
Computing Fundamentals

&

C Programming

Second Edition

About the AuthorAbout the Author

E Balagurusamy is presently the Chairman of EBG Foundation, Coimbatore. In the past he held the

positions of member, Union Public Service Commission, New Delhi and Vice-Chancellor, Anna University,

Chennai, Tamil Nadu. He is a teacher, trainer and consultant in the fi elds of Information Technology and

Management. He holds an ME (Hons) in Electrical Engineering and PhD in Systems Engineering from

the Indian Institute of Technology, Roorkee, Uttarakhand. His areas of interest include Object-Oriented

Software Engineering, E-Governance: Technology Management, Business Process Re-engineering and

Total Quality Management.

A prolifi c writer, he has authored a large number of research papers and several books. His best-selling

books, among others include:

∑ Programming in ANSIC, 7/e

∑ Fundamentals of Computers

∑ Programming in C#, 3/e

∑ Programming in Java, 5/e

∑ Object-Oriented Programming with C++, 6/e

∑ Programming in BASIC, 3/e

∑ Numerical Methods

∑ Reliability Engineering

∑ Introduction to Computing & Problem Solving using Python, 1e

A recipient of numerous honour and awards, he has been listed in the Directory of Who’s Who of

Intellectuals and in the Directory of Distinguished Leaders in Education.

Computing Fundamentals

&

C Programming

McGraw Hill Education (India) Private Limited
CHENNAI

McGraw Hill Education Offi ces

Chennai New York St Louis San Francisco Auckland Bogotá Caracas

Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal

San Juan Santiago Singapore Sydney Tokyo Toronto

E. Balagurusamy

Chairman

EBG Foundation

Coimbatore

Second Edition

McGraw Hill Education (India) Private Limited

Published by McGraw Hill Education (India) Private Limited

444/1, Sri Ekambara Naicker Industrial Estate, Alapakkam, Porur, Chennai 600 116

Computing Fundamentals & C Programming, 2e

Copyright © 2018, 2008 by McGraw Hill Education (India) Private Limited.

No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical, photocopying,

recording, or otherwise or stored in a database or retrieval system without the prior written permission of the publishers. The

program listings (if any) may be entered, stored and executed in a computer system, but they may not be reproduced for

publication.

This edition can be exported from India only by the publishers,

McGraw Hill Education (India) Private Limited.

 1 2 3 4 5 6 7 8 9 D102739 22 21 20 19 18

Printed and bound in India.

Print Edition

ISBN (13): 978-93-5260-416-6

ISBN (10): 93-5260-416-4

e-Edition

ISBN (13): 978-93-5260-417-3

ISBN (10): 93-5260-417-2

Managing Director: Kaushik Bellani

Director—Science & Engineering Portfolio: Vibha Mahajan

Senior Portfolio Manager—Science & Engineering: Hemant K Jha

Associate Portfolio Manager—Science & Engineering: Md. Salman Khurshid

Content Development Lead: Shalini Jha

Content Developer: Ranjana Chaube

Production Head: Satinder S Baveja

Copy Editor: Taranpreet Kaur

Assistant Manager—Production: Anuj K Shriwastava

General Manager—Production: Rajender P Ghansela

Manager—Production: Reji Kumar

Information contained in this work has been obtained by McGraw Hill Education (India), from sources believed to be

reliable. However, neither McGraw Hill Education (India) nor its authors guarantee the accuracy or completeness of any

information published herein, and neither McGraw Hill Education (India) nor its authors shall be responsible for any errors,

omissions, or damages arising out of use of this information. This work is published with the understanding that McGraw

Hill Education (India) and its authors are supplying information but are not attempting to render engineering or other

professional services. If such services are required, the assistance of an appropriate professional should be sought.

Typeset at Text-o-Graphics, B-1/56, Aravali Apartment, Sector-34, Noida 201 301, and printed at

Cover Printer:

Visit us at: www.mheducation.co.in

 Contents v

ContentsContents

Preface xiii

Visual Walkthrough xv

1. Understanding Fundamentals of the Computer 1

1.1 Introduction 1

1.2 Generations of Computers 2

1.3 Classifi cation of Computers 6

1.4 Basic Anatomy of a Computer System 7

1.5 Input Devices 8

1.6 Processor 9

1.7 Output Devices 10

1.8 Memory Management 11

1.9 Types of Computer Software 13

1.10 Overview of Operating System 14

1.11 MS Word 19

1.12 MS Excel System 21

1.13 MS Powerpoint System 22

1.14 Networking Concepts 23

1.15 Network Topologies 26

1.16 Network Protocols and Software 29

Learning Outcomes 31

Key Terms to Remember 32

Review Questions 33

Discussion Questions 42

2. Computing Concepts 45

2.1 Introduction 45

2.2 Decimal System 46

2.3 Binary System 47

2.4 Hexadecimal System 48

2.5 Octal System 49

2.6 Conversion of Numbers 50

2.7 Binary Arithmetic Operations 60

2.8 Logic Gates 68

2.9 Programming Languages 71

 vi Contents

 2.10 Translator Programs 74

 2.11 Problem-Solving Techniques 75

 2.12 Using the Computer 87

 Learning Outcomes 87

 Key Terms to Remember 88

 Review Questions 89

 Discussion Questions 92

3. Overview of C 93

 3.1 Introduction 93

 3.2 Importance of C 95

 3.3 Sample Program 1: Printing a Message 95

 3.4 Sample Program 2: Adding Two Numbers 98

 3.5 Sample Program 3: Interest Calculation 99

 3.6 Sample Program 4: Use of Subroutines 101

 3.7 Sample Program 5: Use of Math Functions 102

 3.8 Basic Structure of C Programs 104

 3.9 Programming Style 105

 3.10 Executing a ‘C’ Program 105

 3.11 UNIX System 107

 3.12 MS-DOS System 109

 Learning Outcomes 109

 Key Terms to Remember 110

 Review Questions 110

 Discussion Questions 111

 Debugging Exercises 112

 Programming Exercises 112

4. Constants, Variables and Data Types 115

 4.1 Introduction 115

 4.2 Character Set 115

 4.3 C Tokens 117

 4.4 Keywords and Identifi ers 118

 4.5 Constants 118

 4.6 Variables 122

 4.7 Data Types 123

 4.8 Declaration of Variables 126

 4.9 Declaration of Storage Class 129

 4.10 Assigning Values to Variables 130

 4.11 Defi ning Symbolic Constants 135

 4.12 Declaring a Variable as Constant 137

 4.13 Declaring a Variable as Volatile 137

 Learning Outcomes 137

 Key Terms to Remember 138

 Brief Cases 139

 Review Questions 141

 Discussion Questions 143

 Contents vii

 Debugging Exercises 143

 Programming Exercises 143

5. Operators and Expressions 145

 5.1 Introduction 145

 5.2 Arithmetic Operators 146

 5.3 Relational Operators 148

 5.4 Logical Operators 149

 5.5 Assignment Operators 150

 5.6 Increment and Decrement Operators 152

 5.7 Conditional Operator 153

 5.8 Bitwise Operators 153

 5.9 Special Operators 154

 5.10 Arithmetic Expressions 155

 5.11 Evaluation of Expressions 156

 5.12 Precedence of Arithmetic Operators 157

 5.13 Some Computational Problems 159

 5.14 Type Conversions in Expressions 161

 5.15 Operator Precedence and Associativity 164

 Learning Outcomes 167

 Key Terms to Remember 167

 Brief Cases 168

 Review Questions 170

 Discussion Questions 171

 Debugging Exercises 173

 Programming Exercises 174

6. Managing Input and Output Operations 177

 6.1 Introduction 177

 6.2 Reading a Character 178

 6.3 Writing a Character 181

 6.4 Formatted Input 182

 6.5 Formatted Output 191

 Learning Outcomes 198

 Key Terms to Remember 198

 Brief Cases 199

 Review Questions 202

 Discussion Questions 203

 Debugging Exercises 205

 Programming Exercises 205

7. Decision Making and Branching 207

 7.1 Introduction 207

 7.2 Decision Making with If Statement 208

 7.3 Simple If Statement 208

 7.4 The If.....Else Statement 212

 7.5 Nesting of If....Else Statements 215

 7.6 The Else If Ladder 218

 viii Contents

 7.7 The Switch Statement 222

 7.8 The ? : Operator 226

 7.9 The Goto Statement 230

 Learning Outcomes 233

 Key Terms to Remember 233

 Brief Cases 234

 Review Questions 238

 Discussion Questions 239

 Debugging Exercises 243

 Programming Exercises 243

8. Decision Making and Looping 247

 8.1 Introduction 247

 8.2 The While Statement 249

 8.3 The Do Statement 251

 8.4 The For Statement 254

 8.5 Jumps in Loops 264

 8.6 Concise Test Expressions 271

 Learning Outcomes 272

 Key Terms to Remember 272

 Brief Cases 273

 Review Questions 280

 Discussion Questions 280

 Debugging Exercises 283

 Programming Exercises 284

9. Array 287

 9.1 Introduction 287

 9.2 One-Dimensional Arrays 289

 9.3 Declaration of One-dimensional Arrays 290

 9.4 Initialization of One-dimensional Arrays 292

 9.5 Two-Dimensional Arrays 298

 9.6 Initializing Two-Dimensional Arrays 302

 9.7 Multi-Dimensional Arrays 311

 9.8 Dynamic Arrays 312

 9.9 More About Arrays 312

 Learning Outcomes 312

 Key Terms to Remember 313

 Brief Cases 313

 Review Questions 326

 Discussion Questions 328

 Debugging Exercises 328

 Programming Exercises 330

10. Character Arrays and Strings 334

 10.1 Introduction 334

 10.2 Declaring and Initializing String Variables 335

 10.3 Reading Strings from Terminal 336

 Contents ix

 10.4 Writing Strings to Screen 343

 10.5 Arithmetic Operations on Characters 347

 10.6 Putting Strings Together 349

 10.7 Comparison of Two Strings 350

 10.8 String-Handling Functions 350

 10.9 Table of Strings 357

 10.10 Other Features of Strings 359

 Learning Outcomes 359

 Key Terms to Remember 359

 Brief Cases 360

 Review Questions 364

 Discussion Questions 365

 Debugging Exercise 366

 Programming Exercises 366

11. User-Defined Functions 369

 11.1 Introduction 369

 11.2 Need for User-Defi ned Functions 370

 11.3 A Multi-Function Program 370

 11.4 Elements of User-Defi ned Functions 373

 11.5 Defi nition of Functions 374

 11.6 Return Values and their Types 376

 11.7 Function Calls 377

 11.8 Function Declaration 379

 11.9 Category of Functions 380

 11.10 Recursion 394

 11.11 Passing Arrays to Functions 395

 11.12 Passing Strings to Functions 399

 11.13 The Scope, Visibility, and Lifetime of Variables 400

 11.14 Multifi le Programs 410

 Learning Outcomes 411

 Key Terms to Remember 412

 Brief Cases 413

 Review Questions 416

 Discussion Questions 417

 Debugging Exercises 420

 Programming Exercises 420

12. Structures and Unions 423

 12.1 Introduction 423

 12.2 Defi ning a Structure 424

 12.3 Declaring Structure Variables 425

 12.4 Accessing Structure Members 427

 12.5 Copying and Comparing Structure Variables 430

 12.6 Operations on Individual Members 432

 12.7 Arrays of Structures 433

 12.8 Arrays within Structures 435

 x Contents

 12.9 Structures within Structures 437

 12.10 Structures and Functions 439

 12.11 Unions and Structures 442

 Learning Outcomes 445

 Key Terms to Remember 446

 Brief Cases 447

 Review Questions 450

 Discussion Questions 451

 Debugging Exercises 454

 Programming Exercises 454

13. Pointers 457

 13.1 Introduction 457

 13.2 Understanding Pointers 458

 13.3 Accessing the Address of a Variable 460

 13.4 Declaring Pointer Variables 461

 13.5 Initialization of Pointer Variables 462

 13.6 Accessing a Variable through its Pointer 463

 13.7 Chain of Pointers 466

 13.8 Pointer Expressions 466

 13.9 Pointer Increments and Scale Factor 468

 13.10 Pointers and Arrays 469

 13.11 Pointers and Character Strings 472

 13.12 Array of Pointers 474

 13.13 Pointers as Function Arguments 475

 13.14 Functions Returning Pointers 479

 13.15 Pointers to Functions 479

 13.16 Pointers and Structures 482

 13.17 Troubles with Pointers 484

 Learning Outcomes 485

 Key Terms to Remember 486

 Brief Cases 486

 Review Questions 492

 Discussion Questions 493

 Debugging Exercises 494

 Programming Exercises 495

14. File Management in C 497

 14.1 Introduction 497

 14.2 Defi ning and Opening a File 498

 14.3 Closing a File 499

 14.4 Input/Output Operations on Files 500

 14.5 Error Handling During I/O Operations 506

 14.6 Random Access to Files 509

 14.7 Command Line Arguments 515

 Learning Outcomes 518

 Key Terms to Remember 518

 Contents xi

 Review Questions 518

 Discussion Questions 519

 Debugging Exercise 520

 Programming Exercises 520

15. The Preprocessor 521

 15.1 Introduction 521

 15.2 Macro Substitution 522

 15.3 File Inclusion 526

 15.4 Compiler Control Directives 526

 15.5 ANSI Additions 529

 Learning Outcomes 532

 Key Terms to Remember 532

 Review Questions 532

 Discussion Questions 533

 Debugging Exercises 533

 Programming Exercises 534

Appendix I ASCII Values of Characters 535

Appendix II ANSI C Library Functions 537

Appendix III Database Management System 541

Appendix IV Projects 549

Index 605

 Preface xiii

PrefacePreface

We live in a technology-driven world, where almost everything is automated. The last two decades have

witnessed a lot of innovations. It can be perplexing for a beginner to keep pace with such developments.

To be lost in the world of codes and bytes can be nerve-racking. And this is where a textbook of this nature

comes into picture. Written assuming absolutely no prior knowledge of computers, this book carries the

reader through the world of computers in a simple and structured manner.

Computer cannot understand human language thus, a communication medium in form of the computer

programming language is required to interact with computer. C is a powerful, fl exible, portable and

elegantly-structured programming language. Since C combines the features of high-level language with the

elements of the assembler, it is suitable for both systems and applications programming. It is undoubtedly

the most widely used general-purpose language today in operating systems and embedded system

development. Its infl uence is evident in almost all modern programming languages. Since its standardization

in 1989, C has undergone a series of changes and improvements in order to enhance the usefulness of the

language. The version that incorporates the new features is now referred to as C11. This book ensures a

smooth and successful transition to being a skilled C-programmer.

Organization of the Book

Fundamentals of Computers and C-Programming starts with basics of a computer system in Chapter 1 and

Computing Concepts in Chapter 2. Gradually it proceeds towards C concepts with Chapter 3 - Overview

of C, Basic Structure of C Programs and Execution. Chapter 4 discusses how to declare the Constants,

Variables, and Data Types. Operators and Expressions are presented in Chapter 5. Chapter 6 deals with

Managing of Input and Output Operations. Chapter 7 talks about Branching. The concept of Decision

Making and Looping is explained in Chapter 8. Arrays, Character Arrays, and Strings have been discussed in

Chapters 9 and 10. User-Defi ned Functions, Structures and Union are covered in Chapters 11 and 12.

While Chapter 13 covers Pointers, Chapter 14 describes File Management in C. Preprocessor is explained

in Chapter 15.

Salient Features of the Book

 Learning Objectives (LOs)

 Key Terms

 Content Tagged with LOs and Level of Diffi culty (LOD)

 Database Management System (covered as Appendix III)

 Rich Pedagogy:

 Solved and unsolved problems: Approximately 500

 Review Questions: Above 700

 xiv Preface

 Programming Exercises: Above 200

 Debugging Exercises: Above 40

 Brief Case Studies: Above 20

 Projects: 2

Digital Supplements

The digital supplement can be accessed at the given link (http://www.mhhe.com/balagurusamy/cfcp2e)

It contains the following components:

 Notes

 e-case studies

Acknowledgements

I owe special thanks to the entire team of McGraw Hill Education India.

A note of acknowledgement is due to the following reviewers for their valuable feedback. Their suggestions

have helped in making the book more useful.

Dr Sandeep Jain Jaypee Institute of Information Technology, Noida, UP

Dr Narendra Kohli HBTI, Kanpur, UP

Vivek Pandey AKTU, Farah, UP

Saikut Basu Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal

K S Patnaik BITS Mesra, Ranchi, Jharkhand

Nirmala Sharma RTU, Kota, Rajasthan

Hardik K Molia Government Engineering College, Rajkot, Gujarat

R Kiruba Buri Anna University, Trichy, Tamil Nadu

S Hariharan TRP Engineering College, Trichy, Tamil Nadu

Rekha K S National Institute of Engineering, Mysore, Karnataka

This book is my sincere attempt to make a footprint on the immensely vast and infi nite sands of knowledge.

I would request the readers to utilize this book to the maximum extent.

E BALAGURUSAMY

Publisher’s Note

McGraw Hill Education (India) invites suggestions and comments from you, all of which can be sent to

info.india@mheducation.com (kindly mention the title and author name in the subject line).

Piracy-related issues may also be reported.

V I S U A L WA L K T H R O U G HV I S U A L WA L K T H R O U G H

Learning Objectives

The learning objectives tagged with

principal sections of the chapter help

students set realistic learning goals even

before they begin the chapter.

Introduction

Each chapter opens with an introduction

providing an overview of the topics

covered in the chapter.

 Computing Concepts 45

L
E

A
R

N
IN

G
 O

B
J
E

C
T
IV

E
S

A er reading this chapter, you will be able to

LO 2.1 Iden fy the various posi onal number systems

LO 2.2 Carry out number conversions from one number system to another

LO 2.3 Explain how binary arithme c opera ons are performed

LO 2.4  Describe primary logic gates

LO 2.5 Discuss various levels of programming languages

LO 2.6  Know various problem solving techniques and computer applica ons

V
E

S

CHAPT ER

2
Computing Concepts

 60 Computing Fundamentals & C Programming

2.7 BINARY ARITHMETIC OPERATIONS LO 2.3

The computer arithmetic is also referred as binary arithmetic because the computer system stores and

processes the data in the binary form only. Various binary arithmetic operations can be performed in the

same way as the decimal arithmetic operations, but by following a predefined set of rules. Each binary

arithmetic operation has an associated set of rules that should be adhered to while carrying out that

operation. The binary arithmetic operations are usually simpler to carry out as compared to the decimal

operations because one needs to deal with only two digits, 0 and 1, in the binary operations. The different

binary arithmetic operations performed in a computer system are:

 Binary addition

 Binary multiplication

 Binary subtraction

 Binary division

2.7.1 Binary Addition

Binary addition is the simplest arithmetic operation performed in the computer system. Like decimal

system, we can start the addition of two binary numbers column-wise from the right-most bit and move

towards the left-most bit of the given numbers. However, we need to follow certain rules while carrying out

the binary addition of the given numbers. Table 2.8 lists the rules for binary addition.

3.1 INTRODUCTION

C is one of the most popular computer languages today because it is a structured, high-level,

machine independent language. It allows software developers to develop programs without

worrying about the hardware platforms where they will be implemented.

The root of all modern languages is ALGOL, introduced in the early 1960s. ALGOL was

the first computer language to use a block structure. ALGOL gave the concept of structured

programming. Computer scientists like Corrado Bohm, Guiseppe Jacopini and Edsger Dijkstra

popularized this concept during 1960s.

In 1967, Martin Richards developed a language called BCPL (Basic Combined Programming

Language) primarily for writing system software. In 1970, Ken Thompson created a language

using many features of BCPL and called it simply B. B was used to create early versions of UNIX

operating system at Bell Laboratories. Both BCPL and B were “typeless” system programming

languages.

C was evolved from ALGOL, BCPL and B by Dennis Ritchie at the Bell Laboratories in

1972. C uses many concepts from these languages and added the concept of data types and other

powerful features. UNIX operating system, which was also developed at Bell Laboratories, was

coded almost entirely in C.

 xvi Visual Walkthrough

Letters Digits

Uppercase A.....Z All decimal digits 09

Lowercase a.....z

Special Characters

, comma & ampersand

. period ^ caret

; semicolon * asterisk

: colon – minus sign

? question mark + plus sign

‘ apostrophe < opening angle bracket

“ quotation mark (or less than sign)

! exclamation mark > closing angle bracket

| vertical bar (or greater than sign)

/ slash (left parenthesis

\ backslash) right parenthesis

~ tilde [left bracket

_ under score] right bracket

$ dollar sign { left brace

% percent sign } right brace

number sign

White Spaces

Blank space

Horizontal tab

Carriage return

New line

 Program

 main()

 {

 /*..........DECLARATIONS............................*/

 float x, p ;

 double y, q ;

 unsigned k ;

 /*..........DECLARATIONS AND ASSIGNMENTS............*/

 int m = 54321 ;

 long int n = 1234567890 ;

 /*..........ASSIGNMENTS.............................*/

 x = 1.234567890000 ;

 y = 9.87654321 ;

 k = 54321 ;

 p = q = 1.0 ;

 /*..........PRINTING................................*/

 printf(“m = %d\n”, m) ;

 printf(“n = %ld\n”, n) ;

 printf(“x = %.12lf\n”, x) ;

 printf(“x = %f\n”, x) ;

 printf(“y = %.12lf\n”,y) ;

 printf(“y = %lf\n”, y) ;

 printf(“k = %u p = %f q = %.12lf\n”, k, p, q) ;

 }

 Output

 m = -11215

 n = 1234567890

 x = 1.234567880630

 x = 1.234568

 y = 9.876543210000

 y = 9.876543

 k = 54321 p = 1.00000 q = 1.000000000000

 60 Computing Fundamentals & C Programming

2.7 BINARY ARITHMETIC OPERATIONS LO 2.3

The computer arithmetic is also referred as binary arithmetic because the computer system stores and

processes the data in the binary form only. Various binary arithmetic operations can be performed in the

same way as the decimal arithmetic operations, but by following a predefined set of rules. Each binary

arithmetic operation has an associated set of rules that should be adhered to while carrying out that

operation. The binary arithmetic operations are usually simpler to carry out as compared to the decimal

operations because one needs to deal with only two digits, 0 and 1, in the binary operations. The different

binary arithmetic operations performed in a computer system are:

 Binary addition

 Binary multiplication

 Binary subtraction

 Binary division

2.7.1 Binary Addition

Binary addition is the simplest arithmetic operation performed in the computer system. Like decimal

system, we can start the addition of two binary numbers column-wise from the right-most bit and move

towards the left-most bit of the given numbers. However, we need to follow certain rules while carrying out

the binary addition of the given numbers. Table 2.8 lists the rules for binary addition.

Worked-Out Problems

Text interspersed with worked-out

problems, which helps learn technique of

applying concepts to practical problems.

p p

WORKED-OUT PROBLEM 13.2 L

Write a program to illustrate the use of indirection operator ‘*’ to access the value pointed to by a pointer.

The program and output are shown in Fig. 13.5. The program clearly shows how we can access the value of

a variable using a pointer. You may notice that the value of the pointer ptr is 4104 and the value it points to

is 10. Further, you may also note the following equivalences:

 x = *(&x) = *ptr = y

 &x = &*ptr

 Program

 main()

 {

 int x, y;

 int *ptr;

 x = 10;

 ptr = &x;

 y = *ptr;

 printf(“Value of x is %d\n\n”,x);

 printf(“%d is stored at addr %u\n”, x, &x);

 printf(“%d is stored at addr %u\n”, *&x, &x);

 printf(“%d is stored at addr %u\n”, *ptr, ptr);

 printf(“%d is stored at addr %u\n”, ptr, &ptr);

 printf(“%d is stored at addr %u\n”, y, &y);

 *ptr = 25;

Profusely Illustrated Text

Text supplemented with fi gures, tables,

fl ow charts and programs, which are

reader friendly and sustain readers’

interest.

 Visual Walkthrough xvii

Debugging Exercises

 1. Find errors, if any, in each of the following looping segments. Assume that all the variables

have been declared and assigned values.

 (a) while (count != 10);
 {
 count = 1;
 sum = sum + x;
 count = count + 1;
 }

 (b) name = 0;

 do { name = name + 1;

 printf(“My name is John\n”);}

 while (name = 1)

 (c) do;

 total = total + value;

 scanf(“%f”, &value);

 while (value != 999);

 (d) for (x = 1, x > 10; x = x + 1)

 {
 – – – – –
 ––––––

LO 8.1

LO 8.2

LO 8.3

LO 8.3

Programming Exercises

 1. Write a program to determine and print the sum of the following harmonic series for a

given value of n:

 1+ 1/2 +1/3 +....+ 1/n

 The value of n should be given interactively through the terminal.

 2. Write a program to read the price of an item in decimal form (like 15.95) and print the

output in paise (like 1595 paise).

 3. Write a program that prints the even numbers from 1 to 100.

 4. Write a program that requests two float type numbers from the user and then divides the

first number by the second and display the result along with the numbers.

LO 4.4

LO 4.4

LO 4.2

LO 4.4

 Review Questions

Fill in the Blanks

 1. The most common system used by computer systems is _________.

 2. The weight of any digit in the number system generally depends upon its _________ in the

given number.

 3. The binary system represents each type of data in the form of _________ and _________.

 4. The digits in binary system are referred as _________.

 5. The base of any number system depends upon the number of _________ in the system.

 6. Computer designers and professionals generally deal with _________ number system.

 7. The octal system is also known as _________ system.

 8. The octal number 5624 is equivalent to _________ in decimal system.

 9. The binary number 1001010 represents a decimal value of _________.

 10. The hexadecimal system consists of _________ symbols.

 11. Human beings usually supply data to the computer system in the _________ form.

LO 2.1

LO 2.1

LO 2.1

LO 2.1

LO 2.1

LO 2.1

LO 2.1

LO 2.2

LO 2.2

LO 2.2

LO 2.2

Key Terms to Remember

A chapter-end list and defi nition of

important terms to recollect

 Key Terms to Remember

 Computer codes: The computer codes are the codes that help in converting the data entered by the

users into the binary form.

 Positional number system: The positional number system is a system in which numbers are

represented using certain symbols called digits and the values of these numbers is determined by

taking the position of digits into consideration.

 Decimal system: The decimal system is a positional number system that uses base 10 to represent

different values.

 Binary system: The binary system is a positional number system that uses base 2 to represent

different values.

 Hexadecimal system: The hexadecimal system is a positional number system that uses base 16 to

represent different values.

 Octal system: The octal system is a positional number system that uses base 8 to represent different

values.

 Number system conversions: The different type of number system conversions can be divided into

three major categories: non-decimal to decimal, decimal to non-decimal and octal to hexadecimal.

 ALU: ALU is an important component of CPU that is used to perform various arithmetic and logical

operations in the computer system.

 Integer arithmetic: Integer arithmetic refers to various arithmetic operations involving integer

operands only.

 Floating-point arithmetic: Floating-point arithmetic refers to various arithmetic operations

involving floating-point operands only.

 Unsigned binary number: Unsigned binary number is the number with a magnitude of either zero

or greater than zero.

 Basic logic gates: Basic logic gates are the building blocks of digital circuits that perform logical

operations such as AND, OR and NOT, on the binary inputs.

 Machine Language: The computer instructions written using binary codes 1 and 0 are machine code

or machine language.

LO 2.1

LO 2.1

LO 2.1

LO 2.1

LO 2.1

LO 2.1

LO 2.2

LO 2.3

LO 2.3

LO 2.3

LO 2.3

LO 2.4

LO 2.5

Complexity based Pedagogy

Chapter-end exercises including Review

Questions, Discussion Questions,

Debugging Exercises and Programming

Exercises tagged as per Learning

Objectives (LO) and the complexity/

diffi culty level. The pedagogy helps

student evaluate their learning level.

Tagging indicates level of diffi culty

(LOD of questions ranging from low

complexity (L) through Intermediate

complexity (M) to high complexity (H)

with an indicator icon .

 xviii Visual Walkthrough

Learning Outcomes

Lists important outcomes that we need to

ensure after reading the chapter.

Brief Cases

Help readers to appreciate real-time

application of C Programming in solving

problems.

 Learning Outcomes

 We need to specify three things, namely, name, type and size, when we declare an array.

 Use of invalid subscript is one of the common errors. An incorrect or invalid index may cause

unexpected results.

 Always remember that subscripts begin at 0 (not 1) and end at size –1.

 Defining the size of an array as a symbolic constant makes a program more scalable.

 Be aware of the difference between the “kth element” and the “element k”. The kth element has a

subscript k-1, whereas the element k has a subscript of k itself.

 Do not forget to initialize the elements; otherwise they will contain “garbage”.

LO 9.1

LO 9.1

LO 9.2

LO 9.2

LO 9.2

LO 9.2

Brief Cases

1. Range of Numbers [LO 7.1, 7.2 M]

Problem: A survey of the computer market shows that personal computers are sold at varying costs by the

vendors. The following is the list of costs (in hundreds) quoted by some vendors:

 35.00, 40.50, 25.00, 31.25, 68.15,

 47.00, 26.65, 29.00, 53.45, 62.50

Determine the average cost and the range of values.

Problem analysis: Range is one of the measures of dispersion used in statistical analysis of a series of

values. The range of any series is the difference between the highest and the lowest values in the series.

That is

 Range = highest value – lowest value

It is therefore necessary to find the highest and the lowest values in the series.

Program: A program to determine the range of values and the average cost of a personal computer in the

market is given in Fig. 7.16.

 Program

 main()

 {

 int count;

 float value, high, low, sum, average, range;

 sum = 0;

 count = 0;

 printf(“Enter numbers in a line :

 input a NEGATIVE number to end\n”);

input:

 ASCII Values of Characters 535
APPENDIX

I
ASCII Values of Characters

ASCII ASCII ASCII ASCII

 Value Character Value Character Value Character Value Character

000 NUL 027 ESC 054 6 081 Q

001 SOH 028 FS 055 7 082 R

002 STX 029 GS 056 8 083 S

003 ETX 030 RS 057 9 084 T

004 EOT 031 US 058 : 085 U

005 ENQ 032 blank 059 ; 086 V

006 ACK 033 ! 060 < 087 W

007 BEL 034 “ 061 = 088 X

008 BS 035 # 062 > 089 Y

009 HT 036 $ 063 ? 090 Z

010 LF 037 % 064 @ 091 [

011 VT 038 & 065 A 092 \

012 FF 039 ‘ 066 B 093]

 ANSI C Library Functions 537
APPENDIX

II
ANSI C Library Functions

The C language is accompanied by a number of library functions that perform various tasks. The ANSI committee has

standardized header files which contain these functions. What follows is a slit of commonly used functions and the header

files where they are defined. For a more complete list, the reader should refer to the manual of the version of C that is

being used.

The header files that are included in this Appendix are as follows:

<ctype.h> Character testing and conversion functions

<math.h> Mathematical functions

<stdio.h> Standard I/O library functions

<stdlib.h> Utility functions such as string conversion rou tines, memory allocation routines, random number

generator, etc.

<string.h> String manipulation functions

<time.h> Time manipulation functions

Note: The following function parameters are used:

 c - character type argument

 d - double precision argument

 f - file argument

 Database Management System 541
APPENDIX

IIIDatabase Management

System

AIII.1 INTRODUCTION

Data storage is an important function of a computer system. While the facility of storing the data is provided

by hardware storage devices, we cannot simply dump the entire data in them. We must logically organize

the data in such a way that future data access and manipulation becomes simpler and efficient. Database

system is one such dedicated program that manages the collection of a large number of data elements in a

systematic manner. Computer applications and users simply interact with the database system through an

interface while the later works behind the scenes to access and retrieve the required data elements. There

are different data models on which we can base the design of our database. The choice of a particular data

model is made on the basis of the type of the data to be stored and its associated relationships.

AIII.2 DATA MODELS

Data model refers to the structure of a database system describing how data objects are arranged inside

the database. Its also describes several other concepts related to the database system, such as constraints,

relationships, etc. The various types of data models are:

E tit l ti hi (ER) d l

Appendices

Providing useful supplementary

information on C Programming; an

exclusive Appendix dedicated to

Database Management System.

 Understanding Fundamentals of the Computer 1

1.1 INTRODUCTION

A computer is an electronic machine that takes input from the user, processes the given input and

generates output in the form of useful information. A computer accepts input in different forms

such as data, programs and user reply. Data refer to the raw details that need to be processed to

generate some useful information. Programs refer to the set of instructions that can be executed

by the computer in sequential or non-sequential manner. User reply is the input provided by the

user in response to a question asked by the computer.

A computer includes various devices that function as an integrated system to perform several

tasks described above (Fig. 1.1). These devices are:

Central Processing Unit (CPU) It is the processor of the computer that is responsible for

controlling and executing instructions in the computer. It is considered as the most signifi cant

component of the computer.

Monitor It is a screen, which displays information in visual form, after receiving the video

signals from the computer.

Keyboard and Mouse These are the devices, which are used by the computer, for receiving

input from the user.

L
E

A
R

N
IN

G
 O

B
J
E

C
T
IV

E
S

A er reading this chapter, you will be able to

LO 1.1 Iden fy the various genera ons of computers

LO 1.2  Classify computers on the basis of diff erent criteria

LO 1.3 Describe the computer system

LO 1.4  Classify various computer so ware

LO 1.5  Discuss various opera ng systems

LO 1.6  Discuss Microso so ware

LO 1.7  Know various networking concepts and protocols

V
E

S

A er reading this chapter you will be able to

CHAPT ERCHAPT ER

11Understanding Understanding

Fundamentals of the Fundamentals of the

ComputerComputer

 2 Computing Fundamentals & C Programming

Fig. 1.1 The components of computer

1.2 GENERATIONS OF COMPUTERS LO 1.1

The history of computer development is often discussed in terms of different generation of computers, as

listed below.

� First generation computers

� Second generation computers

� Third generation computers

� Fourth generation computers

� Fifth generation computers

1.2.1 First Generation Computers

These computers used the vacuum tubes

technology (Fig. 1.2) for calculation as well

as for storage and control purposes. Therefore,

these computers were also known as vacuum

tubes or thermionic valves based machines.

Some examples of fi rst generation computers are

ENIAC, EDVAC, EDSAC and UNIVAC.

Advantages

� Fastest computing devices of their time.

� Able to execute complex mathematical

problems in an effi cient manner.

Disadvantages

� These computers were not very easy to

program being machine dependent.

� They were not very fl exible in running

different types of applications as

designed for special purposes.

� The use of vacuum tube technology

made these computers very large and
Fig. 1.2 A vacuum tube

 Understanding Fundamentals of the Computer 3

bulky and also required to be placed in cool places.

� They could execute only one program at a time and hence, were not very productive.

� They generated huge amount of heat and hence were prone to hardware faults.

1.2.2 Second Generation Computers

These computers use transistors in place of vacuum tubes in building the basic logic circuits. A transistor is

a semiconductor device that is used to increase the power of the incoming signals by preserving the shape

of the original signal (Fig. 1.3).

Some examples of second generation computers are PDP-8, IBM

1401 and IBM 7090.

Advantages

� Fastest computing devices of their time.

� Easy to program because of the use of assembly language.

� Small and light weight computing devices.

� Required very less power in carrying out operations.

Disadvantages

� Input and output media for these computers were not

improved to a considerable extent.

� Required to be placed in air-conditioned places.

� Very expensive and beyond the reach of home users.

� Being special-purpose computers they could execute only

specifi c applications.

1.2.3 Third Generation Computers

The major characteristic feature of third generation computer systems was the use of Integrated Circuits

(ICs). ICs are the circuits that combine various electronic components, such as transistors, resistors,

capacitors, etc. onto a single small silicon chip.

Some examples of third generation computers are NCR 395, B6500, IBM 370, PDP 11 and CDC 7600.

Advantages

� Computational time for these computers was usually in nanoseconds hence were the fastest

computing devices

� Easily transportable because of their small size.

� They used high-level languages which is machine

independent hence very easy to use.

� Easily installed and required less space.

� Being able to execute any type of application

(business and scientifi c) these were considered as

general-purpose computers.

Disadvantages

� Very less storage capacity.

� Degraded performance while executing complex

computations because of the small storage capacity.

� Very expensive.

Fig. 1.3 A transistor

Fig. 1.4 An integrated circuit

 4 Computing Fundamentals & C Programming

1.2.4 Fourth Generation Computers

The progress in LSI and VLSI technologies led to the

development of microprocessor, which became the major

characteristic feature of the fourth generation computers. The

LSI and VLSI technology allowed thousands of transistors to

be fi tted onto one small silicon chip.

A microprocessor incorporates various components

of a computer—such as CPU, memory and Input/Output

(I/O) controls—onto a single chip. Some popular later

microprocessors include Intel 386, Intel 486 and Pentium.

Some of the examples of fourth generation computers are

IBM PC, IBM PC/AT, Apple and CRAY-1.

Advantages

� LSI and VLSI technologies made them small, cheap, compact and powerful.

� high storage capacity

� highly reliable and required very less maintenance.

� provided a user-friendly environment with the development of GUIs and interactive I/O devices.

� programs written on these computers were highly portable because of the use of high-level

languages.

� very versatile and suitable for every type of applications.

� required very less power to operate.

Disadvantages

� the soldering of LSI and VLSI chips on the wiring board was complicated

� still dependent on the instructions given by the programmer.

1.2.5 Fifth Generation Computers

Fifth generation computers are based on the Ultra Large Scale Integration (ULSI) technology that allows

almost ten million electronic components to be fabricated on one small chip.

Advantages

� faster, cheaper and most effi cient computers till date.

� They are able to execute a large number of applications at the same time and that too at a very high

speed.

� The use of ULSI technology helps in decreasing the size of these computers to a large extent.

� very comfortable to use because of the several additional multimedia features.

� versatile for communications and resource sharing.

Disadvantage

They are not provided with an intelligent program that could guide them in performing different operations.

Figure 1.6 shows a tree of computer family that illustrates the area-wise developments during the last

four decades and their contributions to the various generations of computers.

Fig. 1.5 The Intel P4004 microprocessor chip

 Understanding Fundamentals of the Computer 5

Fig. 1.6 Tree of computer family

 6 Computing Fundamentals & C Programming

1.3 CLASSIFICATION OF COMPUTERS LO 1.2

Computers can be classifi ed into several categories depending on their computing ability and processing

speed. These include

� Microcomputer

� Minicomputer

� Mainframe computers

� Supercomputers

Microcomputers

A microcomputer is defi ned as a computer that has a microprocessor as its CPU and can perform the

following basic operations:

� Inputting — entering data and instructions into the microcomputer system.

� Storing — saving data and instructions in the memory of the microcomputer system, so that they

can be use whenever required.

� Processing — performing arithmetic or logical operations on data, where data, such as addition,

subtraction, multiplication and division.

� Outputting — It provides the results to the user, which could be in the form of visual display and/

or printed reports.

� Controlling — It helps in directing the sequence and manner in which all the above operations are

performed.

Minicomputers

A minicomputer is a medium-sized computer that is more powerful than a microcomputer. It is usually

designed to serve multiple users simultaneously, hence called a multiterminal, time-sharing system.

Minicomputers are popular among research and business organizations today. They are more expensive than

microcomputers.

Mainframe Computers

Mainframe computers help in handling the information processing of various organizations like banks,

insurance companies, hospitals and railways. Mainframe computers are placed on a central location and

are connected to several user terminals, which can act as access stations and may be located in the same

building. Mainframe computers are larger and expensive in comparison to the workstations.

Supercomputers

In supercomputers, multiprocessing and parallel processing technologies are used to promptly solve

complex problems. Here, the multiprocessor can enable the user to divide a complex problem into smaller

problems. A supercomputer also supports multiprogramming where multiple users can access the computer

simultaneously. Presently, some of the popular manufacturers of supercomputers are IBM, Silicon Graphics,

Fujitsu, and Intel.

 Understanding Fundamentals of the Computer 7

1.4 BASIC ANATOMY OF A COMPUTER SYSTEM LO 1.3

A computer system comprises hardware and software components. Hardware refers to the physical

parts of the computer system and software is the set of instructions or programs that are necessary for the

functioning of a computer to perform certain tasks. Hardware includes the following components:

� Input devices — They are used for accepting the data on which the operations are to be performed.

The examples of input devices are keyboard, mouse and track ball.

� Processor — Also known as CPU, it is used to perform the calculations and information processing

on the data that is entered through the input device.

� Output devices — They are used for providing the output of a program that is obtained after

performing the operations specifi ed in a program. The examples of output devices are monitor and

printer.

� Memory — It is used for storing the input data as well as the output of a program that is obtained

after performing the operations specifi ed in a program. Memory can be primary memory as well

as secondary memory. Primary memory includes Random Access Memory (RAM) and secondary

memory includes hard disks and fl oppy disks.

Output
Media

Magnetic
Tape

Magnetic
Disk

EXTERNAL STORAGE UNITS

Memory
Unit

Arithmetic
Unit

Output
Unit

Input
Unit

Input
Media

Control
Unit

CPU

Data and results flow

Control Instructions to units

Instructions to control unit

Fig. 1.7 Interaction among hardware components

 8 Computing Fundamentals & C Programming

Software supports the functioning of a computer system internally and cannot be seen. It is stored

on secondary memory and can be an application software as well as system software. The application

software is used to perform a specifi c task according to requirements and the system software (operating

system and networking system) is mandatory for running application software.

1.5 INPUT DEVICES LO 1.3

Input devices are electromechanical devices that are used to provide data to a computer for storing and

further processing, if necessary. Depending upon the type or method of input, the input device may belong

to one of the following categories:

1.5.1 Keyboard

Keyboard is used to type data and text and execute commands. A standard keyboard, as shown in Fig. 1.8,

consists of the following groups of keys:

Alphanumeric Keys include the number keys and alphabet keys arranged in QWERTY layout.

Function Keys help perform specifi c tasks, such as searching a fi le or refreshing a web page.

Central Keys include arrow keys (for moving the cursor) and modifi er keys such as SHIFT, ALT and

CTRL (for modifying the input).

Numeric Keypad looks like a calculator’s keypad with its 10 digits and mathematical operators.

Special Purpose Keys The special purpose keys help perform a certain kind of operation, like exiting a

program (Escape) or deleting some characters (Delete) in a document, etc.

Fig. 1.8 The presently used keyboard

1.5.2 Mouse

Mouse is a small hand-held pointing device that basically controls the two-dimensional movement of

the cursor on the displayed screen. It is an important part of the Graphical User Interface (GUI) based

Operating Systems (OS) as it helps in selecting a portion of the screen and copying and pasting the text.

 Understanding Fundamentals of the Computer 9

The mouse, on moving, also moves the pointer appearing on the display device (Fig. 1.9).

Wheel

Right Button

Left Button

Fig. 1.9 A mechanical mouse

1.5.3 Scanning Device

Scanning devices are the input devices that can electronically capture

text and images, and convert them into computer readable form

(Fig. 1.10).

There are the following types of scanners that can be used to

produce digitized images:

� Flatbed scanner — It contains a scanner head that moves

across a page from top to bottom to read the page and

converts the image or text available on the page in digital

form. The fl atbed scanner is used to scan graphics, oversized

documents, and pages from books.

� Drum scanner — In this type of scanner, a fi xed scanner

head is used and the image to be scanned is moved across

the head. The drum scanners are used for scanning prepress

materials.

� Slide scanner — It is a scanner that can scan photographic slides directly to produce fi les

understandable by the computer.

� Handheld scanner — It is a scanner that is moved by the end user across the page to be scanned.

This type of scanner is inexpensive and small in size.

1.6 PROCESSOR LO 1.3

The CPU consists of Control Unit (CU) and ALU. CU stores the instruction set, which specifi es the

operations to be performed by the computer. CU transfers the data and the instructions to the ALU for

an arithmetic operation. ALU performs arithmetical or logical operations on the data received. The CPU

registers store the data to be processed by the CPU and the processed data also. Apart from CU and ALU,

CPU seeks help from the following hardware devices to process the data:

Motherboard

It refers to a device used for connecting the CPU with the input and output devices. The components on the

motherboard are connected to all parts of a computer and are kept insulated from each other. Some of the

components of a motherboard are:

Fig. 1.10 A Scanner

 10 Computing Fundamentals & C Programming

� Buses: Electrical pathways that transfer data and instructions among different parts of the computer.

For example, the data bus is an electrical pathway that transfers data among the microprocessor,

memory and input/output devices connected to the computer.

� System clock: It is a clock used for synchronizing the activities performed by the computer. The

electrical signals that are passed inside a computer are timed, based on the tick of the clock.

� Microprocessor: CPU component that performs the processing and controls the activities performed

by the different parts of the computer.

� ROM: Chip that contains the permanent memory of the computer that stores information, which

cannot be modifi ed by the end user.

RAM

It refers to primary memory of a computer that stores information and programs, until the computer is used.

RAM is available as a chip that can be connected to the RAM slots in the motherboard.

Video Card/Sound Card

The video card is an interface between the monitor and the CPU. Video cards also include their own RAM

and microprocessors that are used for speeding up the processing and display of a graphic. A sound card is

a circuit board placed on the motherboard and is used to enhance the sound capabilities of a computer.

1.7 OUTPUT DEVICES LO 1.3

The main task of an output device is to convert the machine-readable information into human-readable form

which may be in the form of text, graphics, audio or video.

1.7.1 Display Monitors

A monitor produces visual displays generated by the computer. The monitor is connected to the video card

placed on the expansion slot of the motherboard.

The monitors can be classifi ed as cathode ray tube (CRT) monitors or liquid crystal display (LCD)

monitors. The CRT monitors are large, occupy more space in the computer, whereas LCD monitors are

thin, light weighted, and occupy lesser space. Both the monitors are available as monochrome, gray scale

and color models.

Fig. 1.11 A CRT monitor and the internal components of a CRT

 Understanding Fundamentals of the Computer 11

A monitor can be characterized by its monitor size and resolution. The monitor size is the length of

the screen that is measured diagonally. The resolution of the screen is expressed as the number of picture

elements or pixels of the screen. The resolution of the monitor is also called the dot pitch. The monitor with

a higher resolution produces a clearer image.

1.7.2 Printer

The printer is an output device that transfers the text displayed on the screen, onto paper sheets that can

be used by the end user. Printers can be classifi ed based on the technology they use to print the text and

images:

� Dot matrix printers — Dot matrix printers are impact printers that use perforated sheet to print the

text. Dot matrix printers are used to produce multiple copies of a print out.

� Inkjet printers — Inkjet printers are slower than dot matrix printers and are used to generate high

quality photographic prints.

� Laser printers — The laser printer may or may not be connected to a computer, to generate an

output. These printers consist of a microprocessor, ROM and RAM, which can be used to store the

textual information.

1.7.3 Voice Output Systems

These systems record the simple messages in human speech form and then combine all these simple

messages to form a single message. The voice response system is of two types—one uses a reproduction of

human voice and other sounds, and the other uses speech synthesis.

The basic application of a voice output system is in Interactive Voice Response (IVR) systems, which are

used by the customer care or customer support departments of an organization, such as telecommunication

companies, etc.

1.7.4 Projectors

A projector is a device that is connected to a

computer or a video device for projecting an

image from the computer or video device onto

the big white screen. The images projected by

a projector are larger in size as compared to

the original images. A projector consists of an

optic system, a light source and displays, which

contain the original images. Projectors were

initially used for showing fi lms but now they are

used on a large scale for displaying presentations

in business organizations and for viewing movies

at home.

1.8 MEMORY MANAGEMENT LO 1.3

The memory unit of a computer is used to store data, instructions for processing data, intermediate results

of processing and the fi nal processed information. The memory units of a computer are classifi ed as primary

and secondary memory. Computers also use a third type of storage location known as the internal process

Fig. 1.12 A portable projector

 12 Computing Fundamentals & C Programming

memory. This memory is placed either inside the CPU or near the CPU (connected through special fast

bus).

Fig. 1.13 Memory unit categories of computer

1.8.1 Primary Memory

The primary memory is available in the computer as a built-in unit of the computer. The primary memory is

represented as a set of locations with each location occupying 8 bits. Each bit in the memory is identifi ed by

a unique address. The data is stored in the machine-understandable binary form in these memory locations.

The commonly used primary memories are as follows:

� ROM — ROM represents Read Only Memory that stores data and instructions, even when the

computer is turned off. It is the permanent memory of the computer where the contents cannot be

modifi ed by an end user. ROM is a chip that is inserted into the motherboard. It is generally used to

store the Basic Input/Output system (BIOS), which performs the Power On Self Test (POST).

� RAM — RAM is the read/write memory unit in which the information is retained only as long

as there is a regular power supply. When the power supply is interrupted or switched off, the

information stored in the RAM is lost. RAM is volatile memory that temporarily stores data and

applications as long as they are in use. When the use of data or the application is over, the content in

RAM is erased.

� Cache memory — Cache memory is used to store the data and the related application that was

last processed by the CPU. When the processor performs processing, it fi rst searches the cache

memory and then the RAM, for an instruction. The cache memory can be either soldered into the

motherboard or is available as a part of RAM.

1.8.2 Secondary Memory

Secondary memory represents the external storage devices that are connected to the computer. They provide

a non-volatile memory source used to store information that is not in use currently. A storage device is

either located in the CPU casing of the computer or is connected externally to the computer. The secondary

storage devices can be classifi ed as:

 Understanding Fundamentals of the Computer 13

� Magnetic storage device — The magnetic storage devices store information that can be read, erased

and rewritten a number of times. These include fl oppy disk, hard disk and magnetic tapes.

� Optical storage device — The optical storage devices are secondary storage devices that use laser

beams to read the stored data. These include CD-ROM, rewritable compact disk (CD-RW), digital

video disks with read only memory (DVD-ROM), etc.

� Magneto-optical storage device — The magneto-optical devices are generally used to store

information, such as large programs, fi les and back-up data. The end user can modify the

information stored in magneto-optical storage devices multiple times. These devices provide higher

storage capacity as they use laser beams and magnets for reading and writing data to the device.

1.9 TYPES OF COMPUTER SOFTWARE LO 1.4

A computer program is basically a set of logical instructions, written in a computer programming language

that tells the computer how to accomplish a task. The software is therefore an essential interface between

the hardware and the user (Fig. 1.14).

A computer software performs two distinctive tasks. The fi rst task is to control and coordinate the

hardware components and manage their performances and the second one is to enable the users to

accomplish their required tasks. The software that is used to achieve the fi rst task is known as the system

software and the software that is used to achieve the second task is known as the application software.

Fig. 1.14 Layers of software and their interactions

1.9.1 System Software

System software consists of many different programs that manage and support different tasks. Depending

upon the task performed, the system software can be classifi ed into two major groups (Fig. 1.15):

� System management programs used for managing both the hardware and software systems. They

include:

∑ Operating system

∑ Utility programs

∑ Device drivers

 14 Computing Fundamentals & C Programming

� System development programs are used for developing and executing application software. These are:

∑ Language translators

∑ Linkers

∑ Debuggers

∑ Editors

Fig. 1.15 Major categories of computer software

1.9.2 Application Software

Application software includes a variety of programs that are designed to meet the information processing

needs of end users. They can be broadly classifi ed into two groups:

� Standard application programs that are designed for performing common application jobs.

Examples include:

∑ Word processor

∑ Spreadsheet

∑ Database Manager

∑ Desktop Publisher

∑ Web Browser

� Unique application programs that are developed by the users themselves to support their specifi c

needs. Examples include:

∑ Managing the inventory of a store

∑ Preparing pay-bills of employees in an organization

∑ Reserving seats in trains or airlines

1.10 OVERVIEW OF OPERATING SYSTEM LO 1.5

An operating system (OS) is a software that makes the computer hardware to work. While the hardware

provides ‘raw computer power’ , the OS is responsible for making the computer power useful for the users.

OS is the main component of system software and therefore must be loaded and activated before we can

accomplish any other task. The main functions include:

� Operates CPU of the computer.

� Controls input/output devices that provide the interface between the user and the computer.

� Handles the working of application programs with the hardware and other software systems.

 Understanding Fundamentals of the Computer 15

� Manages the storage and retrieval of information using storage devices such as disks.

Fig. 1.16 The roles of an operating system

Based on their capabilities and the types of applications supported, the operating systems can be divided

into the following six major categories:

� Batch operating system — This is the earliest operating system, where only one program is

allowed to run at one time. We cannot modify any data used by the program while it is being run. If

an error is encountered, it means starting the program from scratch all over again. A popular batch

operating system is MS DOS.

� Interactive operating system — This operating system comes after the batch operating system,

where also only one program can run at one time. However, here, modifi cation and entry of data

are allowed while the program is running. An example of an interactive operating system is Multics

(Multiplexed Information and Computing Service).

� Multiuser operating system — A multiuser operating system allows more than one user to use

a computer system either at the same time or at different times. Examples of multiuser operating

systems include Linux and Windows 2000.

� Multi-tasking operating system — A multi-tasking operating system allows more than one

program to run at the same time. Examples of multi-tasking operating systems include Unix and

Windows 2000.

� Multithreading operating system — A multithreading operating system allows the running of

different parts of a program at the same time. Examples of multithreading operating system include

UNIX and Linux.

� Real-time operating systems — These operating systems are specially designed and developed for

handling real-time applications or embedded applications. Example include MTOS,Lynx,RTX

� Multiprocessor operating systems — The multiprocessor operating system allows the use of

multiple CPUs in a computer system for executing multiple processes at the same time. Example

include Linux, Unix, Windows 7.

� Embedded operating systems — The embedded operating system is installed on an embedded

computer system, which is primarily used for performing computational tasks in electronic devices.

Example include Palm OS, Windows CE

1.10.1 MS DOS Operating System

 MS DOS or Microsoft Disk Operating System, which is marketed by Microsoft Corporation and is one of

the most commonly used members of the DOS family of operating systems. MS DOS is a command line

 16 Computing Fundamentals & C Programming

user interface, which was fi rst introduced in 1981 for IBM computers. Although MS DOS, nowadays, is not

used as a stand-alone product, but it comes as an integrated product with the various versions of Windows.

In MS DOS, unlike Graphical User Interface (GUI)-based operating systems, there is a command line

interface, which is known as MS DOS prompt. Here, we need to type the various commands to perform

the operations in MS DOS operating system. The MS DOS commands can be broadly categorized into the

following three classes:

� Environment command — These commands usually provide information on or affects operating

system environment. Some of these commands are:

 ∑ CLS: It allows the user to clear the complete content of the screen leaving only the MS-DOS

prompt.

 ∑ TIME: It allows the user to view and edit the time of the computer.

 ∑ DATE: It allows the user to view the current date as well as change the date to an alternate date.

 ∑ VER: It allows us to view the version of the MS-DOS operating system.

� File manipulation command — These commands help in manipulating fi les, such as copying a fi le

or deleting a fi le. Some of these commands include:

 ∑ COPY: It allows the user to copy one or more fi les from one specifi ed location to an alternate

location.

 ∑ DEL: It helps in deleting a fi le from the computer.

 ∑ TYPE: It allows the user to view the contents of a fi le in the command prompt.

 ∑ DIR: It allows the user to view the fi les available in the current and/or parent directories.

� Utilities — These are special commands that perform various useful functions, such as formatting a

diskette or invoking the text editor in the command prompt. Some of these commands include:

 ∑ FORMAT: It allows the user to erase all the content from a computer diskette or a fi xed drive.

 ∑ EDIT: It allows the user to view a computer fi le in the command prompt, create and modify the

computer fi les.

1.10.2 MS Windows Operating System

Windows Architecture

The architecture of Windows operating system comprises a modular structure that is compatible with a

variety of hardware platforms. Figure 1.17 shows the architecture of Windows 2000; the later releases of

Windows operating systems are based on similar architecture.

At a high level, the architecture is divided into three layers, viz.

� User mode: Comprises application and I/O specifi c software components

� Kernel mode: Has complete access to system resources and hardware

� Hardware: Comprises underlying hardware platform

User Mode

The various subsystems in the user mode are divided into the following two categories:

� Environment subsystems: Comprise subsystems that run applications written for other operating

systems. These subsystems cannot directly request hardware access; instead such requests are

processed by virtual memory manager present in the kernel mode. The three main environment

subsystems include Win32, OS/2 and POSIX. Each of these subsystems possess dynamic link

libraries for converting user application calls to Windows calls.

� Integral subsystems: Takes care of the operating system specifi c functions on behalf of the

environment subsystems. The various integral subsystems include workstation service, server

service and security.

 Understanding Fundamentals of the Computer 17

Fig. 1.17 The architecture of Windows 2000

Kernel Mode

The kernel mode comprises various components with each component managing specifi c system function.

Each of the components is independent and can be removed, upgraded or replaced without rewriting the

entire system. The various kernel-mode components include:

� Executive: Comprises the core operating system services including memory management, process

management, security, I/O, inter process communication etc.

� Kernel: Comprises the core components that help in performing fundamental operating system

operations including thread scheduling, exception handling, interrupt handling, multiprocessor

synchronization, etc.

� HAL: Acts as a bridge between generic hardware communications and those specifi c to the

underlying hardware platform. It helps in presenting a consistent view of system bus, DMA,

interrupt controllers, timers, etc. to the kernel.

� I/O manager: Handles requests for accessing I/O devices by interacting with the relevant device

drivers.

� Security reference monitor: Performs access validation and audit checks for Windows objects

including fi les, processes, I/O devices, etc.

� Virtual Memory Manager: Performs virtual memory management by mapping virtual addresses to

actual physical pages in computer’s memory.

� Process Manager: Creates and deletes objects and threads throughout the life cycle of a process.

 18 Computing Fundamentals & C Programming

� PnP manager: Supports plug-and-play devices by determining the correct driver for a device and

further loading the driver.

� Power manager: Performs power management for the various devices. It also optimizes power

utilization by putting the devices to sleep that are not in use.

� GDI: Stands for Graphics Device Interface and is responsible for representing graphical objects in

Windows environment. It also transfers the graphical objects to the output devices such as printer

and monitor.

� Object manager: Manages Windows Executive objects and abstract data types that represent the

various resources such as processes, threads, etc.

1.10.3 Unix Operating System

 UNIX operating system was developed by a group of AT&T employees at Bell Labs in the year 1969. UNIX

is primarily designed to allow multiple users access the computer at the same time and share resources. The

UNIX operating system is written in C language. The signifi cant properties of UNIX include:

� Multi-user capability

� Multi-tasking capability

� Portability

� Flexibility

� Security

 Architecture of UNIX

UNIX has a hierarchical architecture consisting of several layers, where each layer provides a unique

function as well as maintains interaction with its lower layers. The layers of the UNIX operating system

are:

� Kernel

� Service

� Shell

� User applications

Figure 1.18 shows the various layers of the UNIX operating system.

� Kernel Kernel is the core of the UNIX operating system and it gets loaded into memory whenever

we switch on the computer. Three components of kernel are:

 ∑ Scheduler — It allows scheduling the processing of various jobs.

 ∑ Device driver — It helps in controlling the Input/Output devices attached to the computer.

 ∑ I/O buffer — It controls the I/O operations in the computer.

 Various functions performed by the kernel are:

 ∑ Initiating and executing different programs at the same time

 ∑ Allocating memory to various user and system processes

 ∑ Monitoring the fi les that reside on the disk

 ∑ Sending and receiving information to and from the network

� Service In the service layer, requests are received from the shell and they are then transformed

into commands to the kernel. The service layer, which is also known as the resident module layer,

is indistinguishable from the kernel and consists of a collection of programs providing various

services, which include:

 ∑ Providing access to various I/O devices, such as keyboard and monitor

 ∑ Providing access to storage devices, such as disk drives

 ∑ Controlling different fi le manipulation activities, such as reading from a fi le and writing to a fi le

 Understanding Fundamentals of the Computer 19

User Applications

Shell

Service Layer

Kernel

Hardware

(Scheduler, Device Driver, I/O Buffers)

(Library Routines)

(Process Management, Memory Management, I/O
services, and File System

Fig. 1.18 The layers of UNIX operating system

� Shell The third layer in the UNIX architecture is the shell, which acts as an interface between a

user and the computer for accepting the requests and executing programs. The shell is also known as

the command interpreter that helps in controlling the interaction with the UNIX operating system.

The primary function of the shell is to read the data and instructions from the terminal, and then

execute commands and fi nally display the output on the monitor. The shell is also termed as the

utility layer as it contains various library routines for executing routine tasks. The various shells that

are found in the UNIX operating system are:

∑ Bourne shell

∑ C shell

∑ Korn shell

∑ Restricted shell

� User applications The last layer in the UNIX architecture is the user applications, which are

used to perform several tasks and communicating with other users of UNIX. Some of the important

examples of user applications include text processing, software development, database management

and electronic communication.

1.11 MS WORD LO 1.6

MS Word is application software that can be used to create, edit, save and print personal as well as

professional documents in a very simple and effi cient manner. MS Word is an important tool of the MS

offi ce suite that is mainly designed for word processing. Other word processing applications available are,

Open Offi ce Writer and Google Docs.

 20 Computing Fundamentals & C Programming

1.11.1 Accessing MS Word

For working in MS Word, we need to install MS Offi ce in a computer system. After installing MS Offi ce,

we can start MS Word by using any of the following two ways:

� Start menu

� Run command

We can start MS Word by performing the following steps using the Start menu:

1. Select Start Æ All Programs Æ Microsoft Offi ce,

2. Select the Microsoft Offi ce Word 2007 option to display the Graphical User Interface (GUI) of MS

Word, as shown in Fig. 1.19.

Fig. 1.19 The Document1 – Microsoft Word window

Using Run command We can also start MS Word by performing the following steps using the Run

command:

1. Select Start Æ All Programs Æ Accessories Æ Run to display the Run dialog box.

2. Type winword in the Open text box and click OK to display the Document1 – Microsoft Word

window.

1.11.2 Basic Operations Performed in MS Word

The following are the key operations that we can perform in MS Word:

� Creating a document

� Saving a document

� Editing a document

� Formatting a document

� Printing a document

 Understanding Fundamentals of the Computer 21

1.12 MS EXCEL SYSTEM LO 1.6

MS Excel is an application program that allows us to create spreadsheets, which are represented in the form

of a table containing rows and columns. The horizontal sequence in which the data is stored is referred to as

a row. The vertical sequence in which the data is stored is referred to as a column. In a spreadsheet, a row

is identifi ed by a row header and a column is identifi ed by a column header. Each value in a spreadsheet is

stored in a cell, which is the intersection of rows and columns. A cell can contain either numeric value or a

character string. We can also specify the contents of a cell using formulas. In a spreadsheet, we can perform

various mathematical operations using formulas, such as addition, subtraction, multiplication, division,

average, percentage, etc.

MS Excel also allows us to represent the complex data pictorially in the form of graphs. These are

generally used to represent the information with the help of images, colours, etc., so that their presentation

is simple and more meaningful. Some of the graphs available in spreadsheet are bar graphs, line graphs,

3-D graphs, area graphs, etc.

1.12.1 Accessing MS Excel

For working with MS Excel, we fi rst need to install MS Offi ce in our computer system. After installing MS

Offi ce, we can start MS Excel using any of the following two ways:

� Start menu

� Run command

Using Start menu We can start MS Excel by performing the following steps using the Start menu:

1. Select Start Æ All Programs Æ Microsoft Offi ce, as shown in Fig. 1.20.

2. Select the Microsoft Offi ce Excel 2007 option to display the GUI of MS Excel,

Fig. 1.20 The Microsoft Excel—Book1 window

 22 Computing Fundamentals & C Programming

Figure 1.20 shows the initial workbook of MS Excel, which in turn contains worksheets. Each worksheet

contains rows and columns where we can enter data.

Using Run command We can also start MS Excel by performing the following steps using the Run

command:

1. Select Start Æ All Programs Æ Accessories Æ Run to display the Run dialog box.

2. Type excel in the Open text box and click OK to display the Microsoft Excel – Book1 window.

1.12.2 Basic Operations Performed in MS Excel

Worksheet is the actual working area consisting of rows and columns. The worksheets are also known as

the spreadsheets. A workbook in MS Excel is a combination of several worksheets. Each workbook of MS

Excel contains three worksheets by default. The key operations that are performed in MS Excel include:

� Creating a worksheet

� Saving a worksheet

� Modifying a worksheet

� Renaming a worksheet

� Deleting a worksheet

� Moving a worksheet

� Editing a worksheet

1.13 MS POWERPOINT SYSTEM LO 1.6

MS PowerPoint is a software application included in the MS Offi ce package that allows us to create

presentations. PowerPoint provides a GUI with the help of which we can create attractive presentations

quickly and easily. The presentation may include slides, handouts, notes, outlines, graphics and animations.

A slide in PowerPoint is a combination of images, text, graphics, charts, etc., that is used to convey some

meaning information. The presentations in MS PowerPoint are usually saved with the extension .ppt.

The interface of MS PowerPoint is similar to the other interfaces of MS Offi ce applications. PowerPoint

presentations are commonly used in business, schools, colleges, training programmes, etc.

1.13.1 Accessing MS PowerPoint

For working in MS PowerPoint, we need to fi rst install the MS Offi ce package in our computer system.

After installing MS Offi ce, we can start MS PowerPoint using any of the following two ways:

� Start menu

� Run command

Using Start menu We can start MS PowerPoint by performing the following steps using the Start menu:

1. Select Start Æ All Programs Æ Microsoft Offi ce,

2. Select the Microsoft Offi ce PowerPoint 2007 option to display the GUI of MS PowerPoint, as shown

in Fig. 1.21.

 Understanding Fundamentals of the Computer 23

Fig. 1.21 The Microsoft PowerPoint—[Presentation1] Window

Using Run command We can also start MS PowerPoint by performing the following steps using the

Run command:

1. Select Start Æ All Programs Æ Accessories Æ Run to display the Run dialog box.

2. Type powerpnt in the Open text box and click OK to display the Microsoft PowerPoint –

[Presentation1] window.

1.13.2 Basic Operations Performed on a Presentation

The following are the key operations that can be performed in MS PowerPoint:

� Creating a new presentation

� Designing the presentation

� Saving a new presentation

� Adding slides to the presentation

� Printing the presentation

1.14 NETWORKING CONCEPTS LO 1.7

Computer network is a system of interconnected computers that enable the computers to communicate

with each other and share their resources, data and applications. The physical location of each computer is

tailored to personal and organisational needs. A network may include only personal computers or a mix of

 24 Computing Fundamentals & C Programming

PCs, minis and mainframes spanning a particular geographical area. Computer networks that are commonly

used today may be classifi ed as follows:

� Based on geographical area:

 ∑ Local Area Networks (LANs)

 ∑ Wide Area Networks (WANs)

 ∑ Metropolitan Area Networks (MANs)

 ∑ International Network (Internet)

 ∑ Intranet

� Based on how computer nodes are used:

 ∑ Client Server Networks (CSNs)

 ∑ Peer-to-peer Networks (PPNs)

 ∑ Value-added Networks (VANs)

1.14.1 Local Area Network (LAN)

LAN is a group of computers, as shown in Fig. 1.22, that are connected in a small area such as building,

home, etc. Through this type of network, users can easily communicate with each other by sending and

receiving messages. LAN is generally used for connecting two or more personal computers through some

medium such as twisted pair, coaxial cable, etc. Though the number of computers connected in a LAN is

limited, the data is transferred at an extremely faster rate.

Fig. 1.22 A LAN

1.14.2 Wide Area Network (WAN)

WAN is a group of computers that are connected in a large area such as continent, country, etc. WAN

is generally used for connecting two or more LANs through some medium such as leased telephone

lines, microwaves, etc. In WAN, data is transferred at slow rate. A typical WAN network is shown in Fig. 1.23.

 Understanding Fundamentals of the Computer 25

Fig. 1.23 A WAN system

1.14.3 Metropolitan Area Network (MAN)

MAN is a network of computers that covers a large area like a city. The size of the MAN generally lies

between that of LAN and WAN, typically covering a distance of 5 km to 50 km. The geographical area

covered by MAN is comparatively larger than LAN but smaller than WAN. MAN is generally owned by

private organisations. MAN is generally connected with the help of optical fi bres, copper wires etc. One

of the most common example of MAN is cable television network within a city as shown in Fig. 1.24. A

network device known as router is used to connect the LANs together. The router directs the information

packets to the desired destination.

Fig. 1.24 A typical MAN system

 26 Computing Fundamentals & C Programming

1.15 NETWORK TOPOLOGIES LO 1.7

Network topology refers to the arrangement of computers connected in a network through some physical

medium such as cable, optical fi bre etc. Topology generally determines the shape of the network and the

communication path between the various computers (nodes) of the network. The various types of network

topologies are as follows:

� Hierarchical topology

� Bus topology

� Star topology

� Ring topology

� Mesh topology

� Hybrid topology

1.15.1 Hierarchical Topology

The hierarchical topology is also known as tree topology, which is divided into different levels connected

with the help of twisted pair, coaxial cable or fi bre optics. Figure 1.25 shows the arrangement of computers

in hierarchical topology.

Fig. 1.25 The hierarchical topology

Advantages of hierarchical topology are:

� The hierarchical topology is generally supported by most hardware and software.

� In the hierarchical topology, data is received by all the nodes effi ciently because of point-to-point

link.

The following are the disadvantages of hierarchical topology:

� In the hierarchical topology, when the root node fails, the whole network crashes.

� The hierarchical topology is diffi cult to confi gure.

 Understanding Fundamentals of the Computer 27

1.15.2 Linear Bus Topology

In the linear bus topology, all the nodes are connected to the

single backbone or bus with some medium such as twisted

pair, coaxial cable, etc. Figure 1.26 shows the arrangement of

computers in the linear bus topology.

Advantages of linear bus topology are:

� The linear bus topology usually requires less cabling.

� The linear bus topology is relatively simple to confi gure

and install.

� In the linear bus topology, the failure of one computer

does not affect the other computers in the network.

The following are the disadvantages of linear bus topology:

� In the linear bus topology, the failure of the backbone

cable results in the breakdown of entire network.

� Addition of computers in the linear bus topology results

in the performance degradation of the network.

� The bus topology is diffi cult to reconstruct in case of

faults.

1.15.3 Star Topology

In the star topology, all the nodes are connected to a

common device known as hub. Nodes are connected with

the help of twisted pair, coaxial cable or optical fi bre.

Figure 1.27 shows the arrangement of computers in star

topology.

Advantages of star topology are:

� This topology allows easy error detection and

correction.

� In the star topology, the failure of one computer

does not affect the other computers in the network.

� Star topology is easy to install.

The following are the disadvantages of star topology:

� In the star topology, the hub failure leads to the

overall network crash.

� The star topology requires more amount of cable

for connecting the nodes.

� It is expensive due to the cast of hub.

1.15.4 Ring Topology

In the ring topology, the nodes are connected in the form of a ring with the help of twisted pair. Each

node is connected directly to the other two nodes in the network. Figure 1.28 shows the arrangement of

computers in the ring topology.

Fig. 1.26 A linear bus topology

Fig. 1.27 A star topology

 28 Computing Fundamentals & C Programming

Fig. 1.28 A ring topology

Advantages of ring topology are:

� Each node has an equal access to other nodes in the network.

� Addition of new nodes does not degrade the performance of the network.

� Ring topology is easy to confi gure and install.

The following are the disadvantages of ring topology:

� It is relatively expensive to construct the ring topology.

� The failure of one node in the ring topology affects the other nodes in the ring.

1.15.5 Mesh Topology

In mesh topology, each computer is connected

to every other computer in point-to-point mode

as shown in Fig. 1.29. If we have n computers,

we must have n(n – 1)/2 links.

Advantages of mesh topology are:

� Message delivery is more reliable.

� Network congestion is minimum due to

large number of links.

The following are the disadvantages:

� It is very expensive to implement.

� It is very diffi cult to confi gure and

install.

1.15.6 Hybrid Topology

The hybrid topology is the combination of

multiple topologies, used for constructing a

single large topology. Figure 1.30 shows a typical arrangement of computers in hybrid topology.

Fig. 1.29 Mesh topology

 Understanding Fundamentals of the Computer 29

Fig. 1.30 A hybrid topology

Advantages of hybrid topology are:

� The hybrid topology is more effective as it uses multiple topologies.

� The hybrid topology contains the best and effi cient features of the combined topologies from which

it is constructed.

The following are the disadvantages of hybrid topology:

� The hybrid topology is relatively more complex than the other topologies.

� The hybrid topology is diffi cult to install and confi gure.

1.16 NETWORK PROTOCOLS AND SOFTWARE LO 1.7

In order to share data between computers, it is essential to have appropriate network protocols and software.

With the help of network protocol, computers can easily communicate with each other and can share data,

resources, etc.

1.16.1 Network Protocol

Network protocols are the set of rules and regulations that are generally used for communication between

two networks. Using network protocol, the following tasks can be performed:

� Identifi cation of the type of the physical connection used

� Error detection and correction of the improper message

� Initiation and termination of the communication session

� Message formatting

 30 Computing Fundamentals & C Programming

Some of the commonly used network protocols are Hyper Text Transfer protocol (HTTP), Simple Mail

Transfer Protocol (SMTP), File Transfer Protocol (FTP), Transmission Control Protocol/ Internet Protocol

(TCP/IP), Telecommunications Network (Telnet), Domain Name System (DNS) etc.

HTTP

 Hyper Text Transfer Protocol (HTTP) is the communication protocol used by the World Wide Web. It acts

as a request-response protocol where the client browser and the Web server interact with each other through

HTTP protocol rules. These rules defi ne how messages are formatted and transmitted and what actions

should the browser and Web server take in response to these messages. For example, when we type a URL

in the address bar of a browser, then an HTTP request is sent to the Web server to fetch the requested

Web page. The Web page details are transmitted to the client browser and rendered on the browser window

through HTML.

In a typical situation, the client browser submits an HTTP request to the server and the server processes

the request and returns an HTTP response to the client. The response contains status information pertaining

to the request as well as the requested content (Figs 1.31–1.32).

 Fig. 1.31 HTTP Request Message format Fig. 1.32 HTTP Response Message format

HTTP protocol supports various methods that are used by the client browsers to send request messages

to the server. Some of the common HTTP methods are:

� GET: Gets information from the specifi ed resource

� HEAD: Gets only the HTTP headers

� POST: Posts information to the specifi ed resource

� DELETE: Deletes the specifi ed resource

� OPTIONS: Returns the list of HTTP methods that are supported by the Web server

� TRACE: Returns a diagnostic trace of the actions taken at the server end

The fi rst line in an HTTP response object comprises a status line, which carries the response status code

indicating the outcome of the HTTP request processed by the server. The status code is a 3-digit number

and carries specifi c meaning, as described below:

� 1xx: Comprises information status messages indicating that the server is still processing the request

� 2xx: Comprises success status messages indicating that the request was received, accepted and

processed by the server

� 3xx: Comprises redirection status messages indicating that further action needs to be taken in order

to process the request

� 4xx: Comprises error status messages indicating error at client side, for example incorrect request

syntax

� 5xx: Comprises error status messages indicating error at server side, for example inability of the

server to process the request

 Understanding Fundamentals of the Computer 31

SMTP

Simple Mail Transfer Protocol (SMTP) is an e-mail protocol that is widely used for sending e-mail

messages between mail servers. While SMTP supports capabilities for both sending and receiving e-mail

messages, e-mail systems primarily used SMTP protocol for sending e-mail messages. For receiving, they

use other protocols such as POP3 of IMAP. In Unix-based systems, sendmail is the most widely used SMTP

server for e-mail. In Windows-based systems, Microsoft Exchange comes with an SMTP server and can be

confi gured to include POP3 support.

FTP

File Transfer Protocol (FTP) is a standard protocol used for sharing fi les over the Internet. FTP is based

on the client-server architecture and uses Internet’s TCP/IP protocol for fi le transfer. The users need to

authenticate themselves by specifying user name/password in order to establish a connection with the

FTP server. However, some FTP sites also support anonymous login where users are not required to enter

their credentials. To facilitate secure transfer of user’s credentials and fi le contents over the Internet, FTP

encrypts the content using cryptographic protocols such as TLS/SSL.

The following steps illustrate how fi le transfer happens through FTP:

1. The client machine uses Internet to connect to the FTP server’s IP address.

2. User authentication happens by entering relevant user name and password.

3. Once the connection is established, the client machine sends FTP commands to access and transfer

fi les. Now-a-days, various GUI-based FTP software are available that enable transfer of fi les through

simple operations, such as drag and drop.

Telnet

Telnet is a protocol that allows users to connect to remote computers over a TCP/IP network, such as

intranet or internet. While HTTP and FTP protocols are used for transferring Web pages and fi les over the

Internet, the Telnet protocol is used for logging onto a remote computer and performing operations just as a

normal user. The users need to enter their credentials before logging on the remote host machine.

Command-line based telnet access is available in major operating systems such as Windows, Mac OS,

Unix and Linux. Generic format of the telnet command is given below:

Telnet host port

Here,

� telnet: Is the command that establishes telnet connection

� host: Is the address of the host machine

� port: Is the port number on which telnet services are available on the host machine

 Learning Outcomes

∑ There are fi ve generations of computer development which have seen tremendous shift in technology,

size, and speed.

∑ On the basis of the size and capability, computers are categorized into microcomputers, mini

computers, super computers and mainframe computers.

∑ Input devices help in inputting the data from any outside source into the computer system and output

devices are used to pass on the processed data to the end users.

∑ Computer systems use two types of memory, namely primary memory and secondary memory.

LO 1.1

LO 1.2

LO 1.3

LO 1.3

 32 Computing Fundamentals & C Programming

∑ System software is responsible for managing and controlling the hardware resources of a computer

system. Application software is specially designed to cater the information processing needs of end

users.

∑ Operating system is system software installed on a computer system that performs several key tasks,

such as process management, memory management, device management, fi le management, etc.

∑ MS Word is used for creating professional as well as personal documents, MS Excel is a spreadsheet

application program and MS PowerPoint is application software for creating presentations.

∑ A cluster of computers connected together in order to share resources is termed as a computer

network. The computers connected in a network generally communicate with the help of network

protocols.

 Key Terms to Remember

∑ Transistor: A semiconductor device that is used to increase the power of the incoming signals by

preserving the shape of the original signal.

∑ Microprocessor: An integrated circuit that contains the entire central processing unit of a computer

on a single chip.

∑ Vacuum Tube: An electron tube from which all or most of the gas has been removed, permitting

electrons to move with low interaction with any remaining gas molecules.

∑ LSI: Large Scale Integration.

∑ VLSI: Very large-scale integration (VLSI) refers to an IC or technology with many devices on one

chip.

∑ ICs: The circuits that combine various electronic components, such as transistors, resistors,

capacitors, etc. onto a single small silicon chip.

∑ Microcomputer: A small digital computer that is designed to be used by individuals.

∑ Super computer: The fastest type of computer that can perform complex operations at a very high

speed.

∑ Mainframe computer: A very large computer that is employed by large business organisations for

handling major applications, such as fi nancial transaction processing applications and ERP.

∑ Input device: It is an electromechanical device that is generally used for entering information into a

computer system.

∑ Keyboard: It is a computer input device consisting of keys or buttons arranged in the similar fashion

as they are arranged in a typewriter.

∑ Mouse: It is a pointing device that basically controls the two-dimensional movement of the cursor on

the displayed screen.

∑ Scanning devices: These are the input devices that electronically capture text and images and convert

them into computer readable form.

∑ Monitor: Monitor is the most commonly used output device, which displays the soft copy output of

text and graphics to the users.

∑ Printers: Printers are the output devices that are used to produce a hard copy output of the text or the

documents stored in a computer.

∑ Speakers: Speakers are the output devices used to generate output in an audio format from the

computer.

LO 1.4

LO 1.5

LO 1.6

LO 1.7

LO 1.1

LO 1.1

LO 1.1

LO 1.1

LO 1.1

LO 1.1

LO 1.2

LO 1.2

LO 1.2

LO 1.3

LO 1.3

LO 1.3

LO 1.3

LO 1.3

LO 1.3

LO 1.3

 Understanding Fundamentals of the Computer 33

∑ Projectors: Projectors are the output devices that are used to project big picture of the data stored on

some storage device such as CD and DVD on a white screen.

∑ Primary memory: It refers to the storage locations that are used to hold the programs and data

temporarily in a computer system. The primary memory is usually known as memory.

∑ Secondary memory: It refers to the storage locations that are used to hold the data and programs

permanently. The secondary memory of a computer system is popularly known as storage.

∑ Application software: The programs, which are designed to perform a specifi c task for the user.

∑ System software: The programs, which are designed to control the different operations of the

computer system.

∑ Operating system: Operating system is a set of various small system software, which control the

execution of various sub processes in a computer system.

∑ MS-DOS: It is an operating system that makes use of Command Line Interface (CLI) for interacting

with the users.

∑ Command: It can be defi ned as an instruction provided by a user in order to perform some specifi c

task on the computer system.

∑ MS Word: It is an application software bundled in MS Offi ce package that allows us to create edit,

save and print personal as well as professional documents in a very simple and effi cient manner.

∑ MS Excel: MS Excel is a spreadsheet application program that enables the users to create the

spreadsheets.

∑ MS PowerPoint: MS PowerPoint is an application software included in the MS Offi ce package that

allows us to create presentations.

∑ Data communication: It is the process of transmission of data from the source computer to the

destination computer.

∑ Network topology: The network topology is the physical arrangement of the computers connected

with each other in a network such as ring, star, bus, hierarchical and hybrid.

∑ Network protocol: The network protocol is the standard according to which different computers

over the network communicate with each other.

 Review Questions

Fill in the Blanks

 1. A ___________ is an electronic machine that takes input from the user and stores and

processes the given input to generate the output in the form of useful information to the

user.

 2. The raw details that need to be processed to generate some useful information is known as

___________.

 3. The set of instructions that can be executed by the computer is known as ___________.

 4. ___________ is the processor of the computer that is responsible for controlling and

executing the various instructions.

LO 1.3

LO 1.3

LO 1.3

LO 1.4

LO 1.4

LO 1.5

LO 1.5

LO 1.5

LO 1.6

LO 1.6

LO 1.6

LO 1.7

LO 1.7

LO 1.7

LO 1.1

LO 1.1

LO 1.1

LO 1.1

Levels of Diffi culty

 : Low; : Medium; : High

 34 Computing Fundamentals & C Programming

 5. ___________ is a screen, which displays the information in visual form, after receiving the

video signals from the computer.

 6. ___________ computers were also known as vacuum tubes or thermionic valves based

machines.

 7. A ___________ is a semiconductor device that is used to increase the power of the

incoming signals by preserving the shape of the original signal.

 8. ___________ is a low-level language that allows the programmer to use simple English

words, called mnemonics, to represent different instructions in a program.

 9. The main characteristic feature of third generation computers was the use of ___________.

 10. The invention of ___________ and ___________ technology led to the development of the

fourth generation computers.

 11. The fi fth generation computers are based on the ___________ technology that allows

almost ten million electronic components to be fabricated on one small chip.

 12. ___________, also known as digital information processing system, is a type of computer

that stores and processes data in digital form.

 13. A ___________ is the fastest type of computer that can perform complex operations at a

very high speed.

 14. The term ___________ refers to the programs and instructions that help the computer in

carrying out their processing.

 15. The programs, which are designed to perform a specifi c task for the user, are known as

___________.

 16. The programs, which are designed to control the different operations of the computer, are

known as ___________.

 17. An input device generally acts as an interface between ___________ and __________.

 18. The arrow keys used for controlling the movement of ___________ are known as

___________keys.

 19. Keyboards are also classifi ed as ___________ and ___________ keyboards, based on

additional keys present on them.

 20. ____________ devices are used for changing the position of the cursor on the screen.

 21. A mechanical mouse basically consists of _____________, ___________ and __________

buttons.

 22. An optical mouse consists of ________________, ___________________ and

___________ for moving the position of the pointer on the screen.

 23. Hand-held scanners are also called ______________.

 24. The methods used for recognising the voice of the users are ___________ and

_____________.

 25. Computer software is classifi ed into two categories, namely, ______________ and

______________.

LO 1.1

LO 1.1

LO 1.1

LO 1.1

LO 1.1

LO 1.1

LO 1.1

LO 1.2

LO 1.2

LO 1.2

LO 1.4

LO 1.4

LO 1.3

LO 1.3

LO 1.3

LO 1.3

LO 1.3

LO 1.3

LO 1.3

LO 1.3

LO 1.4

 Understanding Fundamentals of the Computer 35

 26. System software consists of two groups of programs: ______________ and

______________.

 27. ______________ is responsible for managing the allocation of devices and resources to the

various processes.

 28. Application software includes two types programs: ______________ and

______________.

 29. ____________ is a system software that allows the users to interact with the hardware and

other resources of a computer system.

 30. In ___________ operating system, jobs are grouped into groups called batches and assigned

to the computer system with the help of a card reader.

 31. In ____________ operating system, multiple users can make use of computer system’s

resources simultaneously.

 32. UI facilitates communication between a _________ and its ______ by acting as an

intermediary between them.

 33. ___________ is the central part of the UNIX operating system that manages and controls

the communication between the various hardware and software components.

 34. MS-DOS is an operating system that makes use of ___________ interface.

 35. _________ commands are stored in the command interpreter of MS-DOS.

 36. RD, TYPE and DEL are __________ commands.

 37. _________ and _________ are external commands.

 38. _____________ is an application software included in MS Offi ce for working with

documents.

 39. MS Word can be accessed either using ___________ or _____________.

 40. MS Word uses a ___________ interface to interact with the users.

 41. The horizontal bar at the top of the MS Word window is called ___________.

 42. The blinking bar in MS Word that indicates the position of the next key stroke or the

character to be inserted is called ___________.

 43. _________________ is a spreadsheet application program that is widely used in business

applications.

 44. The horizontal sequence of data stored in a spreadsheet is known as ______________.

 45. The vertical sequence of data stored in a spreadsheet is known as _______________.

 46. _____________ is an application software included in MS Offi ce package for creating

presentations.

 47. The presentations in the MS PowerPoint are usually saved with the ___________

extension.

 48. When computers are connected together in order to share resources, they are said to be in a

__________.

 49. ____________ is used for connecting the computers within a few kilometres of area.

LO 1.4

LO 1.4

LO 1.4

LO 1.5

LO 1.5

LO 1.5

LO 1.5

LO 1.5

LO 1.5

LO 1.5

LO 1.5

LO 1.5

LO 1.6

LO 1.6

LO 1.6

LO 1.6

LO 1.6

LO 1.6

LO 1.6

LO 1.6

LO 1.6

LO 1.6

LO 1.7

LO 1.7

 36 Computing Fundamentals & C Programming

 50. ____________ is used for connecting the computers in a large geographical area.

 51. The size of the MAN generally lies between that of LAN and WAN, typically covering a

distance of ____________ to _______________.

 52. Hierarchical topology is also known as _______________.

 53. ____________ is the common point where all the nodes of the network are connected in

the bus topology.

 54. ____________ is used for connecting the nodes in the star topology.

 55. The combination of multiple topologies connected in a network is known as

______________.

 56. ______________ is the set of rules and regulations based on which computers in a network

communicate.

 57. _____________ is one of the tasks that can be performed using network protocol.

 58. _____________ is used for transferring fi les from one computer to another over the

network.

Multiple Choice Questions

 1. Which component of the computer is known as the brain of computer?

A. Monitor B. CPU

C. Memory D. None of the above

 2. Which of the following is an input device?

A. Printer B. Monitor

C. Mouse D. None of the above

 3. Which of the following is a characteristic of the modern digital computer?

A. High speed B. Large storage capacity

 C. Greater accuracy D. All of the above

 4. Who is known as the father of modern digital computers?

 A. Gottfried Wilhem Von Leibriz B. Charles Babbage

 C. Alan Mathison D. John Mauchly

 5. What are the different number of computer generations?

 A. Four B. Five

 C. Six D. Seven

 6. Which technology was used in the fi rst generation computers?

 A. Transistors B. Vacuum tubes

 C. ICs D. None of the above

 7. Which technology was used in the second generation computers?

 A. Transistors B. Vacuum tubes

 C. Microprocessors D. ICs

 8. Which technology was used in the third generation computers?

 A. Transistors B. Vacuum tubes

 C. ICs D. All of the above

LO 1.7

LO 1.7

LO 1.7

LO 1.7

LO 1.7

LO 1.7

LO 1.7

LO 1.7

LO 1.7

LO 1.1

LO 1.1

LO 1.1

LO 1.1

LO 1.1

LO 1.1

LO 1.1

LO 1.1

 Understanding Fundamentals of the Computer 37

 9. Which technology was used in the fourth generation computers?

 A. Microprocessors B. Vacuum tubes

 C. ICs D. Transistors

 10. Which semiconductor device is used to increase the power of the incoming signals by

preserving the shape of the original signal?

 A. Sand table B. Transistor

 C. Vacuum tubes D. None of the above

 11. In which generation of computers, assembly language was introduced?

 A. First B. Second

 C. Third D. Fourth

 12. Which generation uses the ULSI technology?

 A. Second B. Third

 C. Fourth D. Fifth

 13. On what basis computers can be classifi ed?

 A. Operating principles B. Applications

 C. Size and capability D. All of the above

 14. What is the main function of an input device in a computer?

 A. Receiving data from a computer B. Providing data to a computer

 C. Storing data for processing D. Processing the data

 15. Which of the following devices is not an input device?

 A. Scanner B. Keyboard

 C. Disk D. Joystick

 16. Which one of the following is a modifi er key?

 A. Tab B. ALT

 C. Insert D. Pause

 17. Which of the following belongs to the category of special purpose keys?

 A. Tab B. SHIFT

 C. ALT D. CTRL

 18. Which of the following statements is not true for a mouse?

 A. It controls the two-dimensional movement of the cursor on the displayed screen.

 B. It is usually of two different types: mechanical mouse and optical mouse.

 C. It can be used as an alternate to keyboard for all purposes.

 D. It is an input device.

 19. What is the other name of a hand-held scanner?

 A. Drum scanner B. Slide scanner

 C. Half page scanner D. Full page scanner

 20. Which of the following devices is not an optical recognition device?

 A. MICR B. OMR

 C. OCR D. Microphone

 21. What does MICR stand for?

 A. Magnetic Ink Character Recognition B. Magnetic Input Column Reader

 C. Magnetic Ink Column Recognition D. Magnetic Ink Character Reader

LO 1.1

LO 1.1

LO 1.1

LO 1.1

LO 1.1

LO 1.3

LO 1.3

LO 1.3

LO 1.3

LO 1.3

LO 1.3

LO 1.3

LO 1.3

 38 Computing Fundamentals & C Programming

 22. Which of the following devices are used for recognising the characters in the supermarkets?

 A. OCR device B. OMR device

 C. MICR device D. Bar code reader

 23. Which of the following is not an output device?

 A. Scanner B. Plotter

 C. Printer D. Speaker

 24. Which of the following monitors are commonly used with desktop computers?

 A. CBT monitors B. CRT monitors

 C. CPT monitors D. None of the above

 25. Which of the following are the properties of a printer?

 A. Resolution B. Speed

 C. Pages per minute D. All of the above

 26. Which of the following is a hard copy output device?

 A. Printer B. Speaker

 C. Display monitor D. Projector

 27. Which of the following is an impact printer?

 A. Dot matrix printer B. Ink-jet printer

 C. Laser printer D. All of the above

 28. Which of the following is a non-impact printer?

 A. Daisy wheel printer B. Dot matrix printer

 C. Laser printer D. All of the above

 29. Which of the following is one of the components of a CRT?

 A. Toner B. Liquid crystals

 C. Electromagnetic coils D. None of the above

 30. Which of the following are the components of a projector?

 A. Optic system B. Displays

 C. Electron beam D. Both A and B

 31. Which of the following are portable projectors?

 A. Conference room projectors B. Fixed installation projectors

 C. Ultralight projectors D. All of the above

 32. Which of the following devices are included in a terminal?

 A. Monitor and printer B. Printer and keyboard

 C. Keyboard and monitor D. All of the above

 33. Which of the following is a type of terminal?

 A. Intelligent terminal B. Dumb terminal

 C. Both A and B D. All of the above

 34. Which of the following can be considered as both an input and an output device?

 A. Printer B. Projector

 C. Terminal D. Plotter

 35. Which of the following display device uses an electron given as one of the components for

generating the output?

 A. CRT monitor B. TFT monitor

 C. LCD monitor D. None of the above

LO 1.3

LO 1.3

LO 1.3

LO 1.3

LO 1.3

LO 1.3

LO 1.3

LO 1.3

LO 1.3

LO 1.3

LO 1.3

LO 1.3

LO 1.3

LO 1.3

 Understanding Fundamentals of the Computer 39

 36. Which of the following is not a system software?

 A. Linkers B. Device drivers

 C. Operating system D. Word processor

 37. Which of the following software helps the users to detect the errors while executing a

program?

 A. Language Translator B. Debugger

 C. Loader D. Linker

 38. A software, which links different elements of an object code with the library fi les, is known

as:

 A. Editor B. Linker

 C. Loader D. Debugger

 39. Which of the following options is not a utility system?

 A. Virus scanner B. System profi ler

 C. Disk defragmenter D. Debugger

 40. Which of the following is a system tool provided by Windows operating system for making

necessary changes in the registry?

 A. System profi ler B. Disk Defragmenter

 C. Registry Editor D. Registry Manager

 41. Which of the following is not an example of unique application program?

 A. Inventory Management System B. Pay-roll system

 C. Income tax calculator D. Database Management System

 42. Which of the following activities are performed by a user while solving a problem using a

computer?

 A. Identifying parameters and constraints B. Identifying logical structure

 C. Debugging the program D. All of the above

 43. Which of the following program is essential for the functioning of a computer system?

 A. MS Word B. Operating system

 C. MS Excel D. System software

 44. Which of the following operating systems makes use of CLI?

 A. MS-DOS B. Windows 2000

 C. Windows Server 2003 D. None of the above

 45. Which of the following operating systems makes use of GUI?

 A. Windows 2000 B. Windows Server 2003

 C. Windows Vista D. All of the above

 46. Which of the following operating systems makes use of both command line interface and

GUI?

 A. Windows 2000 B. Linux

 C. Windows Vista D. None of the above

 47. Which one of the following types of the operating systems allows multiple users to work

simultaneously?

 A. Multi-tasking operating system B. Multi-user operating system

 C. Multiprocessor operating system D. None of the above

LO 1.4

LO 1.4

LO 1.4

LO 1.4

LO 1.4

LO 1.4

LO 1.4

LO 1.5

LO 1.5

LO 1.5

LO 1.5

LO 1.5

 40 Computing Fundamentals & C Programming

 48. Which of the following type of UI allows a user to enter commands at command line?

 A. GUI B. CLI

 C. Both GUI and CLI D. Neither GUI nor CLI

 49. Which of the following is a part of MS-DOS?

 A. DOS.SYS B. CONFIGURATION.SYS

 C. EXEC.BAT D. COMMAND.COM

 50. Which of the following is the core component of UNIX?

 A. Command shell B. Kernel

 C. Directories and programs D. None of the above

 51. Which of the following is a feature of MS-DOS operating system?

 A. 16-bit B. Single-user

 C. Single tasking D. All of the above

 52. Which of the following commands are used in MS-DOS operating system?

 A. Internal commands B. External commands

 C. Batch commands D. All of the above

 53. Which of the following commands is used for viewing the contents of a fi le in MS-DOS

operating system?

 A. DIR B. TYPE

 C. MD D. CD

 54. Which of the following commands is used to print a message on the command prompt?

 A. %DIGIT B. %VARIABLE%

 C. ECHO D. REM

 55. Which of the following makes use of CLI?

 A. MS Excel B. MS PowerPoint

 C. MS-DOS D. MS Access

 56. Which one of the following is typed in the Run dialog box to access MS Word?

 A. winword B. word

 C. msword D. wordprogram

 57. Which of the following is a word processing program?

 A. MS Excel B. MS-DOS

 C. MS Word D. MS PowerPoint

 58. Which of the following is a spreadsheet application program?

 A. MS Access B. MS Word

 C. MS Excel D. MS-DOS

 59. MS Word is basically used for _______.

 A. Analysing the data B. Preparing the various documents

 C. Preparing the slides D. None of the above

 60. What text should be typed in the Run dialog box for accessing MS Excel?

 A. msexcel B. excel

 C. xcel D. msspreadsheet

 61. What text should be typed in the Run dialog box for accessing MS PowerPoint?

 A. powerpoint B. powerpnt

 C. mspowerpnt D. ppt

LO 1.5

LO 1.5

LO 1.5

LO 1.6

LO 1.6

LO 1.6

LO 1.6

LO 1.6

LO 1.6

LO 1.6

LO 1.6

s
LO 1.6

LO 1.6

LO 1.6

 Understanding Fundamentals of the Computer 41

 62. What is the name of the task pane used for designing slides in MS PowerPoint?

 A. Slide Design B. Slide Layout

 C. Design Slide D. None of the above

 63. What is the intersection of row and column called in MS Excel?

 A. Cell B. Worksheet

 C. Workbook D. None of the above

 64. What is correct expansion of MS DOS?

 A. Microsoft Data Operating system B. Microsoft Disk Operating system

 C. Microsoft Digital Operating system D. None of the above

 65. What is the combination of worksheets in MS Excel called?

 A. Workbook B. Spread sheet

 C. Excel sheet D. None of the above

 66. Which one of the following uses light pulses for carrying information?

 A. Satellite B. Microwave

 C. Optical fi bre D. Coaxial cable

 67. Which of the following network is used for connecting the computers in a small

geographical area?

 A. MAN B. WAN

 C. LAN D. Internet

 68. What is the full form of TCP?

 A. Transfer Control Protocol B. Transmission Control Protocol

 C. Transmit Control Protocol D. Transfer Communication Protocol

 69. Which one of the following Internet services provides one to one communication?

 A. Online chat B. Online messaging

 C. E-mail D. Usenet

 70. A network that is restricted to use by a single organisation is referred to as:

 A. LAN B. WAN

 C. Internet D. Intranet

 71. Which type network cannot work under heavy load?

 A. MAN B. LAN

 C. PPN D. VAN

 72. Which topology is arranged in the form of a tree structure?

 A. Hybrid topology B. Bus topology

 C. Star topology D. Hierarchical topology

 73. Which one of the following topologies is not easy to reconstruct when a fault occurs?

 A. Star topology B. Bus topology

 C. Ring topology D. Hybrid topology

 74. Which one of the following topologies allow easy error detection and correction?

 A. Linear bus topology B. Hybrid topology

 C. Ring topology D. Star topology

 75. Which device is used for connecting the computers in a star topology?

 A. Router B. Bridge

 C. Hub D. Repeater

LO 1.6

LO 1.6

m
LO 1.6

LO 1.6

LO 1.7

LO 1.7

LO 1.7

LO 1.7

LO 1.7

LO 1.7

LO 1.7

LO 1.7

LO 1.7

LO 1.7

 42 Computing Fundamentals & C Programming

 76. Which topology is the combination of multiple topologies?

 A. Star topology B. Bus topology

 C. Hybrid topology D. Mesh topology

 77. In which topology data is transferred in a circular pattern?

 A. Star topology B. Ring topology

 C. Bus topology D. Hybrid topology

 78. Which of the following topologies is the most complex but effi cient?

 A. Star topology B. Bus topology

 C. Ring topology D. Hybrid topology

 79. What is the technique used for routing the packets to the destination according to their

addresses?

 A. Circuit switching B. Packet switching

 C. Routing D. None of the above

 80. Which one of the following is not a network protocol?

 A. FTP B. HTTP

 C. SMTP D. NMP

 81. A set of rules that are used for communication between two networks is referred to as:

 A. Network software B. Network media

 C. Network protocol D. Network operating system

Discussion Questions

 1. What are the different components of a computer? Explain, each of them.

 2. Discuss briefl y the various generations of a computer.

 3. Describe the various types of computers on the basis of size and capability.

 4. Draw the block diagram of a microcomputer.

 5. What is meant by an input device? What is the importance of an input device in a computer

system?

 6. List different categories of input devices.

 7. Explain all the categories of keys found on a typical keyboard with the help of a diagram.

 8. Explain the basic functioning of mechanical and optical mouses with the help of sketches.

 9. What are scanning devices? Explain the basic characteristics of these devices.

 10. What does voice recognition system mean?

 11. Explain the different methods used for identifying the voice of the user in the voice

recognition system.

 12. What is an output device? Why is it a vital part of computer hardware?

 13. Name some of the output devices, which are commonly used with the computer system.

 14. Defi ne a display monitor.

 15. Name the different types of monitors available in the market.

LO 1.7

LO 1.7

LO 1.7

LO 1.7

LO 1.7

LO 1.7

LO 1.1

LO 1.1

LO 1.2

LO 1.2LO 1.2

LO 1.3

LO 1.3

LO 1.3LO 1.3

LO 1.3

LO 1.3

LO 1.3

LO 1.3

LO 1.3

LO 1.3

LO 1.3

LO 1.3

 Understanding Fundamentals of the Computer 43

 16. Explain the use of a printer in a computer system.

 17. What are the advantages and disadvantages of a CRT monitor?

 18. Which is a better monitor—a CRT or a TFT? State the reasons as well.

 19. What is a voice response system? List the different types of voice response systems that are

used today.

 20. What is a projector? Why is it needed?

 21. Explain the different types of computer software.

 22. What do you understand by the term system software?

 23. Explain the major functions of an operating system.

 24. Explain the application of system development programs.

 25. What does utility program mean?

 26. What is an operating system? Explain briefl y with the help of examples.

 27. Briefl y explain the various functions of an operating system.

 28. Explain the core components of UNIX operating system.

 29. Briefl y explain why Windows operating system is one of the most popular operating

systems.

 30. Explain the features of MS-DOS operating system.

 31. Differentiate between internal and external commands of MS-DOS.

 32. What do you mean by command interpreter?

 33. Write a short note on the following commands:

 A. DIR B. COPY

 C. MD D. TREE

 E. COMP.

 34. What is the basic use of MS Word? Explain with the help of an example.

 35. What are the different methods of accessing MS Word?

 36. What are the basic operations performed on a word document? Explain all of them in

detail.

 37. What do you mean by MS-Excel? Explain the different ways of starting MS-Excel from

our computer system?

 38. What are the different operations possible on a worksheet in MS-Excel?

 39. What are the different methods of accessing MS PowerPoint?

 40. What is the difference between creating and designing a new presentation in MS

PowerPoint?

 41. How can a new slide be added to a presentation in MS PowerPoint?

 42. What is a computer network?

LO 1.3

LO 1.3

LO 1.3

LO 1.3

LO 1.3

LO 1.4

LO 1.4

LO 1.4LO 1.4

LO 1.4

LO 1.4LO 1.4

LO 1.5

LO 1.5

LO 1.5LO 1.5

LO 1.5

LO 1.6

LO 1.6

LO 1.6

LO 1.6

LO 1.6

LO 1.6

LO 1.6

LO 1.6

LO 1.6

LO 1.6

LO 1.6

LO 1.6

LO 1.7

 44 Computing Fundamentals & C Programming

 43. Describe different types of computer networks with the help of illustrations.

 44. What is the difference between LAN and WAN?

 45. What is network topology?

 46. What are the different types of network topologies? Explain any two network topologies

through suitable illustrations.

 47. How network protocol helps in the communication of messages over the network?

 48. What is the difference between ring topology and bus topology?

 49. Differentiate among ring, star, bus and hybrid topology with the help of diagrams.

LO 1.7

LO 1.7LO 1.7

LO 1.7

LO 1.7

LO 1.7LO 1.7

LO 1.7

LO 1.7

 Computing Concepts 45

2.1 INTRODUCTION

Computers store and process numbers, letters and words that are often referred to as data.

� How do we communicate data to computers?

� How do the computers store and process data?

Since the computers cannot understand the Arabic numerals or the English alphabets, we

should use some ‘codes’ that can be easily understood by them.

In all modern computers, storage and processing units are made of a set of silicon chips, each

containing a large number of transistors. A transistor is a two-state device that can be put ‘off’

and ‘on’ by passing an electric current through it. Since the transistors are sensitive to currents

and act like switches, we can communicate with the computers using electric signals, which are

represented as a series of ‘pulse’ and ‘no-pulse’ conditions. For the sake of convenience and ease

of use, a pulse is represented by the code ‘1’ and a no-pulse by the code ‘0’. They are called

bits, an abbreviation of ‘binary digits’. A series of 1s and 0s are used to represent a number or

a character and thus they provide a way for humans and computers to communicate with one

another. This idea was suggested by John Von Neumann in 1946. The numbers represented by

L
E

A
R

N
IN

G
 O

B
J
E

C
T
IV

E
S

A er reading this chapter, you will be able to

LO 2.1 Iden fy the various posi onal number systems

LO 2.2 Carry out number conversions from one number system to another

LO 2.3 Explain how binary arithme c opera ons are performed

LO 2.4  Describe primary logic gates

LO 2.5 Discuss various levels of programming languages

LO 2.6  Know various problem solving techniques and computer applica ons

IV
E

S

CHAPT ERCHAPT ER

22
Computing ConceptsComputing Concepts

 46 Computing Fundamentals & C Programming

binary digits are known as binary numbers. Computers not only store numbers but also perform operations

on them in binary form.

In this chapter, we discuss how the numbers are represented using what are known as binary codes, how

computers perform arithmetic operations using the binary representation, how digital circuits known as

logic gates are used to manipulate data, how instructions are designed using what are known as program-

ming languages and how algorithms and fl ow charts might help us in developing programs.

2.2 DECIMAL SYSTEM LO 2.1

The decimal system is the most common number system used by human beings. It is a positional number

system that uses 10 as a base to represent different values. Therefore, this number system is also known as

base10 number system. In this system, 10 symbols are available for representing the values. These symbols

include the digits from 0 to 9. The common operations performed in the decimal system are addition (+),

subtraction (–), multiplication (×) and division (/).

The decimal system can be used to represent both the integer as well as fl oating point values. The

fl oating point values are generally represented in this system by using a period called decimal point. The

decimal point is used to separate the integer part and the fraction part of the given fl oating point number.

However, there is no need to use a decimal point for representing integer values. The value of any number

represented in the decimal system can be determined by fi rst multiplying the weight associated with each

digit in the given number with the digit itself and then adding all these values produced as a result of

multiplication operation. The weight associated with any digit depends upon the position of the digit itself

in the given number. The most common method to determine the weight of any digit in any number system

is to raise the base of the number system to a power that initially starts with a 0 and then increases by 1 as

we move from right to left in the given number. To understand this concept, let us consider the following

fl oating point number represented in the decimal system:

In the above example, the value 6543, which comes before the decimal point, is called integer value

and the value 124, which comes after the decimal point, is called fraction value. Table 2.1 lists the weights

associated with each digit in the given decimal number.

Table 2.1 Place values in decimal system

Digit 6 5 4 3 . 1 2 4

Weight 103 102 101 100 10–1 10–2 10–3

The above table shows that the powers to the base increases by 1 towards the left for the integer part

and decreases by 1 towards the right for the fraction part. Using the place values, the fl oating point number

6543.124 in decimal system can be computed as:

 6 ¥ 103 + 5 ¥ 102 + 4 ¥ 101 + 3 ¥ 100 + 1 ¥ 10–1 + 2 ¥ 10–2 + 4 ¥ 10–3

 = 6000 + 500 + 40 + 3 + 0.1 + 0.02 + 0.004

 = 6543.124

 Computing Concepts 47

2.3 BINARY SYSTEM LO 2.1

Among all the positional number systems, the binary system is the most dominant number system that is

employed by almost all the modern digital computer systems. The binary system uses base 2 to represent

different values. Therefore, the binary system is also known as base-2 system. As this system uses base 2,

only two symbols are available for representing the different values in this system. These symbols are 0 and

1, which are also known as bits in computer terminology. Using binary system, the computer systems can

store and process each type of data in terms of 0s and 1s only.

The following are some of the technical terms used in binary system:

� Bit. It is the smallest unit of information used in a computer system. It can either have the value 0 or

1. Derived from the words Binary digit.

� Nibble. It is a combination of 4 bits.

� Byte. It is a combination of 8 bits. Derived from words ‘by eight’.

� Word. It is a combination of 16 bits.

� Double word. It is a combination of 32 bits.

� Kilobyte (KB). It is used to represent the 1024 bytes of information.

� Megabyte (MB). It is used to represent the 1024 KBs of information.

� Gigabyte (GB). It is used to represent the 1024 MBs of information.

We can determine the weight associated with each bit in the given binary number in the similar manner

as we did in the decimal system. In the binary system, the weight of any bit can be determined by raising

2 to a power equivalent to the position of bit in the number. To understand this concept, let us consider the

following binary number:

In binary system, the point used to separate the integer and the fraction part of a number is known as

binary point. Table 2.2 lists the weights associated with each bit in the given binary number.

Table 2.2 Place values in binary system

Digit 1 0 1 0 0 1 . 0 1 0 1

Weight 25 24 23 22 21 20 2–1 2–2 2–3 2–4

Like the decimal system, the powers to the base increases by 1 towards the left for the integer part

and decreases by 1 towards the right for the fraction part. The value of the given binary number can be

determined as the sum of the products of the bits multiplied by the weight of the bit itself. Therefore, the

value of the binary number 101001.0101 can be obtained as:

 1 ¥ 25 + 0 ¥ 24 + 1 ¥ 23 + 0 ¥ 22 + 0 ¥ 21 + 1 ¥ 20 + 0 ¥ 2–1 + 1 ¥ 2–2 + 0 ¥ 2–3 + 1 ¥ 2–4

 = 32 + 8 + 1 + 0.25 + 0.0625

 = 41.3125

The binary number 101001.0101 represents the decimal value 41.3125.

 48 Computing Fundamentals & C Programming

Table 2.3 lists the 4-bit binary representation of decimal numbers 0 through 15.

Table 2.3 Binary representation of fi rst 16 numbers

Decimal number 4-bit binary

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111

2.4 HEXADECIMAL SYSTEM LO 2.1

The hexadecimal system is a positional number system that uses base 16 to represent different values.

Therefore, this number system is known as base-16 system. As this system uses base 16, 16 symbols are

available for representing the values in this system. These symbols are the digits 0–9 and the letters A, B, C,

D, E and F. The digits 0–9 are used to represent the decimal values 0 through 9 and the letters A, B, C, D, E

and F are used to represent the decimal values 10 through 15.

The weight associated with each symbol in the given hexadecimal number can be determined by raising

16 to a power equivalent to the position of the digit in the number. To understand this concept, let us

consider the following hexadecimal number:

In hexadecimal system, the point used to separate the integer and the fraction part of a number is known

as hexadecimal point. Table 2.4 lists the weights associated with each digit in the given hexadecimal

number.

 Computing Concepts 49

Table 2.4 Place values in hexadecimal system

Digit 4 A 9 . 2 B

Weight 162 161 160 16–1 16–2

The value of the hexadecimal number can be computed as the sum of the products of the symbol

multiplied by the weight of the symbol itself. Therefore, the value of the given hexadecimal number is:

 4 ¥ 162 + 10 ¥ 161 + 9 ¥ 160 + 2 ¥ 16–1 + 11 ¥ 16–2

 = 1024 + 160 + 9 + 0.125 + 0.0429

 = 1193 + 0.1679

 = 1193.1679

The hexadecimal number 4A9. 2B represents the decimal value 1193.1679.

2.5 OCTAL SYSTEM LO 2.1

The octal system is the positional number system that uses base 8 to represent different values. Therefore,

this number system is also known as base-8 system. As this system uses base 8, eight symbols are available

for representing the values in this system. These symbols are the digits 0 to 7.

The weight associated with each digit in the given octal number can be determined by raising 8 to a

power equivalent to the position of digit in the number. To understand this concept, let us consider the

following octal number:

In octal system, the point used to separate the integer and the fraction part of a number is known as

octal point. Table 2.5 lists the weights associated with each digit in the given octal number.

Table 2.5 Place values in octal system

Digit 2 1 5 . 4 3

Weight 82 81 80 8–1 8–2

Using these place values, we can now determine the value of the given octal number as:

 2 ¥ 82 + 1 ¥ 81 + 5 ¥ 80 + 4 ¥ 8–1 + 3 ¥ 8–2

 = 128 + 8 + 5 + 0.5 + 0.0469

 = 141 + 0.5469

 = 141.5469

The octal number 215.43 represents the decimal value 141.5469.

Table 2.6 lists the octal representation of decimal numbers 0 through 15.

 50 Computing Fundamentals & C Programming

Table 2.6 Octal representation of fi rst 16 numbers

Decimal number Octal representation

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 10

9 11

10 12

11 13

12 14

13 15

14 16

15 17

2.6 CONVERSION OF NUMBERS LO 2.2

The computer systems accept the data in decimal form, whereas they store and process the data in binary

form. Therefore, it becomes necessary to convert the numbers represented in one system into the numbers

represented in another system. The different types of number system conversions can be divided into the

following major categories:

� Non-decimal to decimal

� Decimal to non-decimal

� Octal to hexadecimal

2.6.1 Non-Decimal to Decimal

The non-decimal to decimal conversions can be implemented by taking the concept of place values into

consideration. The non-decimal to decimal conversion includes the following number system conversions:

� Binary to decimal conversion

� Hexadecimal to decimal conversion

� Octal to decimal conversion

Binary to decimal conversion A binary number can be converted to equivalent decimal number by

calculating the sum of the products of each bit multiplied by its corresponding place value.

 Computing Concepts 51

Example 2.1 Convert the binary number 10101101 into its corresponding decimal number.

Solution

The given binary number is 10101101.

Now, calculate the sum of the products of each bit multiplied by its place value as:

 (1 ¥ 27) + (0 ¥ 26) + (1 ¥ 25) + (0 ¥ 24) + (1 ¥ 23) + (1 ¥ 22) + (1 ¥ 21) + (1 ¥ 20)

 = 128 + 0 + 32 + 0 + 8 + 4 + 0 + 1

 = 173

Therefore, the binary number 10101101 is equivalent to 173 in the decimal system.

Example 2.2 Convert the binary number 1101 into its equivalent in decimal system.

Solution

The given binary number is 1101.

Now, calculate the sum of the products of each bit multiplied by its place value as:

 (1 ¥ 23) + (1 ¥ 22) + (1 ¥ 21) + (1 ¥ 20)

 = 8 + 4 + 1

 = 13

Therefore, the binary number 1101 is equivalent to 13 in the decimal system.

Example 2.3 Convert the binary number 10110001 into its equivalent in decimal system.

Solution

The given binary number is 10110001.

Now, calculate the sum of the products of each bit multiplied by its place value as:

 (1 ¥ 27) + (1 ¥ 26) + (1 ¥ 25) + (1 ¥ 24) + (0 ¥ 23) + (0 ¥ 22) + (0 ¥ 21) + (0 ¥ 20)

 = 128 + 0 + 32 + 16 + 0 + 0 + 0 + 1

 = 177

Therefore, the binary number 10110001 is equivalent to 177 in the decimal system.

Example 2.4 Convert the binary number 1011.010 into its equivalent in decimal system.

Solution

The given binary number is 1011.010.

Now, calculate the sum of the products of each bit multiplied by its place value as:

 (1 ¥ 23) + (0 ¥ 22) + (1 ¥ 21) + (1 ¥ 20) + (0 ¥ 2–1) + (1 ¥ 2–2) + (0 ¥ 2–3)

 = 11 + 0.25

 = 11.25

Therefore, the binary number 1011.010 is equivalent to 11.25 in the decimal system.

Example 2.5 Convert the binary number 11011.0110 to its equivalent in decimal system.

Solution

The given binary number is 11011.0110.

Now, calculate the sum of the products of each bit multiplied by its place value as:

 52 Computing Fundamentals & C Programming

 (1 ¥ 24) + (1 ¥ 23) + (0 ¥ 22) + (1 ¥ 21) + (1 ¥ 20) + (0 ¥ 2–1) + (1 ¥ 2–2) + (1 ¥ 2–3) + (0 ¥ 2–4)

= + + + +

 = 27 + 0.25 + 0.125

 = 27.375

Therefore, the binary number 11011.0110 is equivalent to 27.375 in the decimal system.

Hexadecimal to decimal conversion A hexadecimal number can be converted into its equivalent

number in decimal system by calculating the sum of the products of each symbol multiplied by its

corresponding place value.

Example 2.6 Convert the hexadecimal number A53 into its equivalent in decimal system.

Solution

The given hexadecimal number is A53.

Now, calculate the sum of the products of each symbol multiplied by its place value as:

 (10 ¥ 162) + (5 ¥ 161) + (3 ¥ 160)

 = 2560 + 80 + 3

 = 2643

Therefore, the hexadecimal number A53 is equivalent to 2643 in the decimal system.

Example 2.7 Convert the hexadecimal number 6B39 into its equivalent in the decimal system.

Solution

The given hexadecimal number is 6B39.

Now, calculate the sum of the products of each symbol multiplied by its place value as:

 (6 ¥ 163) + (11 ¥ 162) + (3 ¥ 161) + (9 ¥ 160)

 = 24576 + 2816 + 48 + 9

 = 27449

Therefore, the hexadecimal number 6B39 is equivalent to 27449 in the decimal system.

Example 2.8 Convert the hexadecimal number 5A6D into its equivalent in the decimal system.

Solution

The given hexadecimal number is 5A6D.

Now, calculate the sum of the products of each symbol multiplied by its place value as:

 (5 ¥ 163) + (10 ¥ 162) + (6 ¥ 161) + (13 ¥ 160)

 = 20480 + 2560 + 96 + 13

 = 23149.

Therefore, the hexadecimal number 5A6D is equivalent to 23149 in the decimal system.

Example 2.9 Convert the hexadecimal number AB21.34 into its equivalent in the decimal system.

Solution

The given hexadecimal number is AB21.34.

Now, calculate the sum of the products of each symbol multiplied by its place value as:

 (10 ¥ 163) + (11 ¥ 162) + (2 ¥ 161) + (1 ¥ 160) + (3 ¥ 16–1) + (4 ¥ 16–2)

 Computing Concepts 53

= + + + + +

 = 43809 + 0.1875 + 0.015625

 = 43809.203

Therefore, the hexadecimal number AB21.34 is equivalent to 43809.203 in the decimal system.

Example 2.10 Convert the hexadecimal number 6A11.3B into its equivalent in the decimal system.

Solution

The given hexadecimal number is 6A11.3B.

Now, calculate the sum of the products of each symbol multiplied by its place value as:

 (6 ¥ 163) + (10 ¥ 162) + (1 ¥ 16–1) + (1 ¥ 160) + (3 ¥ 16–1) + (11 ¥ 16–2)

= + + + + +

 = 27153 + 0.1875 + 0.043

 = 27153.2305

Therefore, the hexadecimal number 6A11.3B is equivalent to 27153.2305 in the decimal system.

Octal to decimal conversion An octal number can be converted into its equivalent number in

decimal system by calculating the sum of the products of each digit multiplied by its corresponding place

value.

Example 2.11 Convert the octal number 5324 into its equivalent in decimal system.

Solution

The given octal number is 5324.

Now, calculate the sum of the products of each digit multiplied by its place value as:

 (5 ¥ 83) + (3 ¥ 82) + (2 ¥ 81) + (4 ¥ 80)

 = 2560 + 192 + 16 + 4

 = 2772

Therefore, the octal number 5324 is equivalent to 2772 in the decimal system.

Example 2.12 Convert the octal number 13256 into its equivalent in decimal system.

Solution

The given octal number is 13256.

Now, calculate the sum of the products of each digit multiplied by its place value as:

 (1 ¥ 84) + (3 ¥ 83) + (2 ¥ 82) + (5 ¥ 81) + (6 ¥ 80)

 = 4096 + 1536 + 128 + 40 + 6

 = 5806

Therefore, the octal number 13256 is equivalent to 5806 in the decimal system.

Example 2.13 Convert the octal number 4567 into its equivalent in decimal system.

Solution

The given octal number is 4567.

Now, calculate the sum of the products of each digit multiplied by its place value as:

 54 Computing Fundamentals & C Programming

 (4 ¥ 83) + (5 ¥ 82) + (6 ¥ 81) + (7 ¥ 80)

 = 2048 + 320 + 48 + 7

 = 2423

Therefore, the octal number 4567 is equivalent to 2423 in the decimal system.

Example 2.14 Convert the octal number 325.12 into its equivalent in decimal system.

Solution

The given octal number is 325.12.

Now, calculate the sum of the products of each digit multiplied by its place value as:

 (3 ¥ 82) + (2 ¥ 81) + (5 ¥ 80) + (1 ¥ 8–1) + (2 ¥ 8–2)

= + + + +

 = 213 + 0.125 + 0.03125

 = 213.15625

Therefore, the octal number 325.12 is equivalent to 213.15625 in the decimal system.

Example 2.15 Convert the octal number 7652.01 into its equivalent in decimal system.

Solution

The given octal number is 7652.01.

Now, calculate the sum of the products of each digit multiplied by its place value as:

 (7 ¥ 83) + (6 ¥ 82) + (5 ¥ 81) + (2 ¥ 80) + (0 ¥ 8–1) + (1 ¥ 8–2)

= + + + +

 = 4010 + 0.015625

 = 4010.0156

Therefore, the octal number 7652.01 is equivalent to 4010.0156 in the decimal system.

2.6.2 Decimal to Non-Decimal

The decimal to non-decimal conversions are carried out by continually dividing the decimal number by

the base of the desired number system till the decimal number becomes zero. After the decimal number

becomes zero, we may note down the remainders calculated at each successive division from last to fi rst

to obtain the decimal number into the desired system. The decimal to non-decimal conversion includes the

following number system conversions:

� Decimal to binary conversion

� Decimal to hexadecimal conversion

� Decimal to octal conversion

Decimal to binary conversion The decimal to binary conversion is performed by repeatedly dividing

the decimal number by 2 till the decimal number becomes zero and then reading the remainders from last

to fi rst to obtain the binary equivalent of the given decimal number. The following examples illustrate the

method of converting decimal number to its binary equivalent:

 Computing Concepts 55

Example 2.16 Convert the decimal number 30 into its equivalent binary number.

Solution

The given decimal number is 30.

The following table lists the steps showing the conversion of the given decimal number to its binary

equivalent:

Decimal number Divisor Quotient Remainder

30 2 15 0

15 2 7 1

7 2 3 1

3 2 1 1

1 2 0 1

Now, read the remainders calculated in the above table in upward direction to obtain the binary

equivalent, which is 11110.

Therefore, the binary equivalent of the decimal number 30 is 11110.

Example 2.17 Convert the decimal number 111 into its equivalent binary number.

Solution

The given decimal number is 111.

The following table lists the steps showing the conversion of the given decimal number to its binary

equivalent:

Decimal number Divisor Quotient Remainder

111 2 55 1

55 2 27 1

27 2 13 1

13 2 6 1

6 2 3 0

3 2 1 1

1 2 0 1

Now, read the remainders calculated in the above table in upward direction to obtain the binary

equivalent, which is 1101111.

Therefore, the binary equivalent of the decimal number 111 is 1101111.

Example 2.18 Convert the decimal number 215 into its equivalent binary number.

Solution

The given decimal number is 215.

 56 Computing Fundamentals & C Programming

The following table lists the steps showing the conversion of the given decimal number to its binary

equivalent:

Decimal number Divisor Quotient Remainder

215 2 107 1

107 2 53 1

53 2 26 1

26 2 13 0

13 2 6 1

6 2 3 0

3 2 1 1

1 2 0 1

Now, read the remainders calculated in the above table in upward direction to obtain the binary

equivalent, which is 11010111.

Therefore, the binary equivalent of the decimal number 215 is 11010111.

The procedure of converting the fractional part of the given decimal number to its binary equivalent is

different. In this procedure, we need to continually multiply the fractional part by 2 and then note down the

whole number part of the result. The multiplication process will terminate when the fractional part becomes

zero or when we have achieved the desired number of bits.

Example 2.19 Convert the decimal number 45796 to its equivalent octal number.

Solution

The given decimal number is 45796.

The following table lists the steps showing the conversion of the given decimal number to its octal

equivalent:

Decimal number Divisor Quotient Remainder

45796 8 5724 4

5724 8 715 4

715 8 89 3

89 8 11 1

11 8 1 3

1 8 0 1

Now, read the remainders calculated in the above table in upward direction to obtain the octal equivalent,

which is 131344.

Therefore, the corresponding octal equivalent of 45796 is 131344.

Example 2.20 Convert the decimal number 9547 into its equivalent octal number.

Solution

The given decimal number is 9547.

 Computing Concepts 57

The following table lists the steps showing the conversion of the given decimal number to its octal

equivalent:

Decimal number Divisor Quotient Remainder

9547 8 1193 3

1193 8 149 1

149 8 18 5

18 8 2 2

2 8 0 2

Now, read the remainders calculated in the above table in upward direction to obtain the octal equivalent,

which is 22513.

Therefore, the corresponding octal equivalent of 9547 is 22513.

Example 2.21 Convert the decimal number 1567 into its equivalent hexadecimal number.

Solution

The given decimal number is 1567.

The following table lists the steps showing the conversion of the given decimal number to its

hexadecimal equivalent:

Decimal number Divisor Quotient Remainder

1567 16 97 15

97 16 6 1

6 16 0 6

Now, read the remainders calculated in the above table in upward direction to obtain the hexadecimal

equivalent, which is 61F.

Therefore, the hexadecimal equivalent of the given decimal number is 61F.

Example 2.22 Convert the decimal number 9463 into its equivalent hexadecimal number.

Solution

The given decimal number is 9463.

The following table lists the steps showing the conversion of the given decimal number to its

hexadecimal equivalent:

Decimal number Divisor Quotient Remainder

9463 16 591 7

591 16 36 15

36 16 2 4

2 16 0 2

Now, read the remainders calculated in the above table in upward direction to obtain the hexadecimal

equivalent, which is 24F7.

Therefore, the hexadecimal equivalent of the given decimal number is 24F7.

 58 Computing Fundamentals & C Programming

Decimal to octal conversion The decimal to octal conversion is performed by repeatedly dividing

the decimal number by 8 till the decimal number becomes zero and reading the remainders from last to fi rst

to obtain the octal equivalent of the given decimal number. The following examples illustrate the method of

converting decimal number to its octal equivalent:

Example 2.23 Convert the decimal number 45796 to its equivalent octal number.

Solution

The given decimal number is 45796.

The following table lists the steps showing the conversion of the given decimal number to its octal

equivalent:

Decimal number Divisor Quotient Remainder

45796 8 5724 4

5724 8 715 4

715 8 89 3

89 8 11 1

11 8 1 3

1 8 0 1

Now, read the remainders calculated in the above table in upward direction to obtain the octal equivalent,

which is 131344.

Therefore, the corresponding octal equivalent of 45796 is 131344.

Example 2.24 Convert the decimal number 9547 into its equivalent octal number.

Solution

The given decimal number is 9547.

The following table lists the steps showing the conversion of the given decimal number to its octal

equivalent:

Decimal number Divisor Quotient Remainder

9547 8 1193 3

1193 8 149 1

149 8 18 5

18 8 2 2

2 8 0 2

Now, read the remainders calculated in the above table in upward direction to obtain the octal equivalent,

which is 22513.

Therefore, the corresponding octal equivalent of 9547 is 22513.

 Computing Concepts 59

2.6.3 Octal to Hexadecimal

The given octal number can be converted into its equivalent hexadecimal number in two different steps.

Firstly, we need to convert the given octal number into its binary equivalent. After obtaining the binary

equivalent, we need to divide the binary number into 4-bit sections starting from the LSB.

The octal to binary conversion is a simple process. In this type of conversion, we need to represent each

digit in the octal number to its equivalent 3-bit binary number. Table 2.7 lists the binary representation of all

the digits used in an octal system.

Table 2.7 Binary representation of octal symbols

Octal Binary representation

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Example 2.25 Convert the octal number 365 into its equivalent hexadecimal number.

Solution
Octal number: 3 6 5

 Ø Ø Ø Ø
Binary equivalent: 011 110 101 Step 1

 Ø
Regrouping into 4-bit sections: 0000 1111 0101 Step 2

 Ø Ø Ø Ø
Hexadecimal equivalent: 0 F 5 Step 3

Hexadecimal number is F5

Example 2.26 Convert the octal number 6251 into its equivalent hexadecimal number.

Solution
Octal number: 6 2 5 1

 Ø Ø Ø Ø Ø
Binary equivalent: 110 010 101 001 Step 1

 Ø
4-bits grouping: 1100 1010 1001 Step 2

 Ø Ø Ø Ø
Hexadecimal equivalent: C A 9 Step 3

Hexadecimal number is CA9

 60 Computing Fundamentals & C Programming

2.7 BINARY ARITHMETIC OPERATIONS LO 2.3

The computer arithmetic is also referred as binary arithmetic because the computer system stores and

processes the data in the binary form only. Various binary arithmetic operations can be performed in the

same way as the decimal arithmetic operations, but by following a predefi ned set of rules. Each binary

arithmetic operation has an associated set of rules that should be adhered to while carrying out that

operation. The binary arithmetic operations are usually simpler to carry out as compared to the decimal

operations because one needs to deal with only two digits, 0 and 1, in the binary operations. The different

binary arithmetic operations performed in a computer system are:

� Binary addition

� Binary multiplication

� Binary subtraction

� Binary division

2.7.1 Binary Addition

Binary addition is the simplest arithmetic operation performed in the computer system. Like decimal

system, we can start the addition of two binary numbers column-wise from the right-most bit and move

towards the left-most bit of the given numbers. However, we need to follow certain rules while carrying out

the binary addition of the given numbers. Table 2.8 lists the rules for binary addition.

Table 2.8 Binary addition rules

A B A + B Carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

In the above table, the fi rst three entries do not generate any carry. However, a carry would be generated

when both A and B contain the value, 1. The carry, if it is generated, while performing the binary addition

in a column would be forwarded to the next most signifi cant column.

Example 2.27 Perform the binary addition operation on the following binary numbers:

0 0 1 0

0 1 1 1

Solution

The given binary numbers are 0010 and 0111.

Now, perform the binary addition of the given numbers as:

 Binary number Decimal value

 0 0 1 0 2

 0 1 1 1 7

 1 0 0 1 9

Therefore, the result of the binary addition performed on 0010 and 0111 is 1001.

Note In the above example, a carry is generated in the 2nd and the 3rd column only.

 Computing Concepts 61

Example 2.28 Perform the binary addition of the following binary numbers:

1 0 1 0 1 0

0 1 0 0 1 1

Solution

The given binary numbers are 101010 and 010011.

Now, perform the binary addition of the given numbers as:

 Binary number Decimal value

 1 0 1 0 1 0 42

 0 1 0 0 1 1 19

 1 1 1 1 0 1 61

Therefore, the result of the binary addition performed on 101010 and 010011 is 111101.

Note In the above example, a carry is generated in the 2nd column only.

Example 2.29 Evaluate the binary sum of the following numbers:

0 0 0 1 1 0 1 0

1 0 0 0 1 1 0 0

Solution

The given binary numbers are 00011010 and 10001100.

Now, perform the binary addition of the given numbers as:

 Binary number Decimal value

 0 0 0 1 1 0 1 0 26

 1 0 0 0 1 1 0 0 140

 1 0 1 0 0 1 1 0 166

Therefore, the result of the binary addition performed on 00011010 and 10001100 is 10100110.

Note In the above example, a carry is generated in the 4th and the 5th column only.

We can also perform the binary addition on more than two binary numbers. Table 2.9 lists the rules for

adding three binary numbers.

Table 2.9 Rules for adding three binary numbers

A B C A + B + C Carry

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

 62 Computing Fundamentals & C Programming

To understand the concept of triple binary addition, let us consider the following examples:

Example 2.30 Perform the binary addition operation on the following three numbers:

0 0 1 0

0 0 0 1

0 1 1 1

Solution

The given binary numbers are 0010, 0001 and 0111.

Now, perform the binary addition of the given numbers as:

 Binary number Decimal value

 0 0 1 0 2

 0 0 0 1 1

 0 1 1 1 7

 1 0 1 0 10

Therefore, the result of the binary addition performed on 0010, 0001 and 0111 is 1010.

Note In the above example, a carry is generated in the 1st and the 2nd column only.

Example 2.31 Evaluate the binary sum of the following numbers:

0 1 0 1 0

0 0 1 1 0

0 1 1 1 1

Solution

The given binary numbers are 01010, 00110 and 01111.

Now, perform the binary addition of the given numbers as:

 Binary number Decimal value

 0 1 0 1 0 10

 0 0 1 1 0 6

 0 1 1 1 1 15

 1 1 1 1 1 31

Therefore, the result of the binary addition performed on 01010, 00110 and 01111 is 11111.

Note In the above example, a carry is generated in the 2nd, 3rd and 4th column only.

2.7.2 Binary Multiplication

The multiplication of two binary numbers can be carried out in the same manner as the decimal

multiplication. However, unlike decimal multiplication, only two values are generated as the outcome

of multiplying the multiplicand bit by 0 or 1 in the binary multiplication. These values are either 0 or

1. The binary multiplication can also be considered as repeated binary addition. For instance, when we

are multiplying 7 with 3, it simply means that we are adding 7 to itself 3 times. Therefore, the binary

multiplication is performed in conjunction with the binary addition operation. Table 2.10 lists the rules for

binary multiplication.

 Computing Concepts 63

Table 2.10 Binary multiplication rules

A B A ¥ B

0 0 0

0 1 0

1 0 0

1 1 1

The above table clearly shows that binary multiplication does not involve the concept of carry. To

understand the concept of binary multiplication, let us consider the following examples:

Example 2.32 Perform the binary multiplication of the decimal numbers 12 and 10.

Solution

The equivalent binary representation of the decimal number 12 is 1100.

The equivalent binary representation of the decimal number 10 is 1010.

Now, perform the binary multiplication of the given numbers as:

 1 1 0 0 Multiplicand

 1 0 1 0 Multiplier

 0 0 0 0 First partial product

 1 1 0 0

 0 0 0 0

1 1 0 0

1 1 1 1 0 0 0 Final product

Therefore, the result of the binary multiplication performed on the decimal numbers 12 and 10 is

1111000.

Example 2.33 Evaluate the binary product of the decimal numbers 15 and 14.

Solution

The equivalent binary representation of the decimal number 15 is 1111.

The equivalent binary representation of the decimal number 14 is 1110.

Now, perform the binary multiplication of the given numbers as:

 1 1 1 1 Multiplicand

 1 1 1 0 Multiplier

 0 0 0 0 First partial product

 1 1 1 1

 1 1 1 1

 1 1 1 1

1 1 0 1 0 0 1 0 Final product

Therefore, the result of the binary multiplication performed on the decimal numbers 15 and 14 is

11010010.

 64 Computing Fundamentals & C Programming

Example 2.34 Perform the binary multiplication of the following numbers:

1101

111

Solution

The given binary numbers are 1101 and 111.

Now, perform the binary multiplication of the given numbers as:

 1 1 0 1 Multiplicand

 1 1 1 Multiplier

 1 1 0 1 First partial product

 1 1 0 1

 1 1 0 1

1 0 1 1 0 1 1 Final product

Therefore, the result of the binary multiplication performed on the numbers 1101 and 111 is 1011011.

Example 2.35 Evaluate the binary product of the following numbers:

100010

10010

Solution

The given binary numbers are 100010 and 10010.

Now, perform the binary multiplication of the given numbers as:

 1 0 0 0 1 0 Multiplicand

 1 0 0 1 0 Multiplier

 0 0 0 0 0 0 First partial product

 1 0 0 0 1 0

 0 0 0 0 0 0

 0 0 0 0 0 0

 1 0 0 0 1 0

 1 0 0 1 1 0 0 1 0 0 Final product

Therefore, the result of the binary multiplication performed on the numbers 100010 and 10010 is

1001100100.

2.7.3 Binary Subtraction

The binary subtraction is performed in the same way as the decimal subtraction. Like binary addition and

binary multiplication, binary subtraction is also associated with a set of rules that need to be followed while

carrying out the operation. Table 2.11 lists the rules for binary subtraction.

Table 2.11 Binary subtraction rules

A B A – B Borrow

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

 Computing Concepts 65

The above table shows that the binary subtraction like the decimal subtraction uses the borrow method

to subtract one number from another. To understand the concept of binary subtraction, let us consider the

following examples:

Example 2.36 Subtract the following binary numbers:

0 1 0 1

0 0 1 0

Solution

The given binary numbers are 0101 and 0010.

Now, perform the binary subtraction of the given numbers as:

 1 Borrow

0 1 0 1 Minuend

0 0 1 0 Subtrahend

0 0 1 1 Difference

Therefore, the result of the binary subtraction performed on the numbers 0101 and 0010 is 0011.

Example 2.37 Perform the binary subtraction of the following numbers:

1 0 1 0 1

0 1 1 1 0

Solution

The given binary numbers are 10101 and 01110.

Now, perform the binary subtraction of the given numbers as:

 1 1 1 Borrow

1 0 1 0 1 Minuend

0 1 1 1 0 Subtrahend

0 0 1 1 1 Difference

Therefore, the result of the binary subtraction performed on the numbers 10101 and 01110 is 00111

Example 2.38 Perform the binary subtraction of the following numbers:

10111011

01001001

Solution

The given binary numbers are 10111011 and 01001001.

Now, perform the binary subtraction of the given numbers as:

 1 Borrow

1 0 1 1 1 0 1 1 Minuend

0 1 0 0 1 0 0 1 Subtrahend

0 1 1 1 0 0 1 0 Difference

Therefore, the result of the binary subtraction performed on the numbers 10111011 and 01001001 is

1110010.

 66 Computing Fundamentals & C Programming

Example 2.39 Perform the binary subtraction of the following numbers:

101110101010

001111011100

Solution

The given binary numbers are 101110101010 and 001111011100.

Now, perform the binary subtraction of the given numbers as:

 1 1 1 1 1 1 1 1 Borrow

1 0 1 1 1 0 1 0 1 0 1 0 Minuend

0 0 1 1 1 1 0 1 1 1 0 0 Subtrahend

0 1 1 1 1 1 0 0 1 1 1 0 Difference

Therefore, the result of the binary subtraction performed on the numbers 101110101010 and

001111011100 is 11111001110.

2.7.4 Binary Division

Binary division is also performed in the same way as we perform decimal division. Like decimal division,

we also need to follow the binary subtraction rules while performing the binary division. The dividend

involved in binary division should be greater than the divisor. The following are the two important points,

which need to be remembered while performing the binary division:

� If the remainder obtained by the division process is greater than or equal to the divisor, put 1 in the

quotient and perform the binary subtraction.

� If the remainder obtained by the division process is less than the divisor, put 0 in the quotient and

append the next most signifi cant digit from the dividend to the remainder.

Example 2.40 Divide 14 by 7 in binary form.

Solution

The equivalent binary representation of the decimal number 14 is 1110.

The binary representation of 7 is 111.

Now, perform the binary division of the given numbers as:

1 1 1) 1 1 1 0 (10 (Quotient)

 1 1 1

 0 0 0 0

Therefore, the result of the binary division performed on the decimal numbers 14 and 7 is 10.

Example 2.41 Perform the binary division of the decimal numbers 18 and 8.

Solution
The equivalent binary representation of the decimal number 18 is 10010.

The equivalent binary representation of the decimal number 8 is 1000.

 Computing Concepts 67

Now, perform the binary division of the given numbers as:

1 0 0 0) 1 0 0 1 0 (1 0 (Quotient)

 1 0 0 0

 0 0 0 1 0

 0 0 0 0 0

 0 0 0 1 0 (Remainder)

Therefore, the result of the binary division performed on the decimal numbers 18 and 8 is 10 with a

remainder of 10.

Example 2.42 Perform the binary division of the decimal numbers 11011 and 1001.

Solution
The given binary numbers are 11011 and 1001.

Now, perform the binary division of the given binary numbers as:

1 0 0 1) 1 1 0 1 1 (1 1 (Quotient)

 1 0 0 1

 1 0 0 1

 1 0 0 1

 0 0 0 0

Therefore, the result of the binary division performed on the numbers 11011 and 1001 is 11.

Example 2.43 Perform the binary division of 217 and 12.

Solution
The equivalent binary representation of the decimal number 217 is 11011001.

The equivalent binary representation of the decimal number 12 is 1100.

Now, perform the binary division of the given numbers as:

1 1 0 0) 1 1 0 1 1 0 0 1 (1 0 0 1 0 (Quotient)

 1 1 0 0

 0 0 0 1 1

 0 0 0 0 0

 0 1 1 0

 0 0 0 0

 1 1 0 0

 1 1 0 0

 0 0 0 1 (Remainder)

Therefore, the result of the binary division performed on the decimal number 217 and 12 is 10010 with a

remainder of 1.

 68 Computing Fundamentals & C Programming

2.8 LOGIC GATES LO 2.4

Logic gates are the basic building blocks of a digital computer. In general, all the logic gates have two input

signals and one output signal. These two input signals are nothing but two binary values, 0 or 1 that helps

represent different voltage levels. In all logic gates, the binary value 0 represents the low state of voltage

that is approximately 0 volt and the binary value 1 represents the high state of voltage that is approximately

+5 volts. The three basic logic gates are:

� AND

� OR

� NOT

All logic gates have a logical expression, symbol, and truth table. The logical expression helps fi nd the

output of the logic gate on the basis of its inputs. A symbol is the pictorial presentation of a logic gate that

can have one or more than one input and one output. The truth table helps fi nd the fi nal logical state, such

as true/false or 1/0 of the logic gate in the form of its output.

2.8.1 AND Gate

The AND gate is one of the basic logic gates that give an output signal of value 1 only when all its input

signals are of value 1. In other words, the AND gate gives an output signal of value 0 whenever its one input

signal is of value 0.

 Logical Expression

The logical expression for the AND function is:

F = A.B

where, F is the output that depends on inputs, A and B.

Symbol

The symbol of the AND gate is shown in Fig. 2.1.

Fig. 2.1 AND gate

Truth Table

Table 2.12 Truth Table for AND Gate

Input A Input B Output F

0 0 0

0 1 0

1 0 0

1 1 1

 Computing Concepts 69

Example 2.44 Consider the following system that has two AND gates:

I1

I2

O1

I3

O2

Solution

Assuming

 I1 = 1, I2 = 0 and I3 = 0

Outputs would be

 O1 = I1◊I2 = 1◊0 = 0

 O2 = I3◊O1 = 0◊0 = 0

Example 2.45 Consider the following system with three AND gates:

I1

I2

O1

I3

O2

I4

O3

Solution

Assuming

 I1 = 1, I2 = 1, I3 = 1 and I4 = 1

Outputs would be:

 O1 = I1◊I2 = 1◊1 = 1

 O2
 = I3◊O1 = 1◊1 = 1

 O3
 = I4◊O2 = 1◊1 = 1

2.8.2 OR Gate

The OR gate is another basic logic gate that gives an output signal of value 1 whenever its one input signal

is of value 1. In other words, the OR gate gives an output signal of value 0 when all its input signals are of

value 0.

Logical Expression

The logical expression for the OR function is:

F = A + B

where, F is the output that depends on inputs A and B.

Symbol

The symbol of the OR gate is shown in Fig. 2.2.

 70 Computing Fundamentals & C Programming

Fig. 2.2 OR Gate

Truth Table

Table 2.13 Truth Table for OR Gate

Input A Input B Output F

0 0 0

0 1 1

1 0 !

1 1 1

Example 2.46 Consider the following confi guration of OR gates:
I1

I2

O1

I3

O2

Solution

When

 I1 = 1, I2 = 0 and I3 = 1

Outputs

 O1 = I1◊I2 = 1◊0 = 1

 O2 = I3◊O1 = 1◊1 = 1

Example 2.47 Consider the following system three OR gates,
I1

I2

O1

I3

O2

O3
I4

Solution

Assuming

 I1 = 0, I2 = 0, I3 = 1 and I4 = 1

Outputs O1, O2 and O3 would be

 O1 = I1◊I2 = 0◊0 = 0

 O2 = I3◊O1 = 1◊0 = 1

 O3 = I4◊O2 = 1◊1 = 1

2.8.3 NOT Gate

The third basic logic gate is NOT gate which produces an output of the opposite state to its input. This logic

gate always has only one input signal and one output signal.

 Computing Concepts 71

Logical Expression

The logical expression for the NOT function is:

F = A
–

where, F is the output that depends on input, A.

Symbol

The symbol of the NOT gate is shown in Fig. 2.3.

Fig. 2.3 NOT gate

Truth Table

Table 2.14 Truth Table for NOT Gate

Input A Input F

0 1

1 0

Example 2.48 Consider two NOT gates confi gured is shown below:

I1
O1 2= I O2

Solution

If I1 = 1, then O1 = I
–
1 = 1 = 0

and therefore

 I2 = O1= 0

 O2 = I
–
1 = 0 = 1

2.9 PROGRAMMING LANGUAGES LO 2.5

The operations of a computer are controlled by a set of instructions (called a computer program). These

instructions are written to tell the computer:

1. what operation to perform

2. where to locate data

3. how to present results

4. when to make certain decisions

The communication between two parties, whether they are machines or human beings, always needs a

common language or terminology. The language used in the communication of computer instructions is

 72 Computing Fundamentals & C Programming

known as the programming language. The computer has its own language and any communication with the

computer must be in its language or translated into this language.

Three levels of programming languages are available. They are:

1. machine languages (low level languages)

2. assembly (or symbolic) languages

3. procedure-oriented languages (high level languages)

2.9.1 Machine Language

As computers are made of two-state electronic devices they can understand only pulse and no-pulse (or ‘1’

and ‘0’) conditions. Therefore, all instructions and data should be written using binary codes 1 and 0. The

binary code is called the machine code or machine language.

Computers do not understand English, Hindi or Tamil. They respond only to machine language. Added

to this, computers are not identical in design, therefore, each computer has its own machine language.

(However, the script 1 and 0, is the same for all computers). This poses two problems for the user.

First, it is diffi cult to understand and remember the various combinations of 1s and 0s representing

numerous data and instructions. Also, writing error-free instructions is a slow process.

Secondly, since every machine has its own machine language, the user cannot communicate with other

computers (If he does not know its language). Imagine a Tamilian making his fi rst trip to Delhi. He would

face enormous obstacles as the language barrier would prevent him from communicating.

Machine languages are usually referred to as the fi rst generation languages.

2.9.2 Assembly Language

The Assembly language, introduced in 1950s, reduced programming complexity and provided some

standardization to build an application. The assembly language, also referred to as the second-generation

programming language, is also a low-level language. In an assembly language, the 0s and 1s of machine

language are replaced with abbreviations or mnemonic code.

The main advantages of an assembly language over a machine language are:

� As we can locate and identify syntax errors in assembly language, it is easy to debug it.

� It is easier to develop a computer application using assembly language in comparison to machine

language.

� Assembly language operates very effi ciently.

An assembly language program consists of a series of instructions and mnemonics that correspond to a

stream of executable instructions. An assembly language instruction consists of a mnemonic code followed

by zero or more operands. The mnemonic code is called the operation code or opcode, which specifi es the

operation to be performed on the given arguments. Consider the following machine code:

10110000 01100001

Its equivalent assembly language representation is:

mov al, 061h

In the above instruction, the opcode “move” is used to move the hexadecimal value 61 into the processor

register named ‘al’. The following program shows the assembly language instructions to subtract two

numbers:

ORG 500 /Origin of program is location 500

LDA SUB /Load subtrahend to AC

 Computing Concepts 73

CMA /Complement AC

INC /Increment AC

ADD MIN /Add minuend to AC

STA DIF /Store difference

HLT /Halt computer

MIN, DEC 56 /Minuend

SUB, DEC -2 /subtrahend

DIF, HEX 0 /Difference stored here

END /End of symbolic program

It should be noted that during execution, the assembly language program is converted into the

machine code with the help of an assembler. The simple assembly language statements had one-to-one

correspondence with the machine language statements. This one-to-one correspondence still generated

complex programs. Then, macroinstructions were devised so that multiple machine language statements

could be represented using a single assembly language instruction. Even today programmers prefer to use

an assembly language for performing certain tasks such as:

� To initialize and test the system hardware prior to booting the operating system. This assembly

language code is stored in ROM

� To write patches for disassembling viruses, in anti-virus product development companies

� To attain extreme optimization, for example, in an inner loop in a processor-intensive algorithm

� For direct interaction with the hardware

� In extremely high-security situations where complete control over the environment is required

� To maximize the use of limited resources, in a system with severe resource constraints

2.9.3 High-Level Languages

High level languages further simplifi ed programming tasks by reducing the number of computer operation

details that had to be specifi ed. High level languages like COBOL, Pascal, FORTRAN, and C are more

abstract, easier to use, and more portable across platforms, as compared to low-level programming

languages. Instead of dealing with registers, memory addresses and call stacks, a programmer can

concentrate more on the logic to solve the problem with the help of variables, arrays or Boolean expressions.

For example, consider the following assembly language code:

LOAD A

ADD B

STORE C

Using FORTRAN, the above code can be represented as:

C = A + B

The above high-level language code is executed by translating it into the corresponding machine

language code with the help of a compiler or interpreter.

High-level languages can be classifi ed into the following three categories:

� Procedure-oriented languages (third generation)

� Problem-oriented languages (fourth generation)

� Natural languages (fi fth generation)

Procedure-oriented Languages

High-level languages designed to solve general-purpose problems are called procedural languages or

third-generation languages. These include BASIC, COBOL, FORTRAN, C, C++, and JAVA, which are

 74 Computing Fundamentals & C Programming

designed to express the logic and procedure of a problem. Although, the syntax of these programming

languages is different, they use English-like commands that are easy to follow. Another major advantage

of third-generation languages is that they are portable. We can put the compiler (or interpreter) on any

computer and create the object code. The following program represents the source code in the C language:

 if(n>10)

 {

 do

 {

 n++;

 }while (n<50);

 }

Problem-oriented Languages

Problem-oriented languages are used to solve specifi c problems and are known as the fourth-generation

languages. These include query Languages, Report Generators and Application Generators which have

simple, English-like syntax rules. Fourth-generation languages (4 GLs) have reduced programming efforts

and overall cost of software development. These languages use either a visual environment or a text

environment for program development similar to that of third-generation languages. A single statement in

a fourth-generation language can perform the same task as multiple lines of a third-generation language.

Further, the programmer just needs to drag and drop from the toolbar, to create various items like buttons,

text boxes, labels, etc. Also, the programmer can quickly create the prototype of the software application.

Natural Languages

Natural languages are designed to make a computer to behave like an expert and solve problems. The

programmer just needs to specify the problem and the constraints for problem-solving. Natural languages

such as LISP and PROLOG are mainly used to develop artifi cial intelligence and expert systems. These

languages are widely known as fi fth generation languages.

2.10 TRANSLATOR PROGRAMS LO 2.5

2.10.1 Assembler

An assembler is a computer program that translates assembly language statements into machine language

codes. The assembler takes each of the assembly language statements from the source code and generates a

corresponding bit stream using 0s and 1s. The output of the assembler in the form of sequence of 0s and 1s

is called object code or machine code. This machine code is fi nally executed to obtain the results.

A modern assembler translates the assembly instruction mnemonics into opcodes and resolves symbolic

names for memory locations and other entities to create the object code. Several sophisticated assemblers

provide additional facilities that control the assembly process, facilitate program development, and aid

debugging. The modern assemblers like Sun SPARC and MIPS based on RISC architectures, optimizes

instruction scheduling to attain effi cient utilization of CPU. The modern assemblers generally include a

macro facility and are called macro assemblers.

Assemblers can be classifi ed as single-pass assemblers and two-pass assemblers. The single-pass

assembler was the fi rst assembler that processes the source code once to replace the mnemonics with the

 Computing Concepts 75

binary code. The single-pass assembler was unable to support advanced source-code optimization. As a

result, the two-pass assembler was developed that read the program twice. During the fi rst pass, all the

variables and labels are read and placed into the symbol table. On the second pass, the label gaps are fi lled

from the table by replacing the label name with the address. This helps to attain higher optimization of the

source code. The translation process of an assembler consists of the following tasks:

� Replacing symbolic addresses like LOOP, by numeric addresses

� Replacing symbolic operation code by machine operation codes

� Reserving storage for the instructions and data

� Translating constants into their machine representation

2.10.2 Compiler

The compiler is a computer program that translates the source code written in a high-level language into

the corresponding object code of the low-level language. This translation process is called compilation. The

entire high-level program is converted into the executable machine code fi le. A program that translates from

a low-level language to a high-level one is a decompiler. Compiled languages include COBOL, FORTRAN,

C, C++, etc.

In 1952, Grace Hopper wrote the fi rst compiler for the A-0 programming language. In 1957, John Backus

at IBM introduced the fi rst complete compiler. With the increasing complexity of computer architectures

and expanding functionality supported by newer programming languages, compilers have become more

and more complex. Though early compilers were written in assembly languages, nowadays it has become

common practice to implement a compiler in the language it compiles. Compilers are also classifi ed as

single-pass compilers and multi-pass compilers. Though single-pass compilers are generally faster than

multi-pass compilers, for sophisticated optimization, multi-pass assemblers are required to generate high-

quality code.

2.10.3 Interpreter

The interpreter is a translation program that converts each high-level program statement into the

corresponding machine code. This translation process is carried out just before the program statement is

executed. Instead of the entire program, one statement at a time is translated and executed immediately.

The commonly used interpreted language is BASIC and PERL. Although, interpreters are easier to create as

compared to compilers, the compiled languages can be executed more effi ciently and are faster.

2.11 PROBLEM-SOLVING TECHNIQUES LO 2.6

In today’s world, a computer is used to solve various types of problems because it takes very less time as

compared to a human being. The following steps are performed while solving a problem:

1. Analyse the given problem.

2. Divide the process used to solve the problem in a series of elementary tasks.

3. Formulate the algorithm to solve the problem.

4. Express the algorithm as a precise notation, which is known as a computer program.

5. Feed the computer program in the computer. CPU interprets the given program, processes the data

accordingly, and generates the result.

6. Send the generated result to the output unit, which displays it.

 76 Computing Fundamentals & C Programming

Algorithms and fl ow charts are two important techniques that help users in solving problems or

accomplishing tasks using a computer.

2.11.1 Algorithms

An algorithm is a complete, detailed, and precise step-by-step method for solving a problem independently

of the software or hardware of the computer. Algorithms are very essential, as they instruct the computer

what specifi c steps it needs to perform to carry out a particular task or to solve a problem. To understand

how an algorithm works, let us consider the following example:

Let us assume that XYZ company gives each of its salespersons Rs 5000 at the starting of the month for

covering various expenses, such as food, lodge, and travel. At the end of the month, the salesperson must

submit the receipts of his/her total expenditures to the company. If the amount is less than Rs 5000, then the

remaining amount must be returned to the company. Now, a simple algorithm can be developed to fi nd out

how much money, if any, should be returned to the company.

1. Calculate the total expense receipts of the month.

2. Subtract this amount from Rs 5000.

3. If the remainder is greater than 0, return the amount to the company.

2.11.2 Top-down Approach of Algorithms

The top-down approach of an algorithm to solve a given problem is also known as divide and conquer. In

this approach, the given problem is divided into two or more sub problems, each of which resembles the

original problem. The solution of each sub problem is taken out independently. Finally, the solution of all

sub problems is combined to obtain the solution of the main problem. One of the most common examples

of the implementation of top-down approach is binary search.

Binary search is a method, which helps search the required data from a given list of data. This method

involves comparing the data to be searched and the data present at the middle position of the list. If the

data available at the middle position of the list is similar to the data to be searched, the search is considered

successful. Otherwise, the list is divided into two parts, left half and right half. The data to be searched is

compared with the data present at the mid position. If it is lesser than the data available at the mid position,

the left half of the list is searched and if it is greater than the data at the mid position, the right half of the

list is searched. This process is repeated until the data to be searched is found or the whole list has been

searched. If the data to be searched is found then the search is successful, otherwise the search becomes

unsuccessful.

2.11.3 Program Verification

Computer programs are regarded as formal mathematical objects and the properties of these computer

programs are subjected to mathematical proofs. Program verifi cation refers to the use of formal,

mathematical techniques to debug a program and its specifi cations. For example, suppose we have coded a

program for implementing binary search. Now, we want to verify whether the coded program is correct or

not. This can be verifi ed by implementing the program on a given list of data.

Consider an array of 11 elements X[11] = {8,18,26,40,47,69,84,115,126,136,177}. Use the binary search

technique to fi nd whether the element ‘26’ is present in this array or not. Now, perform the steps of binary

search method to search the required elements. Here, ‘Low’ represents the location of the fi rst element in

the list, ‘High’ represents the location of the last element in the list, and ‘Mid’ represents the location of the

element available at the middle position in the list. First, search the element ‘26’ in the given array. During

the fi rst iteration, the values of Low, High, and Mid are as follows:

 Computing Concepts 77

� Low = 1

� High = 11

� Mid = 6

The element at the 6th position is ‘69’, which is not the required element. Since, the value of the element

at the 6th position is greater than ‘26’, the algorithm searches the left half of the array. During the second

iteration, the values of Low, High, and Mid are as follows:

� Low = 1

� High = 5

� Mid = 3

The element at the 3rd position is ‘26’, which is the required element. Thus, the search is successful as

the element ‘26’ is present in the array.

Implement the same program twice or thrice on the given list for different elements. If the program gives

the correct result, then it is verifi ed that the program is correct.

2.11.4 Efficiency of an Algorithm

Effi ciency of an algorithm means how fast it can produce the correct result for the given problem. The

effi ciency of an algorithm depends upon its time complexity and space complexity. The complexity of an

algorithm is a function that provides the running time and space for data, depending on the size provided by

us. The two important factors for judging the complexity of an algorithm are as follows:

� Space complexity

� Time complexity

Space complexity of an algorithm refers to the amount of memory required by the algorithm for its

execution and generation of the fi nal output.

Time complexity of an algorithm refers to the amount of computer time required by an algorithm for

its execution. This time includes both compile time and run time. The compile time of an algorithm does

not depend on the instance characteristics of the algorithm. The run time of an algorithm is estimated by

determining the number of various operations, such as addition, subtraction, multiplication, division, load,

and store, executed by it.

 Analysis of Algorithm The analysis of an algorithm determines the amount of resources, such as time

and space required by it for its execution. Generally, the algorithms are formulated to work with the inputs

of arbitrary length. Algorithm analysis provides theoretical estimates required by an algorithm to solve a

problem.

In theoretical notation, the complexity of an algorithm is estimated in asymptotic notations. Asymptotic

notations are used to represent the asymptotic run time of an algorithm. These notations are represented in

terms of function T(n), where n is the set of natural numbers, 1, 2, 3, 4,…, n. The basic notations used to

represent the complexity of an algorithm are:

� Q-notation — It is used to represent the worst case running time of an algorithm.

� O-notation — It is used to provide upper boundary constraints over a given function.

� W-notation — It is used to provide an asymptotic lower bound on the given function.

� o-notation — It is used to denote asymptotic loose upper bound.

� w-notation — It is used to denote asymptotic loose lower bound.

2.11.5 Flow Charts

Now to visualize the working of an algorithm, one needs to take the help of a fl ow chart, which is the

pictorial representation of the algorithm depicting the fl ow of the various steps. If we consider the above

 78 Computing Fundamentals & C Programming

example of the expenses of the salesperson, then the fl ow chart of the algorithm can be represented, as

shown in Fig. 2.4.

Tital
expenses

Start

Yes

No

If
expenses
< Rs 5000

Subtract
expenses from

Rs 5000

Print ‘‘Due
amount’’

Stop

Print ‘‘No
dues’’

Stop

Fig. 2.4 Flow chart representation of an algorithm

Example 2.49 Write an algorithm for fi nding greatest among three numbers.

 Let x, y and z be the numbers. Now, we can follow the algorithm below to determine the greatest number

among the three:

 1. Read the three numbers.

 2. If x > y

a. If x > z, then x is the greatest number.

b. Else, z is the greatest number

 3. Else,

a. If y > z, then y is the greatest number.

b. Else, z is the greatest number.

Example 2.50 Write the algorithm for converting the degree in Celsius from Fahrenheit

 Let us consider x to be the temperature given in Celsius. Now, we need to follow the algorithm below to

determine the temperature in Fahrenheit:

 1. Read x

 2. Multiply x with 9/5.

 3. Add 32 to the multiplied result.

 4. Print the fi nal value which is the temperature in Fahrenheit.

Example 2.51 Write the algorithm for calculating the average of n integers.

 Computing Concepts 79

The algorithm for calculating the average of n integers is as follows:

 1. Read n integers.

 2. Calculate the sum of the integers.

 3. Divide the sum by the total number of integers, that is, n.

 4. Print the fi nal value which is the average of n integers.

Example 2.52 Write the algorithm for checking whether a number is odd or even.

The following is the algorithm to determine whether a number is odd or even:

 1. Read the given number, say x.

 2. Divide x by 2.

 3. If the remainder is 1, then print x is odd.

 4. Else, print x is even.

Example 2.53 Write the algorithm to determine whether a number is positive, negative or zero.

 1. Read the given number, say x.

 2. If x π 0,

a. If x > 0, the value of x is positive.

b. Else, the value of x is negative.

 3. Else, the value of x is zero.

Example 2.54 Write an algorithm to fi nd the factorial of a given number.

 The factorial of a non-negative integer n, which is denoted by n! is the product of all positive integers less

than or equal to 1. The algorithm for determining the factorial of a given number is:

 1. Read the given number, say x.

 2. Multiply the number x with x-1, and store the resultant, say m.

 3. Repeat the step 2, until the value of x becomes 1.

 4. Print the fi nal value, which gives the factorial of the given number.

Example 2.55 Write an algorithm to generate the Fibonacci series.

The Fibonacci series is defi ned by the following expression:

 F(n) =

0 if = 0;

1 if = 1;

F(-1) + F(-2) if > 1;

Ï ¸
Ô Ô
Ì ˝
Ô Ô
Ó ˛

n

n

n n n

The above expression states that after two starting values, each number is the sum of two preceding

numbers. The algorithm for generating the Fibonacci series is:

 1. Read the number of terms in the series, say n.

 2. Set a = 0 and b = 1.

 3. Print the value of a and b.

 4. Set count = 2.

 5. While count £ n, c = a + b.

 6. Print the value of c.

 7. Set a = b and b = c.

 80 Computing Fundamentals & C Programming

8. Increase the value of count by 1.

9. Repeat steps 5 to 8, until count becomes equal to n.

Example 2.56 Write an algorithm to fi nd the factors of a given number.

 1. Read a number, say num.

 2. If num<=0, then go to step 11.

 3. Set i=1.

 4. Repeat step 5 to 10.

 5. If i> num, then go to 10.

 6. Else

 7. Divide num by i.

 8. If the remainder of the division is 0, print i.

 9. Increment i by 1 and go to step 5.

10. Endif.

11. Exit.

A program to implement this algorithm using C language is given in Fig. 2.5

 Program

 #include <stdio.h>

 #include <conio.h>

 void main()

 {

 int num,i,j;

 clrscr();

 printf(“Enter a number to fi nd its factors: “);

 scanf(“%d”,&num);

 printf(“\nFactors of the number %d are: “,num);

 for(i=1;i<=num;i++)

 {

 if(num%i==0)

 printf(“%d\t”,i);

 }

 getch();

 }

 Output

 Enter a number to fi nd its factor:12

 Factors of the number 12 are:1 2 3 4 6 12

Fig. 2.5 Program to fi nd factors of a given number

Example 2.57 Write an algorithm to fi nd the prime factor of a number.

 1. Read a number, say n.

 2. If n<=1, then go to step 12.

 3. Set x=2.

 Computing Concepts 81

 4. Repeat step 5 to 11.

 5. If n<=x num, then go to 12

 6. Else

 7. Divide n by x.

 8. If the remainder of the division is 0, print x.

 9. Set n=n/x.

10. Increment x by 1 and go to step 5.

11. Endif

12. Exit.

A program to implement this algorithm using C language is given in Fig. 2.6

 Program

 #include <stdio.h>

 #include <conio.h>

 void main()

 {

 int n,x;

 clrscr();

 printf(“Enter a number to fi nd its prime factors:”);

 scanf(“%d”,&n);

 if(n<=1)

 {

 printf(“Enter a value greater than 1.”);

 getch();

 exit(0);

 }

 x=2;

 do

 {

 if(n%x==0)

 {

 printf(“%d\t”,x);

 n/=x;

 }

 else

 x++;

 }

 while (x<=n);

 getch();

 }

 Output

 Enter a number to fi nd its prime factors:

 72

 82 Computing Fundamentals & C Programming

 The prime factors of 72 are:

 2 2 2 3 3

 Enter a number to fi nd its prime factors:

 1

 Enter a value greater than 1.

Fig. 2.6 Program to fi nd prime factors of a given number

Example 2.58 Write an algorithm to fi nd the square root of a number.

 1. Read a number, say s.

 2. If s<0, then go to step 16.

 3. Else if s=0

 4. Print the value of sq as 0.

 5. Else

 6. Set n=1.

 7. While (!(s>=n*n && s<(n+1)*(n+1))

 8. Do increment n by 1

 9. End while

10. d=s-(n*n)

11. P=(double)d/(2*n).

12. a=(double)n+p

13. root=(double)a-((p*p)/(2*a));

14. Print the value of root.

15. Endif

16. Exit.

The program in Fig. 2.7 implements above algorithm in C language.

 Program

 #include <stdio.h>

 int main()

 {

 int s,n;

 double d,p,a,root;

 clrscr();

 printf(“Enter a number:”);

 scanf(“%d”,&s);

 if(s<0)

 printf(“Enter a positive integer value.”);

 else if(s==0)

 printf(“Square root of 0 is 0”);

 else

 {

 n=1;

 Computing Concepts 83

 while(!(s>=n*n && s<(n+1)*(n+1)))

 {

 n++;

 }

 d=s-(n*n);

 p=(double)d/(2*n);

 a=(double)n+p;

 root=(double)a-((p*p)/(2*a));

 printf(“\nSquare root of %d is %.3f”,s,root);

 }

 getch();

 }

 Output

 Enter a number:16

 Square root of the 16 is 4.000.

Fig. 2.7 Program to fi nd square root of a given number

Example 2.59 Write an algorithm to fi nd whether the given number is prime or not.

1. Read a number, say n up to which you want to print the prime numbers.

2. Since 1 and 2 are prime numbers, so print them.

3. Check each number up to n whether it is prime number or not.

4. Print all the prime numbers up to n.

The program in Fig. 2.8 illustrates the implementation of this algorithm.

 Program

 #include <stdio.h>

 #include <conio.h>

 #include <math.h>

 void main()

 {

 int n,i,j;

 clrscr();

 printf(“Enter a number up to which you want prime numbers:”);

 scanf(“%d”,&n);

 if(n<=1)

 {

 printf(“Enter a number greater than 1.”);

 getch();

 exit(0);

 }

 printf(“Prime numbers between 1 and %d are:”,n);

 printf(“\n2”);

 84 Computing Fundamentals & C Programming

 for(i=3;i<=n;i++)

 {

 for(j=2;j<=sqrt(i);j++)

 {

 if(i%j==0)

 break;

 }

 if(j>sqrt(i))

 printf(“\n%d”,i);

 }

 getch();

 }

 Output

 Enter a number up to which you want prime numbers:

 5

 Prime numbers between 1 and 5 are:

 2

 3

 5

Fig. 2.8 Program to fi nd prime numbers up to a given number

Example 2.60 Give a fl ow chart for addition of two numbers.

Input
Input

x
y

Sum = +x y

Print
Sum

Stop

Start

 Computing Concepts 85

Example 2.61 Give a fl ow chart to print he average of three numbers.

Print
Average

Input
Input

x
y

Input z

Sum = + +
Average = Sum/3

x y z

Stop

Start

Example 2.62 Give a fl ow chart for Example 2.49

Input
Input

x
y

Start

Print
is the

largest
number

x Yes Yes

No No

Print
z is the
largest
number

If
>x z

If
>x Y

If
>y z

Yes

No

Print
z is the
largest
number

Stop

Print
y is the
largest
number

 86 Computing Fundamentals & C Programming

Example 2.63 Give a fl ow chart for Example 2.52

Input x

Start

If
remainder

= 1

Yes Print
is oddx

No

Stop

Divide by
2, i.e. /2

x
x

Print
x is even

Example 2.64 Give a fl ow chart to determine the average of 10 numbers.

i = 0
Sum = 0

Start

False

True

Is
< 10

?
i

average =
sum/10

Print average
Input x

sum = + sum
is incremented by 1

x
iStop

 Computing Concepts 87

2.12 USING THE COMPUTER LO 2.6

Computers can be used to solve specifi c problems that may be scientifi c or commercial in nature. In either

case, there are some basic steps involved in using the computers. These are as follows:

� Problem analysis Identify the known and unknown parameters and state the constraints under

which the problem is to be solved. Select a method of solution.

� Collecting information Collect data, information and the documents necessary for solving the

problem and also plan the layout of output results.

� Preparing the computer logic Identify the sequence of operations to be performed in the process

of solving the problem and plan the program logic, preferably using a program fl ow chart.

� Writing the computer program Write the program of instructions for the computer in a suitable

language.

� Testing the program There are usually errors(bugs) in it. Remove all these errors which may be

either in using the language or in the logic.

� Preparing the data Prepare input data in the required form.

� Running the program This may be done either in batch mode or interactive mode. The

computations are performed by the computer and the results are given out.

The use of a particular input/output device depends upon the nature of the problem, type of input data in

the form of output required.

 Learning Outcomes

∑ Computer codes help the computer system to convert the data received in a different number system

to the data in the binary form so that it can be stored and processed in an effi cient manner.

∑ In computer terminology, the number system used to represent data is generally known as positional

number system, because the value of the number represented in this system depends upon the

position of the digits in the given number.

∑ The positional number system can be of four different types, namely, decimal system, binary system,

hexadecimal system and octal system.

∑ We can easily convert the number represented in one system to its equivalent in another system. The

major number system conversions are non-decimal to decimal, decimal to non-decimal and octal to

hexadecimal.

∑ The basic arithmetic operations performed by the computer system are binary addition, binary

multiplication, binary subtraction and binary division.

∑ The basic unit of the hardware components of a computer system is the logic gate.

∑ There are three Basic Logic gates – AND gate, OR gate and NOT gate.

∑ Three levels of programming languages are available – machine languages, assembly languages and

procedure-oriented languages.

∑ Algorithms and fl ow charts are two important techniques that help in solving problem using a

computer.

LO 2.1

LO 2.1

LO 2.1

LO 2.2

LO 2.3

LO 2.4

LO 2.4

LO 2.5

LO 2.6

 88 Computing Fundamentals & C Programming

 Key Terms to Remember

∑ Computer codes: The computer codes are the codes that help in converting the data entered by the

users into the binary form.

∑ Positional number system: The positional number system is a system in which numbers are

represented using certain symbols called digits and the values of these numbers is determined by

taking the position of digits into consideration.

∑ Decimal system: The decimal system is a positional number system that uses base 10 to represent

different values.

∑ Binary system: The binary system is a positional number system that uses base 2 to represent

different values.

∑ Hexadecimal system: The hexadecimal system is a positional number system that uses base 16 to

represent different values.

∑ Octal system: The octal system is a positional number system that uses base 8 to represent different

values.

∑ Number system conversions: The different type of number system conversions can be divided into

three major categories: non-decimal to decimal, decimal to non-decimal and octal to hexadecimal.

∑ ALU: ALU is an important component of CPU that is used to perform various arithmetic and logical

operations in the computer system.

∑ Integer arithmetic: Integer arithmetic refers to various arithmetic operations involving integer

operands only.

∑ Floating-point arithmetic: Floating-point arithmetic refers to various arithmetic operations

involving fl oating-point operands only.

∑ Unsigned binary number: Unsigned binary number is the number with a magnitude of either zero

or greater than zero.

∑ Basic logic gates: Basic logic gates are the building blocks of digital circuits that perform logical

operations such as AND, OR and NOT, on the binary inputs.

∑ Machine Language: The computer instructions written using binary codes 1 and 0 are machine code

or machine language.

∑ Assembly Language: In an assembly language, the 0s and 1s of machine language are replaced with

abbreviations or mnemonic code.

∑ High Level Language: High level language code is executed by translating it into corresponding

machine language code with the help of a compiler or interpreter.

∑ Algorithms: An algorithm is a complete, detailed and precise step-by-step method for solving a

problem independently of the software or hardware of the computer.

∑ Flow charts: A fl ow chart is the pictorial representation of the algorithm depicting the fl ow of the

various steps.

LO 2.1

LO 2.1

LO 2.1

LO 2.1

LO 2.1

LO 2.1

LO 2.2

LO 2.3

LO 2.3

LO 2.3

LO 2.3

LO 2.4

LO 2.5

LO 2.5

LO 2.5

LO 2.6

LO 2.6

 Computing Concepts 89

 Review Questions

Fill in the Blanks

 1. The most common system used by computer systems is _________.

 2. The weight of any digit in the number system generally depends upon its _________ in the

given number.

 3. The binary system represents each type of data in the form of _________ and _________.

 4. The digits in binary system are referred as _________.

 5. The base of any number system depends upon the number of _________ in the system.

 6. Computer designers and professionals generally deal with _________ number system.

 7. The octal system is also known as _________ system.

 8. The octal number 5624 is equivalent to _________ in decimal system.

 9. The binary number 1001010 represents a decimal value of _________.

 10. The hexadecimal system consists of _________ symbols.

 11. Human beings usually supply data to the computer system in the _________ form.

 12. Computer codes help computer systems convert the decimal data into _________ data.

 13. The hexadecimal number B45A is equivalent to _________ in decimal system.

 14. The hexadecimal representation of the octal number 2564 is _________.

 15. The arithmetic operations are usually performed in the computer system by _________ and

_________ unit of the CPU.

 16. The computer arithmetic is also referred to as the _________ arithmetic.

 17. The binary multiplication can be considered as the _________ process of binary

_________.

 18. Unsigned binary number is a number with a magnitude of either _________ or _________.

 19. The different arithmetic laws hold true for _________ as well _________ operations.

 20. Logic gates are the building blocks of digital circuits that perform various ______________

on the binary input.

 21. The values of the input and the corresponding output of the logic gates can be represented

using a table called ______________ .

 22. The output of the ______________ gate is true if any one of the inputs is true.

 23. The ______________ inverts the value of the input for producing the output.

 24. The output of ______________ gate is true if both the inputs are same.

LO 2.1

LO 2.1

LO 2.1

LO 2.1

LO 2.1

LO 2.1

LO 2.1

LO 2.2

LO 2.2

LO 2.2

LO 2.2

LO 2.2

LO 2.2

LO 2.2

LO 2.3

LO 2.3

LO 2.3

LO 2.3

LO 2.3

LO 2.4

LO 2.4

LO 2.4

LO 2.4

LO 2.4

Levels of Diffi culty

: Low; : Medium; : High

 90 Computing Fundamentals & C Programming

 25. The ___________ is a translation program that converts each high-level program statement

into the corresponding machine code.

 26. An __________is a complete, detailed and precise step-by-step method for solving a

problem independently of the software or hardware of the computer.

 27. A fl ow chart is the __________ of the algorithm depicting the fl ow of the various steps.

Multiple Choice Questions

 1. Which of the following is not a positional number system?

 A. Octal system B. Decimal system

 C. Binary system D. Roman number system

 2. Human beings usually employ the following number system for their routine computations:

 A. Decimal system B. Octal system

 C. Binary system D. Hexadecimal system

 3. The number system with base 2 is known as:

 A. Decimal system B. Binary system

 C. Octal system D. Hexadecimal system

 4. The 4-bit binary equivalent of the decimal number 6 is:

 A. 0111 B. 1000

 C. 0010 D. 0110

 5. The octal representation of 15 is:

 A. 17 B. 16

 C. 15 D. 14

 6. Which of the following form of data is processed more effi ciently by the computer system?

 A. Binary data B. Octal data

 C. Hexadecimal data D. Decimal data

 E. Hexadecimal point F. None of the above

 7. The system implemented by the computer systems to convert the decimal numbers into

equivalent binary numbers is known as:

 A. BCD system B. Octal system

 C. Weighted system D. Gray code system

 8. Which of the following codes is a type of digital code?

 A. ASCII code B. Packed code

 C. 8421 code D. None of the above

 9. Which of the following is not a valid computer number system conversion?

 A. Non-decimal to decimal B. Decimal to non-decimal

 C. Octal to hexadecimal D. Roman to decimal

 10. The hexadecimal equivalent of the octal number 4263 is:

 A. 8B3 B. A42

 C. 923 D. BA31

 11. Which of the following is not an appropriate operand for arithmetic operations?

 A. Integers B. Strings

 C. Real D. None of the above

LO 2.5

LO 2.6

LO 2.6

LO 2.1

LO 2.1

LO 2.1

LO 2.2

LO 2.2

LO 2.2

LO 2.2

LO 2.2

LO 2.2

LO 2.2

LO 2.3

 Computing Concepts 91

 12. Which of the following is not a valid binary addition rule?

 A. 0 + 0 = 0 B. 1 + 0 = 1

 C. 1 + 1 = 0 with a carry 1 D. 1 + 1 = 0 with no carry

 13. What is the result of the binary addition performed on the numbers 1001 and 0101?

 A. 0010 B. 1110

 C. 1010 D. 1111

 14. The binary multiplication can be considered as the repetitive process of:

 A. Binary addition B. Binary subtraction

 C. Binary division D. Binary multiplication

 15. Which of the following is not a valid binary multiplication rule?

 A. 0 × 0 = 1 B. 0 × 1 = 0

 C. 1 × 1 = 1 D. 1 × 0 = 0

 16. What is the result of the binary multiplication performed on the numbers 12 and 10?

 A. 101011 B. 0111101

 C. 1111000 D. 1010000

 17. Which of the following is not a valid binary subtraction rule?

 A. 0 – 0 = 0 B. 1 – 0 = 1 with no borrow

 C. 1 – 1 = 0 D. 0 – 1 = 1 with no borrow

 18. What is the result of binary subtraction performed on the numbers 1001 and 0101?

 A. 0001 B. 0101

 C. 1000 D. 0011

 19. Binary division is closely related with the arithmetic operation:

 A. Binary addition B. Binary subtraction

 C. Binary multiplication D. Binary division

 E. Whether the number is zero F. None of the above

 20. Which of the following is not an arithmetic law?

 A. Identity law B. Distributive law

 C. Commutative law D. Law of negation

 21. Which of the following components is actually responsible for executing an instruction?

 A. Software B. Hardware

 C. Flip-fl ops D. Counter

 22. Which of the following are the building blocks of digital circuit?

 A. Flip-fl ops B. Logic gates

 C. Register D. None of the above

 23. Which of the following types of operations can be performed by logic gates?

 A. Assignment operation B. Arithmetical operation

 C. Logical operation D. Shift operation

 24. Which of the following digital circuits is used to add binary numbers?

 A. Register B. Logic gates

 C. Adder D. All of the above

 25. Which of the following logic gates is also known as inverter?

 A. AND B. OR

 C. NAND D. NOT

LO 2.3

LO 2.3

LO 2.3

LO 2.3

LO 2.3

LO 2.3

LO 2.3

LO 2.3

LO 2.3

LO 2.4

LO 2.4

LO 2.4

LO 2.4

LO 2.4

 92 Computing Fundamentals & C Programming

Discussion Questions

 1. What do you understand by positional number system and why is it called a positional

system?

 2. What are the different types of positional number systems? Which of the positional systems

is mostly used by the computer systems?

 3. Explain the different technical terms associated with the binary system.

 4. What is the weight of digit 5 in the decimal number 9536?

 5. What is the 4-bit binary representation of the decimal number 12?

 6. Explain in detail the concept of hexadecimal system.

 7. Why are binary codes used by computer systems

 8. What do you understand by digital codes? Explain the two different types of digital codes.

 9. Why are the number system conversions implemented in a computer system?

 10. Explain in detail the different categories of number system conversions.

 11. How is binary number converted into its decimal equivalent?

 12. What is the hexadecimal representation of octal number 6235?

 13. What is the binary equivalent of 859.238?

 14. What do you understand by computer arithmetic? Are the rules for performing computer

arithmetic and decimal arithmetic same?

 15. What are the different computer arithmetic operations? Explain all of them with their

associated set of rules.

 16. Perform the binary addition of 1000010, 0111010 and 11110101.

 17. Why is binary multiplication considered as the process of repetitive addition?

 18. Perform the binary multiplication of 15 and 17.

 19. Perform the binary division of 141 and 21.

 20. What are the different laws of arithmetic?

 21. What are logic gates? Why are they important?

 22. Explain the different types of basic logic gates.

 23. Explain the basic concept of truth table and also describe the truth tables of all the basic

logic gates.

 24. Explain the basic steps required to convert a Boolean expression into logic gates.

 25. What is assembly language? What are its main advantages?

 26. What is high level language? What are the different types of high level languages?

 27. What do we understand by a compiler and an assembler?

 28. What is fl ow chart? How is it different from an algorithm?

 29. What are the functions of a fl ow chart?

LO 2.1

LO 2.1

LO 2.1

LO 2.1

LO 2.2

LO 2.2

LO 2.2

LO 2.2

LO 2.2

LO 2.2

LO 2.2

LO 2.2

LO 2.2

LO 2.3

LO 2.3

LO 2.3

LO 2.3

LO 2.3

LO 2.3

LO 2.3

LO 2.4

LO 2.4

LO 2.4

LO 2.4

LO 2.5

LO 2.5

LO 2.5

LO 2.6

LO 2.6

 Overview of C 93

3.1 INTRODUCTION

C is one of the most popular computer languages today because it is a structured, high-level,

machine independent language. It allows software developers to develop programs without

worrying about the hardware platforms where they will be implemented.

The root of all modern languages is ALGOL, introduced in the early 1960s. ALGOL was

the fi rst computer language to use a block structure. ALGOL gave the concept of structured

programming. Computer scientists like Corrado Bohm, Guiseppe Jacopini and Edsger Dijkstra

popularized this concept during 1960s.

In 1967, Martin Richards developed a language called BCPL (Basic Combined Programming

Language) primarily for writing system software. In 1970, Ken Thompson created a language

using many features of BCPL and called it simply B. B was used to create early versions of UNIX

operating system at Bell Laboratories. Both BCPL and B were “typeless” system programming

languages.

C was evolved from ALGOL, BCPL and B by Dennis Ritchie at the Bell Laboratories in

1972. C uses many concepts from these languages and added the concept of data types and other

powerful features. UNIX operating system, which was also developed at Bell Laboratories, was

coded almost entirely in C.

L
E

A
R

N
IN

G
 O

B
J
E

C
T
IV

E
S

A er reading this chapter, you will be able to

LO 3.1 Outline importance of C programming language

LO 3.2 Exemplify the elementary C concepts through sample programs

LO 3.3  Illustrate the use of user-defi ned func ons and math func ons through

sample programs

LO 3.4  Describe the basic structure of C program

LO 3.5 Recognize the programming style of C language

LO 3.6  Describe how a C program is compiled and executed

IV
E

S

A er reading this chapter o ill be able to

CHAPT ERCHAPT ER

33
Overview of COverview of C

 94 Computing Fundamentals & C Programming

During 1970s, C had evolved into what is now known as “traditional C”. After publication of the book ‘The

C Programming Language’ by Brian Kerningham and Dennis Ritchie in 1978, C came to be known as “K&R

C” among the programming community.

To assure that the C language remains standard, in 1983, American National Standards Institute (ANSI)

appointed a technical committee to defi ne a standard for C, which approved a version of C in December

1989 which is now known as ANSI C. It was then approved by the International Standards Organization

(ISO) in 1990. This version of C is also referred to as C89.

During 1990s, C++, a language entirely based on C, underwent a number of improvements and changes

and became an ANSI/ISO approved language in November 1977. C++ added several new features to C to

make it not only a true object-oriented language but also a more versatile language. During the same period,

Sun Microsystems of USA created a new language Java modelled on C and C++.

Although C++ and Java were evolved out of C, the standardization committee of C felt that a few

features of C++/Java, if added to C, would enhance the usefulness of the language. The result was the 1999

standard for C. This version is usually referred to as C99. The history and development of C is illustrated in

Fig. 3.1.

Fig. 3.1 History of ANSI C

 Overview of C 95

3.2 IMPORTANCE OF C LO 3.1

The increasing popularity of C is probably due to its many desirable qualities. It is a robust language

whose rich set of built-in functions and operators can be used to write any complex program. The C

compiler combines the capabilities of an assembly language with the features of a high-level language and

therefore it is well suited for writing both system software and business packages. In fact, many of the C

compilers available in the market are written in C.

Programs written in C are effi cient and fast. This is due to its variety of data types and powerful

operators. It is many times faster than BASIC. For example, a program to increment a variable from 0 to

15000 takes about one second in C while it takes more than 50 seconds in an interpreter BASIC.

There are only 32 keywords in ANSI C and its strength lies in its built-in functions. Several standard

functions are available which can be used for developing programs.

C is highly portable. This means that C programs written for one computer can be run on another with

little or no modifi cation. Portability is important if we plan to use a new computer with a different operating

system.

C language is well suited for structured programming, thus requiring the user to think of a problem

in terms of function modules or blocks. A proper collection of these modules would make a complete

program. This modular structure makes program debugging, testing and maintenance easier.

Another important feature of C is its ability to extend itself. A C program is basically a collection of

functions that are supported by the C library. We can continuously add our own functions to C library. With

the availability of a large number of functions, the programming task becomes simple.

Before discussing specifi c features of C, we shall look at some sample C programs, and analyse and

understand how they work.

3.3 SAMPLE PROGRAM 1: PRINTING A MESSAGE LO 3.2

Consider a very simple program given in Fig. 3.2.

main()

{

/*…………printing begins………………*/

 printf(“I see, I remember”);

/*………………printing ends…………………*/

}

 Fig. 3.2 A program to print one line of text

This program when executed will produce the following output:

 I see, I remember

Let us have a close look at the program. The fi rst line informs the system that the name of the program is

main and the execution begins at this line. The main() is a special function used by the C system to tell the

computer where the program starts. Every program must have exactly one main function. If we use more

than one main function, the compiler cannot understand which one marks the beginning of the program.

 96 Computing Fundamentals & C Programming

The empty pair of parentheses immediately following main indicates that the function main has no

arguments (or parameters).

The opening brace “{ ” in the second line marks the beginning of the function main and the closing

brace “}” in the last line indicates the end of the function. In this case, the closing brace also marks the end

of the program. All the statements between these two braces form the function body. The function body

contains a set of instructions to perform the given task.

In this case, the function body contains three statements out of which only the printf line is an

executable statement. The lines beginning with /* and ending with */ are known as comment lines. These

are used in a program to enhance its readability and understanding. Comment lines are not executable

statements and therefore anything between /* and */ is ignored by the compiler. In general, a comment can

be inserted wherever blank spaces can occur—at the beginning, middle or end of a line—“but never in the

middle of a word”.

Although comments can appear anywhere, they cannot be nested in C. That means, we cannot have

comments inside comments. Once the compiler fi nds an opening token, it ignores everything until it fi nds a

closing token. The comment line

/* = = = =/* = = = = */ = = = = */

is not valid and therefore results in an error.

Since comments do not affect the execution speed and the size of a compiled program, we should use

them liberally in our programs. They help the programmers and other users in understanding the various

functions and operations of a program and serve as an aid to debugging and testing. We shall see the use of

comment lines more in the examples that follow.

Let us now look at the printf() function, the only executable statement of the program.

printf(“I see, I remember”);

printf is a predefi ned standard C function for printing output. Predefi ned means that it is a function that

has already been written and compiled, and linked together with our program at the time of linking.

The concepts of compilation and linking are explained later in this chapter. The printf function causes

everything between the starting and the ending quotation marks to be printed out. In this case, the output

will be:

 I see, I remember

Note that the print line ends with a semicolon. Every statement in C should end with a semicolon (;)

mark.

Suppose we want to print the above quotation in two lines as

 I see,

 I remember!

This can be achieved by adding another printf function as shown below:

 printf(”I see, \n”);

 printf(“I remember !”);

The information contained between the parentheses is called the argument of the function. This argument

of the fi rst printf function is “I see, \n” and the second is “I remember !”. These arguments are simply

strings of characters to be printed out.

Notice that the argument of the fi rst printf contains a combination of two characters \ and n at the end

of the string. This combination is collectively called the newline character. A newline character instructs the

computer to go to the next (new) line. It is similar in concept to the carriage return key on a typewriter. After

printing the character comma (,) the presence of the newline character \n causes the string “I remember !”

to be printed on the next line. No space is allowed between \ and n.

 Overview of C 97

If we omit the newline character from the fi rst printf statement, then the output will again be a single

line as shown below.

I see, I remember !

This is similar to the output of the program in Fig. 3.2. However, note that there is no space between and

I.

It is also possible to produce two or more lines of output by one printf statement with the use of newline

character at appropriate places. For example, the statement

printf(“I see,\n I remember !”);

will output

I see,

I remember !

while the statement

 printf(“I\n.. see,\n… … … I\n… … … remember !”);

will print out

I

.. see,

… … … I

… … … remember !

Note Some authors recommend the inclusion of the statement.

#include <stdio.h>

at the beginning of all programs that use any input/output library functions. However, this is not necessary

for the functions printf and scanf which have been defi ned as a part of the C language.

Before we proceed to discuss further examples, we must note one important point. C does make

a distinction between uppercase and lowercase letters. For example, printf and PRINTF are not the

same. In C, everything is written in lowercase letters. However, uppercase letters are used for symbolic

names representing constants. We may also use uppercase letters in output strings like “I SEE” and “I

REMEMBER”.

The above example that printed I see, I remember is one of the simplest programs. Figure 3.3 highlights

the general format of such simple programs. All C programs need a main function.

main () Function name

Program statements

End of program

Start of program

Fig. 3.3 Format of simple C programs

3.3.1 The main Function

The main is a part of every C program. C permits different forms of main statement. Following forms are

allowed.

 98 Computing Fundamentals & C Programming

 main()

 int main()

 void main()

 main(void)

 void main(void)

 int main(void)

The empty pair of parentheses indicates that the function has no arguments. This may be explicitly

indicated by using the keyword void inside the parentheses. We may also specify the keyword int or void

before the word main. The keyword void means that the function does not return any information to the

operating system and int means that the function returns an integer value to the operating system. When int

is specifi ed, the last statement in the program must be “return 0”. For the sake of simplicity, we use the fi rst

form in our programs.

3.4 SAMPLE PROGRAM 2: ADDING TWO NUMBERS LO 3.2

Consider another program, which performs addition on two numbers and displays the result. The complete

program is shown in Fig. 3.4.

 /* Programm ADDITION line-1 */

 /* Written by EBG line-2 */

 main() /* line-3 */

 { /* line-4 */

 int number; /* line-5 */

 fl oat amount; /* line-6 */

 /* line-7 */

 number = 100; /* line-8 */

 /* line-9 */

 amount = 30.75 + 75.35; /* line-10 */

 printf(“%d\n”,number); /* line-11 */

 printf(“%5.2f”,amount); /* line-12 */

 } /* line-13 */

Fig. 3.4 Program to add two numbers

This program when executed will produce the following output:

100

106.10

The fi rst two lines of the program are comment lines. It is a good practice to use comment lines in the

beginning to give information such as name of the program, author, date, etc. Comment characters are also

used in other lines to indicate line numbers.

The words number and amount are variable names that are used to store numeric data. The numeric

data may be either in integer form or in real form. In C, all variables should be declared to tell the compiler

 Overview of C 99

what the variable names are and what type of data they hold. The variables must be declared before they

are used. In lines 5 and 6, the declarations

 int number;

 fl oat amount;

tell the compiler that number is an integer (int) and amount is a fl oating (fl oat) point number. Declaration

statements must appear at the beginning of the functions as shown in Fig. 3.4. All declaration statements

end with a semicolon; C supports many other data types and they are discussed in detail in Chapter 4.

The words such as int and fl oat are called the keywords and cannot be used as variable names. A list of

keywords is given in Chapter 4.

Data is stored in a variable by assigning a data value to it. This is done in lines 8 and 10. In line-8, an

integer value 100 is assigned to the integer variable number and in line-10, the result of addition of two

real numbers 30.75 and 75.35 is assigned to the fl oating point variable amount. The statements

number = 100;

amount = 30.75 + 75.35;

are called the assignment statements. Every assignment statement must have a semicolon at the end.

The next statement is an output statement that prints the value of number. The print statement

printf(“%d\n”, number);

contains two arguments. The fi rst argument “%d” tells the compiler that the value of the second argument

number should be printed as a decimal integer. Note that these arguments are separated by a comma. The

newline character \n causes the next output to appear on a new line.

The last statement of the program

printf(“%5.2f”, amount);

prints out the value of amount in fl oating point format. The format specifi cation %5.2f tells the compiler

that the output must be in fl oating point, with fi ve places in all and two places to the right of the decimal

point.

3.5 SAMPLE PROGRAM 3: INTEREST CALCULATION LO 3.2

The program in Fig. 3.5 calculates the value of money at the end of each year of investment, assuming an

interest rate of 11 percent and prints the year, and the corresponding amount, in two columns. The output

is shown in Fig. 3.6 for a period of 10 years with an initial investment of 5000.00. The program uses the

following formula:

 Value at the end of year = Value at start of year (1 + interest rate)

In the program, the variable value represents the value of money at the end of the year while amount

represents the value of money at the start of the year. The statement

amount = value ;

makes the value at the end of the current year as the value at start of the next year.

 /*—————————— INVESTMENT PROBLEM ——————————*/

 #defi ne PERIOD 10

 #defi ne PRINCIPAL 5000.00

 /*—————————— MAIN PROGRAM BEGINS ——————————*/

 100 Computing Fundamentals & C Programming

 main()

 { /*————————— DECLARATION STATEMENTS ————————*/

 int year;

 fl oat amount, value, inrate;

 /*————————— ASSIGNMENT STATEMENTS —————————*/

 amount = PRINCIPAL;

 inrate = 0.11;

 year = 0;

 /*————————— COMPUTATION STATEMENTS —————————*/

 /*——————— COMPUTATION USING While LOOP ————————*/

 while(year <= PERIOD)

 { printf(“%2d %8.2f\n”,year, amount);

 value = amount + inrate * amount;

 year = year + 1;

 amount = value;

 }

 /*——————————— while LOOP ENDS ——————————*/

 }

 /*———————————— PROGRAM ENDS ——————————*/

Fig. 3.5 Program for investment problem

Let us consider the new features introduced in this program. The second and third lines begin with

#defi ne instructions. A #defi ne instruction defi nes value to a symbolic constant for use in the program.

Whenever a symbolic name is encountered, the compiler substitutes the value associated with the

name automatically. To change the value, we have to simply change the defi nition. In this example, we

have defi ned two symbolic constants PERIOD and PRINCIPAL and assigned values 10 and 5000.00

respectively. These values remain constant throughout the execution of the program.

 0 5000.00

 1 5550.00

 2 6160.50

 3 6838.15

 4 7590.35

 5 8425.29

 6 9352.07

 7 10380.00

 8 11522.69

 9 12790.00

 10 14197.11

Fig. 3.6 Output of the investment program

 Overview of C 101

3.5.1 The #define Directive

A #defi ne is a preprocessor compiler directive and not a statement. Therefore #defi ne lines should not end

with a semicolon. Symbolic constants are generally written in uppercase so that they are easily distinguished

from lowercase variable names. #defi ne instructions are usually placed at the beginning before the main()

function. Symbolic constants are not declared in declaration section.

We must note that the defi ned constants are not variables. We may not change their values within the

program by using an assignment statement. For example, the statement

PRINCIPAL = 10000.00;

is illegal.

The declaration section declares year as integer and amount, value and inrate as fl oating point numbers.

Note all the fl oating-point variables are declared in one statement. They can also be declared as

fl oat amount;

fl oat value;

fl oat inrate;

When two or more variables are declared in one statement, they are separated by a comma.

All computations and printing are accomplished in a while loop. while is a mechanism for evaluating

repeatedly a statement or a group of statements. In this case as long as the value of year is less than or equal

to the value of PERIOD, the four statements that follow while are executed. Note that these four statements

are grouped by braces. We exit the loop when year becomes greater than PERIOD.

C supports the basic four arithmetic operators (–, +, *, /) along with several others. They are discussed in

Chapter 5.

3.6 SAMPLE PROGRAM 4: USE OF SUBROUTINES LO 3.3

So far, we have used only printf function that has been provided for us by the C system. The program

shown in Fig. 3.7 uses a user-defi ned function. A function defi ned by the user is equivalent to a subroutine

in FORTRAN or subprogram in BASIC.

Figure 3.7 presents a very simple program that uses a mul () function. The program will print the

following output.

 Multiplication of 5 and 10 is 50

 /*————————— PROGRAM USING FUNCTION —————————*/

 int mul (int a, int b); /*——— DECLARATION ——————*/

 /*—————————— MAIN PROGRAM BEGINS ——————————*/

 main ()

 {

 int a, b, c;

 a = 5;

 b = 10;

 c = mul (a,b);

 printf (“multiplication of %d and %d is %d”,a,b,c);

 102 Computing Fundamentals & C Programming

 }

 /* —————————— MAIN PROGRAM ENDS

 MUL() FUNCTION STARTS —————————————*/

 int mul (int x, int y)

 int p;

 {

 p = x*y;

 return(p);

 }

 /* —————————————— MUL () FUNCTION ENDS ————————————*/

 Fig. 3.7 A program using a user-defi ned function

The mul () function multiplies the values of x and y and the result is returned to the main () function

when it is called in the statement

 c = mul (a, b);

The mul () has two arguments x and y that are declared as integers. The values of a and b are passed on

to x and y respectively when the function mul () is called.

3.7 SAMPLE PROGRAM 5: USE OF MATH FUNCTIONS LO 3.3

We often use standard mathematical functions such as cos, sin, exp, etc. We shall see now the use of a

mathematical function in a program. The standard mathematical functions are defi ned and kept as a part

of C math library. If we want to use any of these mathematical functions, we must add an #include

instruction in the program. Like #defi ne, it is also a compiler directive that instructs the compiler to link the

specifi ed mathematical functions from the library. The instruction is of the form

#include <math.h>

math.h is the fi lename containing the required function. Figure 3.8 illustrates the use of cosine function.

The program calculates cosine values for angles 0, 10, 20………….180 and prints out the results with

headings.

 /*——————— PROGRAM USING COSINE FUNCTION ——————— */

 #include <math.h>

 #defi ne PI 3.1416

 #defi ne MAX 180

 main ()

 {

 int angle;

 fl oat x,y;

 angle = 0;

 printf(“ Angle Cos(angle)\n\n”);

 while(angle <= MAX)

 Overview of C 103

 {

 x = (PI/MAX)*angle;

 y = cos(x);

 printf(“%15d %13.4f\n”, angle, y);

 angle = angle + 10;

 }

 }

 Output

 Angle Cos(angle)

 0 1.0000

 10 0.9848

 20 0.9397

 30 0.8660

 40 0.7660

 50 0.6428

 60 0.5000

 70 0.3420

 80 0.1736

 90 –0.0000

 100 –0.1737

 110 –0.3420

 120 –0.5000

 130 –0.6428

 140 –0.7660

 150 –0.8660

 160 –0.9397

 170 –0.9848

 180 –1.0000

 Fig. 3.8 Program using a math function

Another #include instruction that is often required is

#include <stdio.h>

stdio.h refers to the standard I/O header fi le containing standard input and output functions

3.7.1 The #include Directive

As mentioned earlier, C programs are divided into modules or functions. Some functions are written by

users, like us, and many others are stored in the C library. Library functions are grouped category-wise and

stored in different fi les known as header fi les. If we want to access the functions stored in the library, it is

necessary to tell the compiler about the fi les to be accessed.

This is achieved by using the preprocessor directive #include as follows:

#include<fi lename>

 104 Computing Fundamentals & C Programming

fi lename is the name of the library fi le that contains the required function defi nition. Preprocessor directives

are placed at the beginning of a program.

A list of library functions and header fi les containing them are given in Appendix III.

3.8 BASIC STRUCTURE OF C PROGRAMS LO 3.4

The examples discussed so far illustrate that a C program can be viewed as a group of building blocks

called functions. A function is a subroutine that may include one or more statements designed to perform a

specifi c task. To write a C program, we fi rst create functions and then put them together. A C program may

contain one or more sections as shown in Fig. 3.9.

Fig. 3.9 An overview of a C program

The documentation section consists of a set of comment lines giving the name of the program, the author

and other details, which the programmer would like to use later. The link section provides instructions to

the compiler to link functions from the system library. The defi nition section defi nes all symbolic constants.

There are some variables that are used in more than one function. Such variables are called global

variables and are declared in the global declaration section that is outside of all the functions. This section

also declares all the user-defi ned functions.

Every C program must have one main() function section. This section contains two parts, declaration

part and executable part. The declaration part declares all the variables used in the executable part. There

is at least one statement in the executable part. These two parts must appear between the opening and the

closing braces. The program execution begins at the opening brace and ends at the closing brace. The

 Overview of C 105

closing brace of the main function section is the logical end of the program. All statements in the declaration

and executable parts end with a semicolon(;).

The subprogram section contains all the user-defi ned functions that are called in the main function.

User-defi ned functions are generally placed immediately after the main function, although they may appear

in any order.

All sections, except the main function section may be absent when they are not required.

3.9 PROGRAMMING STYLE LO 3.5

Unlike some other programming languages (COBOL, FORTRAN, etc.,) C is a free-form_language. That

is, the C compiler does not care, where on the line we begin typing. While this may be a licence for bad

programming, we should try to use this fact to our advantage in developing readable programs. Although

several alternative styles are possible, we should select one style and use it with total consistency.

First of all, we must develop the habit of writing programs in lowercase letters. C program statements

are written in lowercase letters. Uppercase letters are used only for symbolic constants.

Braces, group program statements together and mark the beginning and the end of functions. A proper

indentation of braces and statements would make a program easier to read and debug. Note how the braces

are aligned and the statements are indented in the program of Fig. 3.5.

Since C is a free-form language, we can group statements together on one line. The statements

 a = b;

 x = y + 1;

 z = a + x;

can be written on one line as

a = b; x = y+1; z = a+x;

The program

 main()

 {

 printf(“hello C”);

 }

may be written in one line like

 main() {printf(“Hello C”)};

However, this style makes the program more diffi cult to understand and should not be used. In this book,

each statement is written on a separate line.

The generous use of comments inside a program cannot be overemphasized. Judiciously inserted

comments not only increase the readability but also help to understand the program logic. This is very

important for debugging and testing the program.

3.10 EXECUTING A ‘C’ PROGRAM LO 3.6

Executing a program written in C involves a series of steps. These are:

 1. Creating the program;

 2. Compiling the program;

 106 Computing Fundamentals & C Programming

 3. Linking the program with functions that are needed from the C library; and

 4. Executing the program.

Figure 3.10 illustrates the process of creating, compiling and executing a C program. Although these

steps remain the same irrespective of the operating system, system commands for implementing the steps

and conventions for naming fi les may differ on different systems.

System Ready

Program Code

C Compiler

System Library

Source Program

Object Code

No Errors

No

Executable Object Code

Yes

Logic Error

Enter Program

Edit
Source Program

Compile
Source Program

Link with
System Library

Execute
Object Code

Input Data

CORRECT OUTPUT

Stop

Syntax
Errors ?

Logic and Data
Errors ?

Data Error

Fig. 3.10 Process of compiling and running a C program

An operating system is a program that controls the entire operation of a computer system. All input/

output operations are channelled through the operating system. The operating system, which is an interface

between the hardware and the user, handles the execution of user programs.

The two most popular operating systems today are UNIX (for minicomputers) and MS-DOS (for

microcomputers). We shall discuss briefl y the procedure to be followed in executing C programs under both

these operating systems in the following sections.

 Overview of C 107

3.11 UNIX SYSTEM LO 3.6

3.11.1 Creating the Program

Once we load the UNIX operating system into the memory, the computer is ready to receive program.

The program must be entered into a fi le. The fi le name can consist of letters, digits and special characters,

followed by a dot and a letter c. Examples of valid fi le names are:

hello.c

program.c

ebg1.c

The fi le is created with the help of a text editor, either ed or vi. The command for calling the editor and

creating the fi le is

ed fi lename

If the fi le existed before, it is loaded. If it does not yet exist, the fi le has to be created so that it is ready

to receive the new program. Any corrections in the program are done under the editor. (The name of your

system’s editor may be different. Check your system manual.)

When the editing is over, the fi le is saved on disk. It can then be referenced any time later by its fi le

name. The program that is entered into the fi le is known as the source program, since it represents the

original form of the program.

3.11.2 Compiling and Linking

Let us assume that the source program has been created in a fi le named ebg1.c. Now the program is ready

for compilation. The compilation command to achieve this task under UNIX is

cc ebg1.c

The source program instructions are now translated into a form that is suitable for execution by the

computer. The translation is done after examining each instruction for its correctness. If everything is

alright, the compilation proceeds silently and the translated program is stored on another fi le with the name

ebg1.o. This program is known as object code.

Linking is the process of putting together other program fi les and functions that are required by the

program. For example, if the program is using exp() function, then the object code of this function should

be brought from the math library of the system and linked to the main program. Under UNIX, the linking

is automatically done (if no errors are detected) when the cc command is used.

If any mistakes in the syntax and semantics of the language are discovered, they are listed out and the

compilation process ends right there. The errors should be corrected in the source program with the help of

the editor and the compilation is done again.

The compiled and linked program is called the executable object code and is stored automatically in

another fi le named a.out.

Note that some systems use different compilation command for linking mathematical functions.

cc fi lename - lm

is the command under UNIPLUS SYSTEM V operating system.

3.11.3 Executing the Program

Execution is a simple task. The command

a.out

 108 Computing Fundamentals & C Programming

would load the executable object code into the computer memory and execute the instructions. During

execution, the program may request for some data to be entered through the keyboard. Sometimes the

program does not produce the desired results. Perhaps, something is wrong with the program logic or

data. Then it would be necessary to correct the source program or the data. In case the source program is

modifi ed, the entire process of compiling, linking and executing the program should be repeated.

3.11.4 Creating Your Own Executable File

Note that the linker always assigns the same name a.out. When we compile another program, this fi le will

be overwritten by the executable object code of the new program. If we want to prevent from happening, we

should rename the fi le immediately by using the command.

 mv a.out name

We may also achieve this by specifying an option in the cc command as follows:

cc –o name source-fi le

This will store the executable object code in the fi le name and prevent the old fi le a.out from being

destroyed.

3.11.5 Multiple Source Files

To compile and link multiple source program fi les, we must append all the fi les names to the cc command.

cc fi lename-1.c …. fi lename-n.c

These fi les will be separately compiled into object fi les called

fi lename-i.o

and then linked to produce an executable program fi le a.out as shown in Fig. 3.11.

.C .C

a.out

.C

Compiler and
preprocessor

.O .O .O Library

Linker

Fig. 3.11 Compilation of multiple fi les

It is also possible to compile each fi le separately and link them later. For example, the commands

cc –c mod1.c

cc –c mod2.c

will compile the source fi les mod1.c and mod2.c into objects fi les mod1.o and mod2.o. They can be linked

together by the command

 cc mod1.o mod2.o

we may also combine the source fi les and object fi les as follows:

cc mod1.c mod2.o

Only mod1.c is compiled and then linked with the object fi le mod2.o. This approach is useful when one

of the multiple source fi les need to be changed and recompiled or an already existing object fi les is to be

used along with the program to be compiled.

 Overview of C 109

3.12 MS-DOS SYSTEM LO 3.6

The program can be created using any word processing software in non-document mode. The fi le name

should end with the characters “.c” like program.c, pay.c, etc. Then the command

MSC pay.c

under MS-DOS operating system would load the program stored in the fi le pay.c and generate the object

code. This code is stored in another fi le under name pay.obj. In case any language errors are found, the

compilation is not completed. The program should then be corrected and compiled again.

The linking is done by the command

LINK pay.obj

which generates the executable code with the fi lename pay.exe. Now the command

pay

would execute the program and give the results.

 Learning Outcomes

∑ C is a structured, high-level, machine independent language.

∑ ANSI C and C99 are the standardized versions of C language.

∑ C combines the capabilities of assembly language with the features of a high level language.

∑ C is robust, portable and structured programming language.

∑ Every C program requires a main() function (Use of more than one main() is illegal). The place

main is where the program execution begins.

∑ The execution of a function begins at the opening brace of the function and ends at the corresponding

closing brace.

∑ C programs are written in lowercase letters. However, uppercase letters are used for symbolic names

and output strings.

∑ All the words in a program line must be separated from each other by at least one space, or a tab, or a

punctuation mark.

∑ Every program statement in a C language must end with a semicolon.

∑ All variables must be declared for their types before they are used in the program.

∑ A comment can be inserted almost anywhere a space can appear. Use of appropriate comments in

proper places increases readability and understandability of the program and helps users in debugging

and testing. Remember to match the symbols /* and * appropriately.

∑ Compiler directives such as defi ne and include are special instructions to the compiler to help it

compile a program. They do not end with a semicolon.

∑ The sign # of compiler directives must appear in the fi rst column of the line.

∑ We must make sure to include header fi les using #include directive when the program refers to

special names and functions that it does not defi ne.

∑ The structure of a C program comprises various sections including Documentation, Link, Defi nition,

Global Declaration, main () function and Sub program section.

∑ C is a free-form language and therefore a proper form of indentation of various sections would

improve legibility of the program.

LO 3.1

LO 3.1

LO 3.1

LO 3.1

LO 3.2

LO 3.2

LO 3.2

LO 3.2

LO 3.2

LO 3.2

LO 3.2

LO 3.2

LO 3.2

LO 3.3

LO 3.4

LO 3.5

 110 Computing Fundamentals & C Programming

∑ The execution of a C program involves a series of steps including: creating the program, compiling

the program, linking the program with functions from C library and executing the program.

∑ The command used for running a C program in UNIX system is a.out.

∑ The command used for running a C program in MS-DOS system is fi le.exe where fi le is the name of

the program that has already been compiled.

∑ When braces are used to group statements, make sure that the opening brace has a corresponding

closing brace.

 Key Terms to Remember

∑ #DEFINE: A preprocessor compiler directive.

∑ Printf: A predefi ned standard C function that writes the output to the stdout (standard output)

stream.

∑ Scanf: A predefi ned standard C function that reads formatted input from stdin (standard input)

stream.

∑ Program: A sequence of instructions written to perform a specifi c task in the computer.

 Review Questions

Fill in the Blanks

 1. Every program statement in a C program must end with a ___________.

 2. The ____________ Function is used to display the output on the screen.

 3. The ____________ header fi le contains mathematical functions.

 4. The escape sequence character ____________ causes the cursor to move to the next line on

the screen.

True or False Statements

 1. Every line in a C program should end with a semicolon.

 2. The closing brace of the main() in a program is the logical end of the program.

 3. Comments cause the computer to print the text enclosed between /* and */ when executed.

 4. Every C program ends with an END word.

 5. A printf statement can generate only one line of output.

 6. The purpose of the header fi le such as stdio.h is to store the source code of a program.

 7. A line in a program may have more than one statement.

 8. Syntax errors will be detected by the compiler.

LO 3.6

LO 3.6

LO 3.6

LO 3.6

LO 3.2

LO 3.2

LO 3.2

LO 3.4

LO 3.2

LO 3.2

LO 3.3

LO 3.2

LO 3.2

LO 3.2

LO 3.2

LO 3.2

LO 3.2

LO 3.3

LO 3.5

LO 3.6

Levels of Diffi culty

: Low; : Medium; : High

 Overview of C 111

 9. In C language lowercase letters are signifi cant.

 10. main() is where the program begins its execution.

 11. Every C program must have at least one user-defi ned function.

 12. Declaration section contains instructions to the computer.

 13. Only one function may be named main().

 14. Comments serve as internal documentation for programmers.

 15. In C, we can have comments inside comments.

 16. Use of comments reduces the speed of execution of a program.

 17. A comment can be inserted in the middle of a statement.

Discussion Questions

 1. Remove the semicolon at the end of the printf statement in the program of Fig. 3.2 and

execute it. What is the output?

2. In the Sample Program 2, delete line-5 and execute the program. How helpful is the error

message?

3. Modify the Sample Program 3 to display the following output:

 Year Amount

 1 5500.00

 2 6160.00

 — ————————

 — ————————

 10 14197.11

4. Why and when do we use the #defi ne directive?

5. Why and when do we use the #include directive?

6. What does void main(void) mean?

7. Distinguish between the following pairs:

 (a) main() and void main(void)

 (b) int main() and void main()

8. Why do we need to use comments in programs?

9. Why is the look of a program is important?

10. Where are blank spaces permitted in a C program?

11. Describe the structure of a C program.

12. Describe the process of creating and executing a C program under UNIX system.

13. How do we implement multiple source program fi les?

LO 3.2

LO 3.2

LO 3.3

LO 3.4

LO 3.2

LO 3.2

LO 3.2

LO 3.2

LO 3.2

LO 3.2

LO 3.2

LO 3.2

LO 3.2

LO 3.3

LO 3.2

LO 3.2LO 3.2

LO 3.2

LO 3.2LO 3.2

LO 3.5

LO 3.5

LO 3.4

LO 3.6

LO 3.6

 112 Computing Fundamentals & C Programming

Debugging Exercises

1. Find errors, if any, in the following program:

 /* A simple program

 int main()

 {

 /* Does nothing */

 }

2. Find errors, if any, in the following program:

 #include (stdio.h)

 void main(void)

 {

 print(“Hello C”);

 }

3. Find errors, if any, in the following program:

 Include <math.h>

 main { }

 (

 FLOAT X;

 X = 2.5;

 Y = exp(x);

 Print(x,y);

)

Programming Exercises

 1. Write a program to display the equation of a line in the form

 ax + by = c

 for a = 5, b = 8 and c = 18.

2. Write a program that will print your mailing address in the following form:

 First line : Name

 Second line : Door No, Street

 Third line : City, Pin code

3. Write a program to output the following multiplication table:

 5 ¥ 1 = 5

 5 ¥ 2 = 10

 5 ¥ 3 = 15

 ∑ ∑

 ∑ ∑

 5 ¥ 10 = 50

LO 3.2

LO 3.2

LO 3.3

LO 3.2

LO 3.2

LO 3.2

 Overview of C 113

 4. Given the values of three variables a, b and c, write a program to compute and display the

value of x, where

 x =
a

b c-

 Execute your program for the following values:

 (a) a = 250, b = 85, c = 25

 (b) a = 300, b = 70, c = 70

 Comment on the output in each case.

 5. Relationship between Celsius and Fahrenheit is governed by the formula

 F =
9

5
32

C
+

 Write a program to convert the temperature

 (a) from Celsius to Fahrenheit and

 (b) from Fahrenheit to Celsius.

6. Given the radius of a circle, write a program to compute and display its area. Use a

symbolic constant to defi ne the p value and assume a suitable value for radius.

7. Given two integers 20 and 10, write a program that uses a function add() to add these two

numbers and sub() to fi nd the difference of these two numbers and then display the sum

and difference in the following form:

 20 + 10 = 30

 20 – 10 = 10

8. Modify the above program to provide border lines to the address.

9. Write a program using one print statement to print the pattern of asterisks as shown below:

 *

 * *

 * * *

 * * * *

10. Write a program that will print the following fi gure using suitable characters.

 11. Area of a triangle is given by the formula

 A = S(S a) (S b) (S c)- - -

 where a, b and c are sides of the triangle and 2S = a + b + c. Write a program to compute

the area of the triangle given the values of a, b and c.

LO 3.2

LO 3.2

LO 3.2

LO 3.2

LO 3.3

LO 3.3

LO 3.2

LO 3.2

LO 3.2

LO 3.2

 114 Computing Fundamentals & C Programming

12. Write a program to display the following simple arithmetic calculator

 x = y =

 sum Difference =

 Product = Division =

 13 Distance between two points (x1, y1) and (x2, y2) is governed by the formula

 D2 = (x2 – x1)
2 + (y2 – y1)

2

 Write a program to compute D given the coordinates of the points.

14 A point on the circumference of a circle whose center is (0, 0) is (4,5). Write a program to

compute perimeter and area of the circle. (Hint: use the formula given in the Ex. 3.11)

15 The line joining the points (2,2) and (5,6) which lie on the circumference of a circle is the

diameter of the circle. Write a program to compute the area of the circle.

LO 3.2

LO 3.3

LO 3.3

LO 3.3

 Constants, Variables and Data Types 115

4.1 INTRODUCTION

A programming language is designed to help process certain kinds of data consisting of numbers,

characters and strings and to provide useful output known as information. The task of processing

of data is accomplished by executing a sequence of precise instructions called a program. These

instructions are formed using certain symbols and words according to some rigid rules known as

syntax rules (or grammar). Every program instruction must confi rm precisely to the syntax rules

of the language.

Like any other language, C has its own vocabulary and grammar. In this chapter, we will

discuss the concepts of constants and variables and their types as they relate to C programming

language.

4.2 CHARACTER SET LO 4.1

The characters that can be used to form words, numbers and expressions depend upon the

computer on which the program is run. However, a subset of characters is available that can be

L
E

A
R

N
IN

G
 O

B
J
E

C
T
IV

E
S

A er reading this chapter, you will be able to

LO 4.1 Know the C character set and keywords

LO 4.2 Describe constants and variables

LO 4.3 Iden fy the various C data types

LO 4.4 Discuss how variables are used in a program

LO 4.5 Explain how constants are used in a program

IV
E

S

CHAPT ERCHAPT ER

44Constants, Variables and Constants, Variables and

Data TypesData Types

 116 Computing Fundamentals & C Programming

used on most personal, micro, mini and mainframe computers. The characters in C are grouped into the

following categories:

1. Letters

2. Digits

3. Special characters

4. White spaces

The entire character set is given in Table 4.1.

The compiler ignores white spaces unless they are a part of a string constant. White spaces may be used

to separate words, but are prohibited between the characters of keywords and identifi ers.

Table 4.1 C Character Set

Letters Digits

Uppercase A.....Z All decimal digits 09

Lowercase a.....z

Special Characters

, comma & ampersand

. period ^ caret

; semicolon * asterisk

: colon – minus sign

? question mark + plus sign

‘ apostrophe < opening angle bracket

“ quotation mark (or less than sign)

! exclamation mark > closing angle bracket

| vertical bar (or greater than sign)

/ slash (left parenthesis

\ backslash) right parenthesis

~ tilde [left bracket

_ under score] right bracket

$ dollar sign { left brace

% percent sign } right brace

number sign

White Spaces

Blank space

Horizontal tab

Carriage return

New line

Form feed

 Constants, Variables and Data Types 117

4.2.1 Trigraph Characters

Many non-English keyboards do not support all the characters mentioned in Table 4.1. ANSI C introduces

the concept of “trigraph” sequences to provide a way to enter certain characters that are not available on some

keyboards. Each trigraph sequence consists of three characters (two question marks followed by another

character) as shown in Table 4.2.

For example, if a keyboard does not support square brackets, we can still use them in a program using

the trigraphs ??(and ??).

Table 4.2 ANSI C Trigraph Sequences

Trigraph sequence Translation

??= # number sign

??([left bracket

??)] right bracket

??< { left brace

??> } right brace

??! | vetical bar

??/ \ back slash

??/ ^ caret

??- ~ tilde

4.3 C TOKENS LO 4.1

In a passage of text, individual words and punctuation marks are called tokens. Similarly, in a C program

the smallest individual units are known as C tokens. C has six types of tokens as shown in Fig. 4.1.

C programs are written using these tokens and the syntax of the language.

Keywords

float
while

+ –
* ,

"ABC"
"year"

–15.5
100

Identifiers

main
amount

[]
{ }

Special Symbols

C TOKENS

StringsConstants Operators

Fig. 4.1 C tokens and examples

 118 Computing Fundamentals & C Programming

4.4 KEYWORDS AND IDENTIFIERS LO 4.1

Every C word is classifi ed as either a keyword or an identifi er. All keywords have fi xed meanings and these

meanings cannot be changed. The list of all keywords of ANSI C are listed in Table 4.3. All keywords must

be written in lowercase. Some compilers may use additional keywords that must be identifi ed from the C

manual.

Note C99 adds some more keywords. See the Appendix “C99 Features”.

Table 4.3 ANSI C Keyword

auto double int struct

break else long switch

case enum register typedef

char extern return union

const fl oat short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Identifi ers refer to the names of variables, functions and arrays. These are user-defi ned names. Both

uppercase and lowercase letters are permitted. The underscore character is also permitted in identifi ers.

Rules for Identifiers

1. First character must be an alphabet (or underscore).

2. Must consist of only letters, digits or underscore.

3. Only fi rst 31 characters are signifi cant.

4. Cannot use a keyword.

5. Must not contain white space.

4.5 CONSTANTS LO 4.2

Constants in C refer to fi xed values that do not change during the execution of a program. C supports

several types of constants as illustrated in Fig. 4.2.
4.5.1 Integer Constants

An integer constant refers to a sequence of digits. There are three types of integers, namely, decimal integer,

octal integer and hexadecimal integer.

Decimal integers consist of a set of digits, 0 through 9, preceded by an optional – or + sign. Valid

examples of decimal integer constants are:

123 – 321 0 654321 +78

 Constants, Variables and Data Types 119

Fig. 4.2 Basic types of C constants

Embedded spaces, commas, and non-digit characters are not permitted between digits. For example,

15 750 20,000 $1000

are illegal numbers.

Note ANSI C supports unary plus which was not defi ned earlier.

An octal integer constant consists of any combination of digits from the set 0 through 7, with a leading

0. Some examples of octal integer are:

037 0 0435 0551

A sequence of digits preceded by 0x or 0X is considered as hexadecimal integer. They may also

include alphabets A through F or a through f. The letter A through F represent the numbers 10 through 15.

Following are the examples of valid hex integers:

0X2 0x9F 0Xbcd 0x

We rarely use octal and hexadecimal numbers in programming.

The largest integer value that can be stored is machine-dependent. It is 32767 on 16-bit machines and

2,147,483,647 on 32-bit machines. It is also possible to store larger integer constants on these machines by

appending qualifi ers such as U,L and UL to the constants. Examples:

 56789U or 56789u (unsigned integer)

 987612347UL or 98761234ul (unsigned long integer)

 9876543L or 9876543l (long integer)

The concept of unsigned and long integers are discussed in detail in Section 4.7.

WORKED-OUT PROBLEM 4.1 L

Representation of integer constants on a 16-bit computer.

The program in Fig. 4.3 illustrates the use of integer constants on a 16-bit machine. The output in

Fig. 4.3 shows that the integer values larger than 32767 are not properly stored on a 16-bit machine.

However, when they are qualifi ed as long integer (by appending L), the values are correctly stored.

Levels of Diffi culty

L: Low; M: Medium; H: High

 120 Computing Fundamentals & C Programming

 Program

 main()

 {

 printf(“Integer values\n\n”);

 printf(“%d %d %d\n”, 32767,32767+1,32767+10);

 printf(“\n”);

 printf(“Long integer values\n\n”);

 printf(“%ld %ld %ld\n”, 32767L,32767L+1L,32767L+10L);

 }

 Output

 Integer values

 32767 -32768 -32759

 Long integer values

 32767 32768 3777

Fig. 4.3 Representation of integer constants on 16-bit machine

4.5.2 Real Constants

Integer numbers are inadequate to represent quantities that vary continuously, such as distances, heights,

temperatures, prices, and so on. These quantities are represented by numbers containing fractional parts like

17.548. Such numbers are called real (or fl oating point) constants. Further examples of real constants are:

0.0083 –0.75 435.36 +247.0

These numbers are shown in decimal notation, having a whole number followed by a decimal point and

the fractional part. It is possible to omit digits before the decimal point, or digits after the decimal point.

That is,

215. .95 –.71 +.5

are all valid real numbers.

A real number may also be expressed in exponential (or scientifi c) notation. For example, the value

215.65 may be written as 2.1565e2 in exponential notation. e2 means multiply by 102. The general for is:

 mantissa e exponent

The mantissa is either a real number expressed in decimal notation or an integer. The exponent is an

integer number with an optional plus or minus sign. The letter e separating the mantissa and the exponent

can be written in either lowercase or uppercase. Since the exponent causes the decimal point to “fl oat”, this

notation is said to represent a real number in fl oating point form. Examples of legal fl oating-point constants

are:

0.65e4 12e-2 1.5e+5 3.18E3 -1.2E-1

Embedded white space is not allowed.

Exponential notation is useful for representing numbers that are either very large or very small in

magnitude. For example, 7500000000 may be written as 7.5E9 or 75E8. Similarly, -0.000000368 is

equivalent to –3.68E-7.

Floating-point constants are normally represented as double-precision quantities. However, the suffi xes f

or F may be used to force single-precision and l or L to extend double precision further.

Some examples of valid and invalid numeric constants are given in Table 4.4.

 Constants, Variables and Data Types 121

Table 4.4 Examples of Numeric Constants

 Constant Valid? Remarks

698354L Yes Represents long integer

25,000 No Comma is not allowed

+5.0E3 Yes (ANSI C supports unary plus)

3.5e-5 Yes

7.1e 4 No No white space is permitted

-4.5e-2 Yes

1.5E+2.5 No Exponent must be an integer

$255 No $ symbol is not permitted

0X7B Yes Hexadecimal integer

4.5.3 Single-Character Constants

A single character constant (or simply character constant) contains a single character enclosed within a pair

of single quote marks. Example of character constants are:

‘5’ ‘X’ ‘;’ ‘ ’

Note that the character constant ‘5’ is not the same as the number 5. The last constant is a blank space.

Character constants have integer values known as ASCII values. For example, the statement

 printf(“%d”, ‘a’);

would print the number 97, the ASCII value of the letter a. Similarly, the statement

 printf(“%c”, ‘97’);

would output the letter ‘a’. ASCII values for all characters are given in Appendix II.

Since each character constant represents an integer value, it is also possible to perform arithmetic

operations on character constants.

4.5.4 String Constants

A string constant is a sequence of characters enclosed in double quotes. The characters may be letters,

numbers, special characters and blank space. Examples are:

“Hello!” “1987” “WELL DONE” “?...!” “5+3” “X”

Remember that a character constant (e.g., ‘X’) is not equivalent to the single character string constant

(e.g., “X”). Further, a single character string constant does not have an equivalent integer value while a

character constant has an integer value. Character strings are often used in programs to build meaningful

programs.

4.5.5 Backslash Character Constants

C supports some special backslash character constants that are used in output functions. For example, the

symbol ‘\n’ stands for newline character. A list of such backslash character constants is given in Table

4.5. Note that each one of them represents one character, although they consist of two characters. These

characters combinations are known as escape sequences.

 122 Computing Fundamentals & C Programming

Table 4.5 Backslash Character Constants

 Constant Meaning

‘\a’ audible alert (bell)

‘\b’ back space

‘\f’ form feed

‘\n’ new line

‘\r’ carriage return

‘\t’ horizontal tab

‘\v’ vertical tab

‘\” single quote

‘\”’ double quote

‘\?’ question mark

‘\\’ backslash

‘10’ null

4.6 VARIABLES LO 4.2

A variable is a data name that may be used to store a data value. A variable may take different values at

different times during execution.

Some examples of variables’ names are:

Average

height

Total

Counter_1

class_strength

As mentioned earlier, variable names may consist of letters, digits, and the underscore(_) character,

subject to the following conditions:

1. They must begin with a letter. Some systems permit underscore as the fi rst character.

2. ANSI standard recognizes a length of 31 characters. However, length should not be normally more than

eight characters, since only the fi rst eight characters are treated as signifi cant by many compilers. (In C99,

at least 63 characters are signifi cant.)

3. Uppercase and lowercase are signifi cant. That is, the variable Total is not the same as total or

TOTAL.

4. It should not be a keyword.

5. White space is not allowed.

Some examples of valid variable names are:

 John Value T_raise

 Delhi x1 ph_value

 mark sum1 distance

 Constants, Variables and Data Types 123

Invalid examples include:

 123 (area)

 % 25th

Further examples of variable names and their correctness are given in Table 4.6.

Table 4.6 Examples of Variable Names

 Variable name Valid ? Remark

First_tag Valid

char Not valid char is a keyword

Price$ Not valid Dollar sign is illegal

group one Not valid Blank space is not permitted

average_number Valid First eight characters are signifi cant

int_type Valid Keyword may be part of a name

If only the fi rst eight characters are recognized by a compiler, then the two names

average_height

average_weight

mean the same thing to the computer. Such names can be rewritten as

avg_height and avg_weight

or

ht_average and wt_average

without changing their meanings.

4.7 DATA TYPES LO 4.3

C language is rich in its data types. The variety of data types available allow the programmer to select the

type appropriate to the needs of the application as well as the machine.

ANSI C supports three classes of data types:

1. Primary (or fundamental) data types

2. Derived data types

3. User-defi ned data types

The primary data types and their extensions are discussed in this section. The user-defi ned data types are

defi ned in the next section while the derived data types such as arrays, functions, structures and pointers are

discussed as and when they are encountered.

All C compilers support fi ve fundamental data types, namely integer (int), character (char), fl oating

point (fl oat), double-precision fl oating point (double) and void. Many of them also offer extended data

types such as long int and long double. Various data types and the terminology used to describe them are

given in Fig. 4.4. The range of the basic four types are given in Table 4.7. We discuss briefl y each one of

them in this section.

Note C99 adds three more data types, namely _Bool, _Complex, and _Imaginary. See the Appendix

“C99Fatures”.

 124 Computing Fundamentals & C Programming

PRIMARY DATA TYPES

Integral Type

signed

int

short int

long int

float double Long double
void

unsigned type

Floating point Type

unsigned int

char

Integer Character

unsigned short int

signed char

unsigned long int

unsigned char

Fig. 4.4 Primary data types in C

Table 4.7 Size and Range of Basic Data Types on 16-bit Machines

Data type Range of values

char –128 to 127

int –32,768 to 32,767

fl oat 3.4e–38 to 3.4e+e38

double 1.7e–308 to 1.7e+308

4.7.1 Integer Types

Integers are whole numbers with a range of values supported by a particular machine. Generally, integers

occupy one word of storage, and since the word sizes of machines vary (typically, 16 or 32 bits) the size

of an integer that can be stored depends on the computer. If we use a 16 bit word length, the size of the

integer value is limited to the range –32768 to +32767 (that is, –215 to +215–1). A signed integer uses one

bit for sign and 15 bits for the magnitude of the number. Similarly, a 32 bit word length can store an integer

ranging from -2,147,483,648 to 2,147,483,647.

In order to provide some control over the range of numbers and storage space, C has three classes of

integer storage, namely short int, int, and long int, in

both signed and unsigned forms. ANSI C defi nes these

types so that they can be organized from the smallest to

the largest, as shown in Fig. 4.5. For example, short int

represents fairly small integer values and requires half

the amount of storage as a regular int number uses.

Unlike signed integers, unsigned integers use all the
 short int

long int

int

Fig. 4.5 Integer types

 Constants, Variables and Data Types 125

bits for the magnitude of the number and are always positive. Therefore, for a 16 bit machine, the range of

unsigned integer numbers will be from 0 to 65,535.

We declare long and unsigned integers to increase the range of values. The use of qualifi er signed

on integers is optional because the default declaration assumes a signed number. Table 4.8 shows all the

allowed combinations of basic types and qualifi ers and their size and range on a 16-bit machine.

Note C99 allows long long integer types. See the Appendix “C99 Features”.

Table 4.8 Size and Range of Data Types on a 16-bit Machine

Type Size (bits) Range

char or signed char 8 –128 to 127

unsigned char 8 0 to 255

int or signed int 16 –32,768 to 32,767

unsigned int 16 0 to 65535

short int or

signed short int 8 –128 to 127

unsigned short int 8 0 to 255

long int or

signed long int 32 –2,147,483,648 to 2,147,483,647

unsigned long int 32 0 to 4,294,967,295

fl oat 32 3.4E – 38 to 3.4E + 38

double 64 1.7E – 308 to 1.7E + 308

long double 80 3.4E – 4932 to 1.1E + 4932

4.7.2 Floating Point Types

 Floating point (or real) numbers are stored in 32 bits (on all 16 bit and 32 bit machines), with 6 digits of

precision. Floating point numbers are defi ned in C by the keyword fl oat. When the accuracy provided by a

fl oat number is not suffi cient, the type double can be used to defi ne the number. A double data type number

uses 64 bits giving a precision of 14 digits. These are

known as double precision numbers. Remember that

double type represents the same data type that fl oat

represents, but with a greater precision. To extend the

precision further, we may use long double which uses

80 bits. The relationship among fl oating types is

illustrated Fig. 4.6.

4.7.3 Void Types

The void type has no values. This is usually used to specify the type of functions. The type of a function

is said to be void when it does not return any value to the calling function. It can also play the role of a

generic type, meaning that it can represent any of the other standard types.

 float

long double

double

Fig. 4.6 Floating-point types

 126 Computing Fundamentals & C Programming

4.7.4 Character Types

A single character can be defi ned as a character(char) type data. Characters are usually stored in 8 bits

(one byte) of internal storage. The qualifi er signed or unsigned may be explicitly applied to char. While

unsigned chars have values between 0 and 255, signed chars have values from –128 to 127.

4.8 DECLARATION OF VARIABLES LO 4.4

After designing suitable variable names, we must declare them to the compiler. Declaration does two things:

1. It tells the compiler what the variable name is.

2. It specifi es what type of data the variable will hold.

The declaration of variables must be done before they are used in the program.

4.8.1 Primary Type Declaration

A variable can be used to store a value of any data type. That is, the name has nothing to do with its type.

The syntax for declaring a variable is as follows:

 data-type v1,v2,....vn ;

v1, v2,vn are the names of variables. Variables are separated by commas. A declaration statement must

end with a semicolon. For example, valid declarations are:

 int count;

 int number, total;

 double ratio;

int and double are the keywords to represent integer type and real type data values respectively.

Table 4.9 shows various data types and their keyword equivalents.

Table 4.9 Data Types and Their Keywords

Data type Keyword equivalent

Character char

Unsigned character unsigned char

Signed character signed char

Signed integer signed int (or int)

Signed short integer signed short int

 (or short int or short)

Signed long integer signed long int

 (or long int or long)

Unsigned integer unsigned int (or unsigned)

Unsigned short integer unsigned short int

 (or unsigned short)

Unsigned long integer unsigned long int

 (or unsigned long)

 Constants, Variables and Data Types 127

Floating point fl oat

Double-precision

 fl oating point double

Extended double-precision

 fl oating point long double

The program segment given in Fig. 4.7 illustrates declaration of variables. main() is the beginning of

the program. The opening brace { signals the execution of the program. Declaration of variables is usually

done immediately after the opening brace of the program. The variables can also be declared outside (either

before or after) the main function. The importance of place of declaration will be dealt in detail later while

discussing functions.

Note C99 permits declaration of variables at any point within a function or block, prior to their use.

 main() /*.........Program Name........................ */

 {

 /*................Declaration.......................*/

 fl oat x, y;

 int code;

 short int count;

 long int amount;

 double deviation;

 unsigned n;

 char c;

 /*...............Computation....................... */

 } /*.............Program ends........................*/

Fig. 4.7 Declaration of variables

When an adjective (qualifi er) short, long, or unsigned is used without a basic data type specifi er, C

compilers treat the data type as an int. If we want to declare a character variable as unsigned, then we must

do so using both the terms like unsigned char.

Default Values of Constants

Integer constants, by default, represent int type data. We can override this default by specifying unsigned or

long after the number (by appending U or L) as shown below:

 Literal Type Value

 +111 int 111

 –222 int –222
 45678U unsigned int 45,678

 128 Computing Fundamentals & C Programming

 –56789L long int –56,789
 987654UL unsigned long int 9,87,654

Similarly, fl oating point constants, by default represent double type data. If we want the resulting data

type to be fl oat or long double, we must append the letter f or F to the number for fl oat and letter l or L

for long double as shown below:

 Literal Type Value

 0. double 0.0
 .0 double 0.0
 12.0 double 12.0
 1.234 double 1.234

 –1.2f fl oat –1.2

 1.23456789L long double 1.23456789

4.8.2 User-Defined Type Declaration

C supports a feature known as “type defi nition” that allows users to defi ne an identifi er that would represent

an existing data type. The user-defi ned data type identifi er can later be used to declare variables. It takes the

general form:

 typedef type identifi er;

Where type refers to an existing data type and “identifi er” refers to the “new” name given to the data

type. The existing data type may belong to any class of type, including the user-defi ned ones. Remember

that the new type is ‘new’ only in name, but not the data type. typedef cannot create a new type. Some

examples of type defi nition are:

typedef int units;

typedef fl oat marks;

Here, units symbolizes int and marks symbolizes fl oat. They can be later used to declare variables as

follows:

units batch1, batch2;

marks name1[50], name2[50];

batch1 and batch2 are declared as int variable and name1[50] and name2[50] are declared as 50 element

fl oating point array variables. The main advantage of typedef is that we can create meaningful data type

names for increasing the readability of the program.

Another user-defi ned data type is enumerated data type provided by ANSI standard. It is defi ned as

follows:

 enum identifi er {value1, value2, ... valuen};

The “identifi er” is a user-defi ned enumerated data type which can be used to declare variables that can have

one of the values enclosed within the braces (known as enumeration constants). After this defi nition, we can

declare variables to be of this ‘new’ type as below:

enum identifi er v1, v2, ... vn;

The enumerated variables v1, v2, ... vn can only have one of the values value1, value2, ... valuen. The

assignments of the following types are valid:

v1 = value3;

v5 = value1;

 Constants, Variables and Data Types 129

An example:

enum day {Monday,Tuesday, ... Sunday};

enum day week_st, week_end;

week_st = Monday;

week_end = Friday;

if(week_st == Tuesday)

week_end = Saturday;

The compiler automatically assigns integer digits beginning with 0 to all the enumeration constants. That

is, the enumeration constant value1 is assigned 0, value2 is assigned 1, and so on. However, the automatic

assignments can be overridden by assigning values explicitly to the enumeration constants. For example:

enum day {Monday = 1, Tuesday, ... Sunday};

Here, the constant Monday is assigned the value of 1. The remaining constants are assigned values that

increase successively by 1.

The defi nition and declaration of enumerated variables can be combined in one statement. Example:

enum day {Monday, ... Sunday} week_st, week_end;

4.9 DECLARATION OF STORAGE CLASS LO 4.4

Variables in C can have not only data type but also storage class that provides information about their

location and visibility. The storage class decides the portion of the program within which the variables are

recognized. Consider the following example:

 /* Example of storage classes */

 int m;

 main()

 {

 int i;

 fl oat balance;

 function1();

 }

 function1()

 {

 int i;

 fl oat sum;

 }

The variable m which has been declared before the main is called global variable. It can be used in all

the functions in the program. It need not be declared in other functions. A global variable is also known as

an external variable.

The variables i, balance and sum are called local variables because they are declared inside a function.

Local variables are visible and meaningful only inside the functions in which they are declared. They are

 130 Computing Fundamentals & C Programming

not known to other functions. Note that the variable i has been declared in both the functions. Any change

in the value of i in one function does not affect its value in the other.

C provides a variety of storage class specifi ers that can be used to declare explicitly the scope and

lifetime of variables. The concepts of scope and lifetime are important only in multifunction and multiple

fi le programs and therefore the storage classes are considered in detail later when functions are discussed.

For now, remember that there are four storage class specifi ers (auto, register, static, and extern) whose

meanings are given in Table 4.10.

The storage class is another qualifi er (like long or unsigned) that can be added to a variable declaration

as shown below:

auto int count;

register char ch;

static int x;

extern long total;

Static and external (extern) variables are automatically initialized to zero. Automatic (auto) variables

contain undefi ned values (known as ‘garbage’) unless they are initialized explicitly.

Table 4.10 Storage Classes and Their Meaning

 Storage class Meaning

auto Local variable known only to the function in which it is declared. Default is auto.

static Local variable which exists and retains its value even after the control is transferred to the

calling function.

extern Global variable known to all functions in the fi le.

register Local variable which is stored in the register.

4.10 ASSIGNING VALUES TO VARIABLES LO 4.4

Variables are created for use in program statements such as,

 value = amount + inrate * amount;

 while (year <= PERIOD)

 {

 year = year + 1;

 }

In the fi rst statement, the numeric value stored in the variable inrate is multiplied by the value stored

in amount and the product is added to amount. The result is stored in the variable value. This process

is possible only if the variables amount and inrate have already been given values. The variable value is

called the target variable. While all the variables are declared for their type, the variables that are used in

expressions (on the right side of equal (=) sign of a computational statement) must be assigned values before

they are encountered in the program. Similarly, the variable year and the symbolic constant PERIOD in the

while statement must be assigned values before this statement is encountered.

 Constants, Variables and Data Types 131

4.10.1 Assignment Statement

Values can be assigned to variables using the assignment operator = as follows:

 variable_name = constant;

We have already used such statements in Chapter 3. Further examples are: initial_value = 0;

 fi nal_value = 100;

 balance = 75.84;

 yes = ‘x’;

C permits multiple assignments in one line. For example

initial_value = 0; fi nal_value = 100;

are valid statements.

An assignment statement implies that the value of the variable on the left of the ‘equal sign’ is set equal

to the value of the quantity (or the expression) on the right. The statement

year = year + 1;

means that the ‘new value’ of year is equal to the ‘old value’ of year plus 1.

During assignment operation, C converts the type of value on the right-hand side to the type on the left.

This may involve truncation when real value is converted to an integer.

It is also possible to assign a value to a variable at the time the variable is declared. This takes the

following form:

 data-type variable_name = constant;

Some examples are: int fi nal_value = 100;

 char yes = ‘x’;

 double balance = 75.84;

The process of giving initial values to variables is called initialization. C permits the initialization of

more than one variables in one statement using multiple assignment operators. For example the statements p = q = s = 0;

 x = y = z = MAX;

are valid. The fi rst statement initializes the variables p, q, and s to zero while the second initializes x, y, and

z with MAX. Note that MAX is a symbolic constant defi ned at the beginning.

Remember that external and static variables are initialized to zero by default. Automatic variables that

are not initialized explicitly wll contain garbage.

WORKED-OUT PROBLEM 4.2 L

The program in Fig. 4.8 illustrates the use of scanf function.

The fi rst executable statement in the program is a printf, requesting the user to enter an integer number.

This is known as “prompt message” and appears on the screen like

Enter an integer number

As soon as the user types in an integer number, the computer proceeds to compare the value with 100.

If the value typed in is less than 100, then a message

Your number is smaller than 100

is printed on the screen. Otherwise, the message

Your number contains more than two digits

is printed. Outputs of the program run for two different inputs are also shown in Fig. 4.9.

 132 Computing Fundamentals & C Programming

 Program

 main()

 {

 int number;

 printf(“Enter an integer number\n”);

 scanf (“%d”, &number);

 if (number < 100)

 printf(“Your number is smaller than 100\n\n”);

 else

 printf(“Your number contains more than two digits\n”);

 }

 Output

 Enter an integer number

 54

 Your number is smaller than 100

 Enter an integer number

 108

 Your number contains more than two digits

 Fig. 4.8 Use of scanf function for interactive computing

Some compilers permit the use of the ‘prompt message’ as a part of the control string in scanf, like

 scanf(“Enter a number %d”,&number);

In Fig. 4.8 we have used a decision statement if...else to decide whether the number is less than 100.

WORKED-OUT PROBLEM 4.3 M

Program in Fig. 4.9 shows typical declarations, assignments and values stored in various types of

variables.

The variables x and p have been declared as fl oating-point variables. Note that the way the value of

1.234567890000 that we assigned to x is displayed under different output formats. The value of x is

displayed as 1.234567880630 under %.12lf format, while the actual value assigned is 1.234567890000.

This is because the variable x has been declared as a fl oat that can store values only up to six decimal

places.

The variable m that has been declared as int is not able to store the value 54321 correctly. Instead, it

contains some garbage. Since this program was run on a 16-bit machine, the maximum value that an int

variable can store is only 32767. However, the variable k (declared as unsigned) has stored the value

54321 correctly. Similarly, the long int variable n has stored the value 1234567890 correctly.

The value 9.87654321 assigned to y declared as double has been stored correctly but the value is

printed as 9.876543 under %lf format. Note that unless specifi ed otherwise, the printf function will

always display a fl oat or double value to six decimal places. We will discuss later the output formats for

displaying numbers.

 Constants, Variables and Data Types 133

 Program

 main()

 {

 /*..........DECLARATIONS............................*/

 fl oat x, p ;

 double y, q ;

 unsigned k ;

 /*..........DECLARATIONS AND ASSIGNMENTS............*/

 int m = 54321 ;

 long int n = 1234567890 ;

 /*..........ASSIGNMENTS.............................*/

 x = 1.234567890000 ;

 y = 9.87654321 ;

 k = 54321 ;

 p = q = 1.0 ;

 /*..........PRINTING................................*/

 printf(“m = %d\n”, m) ;

 printf(“n = %ld\n”, n) ;

 printf(“x = %.12lf\n”, x) ;

 printf(“x = %f\n”, x) ;

 printf(“y = %.12lf\n”,y) ;

 printf(“y = %lf\n”, y) ;

 printf(“k = %u p = %f q = %.12lf\n”, k, p, q) ;

 }

 Output

 m = -11215

 n = 1234567890

 x = 1.234567880630

 x = 1.234568

 y = 9.876543210000

 y = 9.876543

 k = 54321 p = 1.00000 q = 1.000000000000

Fig. 4.9 Examples of assignments

4.10.2 Reading Data from Keyboard

Another way of giving values to variables is to input data through keyboard using the scanf function. It is

a general input function available in C and is very similar in concept to the printf function. It works much

like an INPUT statement in BASIC. The general format of scanf is as follows:

scanf(“control string”, &variable1,&variable2,....);

The control string contains the format of data being received. The ampersand symbol & before each

variable name is an operator that specifi es the variable name’s address. We must always use this operator,

otherwise unexpected results may occur. Let us look at an example:

 134 Computing Fundamentals & C Programming

scanf(“%d”, &number);

When this statement is encountered by the computer, the execution stops and waits for the value of

the variable number to be typed in. Since the control string “%d” specifi es that an integer value is to be

read from the terminal, we have to type in the value in integer form. Once the number is typed in and the

‘Return’ Key is pressed, the computer then proceeds to the next statement. Thus, the use of scanf provides

an interactive feature and makes the program ‘user friendly’. The value is assigned to the variable number.

WORKED-OUT PROBLEM 4.4 M

Sample program 3 discussed in Chapter 3 can be converted into a more fl exible interactive program using

scanf as shown in Fig. 4.10.

In this case, computer requests the user to input the values of the amount to be invested, interest rate and

period of investment by printing a prompt message

 Input amount, interest rate, and period

and then waits for input values. As soon as we fi nish entering the three values corresponding to the three

variables amount, inrate, and period, the computer begins to calculate the amount at the end of each year,

up to ‘period’ and produces output as shown in Fig. 4.10.

Program

 main()

 {

 int year, period ;

 fl oat amount, inrate, value ;

 printf(“Input amount, interest rate, and period\n\n”) ;

 scanf (“%f %f %d”, &amount, &inrate, &period) ;

 printf(“\n”) ;

 year = 1 ;

 while(year <= period)

 {

 value = amount + inrate * amount ;

 printf(“%2d Rs %8.2f\n”, year, value) ;

 amount = value ;

 year = year + 1 ;

 }

 }

Output

 Input amount, interest rate, and period

 10000 0.14 5

 Constants, Variables and Data Types 135

 1 Rs 11400.00

 2 Rs 12996.00

 3 Rs 14815.44

 4 Rs 16889.60

 5 Rs 19254.15

 Input amount, interest rate, and period

 20000 0.12 7

 1 Rs 22400.00

 2 Rs 25088.00

 3 Rs 28098.56

 4 Rs 31470.39

 5 Rs 35246.84

 6 Rs 39476.46

 7 Rs 44213.63

 Fig. 4.10 Interactive investment program

Note that the scanf function contains three variables. In such cases, care should be exercised to see

that the values entered match the order and type of the variables in the list. Any mismatch might lead to

unexpected results. The compiler may not detect such errors.

4.11 DEFINING SYMBOLIC CONSTANTS LO 4.5

We often use certain unique constants in a program. These constants may appear repeatedly in a number of

places in the program. One example of such a constant is 3.142, representing the value of the mathematical

constant “pi”. Another example is the total number of students whose mark-sheets are analysed by a

‘test analysis program’. The number of students, say 50, may be used for calculating the class total, class

average, standard deviation, etc. We face two problems in the subsequent use of such programs. These are

1. problem in modifi cation of the program and

2. problem in understanding the program.

4.11.1 Modifiability

We may like to change the value of “pi” from 3.142 to 3.14159 to improve the accuracy of calculations or

the number 50 to 100 to process the test results of another class. In both the cases, we will have to search

throughout the program and explicitly change the value of the constant wherever it has been used. If any

value is left unchanged, the program may produce disastrous outputs.

4.11.2 Understandability

When a numeric value appears in a program, its use is not always clear, especially when the same value

means different things in different places. For example, the number 50 may mean the number of students at

 136 Computing Fundamentals & C Programming

one place and the ‘pass marks’ at another place of the same program. We may forget what a certain number

meant, when we read the program some days later.

Assignment of such constants to a symbolic name frees us from these problems. For example, we may

use the name STRENGTH to defi ne the number of students and PASS_MARK to defi ne the pass marks

required in a subject. Constant values are assigned to these names at the beginning of the program.

Subsequent use of the names STRENGTH and PASS_MARK in the program has the effect of causing

their defi ned values to be automatically substituted at the appropriate points. A constant is defi ned as

follows:

 #defi ne symbolic-name value of constant

Valid examples of constant defi nitions are:

#defi ne STRENGTH 100

#defi ne PASS_MARK 50

#defi ne MAX 200

#defi ne PI 3.14159

Symbolic names are sometimes called constant identifi ers. Since the symbolic names are constants (not

variables), they do not appear in declarations. The following rules apply to a #defi ne statement which defi ne

a symbolic constant:

1. Symbolic names have the same form as variable names. (Symbolic names are written in CAPITALS to

visually distinguish them from the normal variable names, which are written in lowercase letters. This is

only a convention, not a rule.)

2. No blank space between the pound sign ‘#’ and the word defi ne is permitted.

3. ‘#’ must be the fi rst character in the line.

4. A blank space is required between #defi ne and symbolic name and between the symbolic name and

the constant.

5. #defi ne statements must not end with a semicolon.

6. After defi nition, the symbolic name should not be assigned any other value within the program by

using an assignment statement. For example, STRENGTH = 200; is illegal.

7. Symbolic names are NOT declared for data types. Its data type depends on the type of constant.

8. #defi ne statements may appear anywhere in the program but before it is referenced in the program

(the usual practice is to place them in the beginning of the program).

#defi ne statement is a preprocessor compiler directive and is much more powerful than what has been

mentioned here. More advanced types of defi nitions will be discussed later. Table 4.11 illustrates some

invalid statements of #defi ne.

Table 4.11 Examples of Invalid #defi ne Statements

 Statement Validity Remark

#defi ne X = 2.5 Invalid ‘=’ sign is not allowed

defi ne MAX 10 Invalid No white space between # and defi ne

#defi ne N 25; Invalid No semicolon at the end

#defi ne N 5, M 10 Invalid A statement can defi ne only one name.

#Defi ne ARRAY 11 Invalid defi ne should be in lowercase letters

#defi ne PRICE$ 100 Invalid $ symbol is not permitted in name

 Constants, Variables and Data Types 137

4.12 DECLARING A VARIABLE AS CONSTANT LO 4.4

We may like the value of certain variables to remain constant during the execution of a program. We can

achieve this by declaring the variable with the qualifi er const at the time of initialization. Example:

const int class_size = 40;

const is a new data type qualifi er defi ned by ANSI standard. This tells the compiler that the value of the int

variable class_size must not be modifi ed by the program. However, it can be used on the right_hand side of

an assignment statement like any other variable.

4.13 DECLARING A VARIABLE AS VOLATILE LO 4.4

ANSI standard defi nes another qualifi er volatile that could be used to tell explicitly the compiler that a

variable’s value may be changed at any time by some external sources (from outside the program). For

example:

volatile int date;

The value of date may be altered by some external factors even if it does not appear on the left-hand side

of an assignment statement. When we declare a variable as volatile, the compiler will examine the value of

the variable each time it is encountered to see whether any external alteration has changed the value.

Remember that the value of a variable declared as volatile can be modifi ed by its own program as well.

If we wish that the value must not be modifi ed by the program while it may be altered by some other

process, then we may declare the variable as both const and volatile as shown below:

 volatile const int location = 100;

Note C99 adds another qualifi er called restrict. See the Appendix “C99 Features”.

4.13.1 Overflow and Underflow of Data

Problem of data overfl ow occurs when the value of a variable is either too big or too small for the data type

to hold. The largest value that a variable can hold also depends on the machine. Since fl oating-point values

are rounded off to the number of signifi cant digits allowed (or specifi ed), an overfl ow normally results in the

largest possible real value, whereas an underfl ow results in zero.

Integers are always exact within the limits of the range of the integral data types used. However, an

overfl ow which is a serious problem may occur if the data type does not match the value of the constant. C

does not provide any warning or indication of integer overfl ow. It simply gives incorrect results. (Overfl ow

normally produces a negative number.) We should therefore exercise a greater care to defi ne correct data

types for handling the input/output values.

 Learning Outcomes

∑ Do not use the underscore as the fi rst character of identifi ers (or variable names) because many of the

identifi ers in the system library start with underscore.

∑ Use only 31 or less characters for identifi ers. This helps ensure portability of programs.

LO 4.1

LO 4.1

 138 Computing Fundamentals & C Programming

∑ Do not use keywords or any system library names for identifi ers.

∑ Use meaningful and intelligent variable names.

∑ Do not create variable names that differ only by one or two letters.

∑ Integer constants, by default, assume int types. To make the numbers long or unsigned, we must

append the letters L and U to them.

∑ Floating point constants default to double. To make them to denote fl oat or long double, we must

append the letters F or L to the numbers.

∑ Use single quote for character constants and double quotes for string constants.

∑ A character is stored as an integer. It is therefore possible to perform arithmetic operations on

characters.

∑ Do not use lowercase l for long as it is usually confused with the number 1.

∑ C does not provide any warning or indication of overfl ow. It simply gives incorrect results. Care

should be exercised in defi ning correct data type.

∑ Each variable used must be declared for its type at the beginning of the program or function.

∑ All variables must be initialized before they are used in the program.

∑ Do not combine declarations with executable statements.

∑ Do not use semicolon at the end of #defi ne directive.

∑ The character # should be in the fi rst column.

∑ Do not give any space between # and defi ne.

∑ A variable defi ned before the main function is available to all the functions in the program.

∑ A variable defi ned inside a function is local to that function and not available to other functions.

∑ A variable can be made constant either by using the preprocessor command #defi ne at the beginning

of the program or by declaring it with the qualifi er const at the time of initialization.

 Key Terms to Remember

∑ Identifi ers: Refer to the names of variables, functions and arrays.

• Constants: Refer to fi xed values that do not change during the execution of a program.

• String constant: Is a sequence of characters enclosed in double quotes where characters could be

letters, numbers, special characters or blank space.

• Variable: Is a data name that may be used to store a data value.

• Storage class: Provides information related to the location and visibility of a variable.

• scanf: Is a predefi ned standard C function that reads formatted input from stdin (standard input)

stream.

LO 4.1

LO 4.2

LO 4.2

LO 4.2

LO 4.2

LO 4.2

LO 4.2

LO 4.3

LO 4.3

LO 4.4

LO 4.4

LO 4.4

LO 4.4

LO 4.4

LO 4.4

LO 4.4

LO 4.4

LO 4.5

LO 4.1

LO 4.2

LO 4.2

LO 4.2

LO 4.4

LO 4.4

 Constants, Variables and Data Types 139

Brief Cases

1. Calculation of Average of Numbers [LO 4.4, 4.5 M]

A program to calculate the average of a set of N numbers is given in Fig. 4.11.

 Program

 #defi ne N 10 /* SYMBOLIC CONSTANT */

 main()

 {

 int count ; /* DECLARATION OF */

 fl oat sum, average, number ; /* VARIABLES */

 sum = 0 ; /* INITIALIZATION */

 count = 0 ; /* OF VARIABLES */

 while(count < N)

 {

 scanf(“%f”, &number) ;

 sum = sum + number ;

 count = count + 1 ;

 }

 average = sum/N ;

 printf(“N = %d Sum = %f”, N, sum);

 printf(“ Average = %f”, average);

 }

 Output

 1

 2.3

 4.67

 1.42

 7

 3.67

 4.08

 2.2

 4.25

 8.21

 N = 10 Sum = 38.799999 Average = 3.880

Fig. 4.11 Average of N numbers

The variable number is declared as fl oat and therefore it can take both integer and real numbers. Since

the symbolic constant N is assigned the value of 10 using the #defi ne statement, the program accepts ten

 140 Computing Fundamentals & C Programming

values and calculates their sum using the while loop. The variable count counts the number of values and

as soon as it becomes 11, the while loop is exited and then the average is calculated.

Notice that the actual value of sum is 38.8 but the value displayed is 38.799999. In fact, the actual value

that is displayed is quite dependent on the computer system. Such an inaccuracy is due to the way the fl oating

point numbers are internally represented inside the computer.

2. Temperature Conversion Problem [LO 4.5 M]

The program presented in Fig. 4.12 converts the given temperature in fahrenheit to celsius using the

following conversion formula:

 C =
F - 32

1 8.

 Program

 #defi ne F_LOW 0 /* — — — — — — — — — — — — — — — */

 #defi ne F_MAX 250 /* SYMBOLIC CONSTANTS */

 #defi ne STEP 25 /* — — — — — — — — — — — — — — */

 main()

 {

 typedef fl oat REAL ; /* TYPE DEFINITION */

 REAL fahrenheit, celsius ; /* DECLARATION */

 fahrenheit = F_LOW ; /* INITIALIZATION */

 printf(“Fahrenheit Celsius\n\n”) ;

 while(fahrenheit <= F_MAX)

 {

 celsius = (fahrenheit - 32.0) / 1.8 ;
 printf(“ %5.1f %7.2f\n”, fahrenheit, celsius);

 fahrenheit = fahrenheit + STEP ;

 }

 }

 Output

 Fahrenheit Celsius

 0.0 -17.78

 25.0 -3.89

 50.0 10.00

 75.0 23.89

 100.0 37.78

 125.0 51.67

 150.0 65.56

 Constants, Variables and Data Types 141

 175.0 79.44

 200.0 93.33

 225.0 107.22

 250.0 121.11

Fig. 4.12 Temperature conversion—fahrenheit-celsius

The program prints a conversion table for reading temperature in celsius, given the fahrenheit values.

The minimum and maximum values and step size are defi ned as symbolic constants. These values can be

changed by redefi ning the #defi ne statements. An user-defi ned data type name REAL is used to declare the

variables fahrenheit and celsius.

The formation specifi cations %5.1f and %7.2 in the second printf statement produces two-column

output as shown.

 Review Questions

Fill in the Blanks

 1. A variable can be made constant by declaring it with the qualifi er ________ at the time of

initialization.

 2. _______ is the largest value that an unsigned short int type variable can store.

 3. A global variable is also known as ________ variable.

 4. The keyword _____ can be used to create a data type identifi er.

True or False Statements

 1. All variables must be given a type when they are declared.

 2. ANSI C treats the variables name and Name to be same.

 3. Character constants are coded using double quotes.

 4. The keyword void is a data type in C.

 5. Declarations can appear anywhere in a program.

 6. Initialization is the process of assigning a value to a variable at the time of declaration.

 7. The scanf function can be used to read only one value at a time.

 8. Any valid printable ASCII character can be used in an identifi er.

 9. The underscore can be used anywhere in an identifi er.

 10. Floating point constants, by default, denote fl oat type values.

 11. Like variables, constants have a type.

 12. All static variables are automatically initialized to zero.

LO 4.5

LO 4.3

LO 4.3

LO 4.4

LO 4.2

LO 4.2

LO 4.2

LO 4.3

LO 4.4

LO 4.4

LO 4.4

LO 4.1

LO 4.1

LO 4.2

LO 4.2

LO 4.4

Levels of Diffi culty

 : Low; : Medium; : High

 142 Computing Fundamentals & C Programming

Discussion Questions

 1. What are trigraph characters? How are they useful?

 2. Describe the four basic data types. How could we extend the range of values they

represent?

3. What is an unsigned integer constant? What is the signifi cance of declaring a constant

unsigned?

4. Describe the characteristics and purpose of escape sequence characters.

5. What is a variable and what is meant by the “value” of a variable?

6. How do variables and symbolic names differ?

7. State the differences between the declaration of a variable and the defi nition of a symbolic

name.

8. What are the qualifi ers that an int can have at a time?

9. A programmer would like to use the word DPR to declare all the double-precision fl oating

point values in his program. How could he achieve this?

10. What are enumeration variables? How are they declared? What is the advantage of using

them in a program?

11. Describe the purpose of the qualifi ers const and volatile.

12. When dealing with very small or very large numbers, what steps would you take to improve

the accuracy of the calculations?

13. Which of the following are invalid constants and why?

 0.0001 5 ¥ 1.5 99999

 +100 75.45 E-2 “15.75”

 –45.6 –1.79 e + 4 0.00001234

14. Which of the following are invalid variable names and why?

 Minimum First.name n1+n2 &name

 doubles 3rd_row n$ Row1

 fl oat Sum Total Row Total Column-total

15. What would be the value of x after execution of the following statements?

 int x, y = 10;

 char z = ‘a’;

 x = y + z;

 16. Explain the following with examples:

 (a) Enumerated types

 (b) Type def

 17. Distinguish between the following:

 (a) Global and local variables

 (b) Initialization and assignment of variables

 (c) Automated and static variables

LO 4.1

LO 4.3

LO 4.4

LO 4.2

LO 4.2

LO 4.5

LO 4.5

LO 4.3

LO 4.4

LO 4.4

LO 4.5

LO 4.4

LO 4.2

LO 4.2

LO 4.4

LO 4.4

LO 4.4

LO 4.4

LO 4.4

 Constants, Variables and Data Types 143

Debugging Exercises

1. Find errors, if any, in the following declaration statements.

 Int x;

 fl oat letter,DIGIT;

 double = p,q

 exponent alpha,beta;

 m,n,z: INTEGER

 short char c;

 long int m; count;

 long fl oat temp;

2. Identify syntax errors in the following program. After corrections, what output would you

expect when you execute it?

 #defi ne PI 3.14159

 main()

 {

 int R,C; /* R-Radius of circle

 fl oat perimeter; /* Circumference of circle */

 fl oat area; /* Area of circle */

 C = PI

 R = 5;

 Perimeter = 2.0 * C *R;

 Area = C*R*R;

 printf(“%f”, “%d”,&perimeter,&area)

 }

Programming Exercises

1. Write a program to determine and print the sum of the following harmonic series for a

given value of n:

 1+ 1/2 +1/3 +....+ 1/n

 The value of n should be given interactively through the terminal.

2. Write a program to read the price of an item in decimal form (like 15.95) and print the

output in paise (like 1595 paise).

3. Write a program that prints the even numbers from 1 to 100.

4. Write a program that requests two fl oat type numbers from the user and then divides the

fi rst number by the second and display the result along with the numbers.

LO 4.4

LO 4.4

LO 4.4

LO 4.4

LO 4.2

LO 4.4

 144 Computing Fundamentals & C Programming

5. The price of one kg of rice is Rs. 16.75 and one kg of sugar is Rs. 15. Write a program to

get these values from the user and display the prices as follows:

 *** LIST OF ITEMS ***

 Item Price

 Rice Rs 16.75

 Sugar Rs 15.00

6. Write program to count and print the number of negative and positive numbers in a given

set of numbers. Test your program with a suitable set of numbers. Use scanf to read the

numbers. Reading should be terminated when the value 0 is encountered.

7. Write a program to do the following:

 (a) Declare x and y as integer variables and z as a short integer variable.

 (b) Assign two 6 digit numbers to x and y

 (c) Assign the sum of x and y to z

 (d) Output the values of x, y and z

 Comment on the output.

8. Write a program to read two fl oating point numbers using a scanf statement, assign their

sum to an integer variable and then output the values of all the three variables.

9. Write a program to illustrate the use of typedef declaration in a program.

10. Write a program to illustrate the use of symbolic constants in a real-life application.

LO 4.2

LO 4.4

LO 4.4

LO 4.2

LO 4.4

LO 4.5

5.1 INTRODUCTION

An operator is a symbol that tells the computer to perform certain mathematical or logical

manipulations. Operators are used in programs to manipulate data and variables. They usually

form a part of the mathematical or logical expressions.

C operators can be classified into a number of categories. They include:

1. Arithmetic operators

2. Relational operators

3. Logical operators

4. Assignment operators

5. Increment and decrement operators

6. Conditional operators

7. Bitwise operators

8. Special operators

An expression is a sequence of operands and operators that reduces to a single value. For example,

10 + 15

is an expression whose value is 25. The value can be any type other than void.

L
E

A
R

N
IN

G

LO 5.1

LO 5.2

LO 5.3

LO 5.4

LO 5.5

CHAPT ER

5
Operators and Expressions

146 Computing Fundamentals & C Programming

5.2 ARITHMETIC OPERATORS LO 5.1

C provides all the basic arithmetic operators. They are listed in Table 5.1. The operators +, –, *, and / all

work the same way as they do in other languages. These can operate on any built-in data type allowed in C.

The unary minus operator, in effect, multiplies its single operand by –1. Therefore, a number preceded by a

minus sign changes its sign.

Table 5.1 Arithmetic Operators

Operator Meaning

+ Addition or unary plus

– Subtraction or unary minus

* Multiplication

/ Division

% Modulo division

Integer division truncates any fractional part. The modulo division operation produces the remainder of

an integer division. Examples of use of arithmetic operators are:

a – b a + b

a * b a / b

a % b –a * b

Here a and b are variables and are known as operands. The modulo division operator % cannot be used

on floating point data. Note that C does not have an operator for exponentiation. Older versions of C does

not support unary plus but ANSI C supports it.

5.2.1 Integer Arithmetic

When both the operands in a single arithmetic expression such as a+b are integers, the expression is called

an integer expression, and the operation is called integer arithmetic. Integer arithmetic always yields

an integer value. The largest integer value depends on the machine, as pointed out earlier. In the above

examples, if a and b are integers, then for a = 14 and b = 4 we have the following results:

a – b = 10

a + b = 18

a * b = 56

a / b = 3 (decimal part truncated)

a % b = 2 (remainder of division)

During integer division, if both the operands are of the same sign, the result is truncated towards zero. If

one of them is negative, the direction of trunction is implementation dependent. That is,

6/7 = 0 and –6/–7 = 0

but –6/7 may be zero or –1. (Machine dependent)

Similarly, during modulo division, the sign of the result is always the sign of the first operand (the

dividend). That is

–14 % 3 = –2

Operators and Expressions 147

–14 % –3 = –2

14 % –3 = 2

The program in Fig. 5.1 shows the use of integer arithmetic to convert a given number of days into

months and days.

Program

 main ()

{

 int months, days ;

 printf(“Enter days\n”) ;

 scanf(“%d”, &days) ;

 months = days / 30 ;

 days = days % 30 ;

 printf(“Months = %d Days = %d”, months, days) ;

}

Output

 Enter days

 265

 Months = 8 Days = 25

 Enter days

 364

 Months = 12 Days = 4

 Enter days

 45

 Months = 1 Days = 15

Fig. 5.1 Illustration of integer arithmetic

The variables months and days are declared as integers. Therefore, the statement

months = days/30;

truncates the decimal part and assigns the integer part to months. Similarly, the statement

days = days%30;

assigns the remainder part of the division to days. Thus the given number of days is converted into an

equivalent number of months and days and the result is printed as shown in the output.

5.2.2 Real Arithmetic

An arithmetic operation involving only real operands is called real arithmetic. A real operand may assume

values either in decimal or exponential notation. Since floating point values are rounded to the number of

Levels of Difficulty

L: Low; M: Medium; H: High

148 Computing Fundamentals & C Programming

significant digits permissible, the final value is an approximation of the correct result. If x, y, and z are

floats, then we will have:

x = 6.0/7.0 = 0.857143

y = 1.0/3.0 = 0.333333

z = –2.0/3.0 = –0.666667

The operator % cannot be used with real operands.

5.2.3 Mixed-mode Arithmetic

When one of the operands is real and the other is integer, the expression is called a mixed-mode arithmetic

expression. If either operand is of the real type, then only the real operation is performed and the result is

always a real number. Thus

15/10.0 = 1.5

whereas

15/10 = 1

More about mixed operations will be discussed later when we deal with the evaluation of expressions.

5.3 RELATIONAL OPERATORS LO 5.1

We often compare two quantities and depending on their relation, take certain decisions. For example,

we may compare the age of two persons, or the price of two items, and so on. These comparisons can be

done with the help of relational operators. We have already used the symbol ‘<‘, meaning ‘less than’. An

expression such as

a < b or 1 < 20

containing a relational operator is termed as a relational expression. The value of a relational expression is

either one or zero. It is one if the specified relation is true and zero if the relation is false. For example

10 < 20 is true

but

20 < 10 is false

C supports six relational operators in all. These operators and their meanings are shown in Table 5.2.

Table 5.2 Relational Operators

Operator Meaning

< is less than

<= is less than or equal to

> is greater than

>= is greater than or equal to

== is equal to

!= is not equal to

A simple relational expression contains only one relational operator and takes the following form:

ae-1 relational operator ae-2

Operators and Expressions 149

ae-1 and ae-2 are arithmetic expressions, which may be simple constants, variables or combination of them.

Given below are some examples of simple relational expressions and their values:

4.5 <= 10 TRUE

4.5 < –10 FALSE

–35 >= 0 FALSE

10 < 7+5 TRUE

a+b = c+d TRUE only if the sum of values of a and b is equal to the sum of values of c and d.

When arithmetic expressions are used on either side of a relational operator, the arithmetic expressions

will be evaluated first and then the results compared. That is, arithmetic operators have a higher priority

over relational operators.

Relational expressions are used in decision statements such as if and while to decide the course of action

of a running program. We have already used the while statement in Chapter 3. Decision statements are

discussed in detail in Chapters 7 and 8.

Relational Operator Complements

Among the six relational operators, each one is a complement of another operator.

> is complement of < =

< is complement of > =

= = is complement of ! =

We can simplify an expression involving the not and the less than operators using the complements as

shown below:

Actual one Simplified one

!(x < y) x > = y

!(x > y) x < = y

!(x ! = y) x = = y

!(x < = y) x > y

!(x > = y) x < y

!(x == y) x ! = y

5.4 LOGICAL OPERATORS LO 5.1

In addition to the relational operators, C has the following three logical operators.

&& meaning logical AND

|| meaning logical OR

! meaning logical NOT

The logical operators && and || are used when we want to test more than one condition and make

decisions. An example is:

a > b && x == 10

An expression of this kind, which combines two or more relational expressions, is termed as a logical

expression or a compound relational expression. Like the simple relational expressions, a logical expression

also yields a value of one or zero, according to the truth table shown in Table 5.3. The logical expression

given above is true only if a > b is true and x == 10 is true. If either (or both) of them are false, the

expression is false.

150 Computing Fundamentals & C Programming

Some examples of the usage of logical expressions are:

1. if (age > 55 && salary < 1000)

2. if (number < 0 || number > 100)

We shall see more of them when we discuss decision statements.

Table 5.3 Truth Table

op-1 op-2
Value of the expression

op-1 && op-2 op-1 || op-2

Non-zero Non-zero 1 1

Non-zero 0 0 1

0 Non-zero 0 1

0 0 0 0

Note Relative precedence of the relational and logical operators is as follows:

 Highest !

 > >= < <=

 == !=

 &&

 Lowest ||

It is important to remember this when we use these operators in compound expressions.

5.5 ASSIGNMENT OPERATORS LO 5.1

Assignment operators are used to assign the result of an expression to a variable. We have seen the

usual assignment operator, ‘=’. In addition, C has a set of ‘shorthand ’ assignment operators of the form

v op= exp;

Where v is a variable, exp is an expression and op is a C binary arithmetic operator. The operator op= is

known as the shorthand assignment operator.

The assignment statement

v op= exp;

is equivalent to

v = v op (exp);

with v evaluated only once. Consider an example

x += y+1;

This is same as the statement

x = x + (y+1);

The shorthand operator += means ‘add y+1 to x’ or ‘increment x by y+1’. For y = 2, the above statement

becomes

x += 3;

and when this statement is executed, 3 is added to x. If the old value of x is, say 5, then the new value of x

is 8. Some of the commonly used shorthand assignment operators are illustrated in Table 5.4.

Operators and Expressions 151

Table 5.4 Shorthand Assignment Operators

Statement with simple

assignment operator

Statement with

shorthand operator

a = a + 1 a += 1

a = a – 1 a –= 1

a = a * (n+1) a *= n+1

a = a / (n+1) a /= n+1

a = a % b a %= b

The use of shorthand assignment operators has three advantages:

1. What appears on the left-hand side need not be repeated and therefore it becomes easier to write.

2. The statement is more concise and easier to read.

3. The statement is more efficient.

These advantages may be appreciated if we consider a slightly more involved statement like

value(5*j–2) = value(5*j–2) + delta;

With the help of the += operator, this can be written as follows:

value(5*j–2) += delta;

It is easier to read and understand and is more efficient because the expression 5*j–2 is evaluated only

once.

Program of Fig. 5.2 prints a sequence of squares of numbers. Note the use of the shorthand

operator *= .

The program attempts to print a sequence of squares of numbers starting from 2. The statement

a *= a;

which is identical to

a = a*a;

replaces the current value of a by its square. When the value of a becomes equal or greater than N (=100)

the while is terminated. Note that the output contains only three values 2, 4, and 16.

Program

 #define N 100

 #define A 2

 main()

{

 int a;

 a = A;

 while(a < N)

{

152 Computing Fundamentals & C Programming

 printf(“%d\n”, a);

 a *= a;

}

}

Output

2

4

 16

 Fig. 5.2 Use of shorthand operator *=

5.6 INCREMENT AND DECREMENT OPERATORS LO 5.1

C allows two very useful operators not generally found in other languages. These are the increment and

decrement operators:
++ and —–

The operator ++ adds 1 to the operand, while – – subtracts 1. Both are unary operators and takes the

following form:

++m; or m++;

–—m; or m–—;

++m; is equivalent to m = m+1; (or m += 1;)

–—m; is equivalent to m = m–1; (or m –= 1;)

We use the increment and decrement statements in for and while loops extensively.

While ++m and m++ mean the same thing when they form statements independently, they behave

differently when they are used in expressions on the right-hand side of an assignment statement. Consider

the following:

m = 5;

y = ++m;

In this case, the value of y and m would be 6. Suppose, if we rewrite the above statements as

m = 5;

y = m++;

then, the value of y would be 5 and m would be 6. A prefix operator first adds 1 to the operand and then the

result is assigned to the variable on left. On the other hand, a postfix operator first assigns the value to the

variable on left and then increments the operand.

Similar is the case, when we use ++ (or ––) in subscripted variables. That is, the statement

a[i++] = 10;

is equivalent to
a[i] = 10;

i = i+1;

The increment and decrement operators can be used in complex statements. Example:

m = n++ –j+10;

Old value of n is used in evaluating the expression. n is incremented after the evaluation. Some compilers

require a space on either side of n++ or ++n.

Operators and Expressions 153

Rules for ++ and –– Operators

Increment and decrement operators are unary operators and they require variable as their operands.

When postfix ++ (or ––) is used with a variable in an expression, the expression is evaluated first

using the original value of the variable and then the variable is incremented (or decremented) by

one.

When prefix ++(or ––) is used in an expression, the variable is incremented (or decremented) first

and then the expression is evaluated using the new value of the variable.

The precedence and associativity of ++ and –– operators are the same as those of unary + and unary –.

5.7 CONDITIONAL OPERATOR LO 5.1

A ternary operator pair “? :” is available in C to construct conditional expressions of the form

exp1 ? exp2 : exp3

where exp1, exp2, and exp3 are expressions.

The operator ? : works as follows: exp1 is evaluated first. If it is nonzero (true), then the expression

exp2 is evaluated and becomes the value of the expression. If exp1 is false, exp3 is evaluated and its

value becomes the value of the expression. Note that only one of the expressions (either exp2 or exp3) is

evaluated. For example, consider the following statements:

a = 10;

b = 15;

x = (a > b) ? a : b;

In this example, x will be assigned the value of b. This can be achieved using the if..else statements as

follows:
if (a > b)

 x = a;

else

 x = b;

5.8 BITWISE OPERATORS LO 5.2

C has a distinction of supporting special operators known as bitwise operators for manipulation of data at bit

level. These operators are used for testing the bits, or shifting them right or left. Bitwise operators may not

be applied to float or double. Table 5.5 lists the bitwise operators and their meanings.

Table 5.5 Bitwise Operators

Operator Meaning

& bitwise AND

| bitwise OR

^ bitwise exclusive OR

<< shift left

>> shift right

154 Computing Fundamentals & C Programming

5.9 SPECIAL OPERATORS LO 5.2

C supports some special operators of interest such as comma operator, sizeof operator, pointer operators (&

and *) and member selection operators (. and –>). The comma and sizeof operators are discussed in this

section while the pointer operators are discussed in Chapter 13. Member selection operators which are used

to select members of a structure are discussed in Chapters 12 and 13. ANSI committee has introduced two

preprocessor operators known as “string-izing” and “token-pasting” operators (# and ##).

5.9.1 The Comma Operator

The comma operator can be used to link the related expressions together. A comma-linked list of

expressions are evaluated left to right and the value of right-most expression is the value of the combined

expression. For example, the statement

value = (x = 10, y = 5, x+y);

first assigns the value 10 to x, then assigns 5 to y, and finally assigns 15 (i.e. 10 + 5) to value. Since comma

operator has the lowest precedence of all operators, the parentheses are necessary. Some applications of

comma operator are:

In for loops:

for (n = 1, m = 10, n <=m; n++, m++)

In while loops:

while (c = getchar(), c != ‘10’)

Exchanging values:

t = x, x = y, y = t;

5.9.2 The sizeof Operator

The sizeof is a compile time operator and, when used with an operand, it returns the number of bytes the

operand occupies. The operand may be a variable, a constant or a data type qualifier.

Examples: m = sizeof (sum);

n = sizeof (long int);

k = sizeof (235L);

The sizeof operator is normally used to determine the lengths of arrays and structures when their sizes

are not known to the programmer. It is also used to allocate memory space dynamically to variables during

execution of a program.

In Fig. 5.3, the program employs different kinds of operators. The results of their evaluation are also

shown for comparison.

Notice the way the increment operator ++ works when used in an expression. In the statement

c = ++a – b;

new value of a (= 16) is used thus giving the value 6 to c. That is, a is incremented by 1 before it is used in

the expression. However, in the statement

d = b++ + a;

Operators and Expressions 155

the old value of b (=10) is used in the expression. Here, b is incremented by 1 after it is used in the

expression.

We can print the character % by placing it immediately after another % character in the control string.

This is illustrated by the statement

printf(“a%%b = %d\n”, a%b);

The program also illustrates that the expression

c > d ? 1 : 0

assumes the value 0 when c is less than d and 1 when c is greater than d.

Program

 main()

{

 int a, b, c, d;

 a = 15;

 b = 10;

 c = ++a - b;

 printf(“a = %d b = %d c = %d\n”,a, b, c);

 d = b++ +a;

 printf(“a = %d b = %d d = %d\n”,a, b, d);

 printf(“a/b = %d\n”, a/b);

 printf(“a%%b = %d\n”, a%b);

 printf(“a *= b = %d\n”, a*=b);

 printf(“%d\n”, (c>d) ? 1 : 0);

 printf(“%d\n”, (c<d) ? 1 : 0);

}

Output

 a = 16 b = 10 c = 6

 a = 16 b = 11 d = 26

 a/b = 1

 a%b = 5

 a *=b = 176

0

1

Fig. 5.3 Further illustration of arithmetic operators

5.10 ARITHMETIC EXPRESSIONS LO 5.3

An arithmetic expression is a combination of variables, constants, and operators arranged as per the syntax

of the language. We have used a number of simple expressions in the examples discussed so far. C can

handle any complex mathematical expressions. Some of the examples of C expressions are shown in

Table 5.6. Remember that C does not have an operator for exponentiation.

156 Computing Fundamentals & C Programming

Table 5.6 Expressions

Algebraic expression C expression

a x b - c a * b - c

(m+n) (x+y) (m+n) * (x+y)

ab

c
a * b/c

3x2 +2x+1 3 * x * x 2 * x + 1

x
+ c

y
x/y+c

5.11 EVALUATION OF EXPRESSIONS LO 5.3

Expressions are evaluated using an assignment statement of the form:

variable = expression;

Variable is any valid C variable name. When the statement is encountered, the expression is evaluated

first and the result then replaces the previous value of the variable on the left-hand side. All variables used

in the expression must be assigned values before evaluation is attempted. Examples of evaluation statements

are

x = a * b - c;
y = b / c * a;

z = a - b / c + d;

The blank space around an operator is optional and adds only to improve readability. When these

statements are used in a program, the variables a, b, c, and d must be defined before they are used in the

expressions.

The program in Fig. 5.4 illustrates the use of variables in expressions and their evaluation.

Output of the program also illustrates the effect of presence of parentheses in expressions. This is discussed

in the next section.

Program

 main()

{

 float a, b, c, x, y, z;

 a = 9;

 b = 12;

 c = 3;

Operators and Expressions 157

 x = a – b / 3 + c * 2 - 1;

 y = a – b / (3 + c) * (2 - 1);

 z = a – (b / (3 + c) * 2) - 1;

 printf(“x = %f\n”, x);

 printf(“y = %f\n”, y);

 printf(“z = %f\n”, z);

}

Output

 x = 10.000000

 y = 7.000000

 z = 4.000000

 Fig. 5.4 Illustrations of evaluation of expressions

5.12 PRECEDENCE OF ARITHMETIC OPERATORS LO 5.3

An arithmetic expression without parentheses will be evaluated from left to right using the rules of

precedence of operators. There are two distinct priority levels of arithmetic operators in C:

High priority * / %

Low priority + –

The basic evaluation procedure includes ‘two’ left-to-right passes through the expression. During the

first pass, the high priority operators (if any) are applied as they are encountered. During the second pass,

the low priority operators (if any) are applied as they are encountered. Consider the following evaluation

statement that has been used in the program of Fig. 5.4.

x = a–b/3 + c*2–1

When a = 9, b = 12, and c = 3, the statement becomes

x = 9–12/3 + 3*2–1

and is evaluated as follows

First pass

Step1: x = 9–4+3*2–1

Step2: x = 9–4+6–1

Second pass

Step3: x = 5+6–1

Step4: x = 11–1

Step5: x = 10

These steps are illustrated in Fig. 5.5. The numbers inside parentheses refer to step numbers.

158 Computing Fundamentals & C Programming

Fig. 5.5 Illustration of hierarchy of operations

However, the order of evaluation can be changed by introducing parentheses into an expression. Consider

the same expression with parentheses as shown below:

9–12/(3+3)*(2–1)

Whenever parentheses are used, the expressions within parentheses assume highest priority. If two or

more sets of parentheses appear one after another as shown above, the expression contained in the left-most

set is evaluated first and the right-most in the last. Given below are the new steps.

First pass

Step1: 9-12/6 * (2-1)

Step2: 9-12/6 * 1

Second pass

Step3: 9-2 * 1

Step4: 9-2

Third pass

Step5: 7

This time, the procedure consists of three left-to-right passes. However, the number of evaluation steps

remains the same as 5 (i.e., equal to the number of arithmetic operators).

Parentheses may be nested, and in such cases, evaluation of the expression will proceed outward from

the innermost set of parentheses. Just make sure that every opening parenthesis has a matching closing

parenthesis. For example

9 – (12/(3+3) * 2) – 1 = 4

whereas

9 – ((12/3) + 3 * 2) – 1 = –2

While parentheses allow us to change the order of priority, we may also use them to improve

understandability of the program. When in doubt, we can always add an extra pair just to make sure that the

priority assumed is the one we require.

Rules for Evaluation of Expression

First, parenthesized sub expression from left to right are evaluated.

If parentheses are nested, the evaluation begins with the innermost sub-expression.

Operators and Expressions 159

The precedence rule is applied in determining the order of application of operators in evaluating

sub-expressions.

The associativity rule is applied when two or more operators of the same precedence level appear in

a sub-expression.

Arithmetic expressions are evaluated from left to right using the rules of precedence.

When parentheses are used, the expressions within parentheses assume highest priority.

Write a C program for the following expression: a=5<=8 && 6!=5.

 #include <stdio.h>

 #include <conio.h>

 void main()

{

 int a;

 a = 5<=8 && 6!=5;

 printf(“%d“, a);

 getch();

}

Output

1

Fig. 5.6 Program for the expression: a = 5 < = 8 && 6! = 5

5.13 SOME COMPUTATIONAL PROBLEMS LO 5.3

When expressions include real values, then it is important to take necessary precautions to guard against

certain computational errors. We know that the computer gives approximate values for real numbers and

the errors due to such approximations may lead to serious problems. For example, consider the following

statements:

a = 1.0/3.0;

b = a * 3.0;

We know that (1.0/3.0) 3.0 is equal to 1. But there is no guarantee that the value of b computed in a

program will equal 1.

Another problem is division by zero. On most computers, any attempt to divide a number by zero will

result in abnormal termination of the program. In some cases such a division may produce meaningless

results. Care should be taken to test the denominator that is likely to assume zero value and avoid any

division by zero.

The third problem is to avoid overflow or underflow errors. It is our responsibility to guarantee that

operands are of the correct type and range, and the result may not produce any overflow or underflow.

160 Computing Fundamentals & C Programming

Output of the program in Fig. 5.7 shows round-off errors that can occur in computation of floating point

numbers.

Program

 /*————————— Sum of n terms of 1/n —————————*/

 main()

{

 float sum, n, term ;

 int count = 1 ;

 sum = 0 ;

 printf(“Enter value of n\n”) ;

 scanf(“%f”, &n) ;

 term = 1.0/n ;

 while(count <= n)

{

 sum = sum + term ;

 count++ ;

}

 printf(“Sum = %f\n”, sum) ;

}

Output

 Enter value of n

 99

 Sum = 1.000001

 Enter value of n

 143

 Su = 0.999999

 Fig. 5.7

We know that the sum of n terms of 1/n is 1. However, due to errors in floating point representation, the

result is not always 1.

Operators and Expressions 161

5.14 TYPE CONVERSIONS IN EXPRESSIONS LO 5.4

5.14.1 Implicit Type Conversion

C permits mixing of constants and variables of different types in an expression. C automatically converts

any intermediate values to the proper type so that the expression can be evaluated without losing any

significance. This automatic conversion is known as implicit type conversion.

During evaluation it adheres to very strict rules of type conversion. If the operands are of different types,

the ‘lower’ type is automatically converted to the ‘higher’ type before the operation proceeds. The result is

of the higher type. A typical type conversion process is illustrated in Fig. 5.8.

Fig. 5.8 Process of implicit type conversion

Given below is the sequence of rules that are applied while evaluating expressions.

All short and char are automatically converted to int; then

1. if one of the operands is long double, the other will be converted to long double and the result will

be long double;

2. else, if one of the operands is double, the other will be converted to double and the result will be

double;

3. else, if one of the operands is float, the other will be converted to float and the result will be float;

4. else, if one of the operands is unsigned long int, the other will be converted to unsigned long int and

the result will be unsigned long int;

5. else, if one of the operands is long int and the other is unsigned int, then

(a) if unsigned int can be converted to long int, the unsigned int operand will be converted as such

and the result will be long int;

(b) else, both operands will be converted to unsigned long int and the result will be unsigned long

int;

162 Computing Fundamentals & C Programming

6. else, if one of the operands is long int, the other will be converted to long int and the result will be

long int;

7. else, if one of the operands is unsigned int, the other will be converted to unsigned int and the result

will be unsigned int.

Conversion Hierarchy

Note that, C uses the rule that, in all expressions except assignments, any implicit type conversions are

made from a lower size type to a higher size type as shown below:

Note that some versions of C automatically convert all floating-point operands to double precision.

The final result of an expression is converted to the type of the variable on the left of the assignment sign

before assigning the value to it. However, the following changes are introduced during the final assignment.

1. float to int causes truncation of the fractional part.

2. double to float causes rounding of digits.

3. long int to int causes dropping of the excess higher order bits.

5.14.2 Explicit Conversion

We have just discussed how C performs type conversion automatically. However, there are instances when

we want to force a type conversion in a way that is different from the automatic conversion. Consider, for

example, the calculation of ratio of females to males in a town.

ratio = female_number/male_number

Since female_number and male_number are declared as integers in the program, the decimal part of

the result of the division would be lost and ratio would represent a wrong figure. This problem can be

solved by converting locally one of the variables to the floating point as shown below:

ratio = (float) female_number/male_number

The operator (float) converts the female_number to floating point for the purpose of evaluation of the

expression. Then using the rule of automatic conversion, the division is performed in floating point mode,

thus retaining the fractional part of result.

Note that in no way does the operator (float) affect the value of the variable female number. And also,

the type of female number remains as int in the other parts of the program.

Operators and Expressions 163

The process of such a local conversion is known as explicit conversion or casting a value. The general

form of a cast is:

(type-name) expression

where type-name is one of the standard C data types. The expression may be a constant, variable or an

expression. Some examples of casts and their actions are shown in Table 5.7.

Table 5.7 Use of Casts

Example Action

x = (int) 7.5 7.5 is converted to integer by truncation.

a = (int) 21.3/(int)4.5 Evaluated as 21/4 and the result would be 5.

b = (double)sum/n Division is done in floating point mode.

y = (int) (a+b) The result of a+b is converted to integer.

z = (int)a+b a is converted to integer and then added to b.

p = cos((double)x) Converts x to double before using it.

Casting can be used to round-off a given value. Consider the following statement:

x = (int) (y+0.5);

If y is 27.6, y+0.5 is 28.1 and on casting, the result becomes 28, the value that is assigned to x. Of

course, the expression, being cast is not changed.

H

Figure 5.9 shows a program using a cast to evaluate the equation

 sum =
n

i 1

(1/i)

Program

 main()

{

 float sum ;

 int n ;

 sum = 0 ;

 for(n = 1 ; n <= 10 ; ++n)

{

 sum = sum + 1/(float)n ;

 printf(“%2d %6.4f\n”, n, sum) ;

}

}

Output

 1 1.0000

164 Computing Fundamentals & C Programming

 2 1.5000

 3 1.8333

 4 2.0833

 5 2.2833

 6 2.4500

 7 2.5929

 8 2.7179

 9 2.8290

 10 2.9290

 Fig. 5.9 Use of a cast

5.15 OPERATOR PRECEDENCE AND ASSOCIATIVITY LO 5.5

As mentioned earlier each operator, in C has a precedence associated with it. This precedence is used

to determine how an expression involving more than one operator is evaluated. There are distinct levels

of precedence and an operator may belong to one of these levels. The operators at the higher level of

precedence are evaluated first. The operators of the same precedence are evaluated either from ‘left to right’

or from ‘right to left’, depending on the level. This is known as the associativity property of an operator.

Table 5.8 provides a complete list of operators, their precedence levels, and their rules of association. The

groups are listed in the order of decreasing precedence. Rank 1 indicates the highest precedence level and

15 the lowest. The list also includes those operators, which we have not yet been discussed.

It is very important to note carefully, the order of precedence and associativity of operators. Consider the

following conditional statement:

if (x == 10 + 15 && y < 10)

The precedence rules say that the addition operator has a higher priority than the logical operator (&&)

and the relational operators (== and <). Therefore, the addition of 10 and 15 is executed first. This is

equivalent to :

if (x == 25 && y < 10)

The next step is to determine whether x is equal to 25 and y is less than 10. If we assume a value of 20

for x and 5 for y, then

x == 25 is FALSE (0)

y < 10 is TRUE (1)

Note that since the operator < enjoys a higher priority compared to ==, y < 10 is tested first and then x

== 25 is tested.

Finally we get:

if (FALSE && TRUE)

Because one of the conditions is FALSE, the complex condition is FALSE.

In the case of &&, it is guaranteed that the second operand will not be evaluated if the first is zero and in

the case of ||, the second operand will not be evaluated if the first is non-zero.

Rules of Precedence and Associativity

Precedence rules decide the order in which different operators are applied

Associativity rule decides the order in which multiple occurrences of the same level operator are

applied

Operators and Expressions 165

Table 5.8 Summary of C Operators

Operator Description Associativity Rank

() Function call Left to right 1

[] Aray element reference

+ Unary plus

– Unary minus Right to left 2

++ Increment

– – Decrement

! Logical negation

~ Ones complement

* Pointer reference (indirection)

& Address

sizeof Size of an object

(type) Type cast (conversion)

* Multiplication Left to right 3

/ Division

% Modulus

+ Addition Left to right 4

– Subtraction

<< Left shift Left to right 5

>> Right shift

< Less than Left to right 6

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equality Left to right 7

|= Inequality

& Bitwise AND Left to right 8

^ Bitwise XOR Left to right 9

| Bitwise OR Left to right 10

&& Logical AND Left to right 11

|| Logical OR Left to right 12

?: Conditional expression Right to left 13

= Assignment operators Right to left 14

* = /= %=

+= –= &=

^= |=

<<= >>=

, Comma operator Left to right 15

166 Computing Fundamentals & C Programming

5.15.1 Mathematical Functions

Mathematical functions such as cos, sqrt, log, etc. are frequently used in analysis of real-life problems.

Most of the C compilers support these basic math functions. However, there are systems that have a more

comprehensive math library and one should consult the reference manual to find out which functions are

available. Table 5.9 lists some standard math functions.

Table 5.9 Math functions

Function Meaning

Trigonometric

acos(x) Arc cosine of x

asin(x) Arc sine of x

atan(x) Arc tangent of x

atan 2(x,y) Arc tangent of x/y

cos(x) Cosine of x

sin(x) Sine of x

tan(x) Tangent of x

Hyperbolic

cosh(x) Hyperbolic cosine of x

sinh(x) Hyperbolic sine of x

tanh(x) Hyperbolic tangent of x

Other functions

ceil(x) x rounded up to the nearest integer

exp(x) e to the x power (ex)

fabs(x) Absolute value of x.

floor(x) x rounded down to the nearest integer

fmod(x,y) Remainder of x/y

log(x) Natural log of x, x > 0

log10(x) Base 10 log of x, x > 0

pow(x,y) x to the power y (xy)

sqrt(x) Square root of x, x > = 0

Note: 1. x and y should be declared as double.

2. In trigonometric and hyperbolic functions, x and y are in radians.

3. All the functions return a double.

4. C99 has added float and long double versions of these functions.

5. C99 has added many more mathematical functions.

6. See the Appendix “C99 Features” for details.

As pointed out earlier in Chapter 3, to use any of these functions in a program, we should include the

line:

Operators and Expressions 167

include <math.h>

in the beginning of the program.

Learning Outcomes

Use decrement and increment operators carefully. Understand the difference between postfix and

prefix operations before using them.

Do not use increment or decrement operators with any expression other than a variable identifier.

It is illegal to apply modules operator % with anything other than integers.

The result of an expression is converted to the type of the variable on the left of the assignment

before assigning the value to it. Be careful about the loss of information during the conversion.

It is an error if any space appears between the two symbols of the operators ==, !=, <= and >=.

It is an error if the two symbols of the operators !=, <= and >= are reversed.

Use spaces on either side of binary operator to improve the readability of the code.

Do not use increment and decrement operators to floating point variables.

Do not confuse the equality operator == with the assignment operator =.

Use sizeof operator to determine the length of arrays and structures where their sizes are not already

known.

Be aware of side effects produced by some expressions.

Avoid any attempt to divide by zero. It is normally undefined. It will either result in a fatal error or in

incorrect results.

Do not forget a semicolon at the end of an expression.

Do not use a variable in an expression before it has been assigned a value.

Integer division always truncates the decimal part of the result. Use it carefully. Use casting where

necessary.

Add parentheses wherever you feel they would help to make the evaluation order clear.

Understand clearly the precedence of operators in an expression. Use parentheses, if necessary.

Associativity is applied when more than one operator of the same precedence are used in an

expression. Understand which operators associate from right to left and which associate from left to

right.

Key Terms to Remember

Operator: Is a symbol that is used to perform mathematical or logical operation on data and

variables.

Expression: Is a combination of operands and operators that reduce to a single value.

Integer expression: Is an arithmetic expression involving integer operands.

Real arithmetic: Is an arithmetic expression involving real operands.

Relational operators: Are used to compare two operands and result in either one (true) or zero

(false).

Logical operators: Are used to combine two or more relational expressions.

LO 5.1

LO 5.1

LO 5.1

LO 5.1

LO 5.1

LO 5.1

LO 5.1

LO 5.1

LO 5.1

LO 5.2

LO 5.3

LO 5.3

LO 5.3

LO 5.3

LO 5.4

LO 5.5

LO 5.5

LO 5.5

LO 5.1

LO 5.1

LO 5.1

LO 5.1

LO 5.1

LO 5.1

168 Computing Fundamentals & C Programming

Assignment operators: Are used to assign an expression value to a variable.

Bitwise operators: Are special operators that are used to manipulate data at bit level.

Arithmetic operation: Refers to the evaluation of arithmetic expression as per operator precedence

rules.

Brief Cases

1. Salesman’s Salary [LO 5.3 M]

A computer manufacturing company has the following monthly compensation policy to their sales-persons:

Minimum base salary : 1500.00

Bonus for every computer sold : 200.00

Commission on the total monthly sales : 2 per cent

Since the prices of computers are changing, the sales price of each computer is fixed at the beginning of

every month. A program to compute a sales-person’s gross salary is given in Fig. 5.10.

Program

 #define BASE_SALAR 1500.00

 #define BONUS_RATE 200.00

 #define COMMISSION 0.02

 main()

{

 int quantity ;

 float gross_salary, price ;

 float bonus, commission ;

 printf(“Input number sold and price\n”) ;

 scanf(“%d %f”, &quantity, &price) ;

 bonus = BONUS_RATE * quantity ;

 commission = COMMISSION * quantity * price ;

 gross_salary = BASE_SALARY + bonus + commission ;

 printf(“\n”);

 printf(“Bonus = %6.2f\n”, bonus) ;

 printf(“Commission = %6.2f\n”, commission) ;

 printf(“Gross salary = %6.2f\n”, gross_salary) ;

}

Output

 Input number sold and price

 5 20450.00

 Bonus = 1000.00

 Commission = 2045.00

 Gross salary = 4545.00

 Fig. 5.10 Program of salesman’s salary

LO 5.1

LO 5.2

LO 5.3

Operators and Expressions 169

Given the base salary, bonus, and commission rate, the inputs necessary to calculate the gross salary are,

the price of each computer and the number sold during the month.

The gross salary is given by the equation:

Gross salary = base salary + (quantity * bonus rate)

 + (quantity * Price) * commission rate

2. Solution of the Quadratic Equation [LO 5.5 H]

An equation of the form

ax2 + bx + c = 0

is known as the quadratic equation. The values of x that satisfy the equation are known as the roots of the

equation. A quadratic equation has two roots which are given by the following two formulae:

 root1 =
b + sqrt b ac

a

()2 4

2

 root 2 =
b sqrt b ac

a

()2 4

2

A program to evaluate these roots is given in Fig. 5.11. The program requests the user to input the values

of a, b and c and outputs root 1 and root 2.

Program

 #include <math.h>

 main()

{

 float a, b, c, discriminant,

 root1, root2;

 printf(“Input values of a, b, and c\n”);

 scanf(“%f %f %f”, &a, &b, &c);

 discriminant = b*b - 4*a*c ;

 if(discriminant < 0)

 printf(“\n\nROOTS ARE IMAGINARY\n”);

 else

{

 root1 = (-b + sqrt(discriminant))/(2.0*a);

 root2 = (-b - sqrt(discriminant))/(2.0*a);

 printf(“\n\nRoot1 = %5.2f\n\nRoot2 = %5.2f\n”,

 root1,root2);

}

}

Output

 Input values of a, b, and c

 2 4 -16

 Root1 = 2.00

 Root2 = -4.00

 Input values of a, b, and c

170 Computing Fundamentals & C Programming

 1 2 3

 ROOTS ARE IMAGINARY

Fig. 5.11 Solution of a quadratic equation

The term (b2–4ac) is called the discriminant. If the discriminant is less than zero, its square roots

cannot be evaluated. In such cases, the roots are said to be imaginary numbers and the program outputs an

appropriate message.

Review Questions

Fill in the Blanks

1. The expression containing all the integer operands is called________ expression.

2. C supports as many as _______relational operators.

3. The ___________operator returns the number of bytes the operand occupies.

4. _________is used to determine the order in which different operators in an expression are

evaluated.

5. An expression that combines two or more relational expressions is termed as __________

expression.

6. The use of ________ on a variable can change its type in the memory.

7. The order of evaluation can be changed by using ______ in an expression.

8. The operator _________cannot be used with real operands.

True or False Statements

1. The expression !(x<=y) is same as the expression x>y.

2. A unary expression consists of only one operand with no operators.

3. All arithmetic operators have the same level of precedence.

4. An expression statement is terminated with a period.

5. The operators <=, >= and != all enjoy the same level of priority.

6. The modulus operator % can be used only with integers.

7. In C, if a data item is zero, it is considered false.

8. During the evaluation of mixed expressions, an implicit cast is generated automatically.

9. An explicit cast can be used to change the expression.

10. Associativity is used to decide which of several different expressions is evaluated first.

11. Parentheses can be used to change the order of evaluation expressions.

LO 5.1

LO 5.1

LO 5.2

LO 5.5

LO 5.1

LO 5.4

LO 5.5

LO 5.1

LO 5.1

LO 5.1

LO 5.3

LO 5.3

LO 5.5

LO 5.1

LO 5.1

LO 5.4

LO 5.4

LO 5.5

LO 5.5

Levels of Difficulty

: Low; : Medium; : High

Operators and Expressions 171

12. During modulo division, the sign of the result is positive, if both the operands are of the

same sign.

Multiple Choice Questions

1. Given the statement

 int a = 10, b = 20, c;

 determine whether each of the following statements are true or false.

(a) The statement a = + 10, is valid.

(b) The expression a + 4/6 * 6/2 evaluates to 11.

(c) The expression b + 3/2 * 2/3 evaluates to 20.

(d) The statement a + = b; gives the values 30 to a and 20 to b.

(e) The statement ++a++; gives the value 12 to a

(f) The statement a = 1/b; assigns the value 0.5 to a

2. Declared a as int and b as float, state whether the following statements are true or false.

(a) The statement a = 1/3 + 1/3 + 1/3; assigns the value 1 to a.

(b) The statement b = 1.0/3.0 + 1.0/3.0 + 1.0/3.0; assigns a value 1.0 to b.

(c) The statement b = 1.0/3.0 * 3.0 gives a value 1.0 to b.

(d) The statement b = 1.0/3.0 + 2.0/3.0 assigns a value 1.0 to b.

(e) The statement a = 15/10.0 + 3/2; assigns a value 3 to a.

3. Which of the following expressions are true?

(a) !(5 + 5 >=10)

(b) 5 + 5 = = 10 || 1 + 3 = = 5

(c) 5 > 10 || 10 < 20 && 3 < 5

(d) 10 ! = 15 && !(10<20) || 15 > 30

Discussion Questions

1. Which of the following arithmetic expressions are valid? If valid, give the value of the

expression; otherwise give reason.

(a) 25/3 % 2 (e) –14 % 3

(b) +9/4 + 5 (f) 15.25 + – 5.0

(c) 7.5 % 3 (g) (5/3) * 3 + 5 % 3

(d) 14 % 3 + 7 % 2 (h) 21 % (int)4.5

2. Write C assignment statements to evaluate the following equations:

(a) Area = r2 +2 rh

(b) Torque =
1 2

1 2

2m m
g

m m

(c) Side = 2 2a + b – 2ab cos(x)

(d) Energy = mass
2(velocity)

acceleration × height +
2

3. Identify unnecessary parentheses in the following arithmetic expressions.

(a) ((x–(y/5)+z)%8) + 25

LO 5.1

LO 5.3

LO 5.3

LO 5.3

LO 5.5

LO 5.5

LO 5.5

172 Computing Fundamentals & C Programming

(b) ((x–y) * p)+q

(c) (m*n) + (–x/y)

(d) x/(3*y)

4. Determine the value of each of the following logical expressions if a = 5, b = 10 and

c= –6

(a) a > b && a < c

(b) a < b && a > c

(c) a == c || b > a

(d) b > 15 && c < 0 || a > 0

(e) (a/2.0 == 0.0 && b/2.0 != 0.0) || c < 0.0

5. What is the output of the following program?

 main ()

{

 char x;

 int y;

 x = 100;

 y = 125;

 printf (“%c\n”, x) ;

 printf (“%c\n”, y) ;

 printf (“%d\n”, x) ;

}

6. Find the output of the following program?

 main ()

{

 int x = 100;

 printf(“%d/n”, 10 + x++);

 printf(“%d/n”, 10 + ++x);

}

7. What is printed by the following program?

 main

{

 int x = 5, y = 10, z = 10 ;

 x = y == z;

 printf(“%d”,x) ;

}

8. What is the output of the following program?

 main ()

{

 int x = 100, y = 200;

 printf (“%d”, (x > y)? x : y);

}

LO 5.5

LO 5.1

LO 5.1

LO 5.5

LO 5.1

Operators and Expressions 173

9. What is the output of the following program?

 main ()

{

 unsigned x = 1 ;

 signed char y = -1 ;

 if(x > y)

 printf(“ x > y”);

 else

 printf(“x<= y”) ;

}

 Did you expect this output? Explain.

10. What is the output of the following program? Explain the output.

 main ()

{

 int x = 10 ;

 if(x = 20) printf(“TRUE”) ;

 else printf(“FALSE”) ;

}

11. What is printed when the following is executed?

 for (m = 0; m <3; ++m)

 printf(“%d/n”, (m%2) ? m: m+2);

12. What is the output of the following segment when executed?

 int m = - 14, n = 3;

 printf(“%d\n”, m/n * 10) ;

 n = -n;

 printf(“%dn”, m/n * 10);

Debugging Exercises

1. What is the error, if any, in the following segment?

 int x = 10 ;

 float y = 4.25 ;

 x = y%x ;

2. What is the error in each of the following statements?

(a) if (m == 1 & n ! = 0)

 printf(“OK”);

(b) if (x = < 5)

 printf (“Jump”);

3. Find errors, if any, in the following assignment statements and rectify them.

(a) x = y = z = 0.5, 2.0. –5.75;
(b) m = ++a * 5;
(c) y = sqrt(100);

LO 5.4

LO 5.1

LO 5.5

LO 5.1

LO 5.4

LO 5.1

LO 5.5

174 Computing Fundamentals & C Programming

(d) p * = x/y;
(e) s = /5;
(f) a = b++ –c*2

Programming Exercises

1. Given the values of the variables x, y and z, write a program to rotate their values such that

x has the value of y, y has the value of z, and z has the value of x.

2. Write a program that reads a floating-point number and then displays the right-most digit of

the integral part of the number.

3. Modify the above program to display the two right-most digits of the integral part of the

number.

4. Write a program that will obtain the length and width of a rectangle from the user and

compute its area and perimeter.

5. Given an integer number, write a program that displays the number as follows:

 First line : all digits

 Second line : all except first digit

 Third line : all except first two digits

 …….

 Last line : The last digit

 For example, the number 5678 will be displayed as:

 5 6 7 8

 6 7 8

 7 8

 8

6. The straight-line method of computing the yearly depreciation of the value of an item is

given by

 Depreciation =
Purchase Price Salvage Value

Years of Service

 Write a program to determine the salvage value of an item when the purchase price, years

of service, and the annual depreciation are given.

7. Write a program that will read a real number from the keyboard and print the following

output in one line:

 Smallest integer The given Largest integer

 not less than number not greater than

 the number the number

8. The total distance travelled by a vehicle in t seconds is given by

distance = ut + (at2)/2

 Where u is the initial velocity (metres per second), a is the acceleration (metres per

second2). Write a program to evaluate the distance travelled at regular intervals of time,

given the values of u and a. The program should provide the flexibility to the user to select

his own time intervals and repeat the calculations for different values of u and a.

LO 5.3

LO 5.1

LO 5.1

LO 3.3

LO 5.3

LO 5.3

LO 5.4

LO 5.5

Operators and Expressions 175

9. In inventory management, the Economic Order Quantity for a single item is given by

EOQ =
2 demand rate setup costs

holding cost per item per unit time

 and the optimal Time Between Orders

 TBO =
2 × setup costs

demand rate × holding cost per unit time

 Write a program to compute EOQ and TBO, given demand rate (items per unit time), setup

costs (per order), and the holding cost (per item per unit time).

10. For a certain electrical circuit with an inductance L and resistance R, the damped natural

frequency is given by

 Frequency =
1

4

2

2LC

R

C

 It is desired to study the variation of this frequency with C (capacitance). Write a program

to calculate the frequency for different values of C starting from 0.01 to 0.1 in steps of

0.01.

11. Write a program to read a four digit integer and print the sum of its digits.

Hint: Use / and % operators.

12. Write a program to print the size of various data types in C.

13. Given three values, write a program to read three values from keyboard and print out the

largest of them without using if statement.

14. Write a program to read two integer values m and n and to decide and print whether m is a

multiple of n.

15. Write a program to read three values using scanf statement and print the following results:

(a) Sum of the values

(b) Average of the three values

(c) Largest of the three

(d) Smallest of the three

16. The cost of one type of mobile service is Rs. 250 plus Rs. 1.25 for each call made over and

above 100 calls. Write a program to read customer codes and calls made and print the bill

for each customer.

17. Write a program to print a table of sin and cos functions for the interval from 0 to 180

degrees in increments of 15 a shown here.

x (degrees) sin (x) cos (x)

0

15

...

...

180

LO 5.5

LO 5.5

LO 5.1

LO 5.2

LO 5.2

LO 5.1

LO 5.3

LO 5.5

LO 5.1

176 Computing Fundamentals & C Programming

18. Write a program to compute the values of square-roots and squares of the numbers 0 to 100

in steps 10 and print the output in a tabular form as shown below.

Number Square-root Square

0 0 0

100 10 10000

19. Write a program that determines whether a given integer is odd or even and displays the

number and description on the same line.

20. Write a program to illustrate the use of cast operator in a real life situation.

LO 5.5

LO 5.1

LO 5.4

 Managing Input and Output Operations 177

6.1 INTRODUCTION

Reading, processing, and writing of data are the three essential functions of a computer

program. Most programs take some data as input and display the processed data, often known

as information or results, on a suitable medium. So far we have seen two methods of providing

data to the program variables. One method is to assign values to variables through the assignment

statements such as x = 5; a = 0; and so on. Another method is to use the input function scanf

which can read data from a keyboard. We have used both the methods in most of our earlier

example programs. For outputting results we have used extensively the function printf which

sends results out to a terminal.

Unlike other high-level languages, C does not have any built-in input/output statements as part

of its syntax. All input/output operations are carried out through function calls such as printf

and scanf. There exist several functions that have more or less become standard for input and

output operations in C. These functions are collectively known as the standard I/O library. In this

chapter we shall discuss some common I/O functions that can be used on many machines without

any change. However, one should consult the system reference manual for exact details of these

functions and also to see what other functions are available.

L
E

A
R

N
IN

G
 O

B
J
E

C
T
IV

E
S

A er reading this chapter, you will be able to

LO 6.1 Describe how a character is read

LO 6.2 Express how a character is wri en

LO 6.3 Explain forma ed input

LO 6.4 Discuss forma ed output

IV
E

S

CHAPT ERCHAPT ER

66Managing Input and Managing Input and

Output OperationsOutput Operations

 178 Computing Fundamentals & C Programming

It may be recalled that we have included a statement

#include <math.h>

in the Sample Program 5 in Chapter 3, where a math library function cos(x) has been used. This is

to instruct the compiler to fetch the function cos(x) from the math library, and that it is not a part of C

language. Similarly, each program that uses a standard input/output function must contain the statement

#include <stdio.h>

at the beginning. However, there might be exceptions. For example, this is not necessary for the functions

printf and scanf which have been defi ned as a part of the C language.

The fi le name stdio.h is an abbreviation for standard input-output header fi le. The instruction #include

<stdio.h> tells the compiler ‘to search for a fi le named stdio.h and place its contents at this point in the

program’. The contents of the header fi le become part of the source code when it is compiled.

6.2 READING A CHARACTER LO 6.1

The simplest of all input/output operations is reading a character from the ‘standard input’ unit (usually the

keyboard) and writing it to the ‘standard output’ unit (usually the screen). Reading a single character can

be done by using the function getchar. (This can also be done with the help of the scanf function which is

discussed in Section 6.4.) The getchar takes the following form:

variable_name = getchar();

variable_name is a valid C name that has been declared as char type. When this statement is encountered,

the computer waits until a key is pressed and then assigns this character as a value to getchar function.

Since getchar is used on the right-hand side of an assignment statement, the character value of getchar is

in turn assigned to the variable name on the left. For example

char name;

name = getchar();

will assign the character ‘H’ to the variable name when we press the key H on the keyboard. Since getchar

is a function, it requires a set of parentheses as shown.

WORKED-OUT PROBLEM 6.1 L

The program in Fig. 6.1 shows the use of getchar function in an interactive environment.

The program displays a question of YES/NO type to the user and reads the user’s response in a single

character (Y or N). If the response is Y or y, it outputs the message

My name is BUSY BEE

otherwise, outputs

You are good for nothing

Note There is one line space between the input text and output message.

Levels of Diffi culty

L: Low; M: Medium; H: High

 Managing Input and Output Operations 179

Program

 #include <stdio.h>

 main()

 {

 char answer;

 printf(“Would you like to know my name?\n”);

 printf(“Type Y for YES and N for NO: “);

 answer = getchar(); /* Reading a character...*/

 if(answer == ‘Y’ || answer == ‘y’)

 printf(“\n\nMy name is BUSY BEE\n”);

 else

 printf(“\n\nYou are good for nothing\n”);

 }

Output

 Would you like to know my name?

 Type Y for YES and N for NO: Y

 My name is BUSY BEE

 Would you like to know my name?

 Type Y for YES and N for NO: n

 You are good for nothing

Fig. 6.1 Use of getchar function to read a character from keyboard

The getchar function may be called successively to read the characters contained in a line of text.

For example, the following program segment reads characters from keyboard one after another until the

‘Return’ key is pressed.

 — — — –———–
 — — — –———–
 char character;
 character = ‘ ‘;
 while(character != ‘\n’)
 {
 character = getchar();
 }
 — — — –———–
 — — — –———–

Warning: The getchar() function accepts any character keyed in. This includes RETURN and TAB.

This means when we enter single character input, the newline character is waiting in the input queue after

getchar() returns. This could create problems when we use getchar() in a loop interactively. A dummy

getchar() may be used to ‘eat’ the unwanted newline character. We can also use the ffl ush function to

fl ush out the unwanted characters.

Note We shall be using decision statements like if, if…else and while extensively in this chapter. They

are discussed in detail in Chapters 7 and 8.

 180 Computing Fundamentals & C Programming

WORKED-OUT PROBLEM 6.2 M

The program of Fig. 6.2 requests the user to enter a character and displays a message on the screen telling

the user whether the character is an alphabet or digit, or any other special character.

This program receives a character from the keyboard and tests whether it is a letter or digit and prints out a

message accordingly. These tests are done with the help of the following functions:

isalpha(character)

isdigit(character)

For example, isalpha assumes a value non-zero (TRUE) if the argument character contains an alphabet;

otherwise it assumes 0 (FALSE). Similar is the case with the function isdigit.

 Program

 #include <stdio.h>

 #include <ctype.h>

 main()

 {

 char character;

 printf(“Press any key\n”);

 character = getchar();

 if (isalpha(character) > 0)/* Test for letter */

 printf(“The character is a letter.”);

 else

 if (isdigit (character) > 0)/* Test for digit */

 printf(“The character is a digit.”);

 else

 printf(“The character is not alphanumeric.”);

 }

Output

 Press any key

 h

 The character is a letter.

 Press any key

 5

 The character is a digit.

 Press any key

 *

 The character is not alphanumeric.

Fig. 6.2 Program to test the character type

C supports many other similar functions, which are given in Table 6.1. These character functions are

contained in the fi le ctype.h and therefore the statement

#include <ctype.h>

must be included in the program.

 Managing Input and Output Operations 181

Table 6.1 Character Test Functions

Function Test

isalnum(c) Is c an alphanumeric character?

isalpha(c) Is c an alphabetic character?

isdigit(c) Is c a digit?

islower(c) Is c lower case letter?

isprint(c) Is c a printable character?

ispunct(c) Is c a punctuation mark?

isspace(c) Is c a white space character?

isupper(c) Is c an upper case letter?

6.3 WRITING A CHARACTER LO 6.2

Like getchar, there is an analogous function putchar for writing characters one at a time to the terminal. It

takes the form as shown below:

putchar (variable_name);

where variable_name is a type char variable containing a character. This statement displays the character

contained in the variable_name at the terminal. For example, the statements

answer = ‘Y’;
putchar (answer);

will display the character Y on the screen. The statement

putchar (‘\n’);

would cause the cursor on the screen to move to the beginning of the next line.

WORKED-OUT PROBLEM 6.3 M

A program that reads a character from keyboard and then prints it in reverse case is given in Fig. 6.3. That

is, if the input is upper case, the output will be lower case and vice versa.

The program uses three new functions: islower, toupper, and tolower. The function islower is a conditional

function and takes the value TRUE if the argument is a lowercase alphabet; otherwise takes the value

FALSE. The function toupper converts the lowercase argument into an uppercase alphabet while the

function tolower does the reverse.

Program
 #include <stdio.h>
 #include <ctype.h>
 main()
 {
 char alphabet;
 printf(“Enter an alphabet”);

 182 Computing Fundamentals & C Programming

 putchar(‘\n’); /* move to next line */
 alphabet = getchar();
 if (islower(alphabet))
 putchar(toupper(alphabet));/* Reverse and display */
 else
 putchar(tolower(alphabet)); /* Reverse and display */
 }

Output
 Enter an alphabet
 a
 A
 Enter an alphabet
 Q
 q
 Enter an alphabet
 z
 Z

Fig. 6.3 Reading and writing of alphabets in reverse cast

6.4 FORMATTED INPUT LO 6.3

Formatted input refers to an input data that has been arranged in a particular format. For example, consider

the following data:

15.75 123 John

This line contains three pieces of data, arranged in a particular form. Such data has to be read conforming

to the format of its appearance. For example, the fi rst part of the data should be read into a variable fl oat,

the second into int, and the third part into char. This is possible in C using the scanf function. (scanf means

scan formatted.)

We have already used this input function in a number of examples. Here, we shall explore all of the

options that are available for reading the formatted data with scanf function. The general form of scanf is

scanf (“control string”, arg1, arg2, argn);

The control string specifi es the fi eld format in which the data is to be entered and the arguments arg1,

arg2,, argn specify the address of locations where the data is stored. Control string and arguments are

separated by commas.

Control string (also known as format string) contains fi eld specifi cations, which direct the interpretation

of input data. It may include:

� Field (or format) specifi cations, consisting of the conversion character %, a data type character (or type

specifi er), and an optional number, specifying the fi eld width.

� Blanks, tabs, or newlines.

Blanks, tabs and newlines are ignored. The data type character indicates the type of data that is to be

assigned to the variable associated with the corresponding argument. The fi eld width specifi er is optional.

The discussions that follow will clarify these concepts.

 Managing Input and Output Operations 183

6.4.1 Inputting Integer Numbers

The fi eld specifi cation for reading an integer number is:

% w sd

The percentage sign (%) indicates that a conversion specifi cation follows. w is an integer number that

specifi es the fi eld width of the number to be read and d, known as data type character, indicates that the

number to be read is in integer mode. Consider the following example:

scanf (“%2d %5d”, &num1, &num2);

Data line:

50 31426

The value 50 is assigned to num1 and 31426 to num2. Suppose the input data is as follows:

31426 50

The variable num1 will be assigned 31 (because of %2d) and num2 will be assigned 426 (unread part of

31426). The value 50 that is unread will be assigned to the fi rst variable in the next scanf call. This kind of

errors may be eliminated if we use the fi eld specifi cations without the fi eld width specifi cations. That is, the

statement

scanf(“%d %d”, &num1, &num2);

will read the data

 31426 50

correctly and assign 31426 to num1 and 50 to num2.

Input data items must be separated by spaces, tabs or newlines. Punctuation marks do not count as

separators. When the scanf function searches the input data line for a value to be read, it will always bypass

any white space characters.

What happens if we enter a fl oating point number instead of an integer? The fractional part may be

stripped away! Also, scanf may skip reading further input.

When the scanf reads a particular value, reading of the value will be terminated as soon as the number

of characters specifi ed by the fi eld width is reached (if specifi ed) or until a character that is not valid for the

value being read is encountered. In the case of integers, valid characters are an optionally signed sequence

of digits.

An input fi eld may be skipped by specifying * in the place of fi eld width. For example, the statement

scanf(“%d %*d %d”, &a, &b)

will assign the data

123 456 789

as follows:

123 to a
456 skipped (because of *)
789 to b

The data type character d may be preceded by ‘l’ (letter ell) to read long integers and h to read short

integers.

 Note We have provided white space between the fi eld specifi cations. These spaces are not necessary

with the numeric input, but it is a good practice to include them.

 184 Computing Fundamentals & C Programming

WORKED-OUT PROBLEM 6.4 L

Various input formatting options for reading integers are experimented in the program shown in

Fig. 6.4.

Program

 main()

 {

 int a,b,c,x,y,z;

 int p,q,r;

 printf(“Enter three integer numbers\n”);

 scanf(“%d %*d %d”,&a,&b,&c);

 printf(“%d %d %d \n\n”,a,b,c);

 printf(“Enter two 4-digit numbers\n”);

 scanf(“%2d %4d”,&x,&y);

 printf(“%d %d\n\n”, x,y);

 printf(“Enter two integers\n”);

 scanf(“%d %d”, &a,&x);

 printf(“%d %d \n\n”,a,x);

 printf(“Enter a nine digit number\n”);

 scanf(“%3d %4d %3d”,&p,&q,&r);

 printf(“%d %d %d \n\n”,p,q,r);

 printf(“Enter two three digit numbers\n”);

 scanf(“%d %d”,&x,&y);

 printf(“%d %d”,x,y);

 }

Output

 Enter three integer numbers

 1 2 3

 1 3 -3577

 Enter two 4-digit numbers

 6789 4321

 67 89

 Enter two integers

 44 66

 4321 44

 Enter a nine-digit number

 123456789

 66 1234 567

 Enter two three-digit numbers

 123 456

 89 123

 Fig. 6.4 Reading integers using scanf

 Managing Input and Output Operations 185

The fi rst scanf requests input data for three integer values a, b, and c, and accordingly three values 1, 2,

and 3 are keyed in. Because of the specifi cation %*d the value 2 has been skipped and 3 is assigned to the

variable b. Notice that since no data is available for c, it contains garbage.

The second scanf specifi es the format %2d and %4d for the variables x and y respectively. Whenever

we specify fi eld width for reading integer numbers, the input numbers should not contain more digits than

the specifi ed size. Otherwise, the extra digits on the right-hand side will be truncated and assigned to the

next variable in the list. Thus, the second scanf has truncated the four digit number 6789 and assigned 67

to x and 89 to y. The value 4321 has been assigned to the fi rst variable in the immediately following scanf

statement.

NOTE: It is legal to use a non-whitespace character between fi eld specifi cations. However, the scanf

expects a matching character in the given location. For example,

scanf(“%d-%d”, &a, &b);

accepts input like

123–456

to assign 123 to a and 456 to b.

6.4.2 Inputting Real Numbers

Unlike integer numbers, the fi eld width of real numbers is not to be specifi ed and therefore scanf reads real

numbers using the simple specifi cation %f for both the notations, namely, decimal point notation and

exponential notation. For example, the statement

scanf(“%f %f %f”, &x, &y, &z);

with the input data

475.89 43.21E-1 678

will assign the value 475.89 to x, 4.321 to y, and 678.0 to z. The input fi eld specifi cations may be separated

by any arbitrary blank spaces.

If the number to be read is of double type, then the specifi cation should be %lf instead of simple %f. A

number may be skipped using %*f specifi cation.

WORKED-OUT PROBLEM 6.5 L

Reading of real numbers (in both decimal point and exponential notation) is illustrated in Fig. 6.5.

 Program

 main()

 {

 fl oat x,y;

 double p,q;

 printf(“Values of x and y:”);

 scanf(“%f %e”, &x, &y);

 printf(“\n”);

 printf(“x = %f\ny = %f\n\n”, x, y);

 printf(“Values of p and q:”);

 scanf(“%lf %lf”, &p, &q);

 186 Computing Fundamentals & C Programming

 printf(“\n\np = %.12lf\np = %.12e”, p,q);

 }

 Output

 Values of x and y:12.3456 17.5e-2

 x = 12.345600

 y = 0.175000

 Values of p and q:4.142857142857 18.5678901234567890

 p = 4.142857142857

 q = 1.856789012346e+001

Fig. 6.5 Reading of real numbers

6.4.3 Inputting Character Strings

We have already seen how a single character can be read from the terminal using the getchar function.

The same can be achieved using the scanf function also. In addition, a scanf function can input strings

containing more than one character. Following are the specifi cations for reading character strings:

%ws or %wc

The corresponding argument should be a pointer to a character array. However, %c may be used to read

a single character when the argument is a pointer to a char variable.

WORKED-OUT PROBLEM 6.6 H

Reading of strings using %wc and %ws is illustrated in Fig. 6.6.

The program in Fig. 6.6 illustrates the use of various fi eld specifi cations for reading strings. When we use

%wc for reading a string, the system will wait until the wth character is keyed in.

Note that the specifi cation %s terminates reading at the encounter of a blank space. Therefore, name2

has read only the fi rst part of “New York” and the second part is automatically assigned to name3. However,

during the second run, the string “New-York” is correctly assigned to name2.

Program

 main()

 {

 int no;

 char name1[15], name2[15], name3[15];

 printf(“Enter serial number and name one\n”);

 scanf(“%d %15c”, &no, name1);

 printf(“%d %15s\n\n”, no, name1);

 printf(“Enter serial number and name two\n”);

 scanf(“%d %s”, &no, name2);

 printf(“%d %15s\n\n”, no, name2);

 printf(“Enter serial number and name three\n”);

 scanf(“%d %15s”, &no, name3);

 Managing Input and Output Operations 187

 printf(“%d %15s\n\n”, no, name3);

 }

Output

 Enter serial number and name one

 1 123456789012345

 1 123456789012345r

 Enter serial number and name two

 2 New York

 2 New

 Enter serial number and name three

 2 York

 Enter serial number and name one

 1 123456789012

 1 123456789012r

 Enter serial number and name two

 2 New-York

 2 New-York

 Enter serial number and name three

 3 London

 3 London

 Fig. 6.6 Reading of strings

Some versions of scanf support the following conversion specifi cations for strings:

 %[characters]

 %[^characters]

The specifi cation %[characters] means that only the characters specifi ed within the brackets are

permissible in the input string. If the input string contains any other character, the string will be terminated

at the fi rst encounter of such a character. The specifi cation %[^characters] does exactly the reverse. That

is, the characters specifi ed after the circumfl ex (^) are not permitted in the input string. The reading of the

string will be terminated at the encounter of one of these characters.

WORKED-OUT PROBLEM 6.7 H

The program in Fig. 6.7 illustrates the function of %[] specifi cation.

Program-A

 main()

 {

 char address[80];

 printf(“Enter address\n”);

 scanf(“%[a-z]”, address);

 printf(“%-80s\n\n”, address);

 188 Computing Fundamentals & C Programming

 }

 Output

 Enter address

 new delhi 110002

 new delhi

 Program-B

 main()

 {

 char address[80];

 printf(“Enter address\n”);

 scanf(“%[^\n]”, address);

 printf(“%-80s”, address);

 }

 Output

 Enter address

 New Delhi 110 002

 New Delhi 110 002

Fig. 6.7 Illustration of conversion specifi cation%[] for strings

Reading Blank Spaces
We have earlier seen that %s specifi er cannot be used to read strings with blank spaces. But, this can be

done with the help of %[] specifi cation. Blank spaces may be included within the brackets, thus enabling

the scanf to read strings with spaces. Remember that the lowercase and uppercase letters are distinct. See

Fig. 6.7.

6.4.4 Reading Mixed Data Types

It is possible to use one scanf statement to input a data line containing mixed mode data. In such cases, care

should be exercised to ensure that the input data items match the control specifi cations in order and type.

When an attempt is made to read an item that does not match the type expected, the scanf function does not

read any further and immediately returns the values read. The statement

scanf (“%d %c %f %s”, &count, &code, &ratio, name);

will read the data

 15 p 1.575 coffee

correctly and assign the values to the variables in the order in which they appear. Some systems accept

integers in the place of real numbers and vice versa, and the input data is converted to the type specifi ed in

the control string.

 Note A space before the %c specifi cation in the format string is necessary to skip the white space

before p.

6.4.5 Detection of Errors in Input

When a scanf function completes reading its list, it returns the value of number of items that are

successfully read. This value can be used to test whether any errors occurred in reading the input. For

example, the statement

 Managing Input and Output Operations 189

scanf(“%d %f %s, &a, &b, name);

will return the value 3 if the following data is typed in:

20 150.25 motor

and will return the value 1 if the following line is entered

20 motor 150.25

This is because the function would encounter a string when it was expecting a fl oating-point value, and

would therefore terminate its scan after reading the fi rst value.

WORKED-OUT PROBLEM 6.8 H

The program presented in Fig. 6.8 illustrates the testing for correctness of reading of data by scanf

function.

The function scanf is expected to read three items of data and therefore, when the values for all the three

variables are read correctly, the program prints out their values. During the third run, the second item does

not match with the type of variable and therefore the reading is terminated and the error message is printed.

Same is the case with the fourth run.

In the last run, although data items do not match the variables, no error message has been printed. When

we attempt to read a real number for an int variable, the integer part is assigned to the variable, and the

truncated decimal part is assigned to the next variable.

Note The character ‘2’ is assigned to the character variable c.

Program

 main()

 {

 int a;

 fl oat b;

 char c;

 printf(“Enter values of a, b and c\n”);

 if (scanf(“%d %f %c”, &a, &b, &c) == 3)

 printf(“a = %d b = %f c = %c\n” , a, b, c);

 else

 printf(“Error in input.\n”);

 }

Output

 Enter values of a, b and c

 12 3.45 A

 a = 12 b = 3.450000 c = A

 Enter values of a, b and c

 23 78 9

 a = 23 b = 78.000000 c = 9

 Enter values of a, b and c

 8 A 5.25

 Error in input.

 190 Computing Fundamentals & C Programming

 Enter values of a, b and c

 Y 12 67

 Error in input.

 Enter values of a, b and c

 15.75 23 X

 a = 15 b = 0.750000 = 2

 Fig. 6.8 Detection of errors in scanf input

Commonly used scanf format codes are given in Table 6.2.

Table 6.2 Commonly used scanf Format Codes

Code Meaning

%c read a single character

%d read a decimal integer

%e read a fl oating point value

%f read a fl oating point value

%g read a fl oating point value

%h read a short integer

%i read a decimal, hexadecimal or octal integer

%o read an octal integer

%s read a string

%u read an unsigned decimal integer

%x read a hexadecimal integer

%[..] read a string of word(s)

The following letters may be used as prefi x for certain conversion characters.

h for short integers

l for long integers or double

L for long double

Note C99 adds some more format codes. See the Appendix “C99 Features”.

6.4.6 Points to Remember while Using scanf

If we do not plan carefully, some ‘crazy’ things can happen with scanf. Since the I/O routines are not a

part of C language, they are made available either as a separate module of the C library or as a part of the

operating system (like UNIX). New features are added to these routines from time to time as new versions

of systems are released. We should consult the system reference manual before using these routines. Given

below are some of the general points to keep in mind while writing a scanf statement.

1. All function arguments, except the control string, must be pointers to variables.

2. Format specifi cations contained in the control string should match the arguments in order.

3. Input data items must be separated by spaces and must match the variables receiving the input in the

same order.

 Managing Input and Output Operations 191

4. The reading will be terminated, when scanf encounters a ‘mismatch’ of data or a character that is not

valid for the value being read.

5. When searching for a value, scanf ignores line boundaries and simply looks for the next appropriate

character.

6. Any unread data items in a line will be considered as part of the data input line to the next scanf call.

7. When the fi eld width specifi er w is used, it should be large enough to contain the input data size.

Rules for scanf
� Each variable to be read must have a fi led specifi cation.

� For each fi eld specifi cation, there must be a variable address of proper type.

� Any non-whitespace character used in the format string must have a matching character in the user

input.

� Never end the format string with whitespace. It is a fatal error!

� The scanf reads until:

 – A whitespace character is found in a numberic specifi cation, or

 – The maximum number of characters have been read or

 – An error is detected, or

 – The end of fi le is reached

6.5 FORMATTED OUTPUT LO 6.4

We have seen the use of printf function for printing captions and numerical results. It is highly desirable

that the outputs are produced in such a way that they are understandable and are in an easy-to-use form. It

is therefore necessary for the programmer to give careful consideration to the appearance and clarity of the

output produced by his program.

The printf statement provides certain features that can be effectively exploited to control the alignment

and spacing of print-outs on the terminals. The general form of printf statement is:

printf(“control string”, arg1, arg2,, argn);

Control string consists of following three types of items:

 1. Characters that will be printed on the screen as they appear.

 2. Format specifi cations that defi ne the output format for display of each item.

 3. Escape sequence characters such as \n, \t, and \b.

The control string indicates how many arguments follow and what their types are. The arguments arg1,

arg2,, argn are the variables whose values are formatted and printed according to the specifi cations of

the control string. The arguments should match in number, order and type with the format specifi cations.

A simple format specifi cation has the following form:

% w.p type-specifi er

where w is an integer number that specifi es the total number of columns for the output value and p

is another integer number that specifi es the number of digits to the right of the decimal point (of a real

number) or the number of characters to be printed from a string. Both w and p are optional. Some examples

of formatted printf statement are:

 192 Computing Fundamentals & C Programming

printf(“Programming in C”);

printf(“ “);

printf(“\n”);

printf(“%d”, x);

printf(“a = %f\n b = %f”, a, b);

printf(“sum = %d”, 1234);

printf(“\n\n”);

printf never supplies a newline automatically and therefore multiple printf statements may be used to build

one line of output. A newline can be introduced by the help of a newline character ‘\n’ as shown in some of

the examples above.

6.5.1 Output of Integer Numbers

The format specifi cation for printing an integer number is:

% w d

where w specifi es the minimum fi eld width for the output. However, if a number is greater than the specifi ed

fi eld width, it will be printed in full, overriding the minimum specifi cation. d specifi es that the value to be

printed is an integer. The number is written right-justifi ed in the given fi eld width. Leading blanks will

appear as necessary. The following examples illustrate the output of the number 9876 under different

formats:
 Format Output

 printf(“%d”, 9876) 9 8 7 6

 printf(“%6d”, 9876) 9 8 7 6

 printf(“%2d”, 9876) 9 8 7 6

 printf(“%06d” 9876) 9 8 7 6

 printf(“%06d” 9876) 0 0 9 8 7 6

It is possible to force the printing to be left-justifi ed by placing a minus sign directly after the %

character, as shown in the fourth example above. It is also possible to pad with zeros the leading blanks by

placing a 0 (zero) before the fi eld width specifi er as shown in the last item above. The minus (–) and zero

(0) are known as fl ags.

Long integers may be printed by specifying ld in the place of d in the format specifi cation. Similarly, we

may use hd for printing short integers.

WORKED-OUT PROBLEM 6.9 M

The program in Fig. 6.9 illustrates the output of integer numbers under various formats.

 Program

 main()

 {

 int m = 12345;

 long n = 987654;

 printf(“%d\n”,m);

 Managing Input and Output Operations 193

 printf(“%10d\n”,m);

 printf(“%010d\n”,m);

 printf(“%-10d\n”,m);

 printf(“%10ld\n”,n);

 printf(“%10ld\n”,-n);

 }

 Output

 12345

 12345

 0000012345

 12345

 987654

 – 987654

 Fig. 6.9 Formatted output of integers

6.5.2 Output of Real Numbers

The output of a real number may be displayed in decimal notation using the following format specifi cation:

% w.p f

The integer w indicates the minimum number of positions that are to be used for the display of the value

and the integer p indicates the number of digits to be displayed after the decimal point (precision). The

value, when displayed, is rounded to p decimal places and printed right-justifi ed in the fi eld of w columns.

Leading blanks and trailing zeros will appear as necessary. The default precision is 6 decimal places. The

negative numbers will be printed with the minus sign. The number will be displayed in the form [–] mmm-nnn.

We can also display a real number in exponential notation by using the specifi cation:

% w.p e

The display takes the form

[-] m.nnnne[±]xx

where the length of the string of n’s is specifi ed by the precision p. The default precision is 6. The fi eld

width w should satisfy the condition.

w ≥ p+7

The value will be rounded off and printed right justifi ed in the fi eld of w columns.

Padding the leading blanks with zeros and printing with left-justifi cation are also possible by using fl ags

0 or – before the fi eld width specifi er w.

The following examples illustrate the output of the number y = 98.7654 under different format

specifi cations:

 Format Output

 printf(“%7.4f ”,y) 9 8 . 7 6 5 4

 printf(“%7.2f”,y) 9 8 . 7 7

 printf(“%-7.2f”,y) 9 8 . 7 7

 printf“%f”,y) 9 8 . 7 6 5 4

 printf(“%10.2e”,y) 9 . 8 8 e + 0 1

 194 Computing Fundamentals & C Programming

 printf(“%11.4e”,-y) – 9 . 8 7 6 5 e + 0 1

 printf(“%-10.2e”,y) 9 . 8 8 e + 0 1

 printf“%e”,y) 9 . 8 7 6 5 4 0 e + 0 1

Some systems also support a special fi eld specifi cation character that lets the user defi ne the fi eld size at

run time. This takes the following form:

printf(“%*.*f”, width, precision, number);

In this case, both the fi eld width and the precision are given as arguments which will supply the values

for w and p. For example,

printf(“%*.*f”,7,2,number);

is equivalent to

printf(“%7.2f”,number);

The advantage of this format is that the values for width and precision may be supplied at run time, thus

making the format a dynamic one. For example, the above statement can be used as follows:

 int width = 7;

 int precision = 2;

 printf(“%*.*f”, width, precision, number);

WORKED-OUT PROBLEM 6.10 L

All the options of printing a real number are illustrated in Fig. 6.10.

Program

 main()

 {

 fl oat y = 98.7654;

 printf(“%7.4f\n”, y);

 printf(“%f\n”, y);

 printf(“%7.2f\n”, y);

 printf(“%-7.2f\n”, y);

 printf(“%07.2f\n”, y);

 printf(“%*.*f”, 7, 2, y);

 printf(“\n”);

 printf(“%10.2e\n”, y);

 printf(“%12.4e\n”, -y);

 printf(“%-10.2e\n”, y);

 printf(“%e\n”, y);

 }

Output

 98.7654

 98.765404

 Managing Input and Output Operations 195

 98.77

 98.77

 0098.77

 98.77

 9.88e+001

 -9.8765e+001

 9.88e+001

 9.876540e+001

 Fig. 6.10 Formatted output of real numbers

6.5.3 Printing of a Single Character
A single character can be displayed in a desired position using the format:

%wc

The character will be displayed right-justifi ed in the fi eld of w columns. We can make the display left-

justifi ed by placing a minus sign before the integer w. The default value for w is 1.

6.5.4 Printing of Strings

The format specifi cation for outputting strings is similar to that of real numbers. It is of the form

%w.ps

where w specifi es the fi eld width for display and p instructs that only the fi rst p characters of the string are

to be displayed. The display is right-justifi ed.

The following examples show the effect of variety of specifi cations in printing a string “NEW DELHI

110001”, containing 16 characters (including banks).

N

1 1

N

N

N

N

N

E

2 2

E

E

E

E

E

W

3 34 4

W

W

W

W

W

D

5 5

D

D

D

D

D

E

6 6

E

E

E

E

L

7 7

L

L

L

L

H

8 8

H

H

H

H

I

9 90 0

I

I

I

I

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

OutputSpecification

%s

%20s

%20.10s

%-20.10s

%.5s

%5s

 196 Computing Fundamentals & C Programming

WORKED-OUT PROBLEM 6.11 M

Printing of characters and strings is illustrated in Fig. 6.11.

Program

 main()

 {

 char x = ‘A’;

 char name[20] = “ANIL KUMAR GUPTA”;

 printf(“OUTPUT OF CHARACTERS\n\n”);

 printf(“%c\n%3c\n%5c\n”, x,x,x);

 printf(“%3c\n%c\n”, x,x);

 printf(“\n”);

 printf(“OUTPUT OF STRINGS\n\n”);

 printf(“%s\n”, name);

 printf(“%20s\n”, name);

 printf(“%20.10s\n”, name);

 printf(“%.5s\n”, name);

 printf(“%-20.10s\n”, name);

 printf(“%5s\n”, name);

 }

Output

 OUTPUT OF CHARACTERS

 A

 A

 A

 A

 A

 OUTPUT OF STRINGS

 ANIL KUMAR GUPTA

 ANIL KUMAR GUPTA

 ANIL KUMAR

 ANIL

 ANIL KUMAR

 ANIL KUMAR GUPTA

 Fig. 6.11 Printing of characters and strings

6.5.5 Mixed Data Output

It is permitted to mix data types in one printf statement. For example, the statement of the type

printf(“%d %f %s %c”, a, b, c, d);

is valid. As pointed out earlier, printf uses its control string to decide how many variables to be printed and

what their types are. Therefore, the format specifi cations should match the variables in number, order, and

type. If there are not enough variables or if they are of the wrong type, the output results will be incorrect.

 Managing Input and Output Operations 197

Table 6.3 Commonly used printf Format Codes

Code Meaning

%c print a single character

%d print a decimal integer

%e print a fl oating point value in exponent form

%f print a fl oating point value without exponent

%g print a fl oating point value either e-type or f-type depending on

%i print a signed decimal integer

%o print an octal integer, without leading zero

%s print a string

%u print an unsigned decimal integer

%x print a hexadecimal integer, without leading Ox

The following letters may be used as prefi x for certain conversion characters.

 h for short integers

 l for long integers or double

 L for long double.

Table 6.4 Commonly used Output Format Flags

Flag Meaning

– Output is left-justifi ed within the fi eld. Remaining fi eld will be blank.

+ + or – will precede the signed numeric item.

0 Causes leading zeros to appear.

(with o or x) Causes octal and hex items to be preceded by O and Ox, respectively.

(with e, f or g) Causes a decimal point to be present in all fl oating point numbers, even if it is whole number.

Also prevents the truncation of trailing zeros in g-type conversion.

Note C99 adds some more format codes. See the Appendix “ C99 Features”.

6.5.6 Enhancing the Readability of Output

Computer outputs are used as information for analysing certain relationships between variables and for

making decisions. Therefore the correctness and clarity of outputs are of utmost importance. While the

correctness depends on the solution procedure, the clarity depends on the way the output is presented.

Following are some of the steps we can take to improve the clarity and hence the readability and

understandability of outputs.

1. Provide enough blank space between two numbers.

2. Introduce appropriate headings and variable names in the output.

3. Print special messages whenever a peculiar condition occurs in the output.

4. Introduce blank lines between the important sections of the output.

 198 Computing Fundamentals & C Programming

The system usually provides two blank spaces between the numbers. However, this can be increased

by selecting a suitable fi eld width for the numbers or by introducing a ‘tab’ character between the

specifi cations. For example, the statement

printf(“a = %d\t b = %d”, a, b);

will provide four blank spaces between the two fi elds. We can also print them on two separate lines by

using the statement

printf(“a = %d\n b = %d”, a, b);

Messages and headings can be printed by using the character strings directly in the printf statement.

Examples:

printf(“\n OUTPUT RESULTS \n”);

printf(“Code\t Name\t Age\n”);

printf(“Error in input data\n”);

printf(“Enter your name\n”);

 Learning Outcomes

∑ While using getchar function, care should be exercised to clear any unwanted characters in the input

stream.

∑ Do not forget to include <stdio.h> headerfi les when using functions from standard input/output

library.

∑ Do not forget to include <ctype.h> header fi le when using functions from character handling library.

∑ Provide proper fi eld specifi cations for every variable to be read or printed.

∑ Enclose format control strings in double quotes.

∑ Do not forget to use address operator & for basic type variables in the input list of scanf.

∑ Do not specify any precision in input fi eld specifi cations.

∑ Do not provide any white-space at the end of format string of a scanf statement.

∑ Do not use commas in the format string of a scanf statement.

∑ Use double quotes for character string constants.

∑ Use single quotes for single character constants.

∑ Provide suffi cient fi eld width to handle a value to be printed.

∑ Be aware of the situations where output may be imprecise due to formatting.

∑ Do not forget to close the format string in the scanf or printf statement with double quotes. 

∑ Using an incorrect conversion code for data type being read or written will result in runtime error.

∑ Do not forget the comma after the format string in scanf and printf statements.

∑ Not separating read and write arguments is an error.

∑ Using an address operator & with a variable in the printf statement will result in runtime error.

 Key Terms to Remember

∑ getchar: Reads one character from standard input.

LO 6.1

LO 6.1

LO 6.2

LO 6.3

LO 6.3

LO 6.3

LO 6.3

LO 6.3

LO 6.3

LO 6.4

LO 6.4

LO 6.4

LO 6.4

LO 6.4

LO 6.4

LO 6.4

LO 6.4

LO 6.4

LO 6.1

 Managing Input and Output Operations 199

∑ putchar: Reads one character from standard input.

∑ Formatted input: Reads one character from standard input.

∑ Control string: Is a combination of format specifi cations, escape sequences and characters that are

to be printed on the screen.

∑ Formatted output: Refers to the output data that has been arranged in a specifi c format to enhance

readability.

Brief Cases

 1. Inventory Report [LO 6.3, 6.4 M]

Problem: The ABC Electric Company manufactures four consumer products. Their inventory position on a

particular day is given below:

Code Quantity Rate (Rs)

F105 275 575.00

H220 107 99.95

I019 321 215.50

M315 89 725.00

It is required to prepare the inventory report table in the following format:

INVENTORY REPORT

Code Quantity Rate Value

—— —— —— ——

—— —— —— ——

—— —— —— ——

—— —— —— ——

Total Value: ———

The value of each item is given by the product of quantity and rate.

Program: The program given in Fig. 6.12 reads the data from the terminal and generates the required

output. The program uses subscripted variables which are discussed in Chapter 9.

 Program

 #defi ne ITEMS 4

 main()

 { /* BEGIN */

 int i, quantity[5];

 fl oat rate[5], value, total_value;

 char code[5][5];

LO 6.2

LO 6.3

LO 6.4

LO 6.4

 200 Computing Fundamentals & C Programming

 /* READING VALUES */

 i = 1;

 while (i <= ITEMS)

 {

 printf(“Enter code, quantity, and rate:”);

 scanf(“%s %d %f”, code[i], &quantity[i],&rate[i]);

 i++;

 }

 /*.......Printing of Table and Column Headings.......*/

 printf(“\n\n”);

 printf(“ INVENTORY REPORT \n”);

 printf(“— \n”);

 printf(“ Code Quantity Rate Value \n”);

 printf(“— \n”);

 /*.......Preparation of Inventory Position..........*/

 total_value = 0;

 i = 1;

 while (i <= ITEMS)

 {

 value = quantity[i] * rate[i];

 printf(“%5s %10d %10.2f %e\n”,code[i],quantity[i],

 rate[i],value);

 total_value += value;

 i++;

 }

 /*.......Printing of End of Table..................*/

 printf(“— — — — — — — — — — — — — — — — \n”);

 printf(“ Total Value = %e\n”,total_value);

 printf(“— — — — — — — — — — — — — — — — \n”);

 } /* END */

 Output

 Enter code, quantity, and rate:F105 275 575.00

 Enter code, quantity, and rate:H220 107 99.95

 Enter code, quantity, and rate:I019 321 215.50

 Enter code, quantity, and rate:M315 89 725.00

 INVENTORY REPORT

 Code Quantity Rate Value

 F105 275 575.00 1.581250e+005

 H220 107 99.95 1.069465e+004

 I019 321 215.50 6.917550e+004

 M315 89 725.00 6.452500e+004

 Total Value = 3.025202e+005

 Fig. 6.12 Program for inventory report

 Managing Input and Output Operations 201

2. Reliability Graph [LO 6.4 H]

Problem: The reliability of an electronic component is given by

reliability (r) = e – l t

where l is the component failure rate per hour and t is the time of operation in hours. A graph is required

to determine the reliability at various operating times, from 0 to 3000 hours. The failure rate l (lambda) is

0.001.

 Problem

 #include <math.h>

 #defi ne LAMBDA 0.001

 main()

 {

 double t;

 fl oat r;

 int i, R;

 for (i=1; i<=27; ++i)

 {

 printf(“– —”);

 }

 printf(“\n”);

 for (t=0; t<=3000; t+=150)

 {

 r = exp(–LAMBDA*t);

 R = (int)(50*r+0.5);

 printf(“ |”);

 for (i=1; i<=R; ++i)

 {

 printf(“*”);

 }

 printf(“#\n”);

 }

 for (i=1; i<3; ++i)

 {

 printf(“ |\n”);

 }

 }

 202 Computing Fundamentals & C Programming

Output

 – –– ––– ––– ––– ––– ––– ––– ––– – –– – –– – –– – –– – –– ––– –

 |**#

 |***#

 |*************************************#

 |********************************#

 |***************************#

 |************************#

 |********************#

 |*****************#

 |***************#

 |*************#

 |***********#

 |**********#

 |********#

 |*******#

 |******#

 |*****#

 |*****#

 |****#

 |***#

 |***#

 |**#

 Fig. 6.13 Program to draw reliability graph

Program: The program given in Fig. 6.13 produces a shaded graph. The values of t are self-generated by

the for statement

for (t=0; t <= 3000; t = t+150)

in steps of 150. The integer 50 in the statement

R = (int)(50*r+0.5)

is a scale factor which converts r to a large value where an integer is used for plotting the curve. Remember

r is always less than 1.

 Review Questions

Fill in the Blanks

 1. The _________ specifi cation is used to read or write a short integer.

2. For reading a double type value, we must use the specifi cation _________ .

LO 6.3

LO 6.3

Levels of Diffi culty

 : Low; : Medium; : High

 Managing Input and Output Operations 203

3. For using character functions, we must include the header fi le _________ in the program.

4. To print the data left-justifi ed, we must use _________ in the fi eld specifi cation.

5. The conversion specifi er _________ is used to print integers in hexadecimal form.

6. The specifi cation _________ is used to read a data from input list and discard it without

assigning it to many variable.

7. The specifi cation %[] is used for reading strings that contain _________ .

8. By default, the real numbers are printed with a precision of _________ decimal places.

9. The specifi er _________ prints fl oating-point values in the scientifi c notation.

10. The specifi cation _________ may be used in scanf to terminate reading at the encounter of

a particular character.

True or False Statements

 1. The purpose of the header fi le <studio.h> is to store the programs created by the users.

 2. The C standard function that receives a single character from the keyboard is getchar.

 3. The input list in a scanf statement can contain one or more variables.

 4. The scanf function cannot be used to read a single character from the keyboard.

 5. The getchar cannot be used to read a line of text from the keyboard.

 6. Variables form a legal element of the format control string of a printf statement.

 7. The format specifi cation %+ –8d prints an integer left-justifi ed in a fi eld width of 8 with a

plus sign, if the number is positive.

 8. If the fi eld width of a format specifi er is larger than the actual width of the value, the value

is printed right-justifi ed in the fi eld.

 9. The format specifi cation %5s will print only the fi rst 5 characters of a given string to be

printed.

 10. When an input stream contains more data items than the number of specifi cations in a scanf

statement, the unused items will be used by the next scanf call in the program.

 11. Format specifi ers for output convert internal representations for data to readable characters.

 12 The print list in a printf statement can contain function calls.

Discussion Questions

 1. Distinguish between the following pairs:

 (a) getchar and scanf functions.

 (b) %s and %c specifi cations for reading.

 (c) %g and %f specifi cation for printing.

 (d) %s and %[] specifi cations for reading.

 (e) %f and %e specifi cations for printing.

LO 6.4

LO 6.4

LO 6.4

LO 6.3

LO 6.3

LO 6.4

LO 6.4

LO 6.3

LO 6.1

LO 6.1

LO 6.3

LO 6.3

LO 6.1

LO 6.4

LO 6.4

LO 6.4

LO 6.4

LO 6.3

LO 6.4

LO 6.4

LO 6.1

LO 6.3

LO 6.4

LO 6.3

LO 6.4

 204 Computing Fundamentals & C Programming

 2. Write scanf statements to read the following data lists:

 (a) 78 B 45 (b) 123 1.23 45A

 (c) 15-10-2002 (d) 10 TRUE 20

 3. State the outputs produced by the following printf statements.

 (a) printf (“%d%c%f”, 10, ‘x’, 1.23);

 (b) printf (“%2d %c %4.2f”, 1234,, ‘x’, 1.23);

 (c) printf (“%d\t%4.2f”, 1234, 456);

 (d) printf (“\”%08.2f\””, 123.4);

 (e) printf (“%d%d %d”, 10, 20);

 For questions 6 to 10 assume that the following declarations have been made in the program:

 int year, count;

 fl oat amount, price;

 char code, city[10];

 double root;

 4. What will be the values stored in the variables year and code when the data

 1988, x

 is keyed in as a response to the following statements:

 (a) scanf(“%d %c”, &year, &code);

 (b) scanf(“%c %d”, &year, &code);

 (c) scanf(“%d %c”, &code, &year);

 (d) scanf(“%s %c”, &year, &code);

 5. The variables count, price, and city have the following values:

 count <—— 1275

 price <—— –235.74

 city <—— Cambridge

 Show the exact output that the following output statements will produce:

 (a) printf(“%d %f”, count, price);

 (b) printf(“%2d\n%f”, count, price);

 (c) printf(“%d %f”, price, count);

 (d) printf(“%10dxxxx%5.2f”,count, price);
 (e) printf(“%s”, city);

 (f) printf(%-10d %-15s”, count, city);

 6. In response to the input statement

 scanf(“%4d%*%d”, &year, &code, &count);

 the following data is keyed in:

 19883745

 What values does the computer assign to the variables year, code, and count?

 7. How can we use the getchar() function to read multicharac ter strings?

 8. How can we use the putchar () function to output multichar acter strings?

 9. What is the purpose of scanf() function?

 10. Describe the purpose of commonly used conversion characters in a scanf() function.

LO 6.3

LO 6.4

LO 6.3

LO 6.4

LO 6.3

LO 6.1

LO 6.2

LO 6.3

LO 6.3

 Managing Input and Output Operations 205

 11. What happens when an input data item contains

 (a) more characters than the specifi ed fi eld width and

 (b) fewer characters than the specifi ed fi eld width?

 12. What is the purpose of print() function?

 13. Describe the purpose of commonly used conversion characters in a printf() function.

 14. How does a control string in a printf() function differ from the control string in a scanf()

function?

 15. What happens if an output data item contains

 (a) more characters than the specifi ed fi eld width and

 (b) fewer characters than the specifi ed fi eld width?

 16. How are the unrecognized characters within the control string are interpreted in

 (a) scanf function; and

 (b) printf function?

Debugging Exercises

 1. State errors, if any, in the following input statements.

 (a) scanf(“%c%f%d”, city, &price, &year);

 (b) scanf(“%s%d”, city, amount);

 (c) scanf(“%f, %d, &amount, &year);

 (d) scanf(\n”%f”, root);

 (e) scanf(“%c %d %ld”, *code, &count, Root);

 2. State what (if anything) is wrong with each of the following output statements:

 (a) printf(%d 7.2%f, year, amount);

 (b) printf(“%-s, %c”\n, city, code);

 (c) printf(“%f, %d, %s, price, count, city);

 (d) printf(“%c%d%f\n”, amount, code, year);

Programming Exercises

1. Given the string “WORDPROCESSING”, write a program to read the string from the

terminal and display the same in the following formats:

 (a) WORD PROCESSING

 (b) WORD

 PROCESSING

 (c) W.P.

2. Write a program to read the values of x and y and print the results of the following

expressions in one line:

 (a)
x y

x y

+

-
 (b)

x y+

2
 (c) (x+y)(x–y)

3. Write a program to read the following numbers, round them off to the nearest integers and

print out the results in integer form:

 35.7 50.21 – 23.73 – 46.45

LO 6.3

LO 6.4

LO 6.4

LO 6.4

LO 6.4

LO 6.4

LO 6.3

LO 6.4

LO 6.4

LO 6.3

LO 6.4

 206 Computing Fundamentals & C Programming

4. Write a program that reads 4 fl oating point values in the range, 0.0 to 20.0, and prints a

horizontal bar chart to represent these values using the character * as the fi ll character. For

the purpose of the chart, the values may be rounded off to the nearest integer. For example,

the value 4.36 should be represented as follows.

 * * * *

 * * * * 4.36

 * * * *

 Note that the actual values are shown at the end of each bar.

5. Write an interactive program to demonstrate the process of multiplication. The program

should ask the user to enter two two-digit integers and print the product of integers as

shown below.

 45

 ¥ 37

 7 ¥ 45 is 315

 3 ¥ 45 is 135

 Add them 1665

 6. Write a program to read three integers from the keyboard using one scanf statement and

output them on one line using:

 (a) three printf statements,

 (b) only one printf with conversion specifi ers, and

 (c) only one printf without conversion specifi ers.

7. Write a program that prints the value 10.45678 in exponential format with the following

specifi cations:

 (a) correct to two decimal places;

 (b) correct to four decimal places; and

 (c) correct to eight decimal places.

8. Write a program to print the value 345.6789 in fi xed-point format with the following

specifi cations:

 (a) correct to two decimal places;

 (b) correct to fi ve decimal places; and

 (c) correct to zero decimal places.

9. Write a program to read the name ANIL KUMAR GUPTA in three parts using the scanf

statement and to display the same in the following format using the printf statement.

 (a) ANIL K. GUPTA

 (b) A.K. GUPTA

 (c) GUPTA A.K.

10. Write a program to read and display the following table of data.

 Name Code Price

 Fan 67831 1234.50

 Motor 450 5786.70

 The name and code must be left-justifi ed and price must be right-justifi ed.

LO 6.4LO 6 4LO 6 4

LO 6.3

LO 6.4

LO 6.4

LO 6.4

LO 6.4

LO 6.3

LO 6.4

LO 6.4LO 6 4LO 6 4

LO 6.3

7.1 INTRODUCTION

C program is a set of statements which are normally executed sequentially in the order in which

they appear. This happens when no options or no repetitions of certain calculations are necessary.

However, in practice, we have a number of situations where we may have to change the order of

execution of statements based on certain conditions, or repeat a group of statements until certain

specified conditions are met. This involves a kind of decision making to see whether a particular

condition has occurred or not and then direct the computer to execute certain statements

accordingly.

C language possesses such decision-making capabilities by supporting the following

statements:

1. if statement

2. switch statement

3. Conditional operator statement

4. goto statement

These statements are popularly known as decision-making statements. Since these statements

‘control’ the flow of execution, they are also known as control statements.

L
E

A
R

N
IN

G

LO 7.1

LO 7.2

LO 7.3

LO 7.4

LO 7.5

CHAPT ER

7Decision Making and

Branching

208 Computing Fundamentals & C Programming

We have already used some of these statements in the earlier examples. Here, we shall discuss their

features, capabilities and applications in more detail.

7.2 DECISION MAKING WITH IF STATEMENT LO 7.1

The if statement is a powerful decision-making statement and is used to control the flow of execution of

statements. It is basically a two-way decision statement and is used in conjunction with an expression. It

takes the following form

if (test expression)

It allows the computer to evaluate the expression first and then, depending on whether the value of the

expression (relation or condition) is ‘true’ (or non-zero) or

‘false’ (zero), it transfers the control to a particular statement.

This point of program has two paths to follow, one for the true

condition and the other for the false condition as shown in

Fig. 7.1.

Some examples of decision making, using if statements are:

1. if (bank balance is zero)

 borrow money

2. if (room is dark)

 put on lights

3. if (code is 1)

 person is male

4. if (age is more than 55)

 person is retired

The if statement may be implemented in different forms depending on the complexity of conditions to be

tested. The different forms are:

1. Simple if statement

2. if.....else statement

3. Nested if....else statement

4. else if ladder.

We shall discuss each one of them in the next few section.

7.3 SIMPLE IF STATEMENT LO 7.1

The general form of a simple if statement is

 if (test expression)

 {

 statement-block;

 }

 statement-x;

Fig. 7.1 Two-way branching

Decision Making and Branching 209

The ‘statement-block’ may be a single statement or a group of statements. If the test expression is true,

the statement-block will be executed; otherwise the statement-block will be skipped and the execution will

jump to the statement-x. Remember, when the condition is

true both the statement-block and the statement-x are

executed in sequence. This is illustrated in Fig. 7.2.

Consider the following segment of a program that is

written for processing of marks obtained in an entrance

examination.

 if (category == SPORTS)

{
 marks = marks + bonus_marks;

}
 printf(“%f”, marks);

The program tests the type of category of the student.

If the student belongs to the SPORTS category, then

additional bonus_marks are added to his marks before they

are printed. For others, bonus_marks are not added.

The program in Fig. 7.3 reads four values a, b, c, and d from the terminal and evaluates the ratio of (a+b)

to (c–d) and prints the result, if c–d is not equal to zero.

The program given in Fig. 7.3 has been run for two sets of data to see that the paths function properly. The

result of the first run is printed as,

Ratio = –3.181818

Program

 main()
{

 int a, b, c, d;
 float ratio;

 printf(“Enter four integer values\n”);
 scanf(“%d %d %d %d”, &a, &b, &c, &d);

 if (c-d != 0) /* Execute statement block */
{

 ratio = (float)(a+b)/(float)(c-d);
 printf(“Ratio = %f\n”, ratio);

Fig. 7.2 Flow chart of simple if control

Levels of Difficulty

L: Low; M: Medium; H: High

210 Computing Fundamentals & C Programming

}
}

Output

 Enter four integer values
 12 23 34 45
 Ratio = -3.181818

 Enter four integer values
 12 23 34 34

Fig. 7.3 Illustration of simple if statement

The second run has neither produced any results nor any message. During the second run, the value of

(c–d) is equal to zero and therefore, the statements contained in the statement-block are skipped. Since no

other statement follows the statement-block, program stops without producing any output.

Note the use of float conversion in the statement evaluating the ratio. This is necessary to avoid

truncation due to integer division. Remember, the output of the first run –3.181818 is printed correct to

six decimal places. The answer contains a round off error. If we wish to have higher accuracy, we must use

double or long double data type.

The simple if is often used for counting purposes. The Worked-Out Problem 7.2 illustrates this.

The program in Fig. 7.4 counts the number of boys whose weight is less than 50 kg and height is greater

than 170 cm.

The program has to test two conditions, one for weight and another for height. This is done using the

compound relation

if (weight < 50 && height > 170)

This would have been equivalently done using two if statements as follows:

if (weight < 50)

 if (height > 170)

 count = count +1;

If the value of weight is less than 50, then the following statement is executed, which in turn is another if

statement. This if statement tests height and if the height is greater than 170, then the count is incremented

by 1.

Program

 main()

{

 int count, i;

 float weight, height;

 count = 0;

 printf(“Enter weight and height for 10 boys\n”);

Decision Making and Branching 211

 for (i =1; i <= 10; i++)

{

 scanf(“%f %f”, &weight, &height);

 if (weight < 50 && height > 170)

 count = count + 1;

}

 printf(“Number of boys with weight < 50 kg\n”);

 printf(“and height > 170 cm = %d\n”, count);

}

Output

 Enter weight and height for 10 boys

 45 176.5

 55 174.2

 47 168.0

 49 170.7

 54 169.0

 53 170.5

 49 167.0

 48 175.0

 47 167

 51 170

 Number of boys with weight < 50 kg

 and height > 170 cm =3

Fig. 7.4 Use of if for counting

7.3.1 Applying De Morgan’s Rule

While designing decision statements, we often come across a situation where the logical NOT operator

is applied to a compound logical expression, like !(x&&y||!z). However, a positive logic is always

easy to read and comprehend than a negative logic. In such cases, we may apply what is known as

De Morgan’s rule to make the total expression positive. This rule is as follows:

“Remove the parentheses by applying the NOT operator to every logical expression component, while

complementing the relational operators”

That is,

 x becomes !x

 !x becomes x

 && becomes ||

 || becomes &&

Examples:

!(x && y || !z) becomes !x || !y && z

!(x < = 0 || !condition) becomes x >0&& condition

212 Computing Fundamentals & C Programming

7.4 THE IF.....ELSE STATEMENT LO 7.2

The if...else statement is an extension of the simple if statement. The general form is

 If (test expression)
{

 True-block statement(s)
}

 else
{

 False-block statement(s)
}

 statement-x

If the test expression is true, then the true-block statement(s), immediately following the if statements

are executed; otherwise, the false-block statement(s) are executed. In either case, either true-block or false-

block will be executed, not both. This is illustrated in Fig. 7.5. In both the cases, the control is transferred

subsequently to the statement-x.

Fig. 7.5 Flow chart of if......else control

Let us consider an example of counting the number of boys and girls in a class. We use code 1 for a boy

and 2 for a girl. The program statement to do this may be written as follows:

 if (code == 1)

 boy = boy + 1;

 if (code == 2)

 girl = girl+1;

Decision Making and Branching 213

The first test determines whether or not the student is a boy. If yes, the number of boys is increased by 1

and the program continues to the second test. The second test again determines whether the student is a girl.

This is unnecessary. Once a student is identified as a boy, there is no need to test again for a girl. A student

can be either a boy or a girl, not both. The above program segment can be modified using the else clause as

follows:

 if (code == 1)

 boy = boy + 1;

 else

 girl = girl + 1;

 xxxxxxxxxx

Here, if the code is equal to 1, the statement boy = boy + 1; is executed and the control is transferred

to the statement xxxxxx, after skipping the else part. If the code is not equal to 1, the statement

boy = boy + 1; is skipped and the statement in the else part girl = girl + 1; is executed before the control

reaches the statement xxxxxxxx.

Consider the program given in Fig. 7.3. When the value (c–d) is zero, the ratio is not calculated and the

program stops without any message. In such cases we may not know whether the program stopped due to a

zero value or some other error. This program can be improved by adding the else clause as follows:

..........

 if (c-d != 0)

{

 ratio = (float)(a+b)/(float)(c-d);

 printf(“Ratio = %f\n”, ratio);

 }

 else

 printf(“c-d is zero\n”);

H

A program to evaluate the power series.

ex = 1 + x +
x x

3!

x

n!

2 n2

2!
, 0 < x < 1

is given in Fig. 7.6. It uses if......else to test the accuracy.

214 Computing Fundamentals & C Programming

The power series contains the recurrence relationship of the type

Tn = Tn-1

x

n
 for n > 1

T1 = x for n = 1

T0 = 1

If Tn-1 (usually known as previous term) is known, then Tn (known as present term) can be easily found

by multiplying the previous term by x/n. Then

ex = T0 + T1 + T2 + + Tn = sum

Program

 #define ACCURACY 0.0001
 main()

{
 int n, count;
 float x, term, sum;
 printf(“Enter value of x:”);
 scanf(“%f”, &x);
 n = term = sum = count = 1;
 while (n <= 100)

{
 term = term * x/n;
 sum = sum + term;
 count = count + 1;
 if (term < ACCURACY)
 n = 999;
 else
 n = n + 1;

}
 printf(“Terms = %d Sum = %f\n”, count, sum);

 }

Output

 Enter value of x:0
 Terms = 2 Sum = 1.000000
 Enter value of x:0.1
 Terms = 5 Sum = 1.105171
 Enter value of x:0.5
 Terms = 7 Sum = 1.648720
 Enter value of x:0.75
 Terms = 8 Sum = 2.116997
 Enter value of x:0.99
 Terms = 9 Sum = 2.691232
 Enter value of x:1
 Terms = 9 Sum = 2.718279

Fig. 7.6 Illustration of if...else statement

Decision Making and Branching 215

The program uses count to count the number of terms added. The program stops when the value of the

term is less than 0.0001 (ACCURACY). Note that when a term is less than ACCURACY, the value of n is

set equal to 999 (a number higher than 100) and therefore the while loop terminates. The results are printed

outside the while loop.

7.5 NESTING OF IF....ELSE STATEMENTS LO 7.2

When a series of decisions are involved, we may have to use more than one if...else statement in nested

form as shown below:

The logic of execution is illustrated in Fig. 7.7. If the condition-1 is false, the statement-3 will be

executed; otherwise it continues to perform the second test. If the condition-2 is true, the statement-1 will be

evaluated; otherwise the statement-2 will be evaluated and then the control is transferred to the statement-x.

A commercial bank has introduced an incentive policy of giving bonus to all its deposit holders. The

policy is as follows: A bonus of 2 per cent of the balance held on 31st December is given to every one,

irrespective of their balance, and 5 per cent is given to female account holders if their balance is more than

Rs. 5000. This logic can be coded as follows:

 if (sex is female)

{

 if (balance > 5000)

 bonus = 0.05 * balance;

 else

 bonus = 0.02 * balance;

}

 else

{

 bonus = 0.02 * balance;

}

 balance = balance + bonus;

216 Computing Fundamentals & C Programming

Fig. 7.7 Flow chart of nested if…else statements

When nesting, care should be exercised to match every if with an else. Consider the following alternative

to the above program (which looks right at the first sight):

 if (sex is female)

 if (balance > 5000)

 bonus = 0.05 * balance;

 else

 bonus = 0.02 * balance;

 balance = balance + bonus;

There is an ambiguity as to over which if the else belongs to. In C, an else is linked to the closest non-

terminated if. Therefore, the else is associated with the inner if and there is no else option for the outer if.

This means that the computer is trying to execute the statement

balance = balance + bonus;

without really calculating the bonus for the male account holders.

Decision Making and Branching 217

Consider another alternative, which also looks correct:

 if (sex is female)

{

 if (balance > 5000)

 bonus = 0.05 * balance;

}

 else

 bonus = 0.02 * balance;

 balance = balance + bonus;

In this case, else is associated with the outer if and therefore bonus is calculated for the male account

holders. However, bonus for the female account holders, whose balance is equal to or less than 5000 is not

calculated because of the missing else option for the inner if.

H

The program in Fig. 7.8 selects and prints the largest of the three numbers using nested if....else

statements.

Program

 main()
{

 float A, B, C;
 printf(“Enter three values\n”);
 scanf(“%f %f %f”, &A, &B, &C);
 printf(“\nLargest value is “);
 if (A>B)

{
 if (A>C)
 printf(“%f\n”, A);
 else
 printf(“%f\n”, C);

}
 else

{
 if (C>B)
 printf(“%f\n”, C);
 else
 printf(“%f\n”, B);

}
}

Output

 Enter three values
 23445 67379 88843
 Largest value is 88843.000000

Fig. 7.8 Selecting the largest of three numbers

218 Computing Fundamentals & C Programming

7.5.1 Dangling Else Problem

One of the classic problems encountered when we start using nested if….else statements is the dangling else.

This occurs when a matching else is not available for an if. The answer to this problem is very simple.

Always match an else to the most recent unmatched if in the current block. In some cases, it is possible that

the false condition is not required. In such situations, else statement may be omitted

“else is always paired with the most recent unpaired if”

7.6 THE ELSE IF LADDER LO 7.2

There is another way of putting ifs together when multipath decisions are involved. A multipath decision is

a chain of ifs in which the statement associated with each else is an if. It takes the following general form:

This construct is known as the else if ladder. The conditions are evaluated from the top (of the ladder),

downwards. As soon as a true condition is found, the statement associated with it is executed and the control

is transferred to the statement-x (skipping the rest of the ladder). When all the n conditions become false,

then the final else containing the default-statement will be executed. Figure 7.9 shows the logic of execution

of else if ladder statements.

Let us consider an example of grading the students in an academic institution. The grading is done

according to the following rules:

Average marks Grade

80 to 100 Honours

60 to 79 First Division

50 to 59 Second Division

40 to 49 Third Division

0 to 39 Fail

Decision Making and Branching 219

Fig. 7.9 Flow chart of else..if ladder

This grading can be done using the else if ladder as follows:

 if (marks > 79)

 grade = “Honours”;

 else if (marks > 59)

 grade = “First Division”;

 else if (marks > 49)

 grade = “Second Division”;

 else if (marks > 39)

 grade = “Third Division”;

else

grade = “Fail”;

printf (“%s\n”, grade);

Consider another example given below:

 — — — —

 — — — —

 if (code == 1)

 colour = “RED”;

220 Computing Fundamentals & C Programming

 else if (code == 2)

 colour = “GREEN”;

 else if (code == 3)

 colour = “WHITE”;

 else

 colour = “YELLOW”;

 — — —

 — — —

Code numbers other than 1, 2 or 3 are considered to represent YELLOW colour. The same results can be

obtained by using nested if...else statements.

 if (code != 1)

 if (code != 2)

 if (code != 3)

 colour = “YELLOW”;

 else

 colour = “WHITE”;

 else

 colour = “GREEN”;

 else

 colour = “RED”;

In such situations, the choice is left to the programmer. However, in order to choose an if structure that is

both effective and efficient, it is important that the programmer is fully aware of the various forms of an if

statement and the rules governing their nesting.

H

An electric power distribution company charges its domestic consumers as follows:

Consumption Units Rate of Charge

0 – 200 Rs. 0.50 per unit

201 – 400 Rs. 100 plus Rs. 0.65 per unit excess of 200

401 – 600 Rs. 230 plus Rs. 0.80 per unit excess of 400

601 and above Rs. 390 plus Rs. 1.00 per unit excess of 600

The program in Fig. 7.10 reads the customer number and power consumed and prints the amount to be paid

by the customer.

Program

 main()

{

 int units, custnum;

 float charges;

 printf(“Enter CUSTOMER NO. and UNITS consumed\n”);

Decision Making and Branching 221

 scanf(“%d %d”, &custnum, &units);

 if (units <= 200)

 charges = 0.5 * units;

 else if (units <= 400)

 charges = 100 + 0.65 * (units - 200);

 else if (units <= 600)

 charges = 230 + 0.8 * (units - 400);

 else

 charges = 390 + (units - 600);

 printf(“\n\nCustomer No: %d: Charges = %.2f\n”,

 custnum, charges);

}

Output

 Enter CUSTOMER NO. and UNITS consumed 101 150

 Customer No:101 Charges = 75.00

 Enter CUSTOMER NO. and UNITS consumed 202 225

 Customer No:202 Charges = 116.25

 Enter CUSTOMER NO. and UNITS consumed 303 375

 Customer No:303 Charges = 213.75

 Enter CUSTOMER NO. and UNITS consumed 404 520

 Customer No:404 Charges = 326.00

 Enter CUSTOMER NO. and UNITS consumed 505 625

 Customer No:505 Charges = 415.00

Fig. 7.10 Illustration of else..if ladder

7.6.1 Rules for Indentation

When using control structures, a statement often controls many other statements that follow it. In such

situations it is a good practice to use indentation to show that the indented statements are dependent on the

preceding controlling statement. Some guidelines that could be followed while using indentation are listed

below:

Indent statements that are dependent on the previous statements; provide at least three spaces of

indentation.

Align vertically else clause with their matching if clause.

Use braces on separate lines to identify a block of statements.

Indent the statements in the block by at least three spaces to the right of the braces.

Align the opening and closing braces.

Use appropriate comments to signify the beginning and end of blocks.

Indent the nested statements as per the above rules.

Code only one clause or statement on each line.

222 Computing Fundamentals & C Programming

7.7 THE SWITCH STATEMENT LO 7.3

We have seen that when one of the many alternatives is to be selected, we can use an if statement to control

the selection. However, the complexity of such a program increases dramatically when the number of

alternatives increases. The program becomes difficult to read and follow. At times, it may confuse even the

person who designed it. Fortunately, C has a built-in multiway decision statement known as a switch. The

switch statement tests the value of a given variable (or expression) against a list of case values and when a

match is found, a block of statements associated with that case is executed. The general form of the switch

statement is as shown below:

 switch (expression)

{

 case value-1:

 block-1

 break;

 case value-2:

 block-2

 break;

 default:

 default-block

 break;

}

 statement-x;

The expression is an integer expression or characters. Value-1, value-2 are constants or constant

expressions (evaluable to an integral constant) and are known as case labels. Each of these values should

be unique within a switch statement. block-1, block-2 are statement lists and may contain zero or more

statements. There is no need to put braces around these blocks. Note that case labels end with a colon (:).

When the switch is executed, the value of the expression is successfully compared against the values

value-1, value-2,.... If a case is found whose value matches with the value of the expression, then the block

of statements that follows the case are executed.

The break statement at the end of each block signals the end of a particular case and causes an exit from

the switch statement, transferring the control to the statement-x following the switch.

The default is an optional case. When present, it will be executed if the value of the expression does not

match with any of the case values. If not present, no action takes place if all matches fail and the control

goes to the statement-x. (ANSI C permits the use of as many as 257 case labels).

The selection process of switch statement is illustrated in the flow chart shown in Fig. 7.11.

Decision Making and Branching 223

Fig. 7.11 Selection process of the switch statement

The switch statement can be used to grade the students as discussed in the last section. This is illustrated

below:

— — —
 — — —
 index = marks/10
 switch (index)
 {
 case 10:
 case 9:
 case 8:
 grade = “Honours”;
 break;
 case 7:
 case 6:
 grade = “First Division”;
 break;
 case 5:
 grade = “Second Division”;
 break;
 case 4:
 grade = “Third Division”;
 break;
 default:
 grade = “Fail”;
 break;

}
 printf(“%s\n”, grade);
 — — —

 — — —

224 Computing Fundamentals & C Programming

Note that we have used a conversion statement

index = marks / 10;

where, index is defined as an integer. The variable index takes the following integer values.

Marks Index

100 10

90–99 9

80–89 8

70–79 7

60–69 6

50–59 5

40–49 4

. .

. .

0 0

This segment of the program illustrates two important features. First, it uses empty cases. The first three

cases will execute the same statements

grade = “Honours”;

break;

Same is the case with case 7 and case 6. Second, default condition is used for all other cases where

marks is less than 40.

The switch statement is often used for menu selection. For example:

— — — —
 — — — —
 printf(“ TRAVEL GUIDE\n\n”);
 printf(“ A Air Timings\n”);
 printf(“ T Train Timings\n”);
 printf(“ B Bus Service\n”);
 printf(“ X To skip\n”);
 printf(“\n Enter your choice\n”);
 character = getchar();
 switch (character)

{
 case ‘A’ :
 air-display();
 break;
 case ‘B’ :
 bus-display();
 break;
 case ‘T’ :
 train-display();
 break;
 default :
 printf(“ No choice\n”);

}
 — — — —
 — — — —

Decision Making and Branching 225

It is possible to nest the switch statements. That is, a switch may be part of a case statement. ANSI C

permits 15 levels of nesting.

7.7.1 Rules for Switch Statement

The switch expression must be an integral type.

Case labels must be constants or constant expressions.

Case labels must be unique. No two labels can have the same value.

Case labels must end with colon.

The break statement transfers the control out of the switch statement.

The break statement is optional. That is, two or more case labels may belong to the same

statements.

The default label is optional. If present, it will be executed when the expression does not find a

matching case label.

There can be at most one default label.

The default may be placed anywhere but usually placed at the end.

It is permitted to nest switch statements.

Write a complete C program that reads a value in the range of 1 to 12 and print the name of that month

and the next month. Print error for any other input value.

Program

 #include<stdio.h>

 #include<conio.h>

 #include<stdlib.h>

 void main()

{

 char month[12][20] = {“January”,”February”,”March”,”April”,”May”,”June”,

 ”July”,”August”,”September”,”October”,”November”,”December”};

 int i;

 printf(“Enter the month value: ”);

 scanf(“%d”,&i);

 if(i<1 || i>12)

 {

 printf(“Incorrect value!!\nPress any key to terminate the program...”);

 getch();

 exit(0);

 }

 if(i!=12)

 printf(“%s followed by %s”,month[i-1],month[i]);

226 Computing Fundamentals & C Programming

 else

 printf(“%s followed by %s”,month[i-1],month[0]);

 getch();

}

Output

 Enter the month value: 6

 June followed by July

 Fig. 7.12 Program to read and print name of months in the range of 1 and 12

7.8 THE ? : OPERATOR LO 7.4

The C language has an unusual operator, useful for making two-way decisions. This operator is a

combination of ? and :, and takes three operands. This operator is popularly known as the conditional

operator. The general form of use of the conditional operator is as follows:

conditional expression ? expression1 : expression2

The conditional expression is evaluated first. If the result is non-zero, expression1 is evaluated and is

returned as the value of the conditional expression. Otherwise, expression2 is evaluated and its value is

returned. For example, the segment

 if (x < 0)

 flag = 0;

 else

 flag = 1;

can be written as

flag = (x < 0) ? 0 : 1;

Consider the evaluation of the following function:

y = 1.5x + 3 for x 2

y = 2x + 5 for x > 2

This can be evaluated using the conditional operator as follows:

y = (x > 2) ? (2 * x + 5) : (1.5 * x + 3);

The conditional operator may be nested for evaluating more complex assignment decisions. For example,

consider the weekly salary of a salesgirl who is selling some domestic products. If x is the number of

products sold in a week, her weekly salary is given by

Salary =

4 100 40

300 40

4 5 150 40

x x

x

x x

for

for

for.

This complex equation can be written as

salary = (x != 40) ? ((x < 40) ? (4*x+100) : (4.5*x+150)) : 300;

Decision Making and Branching 227

The same can be evaluated using if...else statements as follows:

 if (x <= 40)

 if (x < 40)

 salary = 4 * x+100;

 else

 salary = 300;

 else

 salary = 4.5 * x+150;

When the conditional operator is used, the code becomes more concise and perhaps, more efficient.

However, the readability is poor. It is better to use if statements when more than a single nesting of

conditional operator is required.

An employee can apply for a loan at the beginning of every six months, but he will be sanctioned the

amount according to the following company rules:

Rule 1: An employee cannot enjoy more than two loans at any point of time.

Rule 2: Maximum permissible total loan is limited and depends upon the category of the employee.

A program to process loan applications and to sanction loans is given in Fig. 7.13.

Program

 #define MAXLOAN 50000

 main()

{

 long int loan1, loan2, loan3, sancloan, sum23;

 printf(“Enter the values of previous two loans:\n”);

 scanf(“ %ld %ld”, &loan1, &loan2);

 printf(“\nEnter the value of new loan:\n”);

 scanf(“ %ld”, &loan3);

 sum23 = loan2 + loan3;

 sancloan = (loan1>0)? 0 : ((sum23>MAXLOAN)?

 MAXLOAN - loan2 : loan3);

 printf(“\n\n”);

 printf(“Previous loans pending:\n%ld %ld\n”,loan1,loan2);

 printf(“Loan requested = %ld\n”, loan3);

 printf(“Loan sanctioned = %ld\n”, sancloan);

}

Output

 Enter the values of previous two loans:

 0 20000

 Enter the value of new loan:

 45000

228 Computing Fundamentals & C Programming

 Previous loans pending:

 0 20000

 Loan requested = 45000

 Loan sanctioned = 30000

 Enter the values of previous two loans:

 1000 15000

 Enter the value of new loan:

 25000

 Previous loans pending:

 1000 15000

 Loan requested = 25000

 Loan sanctioned = 0

Fig. 7.13 Illustration of the conditional operator

The program uses the following variables:

loan3 - present loan amount requested

loan2 - previous loan amount pending

loan1 - previous to previous loan pending

sum23 - sum of loan2 and loan3

sancloan - loan sanctioned

The rules for sanctioning new loan are:

1. loan1 should be zero.

2. loan2 + loan3 should not be more than MAXLOAN.

Note the use of long int type to declare variables.

Write a program to determine the Greatest Common Divisor (GCD) of two numbers.

A program to determine GCD of two numbers is given in Fig. 7.14.

Algorithm

Step 1 – Start

Step 2 – Accept the two numbers whose GCD is to be found (num1, num2)

Step 3 – Call function GCD(num1,num2)

Step 4 – Display the value returned by the function call GCD(num1, num2)

Step 5 – Stop

GCD(a,b)

Step 1 – Start

Step 2 – If b > a goto Step 3 else goto Step 4

Step 3 – Return the result of the function call GCD(b,a) to the calling function

Step 4 – If b = 0 goto Step 5 else goto Step 6

Step 5 – Return the value a to the calling function

Step 6 – Return the result of the function call GCD(b,a mod b) to the calling function

Decision Making and Branching 229

Program

#include <stdio.h>

#include <conio.h>

#include <math.h>

int GCD(int m, int n);

void main()

Start

Read num1,.num2

Call GCD (num1, num2)

Stop

Display the return value of
GCD (num1, num2)

GCD (num1, num2)

Return
GCD (b, a%b)

Is b>a?

No

Is b=a? Return a

Return
GCD (b, a)

Yes

Yes

No

{

 int num1,num2;

 clrscr();

 printf(“Enter the two numbers whose GCD is to be found: “);

 scanf(“%d %d”,&num1,&num2);

 printf(“\nGCD of %d and %d is %d\n”,num1,num2,GCD(num1,num2));

 getch();

}

 int GCD(int a, int b)

{

 if(b>a)

 return GCD(b,a);

 if(b==0)

 return a;

 else

 return GCD(b,a%b);

}

230 Computing Fundamentals & C Programming

Output

Enter the two numbers whose GCD is to be found: 18 12

GCD of 18 and 12 is 6

Fig. 7.14 Program to determine GCD of two numbers

7.8.1 Some Guidelines for Writing Multiway Selection Statements

Complex multiway selection statements require special attention. The readers should be able to understand

the logic easily. Given below are some guidelines that would help improve readability and facilitate

maintenance.

Avoid compound negative statements. Use positive statements wherever possible.

Keep logical expressions simple. We can achieve this using nested if statements, if necessary (KISS -

Keep It Simple and Short).

Try to code the normal/anticipated condition first.

Use the most probable condition first. This will eliminate unnecessary tests, thus improving the

efficiency of the program.

The choice between the nested if and switch statements is a matter of individual’s preference.

A good rule of thumb is to use the switch when alternative paths are three to ten.

Use proper indentations (See Rules for Indentation).

Have the habit of using default clause in switch statements.

Group the case labels that have similar actions.

7.9 THE GOTO STATEMENT LO 7.5

So far we have discussed ways of controlling the flow of execution based on certain specified conditions.

Like many other languages, C supports the goto statement to branch unconditionally from one point to

another in the program. Although it may not be essential to use the goto statement in a highly structured

language like C, there may be occasions when the use of goto might be desirable.

The goto requires a label in order to identify the place where the branch is to be made. A label is any

valid variable name, and must be followed by a colon. The label is placed immediately before the statement

where the control is to be transferred. The general forms of goto and label statements are shown below:

The label: can be anywhere in the program either before or after the goto label; statement.

Decision Making and Branching 231

During running of a program when a statement like

goto begin;

is met, the flow of control will jump to the statement immediately following the label begin:. This happens

unconditionally.

Note that a goto breaks the normal sequential execution of the program. If the label: is before the

statement goto label; a loop will be formed and some statements will be executed repeatedly. Such a jump is

known as a backward jump. On the other hand, if the label: is placed after the goto label; some statements

will be skipped and the jump is known as a forward jump.

A goto is often used at the end of a program to direct the control to go to the input statement, to read

further data. Consider the following example:

 main()

{

 double x, y;

 read:

 scanf(“%f”, &x);

 if (x < 0) goto read;

 y = sqrt(x);

 printf(“%f %f\n”, x, y);

 goto read;

}

This program is written to evaluate the square root of a series of numbers read from the terminal. The

program uses two goto statements, one at the end, after printing the results to transfer the control back to

the input statement and the other to skip any further computation when the number is negative.

Due to the unconditional goto statement at the end, the control is always transferred back to the input

statement. In fact, this program puts the computer in a permanent loop known as an infinite loop. The

computer goes round and round until we take some special steps to terminate the loop. Such infinite loops

should be avoided. Worked-Out Problem 7.9 illustrates how such infinite loops can be eliminated.

Program presented in Fig. 7.15 illustrates the use of the goto statement. The program evaluates the square

root for five numbers. The variable count keeps the count of numbers read. When count is less than or

equal to 5, goto read; directs the control to the label read; otherwise, the program prints a message and

stops.

Program

 #include <math.h>

 main()

{

 double x, y;

 int count;

 count = 1;

 printf(“Enter FIVE real values in a LINE \n”);

 read:

232 Computing Fundamentals & C Programming

 scanf(“%lf”, &x);

 printf(“\n”);

 if (x < 0)

 printf(“Value - %d is negative\n”,count);

 else

 {

 y = sqrt(x);

 printf(“%lf\t %lf\n”, x, y);

 }

 count = count + 1;

 if (count <= 5)

 goto read;

 printf(“\nEnd of computation”);

}

Output

 Enter FIVE real values in a LINE

 50.70 40 -36 75 11.25

 50.750000 7.123903

 40.000000 6.324555

 Value -3 is negative

 75.000000 8.660254

 11.250000 3.354102

 End of computation

 Fig. 7.15 Use of the goto statement

Another use of the goto statement is to transfer the control out of a loop (or nested loops) when certain

peculiar conditions are encountered. Example:

 — — — —

 — — — —

 while (— — — —)

{

 for (— — — —)

{

 — — — —

 — — — —

 if (— — — —)goto end_of_program;

 — — — —

 } Jumping

 — — — — out of

 — — — — loops

 }

 end_of_program:

Decision Making and Branching 233

We should try to avoid using goto as far as possible. But there is nothing wrong, if we use it to enhance

the readability of the program or to improve the execution speed.

Learning Outcomes

Be aware of any side effects in the control expression such as if(x++).

Check the use of =operator in place of the equal operator = =.

Do not give any spaces between the two symbols of relational operators = =, !=, >= and <=.

Writing !=, >= and <= operators like =!, => and =< is an error.

Remember to use two ampersands (&&) and two bars (| ||) for logical operators. Use of single

operators will result in logical errors.

Do not forget to place parentheses for the if expression.

It is an error to place a semicolon after the if expression.

Do not use the equal operator to compare two floating-point values. They are seldom exactly equal.

Avoid using operands that have side effects in a logical binary expression such as (x– –&&++y). The

second operand may not be evaluated at all.

Be aware of dangling else statements.

Use braces to encapsulate the statements in if and else clauses of an if…. else statement.

Do not forget to use a break statement when the cases in a switch statement are exclusive.

Although it is optional, it is a good programming practice to use the default clause in a switch

statement.

It is an error to use a variable as the value in a case label of a switch statement. (Only integral

constants are allowed.)

Do not use the same constant in two case labels in a switch statement.

Try to use simple logical expressions.

Be careful while placing a goto label in a program as it may lead to an infinite loop condition.

Key Terms to Remember

Decision-making statements: Are the statements that control the flow of execution in a program.

switch statement: Is a multi-way decision making statement that chooses the statement block to be

executed by matching the given value with a list of case values.

Conditional operator: Is a two-way decision making statement that returns one of the two

expression values based on the result of the conditional expression.

goto statement: Is used for unconditional branching. It transfers the flow of control to the place

where matching label is found.

Infinite loop: Is a condition where a set of instructions is repeatedly executed.

LO 7.1

LO 7.1

LO 7.1

LO 7.1

LO 7.1

LO 7.1

LO 7.1

LO 7.1

LO 7.1

LO 7.2

LO 7.2

LO 7.3

LO 7.3

LO 7.3

LO 7.3

LO 7.4

LO 7.5

LO 7.1

LO 7.3

LO 7.4

LO 7.5

LO 7.5

234 Computing Fundamentals & C Programming

Brief Cases

1. Range of Numbers [LO 7.1, 7.2 M]

Problem: A survey of the computer market shows that personal computers are sold at varying costs by the

vendors. The following is the list of costs (in hundreds) quoted by some vendors:

35.00, 40.50, 25.00, 31.25, 68.15,

47.00, 26.65, 29.00, 53.45, 62.50

Determine the average cost and the range of values.

Problem analysis: Range is one of the measures of dispersion used in statistical analysis of a series of

values. The range of any series is the difference between the highest and the lowest values in the series.

That is

 Range = highest value – lowest value

It is therefore necessary to find the highest and the lowest values in the series.

Program: A program to determine the range of values and the average cost of a personal computer in the

market is given in Fig. 7.16.

Program

 main()

{

 int count;

 float value, high, low, sum, average, range;

 sum = 0;

 count = 0;

 printf(“Enter numbers in a line :

 input a NEGATIVE number to end\n”);

 input:

 scanf(“%f”, &value);

 if (value < 0) goto output;

 count = count + 1;

 if (count == 1)

 high = low = value;

 else if (value > high)

 high = value;

 else if (value < low)

 low = value;

 sum = sum + value;

 goto input;

 Output:

 average = sum/count;

 range = high - low;

 printf(“\n\n”);

 printf(“Total values : %d\n”, count);

Decision Making and Branching 235

 printf(“Highest-value: %f\nLowest-value : %f\n”,

 high, low);

 printf(“Range : %f\nAverage : %f\n”,

 range, average);

}

Output

 Enter numbers in a line : input a NEGATIVE number to end

 35 40.50 25 31.25 68.15 47 26.65 29 53.45 62.50 -1

 Total values : 10

 Highest-value : 68.150002

 Lowest-value : 25.000000

 Range : 43.150002

 Average : 41.849998

 Fig. 7.16 Calculation of range of values

When the value is read the first time, it is assigned to two buckets, high and low, through the statement

high = low = value;

For subsequent values, the value read is compared with high; if it is larger, the value is assigned to high.

Otherwise, the value is compared with low; if it is smaller, the value is assigned to low. Note that at a given

point, the buckets high and low hold the highest and the lowest values read so far.

The values are read in an input loop created by the goto input; statement. The control is transferred out

of the loop by inputting a negative number. This is caused by the statement

if (value < 0) goto output;

Note that this program can be written without using goto statements. Try.

2. Pay-Bill Calculations [LO 7.2, 7.5 M]

Problem: A manufacturing company has classified its executives into four levels for the benefit of certain

perks. The levels and corresponding perks are shown below:

Level
Perks

Conveyance allowance Entertainment allowance

1 1000 500

2 750 200

3 500 100

4 250 –

236 Computing Fundamentals & C Programming

An executive’s gross salary includes basic pay, house rent allowance at 25% of basic pay and other perks.

Income tax is withheld from the salary on a percentage basis as follows:

Gross salary Tax rate

Gross <= 2000 No tax deduction

2000 < Gross <= 4000 3%

4000 < Gross <= 5000 5%

Gross > 5000 8%

Write a program that will read an executive’s job number, level number, and basic pay and then compute

the net salary after withholding income tax.

Problem analysis

Gross salary = basic pay + house rent allowance + perks

Net salary = Gross salary – income tax.

The computation of perks depends on the level, while the income tax depends on the gross salary. The

major steps are:

1. Read data.

2. Decide level number and calculate perks.

3. Calculate gross salary.

4. Calculate income tax.

5. Compute net salary.

6. Print the results.

Program: A program and the results of the test data are given in Fig. 7.17. Note that the last statement

should be an executable statement. That is, the label stop: cannot be the last line.

Program

 #define CA1 1000

 #define CA2 750

 #define CA3 500

 #define CA4 250

 #define EA1 500

 #define EA2 200

 #define EA3 100

 #define EA4 0

 main()

{

 int level, jobnumber;

 float gross,

 basic,

 house_rent,

 perks,

 net,

 incometax;

Decision Making and Branching 237

 input:

 printf(“\nEnter level, job number, and basic pay\n”);

 printf(“Enter 0 (zero) for level to END\n\n”);

 scanf(“%d”, &level);

 if (level == 0) goto stop;

 scanf(“%d %f”, &jobnumber, &basic);

 switch (level)

{

 case 1:

 perks = CA1 + EA1;

 break;

 case 2:

 perks = CA2 + EA2;

 break;

 case 3:

 perks = CA3 + EA3;

 break;

 case 4:

 perks = CA4 + EA4;

 break;

 default:

 printf(“Error in level code\n”);

 goto stop;

}

 house_rent = 0.25 * basic;

 gross = basic + house_rent + perks;

 if (gross <= 2000)

 incometax = 0;

 else if (gross <= 4000)

 incometax = 0.03 * gross;

 else if (gross <= 5000)

 incometax = 0.05 * gross;

 else

 incometax = 0.08 * gross;

 net = gross - incometax;

 printf(“%d %d %.2f\n”, level, jobnumber, net);

 goto input;

 stop: printf(“\n\nEND OF THE PROGRAM”);

}

Output

 Enter level, job number, and basic pay

 Enter 0 (zero) for level to END

238 Computing Fundamentals & C Programming

 1 1111 4000

 1 1111 5980.00

 Enter level, job number, and basic pay

 Enter 0 (zero) for level to END

 2 2222 3000

 2 2222 4465.00

 Enter level, job number, and basic pay

 Enter 0 (zero) for level to END

 3 3333 2000

 3 3333 3007.00

 Enter level, job number, and basic pay

 Enter 0 (zero) for level to END

 4 4444 1000

 4 4444 1500.00

 Enter level, job number, and basic pay

 Enter 0 (zero) for level to END

0

 END OF THE PROGRAM

 Fig. 7.17 Pay-bill calculations

Review Questions

Fill in the Blanks

1. The _______ operator is true only when both the operands are true.

2. Multiway selection can be accomplished using an else if statement or the __________

statement.

3. The ______ statement when executed in a switch statement causes immediate exit from the

structure.

4. The expression ! (x ! = y) can be replaced by the expression ________.

5. The ternary conditional expression using the operator ?: could be easily coded using

______statement.

True or False Statements

1. A switch expression can be of any type.

2. A program stops its execution when a break statement is encountered.

3. Each case label can have only one statement.

LO 7.1

LO 7.3

LO 7.3

LO 7.1

LO 7.4

LO 7.3

LO 7.3

LO 7.3

Levels of Difficulty

: Low; : Medium; : High

Decision Making and Branching 239

4. The default case is required in the switch statement.

5. When if statements are nested, the last else gets associated with the nearest if without an else.

6. One if can have more than one else clause.

7. Each expression in the else if must test the same variable.

8. A switch statement can always be replaced by a series of if..else statements.

9. Any expression can be used for the if expression.

10. The predicate !((x >= 10)¦(y = = 5)) is equivalent to (x < 10) && (y !=5).

Discussion Questions

1. The following is a segment of a program:

 x = 1;

 y = 1;

 if (n > 0)

 x = x + 1;

 y = y - 1;

 printf(“ %d %d”, x, y);

What will be the values of x and y if n assumes a value of (a) 1 and (b) 0.

2. Rewrite each of the following without using compound relations:

(a) if (grade <= 59 && grade >= 50)
 second = second + 1;

(b) if (number > 100 || number < 0)
 printf(“ Out of range”);
 else
 sum = sum + number;

(c) if ((M1 > 60 && M2 > 60) || T > 200)
 printf(“ Admitted\n”);
 else
 printf(“ Not admitted\n”);

3. Assuming x = 10, state whether the following logical expressions are true or false.

(a) x = = 10 && x > 10 && !x (b) x = = 10 || x > 10 && ! x

(c) x = = 10 && x > 10 || ! x (d) x = = 10 || x > 10 || !x

4. Find errors, if any, in the following switch related statements. Assume that the variables x

and y are of int type and x = 1 and y = 2

(a) switch (y);
(b) case 10;
(c) switch (x + y)
(d) switch (x) {case 2: y = x + y; break};

5. Simplify the following compound logical expressions

(a) !(x <=10) (b) !(x = = 10) ||! ((y = = 5) || (z < 0))

(c) ! ((x +y = = z) && !(z > 5) (d) !((x <=5) && (y = = 10) & & (z < 5))

LO 7.3

LO 7.2

LO 7.2

LO 7.2

LO 7.3

LO 7.1

LO 7.1

LO 7.1

LO 7.1

LO 7.2

LO 7.2

LO 7.1

LO 7.3

LO 7.1

240 Computing Fundamentals & C Programming

6. Assuming that x = 5, y = 0, and z = 1 initially, what will be their values after executing the

following code segments?

(a) if (x && y)
 x = 10;
 else
 y = 10;

(b) if (x || y || z)
 y = 10;
 else
 z = 0;

(c) if (x)
 if (y)
 z = 10;
 else
 z = 0;

(d) if (x = = 0 || x & & y)
 if (!y)
 z = 0;
 else
 y = 1;

7. Assuming that x = 2, y = 1 and z = 0 initially, what will be their values after executing the

following code segments?

(a) switch (x)
 {
 case 2:
 x = 1;
 y = x + 1;
 case 1:
 x = 0;
 break;
 default:
 x = 1;
 y = 0;
 }

(b) switch (y)
 {
 case 0:
 x = 0;
 y = 0;
 case 2:
 x = 2;
 z = 2;
 default:
 x = 1;
 y = 2;
 }

8. What is the output of the following program?

 main ()

 {

LO 7.2

LO 7.3

LO 7.2

Decision Making and Branching 241

 int m = 5 ;

 if (m < 3) printf(“%d” , m+1) ;

 else if(m < 5) printf(“%d”, m+2);

 else if(m < 7) printf(“%d”, m+3);

 else printf(“%d”, m+4);

 }

9. What is the output of the following program?

 main ()

{

 int m = 1;

 if (m==1)

 {

 printf (“ Delhi “) ;

 if (m == 2)

 printf(“Chennai”) ;

 else

 printf(“Bangalore”) ;

 }

 else;

 printf(“ END”);

}

10. What is the output of the following program?

 main()

 {

 int m ;

 for (m = 1; m<5; m++)

 printf(%d\n”, (m%2) ? m : m*2);

 }

11. What is the output of the following program?

 main()

 {

 int m, n, p ;

 for (m = 0; m < 3; m++)

 for (n = 0; n<3; n++)

 for (p = 0; p < 3;; p++)

 if (m + n + p == 2)

 goto print;

 print :

 printf(“%d, %d, %d”, m, n, p);

 }

LO 7.2

LO 7.4

LO 7.5

242 Computing Fundamentals & C Programming

12. What will be the value of x when the following segment is executed?

 int x = 10, y = 15;

 x = (x<y)? (y+x) : (y-x) ;

13. What will be the output when the following segment is executed?

 int x = 0;

 if (x >= 0)

 if (x > 0)

 printf(“Number is positive”);

 else

 printf(“Number is negative”);

14. What will be the output when the following segment is executed?

 char ch = ‘a’ ;

 switch (ch)

 {

 case ‘a’ :

 printf(“A”) ;

 case‘b’:

 Printf (“B”) ;

 default :

 printf(“ C “) ;

 }

15. What will be the output of the following segment when executed?

 int x = 10, y = 20;

 if((x<y) || (x+5) > 10)

 printf(“%d”, x);

 else

 printf(“%d”, y);

16. What will be output of the following segment when executed?

 int a = 10, b = 5;

 if (a > b)

 {

 if(b > 5)

 printf(“%d”, b);

 }

 else

 printf(“%d”, a);

LO 7.4

LO 7.2

LO 7.1

LO 7.2

LO 7.2

Decision Making and Branching 243

Debugging Exercises

1. Find errors, if any, in each of the following segments:

(a) if (x + y = z && y > 0)
 printf(“ “);

(b) if (p < 0) || (q < 0)
 printf (“ sign is negative”);

(c) if (code > 1);
 a = b + c
 else
 a = 0

2. Find the error, if any, in the following statements:

(a) if (x > = 10) then
 printf (“\n”) ;

(b) if x > = 10
 printf (“OK”) ;

(c) if (x = 10)
 printf (“Good”) ;

(d) if (x = < 10)
 printf (“Welcome”) ;

Programming Exercises

1. Write a program to determine whether a given number is ‘odd’ or ‘even’ and print the

message

NUMBER IS EVEN

or

NUMBER IS ODD

(a) without using else option

(b) with else option.

2. Write a program to find the number of and sum of all integers greater than 100 and less

than 200 that are divisible by 7.

3. A set of two linear equations with two unknowns x1 and x2 is given below:

 ax1 + bx2 = m

 cx1 + dx2 = n

The set has a unique solution

 x1 =
md bn

ad cb

 x2 =
na mc

ad cb

provided the denominator ad – cb is not equal to zero.

Write a program that will read the values of constants a, b, c, d, m, and n and compute the

values of x1 and x2. An appropriate message should be printed if ad – cb = 0.

LO 7.1

LO 7.1

LO 7.2

LO 7.1

LO 7.1

LO 7.2

LO 7.1

LO 7.2

244 Computing Fundamentals & C Programming

4. Given a list of marks ranging from 0 to 100, write a program to compute and print the

number of students:

(a) who have obtained more than 80 marks,

(b) who have obtained more than 60 marks,

(c) who have obtained more than 40 marks,

(d) who have obtained 40 or less marks,

(e) in the range 81 to 100,

(f) in the range 61 to 80,

(g) in the range 41 to 60, and

(h) in the range 0 to 40.

The program should use a minimum number of if statements.

5. Admission to a professional course is subject to the following conditions:

(a) Marks in Mathematics >= 60

(b) Marks in Physics >= 50

(c) Marks in Chemistry >= 40

(d) Total in all three subjects >= 200

 or

 Total in Mathematics and Physics >= 150

Given the marks in the three subjects, write a program to process the applications to list the

eligible candidates.

6. Write a program to print a two-dimensional Square Root Table as shown below, to provide

the square root of any number from 0 to 9.9. For example, the value x will give the square

root of 3.2 and y the square root of 3.9.

Square Root Table

Number 0.0 0.1 0.2 0.9

0.0

1.0

2.0

3.0 x y

9.0

7. Shown below is a Floyd’s triangle.

 1

 2 3

 4 5 6

 7 8 9 10

 11 15

 .

 .

 79 91

(a) Write a program to print this triangle.

(b) Modify the program to produce the following form of Floyd’s triangle.

 1

 0 1

 1 0 1

 0 1 0 1

 1 0 1 0 1

LO 7.2

LO 7.2

LO 7.2

LO 7.2

Decision Making and Branching 245

8. A cloth showroom has announced the following seasonal discounts on purchase of items:

Purchase amount Discount

Mill cloth Handloom items

 0 – 100 – 5%

101 – 200 5% 7.5%

201 – 300 7.5% 10.0%

Above 300 10.0% 15.0%

Write a program using switch and if statements to compute the net amount to be paid by a

customer.

9. Write a program that will read the value of x and evaluate the following function

 y =

1 0

0 0

1 0

for x

for x

for xusing

(a) nested if statements,

(b) else if statements, and

(c) conditional operator ? :

10. Write a program to compute the real roots of a quadratic equation

 ax2 + bx + c = 0

The roots are given by the equations

 x1 = – b +
b ac

a

2 4

2

 x2 = – b –
b ac

a

2 4

2

The program should request for the values of the constants a, b and c and print the values of

x1 and x2. Use the following rules:

(a) No solution, if both a and b are zero

(b) There is only one root, if a = 0 (x = –c/b)

(c) There are no real roots, if b2 – 4 ac is negative

(d) Otherwise, there are two real roots

Test your program with appropriate data so that all logical paths are working as per your

design. Incorporate appropriate output messages.

11. Write a program to read three integer values from the keyboard and displays the output

stating that they are the sides of right-angled triangle.

12. An electricity board charges the following rates for the use of electricity:

For the first 200 units: 80 P per unit

For the next 100 units: 90 P per unit

Beyond 300 units: Rs 1.00 per unit

LO 7.1

LO 7.3

LO 7.1

LO 7.2

LO 7.4

LO 7.2

LO 7.2

LO 7.2

246 Computing Fundamentals & C Programming

All users are charged a minimum of Rs. 100 as meter charge. If the total amount is more

than Rs. 400, then an additional surcharge of 15% of total amount is charged.

Write a program to read the names of users and number of units consumed and print out the

charges with names.

13. Write a program to compute and display the sum of all integers that are divisible by 6 but

not divisible by 4 and lie between 0 and 100. The program should also count and display

the number of such values.

14. Write an interactive program that could read a positive integer number and decide whether

the number is a prime number and display the output accordingly.

Modify the program to count all the prime numbers that lie between 100 and 200.

NOTE: A prime number is a positive integer that is divisible only by 1 or by itself.

15. Write a program to read a double-type value x that represents angle in radians and a

character-type variable T that represents the type of trigonometric function and display the

value of

(a) sin(x), if s or S is assigned to T,

(b) cos (x), if c or C is assigned to T, and

(c) tan (x), if t or T is assigned to T

using (i) if......else statement, and

(ii) switch statement.

LO 7.2

LO 7.2

LO 7.2

LO 7.3

 Decision Making and Looping 247

8.1 INTRODUCTION

We have seen in Chapter 7 that it is possible to execute a segment of a program repeatedly

by introducing a counter and later testing it using the if statement. While this method is quite

satisfactory for all practical purposes, we need to initialize and increment a counter and test

its value at an appropriate place in the program for the completion of the loop. For example,

suppose we want to calculate the sum of squares of all integers between 1 and 10, we can write

a program using the if statement as follows:

sum = 0;
n = 1;
loop:
sum = sum + n*n;

()if n == 10
goto print;

else
n = 10,

n = n+1;
goto loop;

print:

end of loop

L
o
o
p

L
E

A
R

N
IN

G
 O

B
J
E

C
T
IV

E
S

A er reading this chapter, you will be able to

LO 8.1 Discuss while statement

LO 8.2 Explain do statement

LO 8.3 Describe for statement

LO 8.4 Illustrate how jumps are applied in loops

IV
E

S

CHAPT ERCHAPT ER

88Decision Making and Decision Making and

LoopingLooping

 248 Computing Fundamentals & C Programming

This program does the following things:

1. Initializes the variable n.

2. Computes the square of n and adds it to sum.

3. Tests the value of n to see whether it is equal to 10 or not. If it is equal to 10, then the program prints

the results.

4. If n is less than 10, then it is incremented by one and the control goes back to compute the sum again.

The program evaluates the statement

 sum = sum + n*n;

10 times. That is, the loop is executed 10 times. This number can be increased or decreased easily by

modifying the relational expression appropriately in the statement if (n == 10). On such occasions where

the exact number of repetitions are known, there are more convenient methods of looping in C. These

looping capabilities enable us to develop concise programs containing repetitive processes without the use

of goto statements.

In looping, a sequence of statements are executed until some conditions for termination of the loop are

satisfi ed. A program loop therefore consists of two segments, one known as the body of the loop and the

other known as the control statement. The control statement tests certain conditions and then directs the

repeated execution of the statements contained in the body of the loop.

Depending on the position of the control statement in the loop, a control structure may be classifi ed

either as the entry-controlled loop or as the exit-controlled loop. The fl ow charts in Fig. 8.1 illustrate

these structures. In the entry-controlled loop, the control conditions are tested before the start of the loop

execution. If the conditions are not satisfi ed, then the body of the loop will not be executed. In the case of

an exit-controlled loop, the test is performed at the end of the body of the loop and therefore the body is

executed unconditionally for the fi rst time. The entry-controlled and exit-controlled loops are also known as

pre-test and post-test loops respectively.

Fig. 8.1 Loop control structures

 Decision Making and Looping 249

The test conditions should be carefully stated in order to perform the desired number of loop executions.

It is assumed that the test condition will eventually transfer the control out of the loop. In case, due to some

reason it does not do so, the control sets up an infi nite loop and the body is executed over and over again.

A looping process, in general, would include the following four steps:

1. Setting and initialization of a condition variable.

2. Execution of the statements in the loop.

3. Test for a specifi ed value of the condition variable for execution of the loop.

4. Incrementing or updating the condition variable.

The test may be either to determine whether the loop has been repeated the specifi ed number of times or

to determine whether a particular condition has been met.

The C language provides for three constructs for performing loop operations. They are:

1. The while statement.

2. The do statement.

3. The for statement.

We shall discuss the features and applications of each of these statements in this chapter.

8.1.1 Sentinel Loops

Based on the nature of control variable and the kind of value assigned to it for testing the control expression,

the loops may be classifi ed into following two general categories:

1. Counter-controlled loops

2. Sentinel-controlled loops

When we know in advance exactly how many times the loop will be executed, we use a counter-

controlled loop. We use a control variable known as counter. The counter must be initialized, tested and

updated properly for the desired loop operations. The number of times we want to execute the loop may

be a constant or a variable that is assigned a value. A counter-controlled loop is sometimes called defi nite

repetition loop.

In a sentinel-controlled loop, a special value called a sentinel value is used to change the loop control

expression from true to false. For example, when reading data we may indicate the “end of data” by a

special value, like –1 and 999. The control variable is called sentinel variable. A sentinel-controlled loop is

often called indefi nite repetition loop because the number of repetitions is not known before the loop begins

executing.

8.2 THE WHILE STATEMENT LO 8.1

The simplest of all the looping structures in C is the while statement. We have used while in many of our

earlier programs. The basic format of the while statement is

 while (test condition)

 {

 body of the loop

 }

The while is an entry-controlled loop statement. The test-condition is evaluated and if the condition is

true, then the body of the loop is executed. After execution of the body, the test-condition is once again

evaluated and if it is true, the body is executed once again. This process of repeated execution of the body

 250 Computing Fundamentals & C Programming

continues until the test-condition fi nally becomes false and the control is transferred out of the loop. On

exit, the program continues with the statement immediately after the body of the loop.

The body of the loop may have one or more statements. The braces are needed only if the body

contains two or more statements. However, it is a good practice to use braces even if the body has only one

statement.

We can rewrite the program loop discussed in Section 8.1 as follows:

 ========

 sum = 0;

 n = 1; /* Initialization */

 while(n <= 10) /* Testing */

 {

 loop sum = sum + n * n;

 n = n+1; /* Incrementing */

 }

 printf(“sum = %d\n”, sum);

 ========

The body of the loop is executed 10 times for n = 1, 2,, 10, each time adding the square of the value

of n, which is incremented inside the loop. The test condition may also be written as n < 11; the result

would be the same. This is a typical example of counter-controlled loops. The variable n is called counter

or control variable.

Another example of while statement, which uses the keyboard input is shown below:

 =========

 character = ‘ ‘ ;

 while (character != ‘Y’)

 character = getchar();

 xxxxxxx;

 =========

First the character is initialized to ‘ ‘. The while statement then begins by testing whether character is

not equal to Y. Since the character was initialized to ‘ ‘, the test is true and the loop statement

character = getchar();

is executed. Each time a letter is keyed in, the test is carried out and the loop statement is executed until

the letter Y is pressed. When Y is pressed, the condition becomes false because character equals Y, and

the loop terminates, thus transferring the control to the statement xxxxxxx;. This is a typical example of

sentinel-controlled loops. The character constant ‘y’ is called sentinel value and the variable character is

the condition variable, which often referred to as the sentinel variable.

WORKED-OUT PROBLEM 8.1 M

A program to evaluate the equation

 y = xn

when n is a non-negative integer, is given in Fig. 8.2

Levels of Diffi culty

L: Low; M: Medium; H: High

 Decision Making and Looping 251

The variable y is initialized to 1 and then multiplied by x, n times using the while loop. The loop control

variable count is initialized outside the loop and incremented inside the loop. When the value of count

becomes greater than n, the control exists the loop.

Program

 main()

 {

 int count, n;

 fl oat x, y;

 printf(“Enter the values of x and n : “);

 scanf(“%f %d”, &x, &n);

 y = 1.0;

 count = 1; /* Initialisation */

 /* LOOP BEGINs */

 while (count <= n) /* Testing */

 {

 y = y*x;

 count++; /* Incrementing */

 }

 /* END OF LOOP */

 printf(“\nx = %f; n = %d; x to power n = %f\n”,x,n,y);

 }

Output

 Enter the values of x and n : 2.5 4

 x = 2.500000; n = 4; x to power n = 39.062500

 Enter the values of x and n : 0.5 4

 x = 0.500000; n = 4; x to power n = 0.062500

 Fig. 8.2 Program to compute x to the power n using while loop

8.3 THE DO STATEMENT LO 8.2

The while loop construct that we have discussed in the previous section, makes a test of condition before

the loop is executed. Therefore, the body of the loop may not be executed at all if the condition is not

satisfi ed at the very fi rst attempt. On some occasions it might be necessary to execute the body of the loop

before the test is performed. Such situations can be handled with the help of the do statement. This takes

the form:

 do

 {

 body of the loop

 }

 while (test-condition);

On reaching the do statement, the program proceeds to evaluate the body of the loop fi rst. At the end

of the loop, the test-condition in the while statement is evaluated. If the condition is true, the program

 252 Computing Fundamentals & C Programming

continues to evaluate the body of the loop once again. This process continues as long as the condition is

true. When the condition becomes false, the loop will be terminated and the control goes to the statement

that appears immediately after the while statement.

Since the test-condition is evaluated at the bottom of the loop, the do...while construct provides an exit-

controlled loop and therefore the body of the loop is always executed at least once.

A simple example of a do...while loop is:

do

printf ("Input a number\n");

loop number = getnum ();

(number > 0);while

This segment of a program reads a number from the keyboard until a zero or a negative number is keyed

in, and assigned to the sentinel variable number.

The test conditions may have compound relations as well. For instance, the statement

while (number > 0 && number < 100);

in the above example would cause the loop to be executed as long as the number keyed in lies between 0

and 100.

Consider another example:

 – – – – – – –

 I = 1; /* Initializing */

 sum = 0;

 do

 {

 sum = sum + I;

 loop I = I+2; /* Incrementing */

 }

 while(sum < 40 || I < 10); /* Testing */

 printf(“%d %d\n”, I, sum);

 – – – – – – –

The loop will be executed as long as one of the two relations is true.

WORKED-OUT PROBLEM 8.2 M

A program to print the multiplication table from 1 × 1 to 12 × 10 as shown below is given in Fig. 8.3.

 1 2 3 4 10

 2 4 6 8 20

 3 6 9 12 30

 4 40

 -

 -

 -

 12 120

 Decision Making and Looping 253

This program contains two do.... while loops in nested form. The outer loop is controlled by the variable

row and executed 12 times. The inner loop is controlled by the variable column and is executed 10 times,

each time the outer loop is executed. That is, the inner loop is executed a total of 120 times, each time

printing a value in the table.

 Program:

 #defi ne COLMAX 10

 #defi ne ROWMAX 12

 main()

 {

 int row,column, y;

 row = 1;

 printf(“ MULTIPLICATION TABLE \n”);

 printf(“– \n”);

 do /*......OUTER LOOP BEGINS........*/

 {

 column = 1;

 do /*.......INNER LOOP BEGINS.......*/

 {

 y = row * column;

 printf(“%4d”, y);

 column = column + 1;

 }

 while (column <= COLMAX); /*... INNER LOOP ENDS ...*/

 printf(“\n”);

 row = row + 1;

 }

 while (row <= ROWMAX);/*..... OUTER LOOP ENDS*/

 printf(“—————————————————————————————————\n”);

 }

 Output

 MULTIPLICATION TABLE

 1 2 3 4 5 6 7 8 9 10
 2 4 6 8 10 12 14 16 18 20
 3 6 9 12 15 18 21 24 27 30
 4 8 12 16 20 24 28 32 36 40
 5 10 15 20 25 30 35 40 45 50
 6 12 18 24 30 36 42 48 54 60
 7 14 21 28 35 42 49 56 63 70
 8 16 24 32 40 48 56 64 72 80
 9 18 27 36 45 54 63 72 81 90
 10 20 30 40 50 60 70 80 90 100
 11 22 33 44 55 66 77 88 99 110
 12 24 36 48 60 72 84 96 108 120

 Fig. 8.3 Printing of a multiplication table using do...while loop

 254 Computing Fundamentals & C Programming

Notice that the printf of the inner loop does not contain any new line character (\n). This allows the

printing of all row values in one line. The empty printf in the outer loop initiates a new line to print the

next row.

8.4 THE FOR STATEMENT LO 8.3

Simple ‘for’ Loops

The for loop is another entry-controlled loop that provides a more concise loop control structure. The

general form of the for loop is

 for (initialization ; test-condition ; increment)

 {

 body of the loop

 }

The execution of the for statement is as follows:

1. Initialization of the control variables is done fi rst, using assignment statements such as i = 1 and

count = 0. The variables i and count are known as loop-control variables.

2. The value of the control variable is tested using the test-condition. The test-condition is a relational

expression, such as i < 10 that determines when the loop will exit. If the condition is true, the body

of the loop is executed; otherwise the loop is terminated and the execution continues with the

statement that immediately follows the loop.
3. When the body of the loop is executed, the control is transferred back to the for statement after

evaluating the last statement in the loop. Now, the control variable is incremented using an
assignment statement such as i = i+1 and the new value of the control variable is again tested
to see whether it satisfi es the loop condition. If the condition is satisfi ed, the body of the loop is
again executed. This process continues till the value of the control variable fails to satisfy the test-
condition.

Note C99 enhances the for loop by allowing declaration of variables in the initialization

permits portion. See the Appendix “C99 Features”.

Consider the following segment of a program:

 for (x = 0 ; x <= 9 ; x = x+1)

 loop {

 printf(“%d”, x);

 }

 printf(“\n”);

This for loop is executed 10 times and prints the digits 0 to 9 in one line. The three sections enclosed

within parentheses must be separated by semicolons. Note that there is no semicolon at the end of the

increment section, x = x+1.
The for statement allows for negative increments. For example, the loop discussed above can be written

as follows:

 Decision Making and Looping 255

 for (x = 9 ; x >= 0 ; x = x–1)

 printf(“%d”, x);

 printf(“\n”);

This loop is also executed 10 times, but the output would be from 9 to 0 instead of 0 to 9. Note that
braces are optional when the body of the loop contains only one statement.

Since the conditional test is always performed at the beginning of the loop, the body of the loop may not

be executed at all, if the condition fails at the start. For example,

 for (x = 9; x < 9; x = x-1)

 printf(“%d”, x);

will never be executed because the test condition fails at the very beginning itself.

Let us again consider the problem of sum of squares of integers discussed in Section 8.1. This problem

can be coded using the for statement as follows:

 – – – – – – – – – – – – – – – – –

 sum = 0;

 for (n = 1; n <= 10; n = n+1)

 {

 sum = sum+ n*n;

 }

 printf(“sum = %d\n”, sum);

 – – – – – – – – – – – – – – – – –

The body of the loop

sum = sum + n*n;

is executed 10 times for n = 1, 2,, 10 each time incrementing the sum by the square of the value of n.

One of the important points about the for loop is that all the three actions, namely initialization, testing,

and incrementing, are placed in the for statement itself, thus making them visible to the programmers and

users, in one place. The for statement and its equivalent of while and do statements are shown in Table 8.1.

Table 8.1 Comparison of the Three Loops

for while do

for (n=1; n<=10; ++n) n = 1; n = 1;

{ while (n<=10) do

 ———— { {

 ———— ———— ————

{ ———— ————

n = n+1; n = n+1;

} }

while(n<=10);

 256 Computing Fundamentals & C Programming

WORKED-OUT PROBLEM 8.3 M

The program in Fig. 8.4 uses a for loop to print the “Powers of 2” table for the power 0 to 20, both

positive and negative.

Program

 main()

 {

 long int p;

 int n;

 double q;

 printf(“– \n”);

 printf(“ 2 to power n n 2 to power -n\n”);

 printf(“– \n”);

 p = 1;

 for (n = 0; n < 21 ; ++n) /* LOOP BEGINS */

 {

 if (n == 0)

 p = 1;

 else

 p = p * 2;

 q = 1.0/(double)p ;

 printf(“%10ld %10d %20.12lf\n”, p, n, q);

 } /* LOOP ENDS */

 printf(“– \n”);

 }

 Output

 –

 2 to power n n 2 to power -n

 –

 1 0 1.000000000000

 2 1 0.500000000000

 4 2 0.250000000000

 8 3 0.125000000000

 16 4 0.062500000000

 32 5 0.031250000000

 64 6 0.015625000000

 128 7 0.007812500000

 256 8 0.003906250000

 512 9 0.001953125000

 1024 10 0.000976562500

 2048 11 0.000488281250

 4096 12 0.000244140625

 8192 13 0.000122070313

 Decision Making and Looping 257

 16384 14 0.000061035156

 32768 15 0.000030517578

 65536 16 0.000015258789

 131072 17 0.000007629395

 262144 18 0.000003814697

 524288 19 0.000001907349

 1048576 20 0.000000953674
 –

 Fig. 8.4 Program to print ‘Power of 2’ table using for loop

The program evaluates the value

 p = 2 n

successively by multiplying 2 by itself n times.

 q = 2–n =
1

p

Note that we have declared p as a long int and q as a double.

WORKED-OUT PROBLEM 8.4 L

The program in Fig. 8.5 shows how to write a C program to print nth Fibonacci number.

Program

 # include <stdio.h>

 # include <conio.h>

 void main()

 {

 int num 1=0, num2=1, n, i, fi b;

 clrscr();

 printf(“\n\nEnter the value of n: “);

 scanf (”%d”, &n);

 for (i = 1; i <= n-2; i++)

 {

 fi b=num1 + num2;

 num1=num2;

 num2=fi b;

 }

 printf(“\nnth fi bonacci number (for n = %d) = %d, n,fi b);

 getch();

 }

 Fig. 8.5 Program to print nth fi bonacci number

 258 Computing Fundamentals & C Programming

WORKED-OUT PROBLEM 8.5 H

The program in Fig. 8.6 shows how to write a C program to print all the prime numbers between 1 and n,

where ‘n’ is the value supplied by the user.

Program

 # include <stdio.h>

 # include <conio.h>

 void main()

 {

 int prime (int num):

 int n.i;

 int temp:

 printf(“Enter the value of n: “);

 scanf (”%d”, &n);

 printf(“Prime numbers between 1 and %d are:\n”.n);

 for (i=2; j<=n;i++)

 {

 temp=prime(i);

 if(temp==-99)

 continue;

 else

 printf(“%d\t”, i);

 }

 getch();

 }

 int prime (int num)

 {

 int j:

 for (j=2;j<num; j++)

 {

 if(num%j==0)

 return (-99);

 else

 ;

 }

 if (j==num)

 Decision Making and Looping 259

 return(num);

 }

 Output

 Enter the value of n: 20

 Prime numbers between 1 and 20 are:

 2 3 5 7 11 13 17 19

 Fig. 8.6 Program to print all prime numbers between 1 and n

8.4.1 Additional Features of for Loop

The for loop in C has several capabilities that are not found in other loop constructs. For example, more

than one variable can be initialized at a time in the for statement. The statements

 p = 1;

 for (n=0; n<17; ++n)

can be rewritten as,

 for (p=1, n=0; n<17; ++n)

Note that the initialization section has two parts p = 1 and n = 1 separated by a comma.

Like the initialization section, the increment section may also have more than one part. For example, the

loop

 for (n=1, m=50; n<=m; n=n+1, m=m-1)

 {

 p = m/n;

 printf(“%d %d %d\n”, n, m, p);

 }

is perfectly valid. The multiple arguments in the increment section are separated by commas.

The third feature is that the test-condition may have any compound relation and the testing need not be

limited only to the loop control variable. Consider the example below:

 sum = 0;

 for (i = 1; i < 20 && sum < 100; ++i)

 {

 sum = sum+i;

 printf(“%d %d\n”, i, sum);

 }

The loop uses a compound test condition with the counter variable i and sentinel variable sum. The loop

is executed as long as both the conditions i < 20 and sum < 100 are true. The sum is evaluated inside the

loop.

It is also permissible to use expressions in the assignment statements of initialization and increment

sections. For example, a statement of the type

for (x = (m+n)/2; x > 0; x = x/2)

is perfectly valid.

 260 Computing Fundamentals & C Programming

Another unique aspect of for loop is that one or more sections can be omitted, if necessary. Consider the

following statements:

 – – – – – – –

 m = 5;

 for (; m != 100 ;)

 {

 printf(“%d\n”, m);

 m = m+5;

 }

 – – – – – – –

Both the initialization and increment sections are omitted in the for statement. The initialization has been

done before the for statement and the control variable is incremented inside the loop. In such cases, the

sections are left ‘blank’. However, the semicolons separating the sections must remain. If the test-condition

is not present, the for statement sets up an ‘infi nite’ loop. Such loops can be broken using break or goto

statements in the loop.

We can set up time delay loops using the null statement as follows:

 for (j = 1000; j > 0; j = j-1)

 ;

This loop is executed 1000 times without producing any output; it simply causes a time delay. Notice

that the body of the loop contains only a semicolon, known as a null statement. This can also be written as

following:

 for (j=1000; j > 0; j = j-1)

This implies that the C compiler will not give an error message if we place a semicolon by mistake at the

end of a for statement. The semicolon will be considered as a null statement and the program may produce

some nonsense.

8.4.2 Nesting of for Loops

Nesting of loops, that is, one for statement within another for statement, is allowed in C. For example, two

loops can be nested as follows:

 Decision Making and Looping 261

The nesting may continue up to any desired level. The loops should be properly indented so as to enable

the reader to easily determine which statements are contained within each for statement. (ANSI C allows

up to 15 levels of nesting. However, some compilers permit more).

The program to print the multiplication table discussed in Program 8.2 can be written more concisely

using nested for statements as follows:

 – ––––––––––––

 for (row = 1; row <= ROWMAX ; ++row)

 {

 for (column = 1; column <= COLMAX ; ++column)

 {

 y = row * column;

 printf(“%4d”, y);

 }

 printf(“\n”);

 }

 – – – – – – – – – – – – –

The outer loop controls the rows while the inner loop controls the columns.

WORKED-OUT PROBLEM 8.6 M

A class of n students take an annual examination in m subjects. A program to read the marks obtained

by each student in various subjects and to compute and print the total marks obtained by each of them is

given in Fig. 8.7.

 The program uses two for loops, one for controlling the number of students and the other for controlling

the number of subjects. Since both the number of students and the number of subjects are requested

by the program, the program may be used for a class of any size and any number of subjects.

The outer loop includes three parts which are as follows:

1. reading of roll-numbers of students, one after another;

2. inner loop, where the marks are read and totalled for each student; and

3. printing of total marks and declaration of grades.

Program

 #defi ne FIRST 360

 #defi ne SECOND 240

 main()

 {

 int n, m, i, j,

 roll_number, marks, total;

 printf(“Enter number of students and subjects\n”);

 scanf(“%d %d”, &n, &m);

 printf(“\n”);

 262 Computing Fundamentals & C Programming

 for (i = 1; i <= n ; ++i)

 {

 printf(“Enter roll_number : “);

 scanf(“%d”, &roll_number);

 total = 0 ;

 printf(“\nEnter marks of %d subjects for ROLL NO %d\n”,

 m,roll_number);

 for (j = 1; j <= m; j++)

 {

 scanf(“%d”, &marks);

 total = total + marks;

 }

 printf(“TOTAL MARKS = %d “, total);

 if (total >= FIRST)

 printf(“(First Division)\n\n”);

 else if (total >= SECOND)

 printf(“(Second Division)\n\n”);

 else

 printf(“(*** F A I L ***)\n\n”);

 }

 }

Output

 Enter number of students and subjects

 3 6

 Enter roll_number : 8701

 Enter marks of 6 subjects for ROLL NO 8701

 81 75 83 45 61 59

 TOTAL MARKS = 404 (First Division)

 Enter roll_number : 8702

 Enter marks of 6 subjects for ROLL NO 8702

 51 49 55 47 65 41

 TOTAL MARKS = 308 (Second Division)

 Enter roll_number : 8704

 Enter marks of 6 subjects for ROLL NO 8704

 40 19 31 47 39 25
 TOTAL MARKS = 201 (*** F A I L ***)

 Fig. 8.7 Illustration of nested for loops

WORKED-OUT PROBLEM 8.7 H

The program in Fig. 8.8 shows how to write a program to display a pyramid.

 Decision Making and Looping 263

 Program

 #include <stdio.h>

 #include <conio.h>

 void main()

 {

 int num,i,y,x=40;

 clrscr();

 printf(“\nEnter a number for \ngenerating the

 pyramid:\n”);

 scanf(“%d”,&num);

 for(y=0;y<=num;y++)

 {

 gotoxy(x,y+1);

 for(i=0-y;i<=y;i++)

 printf(“%3d”,abs(i));

 x=x-3;

 }

 getch();

 }

 Output

 Enter a number for

 generating the pyramid:

 7

 0

 1 0 1

 2 1 0 1 2

 3 2 1 0 1 2 3

 4 3 2 1 0 1 2 3 4

 5 4 3 2 1 0 1 2 3 4 5

 6 5 4 3 2 1 0 1 2 3 4 5 6

 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

Fig. 8.8 Program to build a pyramid

Selecting a Loop

Given a problem, the programmer’s fi rst concern is to decide the type of loop structure to be used. To

choose one of the three loop supported by C, we may use the following strategy:

 Analyse the problem and see whether it required a pre-test or post-test loop.

 If it requires a post-test loop, then we can use only one loop, do while.

 If it requires a pre-test loop, then we have two choices: for and while.

 Decide whether the loop termination requires counter-based control or sentinel-based control.

 Use for loop if the counter-based control is necessary.

 Use while loop if the sentinel-based control is required.

 Note that both the counter-controlled and sentinel-controlled loops can be implemented by all the

three control structures.

 264 Computing Fundamentals & C Programming

8.5 JUMPS IN LOOPS LO 8.4

Loops perform a set of operations repeatedly until the control variable fails to satisfy the test-condition.

The number of times a loop is repeated is decided in advance and the test condition is written to achieve

this. Sometimes, when executing a loop it becomes desirable to skip a part of the loop or to leave the loop

as soon as a certain condition occurs. For example, consider the case of searching for a particular name in

a list containing, say, 100 names. A program loop written for reading and testing the names 100 times must

be terminated as soon as the desired name is found. C permits a jump from one statement to another within

a loop as well as a jump out of a loop.

8.5.1 Jumping Out of a Loop

An early exit from a loop can be accomplished by using the break statement or the goto statement.

We have already seen the use of the break in the switch statement and the goto in the if...else construct.

These statements can also be used within while, do, or for loops. They are illustrated in Figs 8.9 and 8.10.

while ()

while ()

do

for () for ()

for ()

if(condition) if(condition)

if(error)

if(condition)

(a) (b)

(c) (d)

break; break;

;

break;

break;

Exit
from
loop

Exit
from
loop

Exit
from
loop

Exit
from
inner
loop

 Fig. 8.9 Exiting a loop with break statement

When a break statement is encountered inside a loop, the loop is immediately exited and the program

continues with the statement immediately following the loop. When the loops are nested, the break would

only exit from the loop containing it. That is, the break will exit only a single loop.

 Decision Making and Looping 265

Since a goto statement can transfer the control to any place in a program, it is useful to provide

branching within a loop. Another important use of goto is to exit from deeply nested loops when an error

occurs. A simple break statement would not work here.

while () for ()

for ()

if(error)if(condition)

if(error)
stop;

error;

error;

stop:

(a) (b)

abc;

abc:

goto

goto
goto

Jump
within
loop

Exit
from
loop

Exit
from
two
loops

 Fig. 8.10 Jumping within and exiting from the loops with goto statement

WORKED-OUT PROBLEM 8.8 L

The program in Fig. 8.11 illustrates the use of the break statement in a C program.

The program reads a list of positive values and calculates their average. The for loop is written to read 1000

values. However, if we want the program to calculate the average of any set of values less than 1000, then

we must enter a ‘negative’ number after the last value in the list, to mark the end of input.

Program

 main()

 {

 int m;

 fl oat x, sum, average;

 printf(“This program computes the average of a

 set of numbers\n”);

 printf(“Enter values one after another\n”);

 printf(“Enter a NEGATIVE number at the end.\n\n”);

 sum = 0;

 for (m = 1 ; m < = 1000 ; ++m)

 {

 scanf(“%f”, &x);

 266 Computing Fundamentals & C Programming

 if (x < 0)

 break;

 sum += x ;

 }

 average = sum/(fl oat)(m-1);

 printf(“\n”);

 printf(“Number of values = %d\n”, m-1);

 printf(“Sum = %f\n”, sum);

 printf(“Average = %f\n”, average);

 }

Output

 This program computes the average of a set of numbers

 Enter values one after another

 Enter a NEGATIVE number at the end.

 21 23 24 22 26 22 -1

 Number of values = 6

 Sum = 138.000000

 Average = 23.000000

Fig. 8.11 Use of break in a program

Each value, when it is read, is tested to see whether it is a positive number or not. If it is positive,

the value is added to the sum; otherwise, the loop terminates. On exit, the average of the values read is

calculated and the results are printed out.

WORKED-OUT PROBLEM 8.9 H

A program to evaluate the series.

1

1 - x
 = 1 + x + x2 + x3 + + xn

for –1 < x < 1 with 0.01 per cent accuracy is given in Fig. 8.12. The goto statement is used to exit the loop

on achieving the desired accuracy.

We have used the for statement to perform the repeated addition of each of the terms in the series. Since

it is an infi nite series, the evaluation of the function is terminated when the term xn reaches the desired

accuracy. The value of n that decides the number of loop operations is not known and therefore we have

decided arbitrarily a value of 100, which may or may not result in the desired level of accuracy.

 Decision Making and Looping 267

 Program

 #defi ne LOOP 100

 #defi ne ACCURACY 0.0001

 main()

 {

 int n;

 fl oat x, term, sum;

 printf(“Input value of x : “);

 scanf(“%f”, &x);

 sum = 0 ;

 for (term = 1, n = 1 ; n <= LOOP ; ++n)

 {

 sum += term ;

 if (term <= ACCURACY)

 goto output; /* EXIT FROM THE LOOP */

 term *= x ;

 }

 printf(“\nFINAL VALUE OF N IS NOT SUFFICIENT\n”);

 printf(“TO ACHIEVE DESIRED ACCURACY\n”);

 goto end;

 output:

 printf(“\nEXIT FROM LOOP\n”);

 printf(“Sum = %f; No.of terms = %d\n”, sum, n);

 end:

 ; /* Null Statement */

 }

 Output

 Input value of x : .21

 EXIT FROM LOOP

 Sum = 1.265800; No.of terms = 7

 Input value of x : .75

 EXIT FROM LOOP

 Sum = 3.999774; No.of terms = 34

 Input value of x : .99

 FINAL VALUE OF N IS NOT SUFFICIENT

 TO ACHIEVE DESIRED ACCURACY

 Fig. 8.12 Use of goto to exit from a loop

 268 Computing Fundamentals & C Programming

The test of accuracy is made using an if statement and the goto statement exits the loop as soon as the

accuracy condition is satisfi ed. If the number of loop repetitions is not large enough to produce the desired

accuracy, the program prints an appropriate message.

Note that the break statement is not very convenient to use here. Both the normal exit and the break exit

will transfer the control to the same statement that appears next to the loop. But, in the present problem, the

normal exit prints the message

 “FINAL VALUE OF N IS NOT SUFFICIENT

 TO ACHIEVE DESIRED ACCURACY”

and the forced exit prints the results of evaluation. Notice the use of a null statement at the end. This is

necessary because a program should not end with a label.

8.5.2 Structured Programming

 Structured programming is an approach to the design and development of programs. It is a discipline of

making a program’s logic easy to understand by using only the following basic three control structures:

 Sequence (straight line) structure

 Selection (branching) structure

 Repetition (looping) structure

While sequence and loop structures are suffi cient to meet all the requirements of programming, the

selection structure proves to be more convenient in some situations.

The use of structured programming techniques helps ensure well-designed programs that are easier to

write, read, debug and maintain compared to those that are unstructured.

Structured programming discourages the implementation of unconditional branching using jump

statements such as goto, break and continue. In its purest form, structured programming is synonymous

with “goto less programming”.

Do not go to goto statement!

Skipping a Part of a Loop

During the loop operations, it may be necessary to skip a part of the body of the loop under certain

conditions. For example, in processing of applications for some job, we might like to exclude the processing

of data of applicants belonging to a certain category. On reading the category code of an applicant, a test

is made to see whether his application should be considered or not. If it is not to be considered, the part of

the program loop that processes the application details is skipped and the execution continues with the next

loop operation.

Like the break statement, C supports another similar statement called the continue statement. However,

unlike the break which causes the loop to be terminated, the continue, as the name implies, causes the loop

to be continued with the next iteration after skipping any statements in between. The continue statement

tells the compiler, “SKIP THE FOLLOWING STATEMENTS AND CONTINUE WITH THE NEXT

ITERATION”. The format of the continue statement is simply

 continue;

The use of the continue statement in loops is illustrated in Fig. 8.13. In while and do loops, continue

causes the control to go directly to the test-condition and then to continue the iteration process. In the case

of for loop, the increment section of the loop is executed before the test-condition is evaluated.

 Decision Making and Looping 269

 while (test-condition) do

 { {

 --------- ---------

 if (---------) if (---------)

 continue; continue;

 --------- ---------

 --------- ---------

 } } while (test-condition);

 (a) (b)

 for (initialization; test condition; increment)

 {

 if (---------)

 continue;

 }

 (c)

 Fig. 8.13 Bypassing and continuing i loops

WORKED-OUT PROBLEM 8.10 M

The program in Fig. 8.14 illustrates the use of continue statement.

The program evaluates the square root of a series of numbers and prints the results. The process stops when

the number 9999 is typed in.

In case, the series contains any negative numbers, the process of evaluation of square root should be

bypassed for such numbers because the square root of a negative number is not defi ned. The continue

statement is used to achieve this. The program also prints a message saying that the number is negative and

keeps an account of negative numbers.

The fi nal output includes the number of positive values evaluated and the number of negative items

encountered.

Program:

 #include <math.h>

 main()

 {

 int count, negative;

 double number, sqroot;

 printf(“Enter 9999 to STOP\n”);

 count = 0 ;

 negative = 0 ;

 270 Computing Fundamentals & C Programming

 while (count < = 100)

 {

 printf(“Enter a number : “);

 scanf(“%lf”, &number);

 if (number == 9999)

 break; /* EXIT FROM THE LOOP */

 if (number < 0)

 {

 printf(“Number is negative\n\n”);

 negative++ ;

 continue; /* SKIP REST OF THE LOOP */

 }

 sqroot = sqrt(number);

 printf(“Number = %lf\n Square root = %lf\n\n”,

 number, sqroot);

 count++ ;

 }

 printf(“Number of items done = %d\n”, count);

 printf(“\n\nNegative items = %d\n”, negative);

 printf(“END OF DATA\n”);

 }

 Output

 Enter 9999 to STOP

 Enter a number : 25.0

 Number = 25.000000

 Square root = 5.000000

 Enter a number : 40.5

 Number = 40.500000

 Square root = 6.363961

 Enter a number : -9

 Number is negative

 Enter a number : 16

 Number = 16.000000

 Square root = 4.000000

 Enter a number : -14.75

 Number is negative

 Enter a number : 80

 Number = 80.000000

 Square root = 8.944272

 Enter a number : 9999

 Number of items done = 4

 Negative items = 2

 END OF DATA

 Fig. 8.14 Use of continue statement

 Decision Making and Looping 271

Avoiding goto

As mentioned earlier, it is a good practice to avoid using goto. There are many reasons for this. When goto

is used, many compilers generate a less effi cient code. In addition, using many of them makes a program

logic complicated and renders the program unreadable. It is possible to avoid using goto by careful program

design. In case any goto is absolutely necessary, it should be documented. The goto jumps shown in

Fig. 8.15 would cause problems and therefore must be avoided.

 Fig. 8.15 goto jumps to be ovoided

Jumping out of the Program

We have just seen that we can jump out of a loop using either the break statement or goto statement. In a

similar way, we can jump out of a program by using the library function exit(). In case, due to some reason,

we wish to break out of a program and return to the operating system, we can use the exit() function, as

shown below:

 if (test-condition) exit(0) ;

The exit() function takes an integer value as its argument. Normally zero is used to indicate normal

termination and a nonzero value to indicate termination due to some error or abnormal condition. The use

of exit() function requires the inclusion of the header fi le <stdlib.h>.

8.6 CONCISE TEST EXPRESSIONS LO 8.4

We often use test expressions in the if, for, while and do statements that are evaluated and compared with

zero for making branching decisions. Since every integer expression has a true/false value, we need not

make explicit comparisons with zero. For instance, the expression x is true whenever x is not zero, and

false when x is zero. Applying! operator, we can write concise test expressions without using any relational

operators.

 if (expression ==0)

is equivalent to

 if(!expression)

Similarly,

 if (expression! = 0)

is equivalent to

 if (expression)

For example,

if (m%5==0 && n%5==0) is same as if (!(m%5)&&!(n%5))

 272 Computing Fundamentals & C Programming

 Learning Outcomes

∑ It is a common error to use wrong relational operator in test expressions. Ensure that the loop is

evaluated exactly the required number of times.

∑ Avoid a common error using = in place of = = operator.

∑ Do not compare fl oating-point values for equality.

∑ When performing an operation on a variable repeatedly in the body of a loop, make sure that the

variable is initialized properly before entering the loop.

∑ Indent the statements in the body of loops properly to enhance readability and understandability.

∑ Use of blank spaces before and after the loops and terminating remarks are highly recommended.

∑ Do not forget to place the semicolon at the end of do ….while statement.

∑ Do not forget to place the increment statement in the body of a while or do…while loop.

∑ Avoid using while and for statements for implementing exit-controlled (post-test) loops. Use do…

while statement. Similarly, do not use do…while for pre-test loops.

∑ Placing a semicolon after the control expression in a while or for statement is not a syntax error but

it is most likely a logic error.

∑ Using commas rather than semicolon in the header of a for statement is an error.

∑ Do not change the control variable in both the for statement and the body of the loop. It is a logic

error.

∑ Although it is legally allowed to place the initialization, testing, and increment sections outside the

header of a for statement, avoid them as far as possible.

∑ Although it is permissible to use arithmetic expressions in initialization and increment section, be

aware of round off and truncation errors during their evaluation.

∑ Although statements preceding a for and statements in the body can be placed in the for header,

avoid doing so as it makes the program more diffi cult to read.

∑ The use of break and continue statements in any of the loops is considered unstructured

programming. Try to eliminate the use of these jump statements, as far as possible.

∑ Avoid the use of goto anywhere in the program.

∑ Use the function exit() only when breaking out of a program is necessary.

 Key Terms to Remember

∑ Control statement: Tests certain conditions and directs the repeated execution of the body of the

loop.

∑ Program loop: Executes a sequence of statements repeatedly until some conditions for termination

of the loop are satisfi ed.

∑ while statement: Is an entry-controlled loop that evaluates the test-condition fi rst and then executes

the body of the loop if the condition is true.

∑ do statement: Executes the body of the loop fi rst and then evaluates the test-condition in the

subsequent while statement.

∑ break statement: Terminates the loop and takes the program control to the statement immediately

following the loop.

LO 8.1

LO 8.1

LO 8.1

LO 8.1

LO 8.1

LO 8.1

LO 8.2

LO 8.2

LO 8.2

LO 8.3

LO 8.3

LO 8.3

LO 8.3

LO 8.3

LO 8.3

LO 8.4

LO 8.4

LO 8.4

LO 8.1

LO 8.1

LO 8.1

LO 8.2

LO 8.4

 Decision Making and Looping 273

∑ continue statement: Skips the remaining part of the loop and takes the program control to the next

loop iteration.

Brief Cases

1. Table of Binomial Coeffi cients [LO 8.1, 8.2 M]

Problem: Binomial coeffi cients are used in the study of binomial distributions and reliability of

multicomponent redundant systems. It is given by,

 B(m,x) = (
m

x
) =

m

x m x

!

!()!-
, m >= x

A table of binomial coeffi cients is required to determine the binomial coeffi cient for any set of m and x.

Problem Analysis: The binomial coeffi cient can be recursively calculated as follows:

 B(m,o) = 1

 B(m,x) = B(m,x–1)
m x

x

- +È

Î
Í

˘

˚
˙

1
 , x = 1,2,3,...,m

Further,

 B(o,o) = 1

That is, the binomial coeffi cient is one when either x is zero or m is zero. The program in Fig. 8.16 prints

the table of binomial coeffi cients for m = 10. The program employs one do loop and one while loop.

 Program

 #defi ne MAX 10
 main()
 {
 int m, x, binom;
 printf(“ m x”);
 for (m = 0; m <= 10 ; ++m)
 printf(“%4d”, m);
 printf(“\n– \n”);
 m = 0;
 do
 {
 printf(“%2d “, m);
 x = 0; binom = 1;
 while (x <= m)
 {
 if(m == 0 || x == 0)
 printf(“%4d”, binom);
 else
 {
 binom = binom * (m - x + 1)/x;
 printf(“%4d”, binom);

LO 8.4

 274 Computing Fundamentals & C Programming

 }
 x = x + 1;
 }
 printf(“\n”);
 m = m + 1;
 }
 while (m <= MAX);
 printf(“– \n”);
 }

 Output

 mx 0 1 2 3 4 5 6 7 8 9 10
 –
 0 1
 1 1 1
 2 1 2 1
 3 1 3 3 1
 4 1 4 6 4 1
 5 1 5 10 10 5 1
 6 1 6 15 20 15 6 1
 7 1 7 21 35 35 21 7 1
 8 1 8 28 56 70 56 28 8 1
 9 1 9 36 84 126 126 84 36 9 1
 10 1 10 45 120 210 252 210 120 45 10 1
 –

 Fig. 8.16 Program to print binomial coeffi cient table

2. Histogram [LO 8.3 M]

Problem: In an organization, the employees are grouped according to their basic pay for the purpose of

certain perks. The pay-range and the number of employees in each group are as follows:

 Group Pay-Range Number of Employees

 1 750 – 1500 12

 2 1501 – 3000 23

 3 3001 – 4500 35

 4 4501 – 6000 20

 5 above 6000 11

Draw a histogram to highlight the group sizes.

Problem Analysis: Given the size of groups, it is required to draw bars representing the sizes of various

groups. For each bar, its group number and size are to be written.

Program in Fig. 8.17 reads the number of employees belonging to each group and draws a histogram.

The program uses four for loops and two if.....else statements.

 Decision Making and Looping 275

 Program

 #defi ne N 5

 main()

 {

 int value[N];

 int i, j, n, x;

 for (n=0; n < N; ++n)

 {

 printf(“Enter employees in Group - %d : “,n+1);

 scanf(“%d”, &x);

 value[n] = x;

 printf(“%d\n”, value[n]);

 }

 printf(“\n”);

 printf(“|\n”);

 for (n = 0 ; n < N ; ++n)

 {

 for (i = 1 ; i <= 3 ; i++)

 {

 if (i == 2)

 printf(“Group-%1d |”,n+1);

 else

 printf(“|”);

 for (j = 1 ; j <= value[n]; ++j)

 printf(“*”);

 if (i == 2)

 printf(“(%d)\n”, value[n]);

 else

 printf(“\n”);

 }

 printf(“|\n”);

 }

 }

 Output

 Enter employees in Group - 1 : 12

 12

 Enter employees in Group - 2 : 23

 23

 Enter employees in Group - 3 : 35

 35

 Enter employees in Group - 4 : 20

 276 Computing Fundamentals & C Programming

 20

 Enter Employees in Group - 5 : 11

 11

 |

 |************

 Group-1 |************(12)

 |************

 |

 |***********************

 Group-2 |***********************(23)

 |***********************

 |

 |***********************************

 Group-3 |***********************************(35)

 |***********************************

 |

 |********************

 Group-4 |********************(20)

 |********************

 |

 |***********

 Group-5 |***********(11)

 |**********

 |

 Fig. 8.17 Program to draw a histogram

3. Minimum Cost [LO 8.3, 8.4 M]

Problem: The cost of operation of a unit consists of two components C1 and C2 which can be expressed as

functions of a parameter p as follows:

 C1 = 30 – 8p

 C2 = 10 + p2

The parameter p ranges from 0 to 10. Determine the value of p with an accuracy of + 0.1 where the cost

of operation would be minimum.

Problem Analysis:

 Total cost = C1 + C2 = 40 – 8p + p2

The cost is 40 when p = 0, and 33 when p = 1 and 60 when p = 10. The cost, therefore, decreases fi rst

and then increases. The program in Fig. 8.18 evaluates the cost at successive intervals of p (in steps of 0.1)

and stops when the cost begins to increase. The program employs break and continue statements to exit

the loop.

 Decision Making and Looping 277

 Program

 main()

 {

 fl oat p, cost, p1, cost1;

 for (p = 0; p <= 10; p = p + 0.1)

 {

 cost = 40 - 8 * p + p * p;

 if(p == 0)

 {

 cost1 = cost;

 continue;

 }

 if (cost >= cost1)

 break;

 cost1 = cost;

 p1 = p;

 }

 p = (p + p1)/2.0;

 cost = 40 - 8 * p + p * p;

 printf(“\nMINIMUM COST = %.2f AT p = %.1f\n”,

 cost, p);

 }

 Output

 MINIMUM COST = 24.00 A p = 4.0

 Fig. 8.18 Program of minimum cost problem

4. Plotting of Two Functions [LO 8.3, 8.4 H]

Problem: We have two functions of the type

 y1 = exp (–ax)

 y2 = exp (–ax2/2)

Plot the graphs of these functions for x varying from 0 to 5.0.

Problem Analysis: Initially when x = 0, y1 = y2 =1 and the graphs start from the same point. The curves

cross when they are again equal at x = 2.0. The program should have appropriate branch statements to print

the graph points at the following three conditions:

 1. y1 > y2

 2. y1 < y2

 3. y1 = y2

The functions y1 and y2 are normalized and converted to integers as follows:

 y1 = 50 exp (–ax) + 0.5

 y2 = 50 exp (–ax2/2) + 0.5

 278 Computing Fundamentals & C Programming

The program in Fig. 8.19 plots these two functions simultaneously. (0 for y1, * for y2, and # for the

common point).

 Program

 #include <math.h>

 main()

 {

 int i;

 fl oat a, x, y1, y2;

 a = 0.4;

 printf(“ Y – – – – > \n”);

 printf(“ 0 – \n”);

 for (x = 0; x < 5; x = x+0.25)

 { /* BEGINNING OF FOR LOOP */

 /*......Evaluation of functions*/

 y1 = (int) (50 * exp(-a * x) + 0.5);

 y2 = (int) (50 * exp(-a * x * x/2) + 0.5);

 /*......Plotting when y1 = y2.........*/

 if (y1 == y2)

 {

 if (x == 2.5)

 printf(“ X |”);

 else

 printf(“|”);

 for (i = 1; i <= y1 - 1; ++i)

 printf(“ “);

 printf(“#\n”);

 continue;

 }

 /*...... Plotting when y1 > y2*/

 if (y1 > y2)

 {

 if (x == 2.5)

 printf(“ X |”);

 else

 printf(“ |”);

 for (i = 1; i <= y2 -1 ; ++i)

 printf(“ “);

 printf(“*”);

 for (i = 1; i <= (y1 - y2 - 1); ++i)

 printf(“-”);

 Decision Making and Looping 279

 printf(“0\n”);

 continue;

 }

 /*........ Plotting when y2 > y1.........*/

 if (x == 2.5)

 printf(“ X |”);

 else

 printf(“ |”);

 for (i = 1 ; i <= (y1 - 1); ++i)

 printf(“ “);

 printf(“0”);

 for (i = 1; i <= (y2 - y1 - 1); ++i)

 printf(“-”);

 printf(“*\n”);

 } /*.......END OF FOR LOOP........*/

 printf(“ |n”);

 }

 Output

Y

0

#

0 --- *

0------ *

0 ------- *

0------ *

0------ *

0 ---- *

0 - *

#

* -0

*X --- 0

*----- 0

* ------ 0

*-------0

*------- 0

*-------0

*-------0

*-------0

*------0

*-----0

 Fig. 8.19 Plotting of two functions

 280 Computing Fundamentals & C Programming

 Review Questions

Fill in the Blanks

 1. The sentinel-controlled loop is also known as _______ loop.

2. In a counter-controlled loop, variable known as _____ is used to count the loop operations.

3. In an exit-controlled loop, if the body is executed n times, the test condition is evaluated

________times.

4. A for loop with the no test condition is known as ______ loop.

5. The _________statement is used to skip a part of the statements in a loop.

True or False Statements

 1. In a pretest loop, if the body is executed n times, the test expression is executed n + 1

times.

2. The number of times a control variable is updated always equals the number of loop

iterations.

3. The do…while statement fi rst executes the loop body and then evaluate the loop control

expression.

4. An exit-controlled loop is executed a minimum of one time.

 5. The three loop expressions used in a for loop header must be separated by commas.

 6. while loops can be used to replace for loops without any change in the body of the loop.

 7. Both the pretest loops include initialization within the statement.

 8. In a for loop expression, the starting value of the control variable must be less than its

ending value.

 9. The initialization, test condition and increment parts may be missing in a for statement.

 10. The use of continue statement is considered as unstructured programming.

Discussion Questions

 1. Can we change the value of the control variable in for statements? If yes, explain its

consequences.

2. What is a null statement? Explain a typical use of it.

3. Use of goto should be avoided. Explain a typical example where we fi nd the application of

goto becomes necessary.

4. How would you decide the use of one of the three loops in C for a given problem?

5. How can we use for loops when the number of iterations are not known?

LO 8.1

LO 8.1

LO 8.2

LO 8.3

LO 8.4

LO 8.1

LO 8.1

LO 8.2

LO 8.2

LO 8.3

LO 8.3

LO 8.3

LO 8.3

LO 8.3

LO 8.4

LO 8.3

LO 8.1

LO 8.4

LO 8.3

LO 8.3

Levels of Diffi culty

 : Low; : Medium; : High

 Decision Making and Looping 281

6. Explain the operation of each of the following for loops.

 (a) for (n = 1; n != 10; n += 2)
 sum = sum + n;
 (b) for (n = 5; n <= m; n -=1)
 sum = sum + n;
 (c) for (n = 1; n <= 5;)
 sum = sum + n;
 (d) for (n = 1; ; n = n + 1)
 sum = sum + n;
 (e) for (n = 1; n < 5; n ++)
 n = n -1

 7. What would be the output of each of the following code segments?

 (a) count = 5;
 while (count -- > 0)
 printf(count);

 (b) count = 5;
 while (-- count > 0)
 printf(count);

 (c) count = 5;
 do printf(count);
 while (count > 0);

 (d) for (m = 10; m > 7, m -=2)
 printf(m);

 8. Compare, in terms of their functions, the following pairs of statements:

 (a) while and do...while

 (b) while and for

 (c) break and continue

 (d) break and goto

 (e) continue and goto

 9. Analyse each of the program segments that follow and determine how many times the body

of each loop will be executed.

 (a) x = 5;
 y = 50;
 while (x <= y)
 {
 x = y/x;
 – – – – –
 ––––––
 }

 (b) int m = 10;
 int n = 7;
 while (m % n >= 0)

LO 8.3

LO 8.1

LO 8.1

LO 8.2

LO 8.3

LO 8.2

LO 8.3

LO 8.4

LO 8.4

LO 8.4

LO 8.1

LO 8.1

 282 Computing Fundamentals & C Programming

 {
 – – –
 m = m + 1;
 n = n + 2;
 – – –
 }

(c) m = 1;

 do

 {

 – – – – –

 ––––––

 m = m+2;

 }

 while (m < 10);

(d) int i;
 for (i = 0; i <= 5; i = i+2/3)
 {
 – – – – –
 – – – – –
 ––––––
 }

10. Write a for statement to print each of the following sequences of integers:

 (a) 1, 2, 4, 8, 16, 32

 (b) 1, 3, 9, 27, 81, 243

 (c) – 4, –2, 0, 2, 4

 (d) –10, –12, –14, –18, –26, – 42

11. Change the following for loops to while loops:

(a) for (m = 1; m < 10; m = m + 1)
 printf(m);
 (b) for (; scanf(“%d”, & m) != -1;)
 printf(m);

12. Change the for loops in Exercise 8.11 to do loops.

13. What is the output of following code?

 int m = 100, n = 0;

 while (n == 0)

 {

 if (m < 10)

 break;

 m = m-10;

14. What is the output of the following code?

int m = 0 ;

 do

 {

 if (m > 10)

LO 8.2

LO 8.3

LO 8.3

LO 8.3

LO 8.3

LO 8.1

LO 8.2

 Decision Making and Looping 283

 continue ;

 m = m + 10 ;

 } while (m < 50) ;

 printf(“%d”, m);

15. What is the output of the following code?

int n = 0, m = 1 ;

 do

 {

 printf(m) ;

 m++ ;

 }

 while (m <= n) ;

16. What is the output of the following code?

 int n = 0, m ;

 for (m = 1; m <= n + 1 ; m++)

 printf(m);

17. When do we use the following statement?

 for (; ;)

Debugging Exercises

 1. Find errors, if any, in each of the following looping segments. Assume that all the variables

have been declared and assigned values.

(a) while (count != 10);
 {
 count = 1;
 sum = sum + x;
 count = count + 1;
 }

(b) name = 0;

 do { name = name + 1;

 printf(“My name is John\n”);}

 while (name = 1)

 (c) do;

 total = total + value;

 scanf(“%f”, &value);

 while (value != 999);

 (d) for (x = 1, x > 10; x = x + 1)

 {
 – – – – –
 ––––––

LO 8.2

LO 8.3

LO 8.3

LO 8.1

LO 8.2

LO 8.3

LO 8.3

 284 Computing Fundamentals & C Programming

 ––––––
 }

 (e) m = 1;
 n = 0;
 for (; m+n < 10; ++n);
 printf(“Hello\n”);
 m = m+10

 (f) for (p = 10; p > 0;)
 p = p - 1;
 printf(“%f”, p);

Programming Exercises

 1. Given a number, write a program using while loop to reverse the digits of the number. For

example, the number

 12345

 should be written as

 54321

 (Hint: Use modulus operator to extract the last digit and the integer division by 10 to get

the n–1 digit number from the n digit number.)

2. The factorial of an integer m is the product of consecutive integers from 1 to m. That is,

 factorial m = m! = m x (m–1) x x 1.

 Write a program that computes and prints a table of factorials for any given m.

3. Write a program to compute the sum of the digits of a given integer number.

4. The numbers in the sequence

 1 1 2 3 5 8 13 21

 are called Fibonacci numbers. Write a program using a do....while loop to calculate and

print the fi rst m Fibonacci numbers.

 (Hint: After the fi rst two numbers in the series, each number is the sum of the two

preceding numbers.)

5. Rewrite the program of the Example 8.1 using the for statement.

6. Write a program to evaluate the following investment equation

 V = P(1+r)n

 and print the tables which would give the value of V for various combination of the

following values of P, r, and n.

 P : 1000, 2000, 3000,........, 10,000

 r : 0.10, 0.11, 0.12,, 0.20

 n : 1, 2, 3,, 10

 (Hint: P is the principal amount and V is the value of money at the end of n years. This

equation can be recursively written as

 V = P(1+r)

 P = V

 That is, the value of money at the end of fi rst year becomes the principal amount for the

next year and so on.)

LO 8.3

LO 8.3

LO 8.1

LO 8.1

LO 8.1

LO 8.2

LO 8.3

LO 8.3

 Decision Making and Looping 285

7. Write programs to print the following outputs using for loops.

 (a) 1 (b) * * * * * *

 2 2 * * * *

 3 3 3 * * *

 4 4 4 4 * *

 5 5 5 5 5 *

 8. Write a program to read the age of 100 persons and count the number of persons in the age

group 50 to 60. Use for and continue statements.

 9. Rewrite the program of case study 8.4 (plotting of two curves) using else...if constructs

instead of continue statements.

10. Write a program to print a table of values of the function

 y = exp (-x)

 for x varying from 0.0 to 10.0 in steps of 0.10. The table should appear as follows:

Table for Y = EXP(–X)

x 0.1 0.2 0.3 0.9

0.0

1.0

2.0

3.0

.

.

.

9.0

 11. Write a program that will read a positive integer and determine and print its binary

equivalent.

 (Hint: The bits of the binary representation of an integer can be generated by repeatedly

dividing the number and the successive quotients by 2 and saving the remainder, which is

either 0 or 1, after each division.)

12. Write a program using for and if statement to display the capital letter S in a grid of 15

rows and 18 columns as shown below.

 *

 * * - * *

 * * * * * * * * * - - - - - - - - - - - - - - * *

 * * * *

 * * * *

 * * * *

 * * * * * - - - - - - - - - - - - - - - -* * * *

 -* * * *

 - - - - - - - - - - - - - - - - - - - - - * * * *

 - - - - - - - - - - - - - - - - - - - - * * * *

 - - - - - - - - - - - - - - - - - - - - * * * *

 - - - - - - - - - - - - - - - - - - - - * * * *

 * * * * - - - - - - - - — - - - - - - -* * * *

LO 8.3

LO 8.3

LO 8.4

LO 8.3

LO 8.3

LO 8.3

LO 8.3

 286 Computing Fundamentals & C Programming

 * * * - - - - - - - - - - - - - - - - - * * * *

 * * - - - - - - - - - - - - - - - - - - - * * * *

13. Write a program to compute the value of Euler’s number e, that is used as the base of

natural logarithms. Use the following formula

 e = 1 + 1/1! + 1 /2! + 1 /3! + + 1 /n!

 Use a suitable loop construct. The loop must terminate when the difference between two

successive values of e is less than 0.00001.

14. Write programs to evaluate the following functions to 0.0001% accuracy.

 (a) sinx = x – x3/3! + x5/5! – x7/7! +

 (b) cosx = 1 – x2/2! + x4/4! – x6/6! +

 (c) SUM = 1 + (1/2)2 + (1/3)3 + (1/4)4 + … …

15. The present value (popularly known as book value) of an item is given by the relationship.

 P = c (1–d)n

 where c = original cost

 d = rate of depreciation (per year)

 n = number of years

 p = present value after y years.

 If P is considered the scrap value at the end of useful life of the item, write a program to

compute the useful life in years given the original cost, depreciation rate, and the scrap

value.

 The program should request the user to input the data interactively.

16. Write a program to print a square of size 5 by using the character S as shown below:

 (a) S S S S S (b) S S S S S

 S S S S S S S

 S S S S S S S

 S S S S S S S

 S S S S S S S S S S

17. Write a program to graph the function

 y = sin (x)

 in the interval 0 to 180 degrees in steps of 15 degrees. Use the concepts discussed in the

Case Study 4 in Chapter 8.

18. Write a program to print all integers that are not divisible by either 2 or 3 and lie between 1

and 100. Program should also account the number of such integers and print the result.

19. Modify the program of Exercise 8.16 to print the character O instead of S at the centre of

the square as shown below.

 S S S S S

 S S S S S

 S S O S S

 S S S S S

 S S S S S

20. Given a set of 10 two-digit integers containing both posi tive and negative values, write a

program using for loop to compute the sum of all positive values and print the sum and the

number of values added. The program should use scanf to read the values and terminate

when the sum exceeds 999. Do not use goto statement.

LO 8.3

LO 8.3

LO 8.3

LO 8.3

LO 8.3

LO 8.3

LO 8.3

LO 8.3

9.1 INTRODUCTION

So far we have used only the fundamental data types, namely char, int, float, double and

variations of int and double. Although these types are very useful, they are constrained by the

fact that a variable of these types can store only one value at any given time. Therefore, they

can be used only to handle limited amounts of data. In many applications, however, we need to

handle a large volume of data in terms of reading, processing and printing. To process such large

amounts of data, we need a powerful data type that would facilitate efficient storing, accessing

and manipulation of data items. C supports a derived data type known as array that can be used

for such applications.

An array is a fixed-size sequenced collection of elements of the same data type. It is simply

a grouping of like-type data. In its simplest form, an array can be used to represent a list of

numbers, or a list of names. Some examples where the concept of an array can be used:

List of temperatures recorded every hour in a day, or a month, or a year.

List of employees in an organization.

List of products and their cost sold by a store.

Test scores of a class of students.

LO 9.1

LO 9.2

LO 9.3

LO 9.4

LO 9.5

LO 9.6

CHAPT ER

9
Array

288 Computing Fundamentals & C Programming

List of customers and their telephone numbers.

Table of daily rainfall data.

and so on.

Since an array provides a convenient structure for representing data, it is classified as one of the data

structures in C. Other data structures include structures, lists, queues and trees. A complete discussion of all

data structures is beyond the scope of this text. However, we shall consider structures in Chapter 12.

As we mentioned earlier, an array is a sequenced collection of related data items that share a common

name. For instance, we can use an array name salary to represent a set of salaries of a group of employees

in an organization. We can refer to the individual salaries by writing a number called index or subscript in

brackets after the array name. For example,

 salary [10]

represents the salary of 10th employee. While the complete set of values is referred to as an array, individual

values are called elements.

The ability to use a single name to represent a collection of items and to refer to an item by specifying

the item number enables us to develop concise and efficient programs. For example, we can use a loop

construct, discussed earlier, with the subscript as the control variable to read the entire array, perform

calculations, and print out the results.

We can use arrays to represent not only simple lists of values but also tables of data in two, three or more

dimensions. In this chapter, we introduce the concept of an array and discuss how to use it to create and

apply the following types of arrays.

One-dimensional arrays

Two-dimensional arrays

Multidimensional arrays

9.1.1 Data Structures

C supports a rich set of derived and user-defined data types in addition to a variety of fundamental types

as shown below:

- Arrays - Integral Types - Structures

- Functions - Float Types - Unions

- Pointers - Character Types - Enumerations

Arrays and structures are referred to as structured data types because they can be used to represent data

values that have a structure of some sort. Structured data types provide an organizational scheme that shows

the relationships among the individual elements and facilitate efficient data manipulations. In programming

parlance, such data types are known as data structures.

Array 289

In addition to arrays and structures, C supports creation and manipulation of the following data

structures:

Linked Lists

Stacks

Queues

Trees

9.2 ONE-DIMENSIONAL ARRAYS LO 9.1

A list of items can be given one variable name using only one subscript and such a variable is called a

single-subscripted variable or a one-dimensional array. In mathematics, we often deal with variables that

are single-subscripted. For instance, we use the equation

A =

x

n

i

i =

n

1

to calculate the average of n values of x. The subscripted variable xi refers to the ith element of x. In C,

single-subscripted variable xi can be expressed as

x[1], x[2], x[3],.........x[n]

The subscript can begin with number 0. That is

x[0]

is allowed. For example, if we want to represent a set of five numbers, say (35, 40, 20, 57, 19), by an array

variable number, then we may declare the variable number as follows

int number[5];

and the computer reserves five storage locations as shown below:

The values to the array elements can be assigned as follows:

 number[0] = 35;

 number[1] = 40;

 number[2] = 20;

 number[3] = 57;

 number[4] = 19;

This would cause the array number to store the values as shown below:

290 Computing Fundamentals & C Programming

These elements may be used in programs just like any other C variable. For example, the following are

valid statements:

 a = number[0] + 10;

 number[4] = number[0] + number [2];

 number[2] = x[5] + y[10];

 value[6] = number[i] * 3;

The subscripts of an array can be integer constants, integer variables like i, or expressions that yield

integers. C performs no bounds checking and, therefore, care should be exercised to ensure that the array

indices are within the declared limits.

9.3 DECLARATION OF ONE-DIMENSIONAL ARRAYS LO 9.2

Like any other variable, arrays must be declared before they are used so that the compiler can allocate space

for them in memory. The general form of array declaration is

type variable-name[size];

The type specifies the type of element that will be contained in the array, such as int, float, or char and

the size indicates the maximum number of elements that can be stored inside the array. For example,

float height[50];

declares the height to be an array containing 50 real elements. Any subscripts 0 to 49 are valid. Similarly,

int group[10];

declares the group as an array to contain a maximum of 10 integer constants. Remember:

 Any reference to the arrays outside the declared limits would not necessarily cause an error. Rather,

it might result in unpredictable program results.

The size should be either a numeric constant or a symbolic constant.

The C language treats character strings simply as arrays of characters. The size in a character string

represents the maximum number of characters that the string can hold. For instance,

char name[10];

declares the name as a character array (string) variable that can hold a maximum of 10 characters. Suppose

we read the following string constant into the string variable name.

“WELL DONE”

Each character of the string is treated as an element of the array name and is stored in the memory as

follows:

‘W’

‘E’

‘L’

‘L’

‘ ‘

‘D’

‘O’

‘N’

‘E’

‘\0’

Array 291

When the compiler sees a character string, it terminates it with an additional null character. Thus, the

element name[10] holds the null character ‘\0’. When declaring character arrays, we must allow one extra

element space for the null terminator.

Write a program using a single-subscripted variable to evaluate the following expressions:

Total = xi

i =

2

1

10

The values of x1,x2,....are read from the terminal.

Program in Fig. 9.1 uses a one-dimensional array x to read the values and compute the sum of their squares.

Program

 main()

{

 int i ;

 float x[10], value, total ;

 /*READING VALUES INTO ARRAY */

 printf(“ENTER 10 REAL NUMBERS\n”) ;

 for(i = 0 ; i < 10 ; i++)

{

 scanf(“%f”, &value) ;

 x[i] = value ;

}

 /*COMPUTATION OF TOTAL*/

 total = 0.0 ;

 for(i = 0 ; i < 10 ; i++)

 total = total + x[i] * x[i] ;

 /*. . . . PRINTING OF x[i] VALUES AND TOTAL . . . */

 printf(“\n”);

 for(i = 0 ; i < 10 ; i++)

 printf(“x[%2d] = %5.2f\n”, i+1, x[i]) ;

 printf(“\ntotal = %.2f\n”, total) ;

}

Levels of Difficulty

L: Low; M: Medium; H: High

292 Computing Fundamentals & C Programming

Output

 ENTER 10 REAL NUMBERS

 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.10

 x[1] = 1.10

 x[2] = 2.20

 x[3] = 3.30

 x[4] = 4.40

 x[5] = 5.50

 x[6] = 6.60

 x[7] = 7.70

 x[8] = 8.80

 x[9] = 9.90

 x[10] = 10.10

 Total = 446.86

 Fig. 9.1 Program to illustrate one-dimensional array

Note C99 permits arrays whose size can be specified at run time. See Appendix “C99 Features”.

9.4 INITIALIZATION OF ONE-DIMENSIONAL ARRAYS LO 9.2

After an array is declared, its elements must be initialized. Otherwise, they will contain “garbage”. An array

can be initialized at either of the following stages:

At compile time

At run time

9.4.1 Compile Time Initialization

We can initialize the elements of arrays in the same way as the ordinary variables when they are declared.

The general form of initialization of arrays is:

type array-name[size] = { list of values };

The values in the list are separated by commas. For example, the statement

int number[3] = { 0,0,0 };

will declare the variable number as an array of size 3 and will assign zero to each element. If the number of

values in the list is less than the number of elements, then only that many elements will be initialized. The

remaining elements will be set to zero automatically. For instance,

float total[5] = {0.0,15.75,–10};

will initialize the first three elements to 0.0, 15.75, and –10.0 and the remaining two elements to zero.

Array 293

The size may be omitted. In such cases, the compiler allocates enough space for all initialized elements.

For example, the statement

int counter[] = {1,1,1,1};

will declare the counter array to contain four elements with initial values 1. This approach works fine as

long as we initialize every element in the array.

Character arrays may be initialized in a similar manner. Thus, the statement

char name[] = {‘J’,‘o’, ‘h’, ‘n’, ‘\0’};

declares the name to be an array of five characters, initialized with the string “John” ending with the null

character. Alternatively, we can assign the string literal directly as under:

char name [] = “John”;

(Character arrays and strings are discussed in detail in Chapter 10.)

Compile time initialization may be partial. That is, the number of initializers may be less than the

declared size. In such cases, the remaining elements are inilialized to zero, if the array type is numeric and

NULL if the type is char. For example,

int number [5] = {10, 20};

will initialize the first two elements to 10 and 20 respectively, and the remaining elements to 0. Similarly,

the declaration.

char city [5] = {‘B’};

will initialize the first element to ‘B’ and the remaining four to NULL. It is a good idea, however, to declare

the size explicitly, as it allows the compiler to do some error checking.

Remember, however, if we have more initializers than the declared size, the compiler will produce an

error. That is, the statement

int number [3] = {10, 20, 30, 40};

will not work. It is illegal in C.

9.4.2 Run Time Initialization

An array can be explicitly initialized at run time. This approach is usually applied for initializing large

arrays. For example, consider the following segment of a C program.

 – – ––– – ––

 – – ––– – ––

 for (i = 0; i < 100; i = i+1)

{

 if i < 50

 sum[i] = 0.0; /* assignment statement */

 else

 sum[i] = 1.0;

}

 – – ––– – ––

 – – ––– – ––

The first 50 elements of the array sum are initialized to zero while the remaining 50 elements are

initialized to 1.0 at run time.

We can also use a read function such as scanf to initialize an array. For example, the statements

 int x [3];

294 Computing Fundamentals & C Programming

 scanf(“%d%d%d”, &x[0], &[1], &x[2]);

will initialize array elements with the values entered through the keyboard.

Given below is the list of marks obtained by a class of 50 students in an annual examination.

43 65 51 27 79 11 56 61 82 09 25 36 07 49 55 63 74 81 49 37

40 49 16 75 87 91 33 24 58 78 65 56 76 67 45 54 36 63 12 21

73 49 51 19 39 49 68 93 85 59

Write a program to count the number of students belonging to each of following groups of marks:

0–9, 10–19, 20–29,.....,100.

The program coded in Fig. 9.2 uses the array group containing 11 elements, one for each range of

marks. Each element counts those values falling within the range of values it represents.

For any value, we can determine the correct group element by dividing the value by 10. For example,

consider the value 59. The integer division of 59 by 10 yields 5. This is the element into which 59 is

counted.

Program

 #define MAXVAL 50

 #define COUNTER 11

 main()

{

 float value[MAXVAL];

 int i, low, high;

 int group[COUNTER] = {0,0,0,0,0,0,0,0,0,0,0};

 /*READING AND COUNTING*/

 for(i = 0 ; i < MAXVAL ; i++)

{

 /*.READING OF VALUES */

 scanf(“%f”, &value[i]) ;

 /*.COUNTING FREQUENCY OF GROUPS. */

 ++ group[(int) (value[i]) / 10] ;

}

 /*PRINTING OF FREQUENCY TABLE*/

 printf(“\n”);

 printf(“ GROUP RANGE FREQUENCY\n\n”) ;

 for(i = 0 ; i < COUNTER ; i++)

{

 low = i * 10 ;

 if(i == 10)

 high = 100 ;

 else

Array 295

 high = low + 9 ;

 printf(“ %2d %3d to %3d %d\n”,

 i+1, low, high, group[i]) ;

}

}

Output

 43 65 51 27 79 11 56 61 82 09 25 36 07 49 55 63 74

 81 49 37 40 49 16 75 87 91 33 24 58 78 65 56 76 67 (Input data)

 45 54 36 63 12 21 73 49 51 19 39 49 68 93 85 59

 GROUP RANGE FREQUENCY

 1 0 to 9 2

 2 10 to 19 4

 3 20 to 29 4

 4 30 to 39 5

 5 40 to 49 8

 6 50 to 59 8

 7 60 to 69 7

 8 70 to 79 6

 9 80 to 89 4

 10 90 to 99 2

 11 100 to 100 0

 Fig. 9.2 Program for frequency counting

Note that we have used an initialization statement.

int group [COUNTER] = {0,0,0,0,0,0,0,0,0,0,0};

which can be replaced by

int group [COUNTER] = {0};

This will initialize all the elements to zero.

H

The program shown in Fig. 9.3 shows the algorithm, flow chart and the complete C program to find

the two’s compliment of a binary number.

Algorithm

Step 1 – Start

Step 2 – Read a binary number string (a[])

Step 3 – Calculate the length of string str (len)

Step 4 – Initialize the looping counter k=0

Step 5 – Repeat Steps 6-8 while a[k] != ‘\0’

Step 6 – If a[k]!= 0 AND a[k]!= 1 goto Step 7 else goto Step 8

296 Computing Fundamentals & C Programming

Step 7 – Display error “Incorrect binary number format” and terminate the program

Step 8 – k = k + 1

Step 9 – Initialize the looping counter i = len - 1

Step 10 – Repeat Step 11 while a[i]!=’1’

Step 11 – i = i - 1

Step 12 – Initialize the looping counter j = i - 1

Step 13 – Repeat Step 14-17 while j >= 0

Step 14 – If a[j]=1 goto Step 15 else goto Step 16

Step 15 – a[j]=’0’

Step 16 – a[j]=’1’

Step 17 – j = j - 1

Step 18 – Display a[] as the two’s compliment

Step 19 – Stop

Flow Chart

Start

Read binary number a[]

Is
a[k]!='\0'?

Yes

No

Is a[k]!=0
& a[k]!=1?

len = strlen(a)
k = 0

Display "Incorrect
binary number format"

Display a[] as
the two's compliment

Stop

No

Yes

k = k + 1

i = len – 1

i = i – 1

Yes

No

j = j – 1

No

j = i – 1

Is a[i]!=1?

Is j>=0?

Is a[j]=1?

Yes

a[j]= 0 a[j] = 1

Yes

No

Program

 #include <stdio.h>

 #include <conio.h>

 #include <string.h>

 void main()

Array 297

{

 char a[16];

 int i,j,k,len;

 clrscr();

 printf(“Enter a binary number: “);

 gets(a);

 len=strlen(a);

 for(k=0;a[k]!=’\0’; k++)

{

 if (a[k]!=’0’ && a[k]!=’1’)

{

 printf(“\nIncorrect binary number format...the program will quit”);

 getch();

 exit(0);

}

}

 for(i=len-1;a[i]!=’1’; i--)

;

 for(j=i-1;j>=0;j--)

{

 if(a[j]==’1’)

 a[j]=’0’;

 else

 a[j]=’1’;

}

 printf(“\n2’s compliment = %s”,a);

 getch();

}

Output

 Enter a binary number: 01011001001

 2’s compliment = 10100110111

Fig. 9.3

9.4.3 Searching and Sorting

Searching and sorting are the two most frequent operations performed on arrays. Computer Scientists have

devised several data structures and searching and sorting techniques that facilitate rapid access to data

stored in lists.

Sorting is the process of arranging elements in the list according to their values, in ascending or

descending order. A sorted list is called an ordered list. Sorted lists are especially important in list searching

because they facilitate rapid search operations. Many sorting techniques are available. The three simple and

most important among them are:

298 Computing Fundamentals & C Programming

Bubble sort

Selection sort

Insertion sort

Other sorting techniques include Shell sort, Merge sort and Quick sort.

Searching is the process of finding the location of the specified element in a list. The specified element

is often called the search key. If the process of searching finds a match of the search key with a list element

value, the search said to be successful; otherwise, it is unsuccessful. The two most commonly used search

techniques are:

Sequential search

Binary search

A detailed discussion on these techniques is beyond the scope of this text. However you may refer the

QR section for additional information.

9.5 TWO-DIMENSIONAL ARRAYS LO 9.3

So far we have discussed the array variables that can store a list of values. There could be situations where

a table of values will have to be stored. Consider the following data table, which shows the value of sales of

three items by four sales girls:

Item1 Item2 Item3

Salesgirl #1 310 275 365

Salesgirl #2 210 190 325

Salesgirl #3 405 235 240

Salesgirl #4 260 300 380

The table contains a total of 12 values, three in each line. We can think of this table as a matrix consisting

of four rows and three columns. Each row represents the values of sales by a particular salesgirl and each

column represents the values of sales of a particular item.

In mathematics, we represent a particular value in a matrix by using two subscripts such as vij. Here v

denotes the entire matrix and vij refers to the value in the ith row and jth column. For example, in the above

table v23 refers to the value 325.

C allows us to define such tables of items by using two-dimensional arrays. The table discussed above

can be defined in C as

v[4][3]

Two-dimensional arrays are declared as follows:

type array_name [row_size][column_size];

Note that unlike most other languages, which use one pair of parentheses with commas to separate array

sizes, C places each size in its own set of brackets.

Two-dimensional arrays are stored in memory, as shown in Fig. 9.4. As with the single-dimensional

arrays, each dimension of the array is indexed from zero to its maximum size minus one; the first index

selects the row and the second index selects the column within that row.

Array 299

Fig. 9.4

Write a program to compute and print a multiplication table for numbers 1 to 5 as shown below.

1 2 3 4 5

1 1 2 3 4 5

2 2 4 6 8 10

3 3 6 . . .

4 4 8 . . .

5 5 10 . . 25

The program shown in Fig. 9.5 uses a two-dimensional array to store the table values. Each value is

calculated using the control variables of the nested for loops as follows:

product[i] [j] = row * column

where i denotes rows and j denotes columns of the product table. Since the indices i and j range from 0 to 4,

we have introduced the following transformation:

 row = i+1

column = j+1

Program

 #define ROWS 5

 #define COLUMNS 5

 main()

{

300 Computing Fundamentals & C Programming

 int row, column, product[ROWS][COLUMNS] ;

 int i, j ;

 printf(“ MULTIPLICATION TABLE\n\n”) ;

 printf(“ “) ;

 for(j = 1 ; j <= COLUMNS ; j++)

 printf(“%4d” , j) ;

 printf(“\n”) ;

 printf(“——————————————————————————————\n”);

 for(i = 0 ; i < ROWS ; i++)

 {

row = i + 1 ;

 printf(“%2d |”, row) ;

 for(j = 1 ; j <= COLUMNS ; j++)

{

 column = j ;

 product[i][j] = row * column ;

 printf(“%4d”, product[i][j]) ;

}

 printf(“\n”) ;

}

}

Output

 MULTIPLICATION TABLE

 1 2 3 4 5

 1 1 2 3 4 5

 2 2 4 6 8 10

 3 3 6 9 12 15

 4 4 8 12 16 20

 5 5 10 15 20 25

 Fig. 9.5

H

Write a program using a two-dimensional array to compute and print the following

information from the table of data discussed above:

 (a) Total value of sales by each girl.

 (b) Total value of each item sold.

 (c) Grand total of sales of all items by all girls.

The program and its output are shown in Fig. 9.6. The program uses the variable value in two-dimensions

with the index i representing girls and j representing items. The following equations are used in computing

the results:

Array 301

(a) Total sales by mth girl =
j = 0

2

 value [m][j] (girl_total[m])

(b) Total value of nth item =
i = 0

3

 value [i][n] (item_total[n])

(c) Grand total =
ji == 0

2

0

3

 value[i][j]

 =
i = 0

3

 girl_total[i]

 =

j = 0

2

 item_total[j]

Program

 #define MAXGIRLS 4

 #define MAXITEMS 3

 main()

{

 int value[MAXGIRLS][MAXITEMS];

 int girl_total[MAXGIRLS] , item_total[MAXITEMS];

 int i, j, grand_total;

 /*.......READING OF VALUES AND COMPUTING girl_total ...*/

 printf(“Input data\n”);

 printf(“Enter values, one at a time, row-wise\n\n”);

 for(i = 0 ; i < MAXGIRLS ; i++)

{

 girl_total[i] = 0;

 for(j = 0 ; j < MAXITEMS ; j++)

{

 scanf(“%d”, &value[i][j]);

 girl_total[i] = girl_total[i] + value[i][j];

}

}

 /*.......COMPUTING item_total..........................*/

 for(j = 0 ; j < MAXITEMS ; j++)

{

 item_total[j] = 0;

 for(i =0 ; i < MAXGIRLS ; i++)

 item_total[j] = item_total[j] + value[i][j];

302 Computing Fundamentals & C Programming

}

 /*.......COMPUTING grand_total.........................*/

 grand_total = 0;

 for(i =0 ; i < MAXGIRLS ; i++)

 grand_total = grand_total + girl_total[i];

 /*PRINTING OF RESULTS...........................*/

 printf(“\n GIRLS TOTALS\n\n”);

 for(i = 0 ; i < MAXGIRLS ; i++)

 printf(“Salesgirl[%d] = %d\n”, i+1, girl_total[i]);

 printf(“\n ITEM TOTALS\n\n”);

 for(j = 0 ; j < MAXITEMS ; j++)

 printf(“Item[%d] = %d\n”, j+1 , item_total[j]);

 printf(“\nGrand Total = %d\n”, grand_total);

}

Output

 Input data

 Enter values, one at a time, row_wise

 310 257 365

 210 190 325

 405 235 240

 260 300 380

 GIRLS TOTALS

 Salesgirl[1] = 950

 Salesgirl[2] = 725

 Salesgirl[3] = 880

 Salesgirl[4] = 940

 ITEM TOTALS

 Item[1] = 1185

 Item[2] = 1000

 Item[3] = 1310

 Grand Total = 3495

Fig. 9.6

9.6 INITIALIZING TWO-DIMENSIONAL ARRAYS LO 9.4

A Like the one-dimensional arrays, two-dimensional arrays may be initialized by following their declaration

with a list of initial values enclosed in braces. For example,

int table[2][3] = { 0,0,0,1,1,1};

Array 303

initializes the elements of the first row to zero and the second row to one. The initialization is done row by

row. The above statement can be equivalently written as

int table[2][3] = {{0,0,0}, {1,1,1}};

by surrounding the elements of the each row by braces.

We can also initialize a two-dimensional array in the form of a matrix as shown below:

 int table[2][3] = {

 {0,0,0},

 {1,1,1}

 };

Note the syntax of the above statements. Commas are required after each brace that closes off a row,

except in the case of the last row.

When the array is completely initialized with all values, explicitly, we need not specify the size of the

first dimension. That is, the statement

 int table [] [3] = {

 { 0, 0, 0},

 { 1, 1, 1}

 };

is permitted.

If the values are missing in an initializer, they are automatically set to zero. For instance, the statement

 int table[2][3] = {

 {1,1},

 {2}

 };

will initialize the first two elements of the first row to one, the first element of the second row to two, and

all other elements to zero.

When all the elements are to be initialized to zero, the following short-cut method may be used.

int m[3][5] = { {0}, {0}, {0}};

The first element of each row is explicitly initialized to zero while other elements are automatically

initialized to zero. The following statement will also achieve the same result:

int m [3] [5] = { 0, 0};

A survey to know the popularity of four cars (Ambassador, Fiat, Dolphin and Maruti) was conducted

in four cities (Bombay, Calcutta, Delhi and Madras). Each person surveyed was asked to give his city

and the type of car he was using. The results, in coded form, are tabulated as follows:

M 1 C 2 B 1 D 3 M 2 B 4

C 1 D 3 M 4 B 2 D 1 C 3

D 4 D 4 M 1 M 1 B 3 B 3

C 1 C 1 C 2 M 4 M 4 C 2

D 1 C 2 B 3 M 1 B 1 C 2

D 3 M 4 C 1 D 2 M 3 B 4

304 Computing Fundamentals & C Programming

Codes represent the following information:

M – Madras 1 – Ambassador

D – Delhi 2 – Fiat

C – Calcutta 3 – Dolphin

B – Bombay 4 – Maruti

Write a program to produce a table showing popularity of various cars in four cities.

A two-dimensional array frequency is used as an accumulator to store the number of cars used, under

various categories in each city. For example, the element frequency [i][j] denotes the number of cars of type

j used in city i. The frequency is declared as an array of size 5 5 and all the elements are initialized to zero.

The program shown in Fig. 9.7 reads the city code and the car code, one set after another, from the

terminal. Tabulation ends when the letter X is read in place of a city code.

Program

 main()

{

 int i, j, car;

 int frequency[5][5] = { {0},{0},{0},{0},{0} };

 char city;

 printf(“For each person, enter the city code \n”);

 printf(“followed by the car code.\n”);

 printf(“Enter the letter X to indicate end.\n”);

 /*. TABULATION BEGINS */

 for(i = 1 ; i < 100 ; i++)

{

 scanf(“%c”, &city);

 if(city == ‘X’)

 break;

 scanf(“%d”, &car);

 switch(city)

{

 case ‘B’ : frequency[1][car]++;

 break;

 case ‘C’ : frequency[2][car]++;

 break;

 case ‘D’ : frequency[3][car]++;

 break;

 case ‘M’ : frequency[4][car]++;

 break;

}

}

 /*.TABULATION COMPLETED AND PRINTING BEGINS. . . .*/

 printf(“\n\n”);

 printf(“ POPULARITY TABLE\n\n”);

Array 305

 printf(“——————————————————————————————–————–\n”);

 printf(“City Ambassador Fiat Dolphin Maruti \n”);

 printf(“———————————————————————————————————–\n”);

 for(i = 1 ; i <= 4 ; i++)

{

 switch(i)

{

 case 1 : printf(“Bombay “) ;

 break ;

 case 2 : printf(“Calcutta “) ;

 break ;

 case 3 : printf(“Delhi “) ;

 break ;

 case 4 : printf(“Madras “) ;

 break ;

}

 for(j = 1 ; j <= 4 ; j++)

 printf(“%7d”, frequency[i][j]) ;

 printf(“\n”) ;

}

 printf(“——\n”);

 /*. PRINTING ENDS.*/

}

Output

 For each person, enter the city code

 followed by the car code.

 Enter the letter X to indicate end.

 M 1 C 2 B 1 D 3 M 2 B 4

 C 1 D 3 M 4 B 2 D 1 C 3

 D 4 D 4 M 1 M 1 B 3 B 3

 C 1 C 1 C 2 M 4 M 4 C 2

 D 1 C 2 B 3 M 1 B 1 C 2

 D 3 M 4 C 1 D 2 M 3 B 4 X

 POPULARITY TABLE

 City Ambassador Fiat Dolphin Maruti

 Bombay 2 1 3 2

 Calcutta 4 5 1 0

 Delhi 2 1 3 2

 Madras 4 1 1 4

 Fig. 9.7

306 Computing Fundamentals & C Programming

9.6.1 Memory Layout

The subscripts in the definition of a two-dimensional array represent rows and columns. This format maps
the way that data elements are laid out in the memory. The elements of all arrays are stored contiguously in
increasing memory locations, essentially in a single list. If we consider the memory as a row of bytes, with
the lowest address on the left and the highest address on the right, a simple array will be stored in memory
with the first element at the left end and the last element at the right end. Similarly, a two-dimensional array
is stored “row-wise, starting from the first row and ending with the last row, treating each row like a simple

array. This is illustrated below.

Memory Layout

For a multi-dimensional array, the order of storage is that the first element stored has 0 in all its
subscripts, the second has all of its subscripts 0 except the far right which has a value of 1 and so on.

The elements of a 2 × 3 × 3 array will be stored as under

... ...

The far right subscript increments first and the other subscripts increment in order from right to left. The

sequence numbers 1, 2,……, 18 represents the location of that element in the list.

The program in Fig. 9.9 shows how to find the transpose of a matrix.

Algorithm

 Step 1 – Start

 Step 2 – Read a 3 X 3 matrix (a[3][3])

 Step 3 – Initialize the looping counter i = 0

 Step 4 – Repeat Steps 5-9 while i<3

Array 307

 Step 5 – Initialize the looping counter j = 0

 Step 6 – Repeat Steps 7-8 while j<3

 Step 7 – b[i][j]=a[j][i]

 Step 8 – j = j + 1

 Step 9 – i = i + 1

 Step 10 – Display b[][] as the transpose of the matrix a[][]

 Step 11 – Stop

Flow Chart

Start

Read a[3][3]

Is i < 3?

j = 0

Is j < 3?

Display b[] [] as the
transpose of a[] []

No

b[i][j]=a[j][i]

Yes

Yes

i = 0

j = j + 1

i = i + 1

Stop
No

Program

 #include <stdio.h>

 #include <conio.h>

 void main()

{

 int i,j,a[3][3],b[3][3];

 clrscr();

 printf(“Enter a 3 X 3 matrix:\n”);

 for(i=0;i<3;i++)

{

 for(j=0;j<3;j++)

{

 printf(“a[%d][%d] = “,i,j);

 scanf(“%d”,&a[i][j]);

}

}

308 Computing Fundamentals & C Programming

 printf(“\nThe entered matrix

 is: \n”);

 for(i=0;i<3;i++)

{

 printf(“\n”);

 for(j=0;j<3;j++)

{

 printf(“%d\t”,a[i][j]);

}

}

 for(i=0;i<3;i++)

{

 for(j=0;j<3;j++)

 b[i][j]=a[j][i];

}

 printf(“\n\nThe transpose of the matrix is: \n”);

 for(i=0;i<3;i++)

{

 printf(“\n”);

 for(j=0;j<3;j++)

{

 printf(“%d\t”,b[i][j]);

}

}

 getch();

}

Output

 Enter a 3 X 3 matrix:

 a[0][0] = 1

 a[0][1] = 2

 a[0][2] = 3

 a[1][0] = 4

 a[1][1] = 5

 a[1][2] = 6

 a[2][0] = 7

 a[2][1] = 8

 a[2][2] = 9

 The entered matrix is:

 1 2 3

 4 5 6

 7 8 9

Array 309

 The transpose of the matrix is:

 1 4 7

 2 5 8

 3 6 9

Fig. 9.8

The program in Fig. 9.8 shows how to multiply the elements of two N N matrices.

Program

 #include<stdio.h>

 #include<conio.h>

 void main()

{

 int a1[10][10],a2[10][10],c[10][10],i,j,k,a,b;

 clrscr();

 printf(“Enter the size of the square matrix\n”);

 scanf (“%d”, &a);

 b=a;

 printf(“You have to enter the matrix elements in row-wise fashion\n”);

 for(i=0;i<a;i++)

{

 for(j=0;j<b;j++)

{

 printf(“\nEnter the next element in the 1st matrix=”);

 scanf(“%d”,&a1[i][j]);

}

}

 for(i=0;i<a;i++)

{

 for(j=0;j<b;j++)

{

 printf(“\n\nEnter the next element in the 2nd matrix=”);

 scanf(“%d”,&a2[i][j]);

}

}

 printf(“\n\nEntered matrices are\n”);

 for(i=0;i<a;i++)

 { printf(“\n”);

 for(j=0;j<b;j++)

 printf(“ %d “,a1[i][j]);

}

 printf(“\n”);

310 Computing Fundamentals & C Programming

 for(i=0;i<a;i++)

 { printf(“\n”);

 for(j=0;j<b;j++)

 printf(“ %d “,a2[i][j]);

}

 printf(“\n\nProduct of the two matrices is\n”);

 for(i=0;i<a;i++)

 for(j=0;j<b;j++)

{

 c[i][j]=0;

 for(k=0;k<a;k++)

 c[i][j]=c[i][j]+a1[i][k]*a2[k][j];

 }

 for(i=0;i<a;i++)

 { printf(“\n”);

 for(j=0;j<b;j++)

 printf(“ %d “,c[i][j]);

}

 getch();

}

Output

 Enter the size of the square matrix

2

 You have to enter the matrix elements in row-wise fashion

 Enter the next element in the 1st matrix=1

 Enter the next element in the 1st matrix=0

 Enter the next element in the 1st matrix=2

 Enter the next element in the 1st matrix=3

 Enter the next element in the 2nd matrix=4

 Enter the next element in the 2nd matrix=5

 Enter the next element in the 2nd matrix=0

 Enter the next element in the 2nd matrix=2

 Entered matrices are

 1 0

 2 3

 4 5

 0 2

 Product of the two matrices is

4 5

 8 16

Fig. 9.9 Program for N ×

Array 311

9.7 MULTI-DIMENSIONAL ARRAYS LO 9.5

C allows arrays of three or more dimensions. The exact limit is determined by the compiler. The general

form of a multi-dimensional array is

type array_name[s1][s2][s3]....[sm];

where si is the size of the ith dimension. Some examples are:

int survey[3][5][12];

float table[5][4][5][3];

survey is a three-dimensional array declared to contain 180 integer type elements. Similarly table is a four-

dimensional array containing 300 elements of floating-point type.

The array survey may represent a survey data of rainfall during the last three years from January to

December in five cities.

If the first index denotes year, the second city and the third month, then the element survey[2][3][10]

denotes the rainfall in the month of October during the second year in city-3.

Remember that a three-dimensional array can be represented as a series of two-dimensional arrays as

shown below:

month city 1 2 …………… 12

1

.

Year 1 .

.

.

5

month city 1 2 …………… 12

1

.

Year 2 .

.

.

5

ANSI C does not specify any limit for array dimension. However, most compilers permit seven to ten

dimensions. Some allow even more.

312 Computing Fundamentals & C Programming

9.8 DYNAMIC ARRAYS LO 9.6

So far, we created arrays at compile time. An array created at compile time by specifying size in the source

code has a fixed size and cannot be modified at run time. The process of allocating memory at compile time

is known as static memory allocation and the arrays that receive static memory allocation are called static

arrays. This approach works fine as long as we know exactly what our data requirements are.

Consider a situation where we want to use an array that can vary greatly in size. We must guess what will

be the largest size ever needed and create the array accordingly. A difficult task in fact! Modern languages

like C do not have this limitation. In C it is possible to allocate memory to arrays at run time. This feature

is known as dynamic memory allocation and the arrays created at run time are called dynamic arrays. This

effectively postpones the array definition to run time.

Dynamic arrays are created using what are known as pointer variables and memory management

functions malloc, calloc and realloc. These functions are included in the header file <stdlib.h>. The

concept of dynamic arrays is used in creating and manipulating data structures such as linked lists, stacks

and queues. We discuss in detail pointers and pointer variables in Chapter 13.

9.9 MORE ABOUT ARRAYS

What we have discussed in this chapter are the basic concepts of arrays and their applications to a limited

extent. There are some more important aspects of application of arrays. They include:

using printers for accessing arrays;

passing arrays as function parameters;

arrays as members of structures;

using structure type data as array elements;

arrays as dynamic data structures; and

manipulating character arrays and strings.

These aspects of arrays are covered later in the following chapters:

Chapter 10 : Strings

Chapter 11 : Functions

Chapter 12 : Structures

Chapter 13 : Pointers

Learning Outcomes

We need to specify three things, namely, name, type and size, when we declare an array.

Use of invalid subscript is one of the common errors. An incorrect or invalid index may cause

unexpected results.

Always remember that subscripts begin at 0 (not 1) and end at size –1.

Defining the size of an array as a symbolic constant makes a program more scalable.

Be aware of the difference between the “kth element” and the “element k”. The kth element has a

subscript k-1, whereas the element k has a subscript of k itself.

Do not forget to initialize the elements; otherwise they will contain “garbage”.

LO 9.1

LO 9.1

LO 9.2

LO 9.2

LO 9.2

LO 9.2

Array 313

Supplying more initializers in the initializer list is a compile time error.

When using expressions for subscripts, make sure that their results do not go outside the permissible

range of 0 to size –1. Referring to an element outside the array bounds is an error.

When using control structures for looping through an array, use proper relational expressions to

eliminate “off-by-one” errors. For example, for an array of size 5, the following for statements are

wrong:

 for (i = 1; i < =5; i+ +)

 for (i = 0; i < =5; i+ +)

 for (i = 0; i = =5; i+ +)

 for (i = 0; i < 4; i+ +)

Referring a two-dimensional array element like x[i, j] instead of x[i][j] is a compile time error.

Leaving out the subscript reference operator [] in an assignment operation is compile time error.

When initializing character arrays, provide enough space for the terminating null character.

Make sure that the subscript variables have been properly initialized before they are used.

During initialization of multi-dimensional arrays, it is an error to omit the array size for any

dimension other than the first.

While using static arrays, choose the array size in such a way that the memory space is efficiently

utilized and there is no overflow condition.

Key Terms to Remember

Array: Is a fixed-size sequenced collection part of elements of the same data type.

One-dimensional array: Is a list of items that has one variable name and one subscript to access the

items.

Structured data types: Represent data values that have a structure of some sort. For example,

arrays, structures, etc.

Searching: Is the process of finding the location of the specified element in the list.

Sorting: Is the process of rearranging elements in the list as per ascending or descending order.

Two-dimensional array: Is an array of arrays that has two subscripts for accessing its values. It is

used to represent table or matrix data.

Multi-dimensional array: Is an array with more than one dimension. Examples of multi-

dimensional arrays are two-dimensional array, three-dimensional array and so on.

Dynamic arrays: Are the arrays declared using dynamic memory allocation technique.

Dynamic memory allocation: Is the process of allocating memory at run time.

Static arrays: Are the arrays declared using static memory allocation technique.

Static memory allocation: Is the process of allocating memory at compile time.

Brief Cases

1. Median of a List of Numbers [LO 9.2, M]

When all the items in a list are arranged in an order, the middle value which divides the items into two

parts with equal number of items on either side is called the median. Odd number of items have just one

LO 9.2

LO 9.2

LO 9.2

LO 9.3

LO 9.3

LO 9.4

LO 9.4

LO 9.5

LO 9.6

LO 9.1

LO 9.1

LO 9.1

LO 9.2

LO 9.2

LO 9.3

LO 9.5

LO 9.6

LO 9.6

LO 9.6

LO 9.6

314 Computing Fundamentals & C Programming

middle value while even number of items have two middle values. The median for even number of items is

therefore designated as the average of the two middle values.

The major steps for finding the median are as follows:

1. Read the items into an array while keeping a count of the items.

2. Sort the items in increasing order.

3. Compute median.

The program and sample output are shown in Fig. 9.10. The sorting algorithm used is as follows:

1. Compare the first two elements in the list, say a[1], and a[2]. If a[2] is smaller than a[1], then

interchange their values.

2. Compare a[2] and a[3]; interchange them if a[3] is smaller than a[2].

3. Continue this process till the last two elements are compared and interchanged.

4. Repeat the above steps n–1 times.

In repeated trips through the array, the smallest elements ‘bubble up’ to the top. Because of this bubbling

up effect, this algorithm is called bubble sorting. The bubbling effect is illustrated below for four items.

Array 315

During the first trip, three pairs of items are compared and interchanged whenever needed. It should

be noted that the number 80, the largest among the items, has been moved to the bottom at the end of the

first trip. This means that the element 80 (the last item in the new list) need not be considered any further.

Therefore, trip-2 requires only two pairs to be compared. This time, the number 65 (the second largest

value) has been moved down the list. Notice that each trip brings the smallest value 10 up by one level.

The number of steps required in a trip is reduced by one for each trip made. The entire process will be

over when a trip contains only one step. If the list contains n elements, then the number of comparisons

involved would be n(n–1)/2.

Program

 #define N 10

 main()

{

 int i,j,n;

 float median,a[N],t;

 printf(“Enter the number of items\n”);

 scanf(“%d”, &n);

 /* Reading items into array a */

 printf(“Input %d values \n”,n);

 for (i = 1; i <= n ; i++)

 scanf(“%f”, &a[i]);

 /* Sorting begins */

 for (i = 1 ; i <= n–1 ; i++)

 { /* Trip-i begins */

 for (j = 1 ; j <= n–i ; j++)

{

 if (a[j] <= a[j+1])

 { /* Interchanging values */

 t = a[j];

 a[j] = a[j+1];

 a[j+1] = t;

}

 else

 continue ;

}

 } /* sorting ends */

 /* calculation of median */

 if (n % 2 == 0)

 median = (a[n/2] + a[n/2+1])/2.0 ;

 else

 median = a[n/2 + 1];

 /* Printing */

 for (i = 1 ; i <= n ; i++)

316 Computing Fundamentals & C Programming

 printf(“%f “, a[i]);

 printf(“\n\nMedian is %f\n”, median);

}

Output

 Enter the number of items

5

 Input 5 values

 1.111 2.222 3.333 4.444 5.555

 5.555000 4.444000 3.333000 2.222000 1.111000

 Median is 3.333000

 Enter the number of items

6

 Input 6 values

 3 5 8 9 4 6

 9.000000 8.000000 6.000000 5.000000 4.000000 3.000000

 Median is 5.500000

 Fig. 9.10

2. Calculation of Standard Deviation [LO 9.2, M]

In statistics, standard deviation is used to measure deviation of data from its mean. The formula for

calculating standard deviation of n items is

 s = variance

where

variance =
1

n
()x mi

i =

n
2

1

and

m = mean =
1

1n
xi

i =

n

The algorithm for calculating the standard deviation is as follows:

1. Read n items.

2. Calculate sum and mean of the items.

3. Calculate variance.

4. Calculate standard deviation.

Complete program with sample output is shown in Fig. 9.11.

Array 317

Program

 #include <math.h>

 #define MAXSIZE 100

 main()

{

 int i,n;

 float value [MAXSIZE], deviation,

 sum,sumsqr,mean,variance,stddeviation;

 sum = sumsqr = n = 0 ;

 printf(“Input values: input –1 to end \n”);

 for (i=1; i< MAXSIZE ; i++)

{

 scanf(“%f”, &value[i]);

 if (value[i] == –1)

 break;

 sum += value[i];

 n += 1;

}

 mean = sum/(float)n;

 for (i = 1 ; i<= n; i++)

{

 deviation = value[i] – mean;

 sumsqr += deviation * deviation;

}

 variance = sumsqr/(float)n ;

 stddeviation = sqrt(variance) ;

 printf(“\nNumber of items : %d\n”,n);

 printf(“Mean : %f\n”, mean);

 printf(“Standard deviation : %f\n”, stddeviation);

}

Output

 Input values: input –1 to end

 65 9 27 78 12 20 33 49 –1

 Number of items : 8

 Mean : 36.625000

 Standard deviation : 23.510303

Fig. 9.11

318 Computing Fundamentals & C Programming

3. Evaluating a Test [LO 9.2, H]

A test consisting of 25 multiple-choice items is administered to a batch of 3 students. Correct answers and

student responses are tabulated as shown below:

The algorithm for evaluating the answers of students is as follows:

1. Read correct answers into an array.

2. Read the responses of a student and count the correct ones.

3. Repeat step-2 for each student.

4. Print the results.

A program to implement this algorithm is given in Fig. 9.12. The program uses the following arrays:

key[i] - To store correct answers of items

response[i] - To store responses of students

correct[i] - To identify items that are answered correctly.

Program

 #define STUDENTS 3

 #define ITEMS 25

 main()

{

 char key[ITEMS+1],response[ITEMS+1];

 int count, i, student,n,

 correct[ITEMS+1];

 /* Reading of Correct answers */

 printf(“Input key to the items\n”);

 for(i=0; i < ITEMS; i++)

 scanf(“%c”,&key[i]);

 scanf(“%c”,&key[i]);

 key[i] = ‘\0’;

 /* Evaluation begins */

 for(student = 1; student <= STUDENTS ; student++)

{

 /*Reading student responses and counting correct ones*/

Array 319

 count = 0;

 printf(“\n”);

 printf(“Input responses of student-%d\n”,student);

 for(i=0; i < ITEMS ; i++)

 scanf(“%c”,&response[i]);

 scanf(“%c”,&response[i]);

 response[i] = ‘\0’;

 for(i=0; i < ITEMS; i++)

 correct[i] = 0;

 for(i=0; i < ITEMS ; i++)

 if(response[i] == key[i])

{

 count = count +1 ;

 correct[i] = 1 ;

}

 /* printing of results */

 printf(“\n”);

 printf(“Student-%d\n”, student);

 printf(“Score is %d out of %d\n”,count, ITEMS);

 printf(“Response to the items below are wrong\n”);

 n = 0;

 for(i=0; i < ITEMS ; i++)

 if(correct[i] == 0)

{

 printf(“%d “,i+1);

 n = n+1;

}

 if(n == 0)

 printf(“NIL\n”);

 printf(“\n”);

 } /* Go to next student */

 /* Evaluation and printing ends */

}

Output

 Input key to the items

 abcdabcdabcdabcdabcdabcda

 Input responses of student-1

 abcdabcdabcdabcdabcdabcda

 Student-1

 Score is 25 out of 25

 Response to the following items are wrong

 NIL

320 Computing Fundamentals & C Programming

 Input responses of student–2

 abcddcbaabcdabcdddddddddd

 Student–2

 Score is 14 out of 25

 Response to the following items are wrong

 5 6 7 8 17 18 19 21 22 23 25

 Input responses of student-3

 aaaaaaaaaaaaaaaaaaaaaaaaa

 Student–3

 Score is 7 out of 25

 Response to the following items are wrong

 2 3 4 6 7 8 10 11 12 14 15 16 18 19 20 22 23 24

Fig. 9.12

4. Production and Sales Analysis [LO 9.3, 9.4, H]

A company manufactures five categories of products and the number of items manufactured and sold are

recorded product-wise every week in a month. The company reviews its production schedule at every

month-end. The review may require one or more of the following information:

(a) Value of weekly production and sales.

(b) Total value of all the products manufactured.

(c) Total value of all the products sold.

(d) Total value of each product, manufactured and sold.

Let us represent the products manufactured and sold by two two-dimensional arrays M and S

respectively. Then,

M11 M12 M13 M14 M15

M = M21 M22 M23 M24 M25

M31 M32 M33 M34 M35

M41 M42 M43 M44 M45

S11 S12 S13 S14 S15

S = S21 S22 S23 S24 S25

S31 S32 S33 S34 S35

S41 S42 S43 S44 S45

where Mij represents the number of jth type product manufactured in ith week and Sij the number of jth

product sold in ith week. We may also represent the cost of each product by a single dimensional array C as

follows:

where Cj is the cost of jth type product.

Array 321

We shall represent the value of products manufactured and sold by two value arrays, namely, Mvalue

and Svalue. Then,

Mvalue[i][j] = Mij x Cj

Svalue[i][j] = Sij x Cj

A program to generate the required outputs for the review meeting is shown in Fig. 9.13. The following

additional variables are used:

Mweek[i] = Value of all the products manufactured in week i

=

J 1

5

 Mvalue[i][j]

Sweek[i] = Value of all the products in week i

=
J 1

5

 Svalue[i][j]

Mproduct[j] = Value of jth type product manufactured during the month

=

i 1

4

 Mvalue[i][j]

Sproduct[j] = Value of jth type product sold during the month

=
i 1

4

 Svalue[i][j]

Mtotal = Total value of all the products manufactured during the month

=

i 1

4

 Mweek[i] =

j 1

5

 Mproduct[j]

Stotal = Total value of all the products sold during the month

=

i 1

4

 Sweek[i] =

j 1

5

 Sproduct[j]

Program

 main()

{

 int M[5][6],S[5][6],C[6],

 Mvalue[5][6],Svalue[5][6],

 Mweek[5], Sweek[5],

 Mproduct[6], Sproduct[6],

 Mtotal, Stotal, i,j,number;

 /* Input data */

 printf (“ Enter products manufactured week_wise \n”);

 printf (“ M11,M12,——, M21,M22,—— etc\n”);

for(i=1; i<=4; i++)

 for(j=1;j<=5; j++)

 scanf(“%d”,&M[i][j]);

322 Computing Fundamentals & C Programming

 printf (“ Enter products sold week_wise\n”);

 printf (“ S11,S12,——, S21,S22,—— etc\n”);

 for(i=1; i<=4; i++)

 for(j=1; j<=5; j++)

 scanf(“%d”, &S[i][j]);

 printf(“ Enter cost of each product\n”);

 for(j=1; j <=5; j++)

 scanf(“%d”,&C[j]);

 /* Value matrices of production and sales */

 for(i=1; i<=4; i++)

 for(j=1; j<=5; j++)

{

 Mvalue[i][j] = M[i][j] * C[j];

 Svalue[i][j] = S[i][j] * C[j];

}

 /* Total value of weekly production and sales */

 for(i=1; i<=4; i++)

{

 Mweek[i] = 0 ;

 Sweek[i] = 0 ;

 for(j=1; j<=5; j++)

{

 Mweek[i] += Mvalue[i][j];

 Sweek[i] += Svalue[i][j];

}

}

 /* Monthly value of product_wise production and sales */

 for(j=1; j<=5; j++)

{

 Mproduct[j] = 0 ;

 Sproduct[j] = 0 ;

 for(i=1; i<=4; i++)

{

 Mproduct[j] += Mvalue[i][j];

 Sproduct[j] += Svalue[i][j];

Array 323

}

}

 /* Grand total of production and sales values */

 Mtotal = Stotal = 0;

 for(i=1; i<=4; i++)

{

 Mtotal += Mweek[i];

 Stotal += Sweek[i];

}

 /***

 Selection and printing of information required

 ***/

 printf(“\n\n”);

 printf(“ Following is the list of things you can\n”);

 printf(“ request for. Enter appropriate item number\n”);

 printf(“ and press RETURN Key\n\n”);

 printf(“ 1.Value matrices of production & sales\n”);

 printf(“ 2.Total value of weekly production & sales\n”);

 printf(“ 3.Product_wise monthly value of production &”);

 printf(“ sales\n”);

 printf(“ 4.Grand total value of production & sales\n”);

 printf(“ 5.Exit\n”);

 number = 0;

 while(1)

 { /* Beginning of while loop */

 printf(“\n\n ENTER YOUR CHOICE:”);

 scanf(“%d”,&number);

 printf(“\n”);

 if(number == 5)

{

 printf(“ GOOD BYE\n\n”);

 break;

}

 switch(number)

 { /* Beginning of switch */

 /* VALUE MATRICES */

 case 1:

 printf(“ VALUE MATRIX OF PRODUCTION\n\n”);

 for(i=1; i<=4; i++)

{

324 Computing Fundamentals & C Programming

 printf(“ Week(%d)\t”,i);

 for(j=1; j <=5; j++)

 printf(“%7d”, Mvalue[i][j]);

 printf(“\n”);

}

 printf(“\n VALUE MATRIX OF SALES\n\n”);

 for(i=1; i <=4; i++)

{

 printf(“ Week(%d)\t”,i);

 for(j=1; j <=5; j++)

 printf(“%7d”, Svalue[i][j]);

 printf(“\n”);

}

 break;

 /* WEEKLY ANALYSIS */

 case 2:

 printf(“ TOTAL WEEKLY PRODUCTION & SALES\n\n”);

 printf(“ PRODUCTION SALES\n”);

 printf(“ — — — — — — — \n”);

 for(i=1; i <=4; i++)

{

 printf(“ Week(%d)\t”, i);

 printf(“%7d\t%7d\n”, Mweek[i], Sweek[i]);

}

 break;

 /* PRODUCT WISE ANALYSIS */

 case 3:

 printf(“ PRODUCT_WISE TOTAL PRODUCTION &”);

 printf(“ SALES\n\n”);

 printf(“ PRODUCTION SALES\n”);

 printf(“ — — — — — — — \n”);

 for(j=1; j <=5; j++)

{

 printf(“ Product(%d)\t”, j);

 printf(“%7d\t%7d\n”,Mproduct[j],Sproduct[j]);

}

 break;

 /* GRAND TOTALS */

 case 4:

 printf(“ GRAND TOTAL OF PRODUCTION & SALES\n”);

 printf(“\n Total production = %d\n”, Mtotal);

 printf(“ Total sales = %d\n”, Stotal);

Array 325

 break;

 /* D E F A U L T */

 default :

 printf(“ Wrong choice, select again\n\n”);

 break;

 } /* End of switch */

 } /* End of while loop */

 printf(“ Exit from the program\n\n”);

 } /* End of main */

Output

 Enter products manufactured week_wise

 M11, M12, — — – –, M21, M22, ——–– etc

 11 15 12 14 13

 13 13 14 15 12

 12 16 10 15 14

 14 11 15 13 12

 Enter products sold week_wise

 S11,S12,— — – –, S21,S22,——–– etc

 10 13 9 12 11

 12 10 12 14 10

 11 14 10 14 12

 12 10 13 11 10

 Enter cost of each product

 10 20 30 15 25

 Following is the list of things you can

 request for. Enter appropriate item number

 and press RETURN key

 1.Value matrices of production & sales

 2.Total value of weekly production & sales

 3.Product_wise monthly value of production & sales

 4.Grand total value of production & sales

 5.Exit

 ENTER YOUR CHOICE:1

 VALUE MATRIX OF PRODUCTION

 Week(1) 110 300 360 210 325

 Week(2) 130 260 420 225 300

 Week(3) 120 320 300 225 350

 Week(4) 140 220 450 185 300

 VALUE MATRIX OF SALES

 Week(1) 100 260 270 180 275

 Week(2) 120 200 360 210 250

 Week(3) 110 280 300 210 300

326 Computing Fundamentals & C Programming

 Week(4) 120 200 390 165 250

 ENTER YOUR CHOICE:2

 TOTAL WEEKLY PRODUCTION & SALES

 PRODUCTION SALE

Week(1) 1305 1085

 Week(2) 1335 1140

 Week(3) 1315 1200

 Week(4) 1305 1125

 ENTER YOUR CHOICE:3

 PRODUCT_WISE TOTAL PRODUCTION & SALES

 PRODUCTION SALES

 Product(1) 500 450

 Product(2) 1100 940

 Product(3) 1530 1320

 Product(4) 855 765

 Product(5) 1275 1075

 ENTER YOUR CHOICE:4

 GRAND TOTAL OF PRODUCTION & SALES

 Total production = 5260

 Total sales = 4550

 ENTER YOUR CHOICE:5

 GOOD BYE

 Exit from the program

 Fig. 9.13

Review Questions

Fill in the Blanks

1. The variable used as a subscript in an array is popularly known as _________ variable.

2. An array that uses more than two subscripts is referred to as ______ array.

3. _______ is the process of arranging the elements of an array in order.

4. An array can be initialized either at compile time or at ________.

5. An array created using malloc function at run time is referred to as ______ array.

LO 9.1

LO 9.2

LO 9.3

LO 9.6

LO 9.6

Levels of Difficulty

: Low; : Medium; : High

Array 327

Multiple Choice Questions

1. We want to declare a two-dimensional integer type array called matrix for 3 rows and 5

columns. Which of the following declarations are correct?

A. int maxtrix [3],[5]; B. int matrix [5] [3];
C. int matrix [1+2] [2+3]; D. int matrix [3,5];
E. int matrix [3] [5];

2. Which of the following initialization statements are correct?

A. char str1[4] = “GOOD”; B. char str2[] = “C”;

C. char str3[5] = “Moon”; D. char str4[] = {‘S’, ‘U’, ‘N’};

E. char str5[10] = “Sun”;

True or False Statements

1. An array can store infinite data of similar type.

2. In declaring an array, the array size can be a constant or variable or an expression.

3. The declaration int x[2] = {1,2,3}; is illegal.

4. When an array is declared, C automatically initializes its elements to zero.

5. An expression that evaluates to an integral value may be used as a subscript.

6. In C, by default, the first subscript is zero.

7. When initializing a multidimensional array, not specifying all its dimensions is an error.

8. When we use expressions as a subscript, its result should be always greater than zero.

9. In C, we can use a maximum of 4 dimensions for an array.

10. Accessing an array outside its range is a compile time error.

11. A char type variable cannot be used as a subscript in an array.

12. An unsigned long int type can be used as a subscript in an array.

LO 9.4

LO 9.2

LO 9.1

LO 9.2

LO 9.2

LO 9.2

LO 9.5

LO 9.1

LO 9.2

LO 9.1

LO 9.2

LO 9.1

LO 9.2

LO 9.1

LO 9.2

LO 9.1

LO 9.2

LO 9.2

LO 9.2

LO 9.2

328 Computing Fundamentals & C Programming

Discussion Questions

1. What is a data structure? Why is an array called a data structure?

2. What is a dynamic array? How is it created? Give a typical example of use of a dynamic

array.

3. What happens when an array with a specified size is assigned

(a) with values fewer than the specified size; and

(b) with values more than the specified size.

4. Discuss how initial values can be assigned to a multidimensional array.

Debugging Exercises

1. Identify errors, if any, in each of the following array declaration statements, assuming that

ROW and COLUMN are declared as symbolic constants:

(a) int score (100);

(b) float values [10,15];

(c) char name[15];

(d) float average[ROW],[COLUMN];

(e) double salary [i + ROW]

(f) long int number [ROW]

(g) int sum[];

(h) int array x[COLUMN];

2. Identify errors, if any, in each of the following initialization statements.

(a) int number[] = {0,0,0,0,0};

(b) float item[3][2] = {0,1,2,3,4,5};

LO 9.1

LO 9.6

LO 9.2

LO 9.5

LO 9.2

LO 9.4

LO 9.2

LO 9.4

LO 9.2

LO 9.4

LO 9.2

LO 9.4

LO 9.2

LO 9.4

LO 9.2

LO 9.4LO 9.2

LO 9.4

LO 9.2

LO 9.4

LO 9.2

LO 9.4

LO 9.2

LO 9.4

Array 329

(c) char word[] = {‘A’,‘R’, ‘R’, ‘A’, ‘Y’};

(d) int m[2,4] = {(0,0,0,0)(1,1,1,1)};

(e) float result[10] = 0;

3. Assume that the arrays A and B are declared as follows:

 int A[5][4];

 float B[4];

Find the errors (if any) in the following program segments.

(a) for (i=1; i<4; i++)

 scanf(“%f”, B[i]);

(b) for (i=1; i<=5; i++)

 for(j=1; j<=4; j++)

 A[i][j] = 0;

(c) for (i=0; i<=4; i++)

 B[i] = B[i]+i;

(d) for (i=4; i>=0; i– –)

 for (j=0; j<4; j++)

 A[i][j] = B[j] + 1.0;

4. What is the error in the following program?

 main ()

{

 int x ;

 float y [] ;

}

5. What is the output of the following program?

 main ()

 {

 int m [] = { 1,2,3,4,5 }

 int x, y = 0;

 for (x = 0; x < 5; x++)

 y = y + m [x];

 printf(“%d”, y) ;

 }

6. What is the output of the following program?

 main ()

 {

 chart string [] = “HELLO WORLD” ;

LO 9.2

LO 9.4

LO 9.2

LO 9.4

LO 9.2

LO 9.2

LO 9.2

LO 9.4

LO 9.2

LO 9.4

LO 9.2

LO 9.4

LO 9.2

LO 9.2

LO 9.2

330 Computing Fundamentals & C Programming

 int m;

 for (m = 0; string [m] != ‘\0’; m++)

 if ((m%2) == 0)

 printf(“%c”, string [m]);

 }

Programming Exercises

1. Write a program for fitting a straight line through a set of points (xi, yi), i = 1,....,n.
The straight line equation is

 y = mx + c

and the values of m and c are given y

 m =
n x y x y

n x x

1 i 1 i

i
2

i
2

() ()()

() ()

 c =
1

n
(yi – m xi)

All summations are from 1 to n.

2. The daily maximum temperatures recorded in 10 cities during the month of January (for all

31 days) have been tabulated as follows:

City

Day 1 2 3 - - - - - - - - - - - - - - - - - - 10

1 - - - - - - - - - - - - - - - - - -

2

3

–

–

–

–

31

Write a program to read the table elements into a two-dimensional array temperature, and

to find the city and day corresponding to

(a) the highest temperature and

(b) the lowest temperature.

3. An election is contested by 5 candidates. The candidates are numbered 1 to 5 and the voting

is done by marking the candidate number on the ballot paper. Write a program to read the

ballots and count the votes cast for each candidate using an array variable count. In case, a

number read is outside the range 1 to 5, the ballot should be considered as a ‘spoilt ballot’

and the program should also count the number of spoilt ballots.

4. The following set of numbers is popularly known as Pascal’s triangle.

 1

 1 1

 1 2 1

LO 9.4

LO 9.4

LO 9.2

LO 9.5

Array 331

 1 3 3 1

 1 4 6 4 1

 1 5 10 10 5 1

 – – – – – – –

 – – – – – – – –

If we denote rows by i and columns by j, then any element (except the boundary elements)

in the triangle is given by

pij = p i–1, j–1 + p i–1,j

Write a program to calculate the elements of the Pascal triangle for 10 rows and print the

results.

5. The annual examination results of 100 students are tabulated as follows:

Roll No. Subject 1 Subject 2 Subject 3

.

.

.

Write a program to read the data and determine the following:

(a) Total marks obtained by each student.

(b) The highest marks in each subject and the Roll No. of the student who secured it.

(c) The student who obtained the highest total marks.

6. Given are two one-dimensional arrays A and B which are sorted in ascending order. Write a

program to merge them into a single sorted array C that contains every item from arrays A

and B, in ascending order.

7. Two matrices that have the same number of rows and columns can be multiplied to produce

a third matrix. Consider the following two matrices.

 A =

a aa

a aa

. .

. .

. .

a a

11 12 1n

12 22 2n

n1 nn

 B =

b bb

b bb

. .

. .

. .

b b

11 12 1n

12 22 2n

n1 nn

The product of A and B is a third matrix C of size n n where each element of C is given by

the following equation:

LO 9.2

LO 9.2

LO 9.4

332 Computing Fundamentals & C Programming

Cij

k 1

n

 = aikbkj

Write a program that will read the values of elements of A and B and produce the product

matrix C.

8. Write a program that fills a five-by-five matrix as follows:

Upper left triangle with +1s

Lower right triangle with –1s

Right to left diagonal with zeros

Display the contents of the matrix using not more than two printf statements

9. Selection sort is based on the following idea:

Selecting the largest array element and swapping it with the last array element leaves an unsorted list

whose size is 1 less than the size of the original list. If we repeat this step again on the unsorted list we

will have an ordered list of size 2 and an unordered list size n–2. When we repeat this until the size of

the unsorted list becomes one, the result will be a sorted list.

Write a program to implement this algorithm.

10. Develop a program to implement the binary search algorithm. This technique compares the

search key value with the value of the element that is midway in a “sorted” list. Then;

(a) If they match, the search is over.

(b) If the search key value is less than the middle value, then the first half of the list contains the key

value.

(c) If the search key value is greater than the middle value, then the second half contains the key value.

Repeat this “divide-and-conquer” strategy until we have a match. If the list is reduced to

one non-matching element, then the list does not contain the key value.

Use the sorted list created in Exercise 9.9 or use any other sorted list.

11. Write a program that will compute the length of a given character string.

12. Write a program that will count the number occurrences of a specified character in a given

line of text. Test your program.

13. Write a program to read a matrix of size m n and print its transpose.

14. Every book published by international publishers should carry an International Standard

Book Number (ISBN). It is a 10 character 4 part number as shown below.

 0-07-041183-2

The first part denotes the region, the second represents publisher, the third identifies the

book and the fourth is the check digit. The check digit is computed as follows:

 Sum = (1 first digit) + (2 second digit) + (3 third digit) + - - - - + (9 ninth digit).

Check digit is the remainder when sum is divided by 11. Write a program that reads a given

ISBN number and checks whether it represents a valid ISBN.

15. Write a program to read two matrices A and B and print the following:

(a) A + B; and

(b) A – B.

LO 9.4

LO 9.2

LO 9.2

LO 9.2

LO 9.2

LO 9.2

LO 9.2

LO 9.4

Array 333

16. Write a for loop statement that initializes all the diagonal elements of an array to one and

others to zero as shown below. Assume 5 rows and 5 columns.

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

.

.

.

.

.

0 0 0 0 0 1

LO 9.4

 334 Computing Fundamentals & C Programming

10.1 INTRODUCTION

A string is a sequence of characters that is treated as a single data item. We have used strings in

a number of examples in the past. Any group of characters (except double quote sign) defi ned

between double quotation marks is a string constant. Example:

“Man is obviously made to think.”

If we want to include a double quote in the string to be printed, then we may use it with a back

slash as shown below.

 “\” Man is obviously made to think,\” said Pascal.”

For example,

printf (“\” Well Done !”\”);

will output the string

“ Well Done !”

while the statement

printf(“ Well Done !”);

will output the string

Well Done!

L
E

A
R

N
IN

G
 O

B
J
E

C
T
IV

E
S

A er reading this chapter, you will be able to

LO 10.1 Discuss how string variables are declared and ini alized

LO 10.2 Explain how strings are read from terminal

LO 10.3 Describe how strings are wri en to screen

LO 10.4 Illustrate how strings are manipulated

IV
E

S

CHAPT ERCHAPT ER

1010Character ArraysCharacter Arrays

and Stringsand Strings

 Character Arrays and Strings 335

Character strings are often used to build meaningful and readable programs. The common operations

performed on character strings include the following:

� Reading and writing strings.

� Combining strings together.

� Copying one string to another.

� Comparing strings for equality.

� Extracting a portion of a string.

In this chapter, we shall discuss these operations in detail and examine library functions that implement

them.

10.2 DECLARING AND INITIALIZING STRING VARIABLES LO 10.1

C does not support strings as a data type. However, it allows us to represent strings as character arrays. In

C, therefore, a string variable is any valid C variable name and is always declared as an array of characters.

The general form of declaration of a string variable is:

char string_name[size];

The size determines the number of characters in the string_name. Some examples are as follows:

char city[10];

char name[30];

When the compiler assigns a character string to a character array, it automatically supplies a null

character (‘\0 ‘) at the end of the string. Therefore, the size should be equal to the maximum number of

characters in the string plus one.

Like numeric arrays, character arrays may be initialized when they are declared. C permits a character

array to be initialized in either of the following two forms:

char city [9] = “ NEW YORK “;

char city [9]={‘N’,‘E’,‘W’,‘ ‘,‘Y’,‘O’,‘R’,‘K’,‘\0’};

The reason that city had to be 9 elements long is that the string NEW YORK contains 8 characters and

one element space is provided for the null terminator. Note that when we initialize a character array by

listing its elements, we must supply explicitly the null terminator.

C also permits us to initialize a character array without specifying the number of elements. In such cases,

the size of the array will be determined automatically, based on the number of elements initialized. For

example, the statement

char string [] = {‘G’,‘O’,‘O’,‘D’,‘\0’};

defi nes the array string as a fi ve element array.

We can also declare the size much larger than the string size in the initializer. That is, the statement.

char str[10] = “GOOD”;

is permitted. In this case, the computer creates a character array of size 10, places the value “GOOD” in it,

terminates with the null character, and initializes all other elements to NULL. The storage will look like

G O O D 0 0 0 0 0 0\ \ \ \ \ \

However, the following declaration is illegal.

 336 Computing Fundamentals & C Programming

char str2[3] = “GOOD”;

This will result in a compile time error. Also note that we cannot separate the initialization from

declaration. That is,

char str3[5];

str3 = “GOOD”;

is not allowed. Similarly,

char s1[4] = “abc”;

char s2[4];

s2 = s1; /* Error */

is not allowed. An array name cannot be used as the left operand of an assignment operator.

Terminating Null Character

You must be wondering, “why do we need a terminating null character?” As we know, a string is not a data

type in C, but it is considered a data structure stored in an array. The string is a variable-length structure and

is stored in a fi xed-length array. The array size is not always the size of the string and most often it is much

larger than the string stored in it. Therefore, the last element of the array need not represent the end of the

string. We need some way to determine the end of the string data and the null character serves as the “end-

of-string” marker.

10.3 READING STRINGS FROM TERMINAL LO 10.2

Using scanf Function

The familiar input function scanf can be used with %s format specifi cation to read in a string of characters.

Example:

char address[10]

scanf(“%s”, address);

The problem with the scanf function is that it terminates its input on the fi rst white space it fi nds. A

white space includes blanks, tabs, carriage returns, form feeds, and new lines. Therefore, if the following

line of text is typed in at the terminal,

NEW YORK

then only the string “NEW” will be read into the array address, since the blank space after the word ‘NEW’

will terminate the reading of string.

The scanf function automatically terminates the string that is read with a null character and therefore,

the character array should be large enough to hold the input string plus the null character. Note that unlike

previous scanf calls, in the case of character arrays, the ampersand (&) is not required before the variable

name.

The address array is created in the memory as shown below:

N

0 1 2 3 4 5 6 7 8 9

E W 0 ?? ? ? ? ?\

Note that the unused locations are fi lled with garbage.

If we want to read the entire line “NEW YORK”, then we may use two character arrays of appropriate

sizes. That is,

 Character Arrays and Strings 337

char adr1[5], adr2[5];

scanf(“%s %s”, adr1, adr2);

with the line of text

NEW YORK

will assign the string “NEW” to adr1 and “YORK” to adr2.

WORKED-OUT PROBLEM 10.1 L

Write a program to read a series of words from a terminal using scanf function.

The program shown in Fig. 10.1 reads four words and displays them on the screen. Note that the string ‘Oxford

Road’ is treated as two words while the string ‘Oxford-Road’ as one word.

Program

 main()

 {

 char word1[40], word2[40], word3[40], word4[40];

 printf(“Enter text : \n”);

 scanf(“%s %s”, word1, word2);

 scanf(“%s”, word3);

 scanf(“%s”, word4);

 printf(“\n”);

 printf(“word1 = %s\nword2 = %s\n”, word1, word2);

 printf(“word3 = %s\nword4 = %s\n”, word3, word4);

 }

Output

 Enter text :

 Oxford Road, London M17ED

 word1 = Oxford

 word2 = Road,

 word3 = London

 word4 = M17ED

 Enter text :

 Oxford-Road, London-M17ED United Kingdom

 word1 = Oxford-Road

 word2 = London-M17ED

 word3 = United

 word4 = Kingdom

Fig. 10.1 Reading a series of words using scanf function

Levels of Diffi culty

L: Low; M: Medium; H: High

 338 Computing Fundamentals & C Programming

We can also specify the fi eld width using the form %ws in the scanf statement for reading a specifi ed

number of characters from the input string. Example:

scanf(“%ws”, name);

Here, the two following things may happen:

 1. The width w is equal to or greater than the number of characters typed in. The entire string will be

stored in the string variable.

 2. The width w is less than the number of characters in the string. The excess characters will be

truncated and left unread.

Consider the following statements:

char name[10];

scanf(“%5s”, name);

The input string RAM will be stored as:

R

0 1 2 3 4 5 6 7 8 9

A M 0 ?? ? ? ? ?\

The input string KRISHNA will be stored as:

K

0 1 2 3 4 5 6 7 8 9

R I 0H ? ? ? ?\S

Reading a Line of Text

We have seen just now that scanf with %s or %ws can read only strings without whitespaces. That is,

they cannot be used for reading a text containing more than one word. However, C supports a format

specifi cation known as the edit set conversion code %[. .] that can be used to read a line containing a

variety of characters, including whitespaces. Recall that we have used this conversion code in Chapter 6.

For example, the program segment

char line [80];

scanf(”%[^\n]”, line);

printf(“%s”, line);

will read a line of input from the keyboard and display the same on the screen. We would very rarely use

this method, as C supports an intrinsic string function to do this job. This is discussed in the next section.

Using getchar and gets Functions

We have discussed in Chapter 6 as to how to read a single character from the terminal, using the function

getchar. We can use this function repeatedly to read successive single characters from the input and place

them into a character array. Thus, an entire line of text can be read and stored in an array. The reading is

terminated when the newline character (‘\n’) is entered and the null character is then inserted at the end of

the string. The getchar function call takes the following form:

char ch;

ch = getchar();

Note that the getchar function has no parameters.

 Character Arrays and Strings 339

WORKED-OUT PROBLEM 10.2 M

Write a program to read a line of text containing a series of words from the terminal.

The program shown in Fig. 10.2 can read a line of text (up to a maximum of 80 characters) into the string

line using getchar function. Every time a character is read, it is assigned to its location in the string line

and then tested for newline character. When the newline character is read (signalling the end of line), the

reading loop is terminated and the newline character is replaced by the null character to indicate the end of

character string.

When the loop is exited, the value of the index c is one number higher than the last character position

in the string (since it has been incremented after assigning the new character to the string). Therefore, the

index value c-1 gives the position where the null character is to be stored.

 Program

 #include <stdio.h>

 main()

 {

 char line[81], character;

 int c;

 c = 0;

 printf(“Enter text. Press <Return> at end\n”);

 do

 {

 character = getchar();

 line[c] = character;

 c++;

 }

 while(character != ‘\n’);

 c = c - 1;

 line[c] = ‘\0’;

 printf(“\n%s\n”, line);

 }

 Output

 Enter text. Press <Return> at end

 Programming in C is interesting.

 Programming in C is interesting.

 Enter text. Press <Return> at end

 National Centre for Expert Systems, Hyderabad.

 National Centre for Expert Systems, Hyderabad.

Fig. 10.2 Program to read a line of text from terminal

 340 Computing Fundamentals & C Programming

Another and more convenient method of reading a string of text containing whitespaces is to use the

library function gets available in the <stdio.h> header fi le. This is a simple function with one string

parameter and called as under:

gets (str);

str is a string variable declared properly. It reads characters into str from the keyboard until a new-line

character is encountered and then appends a null character to the string. Unlike scanf, it does not skip

whitespaces. For example the code segment

char line [80];

gets (line);

printf (“%s”, line);

reads a line of text from the keyboard and displays it on the screen.

The last two statements may be combined as follows:

printf(“%s”, gets(line));

(Be careful not to input more character that can be stored in the string variable used. Since C does not

check array-bounds, it may cause problems.)

C does not provide operators that work on strings directly. For instance we cannot assign one string to

another directly. For example, the assignment statements.

string = “ABC”;

string1 = string2;

are not valid. If we really want to copy the characters in string2 into string1, we may do so on a character-

by-character basis.

WORKED-OUT PROBLEM 10.3 M

Write a program to copy one string into another and count the number of characters copied.

The program is shown in Fig. 10.3. We use a for loop to copy the characters contained inside string2 into

the string1. The loop is terminated when the null character is reached. Note that we are again assigning a

null character to the string1.

Program

 main()

 {

 char string1[80], string2[80];

 int i;

 printf(“Enter a string \n”);

 printf(“?”);

 scanf(“%s”, string2);

 for(i=0 ; string2[i] != ‘\0’; i++)

 string1[i] = string2[i];

 Character Arrays and Strings 341

 string1[i] = ‘\0’;

 printf(“\n”);

 printf(“%s\n”, string1);

 printf(“Number of characters = %d\n”, i);

 }

Output

 Enter a string

 ?Manchester

 Manchester

 Number of characters = 10

 Enter a string

 ?Westminster

 Westminster

 Number of characters = 11

Fig. 10.3 Copying one string into another

WORKED-OUT PROBLEM 10.4 H

The program in Fig. 10.4 shows how to write a program to fi nd the number of vowels and consonants in a

text string. Elucidate the program and fl ow chart for the program.

Algorithm

 Step 1 – Start

 Step 2 – Read a text string (str)

 Step 3 – Set vow = 0, cons = 0, i = 0

 Step 4 – Repeat steps 5-8 while (str[i]!=’\0’)

 Step 5 – if str[i] = ‘a’ OR str[i] = ‘A’ OR str[i] = ‘e’ OR str[i] = ‘E’ OR str[i] = ‘i’

 OR str[i] = ‘I’ OR str[i] = ‘o’ OR str[i] = ‘O’ OR str[i] = ‘u’ OR str[i] = ‘U’
 goto Step 6 else goto Step 7

 Step 6 – Increment the vowels counter by 1 (vow=vow+1)

 Step 7 – Increment the consonants counter by 1 (cons=cons+1)

 Step 8 – i = i + 1

 Step 9 – Display the number of vowels and consonants (vow, cons)

 Step 10 – Stop

 342 Computing Fundamentals & C Programming

 Flow Chart

Start

Read text string str

Is str[]= \0 ?

No

vow = 0
cons = 0

i = 0

i = i + 1

No

vow = vow + 1 cons = cons + 1

Display vow
Display cons

Stop

Is str[i] = a OR
str[i] = A OR
str[i] = e OR
str[i] = E OR
str[i] = i OR
str[i] = I OR
str[i] = o OR
str[i] = O OR
str[i] = u OR
str[i] = U ?

Yes

Yes

 Program

 #include <stdio.h>

 #include <conio.h>

 #include <string.h>

 void main()

 {

 Character Arrays and Strings 343

 char str[30];

 int vow=0,cons=0,i=0;

 clrscr();

 printf(“Enter a string: “);

 gets(str);

 while(str[i] != ‘\0’)

 {

 if(str[i]== a’ || str[i]==‘A’ || str[i]==‘e’ || str[i]==‘E’ || str[i]==‘i’

 || str[i]==‘I’ || str[i]==‘o’ || str[i]==‘O’ || str[i]==‘u’ || str[i]==‘U’)

 vow++;

 else

 cons++;

 i++;

 }

 printf(“\nNumber of Vowels = %d”,vow);

 printf(“\nNumber of Consonants = %d”,cons);

 getch();

 }

Output

 Enter a string: Chennai

 Number of Vowels = 3

 Number of Consonants = 4

 Fig. 10.4 Program to fi nd the number of vowel and consonants in a text string

10.4 WRITING STRINGS TO SCREEN LO 10.3

Using printf Function

We have used extensively the printf function with %s format to print strings to the screen. The format

%s can be used to display an array of characters that is terminated by the null character. For example, the

statement

printf(“%s”, name);

can be used to display the entire contents of the array name.

We can also specify the precision with which the array is displayed. For instance, the specifi cation

%10.4

indicates that the fi rst four characters are to be printed in a fi eld width of 10 columns.

However, if we include the minus sign in the specifi cation (e.g., %-10.4s), the string will be printed left-

justifi ed. The Program 10.4 illustrates the effect of various %s specifi cations.

WORKED-OUT PROBLEM 10.5 M

Write a program to store the string “United Kingdom” in the array country and display the string under

various format specifi cations.

 344 Computing Fundamentals & C Programming

The program and its output are shown in Fig. 10.5. The output illustrates the following features of the %s

specifi cations.

1. When the fi eld width is less than the length of the string, the entire string is printed.
2. The integer value on the right side of the decimal point specifi es the number of characters to be

printed.
3. When the number of characters to be printed is specifi ed as zero, nothing is printed.
4. The minus sign in the specifi cation causes the string to be printed left-justifi ed.
5. The specifi cation % .ns prints the fi rst n characters of the string.

 Program

 main()

 {

 char country[15] = “United Kingdom”;

 printf(“\n\n”);

 printf(“*123456789012345*\n”);

 printf(“ — — – – – \n”);

 printf(“%15s\n”, country);

 printf(“%5s\n”, country);

 printf(“%15.6s\n”, country);

 printf(“%-15.6s\n”, country);

 printf(“%15.0s\n”, country);

 printf(“%.3s\n”, country);

 printf(“%s\n”, country);

 printf(“——––– \n”);

 }

 Output

 123456789012345

 — — – – –

 United Kingdom

 United Kingdom

 United

 United

 Uni

 United Kingdom

 — — – – –

Fig. 10.5 Writing strings using %s format

The printf on UNIX supports another nice feature that allows for variable fi eld width or precision. For

instance

printf(“%*.*s\n”, w, d, string);

prints the fi rst d characters of the string in the fi eld width of w.

This feature comes in handy for printing a sequence of characters. Program 10.5 illustrates this.

 Character Arrays and Strings 345

WORKED-OUT PROBLEM 10.6 M

Write a program using for loop to print the following output:

C

CP

CPr

CPro

.....

.....

CProgramming

CProgramming

.....

.....

CPro

CPr

CP

C

The outputs of the program in Fig. 10.6, for variable specifi cations %12.*s, %.*s, and %*.1s are shown in

Fig. 10.7, which further illustrates the variable fi eld width and the precision specifi cations.

Program

 main()

 {

 int c, d;

 char string[] = “CProgramming”;

 printf(“\n\n”);

 printf(“— — — — — — — — — — — — \n”);

 for(c = 0 ; c <= 11 ; c++)

 {

 d = c + 1;

 printf(“|%-12.*s|\n”, d, string);

 }

 printf(“|— — — — — — — — — — — — |\n”);

 for(c = 11 ; c >= 0 ; c— —)

 {

 d = c + 1;

 printf(“|%-12.*s|\n”, d, string);

 }

 printf(“— — — — — — — — — — — — \n”);

 }

Output

 C
 CP
 CPr

 346 Computing Fundamentals & C Programming

 CPro
 CProg
 CProgr
 CProgra
 CProgram
 CProgramm
 CProgrammi
 CProgrammin
 CProgramming
 CProgramming
 CProgrammin
 CProgrammi
 CProgramm
 CProgram
 CProgra
 CProgr
 CProg
 CPro
 CPr
 CP
 C

Fig. 10.6 Illustration of variable fi eld specifi cations by printing sequences of characters

 C

 CP

 CPr

 CPro

 CProg

 CProgr

 CProgra

 CProgram

 CProgramm

 CProgrammi

 CProgrammin

CProgramming

CProgramming

 CProgrammin

 CProgrammi

 CProgramm

 CProgram

 CProgra

 CProgr

 CProg

 CPro

 CPr

 CP
 C

C|

CP|

CPr|

CPro|

CProg|

CProgr|

CProgra|

CProgram|

CProgramm|

CProgrammi|

CProgrammin|

CProgramming|

CProgramming|

CProgrammin|

CProgrammi|

CProgramm|

CProgram|

CProgra|

CProgr|

CProg|

CPro|

CPr|

CP|
C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|
C|

 (a) %12.*s (b) %.*s (c) %*.1s

 Fig. 10.7 Further illustrations of variable specifi cations

 Character Arrays and Strings 347

Using putchar and puts Functions

Like getchar, C supports another character handling function putchar to output the values of character

variables. It takes the following form:
 char ch = ‘A’;

putchar (ch);

The function putchar requires one parameter. This statement is equivalent to

printf(“%c”, ch);

We have used putchar function in Chapter 6 to write characters to the screen. We can use this function

repeatedly to output a string of characters stored in an array using a loop. Example:

char name[6] = “PARIS”

for (i=0, i<5; i++)

 putchar(name[i];

putchar(‘\n’);

Another and more convenient way of printing string values is to use the function puts declared in the

header fi le <stdio.h>. This is a one parameter function and invoked as under

puts (str);

where str is a string variable containing a string value. This prints the value of the string variable str and

then moves the cursor to the beginning of the next line on the screen. For example, the program segment

char line [80];

gets (line);

puts (line);

reads a line of text from the keyboard and displays it on the screen. Note that the syntax is very simple

compared to using the scanf and printf statements.

10.5 ARITHMETIC OPERATIONS ON CHARACTERS LO 10.4

C allows us to manipulate characters the same way we do with numbers. Whenever a character constant or

character variable is used in an expression, it is automatically converted into an integer value by the system.

The integer value depends on the local character set of the system.

To write a character in its integer representation, we may write it as an integer. For example, if the

machine uses the ASCII representation, then,

x = ‘a’;

printf(“%d\n”,x);

will display the number 97 on the screen.

It is also possible to perform arithmetic operations on the character constants and variables. For example,

x = ‘z’–1;

is a valid statement. In ASCII, the value of ‘z’ is 122 and therefore, the statement will assign the value 121

to the variable x.

We may also use character constants in relational expressions. For example, the expression

ch >= ‘A’ && ch <= ‘Z’

would test whether the character contained in the variable ch is an upper-case letter.

We can convert a character digit to its equivalent integer value using the following relationship:

x = character - ‘0’;

where x is defi ned as an integer variable and character contains the character digit. For example, let us

assume that the character contains the digit ‘7’,

 348 Computing Fundamentals & C Programming

Then,

 x = ASCII value of ‘7’ – ASCII value of ‘0’

 = 55 – 48

 = 7

The C library supports a function that converts a string of digits into their integer values. The function

takes the form

x = atoi(string);

x is an integer variable and string is a character array containing a string of digits. Consider the following

segment of a program:
number = “1988”;
year = atoi(number);

number is a string variable which is assigned the string constant “1988”. The function atoi converts the

string “1988” (contained in number) to its numeric equivalent 1988 and assigns it to the integer variable

year. String conversion functions are stored in the header fi le <std.lib.h>.

WORKED-OUT PROBLEM 10.7 L

Write a program which would print the alphabet set a to z and A to Z in decimal and character form.

The program is shown in Fig. 10.8. In ASCII character set, the decimal numbers 65 to 90 represent upper

case alphabets and 97 to 122 represent lower case alphabets. The values from 91 to 96 are excluded using

an if statement in the for loop.

Program

 main()

 {

 char c;

 printf(“\n\n”);

 for(c = 65 ; c <= 122 ; c = c + 1)

 {

 if(c > 90 && c < 97)

 continue;

 printf(“|%4d - %c “, c, c);

 }

 printf(“|\n”);

 }

Output

 | 65 - A | 66 - B | 67 - C | 68 - D | 69 - E | 70 - F

 | 71 - G | 72 - H | 73 - I | 74 - J | 75 - K | 76 - L

 | 77 - M| 78 - N| 79 - O| 80 - P| 81 - Q| 82 - R

 | 83 - S| 84 - T| 85 - U| 86 - V| 87 - W| 88 - X

 | 89 - Y| 90 - Z| 97 - a| 98 - b| 99 - c| 100 - d

 |101 - e| 102 - f| 103 - g| 104 - h| 105 - i| 106 - j

 | 107 - k| 108 - l| 109 - m| 110 - n| 111 - o| 112 - p

 | 113 - q| 114 - r| 115 - s| 116 - t| 117 - u| 118 - v

 | 119 - w| 120 - x| 121 - y| 122 - z|

Fig. 10.8 Printing of the alphabet set in decimal and character form

 Character Arrays and Strings 349

10.6 PUTTING STRINGS TOGETHER LO 10.4

Just as we cannot assign one string to another directly, we cannot join two strings together by the simple

arithmetic addition. That is, the statements such as

string3 = string1 + string2;

string2 = string1 + “hello”;

are not valid. The characters from string1 and string2 should be copied into the string3 one after the other.

The size of the array string3 should be large enough to hold the total characters.

The process of combining two strings together is called concatenation. Program 10.9 illustrates the

concatenation of three strings.

WORKED-OUT PROBLEM 10.8 M

The names of employees of an organization are stored in three arrays, namely fi rst_name, second_name,

and last_name. Write a program to concatenate the three parts into one string to be called name.

The program is given in Fig. 10.9. Three for loops are used to copy the three strings. In the fi rst loop, the

characters contained in the fi rst_name are copied into the variable name until the null character is reached.

The null character is not copied; instead it is replaced by a space by the assignment statement

name[i] = ‘ ’ ;

Similarly, the second_name is copied into name, starting from the column just after the space created by

the above statement. This is achieved by the assignment statement

name[i+j+1] = second_name[j];

If fi rst_name contains 4 characters, then the value of i at this point will be 4 and therefore the fi rst

character from second_name will be placed in the fi fth cell of name. Note that we have stored a space in

the fourth cell.

In the same way, the statement

name[i+j+k+2] = last_name[k];

is used to copy the characters from last_name into the proper locations of name.

At the end, we place a null character to terminate the concatenated string name. In this example, it is

important to note the use of the expressions i+j+1 and i+j+k+2.

Program

 main()

 {

 int i, j, k ;

 char fi rst_name[10] = {“VISWANATH”} ;

 char second_name[10] = {“PRATAP”} ;

 char last_name[10] = {“SINGH”} ;

 char name[30] ;

 /* Copy fi rst_name into name */

 for(i = 0 ; fi rst_name[i] != ‘\0’ ; i++)

 name[i] = fi rst_name[i] ;

 350 Computing Fundamentals & C Programming

 /* End fi rst_name with a space */

 name[i] = ‘ ‘ ;

 /* Copy second_name into name */

 for(j = 0 ; second_name[j] != ‘\0’ ; j++)

 name[i+j+1] = second_name[j] ;

 /* End second_name with a space */

 name[i+j+1] = ‘ ‘ ;

 /* Copy last_name into name */

 for(k = 0 ; last_name[k] != ‘\0’; k++)

 name[i+j+k+2] = last_name[k] ;

 /* End name with a null character */

 name[i+j+k+2] = ‘\0’ ;

 printf(“\n\n”) ;

 printf(“%s\n”, name) ;

 }

Output

 VISWANATH PRATAP SINGH

 Fig. 10.9 Concatenation of strings

10.7 COMPARISON OF TWO STRINGS LO 10.4

Once again, C does not permit the comparison of two strings directly. That is, the statements such as

if(name1 == name2)

if(name == “ABC”)

are not permitted. It is therefore necessary to compare the two strings to be tested, character by character.

The comparison is done until there is a mismatch or one of the strings terminates into a null character,

whichever occurs fi rst. The following segment of a program illustrates this.

 i=0;

 while(str1[i] == str2[i] && str1[i] != ‘\0’

 && str2[i] != ‘\0’)

 i = i+1;

 if (str1[i] == ‘\0’ && str2[i] == ‘\0’)

 printf(“strings are equal\n”);

 else

 printf(“strings are not equal\n”);

10.8 STRING-HANDLING FUNCTIONS LO 10.4

Fortunately, the C library supports a large number of string-handling functions that can be used to carry out

many of the string manipulations discussed so far. Following are the most commonly used string-handling

functions:

 Character Arrays and Strings 351

Function Action

strcat() concatenates two strings

strcmp() compares two strings

strcpy() copies one string over another

strlen() fi nds the length of a string

We shall discuss briefl y how each of these functions can be used in the processing of strings.

 strcat() Function

The strcat function joins two strings together. It takes the following form:

strcat(string1, string2);

string1 and string2 are character arrays. When the function strcat is executed, string2 is appended to

string1. It does so by removing the null character at the end of string1 and placing string2 from there. The

string at string2 remains unchanged. For example, consider the following three strings:

0

0

0

Part1 =

Part2 =

Part3 =

01

1

1

12

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7 8 9

0\V E R Y

0

0

\

\

G

B

O

A

O

D

D

Execution of the statement

strcat(part1, part2);

0

0

Part1 =

will result in:

Part2 =

while the statement

01

1

1 22

2

3

3

4

4

5

5

6

6

7 8 9

0\G O O D

0\GV E R Y O O D

0

0

Part1 =

will result in:

Part3 =

01

1

1 22

2

3

3

4

4

5

5

6

6

7 8 9

0\B A D

0\BV E R Y A D

 352 Computing Fundamentals & C Programming

We must make sure that the size of string1 (to which string2 is appended) is large enough to

accommodate the fi nal string.

strcat function may also append a string constant to a string variable. The following is valid:

strcat(part1,”GOOD”);

C permits nesting of strcat functions. For example, the statement

strcat(strcat(string1,string2), string3);

is allowed and concatenates all the three strings together. The resultant string is stored in string1.

strcmp() Function

The strcmp function compares two strings identifi ed by the arguments and has a value 0 if they are equal.

If they are not, it has the numeric difference between the fi rst nonmatching characters in the strings. It takes

the form:

strcmp(string1, string2);

string1 and string2 may be string variables or string constants. Examples are:

strcmp(name1, name2);

strcmp(name1, “John”);

strcmp(“Rom”, “Ram”);

Our major concern is to determine whether the strings are equal; if not, which is alphabetically above.

The value of the mismatch is rarely important. For example, the statement

strcmp(“their”, “there”);

will return a value of –9 which is the numeric difference between ASCII “i” and ASCII “r”. That is, “i”

minus “r” in ASCII code is –9. If the value is negative, string1 is alphabetically above string2.

strcpy() Function

The strcpy function works almost like a string-assignment operator. It takes the following form:

strcpy(string1, string2);

and assigns the contents of string2 to string1. string2 may be a character array variable or a string

constant. For example, the statement

strcpy(city, “DELHI”);

will assign the string “DELHI” to the string variable city. Similarly, the statement

strcpy(city1, city2);

will assign the contents of the string variable city2 to the string variable city1. The size of the array city1

should be large enough to receive the contents of city2.

strlen() Function

This function counts and returns the number of characters in a string. It takes the form

n = strlen(string);

Where n is an integer variable, which receives the value of the length of the string. The argument may

be a string constant. The counting ends at the fi rst null character.

WORKED-OUT PROBLEM 10.9 M

s1, s2, and s3 are three string variables. Write a program to read two string constants into s1 and s2 and

compare whether they are equal or not. If they are not, join them together. Then copy the contents of s1

to the variable s3. At the end, the program should print the contents of all the three variables and their

lengths.

 Character Arrays and Strings 353

The program is shown in Fig. 10.10. During the fi rst run, the input strings are “New” and “York”. These

strings are compared by the statement

x = strcmp(s1, s2);

Since they are not equal, they are joined together and copied into s3 using the statement

strcpy(s3, s1);

The program outputs all the three strings with their lengths.

During the second run, the two strings s1 and s2 are equal, and therefore, they are not joined together. In

this case all the three strings contain the same string constant “London”.

 Program

 #include <string.h>

 main()

 { char s1[20], s2[20], s3[20];

 int x, l1, l2, l3;

 printf(“\n\nEnter two string constants \n”);

 printf(“?”);

 scanf(“%s %s”, s1, s2);

 /* comparing s1 and s2 */

 x = strcmp(s1, s2);

 if(x != 0)

 { printf(“\n\nStrings are not equal \n”);

 strcat(s1, s2); /* joining s1 and s2 */

 }

 else

 printf(“\n\nStrings are equal \n”);

 /* copying s1 to s3

 strcpy(s3, s1);

 /* Finding length of strings */

 l1 = strlen(s1);

 l2 = strlen(s2);

 l3 = strlen(s3);

 /* output */

 printf(“\ns1 = %s\t length = %d characters\n”, s1, l1);

 printf(“s2 = %s\t length = %d characters\n”, s2, l2);

 printf(“s3 = %s\t length = %d characters\n”, s3, l3);

 }

 Output

 Enter two string constants

 354 Computing Fundamentals & C Programming

 ? New York

 Strings are not equal

 s1 = NewYork length = 7 characters

 s2 = York length = 4 characters

 s3 = NewYork length = 7 characters

 Enter two string constants

 ? London London

 Strings are equal

 s1 = London length = 6 characters

 s2 = London length = 6 characters

 s3 = London length = 6 characters

Fig. 10.10 Illustration of string handling functions

WORKED-OUT PROBLEM 10.10 M

The program in Fig. 10.11 shows how to write a C program that reads a string and prints if it is a

palindrome or not.

Program

 #include <stdio.h>

 #include <conio.h>

 #include <string.h>

 void main()

 {

 char chk=’t’, str[30];

 int len, left, right;

 printf(“\nEnter a string:”);

 scanf(“%s”, &str);

 len=strlen(str);

 left=0;

 right=len-1;

 while(left < right && chk==’t’)

 {

 if(str[left] == str[right])

 ;

 else

 chk=’f’;

 left++;

 right-;

 Character Arrays and Strings 355

 }

 if(chk==’t’)

 printf(“\nThe string %s is a palindrome”,str);

 else

 printf(“\nThe string %s is not a palindrome”,str);

 getch();

 }

 Output

 Enter a string: nitin

 The string nitin is a palindrome

 Fig. 10.11 Program to check if a string is palindrome or not

Other String Functions

The header fi le <string.h> contains many more string manipulation functions. They might be useful in

certain situations.

 strncpy

In addition to the function strcpy that copies one string to another, we have another function strncpy

that copies only the left-most n characters of the source string to the target string variable. This is a three-

parameter function and is invoked as follows:

strncpy(s1, s2, 5);

This statement copies the fi rst 5 characters of the source string s2 into the target string s1. Since the fi rst 5

characters may not include the terminating null character, we have to place it explicitly in the 6th position

of s2 as shown below:

s1[6] =’\0’;

Now, the string s1 contains a proper string.

strncmp

A variation of the function strcmp is the function strncmp. This function has three parameters as illustrated

in the function call below:

 strncmp (s1, s2, n);

this compares the left-most n characters of s1 to s2 and returns.

(a) 0 if they are equal;

(b) negative number, if s1 sub-string is less than s2; and

(c) positive number, otherwise.

strncat

This is another concatenation function that takes three parameters as shown below:

strncat (s1, s2, n);

This call will concatenate the left-most n characters of s2 to the end of s1. Example:

 356 Computing Fundamentals & C Programming

S1 :

S2 :

S :1

After (s1, s2, 4); execution:strncat

0

0

\

\

G

B

U

A

U

A

S

G

M

R

R

L

A

U

Y

U

0\B A L A

strstr

It is a two-parameter function that can be used to locate a sub-string in a string. This takes the following

forms:

strstr (s1, s2);

strstr (s1, “ABC”);

The function strstr searches the string s1 to see whether the string s2 is contained in s1. If yes, the

function returns the position of the fi rst occurrence of the sub-string. Otherwise, it returns a NULL pointer.

Example:

 if (strstr (s1, s2) == NULL)

 printf(“substring is not found”);

 else

 printf(“s2 is a substring of s1”);

We also have functions to determine the existence of a character in a string. The function call

strchr(s1, ‘m’);

will locate the fi rst occurrence of the character ‘m’ and the call

 strrchr(s1, ‘m’);

will locate the last occurrence of the character ‘m’ in the string s1.

 Warning
∑ When allocating space for a string during declaration, remember to count the terminating

null character.

∑ When creating an array to hold a copy of a string variable of unknown size, we can

compute the size required using the expression

 strlen (stringname) +1.

∑ When copying or concatenating one string to another, we must ensure that the target (destination)

string has enough space to hold the incoming characters. Remember that no error message will be

available even if this condition is not satisfi ed. The copying may overwrite the memory and the

program may fail in an unpredictable way.

∑ When we use strncpy to copy a specifi c number of characters from a source string, we must ensure

to append the null character to the target string, in case the number of characters is less than or

equal to the source string.

 Character Arrays and Strings 357

10.9 TABLE OF STRINGS LO 10.4

We often use lists of character strings, such as a list of the names of students in a class, list of the names

of employees in an organization, list of places, etc. A list of names can be treated as a table of strings

and a two-dimensional character array can be used to store the entire list. For example, a character array

student[30][15] may be used to store a list of 30 names, each of length not more than 15 characters. Shown

below is a table of fi ve cities:

C

A

H

M

B

h

h

y

a

o

a

m

d

d

m

n

e

e

r

b

d

d

r

a

a

i

a

a

s

y

g

b

b

a

a

a

r

d

d

h

This table can be conveniently stored in a character array city by using the following declaration:

 char city[] []

 {

 “Chandigarh”,

 “Madras”,

 “Ahmedabad”,

 “Hyderabad”,

 “Bombay”

 } ;

To access the name of the ith city in the list, we write

city[i-1]

and therefore, city[0] denotes “Chandigarh”, city[1] denotes “Madras” and so on. This shows that once an

array is declared as two-dimensional, it can be used like a one-dimensional array in further manipulations.

That is, the table can be treated as a column of strings.

WORKED-OUT PROBLEM 10.11 H

Write a program that would sort a list of names in alphabetical order.

A program to sort the list of strings in alphabetical order is given in Fig. 10.12. It employs the method of

bubble sorting described in Case Study 1 in Chapter 9.

Program

 #defi ne ITEMS 5

 #defi ne MAXCHAR 20

 main()

 {

 char string[ITEMS][MAXCHAR], dummy[MAXCHAR];

 int i = 0, j = 0;

 358 Computing Fundamentals & C Programming

 /* Reading the list */

 printf (“Enter names of %d items \n “,ITEMS);

 while (i < ITEMS)

 scanf (“%s”, string[i++]);

 /* Sorting begins */

 for (i=1; i < ITEMS; i++) /* Outer loop begins */

 {

 for (j=1; j <= ITEMS-i ; j++) /*Inner loop begins*/

 {

 if (strcmp (string[j-1], string[j]) > 0)

 { /* Exchange of contents */

 strcpy (dummy, string[j-1]);

 strcpy (string[j-1], string[j]);

 strcpy (string[j], dummy);

 }

 } /* Inner loop ends */

 } /* Outer loop ends */

 /* Sorting completed */

 printf (“\nAlphabetical list \n\n”);

 for (i=0; i < ITEMS ; i++)

 printf (“%s”, string[i]);

 }

 Output

 Enter names of 5 items

 London Manchester Delhi Paris Moscow

 Alphabetical list

 Delhi

 London

 Manchester

 Moscow

 Paris

Fig. 10.12 Sorting of strings in alphabetical order

Note that a two-dimensional array is used to store the list of strings. Each string is read using a scanf

function with %s format. Remember, if any string contains a white space, then the part of the string after

the white space will be treated as another item in the list by the scanf. In such cases, we should read the

entire line as a string using a suitable algorithm. For example, we can use gets function to read a line of text

containing a series of words. We may also use puts function in place of scanf for output.

 Character Arrays and Strings 359

10.10 OTHER FEATURES OF STRINGS LO 10.4

Other aspects of strings we have not discussed in this chapter include the following:

� Manipulating strings using pointers.

� Using string as function parameters.

� Declaring and defi ning strings as members of structures.

These topics will be dealt with later when we discuss functions, structures, and pointers.

 Learning Outcomes

∑ Character constants are enclosed in single quotes and string constants are enclosed in double quotes.

∑ Allocate suffi cient space in a character array to hold the null character at the end.

∑ Avoid processing single characters as strings.

∑ It is a compile time error to assign a string to a character variable.

∑ The header fi le <stdio.h> is required when using standard I/O functions.

∑ The header fi le <stdlib.h> is required when using general utility functions.

∑ Using the address operator & with a string variable in the scanf function call is an error.

∑ Use %s format for printing strings or character arrays terminated by null character.

∑ Using a string variable name on the left of the assignment operator is illegal.

∑ When accessing individual characters in a string variable, it is logical error to access outside the array

bounds.

∑ Strings cannot be manipulated with operators. Use string functions.

∑ Do not use string functions on an array char type that is not terminated with the null character.

∑ Do not forget to append the null character to the target string when the number of characters copied

is less than or equal to the source string.

∑ Be aware the return values when using the functions strcmp and strncmp for comparing strings.

∑ When using string functions for copying and concatenating strings, make sure that the target string

has enough space to store the resulting string. Otherwise memory overwriting may occur.

∑ The header fi le <ctype.h> is required when using character handling functions.

∑ The header fi le <string.h> is required when using string manipulation functions.

 Key Terms to Remember

∑ String: Is a sequence of characters that is considered as a single data item.

∑ Strcat: Concatenates two strings.

∑ strcmp: Compares two strings and determines whether they are equal or not.

∑ strcpy: Copies one string into another.

∑ strstr: Determines whether one string is a subset of another.

LO 10.1

LO 10.1

LO 10.1

LO 10.1

LO 10.1

LO 10.1

LO 10.2

LO 10.3

LO 10.4

LO 10.4

LO 10.4

LO 10.4

LO 10.4

LO 10.4

LO 10.4

LO 10.4

LO 10.4

LO 10.1

LO 10.4

LO 10.4

LO 10.4

LO 10.4

 360 Computing Fundamentals & C Programming

Brief Cases

1. Counting Words in a Text [LO 10.1, 10.2 M]

One of the practical applications of string manipulations is counting the words in a text. We assume that a

word is a sequence of any characters, except escape characters and blanks, and that two words are separated

by one blank character. The algorithm for counting words is as follows:

1. Read a line of text.

2. Beginning from the fi rst character in the line, look for a blank. If a blank is found, increment words

by 1.

3. Continue steps 1 and 2 until the last line is completed.

The implementation of this algorithm is shown in Fig. 10.13. The fi rst while loop will be executed once

for each line of text. The end of text is indicated by pressing the ‘Return’ key an extra time after the entire

text has been entered. The extra ‘Return’ key causes a newline character as input to the last line and as a

result, the last line contains only the null character.

The program checks for this special line using the test

 if (line[0] == ‘\0’)

and if the fi rst (and only the fi rst) character in the line is a null character, then counting is terminated. Note

the difference between a null character and a blank character.

 Program

 #include <stdio.h>

 main()

 {

 char line[81], ctr;

 int i,c,

 end = 0,

 characters = 0,

 words = 0,

 lines = 0;

 printf(“KEY IN THE TEXT.\n”);

 printf(“GIVE ONE SPACE AFTER EACH WORD.\n”);

 printf(“WHEN COMPLETED, PRESS ‘RETURN’.\n\n”);

 while(end == 0)

 {

 /* Reading a line of text */

 c = 0;

 while((ctr=getchar()) != ‘\n’)

 line[c++] = ctr;

 line[c] = ‘\0’;

 /* counting the words in a line */

 if(line[0] == ‘\0’)

 break ;

 Character Arrays and Strings 361

 else

 {

 words++;

 for(i=0; line[i] != ‘\0’;i++)

 if(line[i] == ‘ ‘ || line[i] == ‘\t’)

 words++;

 }

 /* counting lines and characters */

 lines = lines +1;

 characters = characters + strlen(line);

 }

 printf (“\n”);

 printf(“Number of lines = %d\n”, lines);

 printf(“Number of words = %d\n”, words);

 printf(“Number of characters = %d\n”, characters);

 }

 Output

 KEY IN THE TEXT.

 GIVE ONE SPACE AFTER EACH WORD.

 WHEN COMPLETED, PRESS ‘RETURN’.

 Admiration is a very short-lived passion.

 Admiration involves a glorious obliquity of vision.

 Always we like those who admire us but we do not

 like those whom we admire.

 Fools admire, but men of sense approve.

 Number of lines = 5

 Number of words = 36

 Number of characters = 205

Fig. 10.13 Counting of characters, words and lines in a text

The program also counts the number of lines read and the total number of characters in the text.

Remember, the last line containing the null string is not counted.

After the fi rst while loop is exited, the program prints the results of counting.

2. Processing of a Customer List [LO 10.1, 10.2, 10.3, 10.4 M]

Telephone numbers of important customers are recorded as follows:

 Full name Telephone number

 Joseph Louis Lagrange 869245

 Jean Robert Argand 900823

 Carl Freidrich Gauss 806788

 – – –– – – – –– –

 – – –– – – – –– –

 362 Computing Fundamentals & C Programming

It is desired to prepare a revised alphabetical list with surname (last name) fi rst, followed by a comma

and the initials of the fi rst and middle names. For example,

Argand, J.R

We create a table of strings, each row representing the details of one person, such as fi rst_name, middle_

name, last_name, and telephone_number. The columns are interchanged as required and the list is sorted on

the last_name. Figure 10.14 shows a program to achieve this.

 Program

 #defi ne CUSTOMERS 10

 main()

 {

 char fi rst_name[20][10], second_name[20][10],

 surname[20][10], name[20][20],

 telephone[20][10], dummy[20];

 int i,j;

 printf(“Input names and telephone numbers \n”);

 printf(“?”);

 for(i=0; i < CUSTOMERS ; i++)

 {

 scanf(“%s %s %s %s”, fi rst_name[i],

 second_name[i], surname[i], telephone[i]);

 /* converting full name to surname with initials */

 strcpy(name[i], surname[i]);

 strcat(name[i], “,”);

 dummy[0] = fi rst_name[i][0];

 dummy[1] = ‘\0’;

 strcat(name[i], dummy);

 strcat(name[i], “.”);

 dummy[0] = second_name[i][0];

 dummy[1] = ‘\0’;

 strcat(name[i], dummy);

 }

 /* Alphabetical ordering of surnames */

 for(i=1; i <= CUSTOMERS-1; i++)

 for(j=1; j <= CUSTOMERS-i; j++)

 Character Arrays and Strings 363

 if(strcmp (name[j-1], name[j]) > 0)

 {

 /* Swaping names */

 strcpy(dummy, name[j-1]);

 strcpy(name[j-1], name[j]);

 strcpy(name[j], dummy);

 /* Swaping telephone numbers */

 strcpy(dummy, telephone[j-1]);

 strcpy(telephone[j-1],telephone[j]);

 strcpy(telephone[j], dummy);

 }

 /* printing alphabetical list */

 printf(“\nCUSTOMERS LIST IN ALPHABETICAL ORDER \n\n”);

 for(i=0; i < CUSTOMERS ; i++)

 printf(“ %-20s\t %-10s\n”, name[i], telephone[i]);

 }

 Output

 Input names and telephone numbers

 ?Gottfried Wilhelm Leibniz 711518

 Joseph Louis Lagrange 869245

 Jean Robert Argand 900823

 Carl Freidrich Gauss 806788

 Simon Denis Poisson 853240

 Friedrich Wilhelm Bessel 719731

 Charles Francois Sturm 222031

 George Gabriel Stokes 545454

 Mohandas Karamchand Gandhi 362718

 Josian Willard Gibbs 123145

 CUSTOMERS LIST IN ALPHABETICAL ORDER

 Argand,J.R 900823

 Bessel,F.W 719731

 Gandhi,M.K 362718

 Gauss,C.F 806788

 Gibbs,J.W 123145

 Lagrange,J.L 869245

 Leibniz,G.W 711518

 Poisson,S.D 853240

 Stokes,G.G 545454

 Sturm,C.F 222031

Fig. 10.14 Program to alphabetize a customer list

 364 Computing Fundamentals & C Programming

 Review Questions

Fill in the Blanks

 1. We can use the conversion specifi cation _______in scanf to read a line of text.

2. The function _______does not require any conversion specifi cation to read a string from

the keyboard.

3. The printf may be replaced by ______function for printing strings.

4. The function strncat has _____ parameters.

5. The function _______ is used to determine the length of a string.

6. We can initialize a string using the string manipulation function_______.

7. To use the function atoi in a program, we must include the header fi le ____.

8. The _________string manipulation function determines if a character is contained in a

string.

9. The function call strcat (s2, s1); appends _____ to ______.

10. The function _____is used to sort the strings in alphabetical order.

True or False Statements

 1. When initializing a string variable during its declaration, we must include the null character

as part of the string constant, like “GOOD\0”.

2. The gets function automatically appends the null character at the end of the string read

from the keyboard.

3. When reading a string with scanf, it automatically inserts the terminating null character.

4. The input function gets has one string parameter.

5. The function scanf cannot be used in any way to read a line of text with the white-spaces.

6. The function getchar skips white-space during input.

7. In C, strings cannot be initialized at run time.

8. String variables cannot be used with the assignment operator.

9. We cannot perform arithmetic operations on character variables.

10. The ASCII character set consists of 128 distinct characters.

11. In the ASCII collating sequence, the uppercase letters precede lowercase letters.

12. In C, it is illegal to mix character data with numeric data in arithmetic operations.

13. The function call strcpy(s2, s1); copies string s2 into string s1.

LO 10.2

LO 10.2

LO 10.3

LO 10.4

LO 10.4

LO 10.2

LO 10.4

LO 10.4

LO 10.4

LO 10.4

LO 10.1

LO 10.2

LO 10.2

LO 10.2

LO 10.2

LO 10.2

LO 10.2

LO 10.4

LO 10.4

LO 10.4

LO 10.4

LO 10.4

LO 10.4

Levels of Diffi culty

: Low; : Medium; : High

 Character Arrays and Strings 365

14. The function call strcmp(“abc”, “ABC”); returns a positive number.

15. We can assign a character constant or a character variable to an int type variable.

Discussion Questions

1. Describe the limitations of using getchar and scanf functions for reading strings.

2. Character strings in C are automatically terminated by the null character. Explain how this

feature helps in string manipulations.

3. Strings can be assigned values as follows:

 (a) During type declaration char string[] = {“.......”};

 (b) Using strcpy function strcpy(string, “.......”);

 (c) Reading using scanf function scanf(“%s”, string);

 (d) Reading using gets function gets(string);

 Compare them critically and describe situations where one is superior to the others.

4. Assuming the variable string contains the value “The sky is the limit.”, determine what

output of the following program segments will be.

 (a) printf(“%s”, string);
 (b) printf(“%25.10s”, string);
 (c) printf(“%s”, string[0]);
 (d) for (i=0; string[i] != “.”; i++)
 printf(“%c”, string[i]);
 (e) for (i=0; string[i] != ‘\0’; i++;)
 printf(“%d\n”, string[i]);
 (f) for (i=0; i <= strlen[string]; ;)
 {
 string[i++] = i;
 printf(“%s\n”, string[i]);
 }
 (g) printf(“%c\n”, string[10] + 5);
 (h) printf(“%c\n”, string[10] + 5’)

5. Which of the following statements will correctly store the concatenation of strings s1 and

s2 in string s3?

 (a) s3 = strcat (s1, s2);

 (b) strcat (s1, s2, s3);

 (c) strcat (s3, s2, s1);

 (d) strcpy (s3, strcat (s1, s2));

 (e) strcmp (s3, strcat (s1, s2));

 (f) strcpy (strcat (s1, s2), s3);

6. What will be the output of the following statement?

 printf (“%d”, strcmp (“push”, “pull”));

7. Assume that s1, s2 and s3 are declared as follows:

char s1[10] = “he”, s2[20] = “she”, s3[30], s4[30];

LO 10.4

LO 10.4

LO 10.2

LO 10.4

LO 10.1

LO 10.2

LO 10.4

LO 10.3

LO 10.4

LO 10.3

LO 10.4

 366 Computing Fundamentals & C Programming

 What will be the output of the following statements executed in sequence?

printf(“%s”, strcpy(s3, s1));

 printf(“%s”, strcat(strcat(strcpy(s4, s1), “or”), s2));

 printf(“%d %d”, strlen(s2)+strlen(s3), strlen(s4));

8. What will be the output of the following segment?

char s1[] = “Kolkotta” ;
 char s2[] = “Pune” ;
 strcpy (s1, s2) ;
 printf(“%s”, s1) ;

9. What will be the output of the following segment?

char s1[] = “NEW DELHI” ;
 char s2[] = “BANGALORE” ;
 strncpy (s1, s2, 3) ;
 printf(“%s”, s1) ;

10. What will be the output of the following code?

char s1[] = “Jabalpur” ;
 char s2[] = “Jaipur” ;
 printf(strncmp(s1, s2, 2));

11. What will be the output of the following code?

char s1[] = “ANIL KUMAR GUPTA”;
 char s2[] = “KUMAR”;
 printf (strstr (s1, s2));

12. Compare the working of the following functions:

 (a) strcpy and strncpy;

 (b) strcat and strncat; and

 (c) strcmp and strncmp.

Debugging Exercise

 1. Find errors, if any, in the following code segments:

 (a) char str[10]

 strncpy(str, “GOD”, 3);

 printf(“%s”, str);

 (b) char str[10];

 strcpy(str, “Balagurusamy”);

 (c) if strstr(“Balagurusamy”, “guru”) = = 0);

 printf(“Substring is found”);

 (d) char s1[5], s2[10],

 gets(s1, s2);

Programming Exercises

 1. Write a program, which reads your name from the keyboard and outputs a list of ASCII

codes, which represent your name.

LO 10.4

LO 10.4

LO 10.4

LO 10.4

LO 10.4

LO 10.4

LO 10.4

 Character Arrays and Strings 367

 2. Write a program to do the following:

 (a) To output the question “Who is the inventor of C ?”

 (b) To accept an answer.

 (c) To print out “Good” and then stop, if the answer is correct.

 (d) To output the message ‘try again’, if the answer is wrong.

 (e) To display the correct answer when the answer is wrong even at the third attempt and stop.

 3. Write a program to extract a portion of a character string and print the extracted string.

Assume that m characters are extracted, starting with the nth character.

 4. Write a program which will read a text and count all occurrences of a particular word.

 5. Write a program which will read a string and rewrite it in the alphabetical order. For

example, the word STRING should be written as GINRST.

 6. Write a program to replace a particular word by another word in a given string. For

example, the word “PASCAL” should be replaced by “C” in the text “It is good to program

in PASCAL language.”

 7. A Maruti car dealer maintains a record of sales of various vehicles in the following form:

 Vehicle type Month of sales Price

 MARUTI-800 02/01 210000

 MARUTI-DX 07/01 265000

 GYPSY 04/02 315750

 MARUTI-VAN 08/02 240000

 Write a program to read this data into a table of strings and output the details of a particular

vehicle sold during a specifi ed period. The program should request the user to input the

vehicle type and the period (starting month, ending month).

 8. Write a program that reads a string from the keyboard and determines whether the string

is a palindrome or not. (A string is a palindrome if it can be read from left and right

with the same meaning. For example, Madam and Anna are palindrome strings. Ignore

capitalization).

 9. Write program that reads the cost of an item in the form RRRR.PP (Where RRRR denotes

Rupees and PP denotes Paise) and converts the value to a string of words that expresses

the numeric value in words. For example, if we input 125.75, the output should be “ONE

HUNDRED TWENTY FIVE AND PAISE SEVENTY FIVE”.

 10. Develop a program that will read and store the details of a list of students in the format

 Roll No. Name Marks obtained

 and produce the following output list:

 (a) Alphabetical list of names, roll numbers and marks obtained.

 (b) List sorted on roll numbers.

 (c) List sorted on marks (rank-wise list)

LO 10.3

p

LO 10.4

LO 10.4

LO 10.4

LO 10.4

LO 10.4

LO 10.4

LO 10.3

LO 10.4

 368 Computing Fundamentals & C Programming

 11. Write a program to read two strings and compare them using the function strncmp ()

and print a message that the fi rst string is equal, less, or greater than the second one.

 12. Write a program to read a line of text from the keyboard and print out the number of

occurrences of a given substring using the function strstr ().

 13. Write a program that will copy m consecutive characters from a string s1 beginning at

position n into another string s2.

 14. Write a program to create a directory of students with roll numbers. The program should

display the roll number for a speci fi ed name and vice-versa.

 15. Given a string

 char str [] = “123456789” ;

 Write a program that displays the following:

 1

 2 3 2

 3 4 5 4 3

 4 5 6 7 6 5 4

 5 6 7 8 9 8 7 6 5

LO 10.4

LO 10.4

LO 10.4

LO 10.4

LO 10.3

11.1 INTRODUCTION

We have mentioned earlier that one of the strengths of C language is C functions. They are easy to

define and use. We have used functions in every program that we have discussed so far. However,

they have been primarily limited to the three functions, namely, main, printf, and scanf. In this

chapter, we shall consider in detail the following:

How a function is designed?

How a function is integrated into a program?

How two or more functions are put together? and

How they communicate with one another?

C functions can be classified into two categories, namely, library functions and user-defined

functions. main is an example of user-defined functions. printf and scanf belong to the category

of library functions. We have also used other library functions such as sqrt, cos, strcat, etc.

The main distinction between these two categories is that library functions are not required to

be written by us whereas a user-defined function has to be developed by the user at the time of

writing a program. However, a user-defined function can later become a part of the C program

library. In fact, this is one of the strengths of C language.

LO 11.1

LO 11.2

LO 11.3

LO 11.4

LO 11.5

LO 11.6

CHAPT ER

11
User-Defined Functions

370 Computing Fundamentals & C Programming

11.2 NEED FOR USER-DEFINED FUNCTIONS LO 11.1

As pointed out earlier, main is a specially recognized function in C. Every program must have a main

function to indicate where the program has to begin its execution. While it is possible to code any program

utilizing only main function, it leads to a number of problems. The program may become too large and

complex and as a result the task of debugging, testing, and maintaining becomes difficult. If a program is

divided into functional parts, then each part may be independently coded and later combined into a single

unit. These independently coded programs are called subprograms that are much easier to understand,

debug, and test. In C, such subprograms are referred to as ‘functions’.

There are times when certain type of operations or calculations are repeated at many points throughout

a program. For instance, we might use the factorial of a number at several points in the program. In such

situations, we may repeat the program statements wherever they are needed. Another approach is to design

a function that can be called and used whenever required. This saves both time and space.

This “division” approach clearly results in a number of advantages.

1. It facilitates top-down modular programming as shown in Fig. 11.1. In this programming style, the

high level logic of the overall problem is solved first while the details of each lower-level function are

addressed later.

2. The length of a source program can be reduced by using functions at appropriate places. This factor is

particularly critical with microcomputers where memory space is limited.

3. It is easy to locate and isolate a faulty function for further investigations.

4. A function may be used by many other programs. This means that a C programmer can build on what

others have already done, instead of starting all over again from scratch.

Fig. 11.1 Top-down modular programming using functions

11.3 A MULTI-FUNCTION PROGRAM LO 11.1

A function is a self-contained block of code that performs a particular task. Once a function has been

designed and packed, it can be treated as a ‘black box’ that takes some data from the main program and

User-Defined Functions 371

returns a value. The inner details of operation are invisible to the rest of the program. All that the program

knows about a function is: What goes in and what comes out. Every C program can be designed using a

collection of these black boxes known as functions.

Consider a set of statements as shown below:

 void printline(void)

{

 int i;

 for (i=1; i<40; i++)

 printf(“–”);

 printf(“\n”);

}

The above set of statements defines a function called printline, which could print a line of 39-character

length. This function can be used in a program as follows:

 void printline(void); /* declaration */

 main()

 {

 printline();

 printf(“This illustrates the use of C functions\n”);

 printline();

 }

 void printline(void)

 {

 int i;

 for(i=1; i<40; i++)

 printf(“–”);

 printf(“\n”);

}

This program will print the following output:

———————————————————————————————————————-

This illustrates the use of C functions

———————————————————————————————————————-

The above program contains two user-defined functions:

main() function

printline() function

As we know, the program execution always begins with the main function. During execution of the

main, the first statement encountered is

printline();
which indicates that the function printline is to be executed. At this point, the program control is transferred

to the function printline. After executing the printline function, which outputs a line of 39 character length,

the control is transferred back to the main. Now, the execution continues at the point where the function

call was executed. After executing the printf statement, the control is again transferred to the printline

function for printing the line once more.

372 Computing Fundamentals & C Programming

The main function calls the user-defined printline function two times and the library function printf

once. We may notice that the printline function itself calls the library function printf 39 times repeatedly.

Any function can call any other function. In fact, it can call itself. A ‘called function’ can also call

another function. A function can be called more than once. In fact, this is one of the main features of using

functions. Figure 11.2 illustrates the flow of control in a multi-function program.

Except the starting point, there are no other predetermined relationships, rules of precedence, or

hierarchies among the functions that make up a complete program. The functions can be placed in any

order. A called function can be placed either before or after the calling function. However, it is the usual

practice to put all the called functions at the end. See the box “Modular Programming”.

Fig. 11.2 Flow of control in a multi-function program

User-Defined Functions 373

Modular Programming

Modular programming is a strategy applied to the design and development of software systems. It is defined

as organizing a large program into small, independent program segments called modules that are separately

named and individually callable program units. These modules are carefully integrated to become a

software system that satisfies the system requirements. It is basically a “divide-and-conquer” approach to

problem solving.

Modules are identified and designed such that they can be organized into a top-down hierarchical

structure (similar to an organization chart). In C, each module refers to a function that is responsible for a

single task.

Some characteristics of modular programming are as follows:

1. Each module should do only one thing.

2. Communication between modules is allowed only by a calling module.

3. A module can be called by one and only one higher module.

4. No communication can take place directly between modules that do not have calling – called

relationship.

5. All modules are designed as single-entry, single-exit systems using control structures.

11.4 ELEMENTS OF USER-DEFINED FUNCTIONS LO 11.2

We have discussed and used a variety of data types and variables in our programs so far. However,

declaration and use of these variables were primarily done inside the main function. As we mentioned in

Chapter 6, functions are classified as one of the derived data types in C. We can therefore define functions

and use them like any other variables in C programs. It is therefore not a surprise to note that there exist

some similarities between functions and variables in C.

Both function names and variable names are considered identifiers and therefore, they must adhere to

the rules for identifiers.

Like variables, functions have types (such as int) associated with them.

Like variables, function names and their types must be declared and defined before they are used in a

program.

In order to make use of a user-defined function, we need to establish three elements that are related to

functions.

1. Function definition.

2. Function call.

3. Function declaration.

The function definition is an independent program module that is specially written to implement the

requirements of the function. In order to use this function we need to invoke it at a required place in the

program. This is known as the function call. The program (or a function) that calls the function is referred

to as the calling program or calling function. The calling program should declare any function (like

declaration of a variable) that is to be used later in the program. This is known as the function declaration

or function prototype.

374 Computing Fundamentals & C Programming

11.5 DEFINITION OF FUNCTIONS LO 11.2

A function definition, also known as function implementation shall include the following elements:

1. function name;

2. function type;

3. list of parameters;

4. local variable declarations;

5. function statements; and

6. a return statement.

All the six elements are grouped into two parts, namely,

function header (First three elements); and

function body (Second three elements).

A general format of a function definition to implement these two parts is given below:

 function_type function_name(parameter list)

{

 local variable declaration;

 executable statement1;

 executable statement2;

 return statement;

}

The first line function_type function_name(parameter list) is known as the function header and

the statements within the opening and closing braces constitute the function body, which is a compound

statement.

11.5.1 Function Header

The function header consists of three parts: the function type (also known as return type), the function

name, and the formal parameter list. Note that a semicolon is not used at the end of the function header.

11.5.2 Name and Type

The function type specifies the type of value (like float or double) that the function is expected to return

to the program calling the function. If the return type is not explicitly specified, C will assume that it is

an integer type. If the function is not returning anything, then we need to specify the return type as void.

Remember, void is one of the fundamental data types in C. It is a good programming practice to code

explicitly the return type, even when it is an integer. The value returned is the output produced by the

function.

The function name is any valid C identifier and therefore must follow the same rules of formation as

other variable names in C. The name should be appropriate to the task performed by the function. However,

care must be exercised to avoid duplicating library routine names or operating system commands.

User-Defined Functions 375

11.5.3 Formal Parameter List

The parameter list declares the variables that will receive the data sent by the calling program. They serve

as input data to the function to carry out the specified task. Since they represent the actual input values, they

are often referred to as formal parameters. These parameters can also be used to send values to the calling

programs. This aspect will be covered later when we discuss more about functions. The parameters are also

known as arguments.

The parameter list contains declaration of variables separated by commas and surrounded by parentheses.

Examples:

float quadratic (int a, int b, int c) {. . . . }

double power (double x, int n) {.}

float mul (float x, float y) {. . . . }

int sum (int a, int b) {. . . . }

Remember, there is no semicolon after the closing parenthesis. Note that the declaration of parameter

variables cannot be combined. That is, int sum (int a,b) is illegal.

A function need not always receive values from the calling program. In such cases, functions have

no formal parameters. To indicate that the parameter list is empty, we use the keyword void between the

parentheses as in

void printline (void)

{

 }

This function neither receives any input values nor returns back any value. Many compilers accept an

empty set of parentheses, without specifying anything as in

void printline ()

But, it is a good programming style to use void to indicate a nil parameter list.

11.5.4 Function Body

The function body contains the declarations and statements necessary for performing the required task. The

body enclosed in braces, contains three parts, in the order given below:

1. Local declarations that specify the variables needed by the function.

2. Function statements that perform the task of the function.

3. A return statement that returns the value evaluated by the function.

If a function does not return any value (like the printline function), we can omit the return statement.

However, note that its return type should be specified as void. Again, it is nice to have a return statement

even for void functions.

Some examples of typical function definitions are:

(a) float mul (float x, float y)

 {

 float result; /* local variable */

 result = x * y; /* computes the product */

 return (result); /* returns the result */

}

376 Computing Fundamentals & C Programming

(b) void sum (int a, int b)

 {

 printf (“sum = %s”, a + b); /* no local variables */

 return; /* optional */

}

 (c) void display (void)

 { /* no local variables */

 printf (“No type, no parameters”);

 /* no return statement */

}

Note

1. When a function reaches its return statement, the control is transferred back to the calling

program. In the absence of a return statement, the closing brace acts as a void return.

2. A local variable is a variable that is defined inside a function and used without having any

role in the communication between functions.

11.6 RETURN VALUES AND THEIR TYPES LO 11.2

As pointed out earlier, a function may or may not send back any value to the calling function. If it does, it is

done through the return statement. While it is possible to pass to the called function any number of values,

the called function can only return one value per call, at the most.

The return statement can take one of the following forms:

return;

 or

return(expression);
The first, the ‘plain’ return does not return any value; it acts much as the closing brace of the function.

When a return is encountered, the control is immediately passed back to the calling function. An example

of the use of a simple return is as follows:

 if(error)

return;

Note C99, if a function is specified as returning a value, the return must have value associated with it.

The second form of return with an expression returns the value of the expression. For example, the function

 int mul (int x, int y)

 {

 int p;

p = x*y;

 return(p);

}

returns the value of p which is the product of the values of x and y. The last two statements can be combined

into one statement as follows:

User-Defined Functions 377

return (x*y);
A function may have more than one return statements. This situation arises when the value returned is

based on certain conditions. For example:

 if(x <= 0)

return(0);

 else

return(1);
What type of data does a function return? All functions by default return int type data. But what happens

if a function must return some other type? We can force a function to return a particular type of data by

using a type specifier in the function header as discussed earlier.

When a value is returned, it is automatically cast to the function’s type. In functions that do computations

using doubles, yet return ints, the returned value will be truncated to an integer. For instance, the function

 int product (void)

{

return (2.5 * 3.0);

}

will return the value 7, only the integer part of the result.

11.7 FUNCTION CALLS LO 11.2

A function can be called by simply using the function name followed by a list of actual parameters (or

arguments), if any, enclosed in parentheses. Example:

 main()

{

 int y;

 y = mul(10,5); /* Function call */

 printf(“%d\n”, y);

}

When the compiler encounters a function call, the control is transferred to the function mul(). This

function is then executed line by line as described and a value is returned when a return statement is

encountered. This value is assigned to y. This is illustrated below:

378 Computing Fundamentals & C Programming

The function call sends two integer values 10 and 5 to the function.
int mul(int x, int y)

which are assigned to x and y respectively. The function computes the product x and y, assigns the result to

the local variable p, and then returns the value 25 to the main where it is assigned to y again.

There are many different ways to call a function. Listed below are some of the ways the function mul

can be invoked.

mul (10, 5)

mul (m, 5)

mul (10, n)

mul (m, n)

mul (m + 5, 10)

mul (10, mul(m,n))

mul (expression1, expression2)

Note that the sixth call uses its own call as its one of the parameters. When we use expressions, they

should be evaluated to single values that can be passed as actual parameters.

A function which returns a value can be used in expressions like any other variable. Each of the

following statements is valid:

printf(“%d\n”, mul(p,q));
 y = mul(p,q) / (p+q);
 if (mul(m,n)>total) printf(“large”);
However, a function cannot be used on the right side of an assignment statement. For instance,

mul(a,b) = 15;
is invalid.

A function that does not return any value may not be used in expressions; but can be called in to perform

certain tasks specified in the function. The function printline() discussed in Section 11.3 belongs to this

category. Such functions may be called in by simply stating their names as independent statements.

Example:
 main()

{
 printline();

}

Note the presence of a semicolon at the end.

11.7.1 Function Call

A function call is a postfix expression. The operator (. .) is at a very high level of precedence (see Table

5.8). Therefore, when a function call is used as a part of an expression, it will be evaluated first, unless

parentheses are used to change the order of precedence.

In a function call, the function name is the operand and the parentheses set (. .) which contains the actual

parameters is the operator. The actual parameters must match the function’s formal parameters in type,

order and number. Multiple actual parameters must be separated by commas.

Note

1. If the actual parameters are more than the formal parameters, the extra actual arguments will

be discarded.

2. On the other hand, if the actuals are less than the formals, the unmatched formal arguments

will be initialized to some garbage.

3. Any mismatch in data types may also result in some garbage values.

User-Defined Functions 379

11.8 FUNCTION DECLARATION LO 11.2

Like variables, all functions in a C program must be declared, before they are invoked. A function

declaration (also known as function prototype) consists of four parts.

Function type (return type).

Function name.

Parameter list.

Terminating semicolon.

They are coded in the following format:

Function-type function-name (parameter list);

This is very similar to the function header line except the terminating semicolon. For example, mul

function defined in the previous section will be declared as:

int mul (int m, int n); /* Function prototype */

Points to Note

1. The parameter list must be separated by commas.

2. The parameter names do not need to be the same in the prototype declaration and the function

definition.

3. The types must match the types of parameters in the function definition, in number and order.

4. Use of parameter names in the declaration is optional.

5. If the function has no formal parameters, the list is written as (void).

6. The return type is optional, when the function returns int type data.

7. The retype must be void if no value is returned.

8. When the declared types do not match with the types in the function definition, compiler will produce

an error.

Equally acceptable forms of declaration of mul function are as follows:

 int mul (int, int);

 mul (int a, int b);

 mul (int, int);

When a function does not take any parameters and does not return any value, its prototype is written as:

void display (void);

A prototype declaration may be placed in two places in a program.

1. Above all the functions (including main).

2. Inside a function definition.

When we place the declaration above all the functions (in the global declaration section), the prototype

is referred to as a global prototype. Such declarations are available for all the functions in the program.

When we place it in a function definition (in the local declaration section), the prototype is called a local

prototype. Such declarations are primarily used by the functions containing them.

The place of declaration of a function defines a region in a program in which the function may be used

by other functions. This region is known as the scope of the function. (Scope is discussed later in this

chapter.) It is a good programming style to declare prototypes in the global declaration section before main.

It adds flexibility, provides an excellent quick reference to the functions used in the program, and enhances

documentation.

380 Computing Fundamentals & C Programming

Prototypes: Yes or No

Prototype declarations are not essential. If a function has not been declared before it is used, C will assume

that its details available at the time of linking. Since the prototype is not available, C will assume that the

return type is an integer and that the types of parameters match the formal definitions. If these assumptions

are wrong, the linker will fail and we will have to change the program. The moral is that we must always

include prototype declarations, preferably in global declaration section.

Parameters Everywhere!

Parameters (also known as arguments) are used in following three places:

1. in declaration (prototypes),

2. in function call, and

3. in function definition.

The parameters used in prototypes and function definitions are called formal parameters and those used

in function calls are called actual parameters. Actual parameters used in a calling statement may be simple

constants, variables, or expressions.

The formal and actual parameters must match exactly in type, order and number. Their names, however,

do not need to match.

11.9 CATEGORY OF FUNCTIONS LO 11.3

A function, depending on whether arguments are present or not and whether a value is returned or not, may

belong to one of the following categories:

Category 1: Functions with no arguments and no return values.

Category 2: Functions with arguments and no return values.

Category 3: Functions with arguments and one return value.

Category 4: Functions with no arguments but return a value.

Category 5: Functions that return multiple values.

In the sections to follow, we shall discuss these categories with examples. Note that, from now on, we

shall use the term arguments (rather than parameters) more frequently.

11.9.1 No Arguments and No Return Values

When a function has no arguments, it does not receive any data from the calling function. Similarly, when

it does not return a value, the calling function does not receive any data from the called function. In effect,

there is no data transfer between the calling function and the called function. This is depicted in Fig. 11.3.

The dotted lines indicate that there is only a transfer of control but not data.

Fig. 11.3 No data communication between functions

User-Defined Functions 381

As pointed out earlier, a function that does not return any value cannot be used in an expression. It can

only be used as an independent statement.

Write a program with multiple functions that do not communicate any data between them.

A program with three user-defined functions is given in Fig. 11.4. main is the calling function that calls

printline and value functions. Since both the called functions contain no arguments, there are no argument

declarations. The printline function, when encountered, prints a line with a length of 35 characters as

prescribed in the function. The value function calculates the value of principal amount after a certain period

of years and prints the results. The following equation is evaluated repeatedly:

value = principal(1+interest-rate)

Program

 /* Function declaration */

 void printline (void);

 void value (void);

 main()

 {

 printline();

 value();

 printline();

}

 /* Function1: printline() */

 void printline(void) /* contains no arguments */

 {

 int i ;

 for(i=1; i <= 35; i++)

 printf(“%c”,’-’);

 printf(“\n”);

 }

 /* Function2: value() */

 void value(void) /* contains no arguments */

 {

 int year, period;

 float inrate, sum, principal;

 printf(“Principal amount?”);

 scanf(“%f”, &principal);

 printf(“Interest rate? “);

Levels of Difficulty

L: Low; M: Medium; H: High

382 Computing Fundamentals & C Programming

 scanf(“%f”, &inrate);

 printf(“Period? “);

 scanf(“%d”, &period);

 sum = principal;

 year = 1;

 while(year <= period)

 {

 sum = sum *(1+inrate);

 year = year +1;

 }

 printf(“\n%8.2f %5.2f %5d %12.2f\n”,

 principal,inrate,period,sum);

}

Output

 —

 Principal amount? 5000

 Interest rate? 0.12

 Period? 5

 5000.00 0.12 5 8811.71

 —

 Fig. 11.4 Functions with no arguments and no return values

It is important to note that the function value receives its data directly from the terminal. The input data

include principal amount, interest rate and the period for which the final value is to be calculated. The while

loop calculates the final value and the results are printed by the library function printf. When the closing

brace of value() is reached, the control is transferred back to the calling function main. Since everything

is done by the value itself there is in fact nothing left to be sent back to the called function. Return types of

both printline and value are declared as void.

Note that no return statement is employed. When there is nothing to be returned, the return statement

is optional. The closing brace of the function signals the end of execution of the function, thus returning the

control, back to the calling function.

11.9.2 Arguments But No Return Values

In Fig. 11.4 the main function has no control over the way the functions receive input data. For example,

the function printline will print the same line each time it is called. Same is the case with the function

value. We could make the calling function to read data from the terminal and pass it on to the called

function. This approach seems to be wiser because the calling function can check for the validity of data, if

necessary, before it is handed over to the called function.

The nature of data communication between the calling function and the called function with arguments

but no return value is shown in Fig. 11.5.

User-Defined Functions 383

Fig. 11.5 One-way data communication

We shall modify the definitions of both the called functions to include arguments as follows:

void printline(char ch)

void value(float p, float r, int n)

The arguments ch, p, r, and n are called the formal arguments. The calling function can now send values

to these arguments using function calls containing appropriate arguments. For example, the function call

value(500,0.12,5)

would send the values 500,0.12 and 5 to the function

void value(float p, float r, int n)

and assign 500 to p, 0.12 to r and 5 to n. The values 500, 0.12, and 5 are the actual arguments, which

become the values of the formal arguments inside the called function.

The actual and formal arguments should match in number, type, and order. The values of actual

arguments are assigned to the formal arguments on a one to one basis, starting with the first argument as

shown in Fig. 11.6.

 Fig. 11.6 Arguments matching between the function call and the called function

384 Computing Fundamentals & C Programming

We should ensure that the function call has matching arguments. In case, the actual arguments are more

than the formal arguments (m > n), the extra actual arguments are discarded. On the other hand, if the

actual arguments are less than the formal arguments, the unmatched formal arguments are initialized to

some garbage values. Any mismatch in data type may also result in passing of garbage values. Remember,

no error message will be generated.

While the formal arguments must be valid variable names, the actual arguments may be variable names,

expressions, or constants. The variables used in actual arguments must be assigned values before the

function call is made.

Remember that, when a function call is made, only a copy of the values of actual arguments is passed

into the called function. What occurs inside the function will have no effect on the variables used in the

actual argument list.

Modify the program of Program 11.1 to include the arguments in the function calls.

The modified program with function arguments is presented in Fig. 11.7. Most of the program is identical

to the program in Fig. 11.4. The input prompt and scanf assignment statement have been moved from value

function to main. The variables principal, inrate, and period are declared in main because they are used

in main to receive data. The function call

value(principal, inrate, period);

passes information it contains to the function value.

The function header of value has three formal arguments p,r, and n which correspond to the actual

arguments in the function call, namely, principal, inrate, and period. On execution of the function call, the

values of the actual arguments are assigned to the corresponding formal arguments. In fact, the following

assignments are accomplished across the function boundaries:

p = principal;

r = inrate;

n = period;

Program

 /* prototypes */

 void printline (char c);

 void value (float, float, int);

 main()

 {

 float principal, inrate;

 int period;

 printf(“Enter principal amount, interest”);

 printf(“ rate, and period \n”);

 scanf(“%f %f %d”,&principal, &inrate, &period);

 printline(‘Z’);

 value(principal,inrate,period);

User-Defined Functions 385

 printline(‘C’);

 }

 void printline(char ch)

 {

 int i ;

 for(i=1; i <= 52; i++)

 printf(“%c”,ch);

 printf(“\n”);

 }

 void value(float p, float r, int n)

 {

 int year ;

 float sum ;

 sum = p ;

 year = 1;

 while(year <= n)

 {

 sum = sum * (1+r);

 year = year +1;

 }

 printf(“%f\t%f\t%d\t%f\n”,p,r,n,sum);

 }

Output

Enter principal amount, interest rate, and period

 5000 0.12 5

 ZZ

 5000.000000 0.120000 5 8811.708984

 CC

Fig. 11.7 Functions with arguments but no return values

The variables declared inside a function are known as local variables and therefore their values are local

to the function and cannot be accessed by any other function. We shall discuss more about this later in the

chapter.

The function value calculates the final amount for a given period and prints the results as before. Control

is transferred back on reaching the closing brace of the function. Note that the function does not return any

value.

The function printline is called twice. The first call passes the character ‘Z’, while the second passes

the character ‘C’ to the function. These are assigned to the formal argument ch for printing lines (see the

output).

386 Computing Fundamentals & C Programming

Variable Number of Arguments

Some functions have a variable number of arguments and data types which cannot be known at compile time.

The printf and scanf functions are typical examples. The ANSI standard proposes new symbol called the

ellipsis to handle such functions. The ellipsis consists of three periods (…) and used as shown below:

double area(float d,…)

Both the function declaration and definition should use ellipsis to indicate that the arguments are arbitrary

both in number and type.

11.9.3 Arguments with Return Values

The function value in Fig. 11.7 receives data from the calling function through arguments, but does not send

back any value. Rather, it displays the results of calculations at the terminal. However, we may not always

wish to have the result of a function displayed. We may use it in the calling function for further processing.

Moreover, to assure a high degree of portability between programs, a function should generally be coded

without involving any I/O operations. For example, different programs may require different output formats

for display of results. These shortcomings can be overcome by handing over the result of a function to its

calling function where the returned value can be used as required by the program.

A self-contained and independent function should behave like a ‘black box’ that receives a predefined

form of input and outputs a desired value. Such functions will have two-way data communication as shown

in Fig. 11.8.

Fig. 11.8 Two-way data communication between functions

We shall modify the program in Fig. 11.7 to illustrate the use of two-way data communication between

the calling and the called functions.

In the program presented in Fig. 11.7 modify the function value, to return the final amount calculated to the

main, which will display the required output at the terminal. Also extend the versatility of the function

printline by having it to take the length of the line as an argument.

The modified program with the proposed changes is presented in Fig. 11.9. One major change is the

movement of the printf statement from value to main.

User-Defined Functions 387

Program
 void printline (char ch, int len);

 value (float, float, int);

 main()

{

 float principal, inrate, amount;

 int period;

 printf(“Enter principal amount, interest”);

 printf(“rate, and period\n”);

 scanf(%f %f %d”, &principal, &inrate, &period);

 printline (‘*’ , 52);

 amount = value (principal, inrate, period);

 printf(“\n%f\t%f\t%d\t%f\n\n”,principal,

 inrate,period,amount);

 printline(‘=’,52);

}

 void printline(char ch, int len)

{

 int i;

 for (i=1;i<=len;i++) printf(“%c”,ch);

 printf(“\n”);

}

 value(float p, float r, int n) /* default return type */

{

 int year;

 float sum;

 sum = p; year = 1;

 while(year <=n)

{

 sum = sum * (l+r);

 year = year +1;

}

 return(sum); /* returns int part of sum */

}

Output

 Enter principal amount, interest rate, and period

 5000 0.12 5

 5000.000000 0.1200000 5 8811.000000

 =

 Fig. 11.9 Functions with arguments and return values

388 Computing Fundamentals & C Programming

The calculated value is passed on to main through statement:

return(sum);

Since, by default, the return type of value function is int, the ‘integer’ value of sum at this point is

returned to main and assigned to the variable amount by the functional call

amount = value (principal, inrate, period);

The following events occur, in order, when the above function call is executed:

1. The function call transfers the control along with copies of the values of the actual arguments to

the function value where the formal arguments p, r, and n are assigned the actual values of principal,

inrate and period respectively.

2. The called function value is executed line by line in a normal fashion until the return(sum);

statement is encountered. At this point, the integer value of sum is passed back to the function-call in

the main and the following indirect assignment occurs:

value(principal, inrate, period) = sum;

3. The calling statement is executed normally and the returned value is thus assigned to amount, a

float variable.

4. Since amount is a float variable, the returned integer part of sum is converted to floating-point

value. See the output.

Another important change is the inclusion of second argument to printline function to receive the value

of length of the line from the calling function. Thus, the function call

printline(‘*’, 52);

will transfer the control to the function printline and assign the following values to the formal arguments

ch, and len:

 ch = ‘*’ ;

 len = 52;

Returning Float Values

We mentioned earlier that a C function returns a value of the type int as the default case when no other type

is specified explicitly. For example, the function value of Program 11.3 does all calculations using floats

but the return statement

return(sum);
returns only the integer part of sum. This is due to the absence of the type-specifier in the function header.

In this case, we can accept the integer value of sum because the truncated decimal part is insignificant

compared to the integer part. However, there will be times when we may find it necessary to receive the

float or double type of data. For example, a function that calculates the mean or standard deviation of a set

of values should return the function value in either float or double.

In all such cases, we must explicitly specify the return type in both the function definition and the

prototype declaration.

If we have a mismatch between the type of data that the called function returns and the type of data that

the calling function expects, we will have unpredictable results. We must, therefore, be very careful to make

sure that both types are compatible.

User-Defined Functions 389

Write a function power that computes x raised to the power y for integers x and y and returns double-type

value.

Figure 11.10 shows a power function that returns a double. The prototype declaration

double power(int, int);

appears in main, before power is called.

Program

 main()

{

 int x,y; /*input data */

 double power(int, int); /* prototype declaration*/

 printf(“Enter x,y:”);

 scanf(“%d %d” , &x,&y);

 printf(“%d to power %d is %f\n”, x,y,power (x,y));

}

 double power (int x, int y);

{

 double p;

 p = 1.0 ; /* x to power zero */

 if(y >=0)

 while(y—–) /* computes positive powers */

 p *= x;

 else

 while (y++) /* computes negative powers */

 p /= x;

 return(p); /* returns double type */

}

Output

 Enter x,y:16 2

 16 to power 2 is 256.000000

 Enter x,y:16 -2

 16 to power -2 is 0.003906

Fig. 11.10

390 Computing Fundamentals & C Programming

H

The program in Fig. 11.11 shows how to write a C program (float x [], int n) that returns the position of

the first minimum value among the first n elements of the given array x.

Program

 #include <stdio.h>

 #include <conio.h>

 #include <stdio.h>

 int minpos(float []. int);

 void main()

{

 int n:

 float x[10] = {12.5, 3.0, 45.1, 8.2, 19.3, 10.0, 7.8, 23.7, 29.9, 5.2};

 printf(“Enter the value of n: “);

 scanf(“%d”, &n);

 if(n>=1 && n<=10)

:

 else

{

 printf(“invalid value of n...Press any key to terminate the program..“);

 getch():

 exit(0);

}

 printf(“Within the first %d elements of array, the first minimum value is
 stored at index %d”. n, minpos(x,n));

 getch();

}

 int minpos(float a[]).int N)

{

 int i.index;

 float min-9999.99:

 for(i=0;i<N;i++)

 if(a[i]<min)

{

 min-a[i];

 index = i;

}

 return (index);

}

User-Defined Functions 391

Output

 Enter the value of n: 5

 Within the first 5 elements of array, the first minimum value is stored at index 1

 Fig. 11.11

Another way to guarantee that power’s type is declared before it is called in main is to define the power

function before we define main. Power’s type is then known from its definition, so we no longer need its

type declaration in main.

11.9.4 No Arguments But Returns a Value

There could be occasions where we may need to design functions that may not take any arguments but

returns a value to the calling function. A typical example is the getchar function declared in the header

file <stdio.h>. We have used this function earlier in a number of places. The getchar function has no

parameters but it returns an integer type data that represents a character.

We can design similar functions and use in our programs. Example:

 int get_number(void);

 main

{

 int m = get_number();

 printf(“%d”,m);

}

 int get_number(void)

{

 int number;

 scanf(“%d”, &number);

 return(number);

}

11.9.5 Functions that Return Multiple Values

We have till now illustrated functions that return just one value using a return statement. That is because, a

return statement can return only one value. Suppose, however, that we want to get more information from a

function. We can achieve this in C using the arguments not only to receive information but also to send back

information to the calling function. The arguments that are used to “send out” information are called output

parameters.

The mechanism of sending back information through arguments is achieved using what are known as the

address operator (&) and indirection operator (*). Let us consider an example to illustrate this.

 void mathoperation (int x, int y, int *s, int *d);

 main()

{

 int x = 20, y = 10, s, d;

 mathoperation(x,y, &s, &d);

 printf(“s=%d\n d=%d\n”, s,d);

}

392 Computing Fundamentals & C Programming

 void mathoperation (int a, int b, int *sum, int *diff)

{

 *sum = a+b;

 *diff = a-b;

}

The actual arguments x and y are input arguments, s and d are output arguments. In the function call,

while we pass the actual values of x and y to the function, we pass the addresses of locations where the

values of s and d are stored in the memory. (That is why, the operator & is called the address operator.)

When the function is called the following assignments occur:

value of x to a

value of y to b

address of s to sum

address of d to diff

Note that indirection operator * in the declaration of sum and diff in the header indicates these variables

are to store addresses, not actual values of variables. Now, the variables sum and diff point to the memory

locations of s and d respectively.

(The operator * is known as indirection operator because it gives an indirect reference to a variable

through its address.)

In the body of the function, we have two statements:

 * sum = a+b;

 * diff = a-b;

The first one adds the values a and b and the result is stored in the memory location pointed to by sum.

Remember, this memory location is the same as the memory location of s. Therefore, the value stored in the

location pointed to by sum is the value of s.

Similarly, the value of a–b is stored in the location pointed to by diff, which is the same as the location

d. After the function call is implemented, the value of s is a+b and the value of d is a–b. Output will be:

s = 30

d = 10

The variables *sum and *diff are known as pointers and sum and diff as pointer variables. Since they

are declared as int, they can point to locations of int type data.

The use of pointer variables as actual parameters for communicating data between functions is called

“pass by pointers” or “call by address or reference”. Pointers and their applications are discussed in detail

in Chapter 13.

Rules for Pass by Pointers

1. The types of the actual and formal arguments must be same.

2. The actual arguments (in the function call) must be the addresses of variables that are local to the

calling function.

3. The formal arguments in the function header must be prefixed by the indirection operator *.

4. In the prototype, the arguments must be prefixed by the symbol *.

5. To access the value of an actual argument in the called function, we must use the corresponding formal

argument prefixed with the indirection operator *.

User-Defined Functions 393

11.9.6 Nesting of Functions

C permits nesting of functions freely. main can call function1, which calls function2, which calls

function3, ………. and so on. There is in principle no limit as to how deeply functions can be nested.

Consider the following program:

 float ratio (int x, int y, int z);

 int difference (int x, int y);

 main()

{

 int a, b, c;

 scanf(“%d %d %d”, &a, &b, &c);

 printf(“%f \n”, ratio(a,b,c));

}

 float ratio(int x, int y, int z)

{

 if(difference(y, z))

 return(x/(y-z));

 else

 return(0.0);

}

 int difference(int p, int q)

{

 if(p != q)

 return (1);

 else

 return(0);

}

The above program calculates the ratio

a

b c

and prints the result. We have the following three functions:

main()

ratio()

difference()

main reads the values of a, b, and c and calls the function ratio to calculate the value a/(b–c). This ratio

cannot be evaluated if (b–c) = 0. Therefore, ratio calls another function difference to test whether the

difference (b–c) is zero or not; difference returns 1, if b is not equal to c; otherwise returns zero to the

function ratio. In turn, ratio calculates the value a/(b–c) if it receives 1 and returns the result in float. In

case, ratio receives zero from difference, it sends back 0.0 to main indicating that (b–c) = 0.

Nesting of function calls is also possible. For example, a statement like

P = mul(mul(5,2),6);
is valid. This represents two sequential function calls. The inner function call is evaluated first and the

returned value is again used as an actual argument in the outer function call. If mul returns the product of

its arguments, then the value of p would be 60 (= 5 2 6).

394 Computing Fundamentals & C Programming

Note that the nesting does not mean defining one function within another. Doing this is illegal.

11.10 RECURSION LO 11.4

When a called function in turn calls another function a process of ‘chaining’ occurs. Recursion is a special

case of this process, where a function calls itself. A very simple example of recursion is presented below:

 main()

{

 printf(“This is an example of recursion\n”)

 main();

}

When executed, this program will produce an output something like this:

This is an example of recursion

This is an example of recursion

This is an example of recursion

This is an ex

Execution is terminated abruptly; otherwise the execution will continue indefinitely.

Another useful example of recursion is the evaluation of factorials of a given number. The factorial of a

number n is expressed as a series of repetitive multiplications as shown below:

factorial of n = n(n–1)(n–2).........1.

For example,

factorial of 4 = 4 3 2 1 = 24

A function to evaluate factorial of n is as follows:

 factorial(int n)

{

 int fact;

 if (n==1)

 return(1);

 else

 fact = n*factorial(n-1);

 return(fact);

}

Let us see how the recursion works. Assume n = 3. Since the value of n is not 1, the statement

fact = n * factorial(n–1);
will be executed with n = 3. That is,

fact = 3 * factorial(2);
will be evaluated. The expression on the right-hand side includes a call to factorial with n = 2. This call will

return the following value:

2 * factorial(1)

Once again, factorial is called with n = 1. This time, the function returns 1. The sequence of operations

can be summarized as follows:

fact = 3 * factorial(2)

User-Defined Functions 395

= 3 * 2 * factorial(1)

= 3 * 2 * 1

= 6

Recursive functions can be effectively used to solve problems where solution is expressed in terms of

successively applying the same solution to subsets of the problem. When we write recursive functions,

we must have an if statement somewhere to force the function to return without the recursive call being

executed. Otherwise, the function will never return.

11.11 PASSING ARRAYS TO FUNCTIONS LO 11.5

11.11.1 One-Dimensional Arrays

Like the values of simple variables, it is also possible to pass the values of an array to a function. To pass

a one-dimensional an array to a called function, it is sufficient to list the name of the array, without any

subscripts, and the size of the array as arguments. For example, the call

largest(a,n)

will pass the whole array a to the called function. The called function expecting this call must be

appropriately defined. The largest function header might look like:

float largest(float array[], int size)

The function largest is defined to take two arguments, the array name and the size of the array to specify

the number of elements in the array. The declaration of the formal argument array is made as follows:

float array[];
The pair of brackets informs the compiler that the argument array is an array of numbers. It is not

necessary to specify the size of the array here.

Let us consider a problem of finding the largest value in an array of elements. The program is as follows:

 main()

{

 float largest(float a[], int n);

 float value[4] = {2.5,-4.75,1.2,3.67};

 printf(“%f\n”, largest(value,4));

}

 float largest(float a[], int n)

{

 int i;

 float max;

 max = a[0];

 for(i = 1; i < n; i++)

 if(max < a[i])

 max = a[i];

 return(max);

}

396 Computing Fundamentals & C Programming

When the function call largest(value,4) is made, the values of all elements of array value become the

corresponding elements of array a in the called function. The largest function finds the largest value in the

array and returns the result to the main.

In C, the name of the array represents the address of its first element. By passing the array name, we are, in

fact, passing the address of the array to the called function. The array in the called function now refers to the

same array stored in the memory. Therefore, any changes in the array in the called function will be reflected in

the original array.

Passing addresses of parameters to the functions is referred to as pass by address (or pass by pointers).

Note that we cannot pass a whole array by value as we did in the case of ordinary variables.

H

Write a program to calculate the standard deviation of an array of values. The array elements are read

from the terminal. Use functions to calculate standard deviation and mean.

Standard deviation of a set of n values is give by

S.D =
1 2

1n
x xi

i

n

()

Where x is the mean of the values.

Program
#include <math.h>

#define SIZE 5

 float std_dev(float a[], int n);

 float mean (float a[], int n);

 main()

{

 float value[SIZE];

 int i;

 printf(“Enter %d float values\n”, SIZE);

 for (i=0 ;i < SIZE ; i++)

 scanf(“%f”, &value[i]);

 printf(“Std.deviation is %f\n”, std_dev(value,SIZE));

 }

 float std_dev(float a[], int n)

{

 int i;

 float x, sum = 0.0;

 x = mean (a,n);

 for(i=0; i < n; i++)

 sum += (x-a[i])*(x-a[i]);

 return(sqrt(sum/(float)n));

 }

User-Defined Functions 397

 float mean(float a[],int n)

 {

 int i ;

 float sum = 0.0;

 for(i=0 ; i < n ; i++)

 sum = sum + a[i];

 return(sum/(float)n);

}

Output

 Enter 5 float values

35.0 67.0 79.5 14.20 55.75

Std.deviation is 23.231582

Fig. 11.12 Passing of arrays to a function

A multifunction program consisting of main, std_dev, and mean functions is shown in Fig. 11.12. main

reads the elements of the array value from the terminal and calls the function std_dev to print the standard

deviation of the array elements. Std_dev, in turn, calls another function mean to supply the average value

of the array elements.

Both std_dev and mean are defined as floats and therefore they are declared as floats in the global

section of the program.

Three Rules to Pass an Array to a Function

1. The function must be called by passing only the name of the array.

2. In the function definition, the formal parameter must be an array type; the size of the array does not

need to be specified.

3. The function prototype must show that the argument is an array.

When dealing with array arguments, we should remember one major distinction. If a function changes

the values of the elements of an array, then these changes will be made to the original array that passed to

the function. When an entire array is passed as an argument, the contents of the array are not copied into

the formal parameter array; instead, information about the addresses of array elements are passed on to the

function. Therefore, any changes introduced to the array elements are truly reflected in the original array

in the calling function. However, this does not apply when an individual element is passed on as argument.

Program 11.6 highlights these concepts.

Write a program that uses a function to sort an array of integers.

A program to sort an array of integers using the function sort() is given in Fig. 11.13. Its output clearly

shows that a function can change the values in an array passed as an argument.

Program
 void sort(int m, int x[]);

 main()

 {

398 Computing Fundamentals & C Programming

 int i;

 int marks[5] = {40, 90, 73, 81, 35};

 printf(“Marks before sorting\n”);

 for(i = 0; i < 5; i++)

 printf(“%d “, marks[i]);

 printf(“\n\n”);

 sort (5, marks);

 printf(“Marks after sorting\n”);

 for(i = 0; i < 5; i++)

 printf(“%4d”, marks[i]);

 printf(“\n”);

 }

 void sort(int m, int x[])

 {

 int i, j, t;

 for(i = 1; i <= m-1; i++)

 for(j = 1; j <= m-i; j++)

 if(x[j-1] >= x[j])

{

 t = x[j-1];

 x[j-1] = x[j];

 x[j] = t;

 }

 }

Output

Marks before sorting

40 90 73 81 35

Marks after sorting

 35 40 73 81 90

Fig. 11.13 Sorting of array elements using a function

11.11.2 Two-Dimensional Arrays

Like simple arrays, we can also pass multi-dimensional arrays to functions. The approach is similar to the

one we did with one-dimensional arrays. The rules are simple.

1. The function must be called by passing only the array name.

2. In the function definition, we must indicate that the array has two-dimensions by including two sets of

brackets.

User-Defined Functions 399

3. The size of the second dimension must be specified.

4. The prototype declaration should be similar to the function header.

The function given below calculates the average of the values in a two-dimensional matrix.

 double average(int x[][N], int M, int N)

{

 int i, j;

 double sum = 0.0;

 for (i=0; i<M; i++)

 for(j=1; j<N; j++)

 sum += x[i][j];

 return(sum/(M*N));

}

This function can be used in a main function as illustrated below:

 main()

{

 int M=3, N=2;

 double average(int [] [N], int, int);

 double mean;

 int matrix [M][N]=

{

 {1,2},

 {3,4},

 {5,6}

 };

 mean = average(matrix, M, N);

}

11.12 PASSING STRINGS TO FUNCTIONS LO 11.5

The strings are treated as character arrays in C and therefore the rules for passing strings to functions are

very similar to those for passing arrays to functions.

Basic rules are:

1. The string to be passed must be declared as a formal argument of the function when it is defined.

Example:

 void display(char item_name[])

 {

 }

400 Computing Fundamentals & C Programming

2. The function prototype must show that the argument is a string. For the above function definition, the

prototype can be written as

void display(char str[]);
3. A call to the function must have a string array name without subscripts as its actual argument.

Example:

display (names);
where names is a properly declared string array in the calling function.

We must note here that, like arrays, strings in C cannot be passed by value to functions.

Pass by Value versus Pass by Pointers

The technique used to pass data from one function to another is known as parameter passing. Parameter

passing can be done in following two ways:

Pass by value (also known as call by value).

Pass by pointers (also known as call by pointers).

In pass by value, values of actual parameters are copied to the variables in the parameter list of the called

function. The called function works on the copy and not on the original values of the actual parameters.

This ensures that the original data in the calling function cannot be changed accidentally.

In pass by pointers (also known as pass by address), the memory addresses of the variables rather than

the copies of values are sent to the called function. In this case, the called function directly works on the

data in the calling function and the changed values are available in the calling function for its use.

Pass by pointers method is often used when manipulating arrays and strings. This method is also used

when we require multiple values to be returned by the called function.

11.13 THE SCOPE, VISIBILITY, AND

 LIFETIME OF VARIABLES LO 11.6

Variables in C differ in behaviour from those in most other languages. For example, in a BASIC program,

a variable retains its value throughout the program. It is not always the case in C. It all depends on the

‘storage’ class a variable may assume.

In C not only do all variables have a data type, they also have a storage class. The following variable

storage classes are most relevant to functions:

1. Automatic variables.

2. External variables.

3. Static variables.

4. Register variables.

We shall briefly discuss the scope, visibility, and longevity of each of the above class of variables.

The scope of variable determines over what region of the program a variable is actually available for use

(‘active’). Longevity refers to the period during which a variable retains a given value during execution of

a program (‘alive’). So longevity has a direct effect on the utility of a given variable. The visibility refers to

the accessibility of a variable from the memory.

The variables may also be broadly categorized, depending on the place of their declaration, as internal

(local) or external (global). Internal variables are those which are declared within a particular function,

while external variables are declared outside of any function.

It is very important to understand the concept of storage classes and their utility in order to develop

efficient multifunction programs.

User-Defined Functions 401

11.13.1 Automatic Variables

Automatic variables are declared inside a function in which they are to be utilized. They are created when

the function is called and destroyed automatically when the function is exited, hence the name automatic.

Automatic variables are therefore private (or local) to the function in which they are declared. Because of

this property, automatic variables are also referred to as local or internal variables.

A variable declared inside a function without storage class specification is, by default, an automatic

variable. For instance, the storage class of the variable number in the example below is automatic.

 main()

{

 int number;

 – – –– –

 – – –– –

}

We may also use the keyword auto to declare automatic variables explicitly.

 main()

{

 auto int number;

 – – –– –

 – – –– –

}

One important feature of automatic variables is that their value cannot be changed accidentally by what

happens in some other function in the program. This assures that we may declare and use the same variable

name in different functions in the same program without causing any confusion to the compiler.

Write a multifunction to illustrate how automatic variables work.

A program with two subprograms function1 and function2 is shown in Fig. 11.14. m is an automatic

variable and it is declared at the beginning of each function. m is initialized to 10, 100, and 1000 in

function1, function2, and main respectively.

When executed, main calls function2 which in turn calls function1. When main is active, m = 1000; but

when function2 is called, the main’s m is temporarily put on the shelf and the new local m = 100 becomes

active. Similarly, when function1 is called, both the previous values of m are put on the shelf and the latest

value of m (=10) becomes active. As soon as function1 (m=10) is finished, function2 (m=100) takes over

again. As soon it is done, main (m=1000) takes over. The output clearly shows that the value assigned to m

in one function does not affect its value in the other functions; and the local value of m is destroyed when it

leaves a function.

Program

void function1(void);

 void function2(void);

 main()

{

402 Computing Fundamentals & C Programming

 int m = 1000;

 function2();

 printf(“%d\n”,m); /* Third output */

 }

 void function1(void)

 {

int m = 10;

 printf(“%d\n”,m); /* First output */

 }

 void function2(void)

 {

 int m = 100;

 function1();

 printf(“%d\n”,m); /* Second output */

 }

Output

10

 100

 1000

Fig. 11.14 Working of automatic variables

There are two consequences of the scope and longevity of auto variables worth remembering. First,

any variable local to main will be normally alive throughout the whole program, although it is active only

in main. Secondly, during recursion, the nested variables are unique auto variables, a situation similar to

function-nested auto variables with identical names.

11.13.2 External Variables

Variables that are both alive and active throughout the entire program are known as external variables. They

are also known as global variables. Unlike local variables, global variables can be accessed by any function

in the program. External variables are declared outside a function. For example, the external declaration of

integer number and float length might appear as:

 int number;

 float length = 7.5;

 main()

{

 – – –– –– –

 – – –– –– –

}

 function1()

{

 – – –– –– –

User-Defined Functions 403

 – – –– –– –
}

 function2()
{

– – –– –– –

– – –– –– –
}

The variables number and length are available for use in all the three functions. In case a local variable

and a global variable have the same name, the local variable will have precedence over the global one in the

function where it is declared. Consider the following example:

 int count;

 main()

{

 count = 10;

 – – –– –

 – – –– –

}

 function()

{

 int count = 0;

– – –– –

– – –– –

 count = count+1;

}

When the function references the variable count, it will be referencing only its local variable, not the

global one. The value of count in main will not be affected.

Write a multifunction program to illustrate the properties of global variables.

A program to illustrate the properties of global variables is presented in Fig. 11.15. Note that variable x is

used in all functions but none except fun2, has a definition for x. Because x has been declared ‘above’ all

the functions, it is available to each function without having to pass x as a function argument. Further, since

the value of x is directly available, we need not use return(x) statements in fun1 and fun3. However, since

fun2 has a definition of x, it returns its local value of x and therefore uses a return statement. In fun2, the

global x is not visible. The local x hides its visibility here.

Program

int fun1(void);

 int fun2(void);

 int fun3(void);

 int x ; /* global */

 main()

 {

404 Computing Fundamentals & C Programming

 x = 10 ; /* global x */

 printf(“x = %d\n”, x);

 printf(“x = %d\n”, fun1());

 printf(“x = %d\n”, fun2());

 printf(“x = %d\n”, fun3());

 }

 fun1(void)

 {

 x = x + 10 ;

 }

 int fun2(void)

 {

 int x ; /* local */

 x = 1 ;

 return (x);

 }

 fun3(void)

 {

 x = x + 10 ; /* global x */

 }

Output

 x = 10

x = 20

x = 1

x = 30

 Fig. 11.15 Illustration of properties of global variables

Once a variable has been declared as global, any function can use it and change its value. Then,

subsequent functions can reference only that new value.

Global Variables as Parameters

Since all functions in a program source file can access global variables, they can be used for passing values

between the functions. However, using global variables as parameters for passing values poses certain

problems.

The values of global variables which are sent to the called function may be changed inadvertently

by the called function.

Functions are supposed to be independent and isolated modules. This character is lost, if they use

global variables.

It is not immediately apparent to the reader which values are being sent to the called function.

A function that uses global variables suffers from reusability.

One other aspect of a global variable is that it is available only from the point of declaration to the end of

the program. Consider a program segment as shown below:

User-Defined Functions 405

 main()

{

 y = 5;

}

 int y; /* global declaration */

 func1()

{

 y = y+1;

}

We have a problem here. As far as main is concerned, y is not defined. So, the compiler will issue an

error message. Unlike local variables, global variables are initialized to zero by default. The statement

y = y+1;
in fun1 will, therefore, assign 1 to y.

11.13.3 External Declaration

In the program segment above, the main cannot access the variable y as it has been declared after the main

function. This problem can be solved by declaring the variable with the storage class extern.

For example:

 main()

{

extern int y; /* external declaration */

}

 func1()

{

extern int y; /* external declaration */

}

 int y; /* definition */

Although the variable y has been defined after both the functions, the external declaration of y inside

the functions informs the compiler that y is an integer type defined somewhere else in the program. Note

that extern declaration does not allocate storage space for variables. In case of arrays, the definition should

include their size as well.

Example:

 main()

 { int i;

 void print_out(void);

extern float height [];

406 Computing Fundamentals & C Programming

 print_out();

}

 void print_out(void)

{

extern float height [];

 int i;

}

 float height[SIZE];

An extern within a function provides the type information to just that one function. We can provide type

information to all functions within a file by placing external declarations before any of them.

Example:

 extern float height[];

 main()

{

 int i;

 void print_out(void);

 print_out();

}

 void print_out(void)

{

 int i;

}

 float height[SIZE];

The distinction between definition and declaration also applies to functions. A function is defined when

its parameters and function body are specified. This tells the compiler to allocate space for the function

code and provides type information for the parameters. Since functions are external by default, we declare

them (in the calling functions) without the qualifier extern. Therefore, the declaration

void print_out(void);
is equivalent to

extern void print_out(void);
Function declarations outside of any function behave the same way as variable declarations.

11.13.4 Static Variables

As the name suggests, the value of static variables persists until the end of the program. A variable can be

declared static using the keyword static like

User-Defined Functions 407

static int x;
static float y;

A static variable may be either an internal type or an external type depending on the place of declaration.

Internal static variables are those which are declared inside a function. The scope of internal static

variables extend up to the end of the function in which they are defined. Therefore, internal static variables

are similar to auto variables, except that they remain in existence (alive) throughout the remainder of

the program. Therefore, internal static variables can be used to retain values between function calls. For

example, it can be used to count the number of calls made to a function.

Write a program to illustrate the properties of a static variable.

The program in Fig. 11.16 explains the behaviour of a static variable.

Program

 void stat(void);

 main ()

 {

 int i;

 for(i=1; i<=3; i++)

 stat();

 }

 void stat(void)

 {

 static int x = 0;

 x = x+1;

 printf(“x = %d\n”, x);

 }

Output

 x = 1

 x = 2

 x = 3

 Fig. 11.16 Illustration of static variable

A static variable is initialized only once, when the program is compiled. It is never initialized again.

During the first call to stat, x is incremented to 1. Because x is static, this value persists and therefore,

the next call adds another 1 to x giving it a value of 2. The value of x becomes three when the third call is

made.

Had we declared x as an auto variable, the output would have been:

x = 1

x = 1

x = 1

408 Computing Fundamentals & C Programming

This is because each time stat is called, the auto variable x is initialized to zero. When the function

terminates, its value of 1 is lost.

An external static variable is declared outside of all functions and is available to all the functions in that

program. The difference between a static external variable and a simple external variable is that the static

external variable is available only within the file where it is defined while the simple external variable can

be accessed by other files.

It is also possible to control the scope of a function. For example, we would like a particular function

accessible only to the functions in the file in which it is defined, and not to any function in other files. This

can be accomplished by defining ‘that’ function with the storage class static.

11.13.5 Register Variables

We can tell the compiler that a variable should be kept in one of the machine’s registers, instead of keeping

in the memory (where normal variables are stored). Since a register access is much faster than a memory

access, keeping the frequently accessed variables (e.g., loop control variables) in the register will lead to

faster execution of programs. This is done as follows:

register int count;

Although, ANSI standard does not restrict its application to any particular data type, most compilers

allow only int or char variables to be placed in the register.

Since only a few variables can be placed in the register, it is important to carefully select the variables

for this purpose. However, C will automatically convert register variables into non-register variables once

the limit is reached.

Table 11.1 summarizes the information on the visibility and lifetime of variables in functions and files.

Table 11.1 Scope and Lifetime of Variables

Storage Class Where declared Visibility (Active) Lifetime (Alive)

None Before all functions in a file

(may be initialized)

Entire file plus other files where

variable is declared with extern

Entire program (Global)

extern Before all functions in a file

(cannot be initialized)

extern and the file where origi-

nally declared as global.

Entire file plus other files where

variable is declared

Global

static Before all functions in a file Only in that file Global

None or auto Inside a function (or a block) Only in that function or block Until end of function or block

register Inside a function or block Only in that function or block Until end of function or block

static Inside a function Only in that function Global

Nested Blocks

A set of statements enclosed in a set of braces is known a block or a compound statement. Note that all

functions including the main use compound statement. A block can have its own declarations and other

statements. It is also possible to have a block of such statements inside the body of a function or another

block, thus creating what is known as nested blocks as shown below:

User-Defined Functions 409

When this program is executed, the value c will be 10, not 30. The statement b = a; assigns a value of

20 to b and not zero. Although the scope of a extends up to the end of main it is not “visible” inside the

inner block where the variable a has been declared again. The inner a hides the visibility of the outer a in

the inner block. However, when we leave the inner block, the inner a is no longer in scope and the outer a

becomes visible again.

Remember, the variable b is not re-declared in the inner block and therefore it is visible in both the

blocks. That is why when the statement int c = a + b;
is evaluated, a assumes a values of 0 and b assumes a value of 10.

Although main’s variables are visible inside the nested block, the reverse is not true.

Scope Rules

Scope

The region of a program in which a variable is available for use.

Visibility

The program’s ability to access a variable from the memory.

Lifetime

The lifetime of a variable is the duration of time in which a variable exists in the memory during execution.

Rules of use

1. The scope of a global variable is the entire program file.

2. The scope of a local variable begins at point of declaration and ends at the end of the block or

function in which it is declared.

3. The scope of a formal function argument is its own function.

4. The lifetime (or longevity) of an auto variable declared in main is the entire program execution time,

although its scope is only the main function.

5. The life of an auto variable declared in a function ends when the function is exited.

6. A static local variable, although its scope is limited to its function, its lifetime extends till the end of

program execution.

7. All variables have visibility in their scope, provided they are not declared again.

8. If a variable is redeclared within its scope again, it loses its visibility in the scope of the redeclared

variable.

410 Computing Fundamentals & C Programming

11.14 MULTIFILE PROGRAMS LO 11.6

So far we have been assuming that all the functions (including the main) are defined in one file. However,

in real-life programming environment, we may use more than one source files which may be compiled

separately and linked later to form an executable object code. This approach is very useful because any

change in one file does not affect other files thus eliminating the need for recompilation of the entire

program.

Multiple source files can share a variable provided it is declared as an external variable appropriately.

Variables that are shared by two or more files are global variables and therefore we must declare them

accordingly in one file and then explicitly define them with extern in other files. Figure 11.17 illustrates the

use of extern declarations in a multifile program.

The function main in file1 can reference the variable m that is declared as global in file2. Remember,

function1 cannot access the variable m. If, however, the extern int m; statement is placed before main,

then both the functions could refer to m. This can also be achieved by using extern int m; statement inside

each function in file1.

The extern specifier tells the compiler that the following variable types and names have already been

declared elsewhere and no need to create storage space for them. It is the responsibility of the linker to

resolve the reference problem. It is important to note that a multifile global variable should be declared

without extern in one (and only one) of the files. The extern declaration is done in places where secondary

references are made. If we declare a variable as global in two different files used by a single program, then

the linker will have a conflict as to which variable to use and, therefore, issues a warning.

 file1.c file2.c

main() int m /* global variable */

{ function2()

 extern int m; {

 int i; int i;

} }

function1() function3()

{ {

 int j; int count;

 } }

Fig. 11.17

User-Defined Functions 411

The multifile program shown in Fig. 11.18 can be modified as shown in Fig. 11.17.

 file1.c file2.c

int m; /* global variable */ extern int m;

main() function2()

{ {

 int i; int i;

} }

function1() function3()

{ {

 int j; int count;

} }

Fig. 11.18

When a function is defined in one file and accessed in another, the later file must include a function

declaration. The declaration identifies the function as an external function whose definition appears

elsewhere. We usually place such declarations at the beginning of the file, before all functions. Although all

functions are assumed to be external, it would be a good practice to explicitly declare such functions with

the storage class extern.

Learning Outcomes

A function that returns a value can be used in expressions like any other C variable.

A function that returns a value cannot be used as a stand-alone statement.

Where more functions are used, they may be placed in any order.

It is a syntax error if the types in the declaration and function definition do not match.

It is a syntax error if the number of actual parameters in the function call do not match the number in

the declaration statement.

It is a logic error if the parameters in the function call are placed in the wrong order.

Placing a semicolon at the end of header line is illegal.

Forgetting the semicolon at the end of a prototype declaration is an error.

A return statement can occur anywhere within the body of a function.

A function definition may be placed either after or before the main function.

A return statement is required if the return type is anything other than void.

If a function does not return any value, the return type must be declared void.

If a function has no parameters, the parameter list must be declared void.

Using void as return type when the function is expected to return a value is an error.

Trying to return a value when the function type is marked void is an error.

LO 11.1

LO 11.1

LO 11.1

LO 11.2

LO 11.2

LO 11.2

LO 11.2

LO 11.2

LO 11.2

LO 11.2

LO 11.3

LO 11.3

LO 11.3

LO 11.3

LO 11.3

412 Computing Fundamentals & C Programming

Defining a function within the body of another function is not allowed.

It is an error if the type of data returned does not match the return type of the function.

It will most likely result in logic error if there is a mismatch in data types between the actual and

formal arguments.

Functions return integer value by default.

A function without a return statement cannot return a value, when the parameters are passed by

value.

When the value returned is assigned to a variable, the value will be converted to the type of the

variable receiving it.

Function cannot be the target of an assignment.

A function with void return type cannot be used in the right-hand side of an assignment statement. It

can be used only as a stand-alone statement.

A function can have more than one return statement.

A recursive function must have a condition that forces the function to return without making the

recursive call; otherwise the function will never return.

It is illegal to use the name of a formal argument as the name of a local variable.

Variables in the parameter list must be individually declared for their types. We cannot use multiple

declarations (like we do with local or global variables).

Use parameter passing by values as far as possible to avoid inadvertent changes to variables of calling

function in the called function.

Although not essential, include parameter names in the prototype declarations for documentation

purposes.

A global variable used in a function will retain its value for future use.

A local variable defined inside a function is known only to that function. It is destroyed when the

function is exited.

A global variable is visible only from the point of its declaration to the end of the program.

When a variable is redeclared within its scope either in a function or in a block, the original variable

is not visible within the scope of the redeclared variable.

A local variable declared static retains its value even after the function is exited.

Static variables are initialized at compile time and therefore, they are initialized only once.

Avoid the use of names that hide names in outer scope.

Key Terms to Remember

Arguments: Are the set of values that are passed to a function to enable the function to perform the

desired task.

Block statement: Is a set of statements enclosed within a set of braces.

Function: Is an independently coded subprogram that performs a specific task.

Modular Programming: Is a software development approach that organizes a large program into

small, independent program segments called modules.

Calling program: Is the program or function that calls another function.

Function body: Contains the statement block for performing the required task.

LO 11.3

LO 11.3

LO 11.3

LO 11.3

LO 11.3

LO 11.3

LO 11.3

LO 11.3

LO 11.3

LO 11.4

LO 11.5

LO 11.5

LO 11.5

LO 11.5

LO 11.6

LO 11.6

LO 11.6

LO 11.6

LO 11.6

LO 11.6

LO 11.6

LO 11.1

LO 11.1

LO 11.1

LO 11.1

LO 11.2

LO 11.2

User-Defined Functions 413

Function type: Specifies the type of value that the function will return.

Parameter list: Is a list of variables that will receive data values at the time of function call.

Program definition: Is an independent program module that is written to perform specific task. It is

also referred as function definition.

Recursion: Is a scenario where a function calls itself.

External variable: Is a variable that is active throughout the program. It is also referred as global

variable.

Local variable: Is a variable that is active only within a specific function or statement block. It is

also referred as internal variable.

Brief Cases

1. Calculation of Area under a Curve [LO 11.1, 11.2, 11.3, 11.6 M]

One of the applications of computers in numerical analysis is computing the area under a curve. One simple

method of calculating the area under a curve is to divide the area into a number of trapezoids of same width

and summing up the area of individual trapezoids. The area of a trapezoid is given by

Area = 0.5 * (h1 + h2) * b

where h1 and h2 are the heights of two sides and b is the width as shown in Fig. 11.19.

The program in Fig. 11.21 calculates the area for a curve of the function

f(x) = x2 + 1

between any two given limits, say, A and B.

Input

Lower limit (A)

Upper limit (B)

Number of trapezoids

Fig. 11.19 Area under a curve

LO 11.2

LO 11.2

LO 11.2

LO 11.4

LO 11.6

LO 11.6

414 Computing Fundamentals & C Programming

Output

Total area under the curve between the given limits.

Algorithm

1. Input the lower and upper limits and the number of trapezoids.

2. Calculate the width of trapezoids.

3. Initialize the total area.

4. Calculate the area of trapezoid and add to the total area.

5. Repeat step-4 until all the trapezoids are completed.

6. Print total area.

The algorithm is implemented in top-down modular form as in Fig. 11.20.

Fig. 11.20 Modular chart

The evaluation of f(x) has been done using a separate function so that it can be easily modified to allow

other functions to be evaluated.

The output for two runs shows that better accuracy is achieved with larger number of trapezoids. The

actual area for the limits 0 and 3 is 12 units (by analytical method).

Program

 #include <stdio.h>

 float start_point, /* GLOBAL VARIABLES */

 end_point,

 total_area;

 int numtraps;

 main()

{

 void input(void);

 float find_area(float a,float b,int n); /* prototype */

 print(“AREA UNDER A CURVE”);

 input();

 total_area = find_area(start_point, end_point, numtraps);

 printf(“TOTAL AREA = %f”, total_area);

}

User-Defined Functions 415

 void input(void)

{

 printf(“\n Enter lower limit:”);

 scanf(“%f”, &start_point);

 printf(“Enter upper limit:”);

 scanf(“%f”, &end_point);

 printf(“Enter number of trapezoids:”);

 scanf(“%d”, &numtraps);

}

 float find_area(float a, float b, int n)

{

 float base, lower, h1, h2; /* LOCAL VARIABLES */

 float function_x(float x); /* prototype */

 float trap_area(float h1,float h2,float base);/*prototype*/

 base = (b-1)/n;

 lower = a;

 for(lower =a; lower <= b-base; lower = lower + base)

{

 h1 = function_x(lower);

 h1 = function_x(lower + base);

 total_area += trap_area(h1, h2, base);

}

 return(total_area);

 float trap_area(float height_1,float height_2,float base)

{

 float area; /* LOCAL VARIABLE */

 area = 0.5 * (height_1 + height_2) * base;

 return(area);

}

 float function_x(float x)

{

 /* F(X) = X * X + 1 */

 return(x*x + 1);

}

Output

 AREA UNDER A CURVE

 Enter lower limit: 0

 Enter upper limit: 3

 Enter number of trapezoids: 30

416 Computing Fundamentals & C Programming

 TOTAL AREA = 12.005000

 AREA UNDER A CURVE

 Enter lower limit: 0

 Enter upper limit: 3

 Enter number of trapezoids: 100

 TOTAL AREA = 12.000438

 Fig. 11.21 Computing area under a curve

Review Questions

Fill in the Blanks

1. The parameters used in a function call are called ______.

2. In prototype declaration, specifying ____ is optional.

3. A _______ aids the compiler to check the matching between the actual arguments and the

formal ones.

4. In passing by pointers, the variables of the formal parameters must be prefixed with

_______ in their declaration.

5. By default, ______ is the return type of a C function.

6. A function that calls itself is known as a _______ function.

7. A variable declared inside a function is called _________.

8. _________ refers to the region where a variable is actually available for use.

9. If a local variable has to retain its value between calls to the function, it must be declared as

_________.

10. A variable declared inside a function by default assumes ______ storage class.

True or False Statements

1. Any name can be used as a function name.

2. A function without a return statement is illegal.

3. A function prototype must always be placed outside the calling function.

4. The variable names used in prototype should match those used in the function definition.

5. The return type of a function is int by default.

6. When variable values are passed to functions, a copy of them are created in the memory.

LO 11.1

LO 11.2

LO 11.2

LO 11.3

LO 11.3

LO 11.4

LO 11.6

LO 11.6

LO 11.6

LO 11.6

LO 11.1

LO 11.2

LO 11.2

LO 11.2

LO 11.2

LO 11.2

Levels of Difficulty

: Low; : Medium; : High

User-Defined Functions 417

7. A function can be defined within the main function.

8. A function can be defined and placed before the main function.

9. C functions can return only one value under their function name.

10. A function in C should have at least one argument.

11. Only a void type function can have void as its argument.

12. Program execution always begins in the main function irrespective of its location in the

program.

13. In parameter passing by pointers, the formal parameters must be prefixed with the symbol *

in their declarations.

14. In parameter passing by pointers, the actual parameters in the function call may be variables

or constants.

15. An user-defined function must be called at least once; otherwise a warning message will be

issued.

16. A function can call itself.

17. In passing arrays to functions, the function call must have the name of the array to be

passed without brackets.

18. In passing strings to functions, the actual parameter must be name of the string post-fixed

with size in brackets.

19. Global variables are visible in all blocks and functions in the program.

20. Global variables cannot be declared as auto variables.

Discussion Questions

1. The main is a user-defined function. How does it differ from other user-defined functions?

2. Describe the two ways of passing parameters to functions. When do you prefer to use each

of them?

3. What is prototyping? Why is it necessary?

4. Distinguish between the following:

(a) Actual and formal arguments

(b) & operator and * operator

(c) Global and local variables

(d) Automatic and static variables

(e) Scope and visibility of variables

5. Explain what is likely to happen when the following situations are encountered in a

program.

(a) Actual arguments are less than the formal arguments in a function.

(b) Data type of one of the actual arguments does not match with the type of the corresponding formal

argument.

LO 11.2

LO 11.2

LO 11.3

LO 11.3

LO 11.3

LO 11.3

LO 11.3

LO 11.3

LO 11.3

LO 11.4

LO 11.5

LO 11.5

LO 11.6

LO 11.6

LO 11.1

LO 11.5

LO 11.2

LO 11.2

LO 11.3

LO 11.6

LO 11.6

LO 11.6

LO 11.3

418 Computing Fundamentals & C Programming

(c) Data type of one of the arguments in a prototype does not match with the type of the corresponding

formal parameter in the header line.

(d) The order of actual parameters in the function call is different from the order of formal parameters

in a function where all the parameters are of the same type.

(e) The type of expression used in return statement does not match with the type of the function.

6. Which of the following prototype declarations are invalid? Why?

(a) int (fun) void;
(b) double fun (void)
(c) float fun (x, y, n);
(d) void fun (void, void);
(e) int fun (int a, b);
(f) fun (int, float, char);
(g) void fun (int a, int &b);

7. Which of the following header lines are invalid? Why?

(a) float average (float x, float y, float z);
(b) double power (double a, int n – 1)
(c) int product (int m, 10)
(d) double minimum (double x; double y;)
(e) int mul (int x, y)
(f) exchange (int *a, int *b)
(g) void sum (int a, int b, int &c)

8. A function to divide two floating point numbers is as follows:

 divide (float x, float y)

{

 return (x / y);

}

What will be the value of the following “function calls”

(a) divide (10, 2)

(b) divide (9, 2)

(c) divide (4.5, 1.5)

(d) divide (2.0, 3.0)

9. What will be the effect on the above function calls if we change the header line as follows:

(a) int divide (int x, int y)

(b) double divide (float x, float y)

10. Determine the output of the following program?

 int prod(int m, int n);

 main ()

{

 int x = 10;

 int y = 20;

 int p, q;

 p = prod (x,y);

 q = prod (p, prod (x,z));

LO 11.2

LO 11.2

LO 11.3

LO 11.3

LO 11.3

User-Defined Functions 419

 printf (“%d %d\n”, p,q);

}

 int prod(int a, int b)

{

 return (a * b);

}

11. What will be the output of the following program?

 void test (int *a);

 main ()

{

 int x = 50;

 test (&x);

 printf(“%d\n”, x);

}

 void test (int *a);

{

 *a = *a + 50;

}

12. The function test is coded as follows:

 int test (int number)

{

 int m, n = 0;

 while (number)

{

 m = number % 10;

 if (m % 2)

 n = n + 1;

 number = number /10;

}

 return (n);

}

 What will be the values of x and y when the following statements are executed?

 int x = test (135);

 int y = test (246);

13. Enumerate the rules that apply to a function call.

14. Summarize the rules for passing parameters to functions by pointers.

15. What are the rules that govern the passing of arrays to function?

16. State the problems we are likely to encounter when we pass global variables as parameters

to functions.

LO 11.3

LO 11.3

LO 11.2

LO 11.3

LO 11.5

LO 11.6

420 Computing Fundamentals & C Programming

Debugging Exercises

1. Find errors, if any, in the following function definitions:

(a) void abc (int a, int b)
 {
 int c;

 return (c);
 }

(b) int abc (int a, int b)
 {

 }

(c) int abc (int a, int b)
 {
 double c = a + b;
 return (c);
 }

(d) void abc (void)
 {

 return;
 }

(e) int abc(void)

 {

 return;
 }

2. Find errors in the following function calls:

(a) void xyz ();
(b) xyx (void);
(c) xyx (int x, int y);
(d) xyzz ();
(e) xyz () + xyz ();

Programming Exercises

1. Write a function exchange to interchange the values of two variables, say x and y. Illustrate

the use of this function, in a calling function. Assume that x and y are defined as global

variables.

2. Write a function space(x) that can be used to provide a space of x positions between two

output numbers. Demonstrate its application.

3. Use recursive function calls to evaluate

 f(x) =

3 5 7

3! 5! 7!

x x x
x

LO 11.3

LO 11.3

LO 11.2

LO 11.6

LO 11.2

LO 11.4

User-Defined Functions 421

4. An n_order polynomial can be evaluated as follows:

 P = (.....(((a0x+a1)x+a2)x+a3)x+...+an)

 Write a function to evaluate the polynomial, using an array variable. Test it using a main

program.

5. The Fibonacci numbers are defined recursively as follows:

F1 = 1

F2 = 1

Fn = F n–1+F n–2, n > 2

 Write a function that will generate and print the first n Fibonacci numbers. Test the function for

n = 5, 10, and 15.

6. Write a function that will round a floating-point number to an indicated decimal place.

For example the number 17.457 would yield the value 17.46 when it is rounded off to two

decimal places.

7. Write a function prime that returns 1 if its argument is a prime number and returns zero

otherwise.

8. Write a function that will scan a character string passed as an argument and convert all

lowercase characters into their uppercase equivalents.

9. Develop a top_down modular program to implement a calculator. The program should

request the user to input two numbers and display one of the following as per the desire of

the user:

(a) Sum of the numbers

(b) Difference of the numbers

(c) Product of the numbers

(d) Division of the numbers

 Provide separate functions for performing various tasks such as reading, calculating and

displaying. Calculating module should call second level modules to perform the individual

mathematical operations. The main function should have only function calls.

10. Develop a modular interactive program using functions that reads the values of three sides

of a triangle and displays either its area or its perimeter as per the request of the user. Given

the three sides a, b and c.

 Perimeter= a + b + c

 Area = (s a) (s b) (s c)

where s = (a + b + c)/2

11. Write a function that can be called to find the largest element of an m by n matrix.

12. Write a function that can be called to compute the product of two matrices of size m by n

and n by m. The main function provides the values for m and n and two matrices.

13. Design and code an interactive modular program that will use functions to a matrix of m by

n size, compute column averages and row averages, and then print the entire matrix with

averages shown in respective rows and columns.

14. Develop a top-down modular program that will perform the following tasks:

(a) Read two integer arrays with unsorted elements.

(b) Sort them in ascending order

LO 11.5

LO 11.3

LO 11.2

LO 11.2

LO 11.5

LO 11.2

LO 11.3

LO 11.2

LO 11.3

LO 11.5

LO 11.5

LO 11.3

LO 11.5

LO 11.3

LO 11.5

422 Computing Fundamentals & C Programming

(c) Merge the sorted arrays

(d) Print the sorted list

 Use functions for carrying out each of the above tasks. The main function should have only

function calls.

15. Develop your own functions for performing following operations on strings:

(a) Copying one string to another

(b) Comparing two strings

(c) Adding a string to the end of another string

 Write a driver program to test your functions.

16. Write a program that invokes a function called find() to perform the following tasks:

(a) Receives a character array and a single character.

(b) Returns 1 if the specified character is found in the array, 0 otherwise.

17. Design a function locate () that takes two character arrays s1 and s2 and one integer value

m as parameters and inserts the string s2 into s1 immediately after the index m.

Write a program to test the function using a real-life situation. (Hint: s2 may be a missing

word in s1 that represents a line of text).

18. Write a function that takes an integer parameter m representing the month number of the

year and returns the corresponding name of the month. For instance, if m = 3, the month is

March.

 Test your program.

19. In preparing the calendar for a year we need to know whether that particular year is leap

year or not. Design a function leap() that receives the year as a parameter and returns an

appropriate message.

What modifications are required if we want to use the function in preparing the actual

calendar?

20. Write a function that receives a floating point value x and returns it as a value rounded to

two nearest decimal places. For example, the value 123.4567 will be rounded to 123.46

(Hint: Seek help of one of the math functions available in math library).

LO 11.3

LO 11.5

LO 11.5

LO 11.5

LO 11.3

LO 11.2

LO 11.2

 Structures and Unions 423

12.1 INTRODUCTION

We have seen that arrays can be used to represent a group of data items that belong to the same

type, such as int or fl oat. However, we cannot use an array if we want to represent a collection of

data items of different types using a single name. Fortunately, C supports a constructed data type

known as structures, a mechanism for packing data of different types. A structure is a convenient

tool for handling a group of logically related data items. For example, it can be used to represent

a set of attributes, such as student_name, roll_number and marks. The concept of a structure is

analogous to that of a ‘record’ in many other languages. More examples of such structures are:

time : seconds, minutes, hours

date : day, month, year

book : author, title, price, year

city : name, country, population

address : name, door-number, street, city

inventory : item, stock, value

customer : name, telephone, city, category

L
E

A
R

N
IN

G
 O

B
J
E

C
T
IV

E
S A er reading this chapter, you will be able to

LO 12.1 Defi ne structures

LO 12.2 Explain how structure variables are declared and accessed in a program

LO 12.3 Describe how structure variables and members are manipulated

LO 12.4 Discuss structures and arrays

LO 12.5 Illustrate nested structures and ‘structures and func ons’

LO 12.6  Explain methods of transferring value of structures from one func on to

another

LO 12.7  Determine how structures and unions diff er in terms of their storage

technique

V
E

S A er reading this chapter, you will be able to

LO 12.1 Defi ne structures

CHAPT ERCHAPT ER

1212
Structures and UnionsStructures and Unions

 424 Computing Fundamentals & C Programming

Structures help to organize complex data in a more meaningful way. It is a powerful concept that we

may often need to use in our program design. This chapter is devoted to the study of structures and their

applications in program development. Another related concept known as unions is also discussed.

12.2 DEFINING A STRUCTURE LO 12.1

Unlike arrays, structures must be defi ned fi rst for their format that may be used later to declare structure

variables. Let us use an example to illustrate the process of structure defi nition and the creation of structure

variables. Consider a book database consisting of book name, author, number of pages, and price. We can

defi ne a structure to hold this information as follows:

 struct book_bank

 {

 char title[20];

 char author[15];

 int pages;

 fl oat price;

 };

The keyword struct declares a structure to hold the details of four data fi elds, namely title, author,

pages, and price. These fi elds are called structure elements or members. Each member may belong to a

different type of data. book_bank is the name of the structure and is called the structure tag. The tag name

may be used subsequently to declare variables that have the tag’s structure.

Note that the above defi nition has not declared any variables. It simply describes a format called template

to represent information as shown below:

array of 20 characterstitle

author

pages

price

array of 15 characters

integer

float

The general format of a structure defi nition is as follows:

 struct tag_name

 {

 data_type member1;

 data_type member2;

 – – – – – – – –

 – – – – – – – –

 };

 Structures and Unions 425

In defi ning a structure you may note the following syntax:

1. The template is terminated with a semicolon.

2. While the entire defi nition is considered as a statement, each member is declared independently for its

name and type in a separate statement inside the template.

3. The tag name such as book_bank can be used to declare structure variables of its type, later in the

program.

12.2.1 Arrays vs Structures

Both the arrays and structures are classifi ed as structured data types as they provide a mechanism that

enable us to access and manipulate data in a relatively easy manner. But they differ in a number of ways

which are as follows:

1. An array is a collection of related data elements of same type. Structure can have elements of different

types.

2. An array is derived data type whereas a structure is a programmer-defi ned one.

3. Any array behaves like a built-in data type. All we have to do is to declare an array variable and use it.

But in the case of a structure, fi rst we have to design and declare a data structure before the variables

of that type are declared and used.

12.3 DECLARING STRUCTURE VARIABLES LO 12.2

After defi ning a structure format we can declare variables of that type. A structure variable declaration is

similar to the declaration of variables of any other data types. It includes the following elements:

1. The keyword struct.

2. The structure tag name.

3. List of variable names separated by commas.

4. A terminating semicolon.

For example, the statement

 struct book_bank, book1, book2, book3;

declares book1, book2, and book3 as variables of type struct book_bank.

Each one of these variables has four members as specifi ed by the template. The complete declaration

might look like this:

 struct book_bank

 {

 char title[20];

 char author[15];

 int pages;

 fl oat price;

 };

 struct book_bank book1, book2, book3;

Remember that the members of a structure themselves are not variables. They do not occupy any

memory until they are associated with the structure variables such as book1. When the compiler comes

 426 Computing Fundamentals & C Programming

across a declaration statement, it reserves memory space for the structure variables. It is also allowed to

combine both the structure defi nition and variables declaration in one statement.

The declaration

 struct book_bank

 {

 char title[20];

 char author[15];

 int pages;

 fl at price;

 } book1, book2, book3;

is valid. The use of tag name is optional here. For example:

 struct

 {

 } book1, book2, book3;

declares book1, book2, and book3 as structure variables representing three books, but does not include a

tag name. However, this approach is not recommended for the following two reasons:

 1. Without a tag name, we cannot use it for future declarations:

 2. Normally, structure defi nitions appear at the beginning of the program fi le, before any variables or

functions are defi ned. They may also appear before the main, along with macro defi nitions, such as

#defi ne. In such cases, the defi nition is global and can be used by other functions as well.

12.3.1 Type-Defined Structures

We can use the keyword typedef to defi ne a structure as follows:

 typedef struct

 {

 type member1;

 type member2;

 } type_name;

The type_name represents structure defi nition associated with it and therefore, can be used to declare

structure variables as shown below:

type_name variable1, variable2, ;

Remember that (1) the name type_name is the type defi nition name, not a variable and (2) we cannot

defi ne a variable with typedef declaration.

WORKED-OUT PROBLEM 12.1 M

Explain how complex number can be represented using structures. Write two C functions: one to return

the sum of to complex numbers passed as parameters.

Levels of Diffi culty

L: Low; M: Medium; H: High

 Structures and Unions 427

A complex number has two parts: real and imaginary. Structures can be used to realize complex numbers in

C, as shown below:

struct complex /*Declaring the complex number datatype using structure*/

 {

 double real;/*Real part*/

 double img;/*Imaginary part*/

 };

Function to return the sum of two complex numbers

struct complex add(struct complex c1, struct complex c1)

 {

 struct complex c3;

 c3.real=c1.real+c2.real;

 c3.img=c1.img+c2.img;

 return(c3);

 }

Function to return the product of two complex numbers

struct complex product(struct complex c1, struct complex c1)

 {

 struct complex c3;

 c3.real=c1.real*c2.real-c1.img*c2.img;

 c3.img=c1.real*c2.img+c1.img*c2,real;

 return(c3);

 }

12.4 ACCESSING STRUCTURE MEMBERS LO 12.2

We can access and assign values to the members of a structure in a number of ways. As mentioned earlier,

the members themselves are not variables. They should be linked to the structure variables in order to make

them meaningful members. For example, the word title, has no meaning whereas the phrase ‘title of book3’

has a meaning. The link between a member and a variable is established using the member operator ‘.’

which is also known as ‘dot operator’ or ‘period operator’. For example,

book1.price

is the variable representing the price of book1 and can be treated like any other ordinary variable. Here is

how we would assign values to the members of book1:

 strcpy(book1.title, “BASIC”);

 strcpy(book1.author, “Balagurusamy”);

 book1.pages = 250;

 book1.price = 120.50;

 428 Computing Fundamentals & C Programming

We can also use scanf to give the values through the keyboard.
 scanf(“%s\n”, book1.title);
 scanf(“%d\n”, &book1.pages);

are valid input statements.

WORKED-OUT PROBLEM 12.2 L

Defi ne a structure type, struct personal that would contain person name, date of joining and salary. Using

this structure, write a program to read this information for one person from the keyboard and print the

same on the screen.

Structure defi nition along with the program is shown in Fig. 12.1. The scanf and printf functions illustrate

how the member operator ‘.’ is used to link the structure members to the structure variables. The variable

name with a period and the member name is used like an ordinary variable.

Program

 struct personal

 {

 char name[20];

 int day;

 char month[10];

 int year;

 fl oat salary;

 };

 main()

 {

 struct personal person;

 printf(“Input Values\n”);

 scanf(“%s %d %s %d %f”,

 person.name,

 &person.day,

 person.month,

 &person.year,

 &person.salary);

 printf(“%s %d %s %d %f\n”,

 person.name,

 person.day,

 person.month,

 person.year,

 person.salary);

 }

Output

 Input Values

 M.L.Goel 10 January 1945 4500

 M.L.Goel 10 January 1945 4500.00

Fig. 12.1 Defi ning and accessing structure members

 Structures and Unions 429

12.4.1 Structure Initialization

Like any other data type, a structure variable can be initialized at compile time.

 main()

 {

 struct

 {

 int weight;

 fl oat height;

 }

 student = {60, 180.75};

 }

This assigns the value 60 to student. weight and 180.75 to student. height. There is a one-to-one

correspondence between the members and their initializing values.

A lot of variation is possible in initializing a structure. The following statements initialize two structure

variables. Here, it is essential to use a tag name.

 main()

 {

 struct st_record

 {

 int weight;

 fl oat height;

 };

 struct st_record student1 = { 60, 180.75 };

 struct st_record student2 = { 53, 170.60 };

 }

Another method is to initialize a structure variable outside the function as shown below:

 struct st_record

 {

 int weight;

 fl oat height;

 } student1 = {60, 180.75};

 main()

 {

 struct st_record student2 = {53, 170.60};

 }

 430 Computing Fundamentals & C Programming

C language does not permit the initialization of individual structure members within the template. The

initialization must be done only in the declaration of the actual variables.

Note that the compile-time initialization of a structure variable must have the following elements:

1. The keyword struct.

2. The structure tag name.

3. The name of the variable to be declared.

4. The assignment operator =.

5. A set of values for the members of the structure variable, separated by commas and enclosed in

braces.

6. A terminating semicolon.

12.4.2 Rules for Initializing Structures

There are a few rules to keep in mind while initializing structure variables at compile-time which are as

follows:

1. We cannot initialize individual members inside the structure template.

2. The order of values enclosed in braces must match the order of members in the structure defi nition.

3. It is permitted to have a partial initialization. We can initialize only the fi rst few members and leave

the remaining blank. The uninitialized members should be only at the end of the list.

4. The uninitialized members will be assigned default values as follows:

∑ Zero for integer and fl oating point numbers.

∑ ‘\0’ for characters and strings.

12.5 COPYING AND COMPARING STRUCTURE VARIABLES LO 12.3

Two variables of the same structure type can be copied the same way as ordinary variables. If person1 and

person2 belong to the same structure, then the following statements are valid:

 person1 = person2;

 person2 = person1;

However, the statements such as

 person1 == person2

 person1 != person2

are not permitted. C does not permit any logical operations on structure variables. In case, we need to

compare them, we may do so by comparing members individually.

WORKED-OUT PROBLEM 12.3 M

Write a program to illustrate the comparison of structure variables.

The program shown in Fig. 12.2 illustrates how a structure variable can be copied into another of the same

type. It also performs member-wise comparison to decide whether two structure variables are identical.

 Structures and Unions 431

 Program

 struct class

 {

 int number;

 char name[20];

 fl oat marks;

 };

 main()

 {

 int x;

 struct class student1 = {111,”Rao”,72.50};

 struct class student2 = {222,”Reddy”, 67.00};

 struct class student3;

 student3 = student2;

 x = ((student3.number == student2.number) &&

 (student3.marks == student2.marks)) ? 1 : 0;

 if(x == 1)

 {

 printf(“\nstudent2 and student3 are same\n\n”);

 printf(“%d %s %f\n”, student3.number,

 student3.name,

 student3.marks);

 }

 else

 printf(“\nstudent2 and student3 are different\n\n”);

 }

 Output

 student2 and student3 are same

 222 Reddy 67.000000

 Fig. 12.2 Comparing and copying structure variables

12.5.1 Word Boundaries and Slack Bytes

Computer stores structures using the concept of “word boundary”. The size of a word boundary is machine

dependent. In a computer with two bytes word boundary, the members of a structure are stored left_aligned

on the word boundary, as shown below. A character data takes one byte and an integer takes two bytes. One

byte between them is left unoccupied. This unoccupied byte is known as the slack byte.

 432 Computing Fundamentals & C Programming

0 1 2 3

char

slack byte

int

When we declare structure variables, each one of them may contain slack bytes and the values stored in

such slack bytes are undefi ned. Due to this, even if the members of two variables are equal, their structures

do not necessarily compare equal. C, therefore, does not permit comparison of structures. However, we can

design our own function that could compare individual members to decide whether the structures are equal

or not.

12.6 OPERATIONS ON INDIVIDUAL MEMBERS LO 12.3

As pointed out earlier, the individual members are identifi ed using the member operator, the dot.

A member with the dot operator along with its structure variable can be treated like any other variable

name and therefore can be manipulated using expressions and operators. Consider the program in

Fig. 12.2. We can perform the following operations:

 if (student1.number == 111)

 student1.marks += 10.00;

 fl oat sum = student1.marks + student2.marks;

 student2.marks * = 0.5;

We can also apply increment and decrement operators to numeric type members. For example, the

following statements are valid:

 student1.number ++;

 ++ student1.number;

The precedence of the member operator is higher than all arithmetic and relational operators and

therefore no parentheses are required.

Three Ways to Access Members

We have used the dot operator to access the members of structure variables. In fact, there are two other

ways. Consider the following structure:

 typedef struct

 {

 int x;

 int y;

 } VECTOR;

 VECTOR v, *ptr;

 ptr = & n;

The identifi er ptr is known as pointer that has been assigned the address of the structure variable n.

Now, the members can be accessed in the following three ways:

� using dot notation : v.x

� using indirection notation : (*ptr).x

 Structures and Unions 433

� using selection notation : ptr –> x

The second and third methods will be considered in Chapter 13.

12.7 ARRAYS OF STRUCTURES LO 12.4

We use structures to describe the format of a number of related variables. For example, in analyzing the

marks obtained by a class of students, we may use a template to describe student name and marks obtained

in various subjects and then declare all the students as structure variables. In such cases, we may declare an

array of structures, each element of the array representing a structure variable. For example:

struct class student[100];

defi nes an array called student, that consists of 100 elements. Each element is defi ned to be of the type

struct class. Consider the following declaration:

 struct marks

 {

 int subject1;

 int subject2;

 int subject3;

 };

 main()

 {

 struct marks student[3] =

 {{45,68,81}, {75,53,69}, {57,36,71}};

This declares the student as an array of three elements student[0], student[1], and student[2] and

initializes their members as follows:

 student[0].subject1 = 45;

 student[0].subject2 = 65;

 student[2].subject3 = 71;

Note that the array is declared just as it would have been with any other array. Since student is an array,

we use the usual array-accessing methods to access individual elements and then the member operator to

access members. Remember, each element of student array is a structure variable with three members.

An array of structures is stored inside the memory in the same way as a multi-dimensional array. The

array student actually looks as shown in Fig. 12.3.

WORKED-OUT PROBLEM 12.4 M

For the student array discussed above, write a program to calculate the subject-wise and student-wise

totals and store them as a part of the structure.

The program is shown in Fig. 12.4. We have declared a four-member structure, the fourth one for keeping

the student-totals. We have also declared an array total to keep the subject-totals and the grand-total. The

grand-total is given by total.total. Note that a member name can be any valid C name and can be the same

as an existing structure variable name. The linked name total.total represents the total member of the

structure variable total.

 434 Computing Fundamentals & C Programming

45student [0].subject 1

.subject 2

.subject 3

student [1].subject 1

.subject 2

.subject 3

student [2].subject 1

.subject 2

.subject 3

68

81

75

53

69

57

36

71

Fig. 12.3 The array student inside memory

 Program

 struct marks

 {

 int sub1;

 int sub2;

 int sub3;

 int total;

 };

 main()

 {

 int i;

 struct marks student[3] = {{45,67,81,0},

 {75,53,69,0},

 {57,36,71,0}};

 struct marks total;

 for(i = 0; i <= 2; i++)

 {

 student[i].total = student[i].sub1 +

 student[i].sub2 +

 student[i].sub3;

 total.sub1 = total.sub1 + student[i].sub1;

 total.sub2 = total.sub2 + student[i].sub2;

 total.sub3 = total.sub3 + student[i].sub3;

 total.total = total.total + student[i].total;

 }

 printf(“ STUDENT TOTAL\n\n”);

 for(i = 0; i <= 2; i++)

 Structures and Unions 435

 printf(“Student[%d] %d\n”, i+1,student[i].total);

 printf(“\n SUBJECT TOTAL\n\n”);

 printf(“%s %d\n%s %d\n%s %d\n”,

 “Subject 1 “, total.sub1,

 “Subject 2 “, total.sub2,

 “Subject 3 “, total.sub3);

 printf(“\nGrand Total = %d\n”, total.total);

 }

 Output

 STUDENT TOTAL

 Student[1] 193

 Student[2] 197

 Student[3] 164

 SUBJECT TOTAL

 Subject 1 177

 Subject 2 156

 Subject 3 221

 Grand Total = 554

Fig. 12.4 Arrays of structures: Illustration of subscripted structure variables

12.8 ARRAYS WITHIN STRUCTURES LO 12.4

C permits the use of arrays as structure members. We have already used arrays of characters inside a

structure. Similarly, we can use single-dimensional or multi-dimensional arrays of type int or fl oat. For

example, the following structure declaration is valid:

 struct marks

 {

 int number;

 fl oat subject[3];

 } student[2];

Here, the member subject contains three elements, subject[0], subject[1], and subject[2]. These

elements can be accessed using appropriate subscripts. For example, the name

 student[1].subject[2];

would refer to the marks obtained in the third subject by the second student.

 436 Computing Fundamentals & C Programming

WORKED-OUT PROBLEM 12.5 L

Rewrite the program of Program 12.4 using an array member to represent the three subjects.

The modifi ed program is shown in Fig. 12.5. You may notice that the use of array name for subjects has

simplifi ed in code.

Program

 main()

 {

 struct marks

 {

 int sub[3];

 int total;

 };

 struct marks student[3] =

 {45,67,81,0,75,53,69,0,57,36,71,0};

 struct marks total;

 int i,j;

 for(i = 0; i <= 2; i++)

 {

 for(j = 0; j <= 2; j++)

 {

 student[i].total += student[i].sub[j];

 total.sub[j] += student[i].sub[j];

 }

 total.total += student[i].total;

 }

 printf(“STUDENT TOTAL\n\n”);

 for(i = 0; i <= 2; i++)

 printf(“Student[%d] %d\n”, i+1, student[i].total);

 printf(“\nSUBJECT TOTAL\n\n”);

 for(j = 0; j <= 2; j++)

 printf(“Subject-%d %d\n”, j+1, total.sub[j]);

 printf(“\nGrand Total = %d\n”, total.total);

 }

 Structures and Unions 437

Output

 STUDENT TOTAL

 Student[1] 193

 Student[2] 197

 Student[3] 164

 STUDENT TOTAL

 Student-1 177

 Student-2 156

 Student-3 221

 Grand Total = 554

Fig. 12.5 Use of subscripted members arrays in structures

12.9 STRUCTURES WITHIN STRUCTURES LO 12.5

Structures within a structure means nesting of structures. Nesting of structures is permitted in C. Let us

consider the following structure defi ned to store information about the salary of employees:

 struct salary

 {

 char name;

 char department;

 int basic_pay;

 int dearness_allowance;

 int house_rent_allowance;

 int city_allowance;

 }

 employee;

This structure defi nes name, department, basic pay and three kinds of allowances. We can group all the

items related to allowance together and declare them under a substructure as shown below:

 struct salary

 {

 char name;

 char department;

 struct

 {

 int dearness;

 int house_rent;

 int city;

 }

 allowance;

 }

 employee;

 438 Computing Fundamentals & C Programming

The salary structure contains a member named allowance, which itself is a structure with three members.

The members contained in the inner structure namely dearness, house_rent, and city can be referred to as:

employee.allowance.dearness

employee.allowance.house_rent

employee.allowance.city

An inner-most member in a nested structure can be accessed by chaining all the concerned structure

variables (from outer-most to inner-most) with the member using dot operator. The following are invalid:

employee.allowance (actual member is missing)

employee.house_rent (inner structure variable is missing)

An inner structure can have more than one variable. The following form of declaration is legal:

 struct salary

 {

 struct

 {

 int dearness;

 }

 allowance,

 arrears;

 }

 employee[100];

The inner structure has two variables, allowance and arrears. This implies that both of them have the

same structure template. Note the comma after the name allowance. A base member can be accessed as

follows:

 employee[1].allowance.dearness

employee[1].arrears.dearness

We can also use tag names to defi ne inner structures. Example:

 struct pay

 {

 int dearness;

 int house_rent;

 int city;

 };

 struct salary

 {

 char name;

 char department;

 struct pay allowance;

 struct pay arrears;

 };

 struct salary employee[100];

pay template is defi ned outside the salary template and is used to defi ne the structure of allowance and

arrears inside the salary structure.

It is also permissible to nest more than one type of structures.

 Structures and Unions 439

 struct personal_record

 {

 struct name_part name;

 struct addr_part address;

 struct date date_of_birth;

 };

 struct personal_record person1;

The fi rst member of this structure is name, which is of the type struct name_part. Similarly, other

members have their structure types.

Note C permits nesting up to 15 levels. However, C99 allows 63 levels of nesting.

12.10 STRUCTURES AND FUNCTIONS LO 12.6

We know that the main philosophy of C language is the use of functions. And therefore, it is natural that C

supports the passing of structure values as arguments to functions. There are three methods by which the

values of a structure can be transferred from one function to another.

1. The fi rst method is to pass each member of the structure as an actual argument of the function

call. The actual arguments are then treated independently like ordinary variables. This is the most

elementary method and becomes unmanageable and ineffi cient when the structure size is large.

2. The second method involves passing of a copy of the entire structure to the called function. Since the

function is working on a copy of the structure, any changes to structure members within the function

are not refl ected in the original structure (in the calling function). It is, therefore, necessary for the

function to return the entire structure back to the calling function. All compilers may not support this

method of passing the entire structure as a parameter.

3. The third approach employs a concept called pointers to pass the structure as an argument. In this

case, the address location of the structure is passed to the called function. The function can access

indirectly the entire structure and work on it. This is similar to the way arrays are passed to function.

This method is more effi cient as compared to the second one.

In this section, we discuss in detail the second method, while the third approach using pointers is

discussed in the next chapter, where pointers are dealt in detail.

The general format of sending a copy of a structure to the called function is:

function_name (structure_variable_name);

The called function takes the following form:

 data_type function_name(struct_type st_name)

 {

 return(expression);

 }

 440 Computing Fundamentals & C Programming

The following points are important to note:

1. The called function must be declared for its type, appropriate to the data type it is expected to return.

For example, if it is returning a copy of the entire structure, then it must be declared as struct with an

appropriate tag name.

2. The structure variable used as the actual argument and the corresponding formal argument in the

called function must be of the same struct type.

3. The return statement is necessary only when the function is returning some data back to the calling

function. The expression may be any simple variable or structure variable or an expression using

simple variables.

4. When a function returns a structure, it must be assigned to a structure of identical type in the calling

function.

5. The called functions must be declared in the calling function appropriately.

WORKED-OUT PROBLEM 12.6 M

Write a simple program to illustrate the method of sending an entire structure as a parameter to a

function.

A program to update an item is shown in Fig. 12.6. The function update receives a copy of the structure

variable item as one of its parameters. Note that both the function update and the formal parameter

product are declared as type struct stores. It is done so because the function uses the parameter product to

receive the structure variable item and also to return the updated values of item.

The function mul is of type fl oat because it returns the product of price and quantity. However, the

parameter stock, which receives the structure variable item is declared as type struct stores.

The entire structure returned by update can be copied into a structure of identical type. The statement

item = update(item,p_increment,q_increment);

replaces the old values of item by the new ones.

Program

 /* Passing a copy of the entire structure */

 struct stores

 {

 char name[20];

 fl oat price;

 int quantity;

 };

 struct stores update (struct stores product, fl oat p, int q);

 fl oat mul (struct stores stock);

 main()

 {

 fl oat p_increment, value;

 int q_increment;

 struct stores item = {“XYZ”, 25.75, 12};

 Structures and Unions 441

 printf(“\nInput increment values:”);

 printf(“ price increment and quantity increment\n”);

 scanf(“%f %d”, &p_increment, &q_increment);

 /* - */

 item = update(item, p_increment, q_increment);

 /* - */

 printf(“Updated values of item\n\n”);

 printf(“Name : %s\n”,item.name);

 printf(“Price : %f\n”,item.price);

 printf(“Quantity : %d\n”,item.quantity);

 /* - */

 value = mul(item);

 /* - */

 printf(“\nValue of the item = %f\n”, value);

 }

 struct stores update(struct stores product, fl oat p, int q)

 {

 product.price += p;

 product.quantity += q;

 return(product);

 }

 fl oat mul(struct stores stock)

 {

 return(stock.price * stock.quantity);

 }

 Output

 Input increment values: price increment and quantity increment

 10 12

 Updated values of item

 Name : XYZ

 Price : 35.750000

 Quantity : 24

 Value of the item = 858.000000

Fig. 12.6 Using structure as a function parameter

You may notice that the template of stores is defi ned before main(). This has made the data type struct

stores as global and has enabled the functions update and mul to make use of this defi nition.

 442 Computing Fundamentals & C Programming

12.11 UNIONS AND STRUCTURES LO 12.7

Unions are a concept borrowed from structures and therefore follow the same syntax as structures. However,

there is major distinction between them in terms of storage. In structures, each member has its own storage

location, whereas all the members of a union use the same location. This implies that, although a union may

contain many members of different types, it can handle only one member at a time. Like structures, a union

can be declared using the keyword union as follows:

 union item

 {

 int m;

 fl oat x;

 char c;

 } code;

This declares a variable code of type union item. The union

contains three members, each with a different data type. However,

we can use only one of them at a time. This is due to the fact that

only one location is allocated for a union variable, irrespective of

its size.

The compiler allocates a piece of storage that is large enough

to hold the largest variable type in the union. In the declaration

above, the member x requires 4 bytes which is the largest among

the members. Figure 12.7 shows how all the three variables share

the same address. This assumes that a fl oat variable requires 4

bytes of storage.

To access a union member, we can use the same syntax that we

use for structure members. That is,

 code.m

 code.x

 code.c

are all valid member variables. During accessing, we should make sure that we are accessing the member

whose value is currently stored. For example, the statements such as

 code.m = 379;

 code.x = 7859.36;

 printf(“%d”, code.m);

would produce erroneous output (which is machine dependent).

In effect, a union creates a storage location that can be used by any one of its members at a time. When a

different member is assigned a new value, the new value supersedes the previous member’s value.

Unions may be used in all places where a structure is allowed. The notation for accessing a union

member which is nested inside a structure remains the same as for the nested structures.

Unions may be initialized when the variable is declared. But, unlike structures, it can be initialized only

with a value of the same type as the fi rst union member. For example, with the preceding, the declaration

union item abc = {100};

is valid but the declaration

union item abc = {10.75};

1000 1001

Storage of 4 bytes

1002 1004

c

m

x

 Fig. 12.7 Sharing of a storage locating by

union members

 Structures and Unions 443

is invalid. This is because the type of the fi rst member is int. Other members can be initialized by either

assigning values or reading from the keyboard.

12.11.1 Size of Structures

We normally use structures, unions, and arrays to create variables of large sizes. The actual size of these

variables in terms of bytes may change from machine to machine. We may use the unary operator sizeof to

tell us the size of a structure (or any variable). The expression

sizeof(struct x)

will evaluate the number of bytes required to hold all the members of the structure x. If y is a simple

structure variable of type struct x, then the expression

 sizeof(y)

would also give the same answer. However, if y is an array variable of type struct x, then

 sizeof(y)

would give the total number of bytes the array y requires.

This kind of information would be useful to determine the number of records in a database. For example,

the expression

sizeof(y)/sizeof(x)

would give the number of elements in the array y.

12.11.2 Bit Fields

So far, we have been using integer fi elds of size 16 bits to store data. There are occasions where data items

require much less than 16 bits space. In such cases, we waste memory space. Fortunately, C permits us to

use small bit fi elds to hold data items and thereby to pack several data items in a word of memory. Bit fi elds

allow direct manipulation of string of a string of preselected bits as if it represented an integral quantity.

A bit fi eld is a set of adjacent bits whose size can be from 1 to 16 bits in length. A word can therefore be

divided into a number of bit fi elds. The name and size of bit fi elds are defi ned using a structure. The general

form of bit fi eld defi nition is:

 struct tag-name

 {

 data-type name1: bit–length;

 data-type name2: bit–length;

 data-type nameN: bit-length;

 }

The data-type is either int or unsigned int or signed int and the bit-length is the number of bits used

for the specifi ed name. Remember that a signed bit fi eld should have at least 2 bits (one bit for sign). Note

that the fi eld name is followed by a colon. The bit-length is decided by the range of value to be stored. The

largest value that can be stored is 2n–1, where n is bit-length.

The internal representation of bit fi elds is machine dependent. That is, it depends on the size of int and

the ordering of bits. Some machines store bits from left to right and others from right to left. The sketch

below illustrates the layout of bit fi elds, assuming a 16-bit word that is ordered from right to left.

 444 Computing Fundamentals & C Programming

15 14

name N name 2 name 1

13 12 11 10 9 8 7 6 5 4 3 2 1 0

There are several specifi c points to observe:

1. The fi rst fi eld always starts with the fi rst bit of the word.

2. A bit fi eld cannot overlap integer boundaries. That is, the sum of lengths of all the fi elds in a structure

should not be more than the size of a word. In case, it is more, the overlapping fi eld is automatically

forced to the beginning of the next word.

3. There can be unnamed fi elds declared with size. Example:

 Unsigned : bit-length

 Such fi elds provide padding within the word.

4. There can be unused bits in a word.

5. We cannot take the address of a bit fi eld variable. This means we cannot use scanf to read values into

bit fi elds. We can neither use pointer to access the bit fi elds.

6. Bit fi elds cannot be arrayed.

7. Bit fi elds should be assigned values that are within the range of their size. If we try to assign larger

values, behaviour would be unpredicted.

Suppose, we want to store and use personal information of employees in compressed form, this can be

done as follows:

 struct personal

 {

 unsigned sex : 1

 unsigned age : 7

 unsigned m_status : 1

 unsigned children : 3

 unsigned : 4

 } emp;

This defi nes a variable name emp with four bit fi elds. The range of values each fi eld could have is as

follows:

 Bit fi eld Bit length Range of value

 sex 1 0 or 1

 age 7 0 or 127 (27 – 1)

 m_status 1 0 or 1

 children 3 0 to 7 (23–1)

Once bit fi elds are defi ned, they can be referenced just as any other structure-type data item would be

referenced. The following assignment statements are valid.

emp.sex = 1;

emp.age = 50;

Remember, we cannot use scanf to read values into a bit fi eld. We may have to read into a temporary

variable and then assign its value to the bit fi eld. For example:

 scanf(%d %d”, &AGE,&CHILDREN);

 emp.age = AGE;

 Structures and Unions 445

 emp.children = CHILDREN;

One restriction in accessing bit fi elds is that a pointer cannot be used. However, they can be used in

normal expressions like any other variable. For example:

 sum = sum + emp.age;

 if(emp.m_status).;

 printf(“%d\n”, emp.age);

are valid statements.

It is possible to combine normal structure elements with bit fi eld elements. For example:

 struct personal

 {

 char name[20]; /* normal variable */

 struct addr address; /* structure variable */

 unsigned sex : 1;

 unsigned age : 7;

 }

 emp[100];

This declares emp as a 100 element array of type struct personal. This combines normal variable name

and structure type variable address with bit fi elds.

Bit fi elds are packed into words as they appear in the defi nition. Consider the following defi nition.

 struct pack

 {

 unsigned a:2;

 int count;

 unsigned b : 3;

 };

Here, the bit fi eld a will be in one word, the variable count will be in the second word and the bit fi eld b

will be in the third word. The fi elds a and b would not get packed into the same word.

Note Other related topics such as ‘Structures with Pointers’ and ‘Structures and Linked Lists’ are

discussed in Chapter 13 and Chapter 14, respectively.

 Learning Outcomes

∑ Remember to place a semicolon at the end of defi nition of structures and unions.

∑ We can declare a structure variable at the time of defi nition of a structure by placing it after the

closing brace but before the semicolon.

∑ Do not place the structure tag name after the closing brace in the defi nition. That will be treated as

a structure variable. The tag name must be placed before the opening brace but after the keyword

struct.

∑ When we use typedef defi nition, the type_name comes after the closing brace but before the

semicolon.

LO 12.1

LO 12.2

LO 12.2

LO 12.1

 446 Computing Fundamentals & C Programming

∑ We cannot declare a variable at the time of creating a typedef defi nition. We must use the type_name

to declare a variable in an independent statement.

∑ It is an error to use a structure variable as a member of its own struct type structure.

∑ Declaring a variable using the tag name only (without the keyword struct) is an error.

∑ It is illegal to refer to a structure member using only the member name.

∑ When using scanf for reading values for members, we must use address operator & with non-string

members.

∑ Always provide a structure tag name when creating a structure. It is convenient to use tag name to

declare new structure variables later in the program.

∑ Use short and meaningful structure tag names.

∑ Avoid using same names for members of different structures (although it is not illegal).

∑ It is an error to compare two structure variables.

∑ Assigning a structure of one type to a structure of another type is an error.

∑ When accessing a member with a pointer and dot notation, parentheses are required around the

pointer, like (*ptr).number.

∑ The selection operator (–>) is a single token. Any space between the symbols – and > is an error.

∑ Forgetting to include the array subscript when referring to individual structures of an array of

structures is an error.

∑ When structures are nested, a member must be qualifi ed with all levels of structures nesting it.

∑ Passing structures to functions by pointers is more effi cient than passing by value. (Passing by

pointers are discussed in Chapter 13.)

∑ A union can store only one of its members at a time. We must exercise care in accessing the correct

member. Accessing a wrong data is a logic error.

∑ It is an error to initialize a union with data that does not match the type of the fi rst member.

∑ We cannot take the address of a bit fi eld. Therefore, we cannot use scanf to read values in bit fi elds.

We can neither use pointer to access the bit fi elds.

∑ Bit fi elds cannot be arrayed.

 Key Terms to Remember

∑ Array: It is a fi xed-size sequenced collection of elements of the same data type.

∑ Dot operator: This links a structure variable with a structure member. It is used to read/write

member values.

∑ Structure: This is a user-defi ned data type that allows different data types to be combined together to

represent a data record.

∑ Union: It is similar to a structure in syntax but differs in storage technique. Unlike structures, union

members use the same memory location for storing all member values.

∑ Bit fi eld: This refers to a set of adjacent bits with size ranging from 1 to 16 bits.

LO 12.2

LO 12.1

LO 12.2

LO 12.2

LO 12.2

LO 12.2

LO 12.2

LO 12.2

LO 12.3

LO 12.3

LO 12.3

LO 12.3

LO 12.3

LO 12.5

LO 12.5

LO 12.7

LO 12.7

LO 12.7

LO 12.7

LO 12.1

LO 12.2

LO 12.2

LO 12.7

LO 12.7

 Structures and Unions 447

Brief Cases

1. Book Shop Inventory [LO 12.2, 12.3, 12.4, 12.5, 12.6, 12.7 M]

A book shop uses a personal computer to maintain the inventory of books that are being sold at the shop.

The list includes details such as author, title, price, publisher, stock position, etc. Whenever a customer

wants a book, the shopkeeper inputs the title and author of the book and the system replies whether it is in

the list or not. If it is not, an appropriate message is displayed. If book is in the list, then the system displays

the book details and asks for number of copies. If the requested copies are available, the total cost of the

books is displayed; otherwise the message “Required copies not in stock” is displayed.

A program to accomplish this is shown in Fig. 12.8. The program uses a template to defi ne the structure

of the book. Note that the date of publication, a member of record structure, is also defi ned as a structure.

When the title and author of a book are specifi ed, the program searches for the book in the list using the

function

look_up(table, s1, s2, m)

The parameter table which receives the structure variable book is declared as type struct record. The

parameters s1 and s2 receive the string values of title and author while m receives the total number of

books in the list. Total number of books is given by the expression

 sizeof(book)/sizeof(struct record)

The search ends when the book is found in the list and the function returns the serial number of the book.

The function returns –1 when the book is not found. Remember that the serial number of the fi rst book in

the list is zero. The program terminates when we respond “NO” to the question

Do you want any other book?

Note that we use the function

get(string)

to get title, author, etc. from the terminal. This enables us to input strings with spaces such as “C Language”.

We cannot use scanf to read this string since it contains two words.

Since we are reading the quantity as a string using the get(string) function, we have to convert it to an

integer before using it in any expressions. This is done using the atoi() function.

 Programs

 #include <stdio.h>

 #include <string.h>

 struct record

 {

 char author[20];

 char title[30];

 fl oat price;

 struct

 {

 char month[10];

 int year;

 }

 448 Computing Fundamentals & C Programming

 date;

 char publisher[10];

 int quantity;

 };

 int look_up(struct record table[],char s1[],char s2[],int m);

 void get (char string []);

 main()

 {

 char title[30], author[20];

 int index, no_of_records;

 char response[10], quantity[10];

 struct record book[] = {

 {“Ritche”,”C Language”,45.00,”May”,1977,”PHI”,10},

 {“Kochan”,”Programming in C”,75.50,”July”,1983,”Hayden”,5},

 {“Balagurusamy”,”BASIC”,30.00,”January”,1984,”TMH”,0},

 {“Balagurusamy”,”COBOL”,60.00,”December”,1988,”Macmillan”,25}

 };

 no_of_records = sizeof(book)/ sizeof(struct record);

 do

 {

 printf(“Enter title and author name as per the list\n”);

 printf(“\nTitle: “);

 get(title);

 printf(“Author: “);

 get(author);

 index = look_up(book, title, author, no_of_records);

 if(index != -1) /* Book found */

 {

 printf(“\n%s %s %.2f %s %d %s\n\n”,

 book[index].author,

 book[index].title,

 book[index].price,

 book[index].date.month,

 book[index].date.year,

 book[index].publisher);

 printf(“Enter number of copies:”);

 get(quantity);

 if(atoi(quantity) < book[index].quantity)

 printf(“Cost of %d copies = %.2f\n”,atoi(quantity),

 Structures and Unions 449

 book[index].price * atoi(quantity));

 else

 printf(“\nRequired copies not in stock\n\n”);

 }

 else

 printf(“\nBook not in list\n\n”);

 printf(“\nDo you want any other book? (YES / NO):”);

 get(response);

 }

 while(response[0] == ‘Y’ || response[0] == ‘y’);

 printf(“\n\nThank you. Good bye!\n”);

 }

 void get(char string [])

 {

 char c;

 int i = 0;

 do

 {

 c = getchar();

 string[i++] = c;

 }

 while(c != ‘\n’);

 string[i-1] = ‘\0’;

 }

 int look_up(struct record table[],char s1[],char s2[],int m)

 {

 int i;

 for(i = 0; i < m; i++)

 if(strcmp(s1, table[i].title) == 0 &&

 strcmp(s2, table[i].author) == 0)

 return(i); /* book found */

 return(-1); /* book not found */

 }

 Output

 Enter title and author name as per the list

 Title: BASIC

 Author: Balagurusamy

 450 Computing Fundamentals & C Programming

 Balagurusamy BASIC 30.00 January 1984 TMH

 Enter number of copies:5

 Required copies not in stock

 Do you want any other book? (YES / NO):y

 Enter title and author name as per the list

 Title: COBOL

 Author: Balagurusamy

 Balagurusamy COBOL 60.00 December 1988 Macmillan

 Enter number of copies:7

 Cost of 7 copies = 420.00

 Do you want any other book? (YES / NO):y

 Enter title and author name as per the list

 Title: C Programming

 Author: Ritche

 Book not in list

 Do you want any other book? (YES / NO):n

 Thank you. Good bye!

Fig. 12.8 Program of bookshop inventory

 Review Questions

Fill in the Blanks

 1. The name of a structure is referred to as _______________.

2. The variables declared in a structure defi nition are called its ______________.

3. The _____________ can be used to create a synonym for a previously defi ned data type.

4. The selection operator –> requires the use of a _________________ to access the members

of a structure.

5. A_______________ is a collection of data items under one name in which the items share

the same storage.

LO 12.2

LO 12.2

LO 12.2

LO 12.2

LO 12.7

Levels of Diffi culty

: Low; : Medium; : High

 Structures and Unions 451

True or False Statements

 1. A struct type in C is a built-in data type.

2. The tag name of a structure is optional.

3. Structures may contain members of only one data type.

4. The keyword typedef is used to defi ne a new data type.

5. A structure variable is used to declare a data type containing multiple fi elds.

6. It is legal to copy a content of a structure variable to another structure variable of the same

type.

7. Pointers can be used to access the members of structure variables.

8. In accessing a member of a structure using a pointer p, the following two are equivalent:

 (*p).member_name and p –> member_name

9. We can perform mathematical operations on structure variables that contain only numeric

type members.

10. An array cannot be used as a member of a structure.

11. A member in a structure can itself be a structure.

12. Structures are always passed to functions by pointers.

13. A union may be initialized in the same way a structure is initialized.

14. A union can have another union as one of the members.

15. A structure cannot have a union as one of its members.

Discussion Questions

1. A structure tag name abc is used to declare and initialize the structure variables of type

struct abc in the following statements. Which of them are incorrect? Why? Assume that

the structure abc has three members, int, fl oat, and char in that order.

 (a) struct a,b,c;
 (b) struct abc a,b,c
 (c) abc x,y,z;
 (d) struct abc a[];
 (e) struct abc a = { };
 (f) struct abc = b, { 1+2, 3.0, “xyz”}
 (g) struct abc c = {4,5,6};
 (h) struct abc a = 4, 5.0, “xyz”;

 2. Given the declaration

 struct abc a,b,c;

 which of the following statements are legal?

 (a) scanf (“%d, &a);
 (b) printf (“%d”, b);

LO 12.2

LO 12.2

LO 12.2

LO 12.2

LO 12.2

LO 12.3

LO 12.3

LO 12.3

LO 12.3

LO 12.4

LO 12.5

LO 12.5

LO 12.7

LO 12.7

LO 12.7

LO 12.2LO 12.2

LO 12.3

LO 12.4

LO 12.2

LO 12.3

 452 Computing Fundamentals & C Programming

(c) a = b;
(d) a = b + c;
(e) if (a>b)

3. Given the declaration

 struct item_bank

 {

 int number;

 double cost;

 };

 which of the following are correct statements for declaring one dimensional array of

structures of type struct item_bank?

 (a) int item_bank items[10];
(b) struct items[10] item_bank;
(c) struct item_bank items (10);
(d) struct item_bank items [10];
(e) struct items item_bank [10];

4. Given the following declaration

 typedef struct abc

 {

 char x;

 int y;

 fl oat z[10];

 } ABC;

 State which of the following declarations are invalid? Why?

 (a) struct abc ν1;
(b) struct abc ν2[10];
(c) struct ABC ν3;
(d) ABC a,b,c;
(e) ABC a[10];

5. How does a structure differ from an array?

6. Explain the meaning and purpose of the following:

 (a) Template

(b) struct keyword

(c) typedef keyword

(d) sizeof operator

 (e) Tag name

7. Explain what is wrong in the following structure declaration:

 struct

 {

 int number;

 fl oat price;

 }

LO 12.3

LO 12.2

LO 12.4

LO 12.4

LO 12.2

LO 12.7

LO 12.2

 Structures and Unions 453

 main()

 {

 }

8. When do we use the following?

 (a) Unions

 (b) Bit fi elds

 (c) The sizeof operator

 9. What is meant by the following terms?

 (a) Array of structures

 (b) Nested structures

 (c) Unions

 Give a typical example of use of each of them.

10. Describe with examples, the different ways of assigning values to structure members.

11. State the rules for initializing structures.

12. What is a ‘slack byte’? How does it affect the implementa tion of structures?

13. Describe three different approaches that can be used to pass structures as function

arguments.

14. What are the important points to be considered when imple menting bit-fi elds in structures?

15. Defi ne a structure called complex consisting of two fl oating-point numbers x and y and

declare a variable p of type complex. Assign initial values 0.0 and 1.1 to the members.

 16. What will be the output of the following program?

 s

 main ()

 {

 union x

 {

 int a;

 fl oat b;

 double c ;

 };

 printf(“%d\n”, sizeof(x));

 a.x = 10;

 printf(“%d%f%f\n”, a.x, b.x, c.x);

 c.x = 1.23;

 printf(“%d%f%f\n”, a.x, b.x, c.x);

 }

LO 12.7

LO 12.4

LO 12.5

LO 12.7

LO 12.2

LO 12.2

LO 12.3

LO 12.5

LO 12.7

LO 12.2

LO 12.7

 454 Computing Fundamentals & C Programming

Debugging Exercises

1. Given the structure defi nitions and declarations

 struct abc

 {

 int a;

 fl oat b;

 };

 struct xyz

 {

 int x;

 fl oat y;

 };

 abc a1, a2;

 xyz x1, x2;

 fi nd errors, if any, in the following statements:

 (a) a1 = x1;
 (b) abc.a1 = 10.75;
 (c) int m = a + x;
 (d) int n = x1.x + 10;
 (e) a1 = a2;
 (f) if (a.a1 > x.x1) . . .
 (g) if (a1.a < x1.x) . . .
 (h) if (x1 != x2) . . .

2. What is the error in the following program?

 typedef struct product

 {

 char name [10];

 fl oat price ;

 } PRODUCT products [10];

Programming Exercises

1. Defi ne a structure data type called time_struct containing three members integer hour,

integer minute and integer second. Develop a program that would assign values to the

individual members and display the time in the following form:

 16:40:51

2. Modify the above program such that a function is used to input values to the members and

another function to display the time.

3. Design a function update that would accept the data structure designed in Exercise 12.1

and increments time by one second and returns the new time. (If the increment results in

60 seconds, then the second member is set to zero and the minute member is incremented

LO 12.2

LO 12.3

LO 12.2

LO 12.2

LO 12.2

LO 12.5

LO 12.2LO 12.2

LO 12.3

LO 12.5

 Structures and Unions 455

by one. Then, if the result is 60 minutes, the minute member is set to zero and the hour

member is incremented by one. Finally when the hour becomes 24, it is set to zero.)

4. Defi ne a structure data type named date containing three integer members day, month, and

year. Develop an interactive modular program to perform the following tasks:

∑ To read data into structure members by a function

∑ To validate the date entered by another function

∑ To print the date in the format

 April 29, 2002

 by a third function.

 The input data should be three integers like 29, 4, and 2002 corresponding to day, month,

and year. Examples of invalid data:

 31, 4, 2002 – April has only 30 days

 29, 2, 2002 – 2002 is not a leap year

5. Design a function update that accepts the date structure designed in Exercise 12.4 to

increment the date by one day and return the new date. The following rules are applicable:

∑ If the date is the last day in a month, month should be incremented

∑ If it is the last day in December, the year should be incremented

∑ There are 29 days in February of a leap year

6. Modify the input function used in Exercise 10.4 such that it reads a value that represents

the date in the form of a long integer, like 19450815 for the date 15-8-1945 (August 15,

1945) and assigns suitable values to the members day, month, and year.

 Use suitable algorithm to convert the long integer 19450815 into year, month and day.

7. Add a function called nextdate to the program designed in Exercise 12.4 to perform the

following task:

∑ Accepts two arguments, one of the structure data containing the present date and the

second an integer that represents the number of days to be added to the present date.

∑ Adds the days to the present date and returns the structure containing the next date

correctly.

 Note that the next date may be in the next month or even the next year.

8. Use the date structure defi ned in Exercise 12.4 to store two dates. Develop a function that

will take these two dates as input and compares them.

∑ It returns 1, if the date1 is earlier than date2

∑ It returns 0, if date1 is later date

9. Defi ne a structure to represent a vector (a series of integer values) and write a modular

program to perform the following tasks:

∑ To create a vector

∑ To modify the value of a given element

∑ To multiply by a scalar value

∑ To display the vector in the form

 (10, 20, 30,)

10. Add a function to the program of Exercise 9 that accepts two vectors as input parameters

and return the addition of two vectors.

LO 12.2LO 12.2

LO 12.3

LO 12.5

LO 12.2LO 12.2

LO 12.3

LO 12.5

LO 12.2LO 12.2

LO 12.3

LO 12.5

LO 12.2

LO 12.5LO 12 5LO 12 5

LO 12.3

LO 12.2LO 12.2

LO 12.3

LO 12.5O .5

LO 12.2

LO 12.5

LO 12.2

LO 12.3

LO 12 5LO 12 5

LO 12.4

LO 12.2

LO 12.5LO 12 5LO 12 5

LO 12.4LO 12 4LO 12 4

LO 12.3

 456 Computing Fundamentals & C Programming

11. Create two structures named metric and British which store the values of distances. The

metric structure stores the values in metres and centimetres and the British structure stores

the values in feet and inches. Write a program that reads values for the structure variables

and adds values contained in one variable of metric to the contents of another variable of

British. The program should display the result in the format of feet and inches or metres

and centimetres as required.

12. Defi ne a structure named census with the following three members:

∑ A character array city [] to store names

∑ A long integer to store population of the city

∑ A fl oat member to store the literacy level

 Write a program to do the following:

∑ To read details for 5 cities randomly using an array variable

∑ To sort the list alphabetically

∑ To sort the list based on literacy level

∑ To sort the list based on population

∑ To display sorted lists

13. Defi ne a structure that can describe an hotel. It should have members that include the name,

address, grade, average room charge, and number of rooms.

 Write functions to perform the following operations:

∑ To print out hotels of a given grade in order of charges

∑ To print out hotels with room charges less than a given value

14. Defi ne a structure called cricket that will describe the following information:

 player name

 team name

 batting average

 Using cricket, declare an array player with 50 elements and write a program to read the

information about all the 50 players and print a team-wise list containing names of players

with their batting average.

15. Design a structure student_record to contain name, date of birth, and total marks obtained.

Use the date structure designed in Exercise 4 to represent the date of birth.

 Develop a program to read data for 10 students in a class and list them rank-wise.

LO 12.2LO 12.2

LO 12.3

LO 12.2LO 12.2

LO 12.4

LO 12.5

LO 12.2LO 12.2

LO 12.3

LO 12.2LO 12.2

LO 12.3

LO 12.4

LO 12.2LO 12.2

LO 12.3

LO 12.5

13.1 INTRODUCTION

A pointer is a derived data type in C. It is built from one of the fundamental data types available

in C. Pointers contain memory addresses as their values. Since these memory addresses are the

locations in the computer memory where program instructions and data are stored, pointers can

be used to access and manipulate data stored in the memory.

Pointers are undoubtedly one of the most distinct and exciting features of C language. It has

added power and flexibility to the language. Although they appear little confusing and difficult to

understand for a beginner, they are a powerful tool and handy to use once they are mastered.

Pointers are used frequently in C, as they offer a number of benefits to the programmers. They

include:

1. Pointers are more efficient in handling arrays and data tables.

2. Pointers can be used to return multiple values from a function via function arguments.

3. Pointers permit references to functions and thereby facilitating passing of functions as

arguments to other functions.

4. The use of pointer arrays to character strings results in saving of data storage space in

memory.

LO 13.1

LO 13.2

LO 13.3

LO 13.4

LO 13.5

LO 13.6

LO 13.7

CHAPT ER

13
Pointers

458 Computing Fundamentals & C Programming

5. Pointers allow C to support dynamic memory management.

6. Pointers provide an efficient tool for manipulating dynamic data structures such as structures,

linked lists, queues, stacks and trees.

7. Pointers reduce length and complexity of programs.

8. They increase the execution speed and thus reduce the program execution time.

Of course, the real power of C lies in the proper use of pointers. In this chapter, we will examine the

pointers in detail and illustrate how to use them in program development.

13.2 UNDERSTANDING POINTERS LO 13.1

The computer’s memory is a sequential collection of storage cells as shown in Fig. 13.1. Each cell,

commonly known as a byte, has a number called address associated with it. Typically, the addresses are

numbered consecutively, starting from zero. The last address depends on the memory size. A computer

system having 64 K memory will have its last address as 65,535.

Fig. 13.1 Memory organisation

Whenever we declare a variable, the system allocates, somewhere in the memory, an appropriate location

to hold the value of the variable. Since, every byte has a unique address number, this location will have its

own address number. Consider the following statement

int quantity = 179;

This statement instructs the system to find a location for the integer variable quantity and puts the value

179 in that location. Let us assume that the system has chosen the address location 5000 for quantity. We

Pointers 459

may represent this as shown in Fig. 13.2. (Note that the address

of a variable is the address of the first bye occupied by that

variable.)

During execution of the program, the system always associates

the name quantity with the address 5000. (This is something

similar to having a house number as well as a house name.) We

may have access to the value 179 by using either the name

quantity or the address 5000. Since memory addresses are

simply numbers, they can be assigned to some variables, that can be stored in memory, like any other

variable. Such variables that hold memory addresses are called pointer variables. A pointer variable is,

therefore, nothing but a variable that contains an address, which is a location of another variable in memory.

Remember, since a pointer is a variable, its value is also stored in the memory in another location.

Suppose, we assign the address of quantity to a variable p. The link between the variables p and quantity

can be visualized as shown in Fig. 13.3. The address of p is 5048.

Fig. 13.3 Pointer variable

Since the value of the variable p is the address of the variable quantity, we may access the value of

quantity by using the value of p and therefore, we say that the variable p ‘points’ to the variable quantity.

Thus, p gets the name ‘pointer’. (We are not really concerned about the actual values of pointer variables.

They may be different everytime we run the program. What we are concerned about is the relationship

between the variables p and quantity.)

13.2.1 Underlying Concepts of Pointers

Pointers are built on the three underlying concepts as illustrated below:

Memory addresses within a computer are referred to as pointer constants. We cannot change them; we

can only use them to store data values. They are like house numbers.

Fig. 13.2 Representation of a variable

460 Computing Fundamentals & C Programming

We cannot save the value of a memory address directly. We can only obtain the value through the

variable stored there using the address operator (&). The value thus obtained is known as pointer value. The

pointer value (i.e. the address of a variable) may change from one run of the program to another.

Once we have a pointer value, it can be stored into another variable. The variable that contains a pointer

value is called a pointer variable.

13.3 ACCESSING THE ADDRESS OF A VARIABLE LO 13.1

The actual location of a variable in the memory is system dependent and therefore, the address of a variable

is not known to us immediately. How can we then determine the address of a variable? This can be done

with the help of the operator & available in C. We have already seen the use of this address operator in

the scanf function. The operator & immediately preceding a variable returns the address of the variable

associated with it. For example, the statement

p = &quantity;

would assign the address 5000 (the location of quantity) to the variable p. The & operator can be

remembered as ‘address of ’.

The & operator can be used only with a simple variable or an array element. The following are illegal

use of address operator:

1. &125 (pointing at constants).

2. int x[10];

 &x (pointing at array names).

3. &(x+y) (pointing at expressions).

If x is an array, then expressions such as

&x[0] and &x[i+3]

are valid and represent the addresses of 0th and (i+3)th elements of x.

Write a program to print the address of a variable along with its value.

The program shown in Fig. 13.4, declares and initializes four variables and then prints out these values with

their respective storage locations. Note that we have used %u format for printing address values. Memory

addresses are unsigned integers.

Program

 main()

 {

 char a;

 int x;

 float p, q;

 a = ‘A’;

Levels of Difficulty

L: Low; M: Medium; H: High

Pointers 461

 x = 125;

 p = 10.25, q = 18.76;

 printf(“%c is stored at addr %u.\n”, a, &a);

 printf(“%d is stored at addr %u.\n”, x, &x);

 printf(“%f is stored at addr %u.\n”, p, &p);

 printf(“%f is stored at addr %u.\n”, q, &q);

 }

Output

 A is stored at addr 4436.

 125 is stored at addr 4434.

 10.250000 is stored at addr 4442.

 18.760000 is stored at addr 4438.

Fig. 13.4 Accessing the address of a variable

13.4 DECLARING POINTER VARIABLES LO 13.2

In C, every variable must be declared for its type. Since pointer variables contain addresses that belong to

a separate data type, they must be declared as pointers before we use them. The declaration of a pointer

variable takes the following form:

data_type *pt_name;

This tells the compiler three things about the variable pt_name.

1. The asterisk (*) tells that the variable pt_name is a pointer variable.

2. pt_name needs a memory location.

3. pt_name points to a variable of type data_type.

For example,

int *p; /* integer pointer */

declares the variable p as a pointer variable that points to an integer data type. Remember that the type

int refers to the data type of the variable being pointed to by p and not the type of the value of the pointer.

Similarly, the statement

float *x; / * float pointer */

declares x as a pointer to a floating-point variable.

The declarations cause the compiler to allocate memory locations for the pointer variables p and x. Since

the memory locations have not been assigned any values, these locations may contain some unknown values

in them and therefore they point to unknown locations as shown:

int *p;

462 Computing Fundamentals & C Programming

13.4.1 Pointer Declaration Style

Pointer variables are declared similarly as normal variables except for the addition of the unary * operator.

This symbol can appear anywhere between the type name and the printer variable name. Programmers use

the following styles:

int* p; /* style 1 */

int *p; /* style 2 */

int * p; /* style 3 */

However, the style 2 is becoming increasingly popular due to the following reasons:

1. This style is convenient to have multiple declarations in the same statement. Example:

int *p, x, *q;

2. This style matches with the format used for accessing the target values. Example:

int x, *p, y;

x = 10;

p = & x;

y = *p; /* accessing x through p */

p = 20; / assigning 20 to x */

We use in this book the style 2, namely,

int *p;

13.5 INITIALIZATION OF POINTER VARIABLES LO 13.2

The process of assigning the address of a variable to a pointer variable is known as initialization. As

pointed out earlier, all uninitialized pointers will have some unknown values that will be interpreted as

memory addresses. They may not be valid addresses or they may point to some values that are wrong. Since

the compilers do not detect these errors, the programs with uninitialized pointers will produce erroneous

results. It is therefore important to initialize pointer variables carefully before they are used in the program.

Once a pointer variable has been declared we can use the assignment operator to initialize the variable.

Example:

int quantity;

int *p; /* declaration */

p = &quantity; /* initialization */

We can also combine the initialization with the declaration. That is,

int *p = &quantity;

is allowed. The only requirement here is that the variable quantity must be declared before the initialization

takes place. Remember, this is an initialization of p and not *p.

We must ensure that the pointer variables always point to the corresponding type of data. For example,

 float a, b;

 int x, *p;

 p = &a; /* wrong */

 b = *p;

will result in erroneous output because we are trying to assign the address of a float variable to an integer

pointer. When we declare a pointer to be of int type, the system assumes that any address that the pointer

will hold will point to an integer variable. Since the compiler will not detect such errors, care should be

taken to avoid wrong pointer assignments.

Pointers 463

It is also possible to combine the declaration of data variable, the declaration of pointer variable and the

initialization of the pointer variable in one step. For example,

int x, *p = &x; /* three in one */

is perfectly valid. It declares x as an integer variable and p as a pointer variable and then initializes p to the

address of x. And also remember that the target variable x is declared first. The statement

int *p = &x, x;

is not valid.

We could also define a pointer variable with an initial value of NULL or 0 (zero). That is, the following

statements are valued

int *p = NULL;

 int *p = 0;

13.5.1 Pointer Flexibility

Pointers are flexible. We can make the same pointer to point to different data variables in different

statements. Example;

int x, y, z, *p;

.

p = &x;

.

p = &y;

.

p = &z;

.

We can also use different pointers to point to the same data variable. Example;

int x;
int *p1 = &x;

int *p2 = &x;

int *p3 = &x;

.

.

With the exception of NULL and 0, no other constant value can be assigned to a pointer variable. For

example, the following is wrong:

 int *p = 5360; / *absolute address */

13.6 ACCESSING A VARIABLE THROUGH ITS POINTER LO 13.2

Once a pointer has been assigned the address of a variable, the question remains as to how to access the

value of the variable using the pointer? This is done by using another unary operator * (asterisk), usually

known as the indirection operator. Another name for the indirection operator is the dereferencing operator.

Consider the following statements:

 int quantity, *p, n;

 quantity = 179;

464 Computing Fundamentals & C Programming

 p = &quantity;

 n = *p;

The first line declares quantity and n as integer variables and p as a pointer variable pointing to an

integer. The second line assigns the value 179 to quantity and the third line assigns the address of quantity

to the pointer variable p. The fourth line contains the indirection operator *. When the operator* is placed

before a pointer variable in an expression (on the right-hand side of the equal sign), the pointer returns

the value of the variable of which the pointer value is the address. In this case, *p returns the value of the

variable quantity, because p is the address of quantity. The * can be remembered as ‘value at address’.

Thus, the value of n would be 179. The two statements

 p = &quantity;

 n = *p;

are equivalent to

 n = *&quantity;

which in turn is equivalent to

 n = quantity;

In C, the assignment of pointers and addresses is always done symbolically, by means of symbolic

names. You cannot access the value stored at the address 5368 by writing *5368. It will not work. Program

13.2 illustrates the distinction between pointer value and the value it points to.

Write a program to illustrate the use of indirection operator ‘*’ to access the value pointed to by a pointer.

The program and output are shown in Fig. 13.5. The program clearly shows how we can access the value of

a variable using a pointer. You may notice that the value of the pointer ptr is 4104 and the value it points to

is 10. Further, you may also note the following equivalences:

 x = *(&x) = *ptr = y

 &x = &*ptr

Program

 main()

{

 int x, y;

 int *ptr;

 x = 10;

 ptr = &x;

 y = *ptr;

 printf(“Value of x is %d\n\n”,x);

 printf(“%d is stored at addr %u\n”, x, &x);

 printf(“%d is stored at addr %u\n”, *&x, &x);

 printf(“%d is stored at addr %u\n”, *ptr, ptr);

 printf(“%d is stored at addr %u\n”, ptr, &ptr);

 printf(“%d is stored at addr %u\n”, y, &y);

 *ptr = 25;

Pointers 465

 printf(“\nNow x = %d\n”,x);

}

Output

Value of x is 10

 10 is stored at addr 4104

 10 is stored at addr 4104

 10 is stored at addr 4104

 4104 is stored at addr 4106

 10 is stored at addr 4108

 Now x = 25

Fig. 13.5 Accessing a variable through its pointer

The actions performed by the program are illustrated in Fig. 13.6. The statement ptr = &x assigns the

address of x to ptr and y = *ptr assigns the value pointed to by the pointer ptr to y.

Fig. 13.6 Illustration of pointer assignments

466 Computing Fundamentals & C Programming

Note the use of the assignment statement

 *ptr = 25;

This statement puts the value of 25 at the memory location whose address is the value of ptr. We know

that the value of ptr is the address of x and therefore, the old value of x is replaced by 25. This, in effect,

is equivalent to assigning 25 to x. This shows how we can change the value of a variable indirectly using a

pointer and the indirection operator.

13.7 CHAIN OF POINTERS LO 13.3

It is possible to make a pointer to point to another pointer, thus creating a chain of pointers as shown.

Here, the pointer variable p2 contains the address of the pointer variable p1, which points to the location

that contains the desired value. This is known as multiple indirections.

A variable that is a pointer to a pointer must be declared using additional indirection operator symbols in

front of the name. Example:

int **p2;

This declaration tells the compiler that p2 is a pointer to a pointer of int type. Remember, the pointer p2

is not a pointer to an integer, but rather a pointer to an integer pointer.

We can access the target value indirectly pointed to by pointer to a pointer by applying the indirection

operator twice. Consider the following code:

 main ()

{

 int x, *p1, **p2;

 x = 100;

 p1 = &x; /* address of x */

 p2 = &p1 /* address of p1 */

 printf (“%d”, **p2);

}

This code will display the value 100. Here, p1 is declared as a pointer to an integer and p2 as a pointer to

a pointer to an integer.

13.8 POINTER EXPRESSIONS LO 13.4

Like other variables, pointer variables can be used in expressions. For example, if p1 and p2 are properly

declared and initialized pointers, then the following statements are valid:

y = *p1 * *p2; same as (*p1) * (*p2)

sum = sum + *p1;

 z = 5* – *p2/ *p1; same as (5 * (– (*p2)))/(*p1)

Pointers 467

*p2 = *p2 + 10;

Note that there is a blank space between / and * in the item3 above. The following is wrong:

z = 5* – *p2 /*p1;

The symbol /* is considered as the beginning of a comment and therefore the statement fails.

C allows us to add integers to or subtract integers from pointers, as well as to subtract one pointer from

another. p1 + 4, p2–2, and p1 – p2 are all allowed. If p1 and p2 are both pointers to the same array, then p2

– p1 gives the number of elements between p1 and p2.

We may also use short-hand operators with the pointers.

 p1++;

 —p2;

 sum += *p2;

In addition to arithmetic operations discussed above, pointers can also be compared using the relational

operators. The expressions such as p1 > p2, p1 == p2, and p1 != p2 are allowed. However, any comparison

of pointers that refer to separate and unrelated variables makes no sense. Comparisons can be used

meaningfully in handling arrays and strings.

We may not use pointers in division or multiplication. For example, expressions such as

 p1 / p2 or p1 * p2 or p1 / 3

are not allowed. Similarly, two pointers cannot be added. That is, p1 + p2 is illegal.

Write a program to illustrate the use of pointers in arithmetic operations.

The program in Fig. 13.7 shows how the pointer variables can be directly used in expressions. It also

illustrates the order of evaluation of expressions. For example, the expression

4* – *p2 / *p1 + 10

is evaluated as follows:

((4 * (–(*p2))) / (*p1)) + 10

When *p1 = 12 and *p2 = 4, this expression evaluates to 9. Remember, since all the variables are of type

int, the entire evaluation is carried out using the integer arithmetic.

Program

 main()

{

 int a, b, *p1, *p2, x, y, z;

 a = 12;

 b = 4;

 p1 = &a;

 p2 = &b;

 x = *p1 * *p2 – 6;

 y = 4* – *p2 / *p1 + 10;

 printf(“Address of a = %u\n”, p1);

 printf(“Address of b = %u\n”, p2);

 printf(“\n”);

468 Computing Fundamentals & C Programming

 printf(“a = %d, b = %d\n”, a, b);

 printf(“x = %d, y = %d\n”, x, y);

 *p2 = *p2 + 3;

 *p1 = *p2 – 5;

 z = *p1 * *p2 – 6;

 printf(“\na = %d, b = %d,”, a, b);

printf(“ z = %d\n”, z);

 }

Output

Address of a = 4020

 Address of b = 4016

 a = 12, b = 4

 x = 42, y = 9

 a = 2, b = 7, z = 8

Fig. 13.7 Evaluation of pointer expressions

13.9 POINTER INCREMENTS AND SCALE FACTOR LO 13.4

We have seen that the pointers can be incremented like

 p1 = p2 + 2;

 p1 = p1 + 1;

and so on. Remember, however, an expression like

 p1++;

will cause the pointer p1 to point to the next value of its type. For example, if p1 is an integer pointer with

an initial value, say 2800, then after the operation p1 = p1 + 1, the value of p1 will be 2802, and not 2801.

That is, when we increment a pointer, its value is increased by the ‘length’ of the data type that it points to.

This length called the scale factor.

For an IBM PC, the length of various data types are as follows:

characters 1 byte

integers 2 bytes

floats 4 bytes

long integers 4 bytes

doubles 8 bytes

The number of bytes used to store various data types depends on the system and can be found by making

use of the sizeof operator. For example, if x is a variable, then sizeof(x) returns the number of bytes needed

for the variable. (Systems like Pentium use 4 bytes for storing integers and 2 bytes for short integers.)

13.9.1 Rules of Pointer Operations

The following rules apply when performing operations on pointer variables:

1. A pointer variable can be assigned the address of another variable.

Pointers 469

2. A pointer variable can be assigned the values of another pointer variable.

3. A pointer variable can be initialized with NULL or zero value.

4. A pointer variable can be pre-fixed or post-fixed with increment or decrement operators.

5. An integer value may be added or subtracted from a pointer variable.

6. When two pointers point to the same array, one pointer variable can be subtracted from another.

7. When two pointers point to the objects of the same data types, they can be compared using

relational operators.

8. A pointer variable cannot be multiplied by a constant.

9. Two pointer variables cannot be added.

10. A value cannot be assigned to an arbitrary address (i.e., &x = 10; is illegal).

13.10 POINTERS AND ARRAYS LO 13.5

When an array is declared, the compiler allocates a base address and sufficient amount of storage to contain

all the elements of the array in contiguous memory locations. The base address is the location of the first

element (index 0) of the array. The compiler also defines the array name as a constant pointer to the first

element. Suppose we declare an array x as follows:

int x[5] = {1, 2, 3, 4, 5};

Suppose the base address of x is 1000 and assuming that each integer requires two bytes, the five

elements will be stored as follows:

The name x is defined as a constant pointer pointing to the first element, x[0] and therefore the value of x

is 1000, the location where x[0] is stored. That is,

x = &x[0] = 1000

If we declare p as an integer pointer, then we can make the pointer p to point to the array x by the

following assignment:

p = x;

This is equivalent to

p = &x[0];

Now, we can access every value of x using p++ to move from one element to another. The relationship

between p and x is shown as:

p = &x[0] (= 1000)

p+1 = &x[1] (= 1002)

p+2 = &x[2] (= 1004)

p+3 = &x[3] (= 1006)

p+4 = &x[4] (= 1008)

You may notice that the address of an element is calculated using its index and the scale factor of the

data type. For instance,

470 Computing Fundamentals & C Programming

address of x[3] = base address + (3 x scale factor of int)

= 1000 + (3 x 2) = 1006

When handling arrays, instead of using array indexing, we can use pointers to access array elements.

Note that *(p+3) gives the value of x[3]. The pointer accessing method is much faster than array indexing.

The Worked-Out Problem 13.4 illustrates the use of pointer accessing method.

Write a program using pointers to compute the sum of all elements stored in an array.

The program shown in Fig. 13.8 illustrates how a pointer can be used to traverse an array element. Since

incrementing an array pointer causes it to point to the next element, we need only to add one to p each time

we go through the loop.

Program

main()

{

 int *p, sum, i;

 int x[5] = {5,9,6,3,7};

 i = 0;

 p = x; /* initializing with base address of x */

 printf(“Element Value Address\n\n”);

 while(i < 5)

{

 printf(“ x[%d] %d %u\n”, i, *p, p);

 sum = sum + *p; /* accessing array element */

 i++, p++; /* incrementing pointer */

 }

 printf(“\n Sum = %d\n”, sum);

 printf(“\n &x[0] = %u\n”, &x[0]);

printf(“\n p = %u\n”, p);

}

Output

 Element Value Address

 x[0] 5 166

 x[1] 9 168

 x[2] 6 170

 x[3] 3 172

 x[4] 7 174

 Sum = 55

 &x[0] = 166

 p = 176

 Fig. 13.8 Accessing one-dimensional array elements using the pointer

Pointers 471

It is possible to avoid the loop control variable i as shown:

 p = x;

 while(p <= &x[4])

{

 sum += *p;

 p++;

}

Here, we compare the pointer p with the address of the last element to determine when the array has

been traversed.

Pointers can be used to manipulate two-dimensional arrays as well. We know that in a one-dimensional

array x, the expression

*(x+i) or *(p+i)

represents the element x[i]. Similarly, an element in a two-dimensional array can be represented by the

pointer expression as follows:

((a+i)+j) or *(*(p+i)j)

Fig. 13.9 Pointers to two-dimensional arrays

Figure 13.9 illustrates how this expression represents the element a[i][j]. The base address of the array

a is &a[0][0] and starting at this address, the compiler allocates contiguous space for all the elements row-

wise. That is, the first element of the second row is placed immediately after the last element of the first

row, and so on. Suppose we declare an array a as follows:

472 Computing Fundamentals & C Programming

 int a[3][4] = { {15,27,11,35},

 {22,19,31,17},

 {31,23,14,36}

 };

The elements of a will be stored as:

If we declare p as an int pointer with the initial address of &a[0][0], then

a[i][j] is equivalent to *(p+4 i+j)

You may notice that, if we increment i by 1, the p is incremented by 4, the size of each row. Then the

element a[2][3] is given by *(p+2 × 4+3) = *(p+11).

This is the reason why, when a two-dimensional array is declared, we must specify the size of each row

so that the compiler can determine the correct storage mapping.

13.11 POINTERS AND CHARACTER STRINGS LO 13.5

We have seen in Chapter 10 that strings are treated like character arrays and therefore, they are declared and

initialized as follows:

char str [5] = “good”;

The compiler automatically inserts the null character ‘\0’ at the end of the string. C supports an

alternative method to create strings using pointer variables of type char. Example:

char *str = “good”;

This creates a string for the literal and then stores its address in the pointer variable str.

The pointer str now points to the first character of the string “good” as:

We can also use the run-time assignment for giving values to a string pointer. Example

 char * string1;

 string1 = “good”;

Note that the assignment

 string1 = “good”;

is not a string copy, because the variable string1 is a pointer, not a string.

(As pointed out in Chapter 10, C does not support copying one string to another through the assignment

operation.)

We can print the content of the string string1 using either printf or puts functions as follows:

Pointers 473

 printf(“%s”, string1);

 puts (string1);

Remember, although string1 is a pointer to the string, it is also the name of the string. Therefore, we do

not need to use indirection operator * here.

Like in one-dimensional arrays, we can use a pointer to access the individual characters in a string. This

is illustrated by the Worked-Out Problem 13.5.

Write a program using pointers to determine the length of a character string.

A program to count the length of a string is shown in Fig. 13.10. The statement

char *cptr = name;

declares cptr as a pointer to a character and assigns the address of the first character of name as the initial

value. Since a string is always terminated by the null character, the statement

while(*cptr != ‘\0’)

is true until the end of the string is reached.

When the while loop is terminated, the pointer cptr holds the address of the null character. Therefore,

the statement

length = cptr – name;

gives the length of the string name.

The output also shows the address location of each character. Note that each character occupies one

memory cell (byte).

Program

main()

 {

 char *name;

 int length;

 char *cptr = name;

 name = “DELHI”;

 printf (“%s\n”, name);

 while(*cptr != ‘\0’)

 {

 printf(“%c is stored at address %u\n”, *cptr, cptr);

 cptr++;

 }

 length = cptr - name;

474 Computing Fundamentals & C Programming

 printf(“\nLength of the string = %d\n”, length);

 }

Output

DELHI

 D is stored at address 54

 E is stored at address 55

 L is stored at address 56

 H is stored at address 57

 I is stored at address 58

 Length of the string = 5

 Fig. 13.10 String handling by pointers

In C, a constant character string always represents a pointer to that string. And therefore the following

statements are valid:

 char *name;

 name = “Delhi”;

These statements will declare name as a pointer to character and assign to name the constant character

string “Delhi”. You might remember that this type of assignment does not apply to character arrays. The

statements like

 char name[20];

 name = “Delhi”;

do not work.

13.12 ARRAY OF POINTERS LO 13.5

One important use of pointers is in handling of a table of strings. Consider the following array of strings:

 char name [3][25];

This says that the name is a table containing three names, each with a maximum length of 25 characters

(including null character). The total storage requirements for the name table are 75 bytes.

We know that rarely the individual strings will be of equal lengths. Therefore, instead of making each

row a fixed number of characters, we can make it a pointer to a string of varying length. For example,

 char *name[3] = {

 “New Zealand”,

 Australia”,

Pointers 475

 “India”

 };

declares name to be an array of three pointers to characters, each pointer pointing to a particular name as:

This declaration allocates only 28 bytes, sufficient to hold all the characters as shown

The following statement would print out all the three names:

 for(i = 0; i <= 2; i++)

 printf(“%s\n”, name[i]);

To access the jth character in the ith name, we may write as

 *(name[i]+j)

The character arrays with the rows of varying length are called ‘ragged arrays’ and are better handled by

pointers.

Remember the difference between the notations *p[3] and (*p)[3]. Since * has a lower precedence than

[], *p[3] declares p as an array of 3 pointers while (*p)[3] declares p as a pointer to an array of three

elements.

13.13 POINTERS AS FUNCTION ARGUMENTS LO 13.6

We have seen earlier that when an array is passed to a function as an argument, only the address of

the first element of the array is passed, but not the actual values of the array elements. If x is an array,

when we call sort(x), the address of x[0] is passed to the function sort. The function uses this address

for manipulating the array elements. Similarly, we can pass the address of a variable as an argument to a

function in the normal fashion. We used this method when discussing functions that return multiple values

(see Chapter 11).

When we pass addresses to a function, the parameters receiving the addresses should be pointers.

The process of calling a function using pointers to pass the addresses of variables is known as ‘call by

reference’. (You know, the process of passing the actual value of variables is known as “call by value”.) The

function which is called by ‘reference’ can change the value of the variable used in the call.

Consider the following code:

 main()

{

 int x;

 x = 20;

 change(&x); /* call by reference or address */

 printf(“%d\n”,x);

476 Computing Fundamentals & C Programming

 }

 change(int *p)

{

 *p = *p + 10;

}

When the function change() is called, the address of the variable x, not its value, is passed into the

function change(). Inside change(), the variable p is declared as a pointer and therefore p is the address of

the variable x. The statement,

*p = *p + 10;

means ‘add 10 to the value stored at the address p’. Since p represents the address of x, the value of x is

changed from 20 to 30. Therefore, the output of the program will be 30, not 20.

Thus, call by reference provides a mechanism by which the function can change the stored values in the

calling function. Note that this mechanism is also known as “call by address” or “pass by pointers”.

Note C99 adds a new qualifier restrict to the pointers passed as function parameters. See the

Appendix “C99 Features”.

Write a function using pointers to exchange the values stored in two locations in the memory.

The program in Fig. 13.11 shows how the contents of two locations can be exchanged using their address

locations. The function exchange() receives the addresses of the variables x and y and exchanges their

contents.

Program

 void exchange (int *, int *); /* prototype */

 main()

 {

 int x, y;

 x = 100;

 y = 200;

 printf(“Before exchange : x = %d y = %d\n\n”, x, y);

 exchange(&x,&y); /* call */

 printf(“After exchange : x = %d y = %d\n\n”, x, y);

 }

 exchange (int *a, int *b)

 {

 int t;

 t = *a; /* Assign the value at address a to t */

 *a = *b; /* put b into a */

 b = t; / put t into b */

 }

Pointers 477

Output

Before exchange : x = 100 y = 200

 After exchange : x = 200 y = 100

Fig. 13.11 Passing of pointers as function parameters

You may note the following points:

1. The function parameters are declared as pointers.

2. The dereferenced pointers are used in the function body.

3. When the function is called, the addresses are passed as actual arguments.

The use of pointers to access array elements is very common in C. We have used a pointer to traverse

array elements in Program 13.4. We can also use this technique in designing user-defined functions

discussed in Chapter 13. Let us consider the problem sorting an array of integers discussed in Program 13.6.

The function sort may be written using pointers (instead of array indexing) as shown:

 void sort (int m, int *x)

 { int i j, temp;

 for (i=1; i<= m–1; i++)

 for (j=1; j<= m–1; j++)

 if (*(x+j–1) >= *(x+j))

{

 temp = *(x+j– 1);

 *(x+j–1) = *(x+j);

 *(x+j) = temp;

}

}

Note that we have used the pointer x (instead of array x[]) to receive the address of array passed and

therefore the pointer x can be used to access the array elements (as pointed out in Section 13.10). This

function can be used to sort an array of integers as follows:

 int score[4] = {45, 90, 71, 83};

 sort(4, score); /* Function call */

The calling function must use the following prototype declaration.

 void sort (int, int *);

This tells the compiler that the formal argument that receives the array is a pointer, not array variable.

Pointer parameters are commonly employed in string functions. Consider the function copy which copies

one string to another.

 copy(char *s1, char *s2)

 {

 while((*s1++ = *s2++) != ‘\0’)

;

}

478 Computing Fundamentals & C Programming

This copies the contents of s2 into the string s1. Parameters s1 and s2 are the pointers to character

strings, whose initial values are passed from the calling function. For example, the calling statement

copy(name1, name2);

will assign the address of the first element of name1 to s1 and the address of the first element of name2 to

s2.

Note that the value of *s2++ is the character that s2 pointed to before s2 was incremented. Due to the

postfix ++, s2 is incremented only after the current value has been fetched. Similarly, s1 is incremented only

after the assignment has been completed.

Each character, after it has been copied, is compared with ‘\0’ and therefore, copying is terminated as

soon as the ‘\0’ is copied.

The program of Fig. 13.12 shows how to calculate the sum of two numbers which are passed as arguments

using the call by reference method.

Program

 #include<stdio.h>

 #include<conio.h>

 void swap (int *p, *q);

 main()

{

 int x=0;

 int y=20;

 clrstr();

 printf(“\nValue of X and Y before swapping are X=%d and Y=%d”, x,y);

 swap(&x, &y);

 printf(“\n\nValue of X and Y after swapping are X=%d and Y=%d”, x,y);

 getch();

}

 void swap(int *p, int *q)//Value of x and y are transferred using call by reference

{

 int r;

 r=*p;

 *p=*q;

 *q=r;

}

Output

 Value of X and Y before swapping are X=10 and Y=20

 Value of X and Y after swapping are X=20 and Y=10

Fig. 13.12 Program to pass the arguments using call by reference method

Pointers 479

13.14 FUNCTIONS RETURNING POINTERS LO 13.6

We have seen so far that a function can return a single value by its name or return multiple values through

pointer parameters. Since pointers are a data type in C, we can also force a function to return a pointer to

the calling function. Consider the following code:

 int *larger (int *, int *); /* prototype */

 main ()

{

 int a = 10;

 int b = 20;

 int *p;

 p = larger(&a, &b); /Function call */

 printf (“%d”, *p);

}

 int *larger (int *x, int *y)

{

 if (*x>*y)

 return (x); / *address of a */

 else

 return (y); /* address of b */

}

The function larger receives the addresses of the variables a and b, decides which one is larger using

the pointers x and y and then returns the address of its location. The returned value is then assigned to the

pointer variable p in the calling function. In this case, the address of b is returned and assigned to p and

therefore the output will be the value of b, namely, 20.

Note that the address returned must be the address of a variable in the calling function. It is an error to

return a pointer to a local variable in the called function.

13.15 POINTERS TO FUNCTIONS LO 13.6

A function, like a variable, has a type and an address location in the memory. It is therefore, possible to

declare a pointer to a function, which can then be used as an argument in another function. A pointer to a

function is declared as follows:

type (*fptr) ();

This tells the compiler that fptr is a pointer to a function, which returns type value. The parentheses

around *fptr are necessary. Remember that a statement like

type *gptr();

would declare gptr as a function returning a pointer to type.

We can make a function pointer to point to a specific function by simply assigning the name of the

function to the pointer. For example, the statements

 double mul(int, int);

pointer to a function declaration of

480 Computing Fundamentals & C Programming

 double (*p1)();

 p1 = mul;

declare p1 as a pointer to a function and mul as a function and then make p1 to point to the function mul.

To call the function mul, we may now use the pointer p1 with the list of parameters. That is,

(*p1)(x,y) /* Function call */

is equivalent to

mul(x,y)

Note the parentheses around *p1.

H

Write a program that uses a function pointer as a function argument.

A program to print the function values over a given range of values is shown in Fig. 13.13. The printing is

done by the function table by evaluating the function passed to it by the main.

With table, we declare the parameter f as a pointer to a function as follows:

double (*f)();

The value returned by the function is of type double. When table is called in the statement

table (y, 0.0, 2, 0.5);

we pass a pointer to the function y as the first parameter of table. Note that y is not followed by a parameter

list.

During the execution of table, the statement

value = (*f)(a);

calls the function y which is pointed to by f, passing it the parameter a. Thus the function y is evaluated

over the range 0.0 to 2.0 at the intervals of 0.5.

Similarly, the call

table (cos, 0.0, PI, 0.5);

passes a pointer to cos as its first parameter and therefore, the function table evaluates the value of cos over

the range 0.0 to PI at the intervals of 0.5.

Program

#include <math.h>

 #define PI 3.1415926

 double y(double);

 double cos(double);

 double table (double(*f)(), double, double, double);

 main()

 { printf(“Table of y(x) = 2*x*x–x+1\n\n”);

 table(y, 0.0, 2.0, 0.5);

 printf(“\nTable of cos(x)\n\n”);

 table(cos, 0.0, PI, 0.5);

 }

 double table(double(*f)(),double min, double max, double step)

 { double a, value;

Pointers 481

 for(a = min; a <= max; a += step)

 {

 value = (*f)(a);

 printf(“%5.2f %10.4f\n”, a, value);

 }

 }

 double y(double x)

{

 return(2*x*x-x+1);

}

Output

Table of y(x) = 2*x*x-x+1

0.00 1.0000

0.50 1.0000

1.00 2.0000

1.50 4.0000

2.00 7.0000

Table of cos(x)

0.00 1.0000

0.50 0.8776

1.00 0.5403

1.50 0.0707

2.00 -0.4161

2.50 -0.8011

3.00 -0.9900

Fig. 13.13 Use of pointers to functions

13.15.1 Compatibility and Casting

A variable declared as a pointer is not just a pointer type variable. It is also a pointer to a specific

fundamental data type, such as a character. A pointer therefore always has a type associated with it. We

cannot assign a pointer of one type to a pointer of another type, although both of them have memory

addresses as their values. This is known as incompatibility of pointers.

All the pointer variables store memory addresses, which are compatible, but what is not compatible is

the underlying data type to which they point to. We cannot use the assignment operator with the pointers

of different types. We can however make explicit assignment between incompatible pointer types by using

cast operator, as we do with the fundamental types. Example:

int x;

char *p;

p = (char *) & x;

In such cases, we must ensure that all operations that use the pointer p must apply casting properly.

482 Computing Fundamentals & C Programming

We have an exception. The exception is the void pointer (void *). The void pointer is a generic pointer

that can represent any pointer type. All pointer types can be assigned to a void pointer and a void pointer

can be assigned to any pointer without casting. A void pointer is created as follows:

void *vp;
Remember that since a void pointer has no object type, it cannot be de-referenced.

13.16 POINTERS AND STRUCTURES LO 13.6

We know that the name of an array stands for the address of its zeroth element. The same thing is true of

the names of arrays of structure variables. Suppose product is an array variable of struct type. The name

product represents the address of its zeroth element. Consider the following declaration:

 struct inventory

{

 char name[30];

 int number;

 float price;

 } product[2], *ptr;

This statement declares product as an array of two elements, each of the type struct inventory and ptr

as a pointer to data objects of the type struct inventory. The assignment

 ptr = product;

would assign the address of the zeroth element of product to ptr. That is, the pointer ptr will now point to

product[0]. Its members can be accessed using the following notation.

 ptr –> name

 ptr –> number

 ptr –> price

The symbol –> is called the arrow operator (also known as member selection operator) and is made up

of a minus sign and a greater than sign. Note that ptr–> is simply another way of writing product[0].

When the pointer ptr is incremented by one, it is made to point to the next record, i.e., product[1]. The

following for statement will print the values of members of all the elements of product array.

 for(ptr = product; ptr < product+2; ptr++)

 printf (“%s %d %f\n”, ptr–>name, ptr–>number, ptr–>price);

We could also use the notation

(*ptr).number

to access the member number. The parentheses around *ptr are necessary because the member operator ‘.’

has a higher precedence than the operator *.

H

Write a program to illustrate the use of structure pointers.

A program to illustrate the use of a structure pointer to manipulate the elements of an array of structures is

shown in Fig. 13.14. The program highlights all the features discussed above. Note that the pointer ptr (of

type struct invent) is also used as the loop control index in for loops.

Pointers 483

Program

 struct invent

 {

 char *name[20];

 int number;

 float price;

 };

 main()

 {

 struct invent product[3], *ptr;

 printf(“INPUT\n\n”);

 for(ptr = product; ptr < product+3; ptr++)

 scanf(“%s %d %f”, ptr–>name, &ptr–>number, &ptr–>price);

 printf(“\nOUTPUT\n\n”);

 ptr = product;

 while(ptr < product + 3)

{

printf(“%–20s %5d %10.2f\n”,

 ptr–>name,

 ptr–>number,

 ptr–>price);

 ptr++;

 }

}

Output

 INPUT

 Washing_machine 5 7500

 Electric_iron 12 350

 Two_in_one 7 1250

 OUTPUT

 Washing machine 5 7500.00

 Electric_iron 12 350.00

 Two_in_one 7 1250.00

 Fig. 13.14 Pointer to structure variables

484 Computing Fundamentals & C Programming

While using structure pointers, we should take care of the precedence of operators.

The operators ‘–>’ and ‘.’, and () and [] enjoy the highest priority among the operators. They bind very

tightly with their operands. For example, given the definition

 struct

{

 int count;

 float *p; /* pointer inside the struct */

 } ptr; /* struct type pointer */

then the statement

 ++ptr–>count;

increments count, not ptr. However,

 (++ptr)–>count;

increments ptr first, and then links count. The statement

ptr++ –> count;

is legal and increments ptr after accessing count.

The following statements also behave in the similar fashion.

*ptr–>p Fetches whatever p points to.

*ptr–>p++ Increments p after accessing whatever it points to.

(*ptr–>p)++ Increments whatever p points to.

*ptr++–>p Increments ptr after accessing whatever it points to.

In the previous chapter, we discussed about passing of a structure as an argument to a function. We also

saw an example where a function receives a copy of an entire structure and returns it after working on it.

As we mentioned earlier, this method is inefficient in terms of both, the execution speed and memory. We

can overcome this drawback by passing a pointer to the structure and then using this pointer to work on the

structure members. Consider the following function:

 print_invent(struct invent *item)

{

 printf(“Name: %s\n”, item->name);

 printf(“Price: %f\n”, item->price);

}

This function can be called by

 print_invent(&product);

The formal argument item receives the address of the structure product and therefore it must be declared

as a pointer of type struct invent, which represents the structure of product.

13.17 TROUBLES WITH POINTERS LO 13.7

Pointers give us tremendous power and flexibility. However, they could become a nightmare when they are

not used correctly. The major problem with wrong use of pointers is that the compiler may not detect the

error in most cases and therefore the program is likely to produce unexpected results. The output may not

give us any clue regarding the use of a bad pointer. Debugging therefore becomes a difficult task.

Pointers 485

We list here some pointer errors that are more commonly committed by the programmers.

Assigning values to uninitialized pointers

 int * p, m = 100 ;

 p = m ; / Error */

Assigning value to a pointer variable

 int *p, m = 100 ;

 p = m; /* Error */

Not dereferencing a pointer when required

 int *p, x = 100;

 p = &x;

 printf(“%d”,p); /* Error */

Assigning the address of an uninitialized variable

 int m, *p

 p = &m; /* Error */

Comparing pointers that point to different objects

 char name1 [20], name2 [30];

 char *p1 = name1;

 char *p2 = name2;

 if(p1 > p2)....... /* Error */

We must be careful in declaring and assigning values to pointers correctly before using them. We must

also make sure that we apply the address operator & and referencing operator * correctly to the pointers.

That will save us from sleepless nights.

Learning Outcomes

Only an address of a variable can be stored in a pointer variable.

Do not store the address of a variable of one type into a pointer variable of another type.

The value of a variable cannot be assigned to a pointer variable.

A very common error is to use (or not to use) the address operator (&) and the indirection operator

(*) in certain places. Be careful. The compiler may not warn such mistakes.

Remember that the definition for a pointer variable allocates memory only for the pointer variable,

not for the variable to which it is pointing.

A pointer variable contains garbage until it is initialized. Therefore, we must not use a pointer

variable before it is assigned, the address of a variable.

It is an error to assign a numeric constant to a pointer variable.

It is an error to assign the address of a variable to a variable of any basic data types.

A proper understanding of a precedence and associativity rules is very important in pointer

applications. For example, expressions like *p++, *p[], (*p)[], (p).member should be carefully

used.

Be careful while using indirection operator with pointer variables. A simple pointer uses single

indirection operator (*ptr) while a pointer to a pointer uses additional indirection operator symbol

(**ptr).

LO 13.1

LO 13.1

LO 13.1

LO 13.1

LO 13.1

LO 13.2

LO 13.2

LO 13.2

LO 13.4

LO 13.4

486 Computing Fundamentals & C Programming

When an array is passed as an argument to a function, a pointer is actually passed. In the header

function, we must declare such arrays with proper size, except the first, which is optional.

If we want a called function to change the value of a variable in the calling function, we must pass

the address of that variable to the called function.

When we pass a parameter by address, the corresponding formal parameter must be a pointer

variable.

It is an error to assign a pointer of one type to a pointer of another type without a cast (with an

exception of void pointer).

Key Terms to Remember

Memory: This is a sequential collection of storage cells with each cell having an address value

associated with it.

Pointer: It is used to store the memory address as value.

Pointer variable: It is a variable that stores the memory address of another variable.

Call by reference: It is the process of calling a function using pointers to pass the addresses of

variables.

Call by value: It is the process of passing the actual value of variables.

Brief Cases

1. Processing of Examination Marks [LO 13.2, 13.5, 13.6 H]

Marks obtained by a batch of students in the Annual Examination are tabulated as follows:

Student name Marks obtained

S. Laxmi 45 67 38 55

V.S. Rao 77 89 56 69

- - - - -

It is required to compute the total marks obtained by each student and print the rank list based on the

total marks.

The program in Fig. 13.15 stores the student names in the array name and the marks in the array marks.

After computing the total marks obtained by all the students, the program prepares and prints the rank list.

The declaration

int marks[STUDENTS][SUBJECTS+1];

defines marks as a pointer to the array’s first row. We use rowptr as the pointer to the row of marks. The

rowptr is initialized as follows:

int (*rowptr)[SUBJECTS+1] = array;

Note that array is the formal argument whose values are replaced by the values of the actual argument

marks. The parentheses around *rowptr makes the rowptr as a pointer to an array of SUBJECTS+1

integers. Remember, the statement

int *rowptr[SUBJECTS+1];

would declare rowptr as an array of SUBJECTS+1 elements.

LO 13.5

LO 13.6

LO 13.6

LO 13.6

LO 13.1

LO 13.1

LO 13.2

LO 13.6

LO 13.6

Pointers 487

When we increment the rowptr (by rowptr+1), the incrementing is done in units of the size of

each row of array, making rowptr point to the next row. Since rowptr points to a particular row, (*rowptr)

[x] points to the xth element in the row.

Program

 #define STUDENTS 5

 #define SUBJECTS 4

 #include <string.h>

 main()

 {

 char name[STUDENTS][20];

 int marks[STUDENTS][SUBJECTS+1];

 printf(“Input students names & their marks in four subjects\n”);

 get_list(name, marks, STUDENTS, SUBJECTS);

 get_sum(marks, STUDENTS, SUBJECTS+1);

 printf(“\n”);

 print_list(name,marks,STUDENTS,SUBJECTS+1);

 get_rank_list(name, marks, STUDENTS, SUBJECTS+1);

 printf(“\nRanked List\n\n”);

 print_list(name,marks,STUDENTS,SUBJECTS+1);

 }

 /* Input student name and marks */

 get_list(char *string[],

 int array [] [SUBJECTS +1], int m, int n)

 {

 int i, j, (*rowptr)[SUBJECTS+1] = array;

 for(i = 0; i < m; i++)

 {

 scanf(“%s”, string[i]);

 for(j = 0; j < SUBJECTS; j++)

 scanf(“%d”, &(*(rowptr + i))[j]);

 }

 }

 /* Compute total marks obtained by each student */

 get_sum(int array [] [SUBJECTS +1], int m, int n)

 {

 int i, j, (*rowptr)[SUBJECTS+1] = array;

 for(i = 0; i < m; i++)

488 Computing Fundamentals & C Programming

 {

 (*(rowptr + i))[n-1] = 0;

 for(j =0; j < n-1; j++)

 (*(rowptr + i))[n-1] += (*(rowptr + i))[j];

 }

 }

 /* Prepare rank list based on total marks */

 get_rank_list(char *string [],

 int array [] [SUBJECTS + 1]

 int m,

 int n)

 {

 int i, j, k, (*rowptr)[SUBJECTS+1] = array;

 char *temp;

 for(i = 1; i <= m–1; i++)

 for(j = 1; j <= m–i; j++)

 if((*(rowptr + j–1))[n–1] < (*(rowptr + j))[n–1])

 {

 swap_string(string[j-1], string[j]);

 for(k = 0; k < n; k++)

 swap_int(&(*(rowptr + j–1))[k],&(*(rowptr+j))[k]);

 }

 }

 /* Print out the ranked list */

 print_list(char *string[],

 int array [] [SUBJECTS + 1],

 int m,

 int n)

 {

 int i, j, (*rowptr)[SUBJECTS+1] = array;

 for(i = 0; i < m; i++)

 {

 printf(“%–20s”, string[i]);

 for(j = 0; j < n; j++)

 printf(“%5d”, (*(rowptr + i))[j]);

Pointers 489

 printf(“\n”);

 }

 }

 /* Exchange of integer values */

 swap_int(int *p, int *q)

 {

 int temp;

 temp = *p;

 *p = *q;

 *q = temp;

 }

 /* Exchange of strings */

 swap_string(char s1[], char s2[])

 {

 char swaparea[256];

 int i;

 for(i = 0; i < 256; i++)

 swaparea[i] = ‘\0’;

 i = 0;

 while(s1[i] != ‘\0’ && i < 256)

 {

 swaparea[i] = s1[i];

 i++;

 }

 i = 0;

 while(s2[i] != ‘\0’ && i < 256)

 {

 s1[i] = s2[i];

 s1[++i] = ‘\0’;

 }

 i = 0;

 while(swaparea[i] != ‘\0’)

 {

 s2[i] = swaparea[i];

 s2[++i] = ‘\0’;

 }

 }

490 Computing Fundamentals & C Programming

Output

 Input students names & their marks in four subjects

 S.Laxmi 45 67 38 55

 V.S.Rao 77 89 56 69

 A.Gupta 66 78 98 45

 S.Mani 86 72 0 25

 R.Daniel 44 55 66 77

 S.Laxmi 45 67 38 55 205

 V.S.Rao 77 89 56 69 291

 A.Gupta 66 78 98 45 287

 S.Mani 86 72 0 25 183

 R.Daniel 44 55 66 77 242

 Ranked List

 V.S.Rao 77 89 56 69 291

 A.Gupta 66 78 98 45 287

 R.Daniel 44 55 66 77 242

 S.Laxmi 45 67 38 55 205

 S.Mani 86 72 0 25 183

Fig. 13.15 Preparation of the rank list of a class of students

2. Inventory Updating [LO 13.2, 13.6 M]

The price and quantity of items stocked in a store changes every day. They may either increase or decrease.

The program in Fig. 13.16 reads the incremental values of price and quantity and computes the total value

of the items in stock.

The program illustrates the use of structure pointers as function parameters. &item, the address of the

structure item, is passed to the functions update() and mul(). The formal arguments product and stock,

which receive the value of &item, are declared as pointers of type struct stores.

Program

 struct stores

 {

 char name[20];

 float price;

 int quantity;

};

 main()

 {

 void update(struct stores *, float, int);

Pointers 491

 float p_increment, value;

 int q_increment;

 struct stores item = {“XYZ”, 25.75, 12};

 struct stores *ptr = &item;

 printf(“\nInput increment values:”);

 printf(“ price increment and quantity increment\n”);

 scanf(“%f %d”, &p_increment, &q_increment);

 /* - */

 update(&item, p_increment, q_increment);

 /* - */

 printf(“Updated values of item\n\n”);

 printf(“Name : %s\n”,ptr–>name);

 printf(“Price : %f\n”,ptr–>price);

 printf(“Quantity : %d\n”,ptr–>quantity);

 /* - */

 value = mul(&item);

 /* - */

 printf(“\nValue of the item = %f\n”, value);

}

 void update(struct stores *product, float p, int q)

 {

 product–>price += p;

 product–>quantity += q;

 }

 float mul(struct stores *stock)

 {

 return(stock–>price * stock–>quantity);

 }

Output

Input increment values: price increment and quantity increment

 10 12

 Updated values of item

 Name : XYZ

492 Computing Fundamentals & C Programming

 Price : 35.750000

 Quantity : 24

 Value of the item = 858.000000

Fig. 13.16 Use of structure pointers as function parameters

Review Questions

Fill in the Blanks

1. A pointer variable contains as its value the _____ of another variable.

2. The _____operator returns the value of the variable to which its operand points.

3. The ______operator is used with a pointer to de-reference the address contained in the

pointer.

4. The pointer that is declared as ______cannot be de-referenced.

5. The only integer that can be assigned to a pointer variable is ______.

True or False Statements

1. Pointer constants are the addresses of memory locations.

2. The underlying type of a pointer variable is void.

3. Pointer variables are declared using the address operator.

4. It is possible to cast a pointer to float as a pointer to integer.

5. Pointers to pointers is a term used to describe pointers whose contents are the address of

another pointer.

6. A pointer can never be subtracted from another pointer.

7. An integer can be added to a pointer.

8. Pointers cannot be used as formal parameters in headers to function definitions.

9. When an array is passed as an argument to a function, a pointer is passed.

10. Value of a local variable in a function can be changed by another function.

Multiple Choice Question

1. A pointer in C language is

(a) address of some location

(b) useful to describe linked list

(c) can be used to access elements of an array

(d) All of the above.

LO 13.1

LO 13.1

LO 13.2

LO 13.2

LO 13.4

LO 13.1

LO 13.1

LO 13.2

LO 13.2

LO 13.3

LO 13.4

LO 13.4

LO 13.6

LO 13.6

LO 13.6

LO 13.1

Levels of Difficulty

: Low; : Medium; : High

Pointers 493

Discussion Questions

1. What is a pointer? How can it be initialized?

2. Explain the effects of the following statements:

(a) int a, *b = &a;
(b) int p, *p;
(c) char *s;
(d) a = (float *) &x);
(e) double(*f)();

3. Distinguish between (*m)[5] and *m[5].

4. Given the following declarations:

 int x = 10, y = 10;
 int *p1 = &x, *p2 = &y;

What is the value of each of the following expressions?

(a) (*p1) ++

(b) – – (*p2)

(c) *p1 + (*p2) – –

(d) + + (*p2) – *p1

5. Describe typical applications of pointers in developing programs.

6. What are the arithmetic operators that are permitted on pointers?

7. What is printed by the following program?

 int m = 100’;
 int * p1 = &m;
 int **p2 = &p1;
 printf(“%d”, **p2);

8. Assuming name as an array of 15 character length, what is the difference between the

following two expressions?

(a) name + 10; and

(b) *(name + 10).

9. What is the output of the following segment?

int m[2];
 *(m+1) = 100;
 *m = *(m+1);
 printf(“%d”, m [0]);

10. What is the output of the following code?

int m [2];
 int *p = m;
 m [0] = 100 ;
 m [1] = 200 ;
 printf(“%d %d”, ++*p, *p);

LO 13.1

LO 13.2

LO 13.2

LO 13.5

LO 13.4

LO 13.1

LO 13.4

LO 13.2

LO 13.3

LO 13.4

LO 13.5

LO 13.5

LO 13.4

LO 13.5

494 Computing Fundamentals & C Programming

11. What is the output of the following program?

 int f(char *p);

 main ()

{

 char str[] = “ANSI”;

 printf(“%d”, f(str));

}

 int f(char *p)

{

 char *q = p;

 while (*++p)

 ;

 return (p-q);

}

12. Given below are two different definitions of the function search()

(a) void search (int* m[], int x)
 {
 }

(b) void search (int ** m, int x)
 {
 }

Are they equivalent? Explain.

13. Do the declarations

 char s [5] ;
 char *s;
 represent the same? Explain.

14. Which one of the following is the correct way of declaring a pointer to a function? Why?

(a) int (*p) (void) ;

(b) int *p (void);

Debugging Exercises

1. If m and n have been declared as integers and p1 and p2 as pointers to integers, then state

errors, if any, in the following statements.

(a) p1 = &m;
(b) p2 = n;
(c) *p1 = &n;
(d) p2 = &*&m;
(e) m = p2–p1;
(f) p1 = &p2;
(g) m = *p1 + *p2++;

2. Find the error, if any, in each of the following statements:

(a) int x = 10;
(b) int *y = 10;

LO 13.5

LO 13.6

LO 13.3

LO 13.6

LO 13.5

LO 13.5

LO 13.6

LO 13.2

LO 13.4

LO 13.2

LO 13.3

Pointers 495

(c) int a, *b = &a;
(d) int m;

 int **x = &m;

3. What is wrong with the following code?

 int **p1, *p2;
 p2 = &p1;

Programming Exercises

1. Write a program using pointers to read in an array of integers and print its elements in

reverse order.

2. We know that the roots of a quadratic equation of the form

 ax2 + bx + c = 0

 are given by the following equations:

 x1 =
b b ac

a

square-root()2 4

2

 x2 =
b b ac

a

square-root()2 4

2

 Write a function to calculate the roots. The function must use two pointer parameters, one

to receive the coefficients a, b, and c, and the other to send the roots to the calling function.

3. Write a function that receives a sorted array of integers and an integer value, and inserts the

value in its correct place.

4. Write a function using pointers to add two matrices and to return the resultant matrix to the

calling function.

5. Using pointers, write a function that receives a character string and a character as argument

and deletes all occurrences of this character in the string. The function should return the

corrected string with no holes.

6. Write a function day_name that receives a number n and returns a pointer to a character

string containing the name of the corresponding day. The day names should be kept in a

static table of character strings local to the function.

7. Write a program to read in an array of names and to sort them in alphabetical order.

Use sort function that receives pointers to the functions strcmp and swap.sort in turn

should call these functions via the pointers.

8. Given an array of sorted list of integer numbers, write a function to search for a particular

item, using the method of binary search. And also show how this function may be used in a

program. Use pointers and pointer arithmetic.

 (Hint: In binary search, the target value is compared with the array’s middle element. Since

the table is sorted, if the required value is smaller, we know that all values greater than the

middle element can be ignored. That is, in one attempt, we eliminate one half the list. This

search can be applied recursively till the target value is found.)

LO 13.2

LO 13.3

LO 13.5

LO 13.6

LO 13.5

LO 13.6

LO 13.5

LO 13.6

LO 13.5

LO 13.6

LO 13.5

LO 13.6

LO 13.5

LO 13.6

LO 13.2

LO 13.6

LO 13.4

496 Computing Fundamentals & C Programming

9. Write a function (using a pointer parameter) that reverses the elements of a given array.

10. Write a function (using pointer parameters) that compares two integer arrays to see whether

they are identical. The function returns 1 if they are identical, 0 otherwise.

LO 13.5

LO 13.6

LO 13.5

LO 13.6

 File Management in C 497

14.1 INTRODUCTION

Until now we have been using the functions such as scanf and printf to read and write data.

These are console oriented I/O functions, which always use the terminal (keyboard and screen)

as the target place. This works fi ne as long as the data is small. However, many real-life problems

involve large volumes of data and in such situations, the console oriented I/O operations pose two

major problems.

1. It becomes cumbersome and time consuming to handle large volumes of data through

terminals.

2. The entire data is lost when either the program is terminated or the computer is turned off.

It is therefore necessary to have a more fl exible approach where data can be stored on the disks

and read whenever necessary, without destroying the data. This method employs the concept of

fi les to store data. A fi le is a place on the disk where a group of related data is stored. Like most

other languages, C supports a number of functions that have the ability to perform basic fi le

operations, which include:

� naming a fi le,

� opening a fi le,

L
E

A
R

N
IN

G
 O

B
J
E

C
T
IV

E
S

A er reading this chapter, you will be able to

LO 14.1 Describe opening and closing of fi les

LO 14.2 Discuss input/output opera ons on fi les

LO 14.3 Determine how error handling is performed during I/O opera ons

LO 14.4 Explain random access to fi les

LO 14.5 Know the command line arguments

V
E

S

CHAPT ERCHAPT ER

1414
File Management in CFile Management in C

 498 Computing Fundamentals & C Programming

� reading data from a fi le,

� writing data to a fi le, and

� closing a fi le.

There are two distinct ways to perform fi le operations in C. The fi rst one is known as the low-level I/O

and uses UNIX system calls. The second method is referred to as the high-level I/O operation and uses

functions in C’s standard I/O library. We shall discuss in this chapter, the important fi le handling functions

that are available in the C library. They are listed in Table 14.1.

Table 14.1 High Level I/O Functions

Function name Operation

fopen() * Creates a new fi le for use.

* Opens an existing fi le for use.

fclose() * Closes a fi le which has been opened for use.

getc() * Reads a character from a fi le.

putc() * Writes a character to a fi le.

fprintf() * Writes a set of data values to a fi le.

fscanf() * Reads a set of data values from a fi le.

getw() * Reads an integer from a fi le.

putw() * Writes an integer to a fi le.

fseek() * Sets the position to a desired point in the fi le.

ftell() * Gives the current position in the fi le (in terms of bytes from the start).

rewind() * Sets the position to the beginning of the fi le.

There are many other functions. Not all of them are supported by all compilers. You should check your C

library before using a particular I/O function.

14.2 DEFINING AND OPENING A FILE LO 14.1

If we want to store data in a fi le in the secondary memory, we must specify certain things about the fi le, to

the operating system. They include the following:

1. Filename

2. Data structure

3. Purpose

 Filename is a string of characters that make up a valid fi lename for the operating system. It may contain

two parts, a primary name and an optional period with the extension. Examples:

Input.data

store

PROG.C

Student.c

Text.out

 File Management in C 499

Data structure of a fi le is defi ned as FILE in the library of standard I/O function defi nitions. Therefore,

all fi les should be declared as type FILE before they are used. FILE is a defi ned data type.

When we open a fi le, we must specify what we want to do with the fi le. For example, we may write data

to the fi le or read the already existing data.

Following is the general format for declaring and opening a fi le:

FILE *fp;

fp = fopen(“fi lename”, “mode”);

The fi rst statement declares the variable fp as a “pointer to the data type FILE”. As stated earlier, FILE

is a structure that is defi ned in the I/O library. The second statement opens the fi le named fi lename and

assigns an identifi er to the FILE type pointer fp. This pointer, which contains all the information about the

fi le is subsequently used as a communication link between the system and the program.

The second statement also specifi es the purpose of opening this fi le. The mode does this job. Mode can

be one of the following:

 r open the fi le for reading only.

 w open the fi le for writing only.

 a open the fi le for appending (or adding) data to it.

Note that both the fi lename and mode are specifi ed as strings. They should be enclosed in double

quotation marks.

When trying to open a fi le, one of the following things may happen:

1. When the mode is ‘writing’, a fi le with the specifi ed name is created if the fi le does not exist. The

contents are deleted, if the fi le already exists.

2. When the purpose is ‘appending’, the fi le is opened with the current contents safe. A fi le with the

specifi ed name is created if the fi le does not exist.

3. If the purpose is ‘reading’, and if it exists, then the fi le is opened with the current contents safe

otherwise an error occurs.

Consider the following statements:

 FILE *p1, *p2;

 p1 = fopen(“data”, “r”);

 p2 = fopen(“results”, “w”);

The fi le data is opened for reading and results is opened for writing. In case, the results fi le already

exists, its contents are deleted and the fi le is opened as a new fi le. If data fi le does not exist, an error will

occur.

Many recent compilers include additional modes of operation. They include:

 r+ The existing fi le is opened to the beginning for both reading and writing.

 w+ Same as w except both for reading and writing.

 a+ Same as a except both for reading and writing.

We can open and use a number of fi les at a time. This number however depends on the system we use.

14.3 CLOSING A FILE LO 14.1

A fi le must be closed as soon as all operations on it have been completed. This ensures that all outstanding

information associated with the fi le is fl ushed out from the buffers and all links to the fi le are broken. It also

prevents any accidental misuse of the fi le. In case, there is a limit to the number of fi les that can be kept

open simultaneously, closing of unwanted fi les might help open the required fi les. Another instance where

 500 Computing Fundamentals & C Programming

we have to close a fi le is when we want to reopen the same fi le in a different mode. The I/O library supports

a function to do this for us. It takes the following form:

fclose(fi le_pointer);

This would close the fi le associated with the FILE pointer fi le_pointer. Look at the following segment

of a program.

.....

.....

FILE *p1, *p2;

p1 = fopen(“INPUT”, “w”);

p2 = fopen(“OUTPUT”, “r”);

.....

.....

fclose(p1);

fclose(p2);

.....

This program opens two fi les and closes them after all operations on them are completed. Once a fi le is

closed, its fi le pointer can be reused for another fi le.

As a matter of fact all fi les are closed automatically whenever a program terminates. However, closing a

fi le as soon as you are done with it is a good programming habit.

14.4 INPUT/OUTPUT OPERATIONS ON FILES LO 14.2

Once a fi le is opened, reading out of or writing to it is accomplished using the standard I/O routines that are

listed in Table 14.1.

The getc and putc Functions

The simplest fi le I/O functions are getc and putc. These are analogous to getchar and putchar functions

and handle one character at a time. Assume that a fi le is opened with mode w and fi le pointer fp1. Then, the

statement

putc(c, fp1);

writes the character contained in the character variable c to the fi le associated with FILE pointer fp1.

Similarly, getc is used to read a character from a fi le that has been opened in read mode. For example, the

statement

c = getc(fp2);

would read a character from the fi le whose fi le pointer is fp2.

The fi le pointer moves by one character position for every operation of getc or putc. The getc will

return an end-of-fi le marker EOF, when end of the fi le has been reached. Therefore, the reading should be

terminated when EOF is encountered.

WORKED-OUT PROBLEM 14.1 L

Write a program to read data from the keyboard, write it to a fi le called INPUT, again read the same

data from the INPUT fi le, and display it on the screen.

Levels of Diffi culty

L: Low; M: Medium; H: High

 File Management in C 501

A program and the related input and output data are shown in Fig. 14.1. We enter the input data via the

keyboard and the program writes it, character by character, to the fi le INPUT. The end of the data is

indicated by entering an EOF character, which is control-Z in the reference system. (This may be control-D

in other systems.) The fi le INPUT is closed at this signal.

 Program

 #include <stdio.h>

 main()

 {

 FILE *f1;

 char c;

 printf(“Data Input\n\n”);

 /* Open the fi le INPUT */

 f1 = fopen(“INPUT”, “w”);

 /* Get a character from keyboard */

 while((c=getchar()) != EOF)

 /* Write a character to INPUT */

 putc(c,f1);

 /* Close the fi le INPUT */

 fclose(f1);

 printf(“\nData Output\n\n”);

 /* Reopen the fi le INPUT */

 f1 = fopen(“INPUT”,”r”);

 /* Read a character from INPUT*/

 while((c=getc(f1)) != EOF)

 /* Display a character on screen */

 printf(“%c”,c);

 /* Close the fi le INPUT */

 fclose(f1);

 }

 Output

 Data Input

 This is a program to test the fi le handling

 502 Computing Fundamentals & C Programming

 features on this system^Z

 Data Output

 This is a program to test the fi le handling

 features on this system

Fig. 14.1 Character oriented read/write operations on a fi le

The fi le INPUT is again reopened for reading. The program then reads its content character by character,

and displays it on the screen. Reading is terminated when getc encounters the end-of-fi le mark EOF.

Testing for the end-of-fi le condition is important. Any attempt to read past the end of fi le might either

cause the program to terminate with an error or result in an infi nite loop situation.

The getw and putw Functions

The getw and putw are integer-oriented functions. They are similar to the getc and putc functions and are

used to read and write integer values. These functions would be useful when we deal with only integer data.

The general forms of getw and putw are as follows:

putw(integer, fp);

getw(fp);

Worked-Out Problem 14.2 illustrates the use of putw and getw functions.

WORKED-OUT PROBLEM 14.2 L

A fi le named DATA contains a series of integer numbers. Code a program to read these numbers and then

write all ‘odd’ numbers to a fi le to be called ODD and all ‘even’ numbers to a fi le to be called EVEN.

The program is shown in Fig. 14.2. It uses three fi les simultaneously and therefore, we need to defi ne three-

fi le pointers f1, f2 and f3.

First, the fi le DATA containing integer values is created. The integer values are read from the terminal

and are written to the fi le DATA with the help of the statement

putw(number, f1);

Notice that when we type –1, the reading is terminated and the fi le is closed. The next step is to open all

the three fi les, DATA for reading, ODD and EVEN for writing. The contents of DATA fi le are read, integer

by integer, by the function getw(f1) and written to ODD or EVEN fi le after an appropriate test. Note that

the statement

(number = getw(f1)) != EOF

reads a value, assigns the same to number, and then tests for the end-of-fi le mark.

Finally, the program displays the contents of ODD and EVEN fi les. It is important to note that the fi les

ODD and EVEN opened for writing are closed before they are reopened for reading.

Program

 #include <stdio.h>

 main()

 {

 FILE *f1, *f2, *f3;

 File Management in C 503

 int number, i;

 printf(“Contents of DATA fi le\n\n”);

 f1 = fopen(“DATA”, “w”); /* Create DATA fi le */

 for(i = 1; i <= 30; i++)

 {

 scanf(“%d”, &number);

 if(number == -1) break;

 putw(number,f1);

 }

 fclose(f1);

 f1 = fopen(“DATA”, “r”);

 f2 = fopen(“ODD”, “w”);

 f3 = fopen(“EVEN”, “w”);

 /* Read from DATA fi le */

 while((number = getw(f1)) != EOF)

 {

 if(number %2 == 0)

 putw(number, f3); /* Write to EVEN fi le */

 else

 putw(number, f2); /* Write to ODD fi le */

 }

 fclose(f1);

 fclose(f2);

 fclose(f3);

 f2 = fopen(“ODD”,”r”);

 f3 = fopen(“EVEN”, “r”);

 printf(“\n\nContents of ODD fi le\n\n”);

 while((number = getw(f2)) != EOF)

 printf(“%4d”, number);

 printf(“\n\nContents of EVEN fi le\n\n”);

 while((number = getw(f3)) != EOF)

 printf(“%4d”, number);

 fclose(f2);

 fclose(f3);

 }

 504 Computing Fundamentals & C Programming

Output

 Contents of DATA fi le

 111 222 333 444 555 666 777 888 999 000 121 232 343 454 565 –1

 Contents of ODD fi le

 111 333 555 777 999 121 343 565

 Contents of EVEN fi le

 222 444 666 888 0 232 454

Fig. 14.2 Operations on integer data

The fprintf and fscanf Functions

So far, we have seen functions, that can handle only one character or integer at a time. Most compilers

support two other functions, namely fprintf and fscanf, that can handle a group of mixed data

simultaneously.

The functions fprintf and fscanf perform I/O operations that are identical to the familar printf and scanf

functions, except of course that they work on fi les. The fi rst argument of these functions is a fi le pointer

which specifi es the fi le to be used. The general form of fprintf is

fprintf(fp, “control string”, list);

where fp is a fi le pointer associated with a fi le that has been opened for writing. The control string contains

output specifi cations for the items in the list. The list may include variables, constants and strings. Example:

fprintf(f1, “%s %d %f”, name, age, 7.5);

Here, name is an array variable of type char and age is an int variable.

The general format of fscanf is

fprintf(fp, “control string”, list);

This statement would cause the reading of the items in the list from the fi le specifi ed by fp, according to

the specifi cations contained in the control string. Example:

fscanf(f2, “%s %d”, item, &quantity);
Like scanf, fscanf also returns the number of items that are successfully read. When the end of fi le is

reached, it returns the value EOF.

WORKED-OUT PROBLEM 14.3 H

Write a program to open a fi le named INVENTORY and store in it the following data:

 Item name Number Price Quantity

 AAA-1 111 17.50 115

 BBB-2 125 36.00 75

 C-3 247 31.75 104

Extend the program to read this data from the fi le INVENTORY and display the inventory table with the

value of each item.

 File Management in C 505

The program is given in Fig. 14.3. The fi lename INVENTORY is supplied through the keyboard. Data is

read using the function fscanf from the fi le stdin, which refers to the terminal and it is then written to

the fi le that is being pointed to by the fi le pointer fp. Remember that the fi le pointer fp points to the fi le

INVENTORY.

After closing the fi le INVENTORY, it is again reopened for reading. The data from the fi le, along with

the item values are written to the fi le stdout, which refers to the screen. While reading from a fi le, care

should be taken to use the same format specifi cations with which the contents have been written to the

fi le.…é

 Program

 #include <stdio.h>

 main()

 {

 FILE *fp;

 int number, quantity, i;

 fl oat price, value;

 char item[10], fi lename[10];

 printf(“Input fi le name\n”);

 scanf(“%s”, fi lename);

 fp = fopen(fi lename, “w”);

 printf(“Input inventory data\n\n”);

 printf(“Item name Number Price Quantity\n”);

 for(i = 1; i <= 3; i++)

 {

 fscanf(stdin, “%s %d %f %d”,

 item, &number, &price, &quantity);

 fprintf(fp, “%s %d %.2f %d”,

 item, number, price, quantity);

 }

 fclose(fp);

 fprintf(stdout, “\n\n”);

 fp = fopen(fi lename, “r”);

 printf(“Item name Number Price Quantity Value\n”);

 for(i = 1; i <= 3; i++)

 {

 fscanf(fp, “%s %d %f d”,item,&number,&price,&quantity);

 value = price * quantity;

 fprintf(stdout, “%-8s %7d %8.2f %8d %11.2f\n”,

 item, number, price, quantity, value);

 506 Computing Fundamentals & C Programming

 }

 fclose(fp);

 }

Output

 Input fi le name

 INVENTORY

 Input inventory data

 Item name Number Price Quantity

 AAA-1 111 17.50 115

 BBB-2 125 36.00 75

 C-3 247 31.75 104

 Item name Number Price Quantity Value

 AAA-1 111 17.50 115 2012.50

 BBB-2 125 36.00 75 2700.00

 C-3 247 31.75 104 3302.00

Fig. 14.3 Operations on mixed data types

14.5 ERROR HANDLING DURING I/O OPERATIONS LO 14.3

It is possible that an error may occur during I/O operations on a fi le. Typical error situations include the

following:

1. Trying to read beyond the end-of-fi le mark.

2. Device overfl ow.

3. Trying to use a fi le that has not been opened.

4. Trying to perform an operation on a fi le, when the fi le is opened for another type of operation.

5. Opening a fi le with an invalid fi lename.

6. Attempting to write to a write-protected fi le.

If we fail to check such read and write errors, a program may behave abnormally when an error occurs.

An unchecked error may result in a premature termination of the program or incorrect output. Fortunately,

we have two status-inquiry library functions; feof and ferror that can help us detect I/O errors in the fi les.

The feof function can be used to test for an end of fi le condition. It takes a FILE pointer as its only

argument and returns a nonzero integer value if all of the data from the specifi ed fi le has been read, and

returns zero otherwise. If fp is a pointer to fi le that has just been opened for reading, then the statement

 if(feof(fp))

 printf(“End of data.\n”);

would display the message “End of data.” on reaching the end of fi le condition.

The ferror function reports the status of the fi le indicated. It also takes a FILE pointer as its argument

and returns a nonzero integer if an error has been detected up to that point, during processing. It returns

zero otherwise. The statement

 File Management in C 507

 if(ferror(fp) != 0)

 printf(“An error has occurred.\n”);

would print the error message, if the reading is not successful.

We know that whenever a fi le is opened using fopen function, a fi le pointer is returned. If the fi le cannot

be opened for some reason, then the function returns a NULL pointer. This facility can be used to test

whether a fi le has been opened or not. Example:

 if(fp == NULL)

 printf(“File could not be opened.\n”);

WORKED-OUT PROBLEM 14.4 L

Write a program to illustrate error handling in fi le operations.

The program shown in Fig. 14.4 illustrates the use of the NULL pointer test and feof function. When we

input fi lename as TETS, the function call

fopen(“TETS”, “r”);

returns a NULL pointer because the fi le TETS does not exist and therefore the message “Cannot open the

fi le” is printed out.

Similarly, the call feof(fp2) returns a non-zero integer when the entire data has been read, and hence the

program prints the message “Ran out of data” and terminates further reading.

Program

 #include <stdio.h>

 main()

 {

 char *fi lename;

 FILE *fp1, *fp2;

 int i, number;

 fp1 = fopen(“TEST”, “w”);

 for(i = 10; i <= 100; i += 10)

 putw(i, fp1);

 fclose(fp1);

 printf(“\nInput fi lename\n”);

 open_fi le:

 scanf(“%s”, fi lename);

 if((fp2 = fopen(fi lename,”r”)) == NULL)

 {

 508 Computing Fundamentals & C Programming

 printf(“Cannot open the fi le.\n”);

 printf(“Type fi lename again.\n\n”);

 goto open_fi le;

 }

 else

 for(i = 1; i <= 20; i++)

 { number = getw(fp2);

 if(feof(fp2))

 {

 printf(“\nRan out of data.\n”);

 break;

 }

 else

 printf(“%d\n”, number);

 }

 fclose(fp2);

 }

 Output

 Input fi lename

 TETS

 Cannot open the fi le.

 Type fi lename again.

 TEST

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 Ran out of data.

 Fig. 14.4 Illustration of error handling in fi le operations

 File Management in C 509

14.6 RANDOM ACCESS TO FILES LO 14.4

So far we have discussed fi le functions that are useful for reading and writing data sequentially. There are

occasions, however, when we are interested in accessing only a particular part of a fi le and not in reading

the other parts. This can be achieved with the help of the functions fseek, ftell, and rewind available in the

I/O library.

ftell takes a fi le pointer and return a number of type long, that corresponds to the current position. This

function is useful in saving the current position of a fi le, which can be used later in the program. It takes the

following form:

n = ftell(fp);

n would give the relative offset (in bytes) of the current position. This means that n bytes have already been

read (or written).

rewind takes a fi le pointer and resets the position to the start of the fi le. For example, the statement

rewind(fp);

n = ftell(fp);

would assign 0 to n because the fi le position has been set to the start of the fi le by rewind. Remember, the

fi rst byte in the fi le is numbered as 0, second as 1, and so on. This function helps us in reading a fi le more

than once, without having to close and open the fi le. Remember that whenever a fi le is opened for reading

or writing, a rewind is done implicitly.

fseek function is used to move the fi le position to a desired location within the fi le. It takes the following

form:

fseek(fi le_ptr, offset, position);

fi le_ptr is a pointer to the fi le concerned, offset is a number or variable of type long, and position is an

integer number. The offset specifi es the number of positions (bytes) to be moved from the location specifi ed

by position. The position can take one of the following three values:

 Value Meaning

 0 Beginning of fi le

 1 Current position

 2 End of fi le

The offset may be positive, meaning move forwards, or negative, meaning move backwards.

Examples in Table 14.2 illustrate the operations of the fseek function:

Table 14.2 Operations of fseek Function

Statement Meaning

fseek(fp,0L,0); Go to the beginning.

(Similar to rewind)

fseek(fp,0L,1); Stay at the current position.

(Rarely used)

fseek(fp,0L,2); Go to the end of the fi le, past the last character of the fi le.

fseek(fp,m,0); Move to (m+1)th byte in the fi le.

fseek(fp,m,1); Go forward by m bytes.

fseek(fp,-m,1); Go backward by m bytes from the current position.

fseek(fp,-m,2); Go backward by m bytes from the end. (Positions the fi le to the mth character from the end.)

 510 Computing Fundamentals & C Programming

When the operation is successful, fseek returns a zero. If we attempt to move the fi le pointer beyond the

fi le boundaries, an error occurs and fseek returns –1 (minus one). It is good practice to check whether an

error has occurred or not, before proceeding further.

WORKED-OUT PROBLEM 14.5 L

Write a program that uses the functions ftell and fseek.

A program employing ftell and fseek functions is shown in Fig. 14.5. We have created a fi le RANDOM

with the following contents:

 Position – – – –> 0 1 2 . . . 25

 Character

 stored – – – –> A B C . . . Z

We are reading the fi le twice. First, we are reading the content of every fi fth position and printing its

value along with its position on the screen. The second time, we are reading the contents of the fi le from the

end and printing the same on the screen.

During the fi rst reading, the fi le pointer crosses the end-of-fi le mark when the parameter n of

fseek(fp,n,0) becomes 30. Therefore, after printing the content of position 30, the loop is terminated.

For reading the fi le from the end, we use the statement

fseek(fp,–1L,2);

to position the fi le pointer to the last character. Since every read causes the position to move forward by

one position, we have to move it back by two positions to read the next character. This is achieved by the

function

fseek(fp, –2L, 1);

in the while statement. This statement also tests whether the fi le pointer has crossed the fi le boundary or

not. The loop is terminated as soon as it crosses it.

Program

 #include <stdio.h>

 main()

 {

 FILE *fp;

 long n;

 char c;

 fp = fopen(“RANDOM”, “w”);

 while((c = getchar()) != EOF)

 putc(c,fp);

 printf(“No. of characters entered = %ld\n”, ftell(fp));

 fclose(fp);

 fp = fopen(“RANDOM”,”r”);

 n = 0L;

 while(feof(fp) == 0)

 File Management in C 511

 {

 fseek(fp, n, 0); /* Position to (n+1)th character */

 printf(“Position of %c is %ld\n”, getc(fp),ftell(fp));

 n = n+5L;

 }

 putchar(‘\n’);

 fseek(fp,–1L,2); /* Position to the last character */

 do

 {

 putchar(getc(fp));

 }

 while(!fseek(fp,–2L,1));

 fclose(fp);

 }

Output

 ABCDEFGHIJKLMNOPQRSTUVWXYZ^Z

 No. of characters entered = 26

 Position of A is 0

 Position of F is 5

 Position of K is 10

 Position of P is 15

 Position of U is 20

 Position of Z is 25

 Position of is 30

 ZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 14.5 Illustration of fseek and ftell functions

WORKED-OUT PROBLEM 14.6 M

Write a program to append additional items to the fi le INVENTORY created in Program 14.3 and print

the total contents of the fi le.

The program is shown in Fig. 14.6. It uses a structure defi nition to describe each item and a function

append() to add an item to the fi le.

On execution, the program requests for the fi lename to which data is to be appended. After appending

the items, the position of the last character in the fi le is assigned to n and then the fi le is closed.

The fi le is reopened for reading and its contents are displayed. Note that reading and displaying are done

under the control of a while loop. The loop tests the current fi le position against n and is terminated when

they become equal.

 512 Computing Fundamentals & C Programming

 Program

 #include <stdio.h>

 struct invent_record

 {

 char name[10];

 int number;

 fl oat price;

 int quantity;

 };

 main()

 {

 struct invent_record item;

 char fi lename[10];

 int response;

 FILE *fp;

 long n;

 void append (struct invent_record *x, fi le *y);

 printf(“Type fi lename:”);

 scanf(“%s”, fi lename);

 fp = fopen(fi lename, “a+”);

 do

 {

 append(&item, fp);

 printf(“\nItem %s appended.\n”,item.name);

 printf(“\nDo you want to add another item\

 (1 for YES /0 for NO)?”);

 scanf(“%d”, &response);

 } while (response == 1);

 n = ftell(fp); /* Position of last character */

 fclose(fp);

 fp = fopen(fi lename, “r”);

 while(ftell(fp) < n)

 {

 fscanf(fp,”%s %d %f %d”,

 item.name, &item.number, &item.price, &item.quantity);

 fprintf(stdout,”%-8s %7d %8.2f %8d\n”,

 File Management in C 513

 item.name, item.number, item.price, item.quantity);

 }

 fclose(fp);

 }

 void append(struct invent_record *product, File *ptr)

 {

 printf(“Item name:”);

 scanf(“%s”, product–>name);

 printf(“Item number:”);

 scanf(“%d”, &product–>number);

 printf(“Item price:”);

 scanf(“%f”, &product–>price);

 printf(“Quantity:”);

 scanf(“%d”, &product–>quantity);

 fprintf(ptr, “%s %d %.2f %d”,

 product–>name,

 product–>number,

 product–>price,

 product–>quantity);

 }

 Output

 Type fi lename:INVENTORY

 Item name:XXX

 Item number:444

 Item price:40.50

 Quantity:34

 Item XXX appended.

 Do you want to add another item(1 for YES /0 for NO)?1

 Item name:YYY

 Item number:555

 Item price:50.50

 Quantity:45

 Item YYY appended.

 Do you want to add another item(1 for YES /0 for NO)?0

 AAA-1 111 17.50 115

 BBB-2 125 36.00 75

 C-3 247 31.75 104

 XXX 444 40.50 34

 YYY 555 50.50 45

Fig. 14.6 Adding items to an existing fi le

 514 Computing Fundamentals & C Programming

WORKED-OUT PROBLEM 14.7 H

Write a C program to reverse the fi rst n character in a fi le. The fi le name and the value of n are specifi ed

on the command line. Incorporate validation of arguments, that is, the program should check that the

number of arguments passed and the value of n that are meaningful.

Program

 #include <stdio.h>

 #include <conio.h>

 #include <stdlib.h>

 #include <string.h>

 void main(int argc, char *argv[])

 {

 FILE *fs;

 Char str[100];

 int i,n,j;

 if(argc!=3)/*Checking the number of arguments given at command line*/

 {

 puts(“Improper number of arguments.”);

 exit(0);

 }

 n=atoi(argv[2]);

 fs = fopen(argv[1], “r“);/*Opening the souce fi le in read mode*/

 if(fs==NULL)

 {

 printf(“Source fi le cannot be opened.”);

 exit(0);

 }

 i=0;

 while(1)

 {

 if(str[i]=fgetc(fs)!=EOF)/*Reading contents of fi le character by character*/

 j=i+1:

 else

 break;

 }

 fclose(fs);

 File Management in C 515

 fs=fopen(argv[1],”w”);/*Opening the fi le in write mode*/

 if(n<0||n>strlen(str))

 {

 printf(“Incorrect value of n. Program will terminate...\n\n”);

 getch();

 exit(1);

 }

 j=strlen(str);

 for (i=1;i<=n;i++)

 {

 fputc(str[j],fs);

 j–;

 }

 fclose(fs);

 printf(“\n%d characters of the fi le successfully printed in reverse order”,n);

 getch();

 }

Output

 D:\TC\BIN\program source.txt 5

 5 characters of the fi le successfully printed in reverse order

 Fig. 14.7 Program to reverse n characters in a fi le

14.7 COMMAND LINE ARGUMENTS LO 14.5

What is a command line argument? It is a parameter supplied to a program when the program is invoked.

This parameter may represent a fi lename the program should process. For example, if we want to execute

a program to copy the contents of a fi le named X_FILE to another one named Y_FILE, then we may use a

command line like

C > PROGRAM X_FILE Y_FILE

where PROGRAM is the fi lename where the executable code of the program is stored. This eliminates the

need for the program to request the user to enter the fi lenames during execution. How do these parameters

get into the program?

We know that every C program should have one main function and that it marks the beginning of the

program. But what we have not mentioned so far is that it can also take arguments like other functions. In

fact main can take two arguments called argc and argv and the information contained in the command line

is passed on to the program through these arguments, when main is called up by the system.

The variable argc is an argument counter that counts the number of arguments on the command line.

The argv is an argument vector and represents an array of character pointers that point to the command

 516 Computing Fundamentals & C Programming

line arguments. The size of this array will be equal to the value of argc. For instance, for the command line

given above, argc is three and argv is an array of three pointers to strings as shown below:

 argv[0] –> PROGRAM

 argv[1] –> X_FILE

 argv[2] –> Y_FILE

In order to access the command line arguments, we must declare the main function and its parameters as

follows:

 main(int arge, char *argv[])

 {

 }

The fi rst parameter in the command line is always the program name and therefore argv[0] always

represents the program name.

WORKED-OUT PROBLEM 14.8 L

Write a program that will receive a fi lename and a line of text as command line arguments and write the

text to the fi le.

Figure 14.8 shows the use of command line arguments. The command line is

F12_7 TEXT AAAAAA BBBBBB CCCCCC DDDDDD EEEEEE FFFFFF GGGGGG

Each word in the command line is an argument to the main and therefore the total number of arguments

is 9.

The argument vector argv[1] points to the string TEXT and therefore the statement

fp = fopen(argv[1], “w”);

opens a fi le with the name TEXT. The for loop that follows immediately writes the remaining 7 arguments

to the fi le TEXT.

Program

 #include <stdio.h>

 main(int arge, char *argv[])

 {

 FILE *fp;

 int i;

 char word[15];

 fp = fopen(argv[1], “w”); /* open fi le with name argv[1] */

 printf(“\nNo. of arguments in Command line = %d\n\n”,argc);

 for(i = 2; i < argc; i++)

 fprintf(fp,”%s “, argv[i]); /* write to fi le argv[1] */

 fclose(fp);

 File Management in C 517

 /* Writing content of the fi le to screen */

 printf(“Contents of %s fi le\n\n”, argv[1]);

 fp = fopen(argv[1], “r”);

 for(i = 2; i < argc; i++)

 {

 fscanf(fp,”%s”, word);

 printf(“%s “, word);

 }

 fclose(fp);

 printf(“\n\n”);

 /* Writing the arguments from memory */

 for(i = 0; i < argc; i++)

 printf(“%*s \n”, i*5,argv[i]);

 }

 Output

 C>F12_7 TEXT AAAAAA BBBBBB CCCCCC DDDDDD EEEEEE FFFFFF GGGGGG

 No. of arguments in Command line = 9

 Contents of TEXT fi le

 AAAAAA BBBBBB CCCCCC DDDDDD EEEEEE FFFFFF GGGGGG

 C:\C\F12_7.EXE

 TEXT

 AAAAAA

 BBBBBB

 CCCCCC

 DDDDDD

 EEEEEE

 FFFFFF

 GGGGGG

Fig. 14.8 Use of command line arguments

 518 Computing Fundamentals & C Programming

 Learning Outcomes

∑ Do not try to use a fi le before opening it.

∑ Remember, when an existing fi le is open using ‘w’ mode, the contents of fi le are deleted.

∑ When a fi le is used for both reading and writing, we must open it in ‘w+’ mode.

∑ It is an error to omit the fi le pointer when using a fi le function.

∑ It is an error to open a fi le for reading when it does not exist.

∑ It is an error to access a fi le with its name rather than its fi le pointer.

∑ It is a good practice to close all fi les before terminating a program.

∑ EOF is integer type with a value –1. Therefore, we must use an integer variable to test EOF.

∑ It is an error to try to read from a fi le that is in write mode and vice versa.

∑ To avoid I/O errors while working with fi les, it is a good practice to include error handling code in

programs by using functions such as feof and ferror.

∑ It is an error to attempt to place the fi le marker before the fi rst byte of a fi le.

∑ It is a good practice to check the return value of fseek function every time it is invoked. A positive

return value ensures that the fi le pointer is within the fi le boundaries.

 Key Terms to Remember

∑ Filename: It is a string of characters that make up a valid fi lename for the operating system.

∑ fseek: It is a function that sets the position to a desired point in the fi le.

∑ ftell: It is a function that returns the current position in the fi le.

∑ rewind: It is a function that sets the position to the beginning of the fi le.

∑ Command line argument: It is a parameter supplied to a program from command prompt when the

program is invoked.

 Review Questions

Fill in the Blanks

1. The mode _______ is used for opening a fi le for updating.

2. The function _____ is used to write data to randomly accessed fi le.

3. The function ____ gives the current position in the fi le.

4. The function _______ may be used to position a fi le at the beginning.

True or False Statements

1. A fi le must be opened before it can be used.

2. All fi les must be explicitly closed.

LO 14.1

LO 14.1

LO 14.1

LO 14.1

LO 14.1

LO 14.1

LO 14.1

LO 14.2

LO 14.2

LO 14.3

LO 14.4

LO 14.5

LO 14.1

LO 14.4

LO 14.4

LO 14.4

LO 14.5

LO 14.1

LO 14.2

LO 14.4

LO 14.4

LO 14.1

LO 14.1

Levels of Diffi culty

 : Low; : Medium; : High

 File Management in C 519

3. Files are always referred to by name in C programs.

4. Using fseek to position a fi le beyond the end of the fi le is an error.

5. Function fseek may be used to seek from the beginning of the fi le only.

Discussion Questions

1. Describe the use and limitations of the functions getc and putc.

2. What is the signifi cance of EOF?

3. When a program is terminated, all the fi les used by it are automatically closed. Why is it

then necessary to close a fi le during execution of the program?

4. Distinguish between the following functions:

 (a) getc and getchar

 (b) printf and fprintf

 (c) feof and ferror

5. How does an append mode differ from a write mode?

6. What are the common uses of rewind and ftell functions?

7. Explain the general format of fseek function?

8. What is the difference between the statements rewind(fp); and fseek(fp,0L,0);?

9. What does the following statement mean?

 FILE(*p) (void)

10. What does the following statement do?

 while ((c = getchar() != EOF)

 putc(c, fl);

11. What does the following statement do?

 while ((m = getw(fl)) != EOF)

 printf(“%5d”, m);

12. What does the following segment do?

 for (i = 1; i <= 5; i++)
 {
 fscanf(stdin, “%s”, name);
 fprintf(fp, “%s”, name);
 }

13. What is the purpose of the following functions?

 (a) feof ()

 (b) ferror ()

14. Give examples of using feof and ferror in a program.

LO 14.1

LO 14.1

LO 14.4

LO 14.2

LO 14.2

LO 14.1

LO 14.2

LO 14.2

LO 14.3

LO 14.1

LO 14.4

LO 14.4

LO 14.4

LO 14.1

LO 14.2

LO 14.2

LO 14.2

LO 14.3

LO 14.3

 520 Computing Fundamentals & C Programming

15. Can we read from a fi le and write to the same fi le without resetting the fi le pointer? If not,

why?

16. When do we use the following functions?

 (a) free ()

 (b) rewind ()

17. Describe an algorithm that will append the contents of one fi le to the end of another fi le.

Debugging Exercise

1. Find error, if any, in the following statements:

 FILE fptr;

 fptr = fopen (“data”, “a+”);

Programming Exercises

1. Write a program to copy the contents of one fi le into another.

2. Two fi les DATA1 and DATA2 contain sorted lists of integers. Write a program to produce

a third fi le DATA which holds a single sorted, merged list of these two lists. Use command

line arguments to specify the fi le names.

3. Write a program that compares two fi les and returns 0 if they are equal and 1 is they are

not.

4. Write a program that appends one fi le at the end of another.

5. Write a program that reads a fi le containing integers and appends at its end the sum of all

the integers.

6. Write a program that prompts the user for two fi les, one containing a line of text known

as source fi le and other, an empty fi le known as target fi le and then copies the contents of

source fi le into target fi le.

 Modify the program so that a specifi ed character is deleted from the source fi le as it is

copied to the target fi le.

7. Write a program that requests for a fi le name and an inte ger, known as offset value. The

program then reads the fi le starting from the location specifi ed by the offset value and prints

the contents on the screen.

 Note: If the offset value is a positive integer, then printing skips that many lines. If it is

a negative number, it prints that many lines from the end of the fi le. An appropriate error

message should be printed, if anything goes wrong.

8. Write a program to create a sequential fi le that could store details about fi ve products.

Details include product code, cost and number of items available and are provided through

keyboard.

9. Write a program to read the fi le created in Exercise 8 and compute and print the total value

of all the fi ve products.

10. Rewrite the program developed in Exercise 8 to store the details in a random access fi le and

print the details of alter nate products from the fi le. Modify the program so that it can output

the details of a product when its code is specifi ed inter actively.

LO 14.2

LO 14.4

LO 14.1

LO 14.1

LO 14.2

LO 14.2

LO 14.2

LO 14.4

LO 14.4

LO 14.1LO 14.1

LO 14.2LO 14.2

LO 14.5

LO 14.4

LO 14.2

LO 14.2

LO 14.2

LO 14.4

 The Preprocessor 521

15.1 INTRODUCTION

C is a unique language in many respects. We have already seen features such as structures and

pointers. Yet another unique feature of the C language is the preprocessor. The C preprocessor

provides several tools that are unavailable in other high-level languages. The programmer can use

these tools to make his program easy to read, easy to modify, portable, and more effi cient.

The preprocessor, as its name implies, is a program that processes the source code before

it passes through the compiler. It operates under the control of what is known as preprocessor

command lines or directives. Preprocessor directives are placed in the source program before the

main line. Before the source code passes through the compiler, it is examined by the preprocessor

for any preprocessor directives. If there are any, appropriate actions (as per the directives) are

taken and then the source program is handed over to the compiler.

Preprocessor directives follow special syntax rules that are different from the normal C syntax.

They all begin with the symbol # in column one and do not require a semicolon at the end. We

have already used the directives #defi ne and #include to a limited extent. A set of commonly

used preprocessor directives and their functions is given in Table 15.1.

L
E

A
R

N
IN

G
 O

B
J
E

C
T
IV

E
S

A er reading this chapter, you will be able to

LO 15.1 Describe macro subs tu on

LO 15.2 Discuss fi le inclusion direc ve

LO 15.3 Determine how compiler control direc ves are used

LO 15.4 Iden fy the preprocessor direc ves introduced as part of ANSI addi ons

V
E

S

CHAPT ERCHAPT ER

1515
The PreprocessorThe Preprocessor

 522 Computing Fundamentals & C Programming

Table 15.1 Preprocessor Directives

Directive Function

#defi ne Defi nes a macro substitution

#undef Undefi nes a macro

#include Specifi es the fi les to be included

#ifdef Test for a macro defi nition

#endif Specifi es the end of #if.

#ifndef Tests whether a macro is not defi ned.

#if Test a compile-time condition

#else Specifi es alternatives when #if test fails.

These directives can be divided into three categories which are as follows:

1. Macro substitution directives.

2. File inclusion directives.

3. Compiler control directives.

15.2 MACRO SUBSTITUTION LO 15.1

Macro substitution is a process where an identifi er in a program is replaced by a predefi ned string composed

of one or more tokens. The preprocessor accomplishes this task under the direction of #defi ne statement.

This statement, usually known as a macro defi nition (or simply a macro) takes the following general form:

#defi ne identifi er string

If this statement is included in the program at the beginning, then the preprocessor replaces every

occurrence of the identifi er in the source code by the string. The keyword #defi ne is written just as shown

(starting from the fi rst column) followed by the identifi er and a string, with at least one blank space between

them. Note that the defi nition is not terminated by a semicolon. The string may be any text, while the

identifi er must be a valid C name.

There are different forms of macro substitution. The most common forms are as follows:

 1. Simple macro substitution.

 2. Argumented macro substitution.

 3. Nested macro substitution.

Simple Macro Substitution

Simple string replacement is commonly used to defi ne constants. Examples of defi nition of constants are as

follows:

 #defi ne COUNT 100

 #defi ne FALSE 0

 #defi ne SUBJECTS 6

 #defi ne PI 3.1415926

 #defi ne CAPITAL “DELHI”

Notice that we have written all macros (identifi ers) in capitals. It is a convention to write all macros in

capitals to identify them as symbolic constants. A defi nition, such as

 The Preprocessor 523

#defi ne M 5

will replace all occurrences of M with 5, starting from the line of defi nition to the end of the program.

However, a macro inside a string does not get replaced. Consider the following two lines:

total = M * value;

printf(“M = %d\n”, M);

These two lines would be changed during preprocessing as follows:

total = 5 * value;

printf(“M = %d\n”, 5);

Notice that the string “M=%d\n” is left unchanged.

A macro defi nition can include more than a simple constant value. It can include expressions as well.

Following are valid defi nitions:

 #defi ne AREA 5 * 12.46

 #defi ne SIZE sizeof(int) * 4

 #defi ne TWO-PI 2.0 * 3.1415926

Whenever we use expressions for replacement, care should be taken to prevent an unexpected order of

evaluation. Consider the evaluation of the equation

ratio = D/A;

where D and A are macros defi ned as follows:

 #defi ne D 45 – 22

 #defi ne A 78 + 32

The result of the preprocessor’s substitution for D and A is:

ratio = 45–22/78+32;

This is certainly different from the expected expression

(45 – 22)/(78+32)

Correct results can be obtained by using parentheses around the strings as:

 #defi ne D (45 – 22)

 #defi ne A (78 + 32)

It is a wise practice to use parentheses for expressions used in macro defi nitions.

As mentioned earlier, the preprocessor performs a literal text substitution, whenever the defi ned name

occurs. This explains why we cannot use a semicolon to terminate the #defi ne statement. This also suggests

that we can use a macro to defi ne almost anything. For example, we can use the defi nitions

 #defi ne TEST if (x > y)

 #defi ne AND

 #defi ne PRINT printf(“Very Good. \n”);

to build a statement as follows:

TEST AND PRINT

The preprocessor would translate this line to

if(x>y) printf(“Very Good.\n”);

Some tokens of C syntax are confusing or are error-prone. For example, a common programming

mistake is to use the token = in place of the token == in logical expressions. Similar is the case with the

token &&.

Following are a few defi nitions that might be useful in building error free and more readable programs:

 #defi ne EQUALS ==

 #defi ne AND &&

 #defi ne OR | |

 524 Computing Fundamentals & C Programming

 #defi ne NOT_EQUAL !=

 #defi ne START main() {

 #defi ne END }

 #defi ne MOD %

 #defi ne BLANK_LINE printf(“\n”);

 #defi ne INCREMENT ++

An example of the use of syntactic replacement is:

 START

 … …..

 … …..

 if(total EQUALS 240 AND average EQUALS 60)

 INCREMENT count;

 … …..

 … ….

 END

Macros with Arguments

The preprocessor permits us to defi ne more complex and more useful form of replacements. It takes the

form:

 #defi ne identifi er(f1, f2, fn) string

Notice that there is no space between the macro identifi er and the left parentheses. The identifi ers f1,

f2, … … .,fn are the formal macro arguments that are analogous to the formal arguments in a function

defi nition.

There is a basic difference between the simple replacement discussed above and the replacement

of macros with arguments. Subsequent occurrence of a macro with arguments is known as a macro call

(similar to a function call). When a macro is called, the preprocessor substitutes the string, replacing the

formal parameters with the actual parameters. Hence, the string behaves like a template.

A simple example of a macro with arguments is

 #defi ne CUBE(x) (x*x*x)

If the following statement appears later in the program

volume = CUBE(side);

Then the preprocessor would expand this statement to:

volume = (side * side * side);

Consider the following statement:

volume = CUBE(a+b);

This would expand to:

volume = (a+b * a+b * a+b);

which would obviously not produce the correct results. This is because the preprocessor performs a blind

test substitution of the argument a+b in place of x. This shortcoming can be corrected by using parentheses

for each occurrence of a formal argument in the string.

Example:

 #defi ne CUBE(x) ((x) * (x) *(x))

This would result in correct expansion of CUBE(a+b) as:

volume = ((a+b) * (a+b) * (a+b));

 The Preprocessor 525

Remember to use parentheses for each occurrence of a formal argument, as well as the whole string.

Some commonly used defi nitions are:

 #defi ne MAX(a,b) (((a) > (b)) ? (a) : (b))

 #defi ne MIN(a,b) (((a) < (b)) ? (a) : (b))

 #defi ne ABS(x) (((x) > 0) ? (x) : (–(x)))

 #defi ne STREQ(s1,s2) (strcmp((s1,) (s2)) == 0)

 #defi ne STRGT(s1,s2) (strcmp((s1,) (s2)) > 0)

The argument supplied to a macro can be any series of characters. For example, the defi nition

 #defi ne PRINT(variable, format) printf(“variable = %format \n”, variable)

can be called-in by

PRINT(price x quantity, f);

The preprocessor will expand this as

printf(“price x quantity = %f\n”, price x quantity);

Note that the actual parameters are substituted for formal parameters in a macro call, although they are

within a string. This defi nition can be used for printing integers and character strings as well.

Nesting of Macros

We can also use one macro in the defi nition of another macro. That is, macro defi nitions may be nested. For

instance, consider the following macro defi nitions.

 #defi ne M 5

 #defi ne N M+1

 #defi ne SQUARE(x) ((x) * (x))

 #defi ne CUBE(x) (SQUARE (x) * (x))

 #defi ne SIXTH(x) (CUBE(x) * CUBE(x))

The preprocessor expands each #defi ne macro, until no more macros appear in the text. For example, the

last defi nition is fi rst expanded into

((SQUARE(x) * (x)) * (SQUARE(x) * (x)))

Since SQUARE (x) is still a macro, it is further expanded into

((((x)*(x)) * (x)) * (((x) * (x)) * (x)))

which is fi nally evaluated as x6.

Macros can also be used as parameters of other macros. For example, given the defi nitions of M and N,

we can defi ne the following macro to give the maximum of these two:

#defi ne MAX(M,N) (((M) > (N)) ? (M) : (N))

Macro calls can be nested in much the same fashion as function calls. Example:

 #defi ne HALF(x) ((x)/2.0)

 #defi ne Y HALF(HALF(x))

Similarly, given the defi nition of MAX(a,b) we can use the following nested call to give the maximum of

the three values x,y, and z:

MAX (x, MAX(y,z))

 Undefining a Macro

A defi ned macro can be undefi ned, using the statement

#undef identifi er

This is useful when we want to restrict the defi nition only to a particular part of the program.

 526 Computing Fundamentals & C Programming

15.3 FILE INCLUSION LO 15.2

An external fi le containing functions or macro defi nitions can be included as a part of a program so that we

need not rewrite those functions or macro defi nitions. This is achieved by the preprocessor directive

#include “fi lename”

where fi lename is the name of the fi le containing the required defi nitions or functions. At this point, the

preprocessor inserts the entire contents of fi lename into the source code of the program. When the fi lename

is included within the double quotation marks, the search for the fi le is made fi rst in the current directory

and then in the standard directories.

Alternatively this directive can take the form

#include <fi lename>

without double quotation marks. In this case, the fi le is searched only in the standard directories.

Nesting of included fi les is allowed. That is, an included fi le can include other fi les. However, a fi le

cannot include itself.

If an included fi le is not found, an error is reported and compilation is terminated.

Let use assume that we have created the following three fi les:

 SYNTAX.C contains syntax defi nitions.

STAT.C contains statistical functions.

TEST.C contains test functions.

We can make use of a defi nition or function contained in any of these fi les by including them in the

program as:

 #include <stdio.h>
 #include “SYNTAX.C”
 #include “STAT.C”
 #include “TEST.C”
 #defi ne M 100
 main ()
 {

 }

15.4 COMPILER CONTROL DIRECTIVES LO 15.3

While developing large programs, you may face one or more of the following situations:

 1. You have included a fi le containing some macro defi nitions. It is not known whether a particular

macro (say, TEST) has been defi ned in that header fi le. However, you want to be certain that Test is

defi ned (or not defi ned).

2. Suppose a customer has two different types of computers and you are required to write a program that

will run on both the systems. You want to use the same program, although certain lines of code must

be different for each system.

3. You are developing a program (say, for sales analysis) for selling in the open market. Some customers

may insist on having certain additional features. However, you would like to have a single program

that would satisfy both types of customers.

 The Preprocessor 527

4. Suppose you are in the process of testing your program, which is rather a large one. You would like to

have print calls inserted in certain places to display intermediate results and messages in order to trace

the fl ow of execution and errors, if any. Such statements are called ‘debugging’ statements. You want

these statements to be a part of the program and to become ‘active’ only when you decide so.

One solution to these problems is to develop different programs to suit the needs of different situations.

Another method is to develop a single, comprehensive program that includes all optional codes and then

directs the compiler to skip over certain parts of source code when they are not required. Fortunately, the C

preprocessor offers a feature known as conditional compilation, which can be used to ‘switch’ on or off a

particular line or group of lines in a program.

Situation 1

This situation refers to the conditional defi nition of a macro. We want to ensure that the macro TEST is

always defi ned, irrespective of whether it has been defi ned in the header fi le or not. This can be achieved as

follows:

 #include “DEFINE.H”

 #ifndef TEST

 #defi ne TEST 1

 #endif

 … …

DEFINE.H is the header fi le that is supposed to contain the defi nition of TEST macro. The directive.

#ifndef TEST

searches for the defi nition of TEST in the header fi le and if not defi ned, then all the lines between the

#ifndef and the corresponding #endif directive are left ‘active’ in the program. That is, the preprocessor

directive

defi ne TEST is processed.

In case, the TEST has been defi ned in the header fi le, the #ifndef condition becomes false, therefore the

directive #defi ne TEST is ignored. Remember, you cannot simply write

defi ne TEST 1

because if TEST is already defi ned, an error will occur.

Similar is the case when we want the macro TEST never to be defi ned. Looking at the following code:

 … … …

 #ifdef TEST

 #undef TEST

 #endif

 … …

 … …

This ensures that even if TEST is defi ned in the header fi le, its defi nition is removed. Here again we

cannot simply say

#undef TEST

because, if TEST is not defi ned, the directive is erroneous.

Situation 2

The main concern here is to make the program portable. This can be achieved as follows:

 main()

 528 Computing Fundamentals & C Programming

 {

 #ifdef IBM_PC
 {

 code for IBM_PC

 }
 #else
 {

 code for HP machine

 }
 #endif

 }
If we want the program to run on IBM PC, we include the directive

#defi ne IBM_PC

in the program; otherwise we don’t. Note that the compiler control directives are inside the function. Care

must be taken to put the # character at column one.

The compiler complies the code for IBM PC if IBM-PC is defi ned, or the code for the HP machine if it

is not.

Situation 3

This is similar to the above situation and therefore the control directives take the following form:

 #ifdef ABC

 group-A lines

 #else

 group-B lines

 #endif

Group-A lines are included if the customer ABC is defi ned. Otherwise, group-B lines are included.

Situation 4

Debugging and testing are done to detect errors in the program. While the Compiler can detect syntactic and

semantic errors, it cannot detect a faulty algorithm where the program executes, but produces wrong results.

The process of error detection and isolation begins with the testing of the program with a known

set of test data. The program is divided down and printf statements are placed in different parts to see

intermediate results. Such statements are called debugging statements and are not required once the errors

are isolated and corrected. We can either delete all of them or, alternately, make them inactive using control

directives as:

 … …

 … …

 The Preprocessor 529

 #ifdef TEST

 {

 printf(“Array elements\n”);

 for (i = 0; i< m; i++)

 printf(“x[%d] = %d\n”, i, x[i]);

 }

 #endif

 … ..

 … ..

 #ifdef TEST

 printf(….);

 #endif

 … …

The statements between the directives #ifdef and #endif are included only if the macro TEST is defi ned.

Once everything is OK, delete or undefi ne the TEST. This makes the #ifdef TEST conditions false and

therefore all the debugging statements are left out.

The C preprocessor also supports a more general form of test condition - #if directive. This takes the

following form:
 #if constant expression

 {

 statement-1;

 statement-2;

 … …

 … …

 }

 #endif

The constant-expression may be any logical expression such as:

 TEST <= 3

 (LEVEL == 1 || LEVEL == 2)

 MACHINE == ‘A’

If the result of the constant-expression is nonzero (true), then all the statements between the #if and

#endif are included for processing; otherwise they are skipped. The names TEST, LEVEL, etc. may be

defi ned as macros.

15.5 ANSI ADDITIONS LO 15.4

 ANSI committee has added some more preprocessor directives to the existing list given in Table 15.1. They

are as follows:

 #elif Provides alternative test facility

 #pragma Specifi es certain instructions

 #error Stops compilation when an error occurs

The ANSI standard also includes two new preprocessor operations:

 # Stringizing operator

 ## Token-pasting operator

 530 Computing Fundamentals & C Programming

 # elif Directive

The #elif enables us to establish an “if..else..if..” sequence for testing multiple conditions. The general form

of use of #elif is:

 #if expression 1

 statement sequence 1

 #elif expression 2

 statement sequence 2

 #elif expression N

 statement sequence N

 #endif

For example:

 #if MACHINE == HCL

 #defi ne FILE “hcl.h”

 #elif MACHINE == WIPRO

 #defi ne FILE “wipro.h”

 #elif MACHINE == DCM

 #defi ne FILE “dcm.h”

 #endif

 #include FILE

 #pragma Directive

The #pragma is an implementation oriented directive that allows us to specify various instructions to be

given to the compiler. It takes the following form:

#pragma name

where, name is the name of the pragma we want. For example, under Microsoft C,

#pragma loop_opt(on)

causes loop optimization to be performed. It is ignored, if the compiler does not recognize it.

 #error Directive

The #error directive is used to produce diagnostic messages during debugging. The general form is

#error error message

When the #error directive is encountered, it displays the error message and terminates processing.

Example.

 #if !defi ned(FILE_G)

 #error NO GRAPHICS FACILITY

 #endif

Note that we have used a special processor operator defi ned along with #if. defi ned is a new addition

and takes a name surrounded by parentheses. If a compiler does not support this, we can replace it as

follows:

 #if !defi ned by #ifndef

 #if defi ned by #ifdef

 The Preprocessor 531

Stringizing Operator #

ANSI C provides an operator # called stringizing operator to be used in the defi nition of macro functions.

This operator allows a formal argument within a macro defi nition to be converted to a string. Consider the

example below:

 #defi ne sum(xy) printf(#xy “ = %f\n”, xy)

 main()

 {

 … …

 … …

 sum(a+b);

 … …

 }

The preprocessor will convert the line

 sum(a+b);

into

 printf(“a+b” “=%f\n”, a+b);

which is equivalent to

 printf(“a+b =%f\n”, a+b);

Note that the ANSI standard also stipulates that adjacent strings will be concatenated.

 Token Pasting Operator ##

The token pasting operator ## defi ned by ANSI standard enables us to combine two tokens within a macro

defi nition to form a single token. For example:

 #defi ne combine(s1,s2) s1 ## s2

 main()

 {

 printf(“%f”, combine(total, sales));

 }

The preprocessor transforms the statement

 printf(“%f”, combine(total, sales));

into the statement

 printf(“%f”, totalsales);

Consider another macro defi nition:

 #defi ne print(i) printf(“a” #i “=%f”, a##i)

This macro will convert the statement

 print(5);

into the statement

 printf(“a5 = %f”, a5)

 532 Computing Fundamentals & C Programming

 Learning Outcomes

∑ Use macros to manage changes made to a program code in a systematic manner.

∑ Use #undef to undefi ne a macro so that it is restricted to only a specifi c part in a program.

∑ Remember that #include <fi lename> directive searches the fi le only in the standard directories as

defi ned by the compiler. However, the #include “fi lename” directive searches the fi le in the program’s

source directory; and if the fi le is not located, it then searches for the fi le in the standard directories.

∑ Use #ifndef to endif directives for conditional compilation of program code.

 Key Terms to Remember

∑ Macro call: It substitutes the macro identifi er with the corresponding string, replacing formal

parameters with actual parameters.

∑ Macro substitution: It is a process where an identifi er in a program is replaced by a predefi ned

string composed of one or more tokens.

∑ Preprocessor: It is a program that processes the source code before it passes through the compiler.

∑ Conditional Compilation: It is a feature that allows for a particular line or group of lines of code to

be compiled if certain condition is met.

∑ Stringizing Operator: It allows a formal argument within a macro function defi nition to be

converted to a string.

 Review Questions

Fill in the Blanks

1. The __________________ directive discords a macro.

2. The operator _______________ is used to concatenate two arguments.

3. The operator _______________ converts its operand.

4. The ______________ directive causes an implementation-oriented action.

True or False Statements

1. The keyword #defi ne must be written starting from the fi rst column.

2. Like other statements, a processor directive must end with a semicolon.

3. All preprocessor directives begin with #.

4. We cannot use a macro in the defi nition of another macro.

LO 15.1

LO 15.1

LO 15.2

LO 15.3

LO 15.1

LO 15.1

LO 15.1

LO 15.3

LO 15.4

LO 15.3

LO 15.4

LO 15.4

LO 15.4

LO 15.1

LO 15.1

LO 15.1

LO 15.1

Levels of Diffi culty

 : Low; : Medium; : High

 The Preprocessor 533

Discussion Questions

1. Explain the facilities provided by the C preprocessor with examples.

2. What is a macro and how is it different from a C variable name?

3. What precautions one should take when using macros with argument?

4. What are the advantages of using macro defi nitions in a program?

5. When does a programmer use #include directive?

6. The value of a macro name cannot be changed during the running of a program. Comment?

7. What is conditional compilation? How does it help a programmer?

8. Distinguish between #ifdef and #if directives.

9. Comment on the following code fragment:

 #if 0

 {

 line-1;

 line-2;

 … …

 … …

 line-n;

 }

 #endif

10. Enumerate the differences between functions and parameter ized macros.

11. In #include directives, some fi le names are enclosed in angle brackets while others are

enclosed in double quotation marks. Why?

12. Why do we recommend the use of parentheses for formal arguments used in a macro

defi nition? Give an example.

Debugging Exercises

1. Identify errors, if any, in the following macro defi nitions:

 (a) #defi ne until(x) while(!x)

 (b) #defi ne ABS(x) (x > 0) ? (x) : (–x)

 (c) #ifdef(FLAG)

 #undef FLAG

 #endif

 (d) #if n == 1 update(item)

 #else print-out(item)

 #endif

LO 15.1

LO 15.1

LO 15.1

LO 15.1

LO 15.2

LO 15.1

LO 15.3

LO 15.3

LO 15.3

LO 15.1

LO 15.2

LO 15.1

LO 15.1

LO 15.1

LO 15.3

LO 15.3

 534 Computing Fundamentals & C Programming

Programming Exercises

1. Defi ne a macro PRINT_VALUE that can be used to print two values of arbitrary type.

2. Write a nested macro that gives the minimum of three values.

3. Defi ne a macro with one parameter to compute the volume of a sphere. Write a program

using this macro to compute the volume for spheres of radius 5, 10 and 15 metres.

4. Defi ne a macro that receives an array and the number of elements in the array as arguments.

Write a program using this macro to print out the elements of an array.

5. Using the macro defi ned in the exercise 15.4, write a program to compute the sum of all

elements in an array.

6. Write symbolic constants for the binary arithmetic operators +, –, * and /. Write a short

program to illustrate the use of these symbolic constants.

7. Defi ne symbolic constants for { and } and printing a blank line. Write a small program

using these constants.

8. Write a program to illustrate the use of stringizing opera tor.

LO 15.1

LO 15.1

LO 15.1

LO 15.1

LO 15.1

LO 15.1

LO 15.1

LO 15.4

 ASCII Values of Characters 535
APPENDIXAPPENDIX

II
ASCII Values of CharactersASCII Values of Characters

ASCII ASCII ASCII ASCII

 Value Character Value Character Value Character Value Character

000 NUL 027 ESC 054 6 081 Q

001 SOH 028 FS 055 7 082 R

002 STX 029 GS 056 8 083 S

003 ETX 030 RS 057 9 084 T

004 EOT 031 US 058 : 085 U

005 ENQ 032 blank 059 ; 086 V

006 ACK 033 ! 060 < 087 W

007 BEL 034 “ 061 = 088 X

008 BS 035 # 062 > 089 Y

009 HT 036 $ 063 ? 090 Z

010 LF 037 % 064 @ 091 [

011 VT 038 & 065 A 092 \

012 FF 039 ‘ 066 B 093]

013 CR 040 (067 C 094 ≠

014 SO 041) 068 D 095 -

015 SI 042 * 069 E 096 ¨

016 DLE 043 + 070 F 097 a

017 DC1 044 , 071 G 098 b

018 DC2 045 – 072 H 099 c

019 DC3 046 . 073 I 100 d

020 DC4 047 / 074 J 101 e

021 NAK 048 0 075 K 102 f

022 SYN 049 1 076 L 103 g

023 ETB 050 2 077 M 104 h

024 CAN 051 3 078 N 105 i

025 EM 052 4 079 O 106 j

026 SUB 053 5 080 P 107 k

(Contd.)

 536 Computing Fundamentals & C Programming

ASCII ASCII ASCII ASCII

 Value Character Value Character Value Character Value Character

108 l 113 q 118 v 123 {

109 m 114 r 119 w 124 |

110 n 115 s 120 x 125 }

111 o 116 t 121 y 126 ~

112 p 117 u 122 z 127 DEL

Note The fi rst 32 characters and the last character are control characters; they cannot be printed.

 ANSI C Library Functions 537
APPENDIXAPPENDIX

IIII
ANSI C Library FunctionsANSI C Library Functions

The C language is accompanied by a number of library functions that perform various tasks. The ANSI committee has

standardized header fi les which contain these functions. What follows is a slit of commonly used functions and the header

fi les where they are defi ned. For a more complete list, the reader should refer to the manual of the version of C that is

being used.

The header fi les that are included in this Appendix are as follows:

<ctype.h> Character testing and conversion functions

<math.h> Mathematical functions

<stdio.h> Standard I/O library functions

<stdlib.h> Utility functions such as string conversion rou tines, memory allocation routines, random number

generator, etc.

<string.h> String manipulation functions

<time.h> Time manipulation functions

Note: The following function parameters are used:

 c - character type argument

 d - double precision argument

 f - fi le argument

 i - integer argument

 l - long integer argument

 p - pointer argument

 s - string argument

 u - unsigned integer argument

An asterisk (*) denotes a pointer

 538 Computing Fundamentals & C Programming

Function
Data type

returned
Task

<ctype.h>

isalnum(c) int Determine if argument is alphanumeric. Return nonzero value if true; 0 other-

wise.

isalpha(c) int Determine if argument is alphabetic. Return nonzero value if true; 0 otherwise.

isascii(c) int Determine if argument is an ASCII character. Return nonzero value if true; 0

otherwise.

iscntrl(c) int Determine if argument is an ASCII control character. Return nonzero value if

true; 0 otherwise.

isdigit(c) int Determine if argument is a decimal digit. Return nonzero value if true; 0 other-

wise.

isgraph(c) int Determine if argument is a graphic printing ASCII character. Return nonzero

value if true; 0 otherwise.

islower(c) int Determine if argument is lowercase. Return nonzero value if true; 0 otherwise.

isodigit(c) int Determine if argument is an octal digit. Return nonzero value if true; 0 other-

wise.

isprint(c) int Determine if argument is a printing ASCII character. Return nonzero value if

true; 0 otherwise.

ispunct(c) int Determine if argument is a punctuation char acter. Return nonzero value if true; 0

otherwise.

isspace(c) int Determine if argument is a whitespace charac ter. Return nonzero value if true; 0

otherwise.

isupper(c) int Determine if argument is uppercase. Return nonzero value if true; 0 otherwise.

isxdigit(c) int Determine if argument is a hexadecimal digit. Return nonzero value if true; 0

otherwise.

toascii(c) int Convert value of argument to ASCII.

tolower(c) int Convert letter to lowercase.

toupper(c) int Convert letter to uppercase.

<math.h>

acos(d) double Return the arc cosine of d.

asin(d) double Return the arc sine of d.

atan(d) double Return the arc tangent of d.

atan2(d1,d2) double Return the arc tangent of d1/d2.

ceil(d) double Return a value rounded up to the next higher integer.

cos(d) double Return the cosine of d.

cosh(d) double Return the hyperbolic cosine of d.

exp(d) double Raise e to the power d.

fabs(d) double Return the absolute value of d.

 ANSI C Library Functions 539

Function
Data type

returned
Task

fl oor(d) double Return a value rounded down to the next lower integer.

fmod(d1, d2) double Return the remainder of d1/d2 (with same sign as d1).

labs(l) long int Return the absolute value of 1.

log(d) double Return the natural logarithm of d.

log10(d) double Return the logarithm (base 10) of d.

pow(d1,d2) double Return d1 raised to the d2 power.

sin(d) double Return the sine of d.

sinh(d) double Return the hyperbolic sine of d.

sqrt(d) double Return the square root of d.

tan(d) double Return the tangent of d.

tanh(d) double Return the hyperbolic tangent of d.

<stdio.h>

fclose(f) int Close fi le f. Return 0 if fi le is successfully closed.

feof(f) int Determine if an end-of-fi le condition has been reached. If so, return a nonzero

value; otherwise, return 0.

fgetc(f) int Enter a single character form fi le f.

fgets(s, i, f) char* Enter string s, containing i characters, from fi le f.

fprint(f,...) int Send data items to fi le f.

fputc(c,f) int Send a single character to fi le f.

fputs(s,f) int Send string s to fi le f.

fread(s,i1,i2,f) int Enter i2 data items, each of size i1 bytes, from fi le f to string s.

fscanf(f,...) int Enter data items from fi le f

fseek(f,1,i) int Move the pointer for fi le f a distance 1 bytes from location i.

ftell(f) long int Return the current pointer position within fi le f.

fwrite(s,i1,i2,f) int Send i2 data items, each of size i1 bytes from string s to fi le f.

getc(f) int Enter a single character from fi le f.

getchar(void) int Enter a single character from the standard input device.

gets(s) char* Enter string s from the standard input de vice.

printf(...) int Send data items to the standard output de vice.

putc(c,f) int Send a single character to fi le f.

putchar(c) int Send a single character to the standard output device.

puts(s) int Send string s to the standard output device.

rewind(f) void Move the pointer to the beginning of fi le f.

scanf(...) int Enter data items from the standard input device.

 540 Computing Fundamentals & C Programming

Function
Data type

returned
Task

<stdlib.h>

abs(i) int Return the absolute value of i.

atof(s) double Convert string s to a double-precision quant ity.

atoi(s) int Convert string s to an integer.

atol(s) long Convert string s to a long integer.

calloc(u1,u2) void* Allocate memory for an array having u1 elements, each of length u2 bytes.

Return a pointer to the begin ning of the allocated space.

exit(u) void Close all fi les and buffers, and terminate the program. (Value of u is assigned by

the function, to indicate termination status).

free(p) void Free a block of allocated memory whose beginning is indicated by p.

malloc(u) void* Allocate u bytes of memory. Return a pointer to the beginning of the allocated

space.

rand(void) int Return a random positive integer.

realloc(p, u) void* Allocate u bytes of new memory to the pointer variable p. Return a pointer to the

beginning of the new memory space.

srand(u) void Initialize the random number generator.

system(s) int Pass command string s to the operating system. Return 0 if the command is

successfully executed; otherwise, return a nonzero value typically –1.

<string.h>

strcmp(s1, s2) int Compare two strings lexicographically. Return a negative value if

s1 < s2; 0 if s1 and s2 are identical; and a positive value if s1 > s2.

strcmpi(s1, s2) int Compare two strings lexicographically, without regard to case. Return a

negative value if s1 < s2; 0 if s1 and s2 are identical; and a value of s1 > s2.

strcpy(s1, s2) char* Copy string s2 to string s1.

strlen(s) int Return the number of characters in string s.

strset(s, c) char* Set all characters within s to c (exclud ing the terminating null character \0).

<time.h>

difftime(11,12) double Return the time difference 11 ~ 12, where 11 and 12 represent elapsed time

beyond a designated base time (see the time function).

time(p) long int Return the number of seconds elapsed beyond a designated base time.

 Note C99 adds many more header fi les and adds many new functions to the existing header fi les. For more details,

refer to the manual of C99.

 Database Management System 541
APPENDIXAPPENDIX

IIIIIIDatabase Management Database Management

SystemSystem

AIII.1 INTRODUCTION

Data storage is an important function of a computer system. While the facility of storing the data is provided

by hardware storage devices, we cannot simply dump the entire data in them. We must logically organize

the data in such a way that future data access and manipulation becomes simpler and effi cient. Database

system is one such dedicated program that manages the collection of a large number of data elements in a

systematic manner. Computer applications and users simply interact with the database system through an

interface while the later works behind the scenes to access and retrieve the required data elements. There

are different data models on which we can base the design of our database. The choice of a particular data

model is made on the basis of the type of the data to be stored and its associated relationships.

AIII.2 DATA MODELS

Data model refers to the structure of a database system describing how data objects are arranged inside

the database. Its also describes several other concepts related to the database system, such as constraints,

relationships, etc. The various types of data models are:

� Entity-relationship (ER) model

� Hierarchical model

� Network model

AIII.2.1 ER Model

The ER model realizes all real-world objects and concepts as entities and defi nes relationships amongst

these entities. It is primarily used for designing a relational database system. It represents the overall logical

structure of the entire database system.

The key terminologies related to the ER model are:

� Entity: It represents a real-world object, such as an employee, a bank account, etc.

� Entity set: It is a collection of entities of similar type, such as a group of employees.

� Attributes: It refers to the characteristics that represent the entity. For example, name, employee

number, department, etc are the attributes of the employee entity.

� Relationship: It specifi es how two or more entities are related to each other.

� Relationship set: It is a group of relationships of similar types.

� ER diagram: It is a diagrammatic representation of the logical structure of a database. It represents

entity sets by rectangles, relationship sets by diamonds and attributes by ellipses.

 542 Computing Fundamentals & C Programming

Fig. AIII.1 Shows a sample ER diagram.

Fig. AIII.1 ER Diagram

In the above diagram, Vendor and Vendor account are entity sets while Name, Address, ID etc. are

attributes of the entity sets. Supplier is the relationship set that defi nes the relationship between the two

entity sets. Here, the relationship is of one-to-one type; however a relationship set can have other types as

well, such as one to many, many many, etc. A complete ER diagram for a given scenario can be used as a

blue print or a design document for creating a relational database system.

AIII.2.2 Hierarchical Model

As the name suggests, the hierarchical data model arranges the data in hierarchical or tree format. It follows

the simple parent-child relationship for arranging data where each parent can have zero or many children,

while each child has only one parent. Hierarchical data model is suitable in situation where there is a direct

relationship between records. To understand the hierarchical data model, let us take the analogy of the

product range of an electronic products manufacturing company, as shown in Fig. AIII.2:

Electronic products

Television Mobile phone

Plasma LCD 3G

Automatic Semi-auto

Washing machine

2G

Fig. AIII.2 Hierarchical Structure.

As shown in Fig AIII.2, the related products are grouped inside their parent categories in a hierarchical

fashion. It is important to note that hierarchical database design is suitable in situations where there is a

hierarchical relationship between the data items.

Some of the key advantages of hierarchical data model are:

� It is simple to understand and implement.

� It is particularly suitable in situations where the data items and their relationships are already known,

and are not expected to change.

 Database Management System 543

� It helps to build faster and effi cient databases.

Apart from the above advantages, the hierarchical model also has certain limitations, which are:

� It is less fl exible and diffi cult to change.

� There is a comparatively lesser scope of query optimization in hierarchical databases.

AIII.2.3 Network Model

If hierarchical data model is analogous to a tree structure, network data model is analogous to a graph.

The means, unlike hierarchical model, a child node in network model can have multiple parent nodes. This

signifi es many-to-many relationship between various data items. Thus fl exibility becomes one of the most

signifi cant advantages of a network model.

The network data model was formally put forward by the Conference on Data Systems Languages

(CODASYL) in 1971. With many-to-many relationship concept, it removes any kind of restrictions on

the database structure, as is prevalent in the hierarchical model. Thus, it facilitates convenient modelling

relationships between entities. Figure AIII.3 represents a network data model:

C D

A B

E

Fig. AIII.3 Network model

AIII.3 ARCHITECTURE OF DATABASE SYSTEM

The architecture of a database system depicts the structure and layout of the data stored and the mechanisms

used for accessing the stored data. It shows how various functional components are arranged inside the

database system to facilitate typical database related operations. Figure AIII.4 shows the generic view of the

database system architecture:

As shown in Fig. AIII.4 a database system comprises the following typical components:

� DML language: Also known as query language, it is used for manipulating (inserting, modifying,

and deleting) data stored in various tables of the database.

� DDL language: It is used defi ning the structure of the database, i.e. table and their attributes,

relationships, constraints, etc.

� Query Optimizer: It Optimizes the execution of a query. There could be multiple ways of executing

a particular query; the query optimizer chooses the fastest and most effi cient methods amongst

them.

� Database Manager: It acts as a controller for performing database related operations.

� File Manager: It manages the database fi les.

� Physical Database: It is the physical storage device on which data is actually stored.

� Meta Data: It is the data dictionary used for storing meta information, i.e., data about data.

� User Interface: It is the entry point from where users and applications interact with the database.

There is another point of view of looking at the database architecture, i.e., in terms of schemas, as

explained next.

 544 Computing Fundamentals & C Programming

Fig. AIII.4 Database System Architecture.

AIII.4 DATA DICTIONARY

Data dictionary is a key part of a database system that contains information about the database itself, as well

as the data elements stored in it. Thus, data dictionary is nothing but a collection of meta-data or ‘data about

data’. The data dictionary of a database may be created in any of the following forms:

� Tables

� Text of XML Files

� Spreadsheet

The main objective of a data dictionary is to store accurate and complete meta-information so that the

users who want to work with the database can access it as a ready reference. Typically, data dictionary may

include the following:

� Table name

� Column names

� Data type information

� Default fi eld values

� Data constraints

� Schema information

� User information and their privileges

 Database Management System 545

Most of the database systems automatically update the data dictionary when a user issues any data

defi nition language (DDL) statement. A data dictionary might be of interest to any one of the following

users:

� Database developers

� Application developers

� Database Administrator (DBA)

AIII.5 DBA

Database administrator or DBA is the person responsible for development and management of a

database system. A DBA has the centralized control over the database and is primarily responsible for its

maintenance and support. The typical roles and roles and responsibilities of a DBA include the following:

� Implementing database models

� Designing and creating database schemas

� Managing user rights and privileges

� Implementing backup and recovery procedures

� Establishing and enforcing database standards

� Implementing integrity constraints

� Database performance tuning

� Executing all database control and administration tasks

� Ensuring database availability

� Planning and implementing database migration as and when required

� Managing database storage devices

� Implementing and reviewing database security policies

� Updating database documentation

The actual roles and responsibilities of a DBA may vary from on organization to the other.

AIII.6 PRIMARY KEY AND FOREIGN KEY

AIII.6.1 Primary Key

A table in a relational database system may comprise an attribute or a column that contains unique values.

If not for a single attribute, a combination of multiple attributes may generate unique identifi er values

in a table. These unique values may help us in uniquely identifying each tuple or row in the table. Such

attributes or combination of attributes that help uniquely identify all the tuples in a table are called primary

keys.

If there are multiple attributes present in a table that may help us in uniquely identifying the tuples then

only the designated attribute is called primary key while all the other attributes are referred as candidate

keys. They are called candidate key because they possess the candidature of becoming a primary key, if

required. A primary key does not contain null or duplicate values.

Consider a table containing employee information, as shown in Table AIII.1

 546 Computing Fundamentals & C Programming

Table AIII.1 Employee Table

Emp_id First_name Last_name Dept_name

079 Vikas Verma Sales

081 Rahul Aggarwal Sales

002 Manish Aggarwal Accounts

101 Vikas Jain Accounts

012 Neha Malik HR

084 Jim Andrews Support

In the above table, only Emp_id attribute contains unique values, thus we can use Emp_id as a primary

key. It can be used to uniquely identify each tuple in the table.

AIII.6.2 Foreign Key

The concept of a foreign key helps to establish a cross reference or a relationship between two tables in a

relational database system. An attribute or a combination of attributes in a table is considered as a foreign

key if it is a primary or a candidate key in another table. All the foreign key values must be present in the

primary or candidate key of the referenced table; however, the opposite may not hold true. Further, the

foreign key may contain duplicate values that point to a single value in the referenced table. Here, the table

being referenced is considered as the parent or a master table, while the referencing table is considered as

the child table.

Consider a table containing employee skill set information, as shown in Table AIII.2

Table AIII.2 Employee Skill Set

Skill_set Emp_id Dept_name

CRM 079 Sales

CRM 081 Sales

Marketing 081 Sales

Taxation 002 Accounts

Taxation 101 Accounts

Trainer 101 Accounts

Trainer 012 HR

IT 084 Support

In the above table, Emp_id is a foreign key that references back to the Emp_id attribute of the Employee

table, shown Table AIII.1. Those by observing the relationship between the two tables we may say that

Emp_id 081 possesses two-skill sets CRM and Marketing and it belongs to Rahul Aggarwal.

AIII.7 DATA DEFINITION LANGUAGE

Data Defi nition Language (DDL) is a database language that is used for defi ning the structure of a database.

It comprises a number of commands that allows us to create, modify or delete databases, tables, indexes,

views, etc. DDL commands are executed by the DDL compiler.

 Database Management System 547

Some of the basic SQL-based DDL commands are:

� CREATE

� ALTER

� DROP

AIII.7.1 CREATE

The CREATE command is used for creating database objects. For example, consider the following

command:

CREATE DATABASE Employee

The above command creates a new database named Employee.

Similarly, the following command creates a new table emp_details:

CREATE TABLE emp_details (fi rst_name char (30) not null, last_name char (30) not
null, emp_id int not null)

The above command creates a new table named emp_details containing three columns, fi rst_name, last_

name and emp_id. The fi rst_name and last_name columns contain text strings of length up to 30 characters

while the emp_id column contains integer-based ID values.

AIII.7.2 ALTER

The ALTER command is used to modify the structure of an already created table. For instance, we may

use the ALTER command to add new columns to add new columns or delete existing columns in a table.

Consider the following command.

ALTER TABLE emp_details ADD department char (15) not null

The above command adds a new column named department into the emp_details table.

AIII.7.3 DROP

The DROP command is used for destroying or deleting the database objects. For example, consider the

following command:

DROP DATABASE Employee

The above command deletes the database named Employee.

Similarly, the following command deletes emp_details table:

DROP TABLE emp_details

With the execution of the DROP command, the contents of the database objects are also deleted.

AIII.8 DATA MANIPULATION LANGUAGE

Data Manipulation Language (DML) is a database language that is used for accessing and storing

information in a database. It comprises a number of commands that allow us to retrieve, insert, modify and

delete information in a database. DML commands are executed by the DML compiler.

Some of the basic SQL-based DML commands are:

� INSERT

� SELECT

 548 Computing Fundamentals & C Programming

� UPDATE

� DELETE

AIII.8.1 INSERT

The INSERT command is used for inserting records or rows in a database table. For example, consider the

following command:

INSERT INTO emp_details values (‘Rahul’, ‘Sharma’, 199, ‘Sales’)

In the above command, the values to be inserted are specifi ed in the same order as the order of the

attributes or column in the emp_details table.

AIII.8.2 SELECT

The SELECT command is used to extract and display table information in different ways. For example,

consider the following command:

SELECT * FROM emp_details

The above command will display the entire contents of the emp_details table.

However, if we want to display only some rows of the emp_details table then we need specify the

corresponding selection criteria, as shown below:

SELECT * FROM emp_details WHERE emp_id > 99

The above command will display all the rows in which the value of emp_id attribute is greater than 99.

Further, we may also extract only specifi c attribute values or columns from a table, as shown below:

SELECT fi rst_name FROM emp_details

The above command will fetch and display all the values under the fi rst_name column and ignore all

other column values.

AIII.8.3 UPDATE

The UPDATE command is used to modify the existing information contained in a table. For example,

consider the following statement:

UPDATE emp_details SET emp_id = emp_id + 100

The above command will increase all the employee ID values stored in the table by 100.

Similarly, we can also update only some records in a table by specifying certain updation criteria. For

example, consider the following statement:

UPDATE emp_details SET department = ‘Sales’ WHERE emp_id = 002

The above command will change the department of the employee having ID 002 to Sales.

AIII.8.4 DELETE

The DELETE command is used for removing a record or row from a table. For example, consider the

following statement:

DELETE FROM emp_details WHERE cust_id = 002

The above command will remove details of the employee having ID 002 from the table.

 Projects 549
APPENDIXAPPENDIX

IVIV
ProjectsProjects

AIV.1 INVENTORY MANAGEMENT SYSTEM

The project aims at developing an inventory management system using the C language that enables an organization to

maintain its inventory.

The project demonstrates the creation of a user interface of a system, without the use of C Graphics library. The

application uses basic C functions to generate menus, show message boxes and print text on the screen. To display

customized text with colors and fonts according to application requirements, functions have been created in the application,

which fetch the exact video memory addresses of a target location, to write text at the particular location.

The application also implements the concept of structures to defi ne the inventory items. It also effectively applies the

various C concepts, such as fi le operations, looping and branching constructs and string manipulation functions.

/**

 Application: Inventory Management System

 Compiled on: Borland Turbo C++ 3.0

**/

#include <conio.h>

#include <stdio.h>

#include <stdlib.h>

#include <dos.h>

#include <graphics.h>

#include <string.h>

#defi ne TRUE 1

#defi ne FALSE 0

/* List of Global variables used in the application*/

int mboxbrdrclr,mboxbgclr,mboxfgclr; /* To set colors for all message boxes in
 the application*/

 550 Computing Fundamentals & C Programming

int menutxtbgclr,menutxtfgclr,appframeclr; /* To set the frame and color’s for menu
 items’s*/

int section1_symb,section1_bgclr,section1_fgclr; /* To set color of section 1, the region
 around the menu options*/

int section2_symb,section2_bgclr,section2_fgclr; /* To set color of section 2, the section
 on the right of the menu options*/

int fEdit;

int animcounter;

static struct struct_stock /* Main database structure*/

{

 char itemcode[8];

 char itemname[50];

 fl oat itemrate;

 fl oat itemqty;

 int minqty; /*Used for Reorder level, which is the
 minimum no of stock*/

}inv_stock;

struct struct_bill

{

 char itemcode[8];

 char itemname[50];

 fl oat itemrate;

 fl oat itemqty;

 fl oat itemtot;

}item_bill[100];

char password[8];

const long int stocksize=sizeof(inv_stock); /*stocksize stores the size of the
 struct_stock*/

fl oat tot_investment;

int numItems; /*To count the no of items in the stock*/

int button,column,row; /*To allow mouse operations in the application*/

FILE *dbfp; /*To perform database fi le operations on
 “inv_stock.dat”*/

int main(void)

{

 fl oat issued_qty;

 char userchoice,code[8];

 Projects 551

 int fl ag,i,itemsold;

 fl oat getInvestmentInfo(void);

 FILE *ft;

 int result;

 getConfi guration();

/* Opens & set ‘dbfp’ globally so that it is accessible from anywhere in the application*/

dbfp=fopen(“d:\invstoc.dat”,”r+”);

if(dbfp==NULL)

 {

 clrscr();

 printf(“\nDatabase does not exists.\nPress Enter key to create it. To exit, press any
 other key.\n “);

 ffl ush(stdin);

 if(getch()==13)

 {

 dbfp=fopen(“d:\invstoc.dat”,”w+”);

 printf(“\nThe database for the application has been created.\nYou must restart the
 application.\nPress any key to continue.\n”);

 ffl ush(stdin);

 getch();

 exit(0);

 }

 else

 {

 exit(0);

 }

 }

 /* Application control will reach here only if the database fi le has been opened success-
fully*/

 if(initmouse()==0)

 messagebox(10,33,”Mouse could not be loaded.”,”Error “,’

‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0);

 showmouseptr();

 _setcursortype(_NOCURSOR);

 while(1)

 {

 clrscr();

 fEdit=FALSE;

 ShowMenu();

 numItems=0;

 rewind(dbfp);

 552 Computing Fundamentals & C Programming

 /* To calculate the number of records in the database*/

 while(fread(&inv_stock,stocksize,1,dbfp)==1)

 ++numItems;

 textcolor(menutxtfgclr);

 textbackground(menutxtbgclr);

 gotopos(23,1);

 cprintf(“Total Items in Stock: %d”,numItems);

 textcolor(BLUE);

 textbackground(BROWN);

 ffl ush(stdin);

 /*The application will wait for user response */

 userchoice=getUserResponse();

 switch(userchoice)

 {

 /* To Close the application*/

 case ‘0’:

 BackupDatabase(); /*Backup the Database fi le to secure data*/

 fl ushall();

 fclose(dbfp);

 fcloseall();

 print2screen(12,40,”Thanks for Using the application.”,BROWN,BLUE,0);

 sleep(1);

 setdefaultmode();

 exit(0);

 /* To Add an item*/

 case ‘1’:

 if(getdata()==1)

 {

 fseek(dbfp,0,SEEK_END);

 /*Write the item information into the database*/

 fwrite(&inv_stock,stocksize,1,dbfp);

 print2screen(13,33,”The item has been successfully added. “,BROWN,BLUE,0);

 getch();

 }

 break;

 /* To edit the item information*/

 case ‘2’:

 print2screen(2,33,”Enter Item Code>”,BROWN,BLUE,0);gotopos(2,54);ffl ush(stdin);

 scanf(“%s”,&code);

 Projects 553

 fEdit=TRUE;

 if(CheckId(code)==0)

 {

 if(messagebox(0,33,”Press Enter key to edit the item.”,”Confi rm”,’

 ‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0)!=13)

 {

 messagebox(10,33,”The item information could not be modifi ed. Please try
again.”,”Edit “,’ ‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0);

 fEdit=FALSE;

 break;

 }

 fEdit=TRUE;

 getdata();

 ffl ush(stdin);

 fseek(dbfp,-stocksize,SEEK_CUR);

 fwrite(&inv_stock,stocksize,1,dbfp);

 }

 else

 messagebox(10, 33,”The item is not available in the database.”,”No records found”,’
 ‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0);

 fEdit=FALSE;

 break;

 /* To show information about an Item*/

 case ‘3’:

 print2screen(2,33,”Enter Item Code: “,BROWN,BLUE,0);gotopos(2,55);ffl ush(stdin);

 scanf(“%s”,&code);

 fl ag=0;

 rewind(dbfp);

 while(fread(&inv_stock,stocksize,1,dbfp)==1)

 {

 if(strcmp(inv_stock.itemcode,code)==0)

 {

 DisplayItemInfo();

 fl ag=1;

 }

 }

 if(fl ag==0)

 messagebox(10,33,”The item is not available.”,”No records found “,’

 ‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0);

 break;

 /* To show information about all items in the database*/

 554 Computing Fundamentals & C Programming

 case ‘4’:

 if(numItems==0)

 messagebox(10,33,”No items are available. “,”Error “,’

 ‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0);

 textcolor(BLUE);

 textbackground(BROWN);

 gotopos(3,33);

 cprintf(“Number of Items Available in Stock: %d”,numItems);

 gotopos(4,33);

 getInvestmentInfo();

 cprintf(“Total Investment :Rs.%.2f”,tot_investment);

 gotopos(5,33);

 cprintf(“Press Enter To View. Otherwise Press Any Key...”);ffl ush(stdin);

 if(getch()==13)

 {

 rewind(dbfp);

 while(fread(&inv_stock,stocksize,1,dbfp)==1); /*List All records*/

 DisplayItemRecord(inv_stock.itemcode);

 }

 textcolor(BLUE);

 break;

 /* To issue Items*/

 case ‘5’:

 itemsold=0;

 i=0;

 top:

 print2screen(3,33,”Enter Item Code: “,BROWN,BLUE,0);ffl ush(stdin);gotopos(3,55);

 scanf(“%s”,&code);

 if(CheckId(code)==1)

 if(messagebox(10,33,”The item is not available.”,”No records found “,’
 ‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0)==13)

 goto top;

 else

 goto bottom;

 rewind(dbfp);

 while(fread(&inv_stock,stocksize,1,dbfp)==1)

 {

 if(strcmp(inv_stock.itemcode,code)==0) /*To check if the item code is available in
 the database*/

 {

 issued_qty=IssueItem();

 Projects 555

 if(issued_qty > 0)

 {

 itemsold+=1;

 strcpy(item_bill[i].itemcode,inv_stock.itemcode);

 strcpy(item_bill[i].itemname,inv_stock.itemname);

 item_bill[i].itemqty=issued_qty;

 item_bill[i].itemrate=inv_stock.itemrate;

 item_bill[i].itemtot=inv_stock.itemrate*issued_qty;

 i+=1;

 }

 print2screen(19,33,”Would you like to issue another item(Y/

 N)?”,BROWN,BLUE,0);ffl ush(stdin);gotopos(19,45);

 if(toupper(getch())==’Y’)

 goto top;

 bottom:

 break;

 }

 }

 break;

 /* Items to order*/

 case ‘6’:

 if(numItems<=0)

 {

 messagebox(10,33,”No items are available. “,”Items Not Found “,’

 ‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0);

 break;

 }

 print2screen(3,33,”Stock of these items is on the minimum

 level:”,BROWN,RED,0);ffl ush(stdin);

 fl ag=0;

 ffl ush(stdin);

 rewind(dbfp);

 while(fread(&inv_stock,stocksize,1,dbfp)==1)

 {

 if(inv_stock.itemqty <= inv_stock.minqty)

 {

 DisplayItemInfo();

 fl ag=1;

 }

 }

 if(fl ag==0)

 556 Computing Fundamentals & C Programming

 messagebox(10,33,”No item is currently at reorder level.”,”Reorder Items”,’
 ‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0);

 break;

 default:

 messagebox(10,33, ”The option you have entered is not available.”,”Invalid Option “,’
‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0);

 break;

 }

 }

}

/*Display Menu & Skins that the user will see*/

ShowMenu()

{

 if(section1_bgclr != BROWN || section1_symb != ‘ ‘)

 fi llcolor(2,1,23,39,section1_symb,section1_bgclr,section1_fgclr,0);

 if(section2_bgclr != BROWN || section2_symb != ‘ ‘)

 fi llcolor(2,40,23,79,section2_symb,section2_bgclr,section2_fgclr,0);

 print2screen(2,2,”1: Add an Item”,menutxtbgclr,menutxtfgclr,0);

 print2screen(4,2,”2: Edit Item Information”,menutxtbgclr,menutxtfgclr,0);

 print2screen(6,2,”3: Show Item Information”,menutxtbgclr,menutxtfgclr,0);

 print2screen(8,2,”4: View Stock Report”,menutxtbgclr,menutxtfgclr,0);

 print2screen(10,2,”5: Issue Items from Stock”,menutxtbgclr,menutxtfgclr,0);

 print2screen(12,2,”6: View Items to be Ordered “,menutxtbgclr,menutxtfgclr,0);

 print2screen(14,2,”0: Close the application”,menutxtbgclr,menutxtfgclr,0);

 htskin(0,0,’ ‘,80,appframeclr,LIGHTGREEN,0);

 htskin(1,0,’ ‘,80,appframeclr,LIGHTGREEN,0);

 vtskin(0,0,’ ‘,24,appframeclr,LIGHTGREEN,0);

 vtskin(0,79,’ ‘,24,appframeclr,LIGHTGREEN,0);

 htskin(24,0,’ ‘,80,appframeclr,LIGHTGREEN,0);

 vtskin(0,31,’ ‘,24,appframeclr,LIGHTGREEN,0);

 return;

}

/*Wait for response from the user & returns choice*/

getUserResponse()

{

 int ch,i;

 animcounter=0;

 Projects 557

 while(!kbhit())

 {

 getmousepos(&button,&row,&column);

 /*To show Animation*/

 BlinkText(0,27,”Inventory Management System”,1,YELLOW,RED,LIGHTGRAY,0,50);

 animcounter+=1;

 i++;

 if(button==1 && row==144 && column>=16 && column<=72) /*Close*/

 return(‘0’);

 if(button==1 && row==16 && column>=16 && column<=136) /*Add New Item*/

 return(‘1’);

 if(button==1 && row==32 && column>=16 && column<=144) /*Edit Item*/

 return(‘2’);

 if(button==1 && row==48 && column>=16 && column<=160) /*Show an Item*/

 return(‘3’);

 if(button==1 && row==64 && column>=16 && column<=104) /*Stock Report*/

 return(‘4’);

 if(button==1 && row==80 && column>=16 && column<=144) /*Issue an Item*/

 return(‘5’);

 if(button==1 && row==96 && column>=16 && column<=152) /*Items to order*/

 return(‘6’);

 }

 ch=getch();

 return ch;

}

/*Reads a valid id and its information,returns 0 if id already exists*/

getdata()

{

 char tmp[8];

 fl oat tst;

 _setcursortype(_NORMALCURSOR);

 print2screen(3,33,”Enter Item Code: “,BROWN,BLUE,0);ffl ush(stdin);gotopos(3,53);

 scanf(“%s”,&tmp);

 if(CheckId(tmp)==0 && fEdit == FALSE)

 {

 messagebox(10,33,”The id already exists. “,”Error “,’

 ‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0);

 return 0;

 }

 558 Computing Fundamentals & C Programming

 strcpy(inv_stock.itemcode,tmp); /*Means got a correct item code*/

 print2screen(4,33,”Name of the Item: “,BROWN,BLUE,0);ffl ush(stdin);gotopos(4,53);

 gets(inv_stock.itemname);

 print2screen(5,33,”Price of Each Unit: “,BROWN,BLUE,0);ffl ush(stdin);gotopos(5,53);

 scanf(“%f”,&inv_stock.itemrate);

 print2screen(6,33,”Quantity: “,BROWN,BLUE,0);ffl ush(stdin);gotopos(6,53);

 scanf(“%f”,&inv_stock.itemqty);

 print2screen(7,33,”Reorder Level: “,BROWN,BLUE,0);ffl ush(stdin);gotopos(7,53);

 scanf(“%d”,&inv_stock.minqty);

 _setcursortype(_NOCURSOR);

 return 1;

}

/*Returns 0 if the id already exists in the database, else returns 1*/

int CheckId(char item[8])

{

 rewind(dbfp);

 while(fread(&inv_stock,stocksize,1,dbfp)==1)

 if(strcmp(inv_stock.itemcode,item)==0)

 return(0);

 return(1);

}

/*Displays an Item*/

DisplayItemRecord(char idno[8])

{

 rewind(dbfp);

 while(fread(&inv_stock,stocksize,1,dbfp)==1)

 if(strcmp(idno,inv_stock.itemcode)==0)

 DisplayItemInfo();

 return;

}

/*Displays an Item information*/

DisplayItemInfo()

{

 int r=7;

 textcolor(menutxtfgclr);

 textbackground(menutxtbgclr);

 gotopos(r,33);

 cprintf(“Item Code: %s”,” “);

 gotopos(r,33);

 cprintf(“Item Code: %s”,inv_stock.itemcode);

 Projects 559

 gotopos(r+1,33);

 cprintf(“Name of the Item: %s”,” “);

 gotopos(r+1,33);

 cprintf(“Name of the Item: %s”,inv_stock.itemname);

 gotopos(r+2,33);

 cprintf(“Price of each unit: %.2f”,” “);

 gotopos(r+2,33);

 cprintf(“Price of each unit: %.2f”,inv_stock.itemrate);

 gotopos(r+3,33);

 cprintf(“Quantity in Stock: %.4f”,” “);

 gotopos(r+3,33);

 cprintf(“Quantity in Stock: %.4f”,inv_stock.itemqty);

 gotopos(r+4,33);

 cprintf(“Reorder Level: %d”,” “);

 gotopos(r+4,33);

 cprintf(“Reorder Level: %d”,inv_stock.minqty);

 gotopos(r+5,33);

 cprintf(“\nPress Any Key...”);ffl ush(stdin);getch();

 textbackground(BROWN);

 textcolor(BLUE);

 return;

}

/*This function will return 0 if an item cannot be issued, else issues the item*/

IssueItem()

{

 fl oat issueqnty;

 DisplayItemInfo();

 print2screen(15,33,”Enter Quantity: “,BROWN,BLUE,0);ffl ush(stdin);gotopos(15,49);

 scanf(“%f”,&issueqnty);

 /*If the stock of the item is greater than minimum stock*/

 if((inv_stock.itemqty - issueqnty) >= inv_stock.minqty)

 {

 textcolor(BLUE);

 textbackground(BROWN);

 gotopos(18,33);

 cprintf(“%.4f Item(s) issued.”,issueqnty);

 gotopos(19,33);

 cprintf(“You should pay RS. %.2f”,issueqnty*inv_stock.itemrate);getch();

 textcolor(BLUE);

 inv_stock.itemqty-=issueqnty; /*Updating quantity for the item in stock*/

 fseek(dbfp,-stocksize,SEEK_CUR);

 560 Computing Fundamentals & C Programming

 fwrite(&inv_stock,stocksize,1,dbfp);

 return issueqnty;

 }

 /* If the stock of the item is less than minimum stock.ie Reorder level*/

 else

 {

 messagebox(10,33,”Insuffi cient quantity in stock.”,”Insuffi cient Stock”,’

 ‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0);

 gotopos(17,33);

 textcolor(BLUE);

 textbackground(BROWN);

 cprintf(“ONLY %.4f pieces of the Item can be issued.”,inv_stock.itemqty-inv_stock.minqty);

 gotopos(18,33);

 cprintf(“Press Any Key...”);getch();

 textcolor(BLUE);

 textbackground(BROWN);

 return 0;

 }

}

/* Calculates the total investment amount for the stock available*/

fl oat getInvestmentInfo(void)

{

 tot_investment=0;

 rewind(dbfp);

 while(fread(&inv_stock,stocksize,1,dbfp)==1)

 tot_investment+=(inv_stock.itemrate*inv_stock.itemqty);

 return tot_investment;

}

/* Creates a backup fi le “Backup” of “inv_stock.dat”*/

BackupDatabase(void)

{

 FILE *fback;

 fback=fopen(“d:/Backup.dat”,”w”);

 rewind(dbfp);

 while(fread(&inv_stock,stocksize,1,dbfp)==1)

 fwrite(&inv_stock,stocksize,1,fback);

 fclose(fback);

 return;

}

 Projects 561

/*This structure is used color settings for the application*/

struct colors

{

 char cfg_name[10];

 int mboxbrdrclr;

 int mboxbgclr;

 int mboxfgclr;

 int menutxtbgclr;

 int menutxtfgclr;

 int appframeclr;

 int section1_symb;

 int section1_bgclr;

 int section1_fgclr;

 int section2_symb;

 int section2_bgclr;

 int section2_fgclr;

}clr;

const long int clrsize=sizeof(clr);

/* Gets the display confi guration for the application*/

getConfi guration()

{

 FILE *fl ast;

 fl ast=fopen(“lastcfg”,”r+”);

 if(fl ast==NULL)

 {

 SetDefaultColor();

 return 0;

 }

 rewind(fl ast);

 /*Reads the fi rst record.*/

 fread(&clr,clrsize,1,fl ast);

#ifdef OKAY

 if(strcmp(clr.cfg_name,”lastclr”)!=0)

 {

 SetDefaultColor();

 fclose(fl ast);

 562 Computing Fundamentals & C Programming

 return 0;

 }

#endif

 mboxbrdrclr=clr.mboxbrdrclr;mboxbgclr=clr.mboxbgclr;mboxfgclr=clr.mboxfgclr;

 menutxtbgclr=clr.menutxtbgclr;menutxtfgclr=clr.menutxtfgclr;appframeclr=clr.appframeclr;

 section1_symb=clr.section1_symb;section1_bgclr=clr.section1_bgclr;section1_fgclr=clr.section1_fgclr;

 section2_symb=clr.section2_symb;section2_bgclr=clr.section2_bgclr;section2_fgclr=clr.section2_fgclr;

 fclose(fl ast);

 return 1;

}

/* Sets the default color settings for the application*/

SetDefaultColor()

{

 mboxbrdrclr=BLUE,mboxbgclr=GREEN,mboxfgclr=WHITE;

 menutxtbgclr=BROWN,menutxtfgclr=BLUE,appframeclr=CYAN;

 section1_symb=’ ‘,section1_bgclr=BROWN,section1_fgclr=BLUE;

 section2_symb=’ ‘,section2_bgclr=BROWN,section2_fgclr=BLUE;

 return 1;

}

/* Adds animation to a text */

BlinkText(const int r,const int c,char txt[],int bgclr,int fgclr,int BGCLR2,int FGCLR2,int blink,const
int dly)

{

 int len=strlen(txt);

 BGCLR2=bgclr;FGCLR2=BLUE;

 htskin(r,c,’ ‘,len,bgclr,bgclr,0);

 print2screen(r,c,txt,bgclr,fgclr,blink);

 write2screen(r,c+animcounter+1,txt[animcounter],BGCLR2,FGCLR2,0);

 write2screen(r,c+animcounter+2,txt[animcounter+1],BGCLR2,FGCLR2,0);

 write2screen(r,c+animcounter+3,txt[animcounter+2],BGCLR2,FGCLR2,0);

 write2screen(r,c+animcounter+4,txt[animcounter+3],BGCLR2,FGCLR2,0);

 write2screen(r,c+animcounter+5,txt[animcounter+4],BGCLR2,FGCLR2,0);

 write2screen(r,c+animcounter+6,txt[animcounter+5],BGCLR2,FGCLR2,0);

 delay(dly*2);

 write2screen(r,c+animcounter+1,txt[animcounter],bgclr,fgclr,0);

 write2screen(r,c+animcounter+2,txt[animcounter+1],bgclr,fgclr,0);

 write2screen(r,c+animcounter+3,txt[animcounter+2],bgclr,fgclr,0);

 write2screen(r,c+animcounter+4,txt[animcounter+3],bgclr,fgclr,0);

 write2screen(r,c+animcounter+5,txt[animcounter+4],bgclr,fgclr,0);

 Projects 563

 write2screen(r,c+animcounter+6,txt[animcounter+5],bgclr,fgclr,0);

 animcounter+=1;

 if(animcounter+5 >= len) animcounter=0;

 return;

}

/* Displays a single character with its attribute*/

write2screen(int row,int col,char ch,int bg_color,int fg_color,int blink)

{

 int attr;

 char far *v;

 char far *ptr=(char far*)0xB8000000;

 if(blink!=0)

 blink=128;

 attr=bg_color+blink;

 attr=attr<<4;

 attr+=fg_color;

 attr=attr|blink;

 v=ptr+row*160+col*2; /*Calculates the video memory address corresponding to row & column*/

 *v=ch;

 v++;

 *v=attr;

 return 0;

}

/* Prints text with color attribute direct to the screen*/

print2screen(int row,int col,char string[],int bg_color,int fg_color,int blink)

{

 int i=row,j=col,strno=0,len;

 len=strlen(string);

 while(j<80)

 {

 j++;

 if(j==79)

 {

 j=0;

 i+=1;

 564 Computing Fundamentals & C Programming

 }

 write2screen(i,j,string[strno],bg_color,fg_color,blink); /*See below function*/

 strno+=1;

 if(strno > len-1)

 break;

 }

 return;

}

/* Prints text horizontally*/

htskin(int row,int column,char symb,int no,int bg_color,int fg_color,int blink)

{

 int i;

 for(i=0;i<no;i++)

 write2screen(row,column++,symb,bg_color,fg_color,blink); /*Print one symbol*/

 return;

}

/*Print text vertically*/

vtskin(int row,int column,char symb,int no,int bg_color,int fg_color,int blink)

{

 int i;

 for(i=0;i<no;i++)

 write2screen(row++,column,symb,bg_color,fg_color,blink); /*Print one symbol*/

 return;

}

/* Shows a message box*/

messagebox(int row,int column,char message[50],char heading[10],char symb,int borderclr,int bg_color,int
fg_color,int blink)

{

 int len;

 char key,image[1000];

 len=strlen(message);

 capture_image(row,column,row+3,column+len+7,&image);

 draw_mbox(row,column,row+3,column+len+7,symb,symb,borderclr,YELLOW,blink,borderclr,YELLOW,blink);

 fi llcolor(row+1,column+1,row+2,column+len+6,’ ‘,bg_color,bg_color,0);

 print2screen(row+1,column+2,message,bg_color,fg_color,blink);

 print2screen(row+2,column+2,”Press Any Key... “,bg_color,fg_color,blink);

 print2screen(row,column+1,heading,borderclr,fg_color,blink);

 sound(400);

 delay(200);

 nosound();

 ffl ush(stdin);

 Projects 565

 key=getch();

 put_image(row,column,row+3,column+len+7,&image);

 return key;

}

/* Fills color in a region*/

fi llcolor(int top_row,int left_column,int bottom_row,int right_column,char symb,int bg_color,int
fg_color,int blink)

{

 int i,j;

 for(i=top_row;i<=bottom_row;i++)

 htskin(i,left_column,symb,right_column-left_column+1,bg_color,fg_color,blink);

 return;

}

/* Prints a message box with an appropriate message*/

draw_mbox(int trow,int tcolumn,int brow,int bcolumn,char hsymb,char vsymb,int hbg_color,int hfg_
color,int hblink,int vbg_color,int vfg_color,int vblink)

{

 htskin(trow,tcolumn,hsymb,bcolumn-tcolumn,hbg_color,hfg_color,hblink);

 htskin(brow,tcolumn,hsymb,bcolumn-tcolumn,hbg_color,hfg_color,hblink);

 vtskin(trow,tcolumn,vsymb,brow-trow+1,vbg_color,vfg_color,vblink);

 vtskin(trow,bcolumn,vsymb,brow-trow+1,vbg_color,vfg_color,vblink);

 return;

}

/* Copies the txt mode image below the messagebox*/

capture_image(int toprow,int leftcolumn,int bottomrow,int rightcolumn,int *image)

{

 char far *vidmem;

 int i,j,count;

 count=0;

 for(i=toprow;i<=bottomrow;i++)

 for(j=leftcolumn;j<=rightcolumn;j++)

 {

 vidmem=(char far*)0xB8000000+(i*160)+(j*2); /*Calculates the video memory address corresponding
to row & column*/

 image[count]=*vidmem;

 image[count+1]=*(vidmem+1);

 count+=2;

 }

 return;

}

 566 Computing Fundamentals & C Programming

/* Places an image on the screen*/

put_image(int toprow,int leftcolumn,int bottomrow,int rightcolumn,int image[])

{

 char far *ptr=(char far*)0xB8000000;

 char far *vid;

 int i,j,count;

 count=0;

 for(i=toprow;i<=bottomrow;i++)

 for(j=leftcolumn;j<=rightcolumn;j++)

 {

 vid=ptr+(i*160)+(j*2); /*Calculates the video memory address corresponding to row &
 column*/

 *vid=image[count];

 *(vid+1)=image[count+1];

 count+=2;

 }

 return;

}

/* To move the curser position to desired position*/

gotopos(int r,int c)

{

 union REGS i,o;

 i.h.ah=2;

 i.h.bh=0;

 i.h.dh=r;

 i.h.dl=c;

 int86(16,&i,&o);

 return 0;

}

union REGS i,o;

/* Initialize the mouse*/

initmouse()

{

 i.x.ax=0;

 int86(0x33,&i,&o);

 return(o.x.ax);

}

/* Shows the mouse pointer*/

showmouseptr()

 Projects 567

{

 i.x.ax=1;

 int86(0x33,&i,&o);

 return;

}

/* Get the mouse position*/

getmousepos(int *button,int *x,int *y)

{

 i.x.ax=3;

 int86(0x33,&i,&o);

 *button=o.x.bx;

 *x=o.x.dx;

 *y=o.x.cx;

 return 0;

}

/* Restores the default text mode*/

setdefaultmode()

{

 set25x80();

 setdefaultcolor();

 return;

}

/* Sets the default color and cursor of screen*/

setdefaultcolor()

{

 int i;

 char far *vidmem=(char far*)0xB8000000;

 window(1,1,80,25);

 clrscr();

 for (i=1;i<4000;i+=2)

 *(vidmem+i)=7;

_setcursortype(_NORMALCURSOR);

return;

}

/* Sets 25x80 Text mode*/

set25x80()

{

 asm mov ax,0x0003;

 asm int 0x10;

 return;

}

 568 Computing Fundamentals & C Programming

 Projects 569

 570 Computing Fundamentals & C Programming

 Projects 571

 572 Computing Fundamentals & C Programming

 Projects 573

 574 Computing Fundamentals & C Programming

 Projects 575

 576 Computing Fundamentals & C Programming

 Projects 577

AIV.2 RECORD ENTRY SYSTEM

The objective of the record entry system is to develop a login-based record keeping system, which has nested menus and

different interfaces for different sets of users.

The application contains separate interfaces defi ned for an administrator and employees. The application provides

a basic menu, which has menu options for both types of users. According to the selection made by a user, the user is

prompted to enter his login name and password. On successfully validating the user name and password, a menu is

displayed to the user according to his level. For example, an employee after logging into the system, can record his Log

In and Log Out timings.

The project demonstrates working with date and time in C, showing ‘*’ characters when user types the password, user

authentication and two levels of menus for each type of user. The project also adds validations on user input to ensure

proper data entry into the database.

The project uses various C concepts, such as while loop, if statement and switch case statement to display the required

functionality.

 /**

 Application: Record Entry System

 Compiled on: Borland Turbo C++ 3.0

**/

#include <stdio.h>

#include <conio.h>

#include <string.h>

#include <dos.h>

#include <ctype.h>

void dataentry(void);

void selectAdminOption(void);

void getData(int option);

int showAdminMenu;

void main()

{

 int cancelOption,timeOption,entryOption,exitOption;

 char choice[1];

 char selectOption[1];

 textcolor(YELLOW);

 cancelOption=0;

 578 Computing Fundamentals & C Programming

 /* Shows the main menu for the application*/

 while (cancelOption==0)

 {

 clrscr();

 gotoxy(30,7);

 printf(“Please Select an Action—>”);

 gotoxy(30,10);

 printf(“Daily Time Record [1] “);

 gotoxy(30,11);

 printf(“Data Entry [2] “);

 gotoxy(30,12);

 printf(“Close [3] “);

 gotoxy(30,15);

 printf(“Please Enter Your Choice (1/2/3): “);

 scanf(“%s”,&choice);

 timeOption=strcmp(choice,”1”);

 entryOption=strcmp(choice,”2”);

 exitOption=strcmp(choice,”3”);

 if (timeOption==0)

 {

 clrscr();

 gotoxy(23,6);

 printf(“DAILY EMPLOYEE TIME RECORDING SYSTEM”);

 gotoxy(16,24);

 printf(“Input Any Other key to Return to Previous Screen.”);

 gotoxy(31,9);

 printf(“[1] Employee Log In “);

 gotoxy(31,10);

 printf(“[2] Employee Log Out”);

 gotoxy(28,12);

 printf(“Please Enter Your Option: “);

 scanf(“%s”,&selectOption);

 if (strcmp(selectOption,”1”)==0)

 {

 getData(5);

 }

 if (strcmp(selectOption,”2”)==0)

 {

 getData(6);

 }

 Projects 579

 cancelOption=0;

 }

 if (entryOption==0)

 {

 dataentry();

 cancelOption=0;

 }

 if (exitOption==0)

 {

 cancelOption=1;

 }

 if (!(timeOption==0 || entryOption==0 || exitOption==0))

 {

 gotoxy(10,17);

 printf(“You Have Entered an Invalid Option. Please Choose Either 1, 2 or 3. “);

 getch();

 cancelOption=0;

 }

 }

 clrscr();

 gotoxy(23,13);

 printf(“The Application will Close Now. Thanks!”);

 getch();

}

/* This function provides logic for data entry to be done for the system.

Access to Data Entry screens will be only allowed to administrator user.*/

void dataentry(void)

{

char adminName[10], passwd[5],buffer[1];

char tempo[6],sel[1];

int validUserNameOption,validUserPwdOption,returnOption,UserName,inc,tmp;

char plus;

 clrscr();

 validUserNameOption=0;

 validUserPwdOption=0;

 while (validUserPwdOption==0)

 {

 clrscr();

 580 Computing Fundamentals & C Programming

 while (validUserNameOption==0)

 {

 clrscr();

 gotoxy(20,5);

 printf(“IT SOFTWARE DATA ENTRY SYSTEM-ADMIN INTERFACE”);

 gotoxy(20,24);

 printf(“Info: Type return to go back to the main screen.”);

 gotoxy(28,10);

 printf(“Enter Administrator Name: “);

 scanf(“%s”,&adminName);

 returnOption=strcmp(adminName,”return”);

 UserName=strcmp(adminName,”admin”);

 if (returnOption==0)

 {

 goto stream;

 }

 if (!(UserName==0 || returnOption==0))

 {

 gotoxy(32,11);

 printf(“Administrator Name is Invalid.”);

 getch();

 validUserNameOption=0;

 }

 else

 validUserNameOption=1;

 }

 gotoxy(30,11);

 printf(“Enter Password: “);

 inc=0;

 while (inc<5)

 {

 passwd[inc]=getch();

 inc=inc+1;

 printf(“* “);

 }

 inc=0;

 while (inc<5)

 {

 Projects 581

 tempo[inc]=passwd[inc];

 inc=inc+1;

 }

 while(getch()!=13);

 if (!strcmp(tempo, “admin12”))

 {

 gotoxy(28,13);

 printf(“You have Entered a Wrong Password. Please Try Again. “);

 getch();

 validUserPwdOption=0;

 validUserNameOption=0;

 }

 else

 {

 clrscr();

 gotoxy(24,11);

 textcolor(YELLOW+BLINK);

 cprintf(“You Have Successfully Logged In.”);

 gotoxy(24,17);

 textcolor(YELLOW);

 printf(“Press Any Key to Continue.”);

 validUserPwdOption=1;

 validUserNameOption=1;

 getch();

 showAdminMenu=0;

 while (showAdminMenu==0)

 {

 clrscr();

 gotoxy(24,4);

 printf(“ADMIN OPTIONS”);

 gotoxy(26,9);

 printf(“Add New Employee [1]”);

 gotoxy(26,11);

 printf(“Show Daily Entries [2]”);

 gotoxy(26,13);

 printf(“Search Employee Record [3]”);

 gotoxy(26,15);

 printf(“Remove Employee [4]”);

 gotoxy(26,17);

 printf(“Close [5]”);

 gotoxy(24,21);

 printf(“Please enter your choice: “);

 582 Computing Fundamentals & C Programming

 selectAdminOption();

 }

 }

 }

stream:{}

}

/* This function provides the administrator level functionalities, such as Adding or deleting an
employee.*/

void selectAdminOption(void)

{

 char chc[1];

 int chooseNew,chooseShow,chooseSearch,chooseRemove,chooseClose;

 gets(chc);

 chooseNew=strcmp(chc,”1”);

 chooseShow=strcmp(chc,”2”);

 chooseSearch=strcmp(chc,”3”);

 chooseRemove=strcmp(chc,”4”);

 chooseClose=strcmp(chc,”5”);

 if (!(chooseNew==0 || chooseShow==0 || chooseSearch==0 || chooseRemove==0 || chooseClose==0))

 {

 gotoxy(19,21);

 textcolor(RED+BLINK);

 cprintf(“Invalid Input!”);

 gotoxy(34,21);

 textcolor(YELLOW);

 cprintf(“Press any key to continue.”);

 }

 if (chooseNew==0)

 {

 clrscr();

 gotoxy(25,5);

 getData(1);

 }

 else if(chooseShow==0)

 {

 getData(2);

 Projects 583

 }

 else if(chooseSearch==0)

 {

 clrscr();

 getData(3);

 }

 else if(chooseRemove==0)

 {

 getData(4);

 }

 else if (chooseClose==0)

 {

 showAdminMenu=1;

 }

}

/* This function retrieves data from the database as well as do data processing according to user
requests.

 The function provides functionality for menu options provided to both employee as well as administrator
user*/

void getData(int option)

{

 FILE *db,*tempdb;

 char anotherEmp;

 int choice;

 int showMenu,posx,posy;

 char checkSave,checkAddNew;

 int i;

 struct employee

 {

 char fi rstname[30];

 char lastname[30];

 char password[30];

 int empid;

 char loginhour;

 char loginmin;

 char loginsec;

 char logouthour;

 char logoutmin;

 char logoutsec;

 int yr;

 584 Computing Fundamentals & C Programming

 char mon;

 char day;

 };

 struct employee empData;

 char confi rmPassword[30];

 long int size;

 char lastNameTemp[30],fi rstNameTemp[30],password[30];

 int searchId;

 char pass[30];

 char fi ndEmployee;

 char confi rmDelete;

 struct date today;

 struct time now;

 clrscr();

 /* Opens the Employee Database*/

 db=fopen(“d:/empbase.dat”,”rb+”);

 if(db==NULL)

 {

 db=fopen(“d:/empbase.DAT”,”wb+”);

 if(db==NULL)

 {

 printf(“The File could not be opened.\n”);

 exit();

 }

 }

 printf(“Application Database \n”);

 size=sizeof(empData);

 showMenu=0;

 while(showMenu==0)

 {

 ffl ush(stdin);

 choice=option;

 /* Based on the choice selected by admin/employee, this switch statement processes the request*/

 switch(choice)

 {

 Projects 585

 /* To add a new employee to the database*/

 case 1:

 fseek(db,0,SEEK_END);

 anotherEmp=’y’;

 while(anotherEmp==’y’)

 {

 checkAddNew=0;

 while(checkAddNew==0)

 {

 clrscr();

 gotoxy(25,3);

 printf(“ADD A NEW EMPLOYEE”);

 gotoxy(13,22);

 printf(“Warning: Password Must Contain Six(6) AlphaNumeric Digits.”);

 gotoxy(5,8);

 printf(“Enter First Name: “);

 scanf(“%s”,&fi rstNameTemp);

 gotoxy(5,10);

 printf(“Enter Last Name: “);

 scanf(“%s”,&lastNameTemp);

 gotoxy(43,8);

 printf(“Enter Password: “);

 for (i=0;i<6;i++)

 {

 password[i]=getch();

 printf(“* “);

 }

 password[6]=’\0’;

 while(getch()!=13);

 gotoxy(43,10);

 printf(“Confi rm Password: “);

 for (i=0;i<6;i++)

 {

 confi rmPassword[i]=getch();

 printf(“* “);

 }

 confi rmPassword[6]=’\0’;

 while(getch()!=13);

 586 Computing Fundamentals & C Programming

 if (strcmp(password,confi rmPassword))

 {

 gotoxy(24,12);

 printf(“Passwords do not match.”);

 gotoxy(23,13);

 printf(“Press any key to continue.”);

 getch();

 }

 else

 {

 checkAddNew=1;

 rewind(db);

 empData.empid=0;

 while(fread(&empData,size,1,db)==1);

 if (empData.empid<2000)

 empData.empid=20400;

 empData.empid=empData.empid+1;

 gotoxy(29,16);

 printf(“Save Employee Information? (y/n): “);

 checkSave=getche();

 if (checkSave==’y’)

 {

 strcpy(empData.fi rstname,fi rstNameTemp);

 strcpy(empData.lastname,lastNameTemp);

 strcpy(empData.password,password);

 empData.loginhour=’t’;

 empData.logouthour=’t’;

 empData.day=’j’;

 fwrite(&empData,size,1,db);

 }

 gotoxy(28,16);

 printf(“ “);

 gotoxy(28,16);

 printf(“Would like to add another employee? (y/n):”);

 ffl ush(stdin);

 anotherEmp=getche();

 printf(“\n”);

 }

 }

 }

 break;

 Projects 587

 /* To view time records for all employees*/

 case 2:

 clrscr();

 gotoxy(21,2);

 printf(“VIEW EMPLOYEE INFORMATION”);

 gotoxy(1,5);

 printf(“Employee ID Employee Name Time Logged In Time Logged Out
 Date\n\n”);

 rewind(db);

 posx=3;

 posy=7;

 while(fread(&empData,size,1,db)==1)

 {

 empData.fi rstname[0]=toupper(empData.fi rstname[0]);

 empData.lastname[0]=toupper(empData.lastname[0]);

 gotoxy(posx,posy);

 printf(“%d”,empData.empid);

 gotoxy(posx+10,posy);

 printf(“| %s, %s”,empData.lastname,empData.fi rstname);

 gotoxy(posx+30,posy);

 if (empData.loginhour==’t’)

 {

 printf(“| Not Logged In”);

 }

 else

 printf(“| %d:%d:%d”,empData.loginhour,empData.loginmin,empData.loginsec);

 gotoxy(posx+49,posy);

 if (empData.logouthour==’t’)

 {

 printf(“| Not Logged Out”);

 }

 else

 printf(“| %d:%d:%d”,empData.logouthour,empData.logoutmin,empData.logoutsec);

 if (empData.day==’j’)

 {

 gotoxy(posx+69,posy);

 printf(“| No Date”);

 }

 else

 588 Computing Fundamentals & C Programming

 {

 gotoxy(posx+73,posy);

 printf(“| %d/%d/%d”,empData.mon,empData.day,empData.yr);

 }

 posy=posy+1;

 }

 getch();

 printf(“\n”);

 break;

 /* To search a particular employee and view their time records*/

 case 3:

 clrscr();

 gotoxy(27,5);

 printf(“SEARCH EMPLOYEE INFORMATION”);

 gotoxy(25,9);

 printf(“Enter Employee Id to Search: “);

 scanf(“%d”, &searchId);

 fi ndEmployee=’f’;

 rewind(db);

 while(fread(&empData,size,1,db)==1)

 {

 if (empData.empid==searchId)

 {

 gotoxy(33,11);

 textcolor(YELLOW+BLINK);

 cprintf(“Employee Information is Available.”);

 textcolor(YELLOW);

 gotoxy(25,13);

 printf(“Employee name is: %s

 %s”,empData.lastname,empData.fi rstname);

 if(empData.loginhour==’t’)

 {

 gotoxy(25,14);

 printf(“Log In Time: Not Logged In”);

 }

 else

 {

 gotoxy(25,14);

 Projects 589

 printf(“Log In Time is:
 %d:%d:%d”,empData.loginhour,empData.loginmin,empData.loginsec);

 }

 if(empData.logouthour==’t’)

 {

 gotoxy(25,15);

 printf(“Log Out Time: Not Logged Out”);

 }

 else

 {

 gotoxy(25,15);

 printf(“Log Out Time is:
 %d:%d:%d”,empData.logouthour,empData.logoutmin,empData.logoutsec);

 }

 fi ndEmployee=’t’;

 getch();

 }

 }

 if (fi ndEmployee!=’t’)

 {

 gotoxy(30,11);

 textcolor(YELLOW+BLINK);

 cprintf(“Employee Information not available. Please modify the search.”);

 textcolor(YELLOW);

 getch();

 }

 break;

 /* To remove entry of an employee from the database*/

 case 4:

 clrscr();

 gotoxy(25,5);

 printf(“REMOVE AN EMPLOYEE”);

 gotoxy(25,9);

 printf(“Enter Employee Id to Delete: “);

 scanf(“%d”, &searchId);

 fi ndEmployee=’f’;

 rewind(db);

 while(fread(&empData,size,1,db)==1)

 {

 if (empData.empid==searchId)

 590 Computing Fundamentals & C Programming

 {

 gotoxy(33,11);

 textcolor(YELLOW+BLINK);

 cprintf(“Employee Information is Available.”);

 textcolor(YELLOW);

 gotoxy(25,13);

 printf(“Employee name is: %s %s”,empData.lastname,empData.fi rstname);

 fi ndEmployee=’t’;

 }

 }

 if (fi ndEmployee!=’t’)

 {

 gotoxy(30,11);

 textcolor(YELLOW+BLINK);

 cprintf(“Employee Information not available. Please modify the search.”);

 textcolor(YELLOW);

 getch();

 }

 if (fi ndEmployee==’t’)

 {

 gotoxy(29,15);

 printf(“Do you want to Delete the Employee? (y/n)”);

 confi rmDelete=getche();

 if (confi rmDelete==’y’ || confi rmDelete==’Y’)

 {

 tempdb=fopen(“d:/tempo.dat”,”wb+”);

 rewind(db);

 while(fread(&empData,size,1,db)==1)

 {

 if (empData.empid!=searchId)

 {

 fseek(tempdb,0,SEEK_END);

 fwrite(&empData,size,1,tempdb);

 }

 }

 fclose(tempdb);

 fclose(db);

 remove(“d:/empbase.dat”);

 rename(“d:/tempo.dat”,”d:/empbase.dat”);

 db=fopen(“d:/empbase.dat”,”rb+”);

 }

 Projects 591

 }

 break;

 /* To login an employee into the system and record the login date and time*/

 case 5:

 clrscr();

 gotoxy(20,4);

 printf(“DAILY EMPLOYEE TIME RECORDING SYSTEM”);

 gotoxy(20,23);

 printf(“Warning: Please Enter Numeric Values Only.”);

 gotoxy(23,7);

 printf(“Enter Your Id to Login: “);

 scanf(“%d”, &searchId);

 gotoxy(20,23);

 printf(“ “);

 fi ndEmployee=’f’;

 rewind(db);

 while(fread(&empData,size,1,db)==1)

 {

 if (empData.empid==searchId)

 {

 gotoxy(23,8);

 printf(“Enter Your Password: “);

 for (i=0;i<6;i++)

 {

 pass[i]=getch();

 printf(“* “);

 }

 pass[6]=’\0’;

 while(getch()!=13);

 if (strcmp(empData.password,pass))

 {

 gotoxy(23,11);

 textcolor(YELLOW+BLINK);

 cprintf(“You Have Supplied a Wrong Password.”);

 textcolor(YELLOW);

 fi ndEmployee=’t’;

 getch();

 592 Computing Fundamentals & C Programming

 break;

 }

 gotoxy(23,11);

 textcolor(YELLOW+BLINK);

 cprintf(“You have successfully Logged In the System.”);

 textcolor(YELLOW);

 gotoxy(23,13);

 printf(“Employee name: %s %s”,empData.lastname,empData.fi rstname);

 gettime(&now);

 getdate(&today);

 gotoxy(23,14);

 printf(“Your LogIn Time: %2d:%2d:%2d”,now.ti_min,now.ti_hour,now.ti_sec);

 gotoxy(23,15);

 printf(“Your Log In Date: %d/%d/%d”,today.da_mon,today.da_day,today.da_year);

 empData.day=today.da_day;

 empData.mon=today.da_mon;

 empData.yr=today.da_year;

 fseek(db,-size,SEEK_CUR);

 empData.loginhour=now.ti_min;

 empData.loginmin=now.ti_hour;

 empData.loginsec=now.ti_sec;

 fwrite(&empData,size,1,db);

 fi ndEmployee=’t’;

 getch();

 }

 }

 if (fi ndEmployee!=’t’)

 {

 gotoxy(30,11);

 textcolor(YELLOW+BLINK);

 cprintf(“Employee Information is not available.”);

 textcolor(YELLOW);

 getch();

 }

 break;

 /* To logout an employee and record the logout date and time*/

 case 6:

 Projects 593

 clrscr();

 gotoxy(20,4);

 printf(“DAILY EMPLOYEE TIME RECORDING SYSTEM”);

 gotoxy(20,23);

 printf(“Warning: Please Enter Numeric Values Only.”);

 gotoxy(23,7);

 printf(“Enter Your Id to Logout: “);

 scanf(“%d”, &searchId);

 gotoxy(20,23);

 printf(“ “);

 fi ndEmployee=’f’;

 rewind(db);

 while(fread(&empData,size,1,db)==1)

 {

 if (empData.empid==searchId)

 {

 gotoxy(23,8);

 printf(“Enter Password: “);

 for (i=0;i<6;i++)

 {

 pass[i]=getch();

 printf(“* “);

 }

 pass[6]=’\0’;

 while(getch()!=13);

 if (strcmp(empData.password,pass))

 {

 gotoxy(30,11);

 textcolor(YELLOW+BLINK);

 cprintf(“You Have Supplied a Wrong Password.”);

 textcolor(YELLOW);

 fi ndEmployee=’t’;

 getch();

 break;

 }

 gotoxy(23,11);

 textcolor(YELLOW+BLINK);

 cprintf(“You have successfully Logged Out of the System.”);

 textcolor(YELLOW);

 594 Computing Fundamentals & C Programming

 gotoxy(23,13);

 printf(“Employee name is: %s

 %s”,empData.lastname,empData.fi rstname);

 gettime(&now);

 getdate(&today);

 gotoxy(23,14);

 printf(“Your Log Out Time:

 %2d:%2d:%2d”,now.ti_min,now.ti_hour,now.ti_sec);

 gotoxy(23,15);

 printf(“Your Log Out Date:

 %d/%d/%d”,today.da_mon,today.da_day,today.da_year);

 fseek(db,-size,SEEK_CUR);

 empData.logouthour=now.ti_min;

 empData.logoutmin=now.ti_hour;

 empData.logoutsec=now.ti_sec;

 fwrite(&empData,size,1,db);

 fi ndEmployee=’t’;

 getch();

 }

 }

 if (fi ndEmployee!=’t’)

 {

 gotoxy(23,11);

 textcolor(YELLOW+BLINK);

 cprintf(“Employee Information is not available.”);

 textcolor(YELLOW);

 getch();

 }

 break;

 /* Show previous menu*/

 case 9:

 printf(“\n”);

 exit();

 }

 fclose(db);

 showMenu=1;

 }

 }

 Projects 595

 596 Computing Fundamentals & C Programming

 Projects 597

 598 Computing Fundamentals & C Programming

 Projects 599

 600 Computing Fundamentals & C Programming

 Projects 601

 602 Computing Fundamentals & C Programming

 Projects 603

 Index 605

IndexIndex

A

a.out 107

actual

 and formal arguments 383

 location of a variable 460

 parameters 377, 380

addition operator 164

ALGOL 93

algorithms 76

 # elif Directive 530

 #defi ne 102, 136

 #defi ne Directive 101

 #error Directive 530

 #include 102, 109

 #include Directive 103

 #pragma Directive 530

 16-bit unicode

 8-bit bcd systems

alphanumeric codes

analysis of algorithms 77

AND gate 68

ANSI 529

ANSI standard 386

application software 8

architecture of UNIX 18

argument of the function 96

argumented macro substitution 522

arithmetic

 expression 155

 operations 347

 operators 101, 145, 146, 158

 operators in C 157

array 154, 287, 288

 indices 290

 of structures 433

arrays and structures 289

arrays as members of structures 312

arrays vs structures 425

ASCII code

assembler 74

assembly language 72

assigning the address 462

assignment statements 99

auto variables 407

automatic variables 401

B

base-8 system 49

binary

 addition 60

 arithmetic 60

 division 66

 multiplication 62

 subtraction 64

bit 47

bit fi eld 443

bitwise operators 153

block or a compound statement 408

break and continue statements 276

break or goto statements 260

break statement 222, 265

bubble sort 298

byte 47

C

C compiler 105

C functions 369

C preprocessor 521

C program 104

 library 369

C tokens 117

C++ 94

calculating standard deviation 316

called function 376, 382

cathode ray tube (CRT) 10

 606 Index

chain of pointers 466

character array 186, 291

character strings 335

Client Server Networks (CSNs) 24

closing a fi le 499

comma operator 154

command line arguments 515

common operations performed 335

comparison of two strings 350

compiler 75

 directives 109

compound relational expression 149

computer

 classifi cation of 6

 generations of 2-4

 system 7

concatenation of strings 350

conditional expressions 153

conditional operator 226

control string 191

Control Unit (CU) 9

control variables 254

conversion of numbers 50

 decimal to binary 54

 decimal to hexadecimal 54

 decimal to non-decimal 50, 54

 decimal to octal 54

D

data structures 288, 289, 297

data type 129

decimal system 46

decision statements 149

declared 461

dereferencing operator 463

device drivers 13

display monitors 10

do.... while loops 253

double word 47

dynamic arrays 312

E

EBCDIC code

edit set conversion code 338

EDSAC 2

EDVAC 2

else if ladder 218

ENIAC 2

entry-controlled loop 254

escape sequence 191, 121

excess-3 BCD code

executing a program 105

expression 222

extern 406

external static variable 408

external variables 402

F

false-block statement(s) 212

Fibonacci series 79

fi eld specifi cation for reading an integer 183

fi fth generation computers 2

fi le inclusion 526

File Transfer Protocol (FTP) 31

fi lename 498

fi rst generation computers 2

fl oating point 99

 (or real) numbers 125

fl ow of control in a multi-function program 372

fl ow charts 77

for loop 265

for statement 259, 260, 266

formal arguments 383

formal parameters 380

formatted printf statement 191

fourth generation computers 2

 examples of 4

frequency, two-dimensional array 304

function 374

 body 375

 declaration 379

 defi nition 373

 header 374

 implementation 374

 lower 181

 mul 378

 name 374

 printline 382

 printline() 378

 prototype 379

 strncmp 355

 strncpy 355

 type 374

G

generation of computers 2

getchar function 178, 179, 338, 339

getw and putw functions 502

gigabyte (GB) 47

global variable 129

goto statement 230, 231, 264, 265, 268

H

hexadecimal point 48

 Index 607

hexadecimal system 48

hierarchical topology 26

high-level languages 73

hybrid topology 28

Hyper Text Transfer Protocol (HTTP) 30

I

I/O routines 500

identifi er 118

if statement 208, 268

if...else construct 264

if...else statements 153, 227

increment and decrement operators 153

incremented 468

indirection operator 463

infi nite loop 231

information 1

initializing structures 430

initializing two-dimensional arrays 302

insertion sort 298

int 124

integer constant 118

Integrated Circuits (ICs) 3

Interactive Voice Response (IVR) systems 11

internal representation of bit fi elds 443

international network (internet) 24

interpreter 75

intranet 24

J

Java 94

K

Kernel 18

keyword 118

Kilobyte (KB) 47

L

levels of precedence 164

library functions 369

linear bus topology 27

linked lists 289, 312, 445, 458

liquid crystal display (LCD) 10

Local Area Networks (LANs) 24

local or internal variables 401

local variables 129

logic gates 68

logic of execution of else if ladder statements 218

logical expression 149

long int 124, 132

longevity 400

M

machine code 74

machine language 72

macro substitution 522

magnetic storage device 13

magneto-optical device 13

main function 105, 382

mainframe computers 6

manipulating strings 359

mathematical functions 166

Megabyte (MB) 47

member operator 432

memory addresses 457

mesh topology 28

Metropolitan Area Networks (MANs) 24

microcomputers 6

microprocessor 4

minicomputers 6

mixed-mode arithmetic 148

modular programming 373

Most Signifi cant Digit (MSD)

motherboard 9

MS DOS 15

multifunction program 370, 397

multiple source program fi les 108

N

natural languages 73

nested macro substitution 522

nesting of functions 393

network

 protocol 29

 topologies 26

newline character 339

nibble 47

non-decimal to decimal 50

non-register variables 408

NOT Gate 70

O

object code 74

octal

 point 49

 system 49

 to hexadecimal 50

one-dimensional arrays 288, 289, 395

operating system 13

optical storage device 13

OR Gate 69

output devices 10

 608 Index

P

parameter list 375

passing arrays to functions 395

Peer-to-peer Networks (PPNs) 24

pointer to a function declaration of 479

pointer type variable 481

pointer variable 459, 461, 462, 466

pointers 457, 468

 as function arguments 475

 as function parameters 477

power function 389

precedence 432

preprocessor 521

 directives 529

printer 11

printf 97, 132

 function 96

 line 96

 statement 191

printline function 371, 372, 381

problem-oriented languages 73

procedure-oriented languages 73

program statement 109

program verifi cation 76

programming languages 71

prototype declaration 389

ptr 484

putchar function 347

R

RAM 10, 12

reading a character 178

real arithmetic 147

register variables 408

relational operators 148

return statement 376, 377

ring topology 27

ROM 12

rules of pointer operations 468

S

scanf and printf functions 428

scanf function 336

scanf statement 338

scanning device 9

scope 400

second generation computers 2

secondary memory 12

selection process of switch statement 222

selection sort 298

service 18

shell 19

short int 124

simple external variable 408

simple macro substitution 522

Simple Mail Transfer Protocol (SMTP) 31

single-entry 373

single-exit 373

sizeof operator 154

sorting 297

special operators 154

standard application programs 14

star topology 27

statement-block 209

static arrays 312

static variables 406, 407

storage class specifi ers 130

strcat function 352

strcat() function 351

strcmp() function 352

strengths of C language 369

string 334

string as function parameters 359

string-handling functions 350

strncpy 355

strstr 356

struct personal 428

structured data types 288

structured programming 268

structures 359, 423

supercomputers 6

switch statement 207, 222, 225

symbols 46

system software. 8

T

table of strings 357, 362

terminating null character 336

test expression 209, 212

third generation computers 2

 examples of 3

three classes of integer storage 124

three-dimensional array 311

token pasting operator ## 531

top-down approach of algorithms 76

translator programs 74

trigraph sequence 117

true-block statement(s) 212

two-dimensional array frequency 304

two-dimensional arrays 298, 311, 398

two-dimensional character 357

two-parameter function 356

 Index 609

U

undefi ning a macro 525

underlying concepts of pointers 459

unique application programs 14

UNIVAC 2

UNIX operating system 18, 107

use of pointers 484

use of structure pointers as function parameters 490

user-defi ned data type 128

user-defi ned function 101, 369, 371, 373

using the computer 87

utility programs 13

V

Value-added Networks (VANs) 24

variable

 argc 515

 code 442

 in C 400

 names 98

video card/sound card 10

visibility 400

W

Wide Area Networks (WANs) 24

windows operating system 16

word 47

	Title
	Contents
	1 Understanding Fundamentals of the Computer
	2 Computing Concepts
	3 Overview of C
	4 Constants, Variables and Data Types
	5 Operators and Expressions
	6 Managing Input and Output Operations
	7 Decision Making and Branching
	8 Decision Making and Looping
	9 Array
	10 Character Arrays and Strings
	11 User-Defined Functions
	12 Structures and Unions
	13 Pointers
	14 File Management in C
	15 The Preprocessor
	Appendix I ASCII Values of Characters
	Appendix II ANSI C Library Functions
	Appendix III Database Management System
	Appendix IV Projects
	Index

