\n", *ptr, ptr);
printf("%d is stored at addr %u\n", ptr, &ptr);
printf("%d is stored at addr %u\n", y, &y);
*ptr = 25;

—
|
—
.
.
I
Pointers ’

Fig. 13.5 Accessing a variable through its pointer

The actions performed by the program are illustrated in Fig. 13.6. The statement ptr = &x assigns the
address of x to ptr and y = *ptr assigns the value pointed to by the pointer ptr to y.

Stage Values in the storage cells and their addresses
X y ptr
e [B0] BN ED
4104 4108 4106 ~ < address
S s
4104 4108 406 ddress
o o] [
4104 4108 4106 —~—— address
I .
4104 4108 4106 ~—— address
~—— pointer to x
we [E] [[
4104 4108 4106

Fig. 13.6 /llustration of pointer assignments

466~ Computing Fundamentals & C Programming

Note the use of the assignment statement
*ptr = 25;

This statement puts the value of 25 at the memory location whose address is the value of ptr. We know
that the value of ptr is the address of x and therefore, the old value of x is replaced by 25. This, in effect,
is equivalent to assigning 25 to x. This shows how we can change the value of a variable indirectly using a
pointer and the indirection operator.

4
13.7 CHAIN OF POINTERS Lol
It is possible to make a pointer to point to another pointer, thus creating a chain of pointers as shown.
p2 p1 variable
address 2 address 1 value

Here, the pointer variable p2 contains the address of the pointer variable p1, which points to the location
that contains the desired value. This is known as multiple indirections.

A variable that is a pointer to a pointer must be declared using additional indirection operator symbols in
front of the name. Example:

int **p2;

This declaration tells the compiler that p2 is a pointer to a pointer of int type. Remember, the pointer p2
is not a pointer to an integer, but rather a pointer to an integer pointer.

We can access the target value indirectly pointed to by pointer to a pointer by applying the indirection
operator twice. Consider the following code:

main ()
{
int x, *pl, **p2;
x = 100;
pl = &x; /* address of x */
p2 = &pl /* address of pl */

printf ("%d", **p2);
}

This code will display the value 100. Here, p1 is declared as a pointer to an integer and p2 as a pointer to
a pointer to an integer.

4
13.8 POINTER EXPRESSIONS LO 13.4

Like other variables, pointer variables can be used in expressions. For example, if pl and p2 are properly
declared and initialized pointers, then the following statements are valid:

y = *pl * *p2; same as (*pl) * (*p2)

sum = sum + *pl;

z = 5% — *p2/ *pl; same as (5 * (- (*p2)))/(*pl)

Pointers <467

*p2 = *p2 + 10;
Note that there is a blank space between / and * in the item3 above. The following is wrong:
z = 5% — *p2 /[*pl;
The symbol /* is considered as the beginning of a comment and therefore the statement fails.

C allows us to add integers to or subtract integers from pointers, as well as to subtract one pointer from
another. pl + 4, p2-2, and pl — p2 are all allowed. If p1 and p2 are both pointers to the same array, then p2
- p1 gives the number of elements between p1 and p2.

We may also use short-hand operators with the pointers.

plt+;
-pZ;
sum += *p2;

In addition to arithmetic operations discussed above, pointers can also be compared using the relational
operators. The expressions such as p1 > p2, p1 == p2, and p1 != p2 are allowed. However, any comparison
of pointers that refer to separate and unrelated variables makes no sense. Comparisons can be used
meaningfully in handling arrays and strings.

We may not use pointers in division or multiplication. For example, expressions such as

pl/p2orpl *p2orpl/3
are not allowed. Similarly, two pointers cannot be added. That is, p1 + p2 is illegal.

WORKED-OUT PROBLEM 13.3 M

Write a program to illustrate the use of pointers in arithmetic operations.

The program in Fig. 13.7 shows how the pointer variables can be directly used in expressions. It also
illustrates the order of evaluation of expressions. For example, the expression
4% — *p2 [/ *pl + 10
is evaluated as follows:
(4 * (=(*p2))) / (*p1)) + 10
When *pl = 12 and *p2 = 4, this expression evaluates to 9. Remember, since all the variables are of type
int, the entire evaluation is carried out using the integer arithmetic.

Program
main()
{
int a, b, *pl, *p2, x, y, z;

a = 12;
b = 4,
pl = &a;
p2 = &b;

X = *pl * *p2 — 6;

y = 4* —*p2 / *pl + 10;
printf("Address of a = %u\n", pl);
printf("Address of b = %u\n", p2);
printf("\n");

468 Computing Fundamentals & C Programming

printf("a = %d, b = %d\n", a, b);
printf("x = %d, y = %d\n", x, y);
*p2 = *p2 + 3;

*pl = *p2 - 5;

z = *pl * *p2 — 6;

printf("\na = %d, b = %d,", a, b);
printf(" z = %d\n", z);

Output

4020
4016

Address of a
Address of b
a=12, b =4
x =42,y =9
a=2,b=7,z2=28

Fig. 13.7 Evaluation of pointer expressions

4
13.9 POINTER INCREMENTS AND SCALE FACTOR LO 13.4

We have seen that the pointers can be incremented like

pl = p2 + 2;
pl = pl + 1
and so on. Remember, however, an expression like
plt+;

will cause the pointer p1 to point to the next value of its type. For example, if p1 is an integer pointer with
an initial value, say 2800, then after the operation p1 = p1 + 1, the value of p1 will be 2802, and not 2801.
That is, when we increment a pointer, its value is increased by the ‘length’ of the data type that it points to.
This length called the scale factor.

For an IBM PC, the length of various data types are as follows:

characters 1 byte

integers 2 bytes
floats 4 bytes
long integers 4 bytes
doubles 8 bytes

The number of bytes used to store various data types depends on the system and can be found by making
use of the sizeof operator. For example, if x is a variable, then sizeof(x) returns the number of bytes needed
for the variable. (Systems like Pentium use 4 bytes for storing integers and 2 bytes for short integers.)

13.9.1 Rules of Pointer Operations
The following rules apply when performing operations on pointer variables:

1. A pointer variable can be assigned the address of another variable.

Pointers <469

2. A pointer variable can be assigned the values of another pointer variable.

3. A pointer variable can be initialized with NULL or zero value.

4. A pointer variable can be pre-fixed or post-fixed with increment or decrement operators.

5. An integer value may be added or subtracted from a pointer variable.

6. When two pointers point to the same array, one pointer variable can be subtracted from another.

7. When two pointers point to the objects of the same data types, they can be compared using
relational operators.

8. A pointer variable cannot be multiplied by a constant.

9. Two pointer variables cannot be added.
10. A value cannot be assigned to an arbitrary address (i.e., &x = 10; is illegal).

4
13.10 POINTERS AND ARRAYS LO 13.5

When an array is declared, the compiler allocates a base address and sufficient amount of storage to contain
all the elements of the array in contiguous memory locations. The base address is the location of the first
element (index 0) of the array. The compiler also defines the array name as a constant pointer to the first
element. Suppose we declare an array x as follows:
int x[5] = {1, 2, 3, 4, 5};
Suppose the base address of x is 1000 and assuming that each integer requires two bytes, the five
elements will be stored as follows:

Elements —— x[0] x[1] x[2] x[3] x[4]

Value — ’ 1 2 3 4 5

Address —> 1000 1002 1004 1006 1008

L Base address

The name x is defined as a constant pointer pointing to the first element, x[0] and therefore the value of x
is 1000, the location where x[0] is stored. That is,
x = &[0] = 1000
If we declare p as an integer pointer, then we can make the pointer p to point to the array x by the
following assignment:
p = X3
This is equivalent to
p = &x[0];
Now, we can access every value of X using p++ to move from one element to another. The relationship
between p and x is shown as:
p = &x[0] (= 1000)
p+1 = &x[1] (= 1002)
p+2 = &x[2] (= 1004)
p+3 = &x[3] (= 1006)
p+4 = &x[4] (= 1008)
You may notice that the address of an element is calculated using its index and the scale factor of the
data type. For instance,

Computing Fundamentals & C Programming

<

address of x[3] = base address + (3 x scale factor of int)

= 1000 + (3 x 2) = 1006
When handling arrays, instead of using array indexing, we can use pointers to access array elements.
Note that *(p+3) gives the value of X[3]. The pointer accessing method is much faster than array indexing.
The Worked-Out Problem 13.4 illustrates the use of pointer accessing method.

The program shown in Fig. 13.8 illustrates how a pointer can be used to traverse an array element. Since
incrementing an array pointer causes it to point to the next element, we need only to add one to p each time
we go through the loop.

Fig. 13.8 Accessing one-dimensional array elements using the pointer

Pointers <471

It is possible to avoid the loop control variable i as shown:
P =X
while(p <= &x[4])
{
sum += *p;
pt+;

Here, we compare the pointer p with the address of the last element to determine when the array has
been traversed.
Pointers can be used to manipulate two-dimensional arrays as well. We know that in a one-dimensional
array X, the expression
*(x+1) or *(p+i)
represents the element x[i]. Similarly, an element in a two-dimensional array can be represented by the
pointer expression as follows:
((a+i)+3) or *(*(p+i)J)
Columns
0 1 2 3 4 5

0 f—— P
1 l«— p+1
Rows 2
3
p+td——> 4 |40 4,3 ~— pt4
5
6 le— p+6
*(p +4) *p+4)+3—
p —> pointer to first row
p+i —> pointer to ith row
*(p+i) ——> pointer to first element in the ith row
*pt+i)+]j ——> pointer to jth element in the ith row

((p+i)+j) —— value stored in the cell (i,j)
(ith row and jth column)

Fig. 13.9 Pointers to two-dimensional arrays

Figure 13.9 illustrates how this expression represents the element a[i][j]. The base address of the array
a is &a[0][0] and starting at this address, the compiler allocates contiguous space for all the elements row-
wise. That is, the first element of the second row is placed immediately after the last element of the first
row, and so on. Suppose we declare an array a as follows:

472> Computing Fundamentals & C Programming

int a[3][4] = { {15,27,11,35},
{22,19,31,17},
{31,23,14,36}
1
The elements of a will be stored as:

‘«— row 0 —>‘<— row 1 4)}47 row2 —>

|:>15 27 (11 |35 (22 |19 |31 |17 |31 |23 |14 |36

address = &a[0] [0]

If we declare p as an int pointer with the initial address of &a[0][0], then
a[i][j] is equivalent to *(p+4 x i+j)
You may notice that, if we increment i by 1, the p is incremented by 4, the size of each row. Then the
element a[2][3] is given by *(p+2 x 4+3) = *(p+11).
This is the reason why, when a two-dimensional array is declared, we must specify the size of each row
so that the compiler can determine the correct storage mapping.

4
13.11 POINTERS AND CHARACTER STRINGS LO 13.5

We have seen in Chapter 10 that strings are treated like character arrays and therefore, they are declared and
initialized as follows:
char str [5] = "good";

The compiler automatically inserts the null character \0’ at the end of the string. C supports an

alternative method to create strings using pointer variables of type char. Example:
char *str = "good";
This creates a string for the literal and then stores its address in the pointer variable str.
The pointer str now points to the first c