
Cracking the IT Interview
Jump-start your CAREER with CONFIDENCE

Second Edition

TMH Professional: Cracking the IT Interview Series

Other Titles in this Series

 Cracking IT Campus Interviews

 Deepa Jain

 Cracking the C, C++ and JAVA Interview, 2e

 SG Ganesh and Subhash KU

 Cracking the QTP Interview

 Siva Koti Reddy K

 Cracking the System Software Interview

 Sandya Mannarswamy and SG Ganesh

Tata McGraw Hill Education Private Limited

NEW DELHI

McGraw-Hill Offi ces

New Delhi New York St Louis San Francisco Auckland Bogotá Caracas

Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal

San Juan Santiago Singapore Sydney Tokyo Toronto

 BALASUBRAMANIAM K. R. BAALAJI

 KIRAN G. RANGANATH RAVINDRA K. NANDAWAT

 SELVAGURU M. SUBASH T. COMERICA

 VENKAT RAGHAVAN S. VIKRAM SATHYANARAYANA A.

Cracking the IT Interview
Jump-start your CAREER with CONFIDENCE

Second Edition

TMH Professional: Cracking the IT Interview Series

Tata McGraw-Hill

Published by Tata McGraw Hill Education Private Limited,
7 West Patel Nagar, New Delhi 110 008

Copyright © 2012, by Tata McGraw Hill Education Private Limited

No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise or stored in a database or retrieval system without the prior written permission of the publishers. The
program listings (if any) may be entered, stored and executed in a computer system, but they may not be reproduced for
publication.

This edition can be exported from India only by the publishers,
Tata McGraw Hill Education Private Limited.

ISBN (13): 978-1-25-900611-1
ISBN (10): 1-25-900611-5

Vice President and Managing Director—Asia-Pacifi c Region: Ajay Shukla
Publishing Manager—Professional: Praveen Tiwari
Asst. Sponsoring Editor—Science, Technology and Computing: Simanta Borah
Sr. Copy Editor: Neha Sharma
Sr. Production Executive: Rita Sarkar
AGM—Sales and Business Development: S Girish
Deputy Marketing Manager—Science, Technology and Computing: Rekha Dhyani
General Manager—Production: Rajender P Ghansela
Manager—Production: Reji Kumar

Information contained in this work has been obtained by Tata McGraw-Hill, from sources believed to be reliable. However,
neither Tata McGraw-Hill nor its authors guarantee the accuracy or completeness of any information published herein, and
neither Tata McGraw-Hill nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this
information. This work is published with the understanding that Tata McGraw-Hill and its authors are supplying information
but are not attempting to render engineering or other professional services. If such services are required, the assistance of an

appropriate professional should be sought.

Typeset at Text-o-Graphics, B-1/56, Arawali Apartment, Sector 34, Noida 201 301 and printed at

Cover Printer:

Cover Design: Mukul Khattar

RYLCRRQHRZXLL

To

Our Parents

Preface to the Second Edition

I
ndian IT industry has seen many down-turns, recessions and challenges over the past 14 years.

The Dot Com bust of 2000, the Telecom recession of 2004 and, more recently, the worldwide

economic slowdown of 2008–2011, where every global company was forced to re-think their

technology outsourcing strategy.

Every recession has resulted in a greater need for IT professionals in low-cost countries like India—

the need of the hour being “Productive IT professionals” with the right technology skills.

Following the tremendous success and appreciation for the First Edition of this book, which sold

over 50,000 copies, we decided to re-look at the latest trends in Technology hiring and interviewing.

The Second Edition is a combination of additional new topics and refi ning of existing topics.

We realise that while hiring for software engineers with upto 3 years of experience, the emphasis is

on:

 Understanding of the software fundamentals

 Breadth of software technologies candidate is comfortable with

 Attitude to problem solving and

 Interviewing skills

In this edition, we have focused on equipping you with these skills.

In addition to revising all the existing chapters, we have enhanced the interviewing tips and soft-

skills section and added a section on real-time operating systems.

Even though you may have a thousand books that go to greater detail, we believe that this is the one

book which will help you CRACK THAT IT INTERVIEW !

Authors

Preface to the First Edition

T
his book took its birth from our experiences as interviewers and also as interviewees. It is an

effort to assist and advise prospective employees of software companies across the globe. The

book addresses some of the “must-haves” and bare minimum aspects of software along with

some advanced strategies and guidelines to be followed in a technical interview.

There are several compelling reasons that have inspired and motivated us to pen this book.

Firstly, India is fast being recognized as a global source for extremely talented, English-speaking

knowledge workers. This is driving the market for graduates aspiring to be software engineers. But,

alas, there are more than a million graduates walking out of colleges every year, and only the best

few manage to snap up the available jobs. This fi erce competition is driving students to persevere

and companies to innovate.

Cracking the IT Interview attempts to provide an insight into what different companies look for

in a prospective employee and their innovative approaches to net the very best from a huge talent

pool.

Secondly, many software companies recruit graduates with different backgrounds—computer

engineers, electrical engineers, civil engineers, mechanical engineers, MScs, MCAs, MBAs, etc.

Well, that is the need of the hour; the Indian IT market is poised to touch the $50 billion by 2007,

employing a million graduates! But that does not mean that the selection process is going to get any

easier. Our book caters to people from any of the above diverse streams and more!

Thirdly, it has been observed that there are technical books in the market which delve into subjects

with varying degrees of detail. There are books on operating systems, data structures and algorithms,

programming languages, quality procedures, software engineering models, testing methodologies…

the list goes on and on. This book seeks to address the obvious need for a single source of information

that can be used as a reference. At the same time care has been taken to keep the book concise and

focused towards taking an interview.

x Preface to the First Edition

Finally, attending and successfully clearing an interview is by no means an easy task. Employers

are very demanding and set tough measurement criteria for interviewees. This book is therefore

presented from the interviewer’s perspective.

Having described the motivation, we would like to share some other salient features of our book:

 Provides an end to end blueprint—right from resume presentation to volleying the interview

questions.

 Presents a comprehensive question bank on the different aspects of Software Engineering

covering Programming Languages, Operating Systems, Data Structures, Java & J2EE,

Object Oriented Design, Networking and Database ensuring a combination of standard

time-tested technologies with bleeding edge technologies to ensure effectiveness in the long

term with special emphasis on practical application.

 Contains an exhaustive list of interview questions with varying levels of diffi culty.

 Sets out important guidelines on some implicit behavioural aspects of an interview, which

are usually under emphasized/neglected by aspirants.

 Provides a “Thinker’s Choice” for the opportunity to further one’s understanding on a

particular technology or language.

 Contains a reference section on each topic for general guidance.

A word of caution—This book should not be construed as the sole source of information on the

above mentioned subjects. It is merely a framework on which you need to build the necessary

competency levels with further reading of the books mentioned in the References.

Feedback—We will appreciate receiving your comments, criticism and feedback at

http://www.facebook.com/#!/CrackingTheITInterview.

For more question tips and suggestions for Cracking the IT Interview please visit our website

www.crackinginterviews.com

Authors

Acknowledgements

Our Special thanks to:

Anuradha T. Technical Lead, Wipro Technologies

Chandra Mohan Software Engineer, Wipro Technologies Ltd.

Chaturbhuj Kalro Gangarams Book House, Bangalore

Clettas Chacko Technical Lead, Lucent Technologies

Diwakar Vishwanathan Staff Engineer, Infi neon Technologies

Madhusudhan K. Software Engineer, Tata Infotech Limited

Premraj Duraivelu Software Engineer, Cisco Systems

Sitaram, P. Katti Manager-Software Development, Cisco Systems Inc.

Apart from these core reviewers, there are many other people who helped us fi ne tune this book.

Without their help, this book would not be in the shape it is now. Our heart felt thanks to each and

every one associated with this book—both directly and indirectly.

Authors

Contents

Preface to the Second Edition vii

Preface to the First Edition ix

Acknowledgements xi

Introduction 1

Pre-Interview Preparation 2

Resumé Preparation 2

Points to Remember 3

Sample Resumé 3

Points to Ponder 5

Soft Skills 5

Sample Interview Checklist 11

Conclusion 12

Chapter 1 C Programming 13

Introduction 13

Storage Class 13

Functions 16

Preprocessor 20

Structures and Union 22

Pointers 24

Function Pointers 29

Bit Operations 31

Miscellaneous 32

Problems and Solutions 36

Thinker’s Choice 54

References 55

xiv Contents

Chapter 2 Data Structures and Algorithms 56

Introduction 56

Concepts of Data Structures 57

Arrays 60

Stack and Queue 64

Linked List 70

Trees 79

Sorting and Searching 95

Socket Programming 106

Thinker’s Choice 113

References 114

Chapter 3 Operating Systems 115

Introduction 115

General Concepts 115

Process Management 116

Multiprocessing 119

Synchronization Mechanisms 120

Memory Management 123

File Management 126

Multithreading 126

Compiler/Linker/Loader 128

Miscellaneous 129

Thinker’s Choice 131

References 132

Chapter 4 Real Time Operating Systems 133

Introduction 133

General Concepts 133

Thinker’s Choice 138

References 138

Chapter 5 C++ Programming 139

Introduction 139

Moving from C to C++ 139

Structures and Classes 141

Keywords and Operators 143

Pointers and References 147

Free Store Management 149

xvContents

Functions 151

Constructors and Destructors 154

Inheritance and Polymorphism 157

Templates 168

Miscellaneous 172

Problems and Solutions 180

Thinker’s Choice 189

References 189

Chapter 6 Java 190

Introduction 190

Basics 190

JVM and Garbage Collection 195

Strings 196

Threads 198

Collections 202

Exception Handling 203

Constructors 207

Overloading and Overriding 208

Streams 210

Interface and Inner Class 211

Database Support 213

Servlets 217

EJB 224

JSP 230

Problems and Solutions 232

Thinker’s Choice 236

References 237

Chapter 7 Database 238

Introduction 238

DBMS Concept 238

Problems and Solutions 250

Thinker’s Choice 252

References 252

Chapter 8 Data Networks 253

Introduction 253

Internetworking Basics 253

xvi Contents

Network Technology 258

Ethernet Networking Concepts 259

Data Link Layer 262

IP Layer 264

TCP Layer 273

Application Layer 275

Security 278

Commands and Utilities 279

Problems and Solutions 280

Protocols and Standards 282

Thinker’s Choice 283

References 284

Introduction

A
s the world recoups from the economic downturn, it has become more evident than ever

that outsourcing and off-shoring are here to stay and India is in the best position to help

global companies cut costs. All companies are out looking for one kind of employee–

“A technically capable engineer with good communication skills”.

Are you ready to impress the interviewers on both these aspects?

A class topper with an 80+ aggregate percentage, who always has the answers for all the tough

mathematical problems and has an unblemished academic scoreboard, cruises his/her way through

the technical written test of every software company coming to the campus for recruitment but is

unable to crack the interview.

Does this seem to be a familiar story?

Every class has its set of interview-bloopers and all of them could have been avoided with a little

preparation and adherence to a few fundamental rules of communication!

It is not necessarily the ‘Most Intelligent’ but the ‘Best Prepared’ candidate who lands the job. In

this book, we have emphasized the importance of good preparation on all aspects of a recruitment

cycle—Technical and Soft-Skills, based on our experiences in the industry.

The fi rst section we shall try to explain some of the common questions broached in most interviews

as well as learn how to avoid potential potholes in an interview. This section will be relevant for any

interview irrespective of your experience level!

The technical topics of the book have been revised taking into consideration the changing technology

arena as well as additional topics, which have been gaining importance in the industry.

After 12 years in the software industry and having sold over 50,000 copies of the previous edition

of this title, we realize that this book is as relevant to a college fresher as it is to a software engineer

looking for a new job with 5 years of experience.

2 Cracking the IT Interview

PRE-INTERVIEW PREPARATION

From the ocean of programmers competing for the job, soft-skills and good presentation are

often the main differentiators in an interview. This section gives us an insight into some of the

psychological aspects of interview handling, which are as important as technical expertise.

RESUMÉ PREPARATION

With the automation of the hiring process in most companies, resumés will be shortlisted using

specialized software in few minutes. Tacky resumés could unwittingly doom your job search. So,

writing an ‘ideal resumé’ for a job is the most important and perhaps the only tool to getting a foot

through the door.

Verify the following points before you dispatch your resumé to any companies:

1. Size: Make sure your resumé does not span more than two to three pages. No one likes to read

lengthy articles on your achievements. They would prefer to get it from you in person.

2. Format: Any good resumé should not have a confusing/fuzzy look.

 � Use a standard and easily readable font consistently in the document.

 � Have proper and meaningful headings.

 � Italicize characters judiciously and avoid excessive colors.

 � Give the resumé an overall ‘Professional Look’.

3. No Grammatical Errors: Most resumés have grammatical errors that are easily visible through

any Word editor. Avoid them as much as possible. For example, if you use MS-Word, make sure you

do not see any red or green waved underlines on your resumé. Make sure you run Spell Check before

dispatching any correspondence to the companies.

4. Contact Details: Provide your contact details clearly at the top of the resumé. Do not forget to

mention your email-id and phone number; preferably a mobile number—ensuring you never miss

a call from the HR when he/she is looking for you.

5. Multiple resumés: It pays to customize your resumé according to the company’s requirement.

For example, you might need to sell yourself for an ‘embedded programmer’ job with your C

knowledge and for an ‘application programmer’ job, you may need to emphasize visual packages

like VB, VC++, etc.

3Introduction

POINTS TO REMEMBER

 � Make sure you are familiar with what you write in your resumé; and ensure that you are

well prepared on all the facets of the topics you have touched upon. Your resumé is the only

source of information for the interviewers and all questions would invariably be directly

linked to what you have mentioned.

 � Be crisp and clear. In the project details section, it is recommended that you write about the

responsibilities you handled in the project and what you have accomplished in this project

rather than a lengthy essay about the nitty-griity of the project.

 � Highlight any technical accomplishments like certifi cations obtained, training attended,

etc.

 � Limit or avoid writing excessively about your personal details.

 � You do not need to have a declaration. Remember it is a resumé and not a legal affi davit.

SAMPLE RESUMÉ

There is a lot that can be written about a perfect resumé. We believe that this sample resumé can

enlighten you as to how a good resumé should look. Spend enough time and put in all your creativity

into your resumé.

James Bond

#007, 7th F Cross, 4 T Block, Times Square,

Bangalore, India–560 007

Mobile: +91-12345-12345

Res: +91-80-12345678

E-mail: james007@xyz.com

Objective: Seeking a challenging career in the fi eld of Software Design and Development.

Professional Profi le

 Experience in Software development on C and C++ during my Academic project

 Effective team worker

Technical Skills/Key Software Skills

 Programming Languages : C, C++, JAVA

 Operating Systems : UNIX

 Scripting Language : PERL, TCL / TK

4 Cracking the IT Interview

 Database : Oracle 11i

 Front-end tools : Visual Basic 5.0

Experience: XYZ India Pvt. Ltd. (Academic Project)

 Title : Design and Development of a Retail Banking Solution

 Technology : C, Visual Basic, Oracle

Description: Designed and developed a banking software solution for XYZ India Pvt. Ltd.

The retail sector of the banking was automated including the Savings bank and the Over-draft

functionalities. Operating in a team of 3 members, we were exposed to some of the various

aspects of the software development life cycle including Requirements.

 Collection, Design, Coding, Testing and delivery to client

 Module ownership and on-time delivery

 Won “Spot” award for excellence

 Won “feather in the hat” award for innovation

Bachelor of Engineering in Electronics and Communication Engineering, Bangalore University

(1995–1999) with First Class with distinction. (75%)

Semester 1 Semester 2 Semester 3 Semester 4

74 % 75 % 76 % 75 %

Semester 5 Semester 6 Semester 7 Semester 8

74 % 75 % 76 % 75 %

Pre-University Course:

The International College of Science, Bangalore

Aggregate Percentage: 92%

School: ICSE (Class X):

St. James Bond School, MI6, Roger Moore Nagar, Bangalore

Aggregate Percentage: 90%

Certifi cations: Java , Microsoft , CCNA, CCNP

Interests: Sports, reading and traveling

Skills: Fast learner, good communication and listening skills

5Introduction

POINTS TO PONDER

 � As in any market situation, the best way to guarantee success is to cater to the commodity

in demand. Similarly, the world of Software Technology is always in a constant churn with

technologies changing by the season. Be abreast with the latest technologies.

 � Most companies assume that freshers recruited would have to be trained before introduction

into the mainstream. With this assumption, they shortlist students with a good academic

background and percentage, this cut-off being a fi rst fi lter. But all students selected in the

percentage band always stand an even chance in the interview.

 � This is where other characteristics of the candidate’s personality are brought to the fore and

the better the attitude, the better the chances.

 � It is very important for the candidate to do his/her homework about the background of

the company he/she is applying to before proceeding to the interview. This would help in

asking more informed questions as well as emphasizing the right aspects of his/her skill-

set.

SOFT SKILLS

Interview Presentation and Handling

Most interviewers try to comfort the candidates during the initial session of the interview; hence

they try to talk about personal details about which candidates are pretty comfortable talking about.

This also opens up a channel of communication at a personal level. If you could impress the panel

with well prepared/rehearsed crisp answers, your chances of success are assuredly better.

It is a scientifi cally proven fact that only about 10–20% of your communication depends on the

words you speak and its content. Over 80% of communication hinges on other neuro-linguistic

attributes like the tone of speech, fl uency of expression and body language while delivering the

content. Hence, to get comfortable in such situations, organize/attend mock interviews among your

peers and host group discussions to improve your communication skills.

Some of the MUST-DO items PRIOR to your interview are as follows:

 � Do your homework: Check out the company’s website. Ask around; fi nd out as much as

possible about the company before your interview. Prepare answers to commonly asked

interview questions. This will make you feel mentally prepared.

 � Feel good: Bring your best attitude. Get a good sleep.

 � Dress smart: Everything counts when you are making a fi rst impression. Dress conservative

and professional. Hair should be well groomed. Your face should be preferably clean-

shaven.

6 Cracking the IT Interview

 � Arrive early plan: to arrive 15–20 minutes before your scheduled interview. Additionally,

give yourself a little extra time for your commute just in case traffi c is bad. In total, build

in an extra half hour for yourself; 15 minutes for commute “what ifs” and 15 to be sure that

you’re early.

Turn your cell phone off.

Some of the MUST-DO items DURING to your interview are as follows:

 � Greet with confi dence: Direct eye contact, a fi rm handshake and a smile. Show enthusiasm!

Sure they are looking for someone who can do the job. Be that person. Be yourself. Sell

yourself on that interview as a person qualifi ed and eager to take on the task at hand. Express

your interest. Be pleasant. Be positive. Be sure to sit with your best posture.

 � Listen: The interviewer will tell you everything you need to know to get this job if you are

careful to actively listen. Do not give the interviewer the impression that you are not paying

attention. It is important to engage the interviewer in a meaningful discussion than to have

a monologue to an audience who are switched-off.

 � Answer the questions directly: It is important that you answer the questions crisply without

rambling and going off on a tangent.

Some of the common ice-breakers are as follows:

 � Tell me something about your background

 Give a brief introduction about your educational background and your passionate hobbies.

Even before the actual tech interview begins you can strike a very positive chord with your

interviewers by answering confi dently and putting forth a concisely prepared brief. Keep it

short and to the point. Never elaborate unless requested.

 � What are your plans for pursuing higher education?

 Such questions are aimed at probing into your future retention value to the company.

 Companies would like to weed out any candidates who are looking at a stop-gap arrangement

before they proceed on to their foreign universities.

 � What has been the toughest challenge you have faced in your life so far?

 � Describe your most successful moment in life.

 If you could give an interesting situation, which you faced in your life and how you overcame

adversity, it could help the panel in understanding your personality better. In all personal

questions, truth and honesty is best adhered to.

 � What are your strengths and weaknesses?

 Do enumerate both aspects of your personality preferably stressing on your strengths with

examples.

7Introduction

 Also show how you are working to improve on your weaknesses.

 � Why do you want to switch from your fi eld (electronics/mechanical) to computers? Do

you think you can cope with the pressures of learning a new domain?

 Any non-computer science student is bound to be asked this question. But giving a positive

answer to this is very important. If you try to show that you are not interested in your own

area of specializations and wish to move just because Software looks rosy on the outside,

you could be caught off-guard with a follow-up question like “After attending our training

sessions if you suddenly realize that Software is not the place for you, what will you do”. Try

to depict your versatility and readiness to adapt to changes if necessary.

 � Give me an example where you have taken initiative in College? Have you ever organized

a college tour or event? Give a brief account of your extracurricular life in College.

 Such questions are posed to test the leadership traits displayed by the candidates in their

academic lives and would defi nitely go a long way in scoring extra points in your overall

tally.

 This opportunity should be used to highlight any leadership initiative you have taken in

leading a group towards a common goal.

Some of the TRAP QUESTIONS are as follows:

 � Are you willing to travel outside Bangalore (any city) if placed in some other part of the

country?

 Requirements to travel are very dynamic in the software industry and every candidate is

expected to accord priority to project requirements. Unless you have serious traveling

limitations this issue is best postponed to when the actual travel need arises.

 � Do you have any strong likes/dislikes with respect to Technology? Do you mind working

on maintenance projects?

 If you have a passion for a specifi c technology or domain, it wouldn’t harm in letting them

know about your interests and how your learning curve would be steeper if assigned to

these assignments.

 � Do you have any problems staying up late in offi ce or working on holidays as required?

 The late hour working and holidays skipping is an intrinsic part of the software professional’s

life. As freshers, all candidates are expected to understand and consent to this.

Some other questions to test your emotional maturity!

 � We see that your marks have not been very consistent through your semesters. Can you

tell us why?

8 Cracking the IT Interview

 � Which do you think is more important: individual brilliance, team effort or hard work?

Rank them in your order of importance.

 � A lot of candidates with much better marks have also applied for this job, why should we

consider you instead of them?

 All projects, software or otherwise, require us to work in groups and be capable of dealing

with the complexities arising from it. Coming out of academic life we often see that highly

individualistic or uncommunicative people are not preferred everywhere. As always, virtues

like hard work, perseverance, honesty, truthfulness and helpfulness are highly respected.

Some of the possible questions in which you could portray some of the high points of your

academic career are as follows:

 � What do you consider to be your most signifi cant achievement so far?

 � In the software industry what do you think is the most important characteristic of a

Software professional?

 � How do you see your career growth in this organization? Where do you see yourself three

years from now?

 You are the best person to answer these questions about yourself and the better you portray

yourself the better it is for you. As these questions are about incidents in life you have

experienced you should always have a couple of ready answers to these questions rather

than thinking about them while on the hot-seat!

 � The MOST IMPORTANT question you need to prepare for are as follows: Do you have any

questions for us?

 This is usually the fi nal question in the interview and should be seized by the candidate to

show his/her interest in knowing the organization better and clarify any concerns he/she

has.

Some Pointers on good open-ended questions are in the following:

 � About the company

 ∑ Who are your main competitors?

 ∑ “I saw in your web site that ….”

 ∑ How do you distinguish yourself from competitors?

 ∑ How would you describe your company culture, philosophies?

 � About the position

 ∑ Describe the job cycles—weekly, quarterly, annually.

 ∑ In what technology area am I likely to be working (for freshers)?

9Introduction

 ∑ Describe your expectations of the right person in this job technically? Personally?

 ∑ How could someone exceed them?

 ∑ Has anyone who worked for you really been a super star? Why?

 ∑ Has anyone who worked for you really failed? Why?

 ∑ What do you fi nd to be the most challenging aspect of the job?

 What training programs will the company organize?

 � About the interviewer or group

 ∑ Do you mind if I ask your background?

 ∑ How long have you been with the company?

 ∑ What do you like most about the company? Least?

 ∑ What are your “secrets” about how to do well here?

 � Remain Flexible: It is advisable to defer the discussions around benefi ts, salary, international

travel, etc., until after you have convinced the interviewers that you are the right person for

the job.

Networking

 � No, this is not the networking of routers and switches. This is the network you build for

yourself of people in different companies, which will help you forward your resumé around

companies and get you an opportunity to appear for tests and interviews at reputed fi rms.

So it is very important that you make a lot of people and keep in touch.

 � Subscribe to various mailing lists and keep in touch with your fellow interviewees.

 � That will help you to understand the interview process better, get to know a company’s

requirement and the kind of questions a company expects its prospective employees to

answer.

 � Almost all companies have ‘Employee referral, which means that there is enough incentive

for both the candidate and the reference to push your resume through.

How NOT to get hired ….

 � Poor personal appearance: Outright shabby

 � Lack of interest and enthusiasm: Passive and indifferent

 � Over emphasis on money: Interested only in the best offer

 � Condemnation of past employers: Strict no-no

 � Failure to look at interviewer when conversing: Shows poor self-confi dence

10 Cracking the IT Interview

 � Limp, fi shy handshake

 � Unwillingness to go where sent: Very strong preferencesis not always a good virtue

 � Lack of courtesy: Ill-mannered/Rude

 � Lack of maturity: Very critical to leave your college attitude at home

 � Lack of energy: Can be a key differentiator

 � Late for interview: Important to apologize if it is your fault

 � Ask no questions about position/job: Shows introvert tendencies

 � Vague responses to questions: Might indicate you are lying

 � Over-aggressive, loud with superiority complex

 � Inability to express self clearly: Language can be improved but not attitude

 � Lack of planning for career: No purpose or goals

 � Lack of confi dence and poise: Nervous

 � Failure to participate in activities: Group discussions are used to weed out passive/non-

communicative candidates

 � Unwilling to start at the bottom, expects too much, too soon

 � Makes excuses; evasive; hedges on unfavorable factors

 � Indecision

 � Merely shopping around: Not interested in the job

 � No interest in company

 � Low moral standards/Virtues

 � Lazy

 � Intolerant (Strong prejudices)

 � Inability to take criticism

 � Excessively emotional

Here is an interview checklist, something that almost every IT company has. It lays down the

blueprint for any interview and provides a framework on which most interviewers assess the

interviewees. Getting to understand the way the Interview panel is documenting their assessment

gives you pointers on how to prepare better for the interview.

11Introduction

SAMPLE INTERVIEW CHECKLIST

Candidate’s Name:

Education:

Experience:

Current Company:

Subject Rating Comments

Operating Systems

C

C++

Java

Data Structures

Database

Networking

Software Engineering

Quality

Testing

Communication Skills

(Behavioural)

Others

Result Hire Reject WaitList

Rating:

1- Poor

2- Average

3- Good

4- Very Good

5- Excellent

12 Cracking the IT Interview

CONCLUSION

This introduction would have given you a peek into the interview process and gives an idea on the

ground work you will have to do before you start thinking about applying for a job. But this has

been limited to the non-technical aspects.

The forthcoming chapters will give you an insight into the technical aspects of the interview, which

are, of course, equally important.

C Programming

INTRODUCTION

C language, being one of the earliest computing languages, is commonly considered as the basic

requirement for any aspiring software professional. All interviews invariably start with questions

in C language and it is imperative for every individual to master C language. A collection of C

language FAQs (Frequently Asked Questions) and solutions are presented in this chapter.

STORAGE CLASS

1. What are local and global variables?

Local

 � These variables only exist inside the specifi c function that creates them.

 � They are unknown to other functions and to the main program.

 � Local variables are allocated memory on the stack and they cease to exist once the function

that created them has completed execution.

 � They are recreated each time a function is executed or called. Local variables are not

initialized automatically.

 � Their scope and life is limited to the function in which they are declared.

Global

 � These variables can be accessed (i.e., known) by any function contained in the program.

 � These variables are visible (scope) throughout the program from the point of their

declaration.

 � They do not get recreated if the function is recalled.

1

14 Cracking the IT Interview

 � To declare a global variable, declare it outside all the functions.

 � If a local variable is declared with the same name as a global variable, then the function will

use the local variable that was declared within it and ignore the global variable.

 � Global variables are normally initialized to 0 by default.

 � Global variables are allocated memory on the Data Segment.

2. What is the scope of static variables?

The storage class, static, has a lifetime lasting the entire program. Static storage class can be

specifi ed for automatic (local) as well as global variables.

Static automatic variables continue to exist even after the block in which they are defi ned terminates.

Thus, the value of a static variable in a function is retained between repeated function calls to the

same function. Static variables are allocated on the heap. The scope of static automatic variables

is identical to that of automatic (local) variables, i.e., it is local to the block in which it is defi ned;

however, the storage allocated becomes permanent for the duration of the program. On the other

hand, static variables may be initialized in their declarations; however, the initializers must be

constant expressions, and initialization is done only once at compile time when memory is allocated

for the static variable.

The scope of a static global variable is only within the fi le in which it is declared. A user cannot use

extern in a different fi le and access the static global variable.

3. What is the difference between static and global variables?

While the life of an object determines whether the object is still in the memory (of the process),

scope of the object decides whether the variable can be accessed at that point in the program.

Static variables are local in scope to the block or fi le in which they are defi ned, but their lifespan

is throughout the program. For instance, a static variable inside a function cannot be called from

outside the function (because it is not in scope) but is alive and exists in memory. It retains its old

value between function calls.

Global variables persist (life) throughout the program; scope is also throughout the program. It

means that global variables can be accessed from any function, any fi le (unless declared static) in

the program.

4. What are volatile variables?

The volatile keyword acts as a data type qualifi er. It alters the default way in which the compiler

handles the variable and does not attempt to optimize the storage referenced by it. The volatile
keyword means the storage is likely to change anytime by code outside the control of the user

15C Programming

program. This means that if you reference a variable, the program should always read from the

physical address and not its cached value.

A volatile keyword is an instruction to the optimizer to make sure that the variable or function

is not optimized during compilation.

Example 1

…

…

int fl ag = 1;

while (fl ag);

…

…

In the above example, on compilation, the compiler assumes that the value of the fl ag will not

be changed during the execution of the program. So the compiler is free to ignore the while
(fl ag) loop instructions during optimization. However, if the fl ag variable is changed outside

this program control (say by an interrupt routine or by some other thread) then it is advisable to

declare the fl ag as a volatile variable.

Example 2

In multithreaded applications, thread P might change a variable being shared with thread Q. Since

the compiler does not see any code that changes the value in thread Q, it could assume that Q’s value

has remained unchanged and store it in a CPU register instead of reading it from the main memory.

But, if thread P changes the variable’s value between two invocations of thread Q, the latter will have

an incorrect value. To force the compiler not to store a variable in a register, declare it volatile.

5. What is the use to ‘auto’ keyword?

The auto storage-class specifi er declares an automatic (local) variable, a variable with a local

lifetime. It is the default storage-class specifi er for block-scoped variable declarations. An auto

variable is visible only in the block in which it is declared.

Since variables with auto storage class are not initialized automatically, you should either explicitly

initialize them when you declare them, or assign initial values to them in statements within the

block. The values of uninitialized auto variables are undefi ned.

6. What is the use to ‘register’ keyword in the context?

The register keyword specifi es that the variable is to be stored in a CPU register, if possible.

Variables are usually stored in stack and passed to and from the computers processor, as and when

16 Cracking the IT Interview

required, the speed the data is sent at is pretty fast but can be improved on. Almost all computer

processors contain CPU registers, these are memory slots on the actual processor, and storing data

there gets rid of the overhead of retrieving the data from the stack. This memory (in registers) is quite

small compared to the normal memory, therefore, only a few variables can be stored there. Having

a register keyword for variables and parameters also reduces code size, which is important in

embedded systems. The number of available CPU registers (and their uses) is strictly dependent on

the architectural design of the CPU itself. The number of CPU registers is 32 in most cases.

7. How do we make a global variable accessible across fi les? Explain the extern

keyword?

If a variable is declared (with global scope) in one fi le but referenced in another, the extern
keyword is used to inform the compiler of the variable’s existence. Note that the keyword extern
is for declarations, not defi nitions. An extern declaration does not create any storage. Variable

initializations should not be done with extern.

FUNCTIONS

8. What is a function prototype?

A function prototype is a declaration similar to variable declarations. Function declarations are

generally placed in header fi les. Specifi cally, it tells the compiler (and the programmer)

 � the name of the function

 � the type of the output returned by the function

 � the number of types of inputs (called arguments), if any, the function expects to receive and

the order in which it expects to receive them

To understand why function prototypes are useful, enter the following code and run it:

#include <stdio.h>

void main()

{

 printf (“%d\n”,add(99));

 return;

}

int add(int x, int y)

{

17C Programming

 return x+y;

}

This code compiles on many compilers without giving you a warning, even though add expects two

parameters but receives only one. It works because many C compilers do not check for parameter

matching either in type or count. To solve this problem, C let us place function prototypes at the

beginning of (actually, anywhere in) a program. If you do so, C checks the types and counts of all

parameter lists. Try compiling the following:

#include <stdio.h>

/* function prototype for add */

int add (int,int);

void main()

{

 printf(“%d\n”,add(20));

 return;

}

int add(int x, int y)

{

 return x+y;

}

This code gives compiler error as it expects add function to have two parameters. Replace add
(20) with add(20,40) it works.

9. What does the keyword ‘extern’ mean in a function declaration?

Use the extern modifi er in a method declaration to indicate that the method is implemented

externally. Similarly, when you declare a variable as extern your program does not actually reserve

any memory for it; extern emphasizes that the variable already exists external to the function or

fi le.

If you want to make a variable available to every fi le in a project you declare it globally in one fi le,

that is, not inside any function, and add an extern declaration of that variable to a header fi le that

is included in all the other fi les.

18 Cracking the IT Interview

10. How do you write a function that takes a variable number of arguments? What

is the prototype of printf() Function?

The presence of a variable-length argument list is indicated by an ellipsis in the function prototype.

For example, the prototype for printf() function, as found in <stdio.h>, looks something

like this:

extern int printf(const char *, ...);

Those three dots “...” is the ellipsis notation. This is the syntax that C uses to indicate the presence of

a variable-length argument list. This prototype conveys that printf() function’s fi rst argument

is of type const char *, and that it takes a variable (and hence unspecifi ed) number of additional

arguments.

11. How do you access command-line arguments within the code?

A program is started by the operating system by calling a program’s main() function. main()
function is the only function in C that can be defi ned in multiple ways. It can take no arguments,

two arguments or three arguments. The two and three argument forms allow it to receive arguments

from the shell (command-live). The two-argument form takes an int and an array of strings.

When defi ning main()function arguments any name can be given but it is convention to call them

argc and argv[]. The fi rst argument (argc)holds a count of how many elements there are in

the array of strings passed as the second argument (argv). The array is always null terminated so

argv [argc] = NULL.

Here is a short program demonstrating the use:

int main(int argc, char *argv[])

{

 int i;

 for(i = 0; i < argc; i++)

 printf(“argv[%d] == %s\n”, i, argv[i]);

 return 0;

}

The integer, argc, is the argument count (hence argc). It is the number of arguments passed into

the program from the command line, including the name of the program.

The array of character pointers is the listing of all the arguments. argv [0] is the name of the

program. After that, every element number less than argc is command line arguments. You can

use each argv element just like a string, or use argv as a two dimensional array.

19C Programming

12. How can the environment list be passed to a C Program?

The environment list is passed to the C program using the third argument of main() function.

Here is a short program demonstrating it:

#include <stdio.h>

void main(

 int argc, /* Number of strings in array argv */

 char *argv[]/* Array of command-line argument strings */

 char **ppenv /* Array of environment variable strings */

)

{

 int count;

 /* Display each command-line argument. */

 printf(“\nCommand-line arguments:\n”);

 for(count = 0; count < argc; count++)

 printf(“ argv[%d] %s\n”, count, argv[count]);

/* Display each environment variable. */

printf(“\n Environment variables : \n”);

while(*ppenv != NULL)

 printf(“ %s\n”, *(ppenv++));

 return;

}

Output of the above program when called as. /a. out a b

Command-line arguments:

argv[0] ./a.out

argv[1] a

argv[2] b

20 Cracking the IT Interview

Environment variables:

…(The environment variables with their values are displayed
here).

PREPROCESSOR

13. What does ‘#include <stdio.h>’ mean?

If a line starts with a hash, denoted by #, it tells the compiler that a command should be sent to the

C PREPROCESSOR. The C preprocessor is a program that is run before compilation takes place

(hence the name). The ‘#include’ is one of the many C preprocessor commands we use.

Basically, when the preprocessor fi nds #include it looks for the fi le specifi ed and replaces

#include with the contents of that fi le. This makes the code more readable and easier to maintain if

you needed to use common library functions.

Header fi les have the extension .h and the full fi lename follows from the #include directive. They

contain declarations to certain functions that you may or may not have used in your program.

For example, the stdio.h fi le is required if you have used functions like printf() and

scanf() in your program.

14. What is the difference between #include<…> and # include “…”?

There are two ways to include a header fi le:

#include “stdio.h” and

#include <stdio.h>

If you use the double quote marks, it means that the directory you are currently in, will be searched

fi rst, for the header fi le, before any other directories (mentioned in the INCLUDE_PATH) are

searched.

When you use the angled brackets, directories other than the one you are currently in, will be

searched for the header fi le. The system dependent directories are searched. Usually this will be

the default directory for header fi les specifi ed in your compiler, so you’ll probably be using square

brackets all the time.

21C Programming

15. What are #pragma statements?

Each implementation of C and C++ supports some features unique to its host machine or operating

system. Some programs, for instance, need to exercise precise control over the memory areas where

data may be stored or to control the way certain functions receive parameters. The #pragma

directives offer a way for each compiler to offer machine and operating system-specifi c features

while retaining overall compatibility with the C and C++ languages. Pragmas are machine- or

operating system-specifi c by defi nition, and are usually different for every compiler.

Pragmas can be used in conditional statements, to provide new preprocessor functionality, or to

provide implementation-defi ned information to the compiler.

16. What is the difference between an enumeration and a set of preprocessor

#defi nes?

An enumeration consists of a set of named integer constants. An enumeration type declaration

gives the name of the (optional) enumeration tag and defi nes the set of named integer identifi ers

(called the enumeration set, enumerator constants, enumerators or members). A variable with

enumeration type stores one of the values of the enumeration set defi ned by that type.

Variables of enum type can be used in indexing expressions and as operands of all arithmetic and

relational operators.

Enumerations provide an alternative to the ‘#defi ne’ preprocessor directive with the advantages

that the values can be generated for you and hence obey normal scoping rules.

In ANSI C, the expressions that defi ne the value of an enumerator constant always have int type;

thus, the storage associated with an enumeration variable is the storage required for a single int
value. An enumeration constant or a value of enumerated type can be used anywhere the C language

permits an integer expression.

17. What is the most appropriate way to write a multi-statement macro?

The usual goal is to write a macro that can be invoked as if it were a statement consisting of a single

function call. This means that the ‘caller’ (point where the macro is being used) will be supplying the

fi nal semicolon, (denoting end of statement) so the macro body should not. The body of the macro

cannot therefore be a simple brace-enclosed compound statement, because syntax errors would

result if it were invoked (apparently as a single statement, but with a resultant extra semicolon) as

the ‘if’ branch of an ‘if/else’ statement with the explicit ‘else’ clause.

22 Cracking the IT Interview

Therefore, it is recommended to use

#defi ne MACRO(arg1, arg2) do {\

 /* declarations */ \

 statement1; \

 statement2; \

 /* ... */ \

 } while(0) /* (no trailing ;) */

When the caller appends a semicolon, this expansion becomes a single statement regardless of

context.

18. What are the disadvantages of using macros?

Two disadvantages are as follows:

 � Macro invocations do not perform type checking.

 � #defi ne MULTIPLY(a, b) a * b

 void main()

 {

 printf(“%d”, MULTIPLY(1+2,3+4));

 }

In the above example, the answer will be 11 and not 21. Because the macro will be expanded as:

1+2*3+4. Since the * operator has higher precedence than the + operator, the value will be 11

instead of 21. To get the correct answer the macro should be declared as:

#defi ne MULTIPLY(a, b) (a) * (b)

STRUCTURES AND UNION

19. Why does the ‘sizeof’ operator sometimes report a larger size than the

calculated size for a structure type?

The sizeof operator gives the amount of storage, in bytes, required to store an object of the type

of the operand. When we apply the sizeof operator to a structure type name, the result is the

number of bytes in the structure including internal and trailing padding. This size may include

internal leading and trailing padding used to align the members of the structure on memory

boundaries. Thus, the result may not correspond to the size calculated by adding up the storage

requirements of the individual members.

23C Programming

For example, struct xyz {int x; char y[2];}; The sizeof struct xyz is

returned as 8 and not as 6 bytes.

20. What are the properties of union? What is the sizeof a union variable?

 � Union allows same storage to be referenced in different ways.

 � The sizeof applied on a union gives the size of its biggest member.

 � There is no standard way of initializing a union. Each initialization will over write the

previous one.

 � Syntax, format and use of tags and declarators are like struct, but members overlay each

other, rather than following each other in memory.

For instance:

union rk

{

 short shvar;

 long lovar;

 char chvar;

 long double dovar;

};

Here, variable ‘rk’ will be of the size of dovar.

21. What is a self-referential structure?

If a structure contains a member that is ‘pointer to the same structure’ then the structure is called

self-referential structure.

struct list

{

 int nodedata;

 struct list *next;

};

22. Can a Union be self-referenced?

No. Because union allocates a single shared memory for all of its data member. Consider an

example:

24 Cracking the IT Interview

union list

{

 long nodedata;

 union list *next;

};

For the above union type, only 8 bytes of memory will be allocated (for long) that will be shared by

both the ‘next pointer’ and nodedata member. Here, there are high chances that the value of these

members can overlap which leads to data corruption.

POINTERS

23. What is a pointer?

A pointer is a special kind of variable. Pointers are designed for storing memory address, i.e., the

address of another variable. Declaring a pointer is the same as declaring a normal variable except

that an asterisk ‘*’ is placed in front of the variables identifi er. The ‘address of ’ operator ‘&’ and

the ‘dereferencing’ operator ‘*’ are available for working with pointers. Both are prefi x unary

operators. An ampersand in front of a variable gets its address; this can be stored in a pointer

variable. Whereas an asterisk in front of a pointer gets the value at the memory address pointed to

by the pointer.

Example

int x;

int *pointer_to_x;

pointer_to_x = &x;

24. What is LValue and RValue?

Expressions that refer to memory locations are called l-value expressions. An l-value represents a

storage regions locator value, or a left value, implying that it can appear on the left of the equal sign

(=).

Expressions referring to modifi able storage locations are called modifi able l-values. A modifi able

l-value cannot have an array type or a type with the const attribute.

The name of the identifi er denotes a storage location, while the value of the variable is the value

stored at that location. An identifi er is a modifi able l-value if it refers to a memory location.

25C Programming

The term r-value is sometimes used to describe the value of an expression and to distinguish it from

an l-value. The r-value is the data value of the variable, that is, what information it contains. All

l-values are necessarily r-values but not all r-values are l-values.

Here is an example.

int a;

/* This is fi ne, 5 is an rvalue, a can be an lvalue.*/

a = 5;

/* This is illegal. A literal constant such as 5 is not

 addressable. It cannot be a lvalue */

5 = a;

25. What is the format specifi er for printing a pointer value?

%p format specifi er displays the corresponding argument that is a pointer. %x can also be used to

print any value in a hexadecimal format.

26. What is the difference between these initializations?

char a[] = “String”;

char *p = “Literal”;

A string literal can be used in two slightly different ways. As an array initializer (as in the declaration

of char a []), it specifi es the initial values of the characters in that array. Anywhere else, it turns

into an unnamed, static array of characters (here “Literal”), which may be stored in read-only

memory, which is why you cannot safely modify it. In an expression context, the array is converted

at once to a pointer, so the second declaration initializes p to point to the unnamed array’s fi rst

element.

The fi rst declares a character array and the second declares a pointer to char array. The program

might crash if p[i] is modifi ed.

27. Does *p++ increment p, or what it points to?

Unary operators like *, ++, and –– all associate (group) from right to left. Therefore, *p++

increments p and returns the value pointed to by p before the increment. To increment the value

pointed to by p, use (*p) ++.

26 Cracking the IT Interview

28. What is a void pointer?

When a variable is declared as being a pointer to a variable of type void it is known as a generic

pointer. Since we cannot have a variable of type void, the pointer will not point to any data and

therefore cannot be de-referenced. It is still a pointer though; to use it we have to cast it to another

kind of pointer fi rst. Hence, the term Generic pointer.

This is very useful when you want a pointer to point to data of different types at different times.

Here is an example code using a void pointer:

int main()

{

 int i;

 char c;

 void *the_data;

 i = 7;

 c = ‘a’;

 the_data = &i;

 printf(“the_data points to the integer value %d\n”,

 (int) the_data);

 the_data = &c;

 printf(“the_data now points to the character %c\n”,

 (char) the_data);

 return 0;

}

29. Why arithmetic operation can’t be performed on a void pointer?

C language does not allow pointer arithmetic on void pointers. The argument being that we do

not know the size of what’s being pointed to with a void * and therefore can’t know how far to

seek the pointer to get to the next valid address.

27C Programming

30. Differentiate between const char *a; char* const a; and char

const *a.

 1. ‘const’ applies to char * rather than ‘a’ (pointer to a constant char)

 *a=’F’ : illegal

 a=”Hi” : legal

 2. ‘const’ applies to ‘a’ rather than to the value of a (constant pointer to char)

 *a=’F’ : legal

 a=”Hi” : illegal

 3. Same as 1.

By checking whether the const appears before or after the asterisk, we can tell a const pointer

from a const variable. The sequence “* const” indicates a const pointer; by contrast, if const

appears before the asterisk, the object bound to the pointer is const.

31. Compare array with pointer.

Arrays automatically allocate space, but cannot be relocated or resized. Pointers must be explicitly

assigned to point to allocated space but can be reassigned (i.e., pointed at different objects) at will,

and have many other uses besides serving as the base of blocks of memory.

32. Declare a pointer to an array of (size 10) integers and an array of pointers to

integers.

int (*x)[10];

x is a pointer to array of (size 10) integers.

int *x[10];

x is an array(size 10) of pointers to integers.

33. State the declaration for a pointer to a function returning a pointer to char.

char *(*f)();

28 Cracking the IT Interview

34. What does the following program do? Is there an error?

int main()

{

 char src[]= “This is an excellent book for attending

 interviews”;

 char tar[80];

 char *x,*y;

 x = src;

 y = tar;

 while(*y++ = *x++) ;

 printf(“\n %s”, tar);

 return 0;

}

The program works very well. The body of the program above is basically doing a string copy of

‘src’ into ‘tar’. The output of the above code is

“This is an excellent book for attending interviews”

The ‘while’ loop in the program does the core work. It is assigning the value stored at location ‘x’

to the location ‘y’. ‘x’ and ‘y’ are initialized with the base addresses of ‘src’ and ‘tar’, respectively.

‘x’ and ‘y’ are incremented and the loop continues. The decision to continue in the loop is based on

the expression *y. When the end of string ‘x’ is reached the value ‘\0’ with ASCII value 0 is stored

in location *y. This value evaluates the while condition to “false” and the while loop terminates.

35. What is the value of the expression 5[“INTERVIEW”]?

The value of the expression 5[“INTERVIEW”] is ‘V’.

The string literal “INTERVIEW” is an array, and the expression is equivalent to “INTERVIEW”[5].

The inside-out expression is equivalent because a[b] is equivalent to *(a + b) which is equivalent

to *(b + a) which is equivalent to b[a].

36. What is a NULL pointer?

A NULL pointer is conceptually different from an uninitialized pointer. A NULL pointer is known

not to point to any object or function; an uninitialized pointer might point to anywhere.

29C Programming

In ‘stdio.h’ NULL is defi ned as 0. Whenever a program tries to access 0th location the

operating system kills the program with runtime assignment error because the 0th location is in the

operating systems address space and operating system does not allow access to its address space by

user programs.

37. What does ‘Segmentation Violation’ mean?

These generally mean that a program tried to access memory it should not have, invariably as a

result of improper pointer use. The most likely causes could be inadvertent use of null pointers

or uninitialized, misaligned, or otherwise improperly allocated pointers, corruption of the malloc

area and mismatched function arguments, especially involving pointers; two possible cases are

scanf(“%d”, i) (without ampersand) and fprintf (invalid FILE *argument).

A segmentation violation occurs when an attempt is made to access memory whose address is well-

formed, but to which access cannot be granted. This might be due to either a protection fault or an

invalid page fault.

38. What does ‘Bus Error’ mean?

Bus Error is a fatal failure in the execution of a machine language instruction resulting from the

processor detecting an abnormal condition on its bus. The most likely causes for such conditions

include invalid address alignment (accessing a multi-byte number at an odd address), accessing a

physical address that does not correspond to any device, or some other device-specifi c hardware

error. A bus error triggers a processor-level exception, which the OS translates into a “SIGBUS”
signal, which, if not caught, will terminate the currently running process.

FUNCTION POINTERS

39. Defi ne Function Pointers.

Function Pointers are pointers, i.e., variables, which point to the address of a function. A running

program gets a certain space in the main-memory. Both the executable compiled program code as

well as the used variables are put inside this memory. Thus, a function in the program code is like a

character fi eld, nothing else than an address.

In C, each function has an address in the code segment. This address may be stored in a pointer

(function pointer), and later invoked from this pointer. This is the mechanism that is commonly

used in callbacks and virtual function tables.

30 Cracking the IT Interview

40. How do you initialize a function pointer? Give an example.

int display() ;

int (*func_ptr)() ;

void main()

{

 func_ptr = display ; /* assign address of function */

 printf (“\nAddress of function display is %u”, func_ptr);

 (*func_ptr)(); /* invokes the function display()*/

 return;

}

int display()

{

 printf (\nHello World!!”) ;

}

The output of the program would be:

Address of function display is 67188 Hello World!!

In this program, we declare the function display() as a function returning an int. int
(*func_ptr)() ;

In this statement, we are declaring a function pointer by name func_ptr, which returns an int. If

we glance down a few lines in our program, we see the statement,

func_ptr = display;

Here, func_ptr is being assigned the address of display () function. To invoke the function we

are just required to write the statement,

(*func_ptr)();

41. Where can function pointers be used?

Function pointers can be used to replace switch/if-statements, to realize late-binding (virtual

function tables) or to implement callback function primitives.

31C Programming

BIT OPERATIONS

42. What are bitwise shift operators?

Bitwise Left-Shift is useful when we want to multiply an integer (not fl oating point numbers) by a

power of 2.

The left-shift operator, like many others, takes 2 operands like this:

a << b

This expression returns the value of ‘a’ multiplied by 2 to the power of b.

If you are wondering why it is called a left shift, then consider the binary representation of a, and

add b number of zeros to the right, consequently “shifting” all the bits b places to the left.

Example: 4 << 2.

4 is 100 in binary. Adding 2 zeros to the end gives 10,000, which is 16, i.e., 4*22 = 4*4 = 16.

What is 4 << 3? Simply add 3 zeros to get 1,000,00, which is 4*23 = 4*8 = 32.

Notice that shifting to the left multiplies the number by 2. Multiple shifts to the left, results in

multiplying the number by 2 over and over again. In other words, multiplying by a power of 2.

More examples:

5 << 3 = 5*23 = 5*8 = 40

8 << 4 = 8*24 = 8*16 = 128

1 << 2 = 1*22 = 1*4 = 4

Bitwise Right-Shift does the opposite, and takes away bits on the right.

Suppose we had:

a >> b

This expression returns the value of ‘a’ divided by 2 to the power of ‘b’.

43. What are bit fi elds? What is the use of bit fi elds in a Structure declaration?

Bit fi elds allow the packing of data in a structure. This is especially useful when memory or data

storage is at a premium. Typical examples:

Bit fi elds can be used for packing several objects into a machine word. For example, 1 bit fl ags can

be compacted as in Symbol tables in compilers.

32 Cracking the IT Interview

C let us do this in a structure defi nition by putting: bit length after the variable, i.e.,

struct packed_struct

{

 unsigned int f1:1;

 unsigned int f2:1;

 unsigned int f3:1;

 unsigned int f4:1;

 unsigned int type:4;

 unsigned int funny_int:9;

} pack;

Here the packed_struct contains 6 members: Four 1 bit fl ags f1…f3, a 4 bit type and a 9 bit

funny_int.

C automatically packs the above bit fi elds as compactly as possible, provided that the maximum

length of the fi eld is less than or equal to the integer word length of the computer. If this is not the

case then some compilers may allow memory overlap for the fi elds whilst other would store the next

fi eld in the next word. Access members as usual via:

pack.type = 7;

MISCELLANEOUS

44. What is the size of an Integer variable?

The size of an integer variable depends on the processor and the operating system, e.g., in a 32 bit

operating system it is 4 bytes.

45. What are the fi les which are automatically opened when a C fi le is executed?

stdin, stdout, stderr (standard input, standard output, standard error).

46. What do you mean by little endian and big endian processors?

Endianness is the attribute of a processor that indicates whether integers and other data types are

represented from left to right or right to left in the memory.

‘Little Endian’ means that the low-order byte of the number is stored in memory at the lowest

address, and the high-order byte at the highest address. (The little end comes fi rst.) For example, a

4 byte longvariable

33C Programming

Byte3 Byte2 Byte1 Byte0

will be arranged in memory as follows:

Base Address+0 Byte0

Base Address+1 Byte1

Base Address+2 Byte2

Base Address+3 Byte3

Intel processors (those used in PC’s) use ‘Little Endian’ byte order.

‘Big Endian’ means that the high-order byte of the number is stored in memory at the lowest address,

and the low-order byte at the highest address. (The big end comes fi rst.) Our longvariable,

would then be stored as:

Base Address+0 Byte3

Base Address+1 Byte2

Base Address+2 Byte1

Base Address+3 Byte0

47. How to determine the endianness at run time?

#defi ne BIG_ENDIAN 0

#defi ne LITTLE_ENDIAN 1

int TestEndian(void)

{

 short int word = 0x0001;

 char *byte = (char *) &word;

 return(byte[0] ? LITTLE_ENDIAN : BIG_ENDIAN);

}

This code assigns the value 0001h to a 16-bit integer. A char pointer is then assigned to point at the

fi rst (least-signifi cant) byte of the integer value. If the fi rst byte of the integer is 01h, then the system

is little-endian (the 01h is in the lowest or least-signifi cant address). If it is 00h then the system is

big-endian.

34 Cracking the IT Interview

48. What is the use of ffl ush() function?

The standard input-output functions (like printf()and scanf()) are buffered, i.e., each device

has an associated buffer through which any input or output operation takes place. After an input

operation from the standard input device, care should be taken to clear the standard input buffer

lest the previous contents of the buffer interfere with subsequent input operations. The function

ffl ush() clears the buffer associated with a specifi ed input/output device(stdin or stdout).

49. What is the difference between exit() and _exit()functions?

 � The exit (status) function causes normal program termination and the value of status

is returned to the parent. All functions registered with atexit() are called in the reverse

order of their registration, and all open streams are fl ushed and closed.

 � The _exit() function does not call any functions registered with the ANSI C atexit

function and does not fl ush standard I/O buffers. The _exit() function terminates the

calling process immediately.

50. Where does malloc() function get the memory?

The pool of memory from which dynamic memory is allocated is separate, and is known as the

heap. The malloc() and free() functions are simple library routines to manage the heap. The

malloc() function dynamically allocates a block of at least size (given as function parameter)

bytes suitably aligned for any use. This dynamic memory allocation is made from the heap.

51. What is the difference between malloc() and calloc() function?

The prototypes for malloc() and calloc() functions are as follows:

void *malloc(size_t size);

where size is the number of bytes that we want to be assigned to the pointer.

void *calloc(size_t nelem, size_t elsize);

The two parameters of calloc() function are multiplied to obtain the total size of the memory

block to be assigned. Usually, the fi rst parameter (nelem) is the number of elements and the

second parameter (elsize) serves to specify the size of each element.

Another difference between malloc() and calloc() is that calloc() function initializes

all its elements to 0.

calloc() function expects the total expected memory to be continuous, whereas malloc()

function allocates memory as chained link.

35C Programming

52. What is the difference between postfi x and prefi x unary increment (decre-

ment) operator?

 � If the unary increment operator, ++, is used after the operand, e.g., x++, it is called a

postincrement operator.

 � If the unary increment operator, ++, is used before the operand, e.g., ++x, it is called a

preincrement operator.

The unary decrement operator, ––, also has two forms: � postdecrement, x-- � predecrement, ––x

The difference between the postdecrement and predecrement operators is the same as the difference

between the postincrement and preincrement operators.

It is important to note that when incrementing or decrementing a variable in a statement by itself,

there is no difference between the pre and post forms of the operator.

It is only when a variable occurs in the context of a larger expression that the pre and post forms of

the operator, have a different effect.

This effect can be explained as follows:

Preincrementing (predecrementing) a variable causes the variable to be incremented or decremented

by 1, and then the new value of the variable is used in the expression in which it appears.

Postincrementing (postdecrementing) a variable causes the current value of the variable to be used

in the expression in which the variable resides. The variable is then incremented (decremented)

by 1.

An example should make this clearer. Look at these two statements:

x = 10;

y = x++;

After these statements are executed, x has the value 11, and y has the value 10. The value of x was

assigned to y, and then x was incremented. In contrast, the following statements result in both

y and x having the value 11. x is incremented, and then its value is assigned to y.

x = 10;

y = ++x;

36 Cracking the IT Interview

53. What is the difference between strcpy() and memopy() function?

The strcpy() function copies character(s) in the source string to the destination string till it

reaches the source string’s NULL character. Then it adds the terminating NULL character in the

destination string.

char *strcpy(char *dst, const char *src);

The memcpy() function copies character(s) in the source string to the destination string till

the given length. Also, memcpy can be used on any similar data type.

char memcpy(void *s1, void *s2, int num);

PROBLEMS AND SOLUTIONS

54. What is the output of the statement ‘print(f)(“%”,-1<<4);’?

The output of the statement ‘print(f)(“%”,-1<<4);’ is in the following:

fff0

Explanation

–1 is internally represented as all 1s. When left shifted four times the least signifi cant 4 bits are fi lled

with 0s.The %x format specifi er specifi es that the integer value be printed as a hexadecimal value.

55. Will the following program compile?

int i;

scanf(“%d”, i);

printf(“%d”,i);

Explanation

The code has a bug. The scanf() function expects pointer arguments indicating where the input

should be stored. In the above code the variable “i” is used as it is. The correct syntax is

scanf(“%d”, &i);

The program will compile with no errors. But when we enter a value using stdin, the system tries

to store the value in location with address “i”. Since “i” may be an invalid address, the program

will crash and core dump.

37C Programming

56. Write a string copy function routine.

void my_strcpy(char *target, char *source)

{

 while(*source != ‘\0’)

 {

 *target = *source;

 source++;

 target++;

 }

 *target = ‘\0’;

}

57. Write a function routine to fi nd string length.

int my_strlen(const char *str)

{

 int count = 0;

 while(*str != ‘\0’)

 {

 count++;

 str++;

 }

 return count;

}

58. Swap two integer variables without using a third temporary variable.

There are many ways to solve the above problem. Two of the most frequent answers are given in the

following:

Option 1

a^=b^=a^=b

which is

a = a xor b

38 Cracking the IT Interview

b = b xor a

a = a xor b

Option 2

a=a+b;

b=a-b;

a=a-b;

59. How do you redirect stdout value from a program to a fi le?

There are two ways to implement the above program:

First Solution

The system call ‘dup’ is used in the program.

int dup(int fd)—Makes a copy of the given fd in the fi rst available fd table slot.

Algorithm

The parent process opens fi le a.out and forks a child. Recall that a child gets a copy of the parents

fi le descriptors. The parent can fool the child by redirecting stdout. The child process closes stdout.

It uses dup(fd) system call. Dup creates a copy of the given fd in the fi rst available fi le descriptor

table slot. The dup call uses the old (now empty) fi le descriptor of stdout. The child process then

closes the original fd, basically to keep it clean.

#include <stdlib.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <fcntl.h>

int main(int argc, char **argv)

{

 pid_t id;int fd;

 if ((fd = open(“out”, O_CREAT | O_WRONLY, 0644)) < 0)

 {

 printf(“cannot open out\n”);

 exit(1);

 }

39C Programming

 id = fork();

 if (id == 0)

 {

 /* we are in the child */

 /* close stdout in child */

 close(1);

 /* replace stdout in child with “out” */

 dup(fd);

 close(fd);

 execl(“/bin/date”, “date”, NULL);

}

 /* we are in the parent */

 close(fd);

 id = wait(NULL);

 return 0;

 }

Output

$ cc -o redirect redirect.c
$./redirect
$ cat out
$ Sat Nov 20 04:00:00 IST 2004
$

Second solution:

#include <stdio.h>

void main(void)

{

 FILE *stream;

 if((stream = freopen(“book.txt”, “w”, stdout)) == NULL)

 exit(-1);

 printf(“this is stdout output redirected to book.txt \n”);
 stream = freopen(“/dev/tty”, “w”, stdout);

40 Cracking the IT Interview

 printf(“And now back to the console once again\n”);
 return;

}

60. Write a program that fi nds the factorial of a number using recursion (The

program should not have any new function defi ned).

#include <stdio.h>

void main()

{

 static int var = 5;

 static int result = 1;

 result *=var;

 printf(“ \n %d “,var--);

 printf(“ \n Result is %d”, result);

 if(var)

 {

 main();

 }

 return;

}

Answer

5
Result is 5
4
Result is 20
3
Result is 60
2
Result is 120
1
Result is 120.

Explanation

When static storage class is given, it is initialized once. The change in the value of a static

variable is retained even between the function calls. Main is also treated like any other ordinary

function, which can be called recursively.

41C Programming

61. Write a “Hello World” program in ‘C’ without using a semicolon.

#include <stdio.h>

void main()

{

 if(printf(“Hello World \n”))

 {}

}

Explanation

printf() is a function that returns the number of characters it is able to print. This return value

can be used in the “if” conditional expression. With this combination, we can print the required

string without using a semicolon.

62. Give a method to count the number of ones in a 32 bit number.

int bitcount (unsigned int n)

{
 int count=0;
 while (n)

 {

 count += n & 0x1u ;

 n >>= 1 ;

 }

 return count ;

}

Iterated ‘count’ runs in time proportional to the total number of bits. It simply loops through

all the bits, terminating slightly earlier because of the while condition. Useful, if 1’s are sparse and

among the least signifi cant bits.

63. Write a program that prints itself even if the source fi le is deleted.

#include <stdio.h>

int main ()

{

 int c;

42 Cracking the IT Interview

 FILE *f = fopen (__FILE__, “r”);

 if (!f) return 1;

 for (c=fgetc(f); c!=EOF; c=fgetc(f))

 putchar (c);

 fclose (f);

 return 0;

}

This works if the source code exists.

The following code works even if the source is deleted.

char *p=”char *p=%c%s%c;main(){printf(p,34,p,34);}”;

main(){printf(p,34,p,34);}

Another implementation:

#include<stdio.h>

main(){char*c=”\\\”#include<stdio.h>%cmain(){char*c=%c%c%c%.102s%
cn%c;printf(c+2,c[102],c[1],*c,*c,c,*c,c[1]);exit(0);}\n”;printf(
c+2,c[102],c[1],*c,*c,c,*c,c[1]);exit(0);}

64. Given an unassigned integer, fi nd it the number is power of 2.

Answer
unsigned int x; /* we want to see if x is a power of 2 */
bool result; /* True if x is a power of 2. */
result = (x & (x - 1)) == 0;

Explanation

If x is 8

8 in binary is 1000 and x-1 in binary is 0111. Therefore (x & (x-1))evaluates to 0. The comparison

(x & (x-1)) = = 0 returns true and hence result is true.

Note that 0 is incorrectly considered a power of 2 here. To remedy this, use:

result = !(x & (x - 1)) && x;

43C Programming

65. Predict the output in the following snippet.

int main()

{

 char s[]=”SEA”;

 int i;

 for(i=0;s[i];i++)

 printf(“\n%c%c%c%c”,s[i],*(s+i),*(i+s),i[s]);

 return 0;

}

Answer

SSSS

EEE

AAA

Explanation

s[i], *(i+s), *(s+i), i[s] are all different ways of expressing the same idea. Generally,

array name is the base address for that array. Here, ‘s’ is the base address. ‘i’ is the index number/

displacement from the base address. So, indirecting it with * is same as s[i]. i[s] may be

surprising. But in the case of C, it is the same as s[i].

66. Predict the output in the following snippet.

int main()

{

 char *p;

 printf(“%d %d “,sizeof(*p),sizeof(p));

 return 0;

}

Answer

1 4

Explanation

The ‘sizeof’ operator gives the number of bytes taken by its operand. p is a character pointer,

which needs one byte for storing its value (a character). Hence, sizeof(*p) gives a value of 1.

Since it needs four bytes to store the address of the character pointer sizeof(p) gives 4.

44 Cracking the IT Interview

67. Predict the output in the following snippet.

int main()

{

 int i=3;

 switch(i)

 {

 default:printf(“zero”);

 case 1: printf(“one”);

 break;

 case 2: printf(“two”);

 break; case 3: printf(“three”);

 break;

 }

 return;

}

Answer

three

Explanation

The default case can be placed anywhere inside the loop. It is executed only when all other cases

does not match.

68. Predict the output or error in the following snippet.

int main()

{

 printf(“%d”, out);

 return 0;

}

int out=100;

Answer

Compiler error: undeclared symbol out in function main.

45C Programming

Explanation

The rule is that a variable is available for use from the point of declaration. Even though “out” is a

global variable, it is not available for main. Hence, an error results.

int main()

{

 extern out;

 printf(“%d”, out);

 return 0;

}

int out=100;

This is the correct way of writing the program.

69. Predict the output or error in the following snippet.

int main()

{

 int a[] = {1,2,3,4,5},j,*p;

 for(j=0; j<5; j++)

 {

 printf(“%d” ,*a);

 a++;

 }

 p = a;

 for(j=0; j<5; j++)

 {

 printf(“%d “ ,*p);

 p++;

 }

 return 0;

}

Answer

Compiler error: lvalue required.

Wrong type argument to increment.

46 Cracking the IT Interview

Explanation

Error is in line with statement a++. The operand must be an lvalue and may be of any scalar type.

Array name only when subscripted is an lvalue. Just the array name is a non-modifi able lvalue.

The right way to scan through the array is shown in the second ‘for’ loop in the program.

70. Predict the output or error in the following snippet.

int main()

{

 int rk;

 /* value 10 is given as input here */

 printf(“%d”,scanf(“%d”,&rk));

 return 0;

}

Answer

1

Explanation

scanf() function returns the number of items successfully read and not 10. Here 10 is given as

input, which should have been scanned successfully. So number of items read is 1.

71. Predict the output or error in the following snippet.

int main()

{

 main();

 return 0;

}

Answer

Runtime error: Stack overfl ow.

Explanation

main() function calls itself again and again. Each time the function is called its return address is

stored in the call stack. Since there is no exit condition to terminate the function call, the call stack

overfl ows at runtime. So it terminates the program and results in an error.

47C Programming

72. Predict the output or error in the following snippet.

int main()

{

 char *str1=”abcd”;

 char str2[]=”abcd”;

 printf(“%d %d %d”,sizeof(str1),sizeof(str2),sizeof(“abcd”));

 return 0;

}

Answer

4 5 5

Explanation

In fi rst sizeof, str1 is a character pointer so it gives you the size of the pointer variable. In

second sizeof the name str2 indicates the name of the array whose size is 5 (including the ‘\0’

termination character). The third sizeof is similar to the second one.

73. Predict the output or error in the following snippet.

void main()

{

 printf(“sizeof (void *) = %d \n”, sizeof(void *));

 printf(“sizeof (int *) = %d \n”, sizeof(int *));

 printf(“sizeof (double *) = %d \n”, sizeof(double *));

 printf(“sizeof(struct unknown*)=%d\n”,sizeof(struct

 unknown *));

}

Answer

sizeof (void *) = 4

sizeof (int *) = 4

sizeof (double *) = 4

sizeof(struct unknown *) = 4

Explanation

The pointer to any type is of the same size.

48 Cracking the IT Interview

74. Predict the output or error in the following snippet.

void allocate(int *p);

int main ()

{

 int *p;

 allocate(p);

 *p = 20;

 printf(“%d”,*p);

 return 0;

}

void allocate(int *p)

{

 p = (int *)malloc(sizeof(p));

}

Answer

Core Dump

Explanation

When pointer ‘p’ allocates memory in allocate function, it needs to be a double pointer and the

caller should pass ‘&p’ instead of ‘p’.

75. Predict the output or error in the following snippet.

void main()

{

 int a[10], b[10];

 ...

 a = b;

}

Answer

Incompatible types in assignment.

You cannot assign arrays to each other.

49C Programming

Explanation

Base pointer of an array cannot be changed.

76. Predict the output or error in the following snippet.

void check()

{

 static int i=1;

 i++;

 printf(“Value of i is %d\n”, i);

}

void main()

{

 check();

 check();

}

Answer

Value of i is 2
Value of i is 3.

Explanation

static variables are allocated in the heap and their value will be persisted till the end of the

program.

77. Predict the output or error in the following snippet.

void test (int a, int a1)

{

 printf(“In test %d %d \n”,a,a1);

}

int main(int argc, char* argv[])

{

 int a = 20;

 test (a,++a);

 printf(“ In main %d %d “,a,++a);

50 Cracking the IT Interview

 return 0;

}

Answer

In test 21 21
In main 22 22

Explanation

For any ‘C’ function call; arguments will be passed from right to left. Thus, test () function gets

and prints a, a1 values as 21. After the test () function, statement executed value of a is 21.

When printf () function is being executed, value of a will be 22.

78. Predict the output or error in the following snippet.

int main ()

{

 int arr[] = { 0,1,2,3,4 };

 unsigned int i;

 int *ptr;

 for (ptr = arr + 4, i=0; i<=4;i++)

 printf(“%d “,ptr[-i]);

}

Answer

4 3 2 1 0

Explanation

The printf() prints out the value of ptr[-i]. ptr[-i] is nothing but *(ptr-i). And

since i loops from 0 to 4, the value ptr[-i] prints the numbers in the array in reverse.

79. Predict the output or error in the following snippet.

int main ()

{

 int n[3][3] = {

 1,2,3,

 4,5,6,

51C Programming

 7,8,9

 };

 printf(“ %u %u %d”, n , n[2], n[2][2]);

}

Assuming that the array begins at address 1000.

Answer

1000 1024 9

Explanation

The 2-D array is stored in memory in continuous locations. There are no rows and columns in

memory. A 2-D array is nothing but an array of several 1-D arrays. Here, the 1-D array n[2] starts

at location which is 6 integers away from the base. n[2][2] is the normal indexing into the 2-D

array.

80. Predict the output or error in the following snippet.

void main()

{

 char *p1=”name”;

 char *p2;

 p2=(char*)malloc(20);

 memset (p2, 0, 20);

 while(*p2++ = *p1++);

 printf(“\n%s”,p2);

}

Answer

Empty String.

Explanation

The pointer p2 moves ahead of the string “name”.

81. Predict the output in the following snippet.

void main()

{

52 Cracking the IT Interview

 int x=5;

 printf(“%d,%d,%d \n”,x,x<<2,x>>2);

}

Answer

5,20,1

82. What happens if this code snippet is executed?

#defi ne TRUE 0 /* some code… */

while(TRUE)

{

 /* some code… */

}

Answer

Execution will not go into the loop as TRUE is defi ned as 0.

83. Predict the output in the following snippet.

void main()

{

 int a=0;

 if(a=1)

 printf(“Never let yesterday use up your today \n”);

 printf(“Never let yesterday use up your today “);

}

Answer

Never let yesterday use up your today

Never let yesterday use up your today

Explanation

In the ‘if’ statement the value of ‘a’ assigned to ‘1’, so the ‘if’ statement will return true

and the next statement is executed.

53C Programming

84. Predict the output or error in the following snippet.

void main()

{

 int p = 20;

 char *c1 = &p;

 /*………*/

}

Explanation

Compiler throws a warning: ‘initializing’: incompatible types - from ‘int *’ to ‘char *’

Pointer type should match the data type it points to or else it produces undesirable result. In this

case, since the variable ‘c’ points to integer variable ‘p’, it can access only the fi rst byte of the

variable ‘p’.

85. Predict the output or error in the following snippet.

void main()

{

 unsigned long a = 100000;

 long b = -1;

 if (b>a)

 printf(“yes\n”);

 else

 printf(“no\n”);

}

Answer

yes

Explanation

Try yourself

86. Predict the output or error in the following snippet.

fl oat t=1.0/3.0;

if (t*3 == 1.0)

54 Cracking the IT Interview

 printf(“yes\n”);

else

 printf(“no\n”);

Answer

no

Explanation

Try yourself

THINKER’S CHOICE

87. What is the use of a ‘conditional inclusion’ statement?

88. Write a function that counts the number of ones in an unsigned integer (Not

the one mentioned in this book).

89. Find the size of an integer variable without using ‘size of’ operator.

90. Given an array x[100] which contains numbers between 1..99. Return the

duplicated value. Try on both o(n) and o(n2).

91. Write a function to print 123 using putchar(…) function without using temp

variable (Hint: Use recursion).

92. Give a fast way to multiply a number by 7.

93. Reverse a string without using a temp variable.

94. Write a function that accepts characters of undefi ned length and print it as

a String (Hint: Use recursion).

95. Implement malloc(…) and free(…) function routine.

96. Write a function to print Fibonacci series and Tribonacci series.

55C Programming

97. Implement String manipulation function routine for strstr (…) and strtok

(…).

98. What does calling convention mean? What is the calling convention C lan-

guage follows during function invocation?

99. What are near, far and huge pointers?

100. Write a function to check if an integer is signed or unsigned.

101. Write a function to fi nd the second largest number in an array of 100 inte-

gers in a single array traversal.

102. How are va-list, va-start, va-end, va-arg used for variable number of argu-

ments manipulation?

REFERENCES

 1. Brian Kernighan and Dennis Ritche, C Programming Language, 2nd edition, Prentice Hall
Software Series.

 2. Byron Gottfried, Schaums Outline of Programming with C, Mc-Graw-Hill.

 3. Yashwant Kanetkar, Pointers in C, BPB Publications.

Data Structures and
Algorithms

INTRODUCTION

This chapter is by far the most important chapter for any IT aspirant.

Most interviewers would like to test the ‘Basic concepts’ and foundations of Logic and algorithms

and what better way than a few tricky questions from Data structures.

In this chapter, we have captured aspects of the following points:

 � Arrays

 � Stacks

 � Queues

 � Linked List

 � Trees

 � Sorting and Searching

 � Socket Programming

There are many variations of trick questions in data structures, and the easiest way to come

up on top is to invest time in understanding the basic concept and logic behind these ‘elegant

solutions’.

Questions around search and sort algorithms are asked even to industry veterans of 12–15

years experience in their interviews just to test the sharpness of the mind. You will do well to

give it your full attention.

2

57Data Structures and Algorithms

CONCEPTS OF DATA STRUCTURES

The heart of any computing system is the data and the logic embedded in it. And the logic is

conceived through a set of many established computing constructs, such as Data Structures and

Algorithms. Interviews defi nitely have questions on this area to access one’s analytical and logical

reasoning skills. This chapter presents basic and advanced ‘Frequent Interview Questions’ on data

structures and algorithms.

1. Defi ne data structures.

An organization of information, usually in memory, for better algorithm effi ciency, such as queue,

stack, linked list, heap, dictionary and tree, or conceptual unity, such as the name and contact details

of a person. It may include redundant information, such as length of the list or number of nodes in

a sub-tree. Most data structures have associated algorithms to perform operations, such as search,

insert or delete that maintain the properties of the data structure.

2. What is an algorithm?

A computable set of steps to achieve a desired result is known as an algorithm. Algorithms have the

following properties: each operation must be defi nite, that is, it must be crisp and each operation

must be effective or, in other words, each step must be such that it can, at least in principle, be done

by a person using pencil and paper in fi nite amount of time. An algorithm produces one or more

outputs and may have zero or more inputs, which are externally supplied. An Algorithm needs to

terminate after a fi nite number of operations.

3. Describe briefl y the Big O notation.

A function F(N) is O(G(N)) (read of the order) if for some constant k and for values of N greater

than some value No:

F(N) <= k* G(N) for N>No

The idea is to arrive at the upper bound of the function F(N).

For example:

 � a constant-time method is “order 1”: O(1)

 � a linear-time method is “order N”: O(N) _ a quadratic-time method is “order N squared”:

O(N2)

 � a logarithmic-time method is “order log N”: O(Log(N))

58 Cracking the IT Interview

4. What is recursion?

Recursion occurs when a piece of code is executed before a previous execution of the same code

has terminated; for example, when a program calls itself either directly or indirectly. Code that is

capable of being executed in this way is called re-entrant; it must defi ne its variables in local-storage

(typically saved in a stack) so that data from one instance of the code does not interfere with data

from another instantiation.

A simple example of recursion would be as follows:

int main()

{

 main (); //Sets off the recursion

}

However, this program will not continue forever. The computer keeps function calls on a stack and

once too many are called without ending, the program will crash throwing a stack overfl ow error.

Some problems, such as evaluating the Nth Fibonacci number, factorial of a positive integer are

inherently recursive in nature, which can be easily solved using recursion noting the property that

factorial(N) = N*factorial(N-1) where N>0 and if N=0 factorial(N) = 1.

5. For free construction which is the most effi cient data structure that can be

used?

(a) Array (b) Linked list (c) Stack (d) Queue (e) none

Using linked list for tree construction comes with the following advantages:

 � Overfl ow never occurs unless the memory is actually full.

 � Insertions and deletions are easier than for contiguous (array) lists.

 � With large records, moving pointers is easier and faster than moving the items themselves.

6. What is backtracking? Explain the 8-Queens problem and brief an approach to

solve it.

The backtracking method is based on the systematical inquisition of the possible solutions where,

through the procedure, a set of possible solutions are rejected even before they are completely

examined so the number of possible solutions gets a lot smaller.

Backtracking is used to solve problems like 8-Queens problem.

59Data Structures and Algorithms

The 8-Queens problem is to place eight queens on an 8 × 8 chessboard so that no two ‘attack’, that

is no two of them are in the same row, column or diagonal.

Solution

Let us number the rows and columns of the chessboard 1 through 8 as shown in the fi gure below.

The queens may also be numbered 1 through 8. Since each queen must be on different row we can,

without loss of generality assume queen i is to be placed on row i. All solutions to the 8-Queens

problem can, therefore, be represented as 8-tuples (x1, …, x8) where xi is the column on which

queen i is to be placed.

 � Start with one queen in the fi rst column, fi rst row.

 � Start with another queen in the second column, fi rst row.

 � Go down with the second queen until you reach a permissible situation.

 � Advance to the next column, fi rst row and do the same thing.

 � If you cannot fi nd a permissible situation in one column and reach the bottom of it, then

you have to go back to the previous column and move one position down there. (This is the

backtracking step.)

 � If you reach a permissible situation in the last column of the board, then the problem is

solved.

 � If you have to backtrack BEFORE the fi rst column then the problem is not solvable.

Please fi x the fi gure below.

1 2 3 4 5 6 7 8

1 Q

2 Q

3 Q

4 Q

5 Q

6 Q

7 Q

8 Q

60 Cracking the IT Interview

ARRAYS

7. Give an array of integers, move all the zeroes to the bottom of the array.

Traversing every element of the input array in linear order and copying the elements into another

array only if the element is non-zero is one of the solutions to the problem. For every copy made to

the output array advance the indexes of both the arrays or else if the element is zero then advance

just the index of the input array. Repeat the above steps until the end of the input array is reached.

Fill in the remaining slots of the output array with appropriate number of zeroes.

The algorithm is of O (N) since we traverse every element of the array before copying into the other

array.

Input: Array of integers with zeroes scrambled here and there all across the array and its size.

Output: The same array with all the zeroes at the bottom of the array with the relative order of the

other elements of the array being preserved.

void compress(int *arr,int size)

{

 int *result;

 int i,j=0;

 result = (int *)malloc(size*sizeof(int));

 for(i=0;i<size;i++)

 {

 if (arr[i]!=0) result[j++]=arr[i];

 }

 for(i=0;i<j;i++)

 {

 arr[i]=result[i];

 }

 for(i=j;i<size;i++)

 {

 arr[i]=0;

 }

 free(result);

}

61Data Structures and Algorithms

8. Determine the effi cient code for extracting unique elements from a sorted array

list, e.g., (1, 1, 3, 3, 3, 5, 5, 5, 9, 9, 9, 9) -> (1, 3, 5, 9).

Take a new array (O) and maintain two indexes, one for the new array (O) and another for the input

array (I). Simply copy the fi rst element of I into O. Advance the index of the array O. Compare the

current indexed element of I with its next element in I itself and if these are not identical then copy

it into O and advance both the indexes otherwise just advance the index of I. Repeat the steps until

the end of I is reached.

The algorithm is of O (N) since we traverse every element of the array before copying into the other

array.

Input: Array of sorted integers with some repeated elements and its size.

Output: Pointer to array with all the distinct elements in their sorted order.

int *unique(int *arr,int size)

{

 int *result;

 int i,j=0;

 result = (int *)malloc(size*sizeof(int));

 result[j++]=arr[0];

 for(i=0;i<size-1;i++)

 {

 if (arr[i]!=arr[i+1]) result[j++]=arr[i+1];

 }

 return result;

}

9. Explain the algorithm used to merge two sorted arrays.

The merging of sorted arrays can be explained as follows:

Maintain three indexes ai, bi, ci for the two input arrays and one output array viz., a, b and c,

respectively. Compare a[ai] and b[bi] and copy the smaller of the two to c[ci] and advance

index ci and (ai or bi), whichever of the indices has the smaller element. Repeat the steps until

one of the input array’s end point is reached, upon which just copy the remaining elements of the

other input array directly into the output array c.

The algorithm is of O (M+N) since we traverse every element of both the arrays before copying into

the third array.

62 Cracking the IT Interview

Input: Two sorted arrays of integers and another third array (empty), which can hold the elements

of the fi rst two arrays combined and their corresponding sizes.

Output: The third sorted array contains the elements of the fi rst two input arrays combined.

void merge(int a[],int b[],int c[],int asize,int bsize,intcsize)

{

int

ai,bi,ci;

csize=asize+bsize;

 while ((ai < asize) && (bi < bsize))

 {

 if(a[ai] <= b[bi])

 {

 c[ci] = a[ai];

 ci++; ai++;

 }

 else

 {

 c[ci] = b[bi];

 ci++; bi++;

 }

 }

 if (ai >= asize)

 for (i=ci;i<csize;i++,bi++)

 c[i] = b[bi];

 else if (bi >= bsize)

 for (i=ci; i<csize;i++,ai++)

 c[i] = a[ai];

}

10. Explain the procedure to insert into a sorted array.

Insertion in a sorted array is a very time consuming operation. This is because to retain the order,

the chunk of data just below the point of insertion has to be displaced, which is typically an O (N)

operation.

Input: A sorted array and its size along with the item to be inserted.

63Data Structures and Algorithms

Output: The sorted array with the item inserted at its right place in the sorted array.

void insert(int array[],int *size,int item)

{

int i=1,j;

if (size <= 0) return;

//Check if the element is less than the fi rst one in the

//array

if (item < a [0]) i = 0;

else

 {

 for(i=1;i<*size;i++)

 if (array[i]>item && array[i-1]<item) break;

 }

 for(j=*size;j>i;j—)array[j]=array[j-1];

 array[i]=item;

 (*size)++;

}

11. Explain deletion procedure from a sorted array.

Deletion in a sorted array is also a time consuming operation. This is because to retain the order,

the chunk of data just below the point of deletion has to be displaced, which like insertion again, an

O (N) operation.

Input: A sorted array and its size along with the item to be deleted.

Output: The sorted array with the item deleted from its place in the sorted array.

int delete(int array[],int* size,int item)

{

 int i;

 while(array[i]!=item && i<*size) i++;

 /* failure - could not fi nd the element */

 if (i==*size) return(-1);

 for(;i<*size-1;i++)

 array[i]=array[i+1];

 (*size)––;

64 Cracking the IT Interview

 return 0; /* success */

}

STACK AND QUEUE

12. What is the data structure used to perform recursion?

Stack is the data structure that is used to perform recursion. Its LIFO (Last In First Out) property is

used to store return addresses of the ‘caller’ or invoker of the recursive function and its successions

in recursion to know where the execution control needs to return on completion of execution of the

current function call. Every recursive function has its equivalent iterative (non-recursive) function.

Even when such equivalent iterative procedures are written, explicit stack is to be used.

13. Explain the Basic Stack Operations.

Stack is a FILO (First In Last Out) or LIFO (Last In First Out) data structure. Stack permits two

operations—push and pop. Two other common stack status checking methods implemented are

empty() and full() to check if the stack is empty, full, respectively.

Input: Push method takes an integer and also a pointer to integer to return the method’s status. Pop

just takes a pointer to integer to return the method’s status.

Output: Push pushes the element into the stack unless stack overfl ows. Pop removes the element

from the top of the stack and returns it unless stack underfl ows.

int stack[100];

int top=-1;

void push(int item,int *error)

{

 if (top=99)

 {

 *error = 1;

 return;

 }

 top++;

 stack[top] = item;

 *error = 0;

}

int pop(*error)

65Data Structures and Algorithms

{

 int item;

 if (top=-1)

 {

 *error = 1;

 return -1;

 }

 item = stack[top];

 top—;

 *error = 0;

 return item;

}

14. Explain the Basic Queue Operations.

Queue is a FIFO (First In First Out) or LILO (Last In Last Out) data structure. Queue permits

two operations—enqueue and dequeue. Two other common queue status checking methods

implemented are empty() and full() to check if the queue is empty, full, respectively.

The following algorithm implements a circular queue using linear array:

Input: enqueue method takes an integer and also a pointer to integer to return the method’s

status. dequeue just takes a pointer to integer to return the method’s status.

Output: enqueue queues the element at the rear of the queue unless queue overfl ows. dequeue
removes the element from the front of the queue and returns it unless queue underfl ows.

int front=0, rear=–1;

int SIZE = 100;

void enqueue(int item, int *error)

{

 if ((rear+2)%SIZE!=front))//queue full

 {

 rear = (rear+1)%SIZE;

 array[rear] = item;

 *error = 0;

 return

 }

 else

66 Cracking the IT Interview

 *error = 1;

 return;

}

int dequeue(int *error)

{

 int item;

 if ((rear+1)%SIZE!=front)//queue empty

 {

 item = array[front];

 front = (front+1)%SIZE;

 *error = 0;

 return item;

 }

 else

 *error = 1;

 return -1;

}

15. What are Priority Queues?

A priority queue is essentially a list of items in which each item has a priority associated with it.

In general, different items may have different priorities and we speak of one item having a higher

priority than another. Given such a list we can determine, which is the highest (or the lowest) priority

item in the list. Items are inserted into a priority queue in any, arbitrary order. However, items are

withdrawn from a priority queue in order of their priorities starting with the highest priority item

fi rst. Priority queues effi ciently support fi nding the item with the highest priority across a series

of operations. The basic priority queue operations are: insert, fi nd-minimum (or maximum) and

delete-minimum (or maximum). Some implementations also effi ciently support join two priority

queues (meld), delete an arbitrary item and increase the priority of an item (decrease-key).

16. Implement queue using stacks.

The trick is, for enqueue, to keep pushing into one stack and when dequeue starts fi rst pop all

elements one-by-one from this stack and push into another stack before popping it out fi nally to

the user. If enqueue resumes again the popstack shall pop all elements one-by-one before pushing it

back into the pushstack. And then the new element is pushed into the pushstack.

67Data Structures and Algorithms

There are 2 stacks pushstack, popstack and so two tops of these stacks, pushtop, pop-top. Also let

us assume there are simple stack push and pop functions, which modifi es the pushtop and poptop

global variables accordingly.

Input: enqueue method takes an integer and also a pointer to integer to return the method’s

status. dequeue just takes a pointer to integer to return the method’s status.

Output: enqueue queues the element at the rear of the queue unless queue overfl ows. dequeue

removes the element from the front of the queue and returns it unless queue underfl ows.

void enqueue(int item)

{

 while(poptop!=-1) push(pushstack,pop(popstack));

 push(pushstack,item);

}

int dequeue()

{

 while(pushtop!=-1) push(popstack,pop(pushstack));

 return(pop(popstack));

}

17. Implement stack using queues.

Make two queues, queue1 and queue2. For ‘push’, just enqueue into queue1. For ‘pop’, fi rst dequeue

all except one element one-by-one from queue1 and enqueue into queue2. The one remaining

element in the queue1 shall be popped as stack’s pop. If ‘push’ resumes, just enqueue in queue2

itself. Assume queue1 and queue2’s ‘fronts’ as front1 and front2.

Input: Push method takes an integer and also a pointer to integer to return the method’s status. Pop

just takes a pointer to integer to return the method’s status.

Output: Push pushes the element into the stack unless stack overfl ows. Pop removes the element

from the top of the stack and returns it unless stack underfl ows.

void push(int item)

{

if (sizeof(queue1)==0)&&(sizeof(queue2)==0)

enqueue(queue1,item);

if (sizeof(queue1!=0) enqueue(queue1,item);

else enqueue(queue2,item);

}

68 Cracking the IT Interview

int pop()

{

 if (sizeof(queue1)!=0)

 {

 while(sizeof(queue1)!=1) enqueue(queue2,dequeue(queue1));

 return(dequeue(queue1));

 }

 if (sizeof(queue2)!=0)

 {

 while(sizeof(queue2)!=1)enqueue(queue1,dequeue(queue2));

 return(dequeue(queue2));

 }

}

18. Implement two stacks using single array effi ciently.

The aim of the problem is to implement two stacks using an array. The simple solution to the

problem is to let two stacks grow in the reverse directions, one starting from the lower bound of the

array and another starting from the upper bound of the array. Either of the stacks will overfl ow only

when both the stack top pointers meet. Underfl ows can be checked by the lower and upper bounds

of the array itself. The stacks grow in the opposite directions as illustrated in the fi gure.

1

2

3Top 1

S
ta

c
k

1

Top 2 4

3

2

1 S
ta

c
k

2

69Data Structures and Algorithms

Input: push1 and push2 methods take an integer and also a pointer to integer to return the method’s

status. pop1 and pop2 just take a pointer to integer to return the method’s status.

Output: push1 and push2 push the elements into the stack1 and stack2, respectively unless the two

tops collide. pop1 and pop2 remove the elements from the tops of the stack1 and stack2, respectively

and returns it unless stack under-fl ows.

#defi ne SIZE 100;

int top1=–1,top2=SIZE;

int array[SIZE];

void push1(int item, int *error)

{

 if (top2-top1!=1)

 {

 top1++;

 array[top1] = item;

 *error = 0;

 return;

 }

 *error = 1;

 return;

}

int pop1(int *error)

{

 int item;

 if (top1!=-1)

 {

 item = array[top1];

 top1—;

 *error = 0;

 return item;

 }

 *error = 1;

 return;

}

void push2(int item, int *error)

70 Cracking the IT Interview

{

 if (top2-top1!=1)

 {

 top2––;

 array[top2] = item;

 *error = 0;

 return;

 }

 *error = 1;

 return;

}

int pop2(int *error)

{

 int item;

 if (top2!=SIZE+1)

 {

 item = array[top2];

 top2++;

 *error = 0;

 return item;

 }

 *error = 1;

 return;

}

LINKED LIST

19. Explain the singly linked list insertion procedure.

The code snippet inserts the new node as the successor to the node pointed to by ‘after’.

Input: Pointer to the node to which the element has to be inserted as the successor in the linked

list.

Output: The linked list rendered with the item inserted as the successor to the node pointed to by

‘after’.

71Data Structures and Algorithms

typedef struct node {

 int data;

 struct node *next;

 } link;

void insert(link *after, int item)

{

 link *newnode = (link *) malloc(sizeof(link));

 newnode->data = item;

 newnode->next=after->next;

 after->next=newnode;

}

20. Explain the singly linked list deletion procedure.

The following code snippet deletes the node whose predecessor is pointed to by ‘before’.

Input: To be deleted node’s predecessor node from the linked list.

Output: The linked list rendered with the item deleted from the linked list. It returns the pointer to

the deleted node.

link *deletion(link *before)

{

 link *deleted=NULL;

 deleted = before->next;

 before->next=before->next->next;

 return(deleted);

}

21. How do you reverse a singly linked list?

There are two ways of reversing a singly linked list viz., using recursion and using iteration.

Reversing it using recursion uses the simple concept of breaking down the problem, which can also

be illustrated using string reversal, e.g., reverse (abcdef) =reverse (bcdef).a where ‘.’ means string

concatenation. Both the algorithms are of O (N).

72 Cracking the IT Interview

Using Recursion

Input: Pointer to the head of the linked list to be reversed.

Output: The pointer to the head of the reversed linked list.

typedef struct list *listptr;

struct list {

 int data;

 listptr next;

 };

static listptr head = curp;

//Initialized to input linked list’s header

static listptr revHead = NULL;

listptr recursiveReverse(listptr curp)

{

 if (curp == NULL)

 return NULL;

 if (curp->next == NULL) //This is the new linked list’s

 revHead = curp; // head, so save it in revHead.

 else

 reverse(curp->next)->next = curp;

 if (curp == head) { // The head of the input linked list

 curp->next = NULL; // will become the last node

 return revHead;

 }

 else

 return curp;

}

Using Iteration

Input: Pointer to the head of the linked list to be reversed.

Output: Pointer to the head of the reversed linked list.

In linked list reversal using iteration, three pointers are needed.

73Data Structures and Algorithms

For example, let us assume the following linked list.

head head

3 4 5 6 7 3 4 5 6 7

cur ptr1 ptr2

Before Assignment

cur ptr1 ptr2

After reassignment

(3 4 is not shown)

head

3 4 5 6 7

cur ptr1 ptr2

Move pointers ahead

(3 4 is not shown)

Repeat the steps above

Step 1 Step 2

Step 3

The pointer ptr1Æ next is made to point at cur and this is done iteratively after moving all the

pointers one step ahead, until ptr2= =NULL when all the iterations are complete the last node is

made to point to its earlier predecessor and the head is now made to point to this last node.

//This function assumes there are atleast 2 nodes in the

//linked list to be reversedvoid iterativeReverse (listptr*head)

{

 listptr cur,ptr1,ptr2;

 cur = *head;

 ptr1 = cur->next;

 ptr2 = ptr1->next;

 while (ptr2!=NULL)

 {

 ptr1->next = cur;

 cur = ptr1;

 ptr1 = ptr2;

 ptr2 = ptr2->next;

 }

 ptr1->next = cur;

 *head = ptr1;

}

74 Cracking the IT Interview

22. Given a singly linked list, determine whether it contains a loop or not without

using temporary space.

To detect a loop inside a linked list:

 � make a pointer to the start of the list and call it the hare

 � make a pointer to the start of the list and call it the tortoise

 � advance the hare by two and the tortoise by one for every iteration

 � there is a loop if the tortoise and the hare meet

 � there is no loop if the hare reaches the end

This algorithm is particularly interesting because it is O (n) time and O (1) space, which appears to

be optimal;

Input: Pointer to the head of the linked list for which loop has to be checked.

Output: 1 for true—indicating there is a loop or 0 for false otherwise.

int containsLoop(listptr head)

{

 listptr hare,tort;

 tort = head;

 if(head!=NULL)hare=tort->next;

 while(hare!=tort && hare!=NULL)

 {

 tort = tort->next;

 if (hare->next!=NULL) hare = hare->next->next;

 else return(0);

 }

 if (hare==tort) return(1);

 else return(0);

}

23. Given a pointer to a linked list node, explain how you will delete the same

node.

This is a tricky problem since a node cannot be deleted unless the predecessor node’s pointer is

known. The problem can be solved only if there a successor node for the current node to be deleted.

75Data Structures and Algorithms

The data of the successor node is copied onto the current node and the successor node is deleted to

make the linked list look exactly as it would look on a normal deletion of the current node.

The algorithm is of O (1) since we traverse just 1 node of the list.

Input: Pointer to the node whose data is to be deleted.

Output: Renders the linked list without the node (data).

int delete(link *ptr)

{

 link *deletednode;

 /* failure - cannot be deleted. */

 if (ptr->next==NULL) return(-1);

 /* copy the next node’s data into current node */

 ptr->data = ptr->next->data;

 deletednode = ptr->next;

 ptr->next = ptr->next->next;

 return 0; /* success */

}

24. Given a singly linked list, fi nd the middle of the list in a single traversal without

using temporary memory.

To fi nd the middle node in a linked list:

 � make a pointer to the start of the list and call it single.

 � make a pointer to the start of the list and call it double.

 � advance single by one and double by two till double reaches the end of the list.

 � single shall be at middle of the list when double reaches the end.

The algorithm is of O(N).

Input: Pointer to the head of the linked list whose center is to be found.

Output: Pointer to the middle node of the linked list.

listptr fi ndMiddle(listptr head)

76 Cracking the IT Interview

{

 listptr single,double;

 single = head;

 if (head->next!=NULL)

 double=head->next->next;

 else

 return(head);

 while(double!=NULL)

 {

 if (double->next!=NULL)

 double = double->next->next;

 else

 return(single);

 single = single->next;

 }

 return(single);

}

25. Explain how in a singly linked list you can get to (n-k)th node, where (k<n), in

a single traversal.

To get to the (n-k)th node of a linked list, maintain two pointers, ptr1 and ptr2. Initialize both to

point to the header node. Move ptr2 by k nodes. Now move both ptr1 and ptr2 simultaneously one

node at a time until ptr2 reaches the last node. When ptr2 is at the last node ptr1 will be pointing

to the (n-k)th node.

Input: Pointer to the head of the linked list and the integer 0<k<n.

Output: Pointer to (n-k)th node, if 0<k<n otherwise NULL.

link *traversenk(link *head, int k)

{

 link *ptr1,*ptr2;

 int i=0;

 ptr1=ptr2=head;

 while(i<k && ptr2!=NULL)

 {

77Data Structures and Algorithms

 ptr2=ptr2->next;

 i++;

 }

 if (ptr2==NULL) return (NULL); /* k>n so returning NULL */

 while(ptr2->next!=NULL)

 {

 ptr2=ptr2->next;

 ptr1=ptr1->next;

 }

 return ptr1;

}

26. Given a singly linked list, state how to print out its contents in reverse order

without using any extra space.

The logic that is applied here is to make use of recursion to print out the linked list in the reverse

when recursion is unwinding back. Make recursive calls passing the next node before printing the

current node’s data. The terminating condition checks if next node is Null then prints this node’s

data.

The algorithm is of O (N) since we traverse every node of the list.

Input: Pointer to the header node whose contents are to be printed in the reverse order.

Output: The linked list data is printed in the reverse order.

void PrintReverse(link *head)

{

 if (head==NULL) return;

 if (head->next != NULL)

 PrintReverse(head->next);

 printf(“%d\t”,head->data);

}

27. What is a circular singly linked list?

A circular linked list is a normal singly linked list, whose last node points back again to its header

node. The advantage of such a linked list is that it can be traversed completely from any known

pointer in it.

78 Cracking the IT Interview

28. Explain the doubly linked list insertion procedure.

The code snippet inserts the new node as the successor to the node pointed to by ‘after’. In addition

to what done for the singly linked list, the reverse links are also properly changed.

Input: Pointer to the node to which the new element has to be inserted as the successor in the linked

list.

Output: The linked list rendered with the item inserted as the successor to the node pointed to by

‘after’.

typedef struct dnode{
 int data;
 struct dnode *prev,*next;
 } dlink;

void insert(dlink *after, int item)

{

 dlink *newnode = (dlink*) malloc(sizeof(dlink));

 newnode->data = item;

 newnode->prev = after;

 newnode->next = after->next;

 after->next->prev = newnode;

 after->next = newnode;

}

29. Explain the doubly linked list deletion procedure.

The following code snippet deletes the node pointed to by ‘ptr’. The ‘ptr’ node’s predecessor node

can be reached through the reverse link and so the linked list is modifi ed to make the ‘ptr’ node’s

successor node to become the ‘ptr’ node’s predecessor’s immediate successor, in the process of

detaching the node pointed to by ‘ptr’. The reverse links are also changed appropriately.

Input: Pointer to the node to be deleted from the linked list.

Output: The linked list rendered with the item deleted from the linked list. It returns the pointer to

the deleted node.

dlink *delete(dlink *ptr)

{

 dlink *deleted=NULL;

79Data Structures and Algorithms

 deleted = ptr;

 deleted->prev->next = deleted->next;

 deleted->next->prev = deleted->prev;

 return(deleted);

}

TREES

30. List out some of the applications of the Tree data-structure.

 � Some of the Tree data-structure are as follows: For the representation and evaluation of

Arithmetic expressions.

 � Symbol Table construction at the lexical analysis phase of Compiler.

 � Syntax analysis.

31. Explain an algorithm to fi nd the depth of a binary tree.

The depth of any tree is the longest path from root to any of its leaf nodes. It is evaluated by

incrementing the larger depth among its left and right sub-tree by 1.

For example:

The depth of the following tree is evaluated as below:

5

93

42

depth(5) = max(depth(3), depth(9))+1 = 2

depth(3) = max(depth(2), depth(4))+1 = 1

since depth(2)=depth(4)=depth(9)=0

The algorithm is of O (N) since we traverse every node in the tree atleast once.

Input: Pointer to the root node of the tree whose depth has to be evaluated.

Output: The depth of the tree whose pointer to root was supplied.

typedef struct tnode *treeptr;

struct tnode {

 int data;

 treeptr left,right;

80 Cracking the IT Interview

 };

int depth(treeptr root)
{

 int leftdepth=-1,rightdepth=-1;

 if (root==NULL) return(-1);

 if (root->left!=NULL) leftdepth= depth(root->left);

 if (root->right!=NULL) rightdepth= depth(root->right);

 if (leftdepth>=rightdepth) return(1+leftdepth);

 else return(1+rightdepth);

}

32. Discuss the algorithm that returns the mirror image of the input of the input

binary tree.

The mirror image of any tree with root as ROOT is obtained by swapping the left and right sub-trees

with roots as ROOT->left and ROOT->right. But just before swapping them, the left and right sub-

trees in turn must be already ‘mirrorized’. This can be easily achieved using recursion.

For example: The tree’s mirror image is obtained as described below:

Mirror(5)

93

42

5

Mirror(9) Mirror(3)

Mirror(4) Mirror(2)2 4

5

9 3

5

9 3

4 2

Mirror of leaf nodes are obtained by simply swapping their null pointers and returning the same

node. The algorithm is of O (N) since we traverse every node in the tree atleast once.

Input: Pointer to the root node of the tree, which has to be mirror-imaged.

Output: The pointer to the root node of the tree, which is the exact mirror image of the tree supplied

earlier.

treeptr mirror(treeptr root)

{

 treeptr ltree=NULL,rtree=NULL;

 if (root==NULL) return root;

 if (root->left!=NULL) ltree = mirror(root->left);

81Data Structures and Algorithms

 if (root->right!=NULL) rtree = mirror(root->right);

 root->right=ltree;

 root->left=rtree;

 return(root);

}

33. State the algorithm to check if two trees are identical assuming integer data.

To check if two trees are identical (given their root nodes), fi rst check if both the root’s data are the

same AND again check the same condition for the root’s left and right sub-tree. If during the course

of comparison if at least any of the pointers do not match, i.e., one node has left sub-tree as null and

other does not or vice versa, then we can say they are not-identical. If not then we need to drill deep

down till its leaf nodes comparing every node’s data. This can be easily achieved by Boolean AND

operation where if any condition fails, it returns false and if everything is true then true is returned

as result.

The algorithm is of O (N) since we traverse every node in the tree at least once unless the tree is not

identical.

Input: Pointers to the root nodes of the two trees, which need to be checked for identicalness.

Output: true—if both the trees are identical, false otherwise.

int checkIdentical(treeptr root1, treeptr root2)

{

 if(((root1!=NULL)&&(root2==NULL))

 ||((root2!=NULL)&&(root1==NULL)))

 return(0);

 if ((root1==NULL)&&(root2==NULL)) return(1);

 else return((root1->data==root2->data)&&

 checkIdentical(root1->left,root2->left)&&

 checkIdentical(root1->right,root2->right));

}

34. Explain Pre-order Tree Traversal.

In the pre-order tree traversal, fi rst the node is traversed, followed by the node’s left sub-tree and

fi nally its right sub-tree (NLR).

Input: Pointer to the root of the tree to be pre-order traversed.

82 Cracking the IT Interview

Output: Pre-order traversal of the tree pointed to by root.

void preorder(treeptr root)

{

 if (root!=NULL)

 {

 printf(“%d”,root->data);

 if (root->left!=NULL) preorder(root->left);

 if (root->right!=NULL) preorder(root->right);

 }

}

For example

Preorder Traversal of Expression Tree

* + ab – cd + ef

ba c d

e f

+*

+ –

/

Preorder traversal is used to obtain the prefix form of an expression

35. Explain In-order Tree Traversal.

In the in-order tree traversal, fi rst the node’s left sub-tree is traversed, followed by the node and

fi nally the right sub-tree (LNR).

Input: Pointer to the root of the tree to be in-order traversed.

Output: In-order traversal of the tree pointed to by root.

void inorder(treeptr root)

{

 if (root!=NULL)

 {

83Data Structures and Algorithms

 if (root->left!=NULL) inorder(root->left);

 printf(“%d”,root->data);

 if (root->right!=NULL) inorder(root->right);

 }

}

For example

Inorder Traversal of Expression Tree

a+b * c–d / e+f

Inorder traversal is used to obtain the infix form of an expression

a b c d

* +

e f+ –

/

36. Explain Post-order Tree Traversal.

In the post-order tree traversal, fi rst the node’s left sub-tree is traversed, followed by the node’s right

sub-tree and fi nally the node (LRN).

Input: Pointer to the root of the tree to be post-order traversed.

Output: Post-order traversal of the tree pointed to by root.

void postorder(treeptr root)

{

 if (root!=NULL)

 {

 if (root->left!=NULL) postorder(root->left);

 if (root->right!=NULL) postorder(root->right);

 printf(“%d”,root->data);

 }

}

84 Cracking the IT Interview

For example

Postorder Traversal of Expression Tree

ab + cd – * ef + /

a b c d

* +

e f+ –

/

Postorder traversal is used to obtain the postfix form of an expression

37. Explain the procedure to print tree levelwise.

Tree can be displayed levelwise by using recursion. The tree is printed as it would look like when

rotated 90 anti-clockwise. The tree is oriented on the screen with the root at the far left and children

thereon to the right.

5

3 8

7 9

6 10

Structure of the input tree.

Programs' Output

10

9

8

7

65

3

Input: Pointer to the root of the tree to be levelwise traversed.

Output: Levelwise traversal of the tree pointed to by root, but rotated anti-clockwise by 90

degrees.

void PrintTree(treeptr root, int depth)

{

85Data Structures and Algorithms

 int i;

 if (root !=NULL)

 {

 PrintTree(root->right, depth+1);

 for(i=0;i<depth*6+4;i++)

 printf(“ “);

 printf(“%d\n”,root->data);

 PrintTree(root->left, depth+1);

 }

}

The procedure should be fi rst called PrintTree(root, 0).

38. Discuss the array representation of a binary tree.

Starting the root node’s data from index 1 and every node’s left child at index 2*n and right child at

index 2*n+1, where ‘n’ stands for root node index.

As an illustration consider the following binary tree:

5

3 9

2 4 6 11

5 3 9 2 4 6

1 2 3 4 5 6 7 – array index

11

Left child of 9(at index n=3) is the node at index 2*3= array[6] = 6 and right child is the node at

index 2*3+1=array[7]=11.

39. What is a binary height balanced tree?

Binary height balanced tree is a binary tree in which for every node the heights of its left sub-tree

and its right sub-tree differ by not more than 1, i.e., height(left-sub-tree)height(right-sub-tree) =

±1.

40. How do you represent a ternary tree?

A ternary tree is a tree in which a node can have zero or more child nodes. Ternary nodes can be

represented as a tree comprising of nodes, which can be defi ned as follows:

86 Cracking the IT Interview

typedef struct node

{

 int data;

 struct node *sptr;/* sibling pointer */

 struct node *cptr;/* child pointer */

}treenode;

Consider the representation of the following ternary tree:

7

3 8 9

2 4 6 5

The ternary tree representation shall look like

cptr 7 sptr

cptr 3
sptr

cptr
2

sptr cptr 4 sptr

8cptr sptr

cptr sptr

cptr sptr

cptr sptr6

9

5

In the above fi gure, a pointer fi eld with a stroked-out line over it indicates that it is NULL.

The root node has its sibling pointer NULL since there is no other node at the same level and the

root’s child pointer points to node with data 3. Similarly, this node has its sibling pointer pointing

to its sibling node with data 8 and that node in-turn has its sibling pointer pointing to its sibling

node with data 9. The node with data 3 has its child pointer pointing to the node with data 2. The

node with data 8 has its child pointer pointing to the node with data 5. The node with data 2 has its

sibling pointer pointing to the node with data 4, which again has its sibling pointer pointing to its

next sibling with data 6. The node with data 5 has both its child and sibling pointer as NULL.

87Data Structures and Algorithms

41. Distinguish amongst full, complete and perfect binary trees.

In a full binary tree, each node is either a leaf or internal node with exactly two non-empty

children.

In a complete binary tree of height d, every level, except possibly the deepest, is completely fi lled. At

depth d, all nodes must be as far left as possible.

In a perfect binary tree of height n, every internal node has two children and all the leaf nodes are at

the same level and there are exactly 2n+1–1 nodes.

42. How many nodes does a perfect binary tree on n levels have and how many

leaves?

A perfect binary tree has 2n+1–1 nodes and 2n leaf nodes.

43. What are the red–black trees?

A red–black tree is a binary search tree, which has the following red–black properties:

 � Every node is either red or black.

 � The root is black—every leaf (NULL) is black.

 � If a node is red, then both its children are black.

 � All internal nodes have two children.

 � Every simple path from a node to a descendant leaf contains the same number of black

nodes.

44. What are splay trees?

Splay Trees were invented by Sleator and Tarjan in 1985. A splay tree is a self-adjusting binary search

tree. These trees have the wonderful property to adjust optimally to any sequence of tree operations.

Every time we access a node of the tree, whether for retrieval, insertion or deletion, we perform

radical surgery on the tree, resulting in the newly accessed node becoming the root of the modifi ed

tree. This surgery will ensure that nodes that are frequently accessed will never drift too far away

from the root whereas inactive nodes will get pushed away farther from the root. The surgery on

the tree is done using rotations, also called splaying steps. There are six different splaying steps: Zig

Rotation (Right Rotation), Zag Rotation (Left Rotation), Zig-Zag (Zig followed by Zag), Zag-Zig

(Zag followed by Zig), Zig-Zig and Zag-Zag.

A sequence of m operations on a tree with initially n leaves takes time O (n logn + m logn)

88 Cracking the IT Interview

45. What is a Big B-tree?

B-trees were introduced by Bayer and McCreight. They are a special m-ary balanced tree used in

databases because their structure allows records to be inserted, deleted and retrieved with guaranteed

worst-case performance. An n-node B-tree has height O(log n). The Apple Macintosh HFS fi ling

system uses B-trees to store disk directories. A B-tree satisfi es the following properties:

 � The root is either a tree leaf or has at least two children.

 � Each node (except the root and tree leaves) has between ceil(m/2) and m children, where

ceil is the ceiling function.

 � Each path from the root to a tree leaf has the same length.

46. What is a B+ tree?

A B+ tree is a variant of B-tree with the following properties:

 � A B+ tree of order v consists of a root, internal nodes and leaves.

 � The root may be either leaf or an internal node with two or more children.

 � Internal nodes contain between v and 2v keys, and a node with k keys has k + 1 pointers

(children).

 � Leaves are always on the same level and are the only nodes containing data pointers, and are

also chained using sequence pointers.

47. What are threaded binary trees?

A Threaded Binary Tree is a binary tree in which every node that does not have a right child has a

link (called, a thread) to its INORDER successor. By doing this threading, we avoid the recursive

method of traversing a tree, which makes use of stacks and consumes a lot of memory and time.

48. What is a binary search tree? Explain its various operations.

A binary search tree is a binary tree with the following properties:

 � The data stored at each node has a distinguished key, which is unique in the tree and belongs

to a total order. (That is, for any two non-equal keys, x,y either x < y or y < x.)

 � The key of any node is greater than all keys occurring in its left sub-tree and less than all

keys occurring in its right sub-tree.

One property of a binary search tree is that an in-order traversal walks over the nodes in order of

their keys (thus, the name in-order). Data maintained in a binary search tree is sorted by the key

value in each of its node.

89Data Structures and Algorithms

The operations that can be performed on a binary search tree (BST) are as follows:

 � Search—look up an item in the BST by its key

 � Insert—add an item and its key to the BST

 � Remove—delete an item/key from the BST by its key

BST Search Algorithm

Input: Pointer to the root of the BST and key to be searched.

Output: Pointer to the node if item is found else NULL if item is not found.

 � if this node is NULL then return NULL

 � if this node’s key matches the search key then return pointer to this node

 � if this node’s key is less than the search key then recursively search the right sub-tree

 � recursively search the left sub-tree

/* assume item itself is the key here */

treeptr search(treeptr root, int key)

{

 /* not found just return NULL */

 if (root==NULL) return root;

 if (root->data == key) return (root);

 if (root->data > key) return(search(root->left,key));

 if (root->data < key) return(search(root->right,key));

}

BST Insertion Algorithm

The insertion of a key, item pair is performed by searching for the key and inserting it as either left

child or right child, respectively based on whether we hit NULL while accessing the left sub-tree

or while accessing the right sub-tree during the course of the recursion as explained in the steps

below.

Input: Pointer to the root of the BST and (key,item) to be inserted into the BST.

Output: The root of the BST, rendered with the item inserted appropriately without breaking the

BST’s property.

 � If this node is NULL then allocate a new node, copy the key, item and return this node (This

is for empty tree).

90 Cracking the IT Interview

 � If this node’s key is less than the search key then recursively search the right sub-tree, if right

sub-tree is NULL then allocate a new node, copy the key, item and make this node as its

right child.

 � Recursively search the left sub-tree, if left sub-tree is NULL then allocate a new node, copy

the key, item and make this node as its left child.

 � The insert algorithm assumes there is no node in the tree with the same key that is being

inserted now.

/* assume item itself is the key here */

treeptr insert(treeptr root, int key)

{

 treeptr parent, newnode;

 if (root==NULL)

 {

 root = (treeptr) malloc(sizeof(treenode));

 root->data = key;

 root->left=root->right=NULL;

 return root;

 }

 parent = ParentSearch(root, key);

 newnode = (treeptr) malloc(sizeof(treenode));

 newnode->data = key;

 newnode->left=newnode->right=NULL;

 if (parent->data > newnode->data) parent->left=newnode;

 else parent->right=newnode;

 return root;

}

treeptr ParentSearch(treeptr root, int key)

{

 if ((root->data < key) && (root->right == NULL))

 return(root);

 if ((root->data < key) && (root->right != NULL))

 return(ParentSearch(root->right,key));

 if ((root->data > key) && (root->left == NULL))

 return(root);

91Data Structures and Algorithms

 if ((root->data > key) && (root->left != NULL))

 return(ParentSearch(root->left,key));

}

BST Deletion Algorithm

Input: Pointer to the root of the BST and key to be deleted from the BST.

Output: The root of the BST, rendered with the item deleted appropriately without breaking the

BST’s property.

Deletion again uses the BST search to fi rst locate the item. Then three cases may arise for deletion:

 � Deleting a leaf -> simply remove it:

 For example, consider the deletion of 17 happens as below

8 8

2 20 2 20

1 5 17 1 5

3 3

 � Deleting a node with one child -> remove it and move its child (the sub-tree rooted at its

child) up:

 For example, consider the deletion of 20 happens as below

8 8

2 20 2 17

1 5 17 1 5

3 3

 � Deleting a node with two children ->

 (a) copy the (key, item) of its in-order predecessor and remove its in-order predecessor.

For example consider the deletion of 3 happens as below

8 8

3 20 2 20

1 5 17 1 5 17

2

92 Cracking the IT Interview

 (b) copy the (key, item) of its in-order successor and remove its in-order successor.

 For example, consider the deletion of 2 happens as below

8 8

2 20 3 20

3

49. AVL Trees operations—insert, delete, search.

AVL trees are height-balanced binary search trees, in which every node has the property that its

height of the left and right sub-trees, differ in height by at most 1. The advantage of AVL trees over

normal BSTs are, AVL trees store the tree nodes with minimum number of NULL pointers, thus

saving memory space. In AVL trees, the access for any node is of the order of Log N where N is the

total number of nodes in the tree.

The operations that can be performed on an AVL tree are as follows:

 � Search—look up an item in the AVL tree by its key

 � Insert—add an item and its key to the AVL tree

 � Remove—delete an item/key from the AVL by its key

AVL Search Algorithm

The AVL tree search algorithm is exactly the same as in for the BST, the only difference being that

even the worst case order of search algorithm in an AVL tree being Log N, where N is the total

number of nodes in the AVL tree.

AVL Insertion Algorithm

AVL insertion is performed by initially adding the new node into the AVL tree as per the BST

insertion algorithm and following it up with an act of height-balancing of the tree, since the insertion

could have unbalanced the tree. Height-balancing of the tree is performed by means of rotations to

balance the trees without losing their BST property. Sometimes the trees may require a couple of

AVL rotations called a double rotation otherwise single rotations suffi ce to balance the tree. These

rotations are performed around the Pivot node. There are two types of single AVL rotations:

 � LL Rotation

 � RR Rotation

93Data Structures and Algorithms

Double rotations are of two types:

 � LR Rotation

 � RL Rotation

LL rotation

The fi gure below portrays the state of the AVL tree before and after the insertion of the key ‘1’ in the

AVL tree.

8 8

3 20 3 20

2 5 2 5

1

The above insertion unbalances the AVL tree at the node 8. Performing a LL rotation centered at

the pivot node 8 balances the tree as shown below.

3

2 8

1 5 20

RR rotation

RR rotation in an AVL tree is performed when an insert happens in a way symmetric to the LL

rotation as illustrated using the fi gure below. Consider the insertion of the key ‘22’ into the AVL

tree.

8 8

3 20 3 20

18 21 18 21

22

The above insertion unbalances the AVL tree at the node 8. Performing a RR rotation centered at

the pivot node 8 balances the tree as shown below.

20
/ \

8 21
/ \

3 18 22
\

94 Cracking the IT Interview

LR rotation

The fi gure below portrays the state of the AVL tree before and after the insertion of the key ‘7’ in the

AVL tree.

8 8

3 20 3 20

2 5 2 5

7

The above insertion unbalances the AVL tree at the node 8. Performing a LR rotation centered at

the pivot node 8 balances the tree as shown below.

5

3 8

2 7 20

RL rotation

RL rotation in an AVL tree is performed when an insert happens in a way symmetric to the LR

rotation as illustrated using the fi gure below. The fi gure below portrays the state of the AVL tree

before and after the insertion of the key ‘13’ in the AVL tree.

8 8

3 20 3 20

15 22 15 22

13

The above insertion unbalances the AVL tree at the node 8. Performing a LR rotation centered at

the pivot node 8 balances the tree as shown below.

15

8 20

3 13 22

AVL Deletion Algorithm

AVL deletion is performed by initially deleting the node from the AVL tree as per the BST deletion

algorithm and following it up with an act of height-balancing of the tree, since the deletion could

have unbalanced the tree. The height-balancing is done as explained earlier.

95Data Structures and Algorithms

SORTING AND SEARCHING

50. Explain linear search in a sorted array.

Linear search in an array sorted in ascending order for any key is done until an element with a value

greater than the key is reached.

The algorithm is better than O (N) since we may not always traverse every element of the array

while searching.

Input: Array of sorted integers and its size and the key to be searched.

Output: The location of the key in the array if found otherwise –1.

int search(int a[],int key,int sizea)

{

 int i=0,loc=-1;

 while(i<sizea && a[i]<=key)

 {

 if (a[i]==key) loc=i;

 i++;

 }

 return(loc);

}

51. Explain the binary search algorithm.

The basic idea of binary search is to compare the value of the element at the center of the sorted

array bounded by lower and upper limits with that of the key element, based on which the array

to be searched keeps shrinking in its size by half. The key is recursively searched in the resultant

shrunken array. The array keeps shrinking until either the key is found or the bounds cross over

each other, which happens while searching for a non-existing element.

The algorithm is of O (log N) since the array to be searched gets reduced to half each time.

Input: Array of sorted integers and its size and the key to be searched.

Output: The location of the key in the array if found otherwise –1.

int search(int a[],int key,int lower,int upper)

{

 int loc=0,mid=(lower+upper)/2;

96 Cracking the IT Interview

 if (lower>upper) return(-1);

 if (a[mid]==key) return(loc)

 else

 {

 if (a[mid]<key) return(search(a,key,mid+1,upper));

 else return(search(a,key,lower,mid-1));

 }

}

52. Explain the selection sort algorithm and state its time complexity.

void sort(int *arr,int size)

{

 int i,j,temp;for(i=0;i<size-1;i++)

 {

 for(j=i+1;j<size;j++)

 {

 if (arr[i]>arr[j])

 {

 temp=arr[i];

 arr[i]=arr[j];

 arr[j]=temp;

 }

 }

 }

}

Time complexity of the algorithm is O (n2) where n is the size of the array.

53. Explain the bubble sort algorithm and state its time complexity.

void sort(int *arr,int size)

{

 int i,j,temp;

 for(i=0;i<size-1;i++)

 {

97Data Structures and Algorithms

 for(j=0;j<size-i–1;j++)

 {

 if (arr[j]>arr[j+1])

 {

 temp=arr[j];

 arr[j]=arr[j+1];

 arr[j+1]=temp;

 }

 }

 }

}

Time complexity of the algorithm is O (n2) where n is the size of the array.

54. Explain the insertion sort algorithm and state its time complexity.

void sort(int *arr,int size)

{

 int i,j,temp;

 for(i=1;i<size;i++)

 {

 for(j=i;j>0 &&arr[j]<arr[j-1];j—)

 {

 if (arr[j]<arr[j-1])

 {

 temp=arr[j];

 arr[j]=arr[j-1];

 arr[j-1]=temp;

 }

 }

 }

}

Time complexity of the algorithm is O (n2) where n is the size of the array.

98 Cracking the IT Interview

55. Explain the quick sort algorithm and state its time complexity.

void q_sort(int *arr,int lower,int upper)

{

 int i, left = lower, right = upper, pivot, temp;

 if (lower>upper) return;

 pivot = arr[left];

 while (left <= right)

 {

 while ((arr[right] > pivot))

 right—;

 while ((arr[left] < pivot))

 left++;

 if (left > right) break;

 temp = arr[left];

 arr[left] = arr[right];

 arr[right] = temp;

 left++;

 right—;

 }

 q_sort(arr, lower, right);

 q_sort(arr, left, upper);

}

The average time complexity of the algorithm is O (N log N) where n is the size of the array and

worst case time complexity is O(N2).

56. Explain the shell sort algorithm and state its time complexity.

void shellSort(int numbers[], int array_size)

{

 int i, j, increment, temp;

 increment = array_size/2;

 while (increment > 0)

 {

 for (i=0; i < array_size; i++)

99Data Structures and Algorithms

 {

 j = i;

 temp = numbers[i];

 while ((j >= increment) && (numbers[j-increment] >

 temp))

 {

 numbers[j] = numbers[j - increment];

 j = j - increment;

 }

 numbers[j] = temp;

 }

 if (increment/2 != 0)

 increment = increment/2;

 else if (increment == 1)

 increment = 0;

 else

 increment = 1;

 }

}

Time complexity of the algorithm is O (N2) where n is the size of the array. The shell sort is by far

the fastest of the N2 class of sorting algorithms. It’s more than 5 times faster than the bubble sort

and a little over twice as fast as the insertion sort, itsclosest competitor. Its average time complexity

approaches O(N).

57. State the merge sort principle and its time complexity.

Merge sort algorithm is an external sort algorithm that needs extra memory or storage space. It is

used for sorting data in huge fi les. The algorithm addresses the problem by divide-and-conquer

methodology. The data is broken down recursively into smaller chunks until left with 2 data

elements where sorting becomes just a comparison of two elements generating a sorted array

with two elements. Two such sorted arrays are merged by using the earlier discussed algorithm for

merging two sorted arrays. Again two such sorted arrays of four elements are merged again in the

same way and so on and so forth until the original array is completely sorted. The time complexity

of merge sort is N Log N.

100 Cracking the IT Interview

58. Explain the Singly linked list search procedure.

The following code snippet searches for a key in the entire linked list:

Input: Pointer to the head of the linked list and the item to be searched.

Output: Returns the pointer to the node, which contains the key if found, NULL otherwise.

link *search(link *head, int item)

{

 link *temp=head;

 while(temp!=NULL)

 {

 if (temp->data==item) return(temp);

 temp=temp->next;

 }

 return(NULL);

}

59. Explain the doubly linked list search procedure.

This is not any different from singly linked list search.

Input: Pointer to the head of the linked list and the item to be searched.

Output: Returns the pointer to the node, which contains the key if found, NULL otherwise.

dlink *search(dlink *head, int item)

{

 dlink *temp=head;

 while(temp!=NULL)

 {

 if (temp->data==item) return(temp);

 temp=temp->next;

 }

 return(NULL);

}

101Data Structures and Algorithms

60. Explain a method to sort a singly linked list.

Bubble sort must be used to sort singly linked list.

Input: Pointer to the head of the linked list, which has to be sorted.

Output: Pointer to the head of the sorted linked list.

link *sort(link *head, int n)

{

 int i,j,swap;

 link *temp1;

 for(i=0;i<n-1;i++)

 {

 temp1=head;

 for(j=0;j<n-i-1;j++)

 {

 if (temp1->data > temp1->next->data)

 {

 swap=temp1->data;

 temp1->data = temp1->next->data;

 temp1->data=swap;

 }

 temp1=temp1->next;

 }

 }

 return head;

}

61. Write an algorithm to derive the lowest common ancestor (LCA) of two nodes

in a Binary Search Tree. For example, node 16 is the LCA of nodes 15 and 18.

Assume the nodes are present in the tree and are not directly related like say

2, 4, 6 and 12.

Input: Pointer to the head of the Binary Search tree and two integers, a and b.

Output: The integer data stored in the LCA node.

102 Cracking the IT Interview

12

166

4

2

1813

15

int LCA(link *head, int a , int b)

{

 // if we reach NULL node or the node that has a or b then return
failure.

 if ((head == NULL) || (head->data == a) || (head->data == b))

 return -1;

 if ((a <= head->data) && (b > head->data)) {

 // This is their LCA

 return(head->data);

 }

 if ((b <= head->data) && (a > head->data)) {

 // This is their LCA

 return(head->data);

 }

 if ((a <= head->data) && (b <= head->data)) {

 // LCA is in their left sub-tree

 return(LCA(head->left, a, b));

 }

 if ((a > head->data) && (b > head->data)) {

 // LCA is in their right sub-tree

 return(LCA(head->right, a, b));

 }

}

103Data Structures and Algorithms

62. Write a simple string pattern matching algorithm.

Input: The text and string pattern that needs to be searched within text.

Output: The fi rst matching index in the string text where the pattern is found. If it is not found then

–1 is returned.

int is_pattern_found(char *text, char *pattern) {

 int len1, len2, i=0, j, count, start;

 len1 = strlen(text);

 len2 = strlen(pattern);

 // The length of the pattern cannot be larger than the text.

 if (len1 < len2) return(-1);

 while(i<len1) {

 count = 0;

 // Let us start at index i

 start = i;

 for(j=0;j<len2;j++) {

 if (text[start] == pattern[j]) {

 /* We have a match hence expand the window to see if

 * there is a complete match

 */

 start++;

 count++;

 } else {

 break;

 }

 }

 // We have a complete match

 if (count == len2) return(i);

 i++;

 }

 // We have reached the end of text without a complete match.

 return(-1);

}

104 Cracking the IT Interview

63. Write a program to print the cyclic permutations of an input string. For

example, if ‘abcd’ is input then output should be abcd, bcda, cdab, dabc.

Input: The pointer to the string, which needs to be cyclically rotated with no repeating characters.

Output: The cyclic permutations of the input string.

void printCyclic(char *input)

{

 int size, i;

 char *doubleinput, *temp;

 size = strlen(input);

 doubleinput = malloc(size * 2+1); // Allocate one byte extra
 for ‘\0’

 temp = malloc(size+1);

 if (doubleinput == NULL || temp == NULL) {

 printf(“\nmalloc failure”);

 return;

 }

 strcat(doubleinput, input);

 strcat(doubleinput, input);

 for(i=0; i<size; i++) {

 // snprintf comes in handy, but it creates a null
 terminated string.

 snprintf(temp, size+1, “%s”, &doubleinput[i]);

 printf(“%s\n”, temp);

 }

}

105Data Structures and Algorithms

64. An array is supposed to contain sorted consecutive integers, but one number

is missing in the array. Devise an effi cient algorithm to fi nd the missing

integer.

 An easy but ineffi cient method would be to linearly keep traversing the sorted

array and bail out as soon as you fi nd two numbers out of sequence. But it

would perform at order N. Let us devise a better performing algorithm.

Input: A sorted array of consecutive integers with one number missing in the middle, with the array

lower and upper bounds.

Output: The missing integer

int fi nd_missing(int *arr, int lower, int upper) {

 int mid;

 while(lower<upper) {

 mid=(lower+upper)/2;

 if (arr[mid]==(arr[lower]+mid-lower)) {

 /* Boundary check before dividing the array */

 if ((arr[mid+1] - arr[mid]!=1)) return(arr[mid]+1);

 lower=mid+1;

 } else {

 upper=mid;

 }

 }

 if (lower==upper) return arr[lower-1]+1;

}

65. Write the algorithm to free a binary tree.

Let us solve this problem recursively. There are three simple steps in the process as follows:

 � Free the left sub-tree.

 � Free the right sub-tree.

 � Free the current root node.

We have to check if the root node is NULL and terminate the recursion there.

Input: Pointer to the root node.

106 Cracking the IT Interview

Output: The tree shall be freed up in its entirety.

void free_binary_tree(void *root) {

 if (root) {

 free_binary_root(root->left);

 free_binary_root(root->right);

 free(root);

 }

}

SOCKET PROGRAMMING

66. Defi ne Socket.

‘Socket’ is primarily a concept used in the Transport Layer. It is a mechanism for creating a connection

between processes. It is one end of an inter-process communication channel.

It is a programming interface and is bidirectional. Each process has to establish its socket. Two

processes can communicate with each other only if their sockets are of the same type and in the

same domain.

The socket library function socket() creates a communications end-point or socket and returns a

fi le descriptor with which to access that socket. The socket associates with it a socket address, which

consists of a port number and the local host’s network address.

67. What are the different socket types?

There are various socket types available as follows:

 � Datagram sockets or connectionless sockets, which use User Datagram Protocol (UDP).

 � Stream sockets or connection-oriented sockets, which use Transmission Control Protocol

(TCP) or Stream Control Transmission Protocol (SCTP).

 � Raw sockets (or Raw IP sockets), where the transport layer is bypassed. It is typically available

in routers and other network equipment. Internet Control Message Protocol (ICMP), and

Open Shortest Path First (OSPF) are two application examples.

107Data Structures and Algorithms

68. What are the IP addresses assigned to systems on a private internet?

IP addresses allocation for private networks is defi ned in RFC 1918. These addresses are not assigned

to any organization and do not appear on the internet.

IANA has reserved the following three blocks of IP address space for private networks.

ClassA 10.0.0.0 to 10.255.255.255

Class B 172.16.0.0 to 172.31.255.255

Class C 192.168.0.0 to 192.168.255.255

Class A set of IP addresses are mostly used since it has a large pool of available IP addresses.

69. Defi ne the following socket utility functions: ntohs/ntohl, htons/htonl.

This family of functions converts between network byte order and host byte order. When the two

byte orders are different, the endian-ness of the data is changed.

ntohs/ntohl – The function ntohs converts the unsigned short integer from network byte order to

host byte order. Similarly, the function ntohl converts the unsigned long integer from network byte

order to host byte order.

htons/htonl – The function htons converts the unsigned short integer from host byte order to

network byte order. Similarly, the function htonl converts the unsigned long integer from host byte

order to network byte order.

70. Defi ne inet_ntoa() , inet_aton() functions.

These routines help in manipulating internet addresses. inet_ntoa() function translates the internet

host address given in network byte order to a string in numbers-and-dots notation. inet_aton()

function translates the internet host address from standard numbers-and-dots notation into binary

data in network byte order.

71. What is the port number used for telnet and ftp applications?

In UNIX the fi rst 1024 ports for both protocols are called ‘well known ports’. On UNIX, the

confi guration fi le /etc/services lists port numbers against named services. Well-known ports are

assigned by IANA. Telnet application is assigned port 23 and ftp is assigned port 20 for data and

port 21 for control path. A complete list of these assignments and more information can be found

in RFC 1700.

108 Cracking the IT Interview

72. Write a sample TCP Client/Server program.

An Iterative server would use the following primary socket calls:

socket() – creates a new socket and returns its descriptor

bind() – Associates a socket with a port and address

listen – establishes queue for connection requests

accept() – accepts a connection request

recv/send() – Receive and/or send data from/to a socket descriptor. The program can do anything

else depending on the requirement of the application. A concurrent server would generally use

fork() and create a child process at this point.

close() – “one-way” close of a socket descriptor.

The Remote client will use the following sequence of socket calls:

socket()

connect()

recv()/send()

close()

/************************* iter_server.c *************/

/************************* START **************************/

#include <stdio.h>

#include <stdlib.h>

#include <sys/socket.h>

#include <netinet/in.h>

#defi ne SERVERPORT 10000

/* Run with a number of incoming connection as argument */

int main(int argc, char *argv[])

{

 int i, lth, num_of_conn, rc;

 int listen_sockfd, accept_sockfd;

 /* Buffer for data */

 char buffer[200];

109Data Structures and Algorithms

 struct sockaddr_in addr;

 /* If a command line argument was specifi ed, use it to control the
number of incoming connections */

 if(argc >= 2) {

 num_of_conn = atoi(argv[1]);

 } else {

 num_of_conn = 1;

 }

 /* Create an AF_INET stream socket to receive */

 /* incoming connections on */

 listen_sockfd = socket(AF_INET, SOCK_STREAM, 0);

 if(listen_sockfd < 0) {

 perror(“Iter_server - socket() error”);

 exit(-1);

 }

 /* Bind the socket */

 memset(&addr, 0, sizeof(addr));

 addr.sin_family = AF_INET;

 addr.sin_addr.s_addr = htonl(INADDR_ANY);

 addr.sin_port = htons(SERVERPORT);

 rc = bind(listen_sockfd, (struct sockaddr *)&addr,
sizeof(addr));

 if(rc < 0) {

 perror(“Iter_server - bind() error”);

 close(listen_sockfd);

 exit(-1);

 }

 /* Set the listen backlog */

 rc = listen(listen_sockfd, 5);

 if(rc < 0) {

 perror(“Iter_server - listen() error”);

110 Cracking the IT Interview

 close(listen_sockfd);

 exit(-1);

 }

 /* Inform the user that the server is ready */

 printf(“The Iterative Server is ready!\n”);

 /* Go through the below loop once for each connection */

 for(i=0; i < num_of_conn; i++)

 {

 /* Wait for an incoming connection */

 accept_sockfd = accept(listen_sockfd, NULL, NULL);

 if(accept_sockfd < 0)

 {

 perror(“Iter_server - accept() error”);

 close(listen_sockfd);

 exit(-1);

 }

 /* Receive a message from the client */

 rc = recv(accept_sockfd, buffer, sizeof(buffer), 0);

 if(rc <= 0) {

 perror(“Iter_server - recv() error”);

 close(listen_sockfd);

 close(accept_sockfd);

 exit(-1);

 }

 /* Echo the data back to the client */

 lth = rc;

 rc = send(accept_sockfd, buffer, lth, 0);

 if(rc <= 0) {

 perror(“Iter_server - send() error”);

 close(listen_sockfd);

 close(accept_sockfd);

 exit(-1);

111Data Structures and Algorithms

 }

 /* Close the incoming connection */

 close(accept_sockfd);

 }

 /* Close the listen socket */

 close(listen_sockfd);

 return(0);

}

/************************* iter_server.c
************************/

/************************* END**************************/

/************************* iter_client.c
************************/

/************************* START **************************/

#include <stdio.h>

#include <stdlib.h>

#include <sys/socket.h>

#include <netinet/in.h>

/* Our server port as in the previous program */

#defi ne SERVERPORT 10000

main (int argc, char *argv[])

{

 int lth, rc;

 int sockfd;

 char send_buffer[200];

 char recv_buffer[200];

 struct sockaddr_in addr;

 if(argc !=2) {

112 Cracking the IT Interview

 printf(“Usage: %s <Server_name or Server_IP_address>\n”,
argv[0]);

 exit (-1);

 }

 /* Create an AF_INET stream socket */

 sockfd = socket(AF_INET, SOCK_STREAM, 0);

 if(sockfd < 0) {

 perror(“iter_client - socket() error”);

 exit(-1);

 }

 /* Initialize the socket address structure */

 memset(&addr, 0, sizeof(addr));

 addr.sin_family = AF_INET;

 addr.sin_addr.s_addr = htonl(INADDR_ANY);

 addr.sin_port = htons(SERVERPORT);

 /* Connect to the server */

 rc = connect(sockfd, (struct sockaddr *)&addr, sizeof(struct
sockaddr_in));

 if(rc < 0) {

 perror(“iter_client - connect() error”);

 close(sockfd);

 exit(-1);

 }

 /* Enter data buffer that is to be sent */

 gets(send_buffer);

 /* Send data buffer to the worker job */

 lth = send(sockfd, send_buffer, strlen(send_buffer) + 1, 0);

 if(lth != strlen(send_buffer) + 1)

 {

 perror(“iter_client - send() error”);

 close(sockfd);

 exit(-1);

113Data Structures and Algorithms

 }

 /* Receive data buffer from the worker job */

 lth = recv(sockfd, recv_buffer, sizeof(recv_buffer), 0);

 if(lth != strlen(send_buffer) + 1)

 {

 perror(“iter_client - recv() error”);

 close(sockfd);

 exit(-1);

 }

 /* Close the socket */

 close(sockfd);

 return(0);

}

/************************* iter_client.c
************************/

/************************* END**************************/

73. How can we manipulate socket characteristics?

Socket characteristics can be managed/controlled with functions get/setsockopt, fcntl, ioctl.

74. What is IPSec?

IPSec stands for IP Security. It is a protocol suite for securing IP communications by authenticating

and encrypting each IP packet of a data stream. The base specifi cations are defi ned in RFC’s 1825,

1826 and 1827. It includes protocols for authentication between endpoints at the beginning of the

session and negotiation of the cryptographic keys to be used during the session.

THINKER’S CHOICE

75. Explain how, in a singly linked list, you can get to (n-k)th node, where (k<n),

in a single traversal using recursion.

76. Explain another procedure to print tree level wise (Hint: use a queue).

114 Cracking the IT Interview

77. Given an array of integers, move all the zeroes to the bottom of the array

without using extra storage space.

78. Explain some mechanisms to prevent or handle collision in hashing.

79. What is the Huffman algorithm and how is the Huffman tree formed?

80. What is the traveling salesman problem and how can one solve it?

81. What are the various graph shortest path algorithm?

82. Explain an algorithm which counts the number of nodes in the input binary

tree.

83. State the algorithm for BST deletion.

84. Discuss a sparse matrix representation, capable of performing matrix op-

erations.

85. Explain the TCP handshake mechanism.

86. Which IP address will probably be used for an organization having a network

of between 1500 and 2000 computers?

87. If a person sitting at an Ethernet-connected PC opens a browser and types

“http://www.tatamcgrawhill.com/” in the address bar and hits enter. Ex-

plain the fi rst packet to appear on the Ethernet and the various events that

occur before the page opens on the PC.

REFERENCES

 1. Alfred V. Aho, John E. Hopcroft and Jeffrey Ullman, Design and Analysis of Computer Algorithms,

Addison Wesley, 1st edition, Pearson Education India.

 2. Ellis Horowitz, Sartaj Sahni, Fundamentals of Data Structures in C, 2nd edition, Silicon Press.

 3. J. P. Tremblay, An Introduction to Data Structures with Applications, 2nd edition, Tata Mc-Graw-
Hill.

 4. Langsam, Augeustein, Tanenbaum, Data Structures Using C and C++, 2nd edition, Prentice Hall
India.

Operating Systems

INTRODUCTION

It is necessary for each and every software professional to know at least the elementary concepts

of an Operating System (OS). The OS acts as the interface between the application software as

well as the hardware. However, for a computer science graduate, an in-depth understanding of

OS is a mandatory pre-requisite. This chapter covers the frequently asked interview questions

(FAQs) on the OS fundamentals.

GENERAL CONCEPTS

1. What is an operating system?

An operating system (OS) is a collection of software programs. It mainly controls the allocation

and usage of hardware resources, such as memory, central processing unit (CPU) time, hard disk

space and peripheral devices (like speakers or a mouse). All application programs use the OS to gain

access to these hardware resources as and when they are needed. The OS is the fi rst program loaded

into the computer as it boots, and it remains in memory at all times thereafter. DOS, OS/2, Win

9x&2000, Unix, HP-UX and Sun-Solaris are some popular operating systems.

In simpler terms, an OS is a master control program that runs the computer. It provides the user

interface and routines that let the user load and run software.

2. What are the main services or functions of an operating system?

The main OS services or functions are as follows:

 Process Management

 Memory Management

3

116 Cracking the IT Interview

 Storage/File System Management

 Input/Output Management

3. Name a few operating systems available (commonly encountered).

A few operating systems available commonly encountered are as follows:

 PC–MS/DOS, MS/Windows 3.11, Windows 98, Windows 2000, Windows NT, Windows

ME, Windows XP

 UNIX–LINUX, Sun Solaris, AIX, HP/UX

 Apple Mackintosh–OS/X Mobile Operating System–PalmOS, MS Windows Mobile 2003

(Pocket PC 2003)

 Mainframe by IBM–MVS, VM/CMS, MVS/ESA, OS/390

 Embedded processor O/S–device-specifi c, depending on application, such as printer, digital

camera, computer game consoles and intelligent home appliances.

4. What is a kernel?

The part of the OS, which handles all the details of sharing resources and device handling, is the

kernel (core OS). The kernel is not something, which can be used directly. The kernel services can

be accessed through system calls. A user interface or command line interface (CLI) allows users

to log onto the machine and manipulate fi les, compile programs and execute them using simple

commands. Since this is a layer of software that wraps the kernel, it is called a shell around the

kernel.

5. What is a command interpreter?

Command interpreter is a program that interprets the command input, interactively with the

keyboard, or through a command batch fi le. It is used to enable the user to interact with the OS to

trigger the corresponding system programs or to execute some user applications. The command

interpreter can be part of the operating system kernel, such as in the case in MS/DOS.

Other names for command interpreter are control card interpreter, command line interpreter,

console command processor and shell (UNIX shell).

PROCESS MANAGEMENT

Process Management is an integral part of any operating system. A process uses CPU and memory

to accomplish tasks. Multiprocessing support adds to OS complexity. In multiprocessing systems,

the OS supports mechanisms of CPU scheduling and inter process communication.

117Operating Systems

6. What is a Process?

A process is a running program, a program under execution. It is an active entity on a machine. A

process is also referred to as ‘job’ on batch systems and ‘task’ on time-sharing systems. A process has

a context and a state as well.

7. What are the basic functions of process management?

The important process management functions of an OS are as follows:

 Creation and deletion of both user and system processes

 Suspension and resumption of processes

 CPU scheduling (and process accounting)

 Process synchronization

 Process communication

8. What is the Process Control Block (PCB)? What information is stored in the

PCB?

Process Control Block (PCB) is a structure in the operating system representing a process. It stores

important internal data, such as Process ID, Process state, CPU registers content (program counter),

memory information, pointers to list of resources, I/O information and accounting information.

Process Control blocks are changed during process creation, execution, suspension/resumption or

deletion. PCBs are accessed and/or modifi ed by most OS utilities, including those involved with

memory, scheduling, performance monitoring and I/O resource access.

9. What is an interrupt?

An interrupt is a signal from a device, which typically results in a context switch. Asynchronous

events are signaled to the processor via interrupts. An interrupt handler or interrupt service routine

is written to handle the interrupts. A list or table giving the starting addresses of each Interrupt

Service Routines (ISRs) is maintained in an interrupt vector. Examples of typical interrupts are

timer interrupts, disk interrupts, power-off interrupts and traps.

10. What is a zombie process?

Zombies are processes that are dead but have not been removed from the process table. Zombies

are created when a parent process terminates without waiting for the child process to complete its

execution. The child process after termination exists as a zombie in the system.

118 Cracking the IT Interview

11. What is a daemon?

Daemon stands for Disk and Execution Monitor. In Unix, the names of daemons conventionally

end in “d”. Some examples include inetd, httpd, nfsd, sshd, named and lpd. They are background

processes, often started immediately after booting and terminate only when the system is shut

down.

12. What does context-switching mean?

Associated with each process is a context. It encompasses all the information that completely

describes the process’s current state of execution (e.g., the contents of the CPU registers, the program

counter, the fl ags, etc.).

Context switching is the process during which the operating system saves the context of the currently

running process and restores the context of the next ready process to be run, which is decided by

certain scheduling policies. Context switching is an essential feature of a multitasking operating

system.

13. What are the different IPC mechanisms?

IPC (Inter Process Communication) provides fl exible, effi cient message passing and communication

mechanisms between processes.

The various IPC mechanisms available are as follows:

 Sockets

 Processes connect using TCP/IP or UDP sockets and exchange data over the sockets.

 Pipes

 A pipe is used for one-way communication of a stream of bytes.

 Shared memory

 Shared memory is when a single block of memory in the address space is shared by two or

more processes. If one process makes a change to this memory then it is visible for all the

processes accessing the memory.

 Signals

 Signals are one of the oldest inter-process communication methods used by Unix systems.

They are used to signal asynchronous events to one or more processes.

 Message Queues

 Message queues allow one or more processes to write messages, which will be read by one

or more reading processes.

119Operating Systems

14. What is a pipe?

A Pipe is an IPC mechanism. It can be used for a one-way communication between two related

processes. The processes should be related (i.e., one has to be the ancestor of the other). The system

called pipe is used for this purpose. It takes an argument (of an array of 2 integers) that will be used

to save the two fi le descriptors (one for reading and the other for writing) used to access the pipe.

int pipefds[2];

pipe(pipefds);

These two fi le descriptors can be used for block I/O as shown in the following:

write(pipefds[1], buffer, SIZE);

read(pipefds[0], buffer, SIZE);

A single process would probably not use a pipe. They are used when two processes wish to

communicate in a one-way fashion. A process creates a child process using fork function call. A

pipe opened before the fork gets shared between the two processes.

For predictable behavior, one of the processes must close its read end and the other must close its

write end. Then it becomes a simple pipeline, which can be used for communicating.

15. What is a Named pipe? What is a FIFO?

One limitation of anonymous pipes (explained earlier) is that only processes ‘related’ to the

process that created the pipe may communicate using them. If we want two unrelated processes

to communicate via pipes, we need to use named pipes. A named pipe (also called a named FIFO,

or just FIFO) is a pipe whose access point is a fi le kept on the fi le system. By opening this fi le for

reading, a process gets access to the reading end of the pipe. By opening the fi le for writing, the

process gets access to the writing end of the pipe. If a process opens the fi le for reading, it is blocked

until another process opens the fi le for writing and vice versa.

A named pipe may be created either via the ‘mknod’ or its newer replacement, ‘mkfi fo’.

MULTIPROCESSING

16. Defi ne Multiprogramming and Multiprocessing.

Multiprogramming

Several processes (programs) are in memory concurrently and in state of execution. The system

switches (process switching) among the programs for effi cient processing (CPU usage) and minimal

idle time (I/O delays).

120 Cracking the IT Interview

Multiprocessing

Several processors are used on a single computer system to increase the processing power of the

machine. The co-ordinated processing of programs on such a computer system is multiprocessing.

It is commonly deployed in network server or client/server applications.

17. Defi ne the difference between pre-emptive and non-pre-emptive scheduling.

Pre-emptive scheduling allows a process to be interrupted in the midst of its execution, taking the

CPU away from it and allocating it to another process.

Non-pre-emptive scheduling ensures that a process relinquishes control of the CPU only when it

fi nishes with its current burst of execution.

Non-pre-emptive scheduling is rarely used in a computer, especially in a time-sharing system,

because it cannot guarantee that each user gets a share of the CPU at regular intervals. The non-

pre-emptiveness allows programs to run indefi nitely long. Thus making other processes wait longer

or indefi nitely.

SYNCHRONIZATION MECHANISMS

18. What is Critical Section?

A critical section is a section of code, which only one process (among processes) at a time can

be executing. Consider a system consisting of ‘n’ processes. Each process has a segment of code in

which the process may be changing shared variables, writing to a common fi le, etc. This segment of

code is known as a critical section. It should be ensured that when one process is executing in its

critical section, no other process is allowed to execute in its critical section.

19. What are the different synchronization mechanisms?

There are many ways in which processes and threads can synchronize among themselves.

Synchronization is basically controlling access to something that is shared or available across

two or more processes or threads. The following mechanisms are available for process/thread

synchronization:

 Mutex

 Semaphores

 Monitors

 Condition Variables

 Critical Regions

 Read–Write Locks

121Operating Systems

20. What is a semaphore?

A semaphore is a programming construct available for process synchronization purposes. It is a

resource that contains an integer value and allows processes to synchronize by testing and setting

this value in a single atomic operation. It assures that when the process that tests the value of a

semaphore and sets it to a different value (based on the test), no other process will interfere with

the operation.

The two types of operations that can be carried on a semaphore are ‘wait’ and ‘signal’. A set operation

fi rst checks if the semaphore’s value equals some value. If it does, it decreases its value and returns. If

it does not, the operation blocks the calling process until the semaphore’s value reaches the desired

value. A ‘signal’ operation increments the value of the semaphore, possibly awakening one or more

processes, that are waiting on the semaphore.

21. What is a mutex?

In multithreading, the entire address space is shared across threads. The global variables are accessible

and modifi able by any/all threads. These accesses or modifi cations have to be synchronized to ensure

desired behavior by the process.

POSIX provides two thread synchronization primitives—the mutex and the condition variable.

Mutexes are like simple locks protecting access to a shared data resource. A mutex is a mutual

exclusion lock. Threads can create and initialize a mutex for later use. Before entering a critical

region, the mutex is locked. Any other thread trying to lock the mutex during this period will not be

able to lock the mutex and hence will not be able to enter the critical region. The mutex is unlocked

after exiting the critical region.

Routines for creating and managing Mutexes:

pthread_mutex_init(mutex,attr)

pthread_mutex_destroy(mutex)

pthread_mutex_lock(mutex)

pthread_mutex_trylock(mutex)

pthread_mutex_unlock(mutex)

22. What is a condition variable?

Condition variables are synchronization objects that allow threads to wait for certain events

(conditions) to occur, i.e., they allow threads to synchronize based upon the actual data value.

Condition variables are slightly more complex than mutexes. The rule for using condition variables

122 Cracking the IT Interview

includes a mutex, a Boolean predicate (true/false expression) and the condition variable itself. The

threads that are using condition variables can wait for a condition to occur, or can wake up other

threads that are waiting for a condition.

Without condition variables, the thread has to check the condition continuously. This can be

very resource consuming. With condition variables, the thread sleeps and waits on the condition

variable;

Thread Synchronization APIs for condition variables:

// Thread A (waiting thread)

pthread_mutex_lock(&mutex);

while (!condition)

pthread_cond_wait(&cond, &mutex);

do_something();

pthread_mutex_unlock(&mutex);

// Thread B (Signaling thread)

pthread_mutex_lock(&mutex);

// make condition TRUE

if (cond)

 pthread_cond_signal(&cond);

pthread_mutex_unlock(&mutex);

The function pthread_cond_wait() atomically releases mutex and causes the ‘Thread A’ to

block on the condition variable ‘cond’. Upon successful return, the mutex will again be locked and

owned by the ‘Thread A’.

23. What are read–write locks?

Read–write locks allow simultaneous read access by many threads while restricting write access to

only one thread at a time.

When any thread holds the lock for reading, other threads can also acquire the lock for reading

but must wait to acquire the lock for writing. If one thread holds the lock for writing, or is waiting

to acquire the lock for writing, other threads must wait to acquire the lock for either reading or

writing.

Read–write locks are slower than mutexes, but can improve performance when they protect data

that are not frequently written but that are read by many concurrent threads.

123Operating Systems

24. Defi ne deadlock and the four necessary conditions needed before deadlock

and occur.

Deadlock is a condition in which a group of two or more processes are all waiting for a set of

resources that are currently taken by other processes within the same group. It is a situation where

every process is waiting for an event, which can be triggered only by another process in the group.

The processes are hence continuously blocked and cannot proceed further.

The four necessary conditions for deadlock to occur are as follows:

 1. At least one resource must be held in a non-sharable mode.

 2. A process holding at least one resource is waiting for more resources held by other

processes.

 3. The resource cannot be preempted.

 4. There must be a circular waiting condition for processes.

A deadlock is also a condition in which two or more threads wait for each other to release a

shared resource before resuming their execution. Since all threads participating in a deadlock are

suspended and, therefore, cannot release the resources they own, no thread can continue, and the

entire application hangs.

MEMORY MANAGEMENT

25. What functions constitute the Operating System Memory Management?

The functions are as follows:

 Memory allocation and de-allocation

 Integrity maintenance (what belongs to whom)

 Swapping

 Virtual memory

26. What are the different types of memory?

1. Main memory (Primary memory)

It refers to physical memory that is internal to the computer. It is used for program and data storage

during computer operation. The word main is used to distinguish it from external mass storage

devices, such as disk drives. Another term for main memory is RAM (Random Access Memory).

124 Cracking the IT Interview

2. Secondary memory (Backing storage)

It is the slowest and cheapest form of memory. It cannot be processed directly by the CPU. Data

must fi rst be copied into primary storage. Secondary memory devices include magnetic disks-like

hard drives and fl oppy disks, optical disks, such as CDs and CDROMs.

3. Cache (Pronounced cash)

Cache is a special high-speed storage mechanism. It can either be a reserved section of main memory

or an independent high-speed storage device. It serves as an intermediate temporary storage unit

logically positioned between the registers and RAM.

4. Internal processor memory

This comprises a small set of high-speed registers used as a working memory for temporary storage

of instructions and data.

27. What is compaction?

As processes are loaded and removed from the memory, the free memory space is broken into small

pieces. These pieces are scattered in memory. Compaction is the movement of memory to eliminate

small free memory partitions. It allows smaller memory partitions to form fewer bigger ones or one

large block, thus allowing larger processes to run.

28. Briefl y explain the Virtual Memory concept.

Operating systems use a technique of memory management called virtual memory management.

It simplifi es programming to a great extent. The computer is viewed as having a single addressable

memory of essentially unlimited size to which each program has unrestricted access. The addresses

used by programs are called logical or virtual addresses and the set of actual addresses used in main

memory are the physical addresses.

With this technique, operating systems simulate a condition of having more memory (virtual) than

is available (physical).

In a virtual memory (VM) system, the program code deals with virtual addresses. When the program

is executed, the virtual address is translated by the Memory Management Unit (MMU) to obtain a

physical address that is used to access physical memory.

29. What is a Page?

A virtual memory system usually divides main memory into fi xed-size contiguous areas called page

frames. The logical memory used by the program is divided into pieces of the same size called

125Operating Systems

pages. Pages are often 4 KB or 8 KB in size. This size is determined by the addressing hardware of the

machine. Data is read in ‘page’ units or ‘page’ bytes at a time. This reduces the amount of physical

storage access that is required and speeds up overall system performance.

30. What is demand paging?

In a virtual memory system, demand paging is the act of transferring pages between physical

memory and backing store (usually disk) as and when they are needed. Processes reside on secondary

memory. Whenever a process is executed, its pages are loaded into memory. A page is brought into

memory only if the page is required (demanded).

For a process to execute, all the structures for data, text, and soon have to be set up. However,

pages are not loaded in memory until they are ‘demanded’ by a process—hence, the term, demand

paging. Demand paging allows the various parts of a process to be brought into physical memory as

the process needs them to execute. Only the working set of the process, not the entire process, needs

to be in memory at one time. A translation is not established until the actual page is accessed.

When pages need to be paged out from the main memory, different algorithms are used to select

those pages that will not be needed soon. LRU (least recently used) is a popular technique.

31. Explain the difference between logical and physical addresses.

Physical addresses are actual addresses used to fetch and store data in main memory while the

process is in execution.

Logical addresses are those generated by user programs. Logical addresses are converted to physical

addresses by the loader during process loading into physical memory.

32. When does page fault occur?

A page fault occurs when an access to a page takes place that has not yet been brought into the main

memory. The operating system verifi es the memory access, aborting the program if it is invalid. If

the memory access is valid, a free frame is located and I/O (Input/Output) requested to read the

required page into the free frame. Upon completion of I/O, the process table and page tables are

updated and the instruction is restarted.

33. What is the use of the dirty bit in the page table?

Dirty bit is a bit stored in the page table, which if set, indicates that the page has been modifi ed,

and must be written back to backing store before being used as a candidate for page replacement to

create a free frame in physical memory.

126 Cracking the IT Interview

34. List the factors determining the size of a page.

Page size must be in the powers of 2, varying from 512 to 16,384 bytes/page.

The factors that determine the size of a page include as follows:

 To minimize internal fragmentation—page size should be small

 To minimize I/O times—page size should be large

 The quantity of I/O is reduced for smaller pages as locality is improved

 To minimize the number of page faults—need large pages

 A large page size will keep the page table size small

35. What is thrashing?

Thrashing in a virtual memory system is a high page fault situation, where the system spends most

of the time in swapping pages than executing processes. A system that is thrashing can be perceived

either as a very slow system or one that has come to a halt. It results in severe performance problems.

Thrashing is caused by under-allocation of the minimum number of pages required by a process,

forcing it to continuously page fault.

FILE MANAGEMENT

36. What are the basic functions of fi le Management for an operating system?

File Management functions include

 creation and deletion of fi les

 creation and deletion of directories

 support of primitives for manipulating fi les and directories

 mapping of fi les onto secondary storage

 backup of fi les on storage media such as disk, tape, etc.

MULTITHREADING

37. What is a thread?

A thread is an independent fl ow of control within a process, composed of a context (which includes

a register set and a program counter) and a sequence of instructions to execute.

127Operating Systems

All processes consist of at least one thread. Multi-threaded processes contain several threads. All

threads share the common address space allocated for the process.

38. What is the POSIX standard? What are pthreads?

Portable Operating System Interface for Computer Environments (POSIX) is an interface

standard governed by the IEEE and based on UNIX. POSIX is an evolving family of standards

that describe a wide spectrum of operating system components ranging from C language and shell

interfaces to system administration.

The Pthread interfaces are based on a subset of the application programming interfaces (APIs)

defi ned in the POSIX standard. Pthreads is a standardized programming interface to develop

portable threaded applications.

39. What are the advantages and disadvantages of using threads?

The advantages and disadvantages of using threads are as follows:

Advantages

 Less system resources required for thread context switching

 Increased throughput of an application

 No special mechanism required for communication between threads

 Program structure more readable and simplifi ed

Disadvantages

 Require synchronization for concurrent read–write access to memory

 Can easily corrupt the address space of its process

 Threads exist only within a single process and are, therefore, not reusable

40. What are the similarities and differences between threads and processes?

The similarities and differences between threads and processes are as follows:

Similarities

 1. Threads and processes both have an id, set of registers, state, priority and scheduling

policy.

 2. Both (kernel threads and processes) have attributes that describe the entity to the Operating

System.

128 Cracking the IT Interview

 3. A thread information block similar to the process information block exists in the system.

 4. Threads and child processes share resources with the parent process.

 5. The creator, parent process or parent thread can exercise some control over the created

threads or child processes.

 6. Both can change their attributes or can create new resources.

Differences

 1. Threads share the address space of the process that created it; processes have their own

address space.

 2. Threads have direct access to the data segment of its process; processes have their own copy

of the data segment of the parent process.

 3. Threads can directly communicate with other threads of its process; processes must use

inter-process communication mechanisms (pipes, FIFO’s, sockets, etc.).

 4. In comparison to threads, processes have considerable overhead from the system perspective.

New threads are easily created; new processes require duplication of the parent process.

41. What are the differences between user-level threads and kernel-support

threads?

A program using the POSIX pthread APIs creates and manipulates what are called user-level

threads. A kernel-support thread is a kernel-schedulable entity, which may support one or more

user threads.

User-levels threads have no kernel support, so they are very inexpensive in terms of resources

demand. Creating, destroying, and switching among threads do not cause an interrupt to CPU. The

kernel does not do the scheduling of the threads. One thread can block the other threads to access

CPU and hence, the whole process might block.

Kernel threads are more expensive (in resources) because system calls are needed to create and

destroy them and the kernel must schedule them to share access to CPU. They are more powerful

because they are independently scheduled.

COMPILER/LINKER/LOADER

42. What is a compiler?

A compiler reads source code and header fi les, parses the fi les, conducts optimizations and produces

machine understandable object code.

129Operating Systems

43. What is a linker?

A linker produces a single executable fi le from one or more input object fi les and libraries. In doing

so, it matches external references to global defi nitions contained in other object fi les or libraries. By

default, the name given to the executable is ‘a.out’.

44. What are all the steps for the generation/execution of an executable?

The steps for the generation/execution of an executable are as follows:

 Source and Header Files

 Compilation

 Linking

 Loading

45. What is a Library?

A Library is a fi le containing object code for subroutines and data that can be used by other

programs. For example, the standard C library, libc, contains object code for functions that can be

used by C, C++ programs to do input, output and other standard operations.

MISCELLANEOUS

46. What are the main differences between operating systems for personal

computers and mainframe computers?

A personal computer (PC) performs a large number of applications and also provides a software

platform for program development interactively used by a single user. Personal computer operating

systems are not concerned with fair use or maximal use of computer facilities. Instead, they try to

optimize the usefulness of the computer for individual user, usually at the expense of effi ciency.

Mainframe systems are typically used in a data center setup for large organization to handle large

number of tasks simultaneously and in a variety of applications. Mainframe operating system needs

more complex scheduling and I/O algorithms to keep the various system components highly utilized

and operate effi ciently. The resource sharing among users is an important factor to be considered as

well as maintaining high system throughput, acceptable system response time for interactive users

and multiple job streams for job scheduling.

130 Cracking the IT Interview

47. What is a Distributed system?

A Distributed system is one where distributed processing occurs among several physical processors,

which do not share common memory in a networked environment. However, users of the system

are not aware of this distribution.

The characteristics of distributed system include resource sharing, load sharing, improved reliability

and support for inter-process communications.

48. What are device drivers?

A device driver is a software module that resides within the kernel and is the software interface to a

hardware device or devices. The purpose of device drivers is to handle requests made by the kernel

with regard to a particular type of device. A hardware device is a peripheral, such as a disk controller,

tape controller or network controller device. In general, there is one device driver for each type of

hardware device. Device drivers can be classifi ed into:

 Block device drivers

 Character device drivers (including terminal drivers)

 Network device drivers and

 Pseudo device drivers

49. What do you mean by 16-bit or 32-bit CPU? What do you mean by MHz?

The bit size of a CPU denotes how many bytes of information it can access from RAM at the same

time. For example, a 16-bit CPU can process 2 bytes at a time (1 byte = 8 bits, so 16 bits = 2 bytes),

and a 64-bit CPU can process 8 bytes at a time.

Megahertz (MHz) is a measure of a CPU’s processing speed, or clock cycle, in millions per second.

So, a 32-bit 800-MHz processor can potentially process 4 bytes simultaneously, 800 million times

per second.

50. What are system programs?

An OS can be viewed as a collection of functions/processes that allow user programs to execute on

hardware and to control and share resources according to requests.

There are two types of system functions:

 1. System management functions, such as the functions in the kernel (context switching,

interrupt, dispatching, processor scheduling, accounting, memory management, etc.)

131Operating Systems

 2. Functions that support user programs, such as program execution, I/O operations and fi le

manipulation. These functions are accessed from user process through the use of system

calls.

THINKER’S CHOICE

51. What is the difference between message queues and semaphores?

52. How is a semaphore different from a mutex?

53. What is the difference between a shared library and an archived library?

54. Why is it necessary to support relocatable code and dynamic loading of code

in a multiprogramming system? Suggest instances that relocatable and

dynamic loading are being used.

55. Make a study of the Producer–Consumer Problem (Bounded Buffer Problem).

 Pseudo code to represent the problem

 Provide a solution using semaphore

 Provide a solution using monitor

 Provide a solution using inter-process communications (message

 passing)

56. What resources are used when a thread is created? How do they differ from

those used when a process is created?

57. Explain the difference between internal and external fragmentation in mem-

ory management. Suggest ways to reduce or solve of both types of fragmen-

tation.

58. What is TLB?

59. What is OS swap space?

60. What is memory mapping?

132 Cracking the IT Interview

REFERENCES

 1. Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.

 2. Maurice J. Bach, Design of the Unix Operating System, Prentice Hall.

 3. Silberschatz, Galvin, Gagne, Operating System Concepts, Wiley.

Real Time Operating
Systems

INTRODUCTION

Real Time Operating System (RTOS) is an OS used in embedded application spaces like

automotive, industrial automation, wireless etc. Characteristics of a RTOS is different compared

to a normal OS in several aspects. This chapter covers the frequently asked interview questions

on RTOS fundamentals.

GENERAL CONCEPTS

1. What is a Real Time System?

A system that has to not only produce correct results but also produce the results within a specifi ed

deadline period is a real time system.

2. What is hard real time system and soft real time system?

A system that has to meet all the deadlines without fail is called a hard real time system. Hard real

time systems have stringent requirements and missing a deadline has a catastrophic effect.

Examples Automotive air bag system, antilock brake systems, fl ight management systems.

A system that can afford to miss a few deadlines without failing the overall system is called a soft

real time system. Missing a deadline leads to a degraded performance but not to a system failure.

Examples Video conferencing systems, streaming devices.

4

134 Cracking the IT Interview

3. What is a Real Time Operating System (RTOS)?

POSIX Standard defi nes ‘real-time’ for operating systems as: “the ability of the operating system to

provide a required level of service in a bounded response time”.

A Real Time Operating System (RTOS) is an operating system intended for real time systems. A

RTOS is deterministic, provides guaranteed context switching time and lower interrupt latency and

typically supports pre-emptive scheduling.

4. Name a few common RTOSes.

VxWorks,

QNX,

Windows CE,

DSP/BIOS,

Nucleus,

RTLinux.

5. Name a few applications where RTOS is used.

RTOS is used in a wide range of applications, such as mobile phones, industrial control, industrial

monitoring, automotive control, robotics, audio/video streaming, medical (CT scan, MRI), fl ight/

satellite controllers among many more.

6. How is a RTOS different from GPOS (General Purpose Operating System)?

Real time systems typically serve a specifi c purpose. The processing power and the memory footprint

of real time systems are smaller compared to general purpose computers. A RTOS typically supports

priority based scheduling, pre-emptible kernels, faster memory accesses and bounded interrupt

latencies. A GPOS typically supports a fair scheduling policy (such as round robin) and offers

virtual memory support.

7. Name a few common RTOS scheduling algorithms.

Priority based pre-emptive scheduling, Rate Monotonic scheduling and Earliest Deadline First

based scheduling are a few RTOS scheduling algorithms.

135Real Time Operating Systems

8. What is priority inversion?

Consider a system with 3 tasks—T1, T2 and T3 (with Priority of T3 > Priority of T2 > Priority of

T1) with the tasks T3 and T1 needing access to the same resource during some operations.

Let us assume the condition where T1 is currently accessing the shared resource. T3 can pre-empt

T1 before it fi nishes access to the shared resource. During its execution, if T3 also needs access to

the same resource, it has to wait for T1 to complete the access to the shared resource before it can

proceed. T1 must now be allowed to complete the shared resource access and is therefore scheduled

to execute. Such a condition where the priorities of the two tasks are effectively inverted is called

priority inversion.

Once T1 is re-scheduled, it can be pre-empted by the medium priority task T2. Thus, when priority

inversion occurs in the system, the medium priority task T2 is capable of further delaying the higher

priority task T3.

Priority inversion needs to be avoided in the system to guarantee real time behavior.

9. What is priority inheritance protocol?

Priority inheritance protocol is a mechanism to solve the priority inversion problem.

Consider a system with 3 tasks—T1, T2 and T3 (with Priority of T3 > Priority of T2 > Priority of

T1) with the tasks T3 and T1 needing access to the same resource during some operations.

Let us assume the condition where T1 is currently accessing the shared resource. T3 can preempt

T1 before it fi nishes access to the shared resource. During its execution, if T3 also needs access to

the same resource, it has to wait for T1 to complete the access to the shared resource before it can

proceed and is hence blocked.

In a system supporting priority inheritance, T1 temporarily inherits the priority of the high priority

task T3. This prevents a medium priority task T2 from preempting T1. T1 can continue executing

until the access to the shared resource is complete. Once the access to the shared resource is complete,

T1 resumes its original priority allowing the high priority task T3 to continue execution.

10. What are the drawbacks of priority inheritance protocol?

In some cases, priority inheritance can result in deadlocks in the system.

11. What is priority ceiling protocol?

Priority ceiling protocol is another mechanism to solve the priority inversion problem.

136 Cracking the IT Interview

Each shared resource is given a predefi ned priority called the priority ceiling. This priority must be

higher than the highest priority of all tasks that need access to the resource.

When a task obtains this shared resource, the task’s priority is raised to the priority ceiling of the

resource. This ensures that the task cannot be preempted by any other task trying to access the same

resource. When the task releases the resource, the task is returned to its original priority level.

12. What are the drawbacks of priority ceiling protocol?

In priority ceiling protocol, the task priority has to be changed every time it acquires or releases any

resource. These additional operations take time.

In addition, even if no other task would contend for the resource at the same time, the priority of

the task is still changed to the priority ceiling value. This could sometimes result in unnecessarily

delaying the execution of medium priority tasks in the system.

13. What is interrupt latency?

The time elapsed between the generation of an interrupt and the start of execution of the

corresponding interrupt handler is called interrupt latency.

The duration during which the interrupts are turned off in a system add up to the interrupt latency.

Also, if the system is processing high priority interrupts, the lower priority interrupts may be queued

up adding to the latency as well.

14. What is context switch latency?

The time taken to switch the context and start processing the next program is called context switch

latency. RTOS typically supports lower context switching latencies.

15. How are memory accesses done in a RTOS?

A RTOS has to support fast memory accesses. RTOS typically supports real addressing mode and

virtual addressing mode.

In the real addressing mode, the CPU generates physical addresses. Access to memory does not

require any translation. The advantage is that the memory access is quicker. The disadvantage is

that it does not provide memory protection between tasks.

In the virtual addressing mode, the CPU generates virtual addresses. Access to memory requires

address translation to takes place (using the Memory Management Unit). The advantage of this

method is that it supports memory protection between tasks. The disadvantage is that the additional

step of address translation leads to increase in memory access time.

137Real Time Operating Systems

16. Explain memory allocation technique used in a RTOS.

Memory allocation has to be fast and free of fragmentation. The allocation techniques are driven by

how the heap is organized and managed. A typical approach is to organize the heap into memory

pools of fi xed number of blocks, each of a fi xed size. Applications request for a buffer from a specifi c

pool.

17. Does RTOS support dual mode of operation?

Some types of RTOS support the dual mode of operation. They support the user and the kernel

modes of operation. This mechanism helps in protecting the system by inhibiting a user level process

to tamper with the kernel (or operating system) data structures.

In the dual mode of operation, a user level process invokes a system call to request an operating

system service. The switch between the user space to kernel space and vice versa results in additional

latency.

18. Does using a RTOS for an application lead to higher throughput and speed of

execution?

Using a RTOS does not necessarily guarantee higher throughput and speed of execution.

The performance of an application depends on a variety of factors including the CPU speed,

memory architecture and the overall software design. What an RTOS guarantees is the real time

characteristic. The RTOS could sacrifi ce throughput for being deterministic.

19. What are the key points to be taken care of while designing an application for

RTOS?

While designing an application for a RTOS, the user needs to be aware of the following aspects:

Task Partitioning – The system is functionally partitioned into multiple logical tasks. The resource

dependencies need to be worked out aptly and the system needs to be free of deadlocks.

Priorities – Critical tasks/interrupts that require faster response times are assigned higher priorities.

Non-critical activities need to be de-prioritized.

Interrupt Service Routine (ISR) – ISRs need to be effi cient and crisp. Time intensive operations

should be avoided in the ISR. In cases that require an elaborate function, the ISR can spawn a task

that can handle the time intensive operation. To reduce latencies, interrupts could be re-enabled in

the ISR before servicing the current interrupt completely.

138 Cracking the IT Interview

Memory Allocation – Avoid dynamic memory allocation in the application. This would free the

system from memory leak and fragmentation issues.

Exception Handling – The application needs to handle exceptions. Exception could be generated as

a result of timeout, missing a deadline, running out of memory, unknown external event, etc. Real

time systems also use watchdogs for monitoring the system state.

20. Does linux support real time?

Linux supports real time through multiple options as follows:

A realtime patch with CONFIG_PREEMPT_RT support is available for the linux kernel that makes

much of the standard linux kernel preemptible.

RTLinux product provides a micro kernel that runs the entire linux OS as a fully pre-emptible

process.

THINKER’S CHOICE

21. Do all real time applications require a RTOS?

22. What led to the system resets on the Mars Pathfi nder in 1997?

23. Provide an example to demonstrate the transitive nature of priority inheri-

tance protocol.

24. Illustrate how priority inheritance can lead to deadlock.

25. What makes code re-entrant?

REFERENCES

 1. Abraham Silberschatz, Peter B. Galvin, Greg Gagne, Operating System Concepts, Wiley India Pvt.
Ltd.

 2. C.M. Krishna and Kang G. Shin, Real Time Systems, McGraw-Hill.

 3. David Simon, An Embedded Software Primer, Addison Wesley.

 4. Raj Kamal, Embedded Systems – Architecture, Programming and Design, Tata McGraw-Hill.

C++ Programming

INTRODUCTION

The C++ language has evolved from the C language but has incorporated the features of object

orientation for greater programming fl exibility and effective design of the problem at hand.

Given below is a collection of C++ interview questions and answers.

MOVING FROM C TO C++

1. Mention some of the differences between C++. � C is a subset of C++. � C provides action/structure/function oriented programming, whereas C++ provides

Object Oriented Programming (OOP) with features, such as Abstraction, Encapsulation,

Inheritance and Polymorphism. � C++ is a strong type checking language compared to C. So many programs that would

compile without any warnings or errors on a C compiler might result in many warnings

and errors on a C++ compiler. � C++ supports sophisticated error handling using the Exception Handling Mechanism.

2. What are the advantages of using cin and cout compared to scanf

(...) and print (...), respectively? � Compared to the standard C functions printf() and scanf(), the usage of the cin

and cout is more type-safe. The format strings, which are used with printf() and

scanf() can defi ne wrong format specifi ers for their arguments, for which the compiler

(usually) does not warn. In contrast, argument checking with cin and cout is performed

by the compiler.

5

140 Cracking the IT Interview � In function scanf() we need to provide ‘&’ before variable and if we miss this it can cause

more damages. � cin and cout are stream classes that could be used to receive and print objects, respectively.

3. What is the advantage of using the ‘inline’ function?

An inline keyword before a function suggests the compiler to insert the complete body of the

function wherever that function is invoked.

Inline expansion is typically used to eliminate the inherent cost involved in calling a function. It is

typically used for functions that need quick execution.

4. Can a function be forced as inline?

No, inline expansion is purely at the hands of the compiler. The compiler can ignore your request

if a particular function does not suit for inline expansion. C++ specifi cation does not specify under

what condition the compiler will ignore the inline request.

5. Compare inline function with the C macro.

Macro invocations do not perform type checking.

#defi ne MULTIPLY(a, b) a * b

inline int mul(int a,int b)

{

 return a*b;

}

 void main()

{

 printf(“%d”, MULTIPLY(1+2,3+4));

 printf(“%d”, mul(1+2,3+4));

}

In the above example, the answer will be 11 and 21. Why?

Because the macro will be expanded as: 1+2*3+4. Since * operator has higher precedence than +

operator, the value will be 11 instead of 21. To get the correct answer, the macro should be declared

as:

#defi ne MULTIPLY(a, b) (a) * (b)

141C++ Programming

This error would not happen with the inline function.

Also, � Compiler errors within macros are often diffi cult to track because they refer to the expanded

code done by the preprocessor program � Debugging the inline function is easier than that of macro-expanded code

STRUCTURES AND CLASSES

6. What is the correct way to write a C++ class?

The correct procedure to write a C++ class is, “Implementation of the class should be hidden from

its declaration”. To do this, always keep class declaration in .h fi le and class method implementation

in one or more .cpp fi les so that only implementation fi les could be bundled as a library.

File: String.h // interface fi le

class String

{

 private:

 char *ptr;

 public:

 String(const char *data) ;

 ~String();

 public: // exposed interfaces

 void strcat(const char *data);

};

File: String.cpp // implementation fi le

String :: String(const char *data)

{

 ptr = new char[strlen[data] +1];

 strcpy(ptr,data);

}

String :: ~String()

{

 delete ptr;

142 Cracking the IT Interview

}

 void String:: strcat(const char *data)

{

 // implementation of strcat method

}

Here only the interface fi le with prototype of ‘strcat’ would be exposed to the outside world while

its implementation fi le can be bundled and provided as a library fi le (.lib, .dll, .so and .a). So,

whenever there is a change in the implementation of the strcat function, just the library fi le needs

to be replaced instead of the whole application.

7. What are the different Access Specifi ers?

Class members can have the following access specifi ers: � private is the default access and private members are accessible only from the member

functions of the same class and/or from their friend classes � protected members are accessible from member functions of the same class and/or

friend classes, and also from members of their immediate derived class � public members are accessible from anywhere the class is visible

8. How does C++ class differ from a C++ structure?

Structure Class

Default access is public Default access is private

Default inheritance type is public Default is private inheritance

9. When do we need to use forward declaration?

When a class contains a pointer or a reference to another class’s instance, forward declaration of

the contained class should be adequate to compile the class instead of including the contained class

header fi le. Forward declarations reduce build dependencies, which are normally incurred when

header fi les are included.

#include “someclass.h”

// forward declarations

class COtherClass;

class CFooBar

143C++ Programming

{

 public:

 CSomeClass m_SomeClass;

 COtherClass *m_pOtherClass;

};

In the above example, a forward declaration for the COtherClassclass is suffi cient to compile

the fi le since CFooBar class contains COtherClass pointer. But the header fi le is required for

CSomeClass as it is a member instance. Because when the above class is being compiled, the

compiler tries to fi nd size of m_SomeClass instance, which needs the full class declaration.

KEYWORDS AND OPERATORS

10. Mention the usage of the scope resolution operator.

:: is the scope resolution operator.

A variable can be prefi xed by scope resolution operator to signify the global nature of the variable.

int x = 10;

void foo()

{

 int x =100;

 cout<<“local Value”<<x;

 cout<<“Global value”<<::x;

}

In the above example, ::x prints 10.

Scope resolution operator is used for the class member function, if the function defi nition is outside

the class declaration.

File: Foo.h

class foo

{

int x;

 void print();

};

144 Cracking the IT Interview

File: Foo.C

#include “foo.h”

void foo::print()

{

 cout <<“Hello,I am outside the Class declaration”;

}

In the above example, print method in Class foo is implemented outside the class scope. This

operator is also used for initializing and accessing the static members of the class.

class A

{

 A();

 static int i;

 static foo();

};

int A::i = 0;

void main()

{

 A::i=10;

 A::foo();

}

In the above example, class static variable i and static method foo are initialized and accessed using

scope resolution operator.

11. What is the const keyword? Illustrate its various uses.

const keyword relates to the notion of read-only access.

const int i = 1;

In the above example, an attempt to change the value of i will cause an error.

const Pointers

With pointers, the real meaning of what actually is constant varies depending on the place of the

const keyword as explained below.

145C++ Programming

Pointer to a constant

A pointer to a constant is a pointer, which points to data and that data is constant. So you may not

alter the data that is present at that location.

const char* ptr = “C++”; // pointer to const

char const* ptr = “C++”; // pointer to const

*ptr = ‘B’; // wrong. Data (value) cannot be changed

ptr = “Hello”; // Correct. Address can be changed

Constant pointer

The address of the pointer is const. while the variable may change.

char* const ptr = “C++”; // const pointer

*ptr = ‘B’; // Correct. Data (value) can be changed

ptr = “Hello”; // Wrong. Address cannot be changed

Constant pointer to a constant

It is a combination of the above two concepts. Neither the pointer addresses nor the value can be

changed.

//constant pointer to a constant

const char* const ptr = “C++”;

const Reference

A reference may be defi ned as const, to make it clear that it should not be modifi ed within the given

context.

void doChange(const int & i)

{

 i= 25 // wrong. the value of i cannot be changed

}

const Member Functions

If a member function of a class is defi ned as const, it cannot change the state of the object. It also

improves readability since by looking at the interface prototype we can realize it will not change the

object’s state. However, it can change the mutable variables.

Class A

{

 private :

 int i;

146 Cracking the IT Interview

 mutable int j;

 public:

 void get() const

 {

 i = 20; // Not allowed

 j = 30; // allowed

 }

};

const Objects

When an object is declared as const, its member variables cannot be changed. So we can access only

const member functions and member variables of that object.

Class A

{

 private :

 int i;

 mutable int j;

 public:

 void get() const

 {

 i = 20; // Not allowed

 j = 30; // allowed

 }

void normal()

 {

 cout << “Can’t be invoked by const object” ;

 }

};

void main()

{

 const A a;

 a.get(); // allowed

 a.normal(); // not allowed

}

147C++ Programming

12. What is the mutable keyword? When do you use it?

The presence of the mutable keyword indicates that the data member of a class may be ‘safely’

changed within a const member function. Mutable could be used as workaround solution for a

design bug.

Class A

{

 private:

 int i;

 mutable int j;

 public:

 void get() const

 {

 i = 20; // Not allowed

 j = 30; // allowed

 }

};

POINTERS AND REFERENCES

13. Distinguish between a pointer and a reference.

A reference should always be initialized at the declaration. There is nothing like a “null reference”.

However, a pointer on the other hand, could point to a null object.

Reassignment of pointers is possible; whereas references always refer to the object, which is once

initialized and cannot refer to another variable.

Unlike pointers, references cannot � refer to themselves � compare different references � modify themselves

14. What is the difference between reference and a const pointer?

Operation wise both are same. However, writing a reference variable is easy and elegant. For

example,

148 Cracking the IT Interview

void func1(const char *ptr);

is not as elegant as

void func1(char& ptr);

15. Which is a better option—pass by value or pass by references?

Pass by value is the default argument passing mechanism of both C and C++. When a caller passes

by value an argument to a function (known as the callee), the latter gets a copy of the original

argument. This copy remains in scope until the function returns and is destroyed immediately

afterwards. Consequently, a function that takes value-arguments cannot change them, because the

changes will apply only to local copies, not the actual caller’s variables.

Passing by reference combines the benefi ts of “passing by address” and “passing by value”. It is

effi cient, just like passing by address because the callee does not get a copy of the original value but

rather an alias thereof (under the hood, all compilers substitute reference arguments with ordinary

pointers). Finally, references are usually safer than ordinary pointers because they are always bound

to a valid object—C++ does not have null references so you do not need to check whether a reference

argument is null before examining its value or assigning to it.

Passing objects by reference is usually more effi cient than passing them by value because no large

chunks of memory are being copied and constructor and destructor calls are performed in this case.

However, this argument passing mechanism enables a function to modify its argument even if it is

not supposed to. To avert this, declare all read-only parameters as const and pass them by reference.

This way, the callee will not be able to modify them.

16. What happens if a pointer is deleted twice?

The result of deleting a pointer more than once is undefi ned. A temporary workaround to this bug

is assigning a NULL value to a pointer right after it has been deleted. It is guaranteed that a NULL

pointer deletion is harmless.

String * ps = new String;

//...use ps

if (TrueCondition)

{

 delete ps;

 //safety-guard: further deletions of ps will be harmless

 ps = NULL;

}

149C++ Programming

//...many lines of code

//a bug. ps is deleted for the second time. However, it is

//harmless

delete ps;

17. What is ‘this’ pointer?

When a member function is invoked, the invoking object’s pointer is passed implicitly as an

argument. This pointer is called ‘this’ pointer.

The ‘this’ pointer is a pointer accessible only within the nonstatic member functions of a

class, struct, or union type. It points to the object for which the member function is called.

Static member functions do not have a ‘this’ pointer.

18. How can you return the current involving object from its member function?

return (*this);

FREE STORE MANAGEMENT

19. Differentiate between new and malloc()’; delete and free().

The use of malloc() and free() functions in C++ is not recommended and is even

dangerous: � malloc() requires the exact number of bytes as an argument, whereas new calculates the

size of the allocated object automatically. By using new, silly mistakes, such as the following

are avoided:

//p originally pointed to a int

long * p = malloc(sizeof(int));

long *p = new int; // will not compile

long *p = new long; // will compile � malloc() does not handle allocation failures, so you have to test the return value of

malloc() on each and every call.

// ……………………………………..

long * p = malloc(sizeof(long));

if(p != NULL)

//…

150 Cracking the IT Interview

long * p1 = malloc(sizeof(long));

if(p1 != NULL)

//…

// ………………………………………..

On the other hand, new throws an exception of type std::bad_alloc when it fails, so your

code may contain only one catch (std::bad_alloc) clause to handle such exceptions.

try

{

 long *p = new long;

 long *p1 = new long;

}catch (std::bad_alloc a)

{

 //…

} � As opposed to new, malloc() does not invoke the object’s constructor. It only allocates

uninitialized memory. The use of objects allocated this way is undefi ned and should never

occur. Similarly, free() does not invoke its object’s destructor. � new and delete are operators and they can be overloaded; whereas malloc() and

free() are library functions.

20. What is the difference between delete, delete[], delete ‘this’ and delete

NULL? � delete should be called on an object when that object is allocated using new � Objects created using new [] must be released using delete []. It is a mistake to use

delete instead; you may encounter memory leaks or even a program crash � delete this is undefi ned and should not be called � delete NULL is safe

void f()

{

 string *ps = new string[100];

 ...

151C++ Programming

 // wrong

 delete ps;

 //Correct. ensures each member’s destructor is called

 delete[] ps;

}

21. What is a memory leak? How will you plug these leaks?

void leakyFunc()

{

 int *data = new int;

 *data = 20;

}

In the above method, the variable data is dynamically allocated using new. However, it is not de-

allocated inside the method. It is memory leak!

These kinds of memory leaks can be avoided using � delete for every new � smart pointers

FUNCTIONS

22. How do you call C functions from C++ and vice versa?

To access a C function from a C++ program, the ‘extern’ keyword is used.

extern “C” void foo();

Accessing C++ functions from C is NOT possible

23. Can a function argument have default value?

Function argument can have default value (from right to left).

void func(int i, int j, int z = 0); // allowed

//Either j should have default value or i should not.

void func(int i =0, int j, int z = 0); // not allowed.

152 Cracking the IT Interview

24. What are static members and static functions?

Static members are � created and initialized only once � shared among all the class objects.

Static functions are � similar to the static variables and are associated with the class. � can only access static variables of a class � can also be called using the scope resolution operator

class Count

{

 static int count;

 public:

 Count(){count++;}

 ~Count(){count—;}

 static void print()

 {

 cout << count;

 }

};

int Count::count=0;

void main()

{

 Count c1,c2,c3;

 c3.print(); // prints 3

 Count::print(); // prints 3

}

25. Can a static member function access member variable of an object?

No, because to access the member variable of an object inside its member function, this pointer

is required. Since static member functions are class functions, this pointer will not be passed as

its argument.

153C++ Programming

26. What is a ‘friend’ keyword? What are friend functions and classes?

A friend is a class or a function prefi xed with the ‘friend’ keyword that allows access to all of a

class’s data and member functions. That is, the friend has unlimited access to the class’s public,

protected, and private members.

To declare a class as a friend of another class:

class X

{

 friend class Y; //Y has access to every member of X

//..

};

Though this contradicts the basic tenets of OOP, it is a useful concept and usually friendship is

provided to one or two member functions. To avoid indiscriminate access, you can declare individual

member functions of B as friends. To declare a member function as a friend, simply provide its

prototype preceded by the keyword friend. For example:

class B; // fwd declaration required; A::f() takes B&

struct A

{

 int f(B&);

};

struct B

{

 friend int A::f(B&); // a member function friend

 private:

 int x;

};

int A::f(B& b)

{

 return b.x; // access private member of b

}

int main()

154 Cracking the IT Interview

{

 A a;

 B b;

 a.f(b); // access a private member of b

}

CONSTRUCTORS AND DESTRUCTORS

27. What is a constructor?

Constructor is a class method � provided by a class to initialize an object � that has the same name as its class � that can have arguments and, thus can be overloaded (Multiple constructors can exist in a

class) � that does not have a return type.

28. What is a default constructor?

Default constructor is a constructor with no arguments or a constructor that provides defaults for

all arguments. When a constructor is not explicitly declared in a class, a default constructor is added

and is invoked during object initialization by the compiler.

29. What is a destructor?

Destructor is a method � that cleans up or de-initializes each object of a class immediately before the object is

destroyed � that has the same name as the class, prefi xed by a tilde, ~, � that has no arguments and, thus cannot be overloaded � that does not have a return type.

30. What is the difference between member variables initialization and assign-

ment in a constructor?

Some programmers believe that the proper place for initializing data members is inside a

constructor.

155C++ Programming

class Task

{

 private:

 int pid;

 string name;

 public:

 Task(int num, const string & n)

 {

 pid=num;

 name=n;

 }

};

The above snippet is incorrect. The constructor assigns, rather than initialize, the members pid

and name. This could be a performance overhead as the object is fi rst constructed and only then

assigned.

A real initialization of a data member at the time of creation uses a special syntactic constructor

with the member initialization list

class Task

{

 //..

 public:

 Task(int num, const string & n) : pid (num), name (n)

 {}

};

31. What is a copy constructor?

Copy constructor is � invoked whenever a class object is to be copied � a constructor used to make a copy of an object from another object of the same type � a class constructor that takes a single argument, which is a reference to another object of the

same class.

C++ defi nes four possible forms for a class’s copy constructor. For a class called X, a copy constructor

can have one of the following forms:

156 Cracking the IT Interview

 X(X&);

 X(const X&);

 X(volatile X&);

 X(const volatile X&);

32. Why copy constructor argument accepts only object’s reference?

The copy constructor’s parameter cannot be “passed by value”. Since pass by value invokes the copy

constructor again that results in Stack Overfl ow. Therefore, the following forms are all illegal:

 X(X); // error, passing by value

 X(const X); // ditto

 X(X*); // error, only references are allowed

33. Can copy constructor accept more than one parameter?

A copy constructor can have only one parameter; additional parameters are allowed only if they

have default values. For example:

 X(const X&, int n=0); // OK, 2nd param has a default value

 X(const X&, int n=0, void *p=NULL); // ditto

 X(const X&, int n); // Illegal

34. How can a constructor return an error condition?

Constructor argument can take a pointer/reference variable that returns error information.

Also an Exception can be thrown from the constructor (which is a not a good option).

35. How can a destructor return an error condition?

Since destructors do not take arguments we cannot use error pointer/reference as an argument.

Also, C++ reference guide states, “Exceptions should not be thrown inside destructor” due to stack

unwinding problem. We could return error using static variable fl ag.

class A

{

 static int fl ag;

 A() { };

 ~A()

157C++ Programming

 {

 fl ag =0;

 // do other operations

 fl ag = 1; // set on error

 }

};

A *a = new A();

// do something on a

delete a;

if(A:: fl ag == 1)

 cout << “Error in deleting instance” << endl;

36. Can I call a destructor directly using an object like the one mentioned be-

low?

Obj-> ~destructorName();

Yes. But this just de-initializes the object’s state rather than release its memory. So the correct

approach is always to use delete operator for de-allocating an object.

INHERITANCE AND POLYMORPHISM

37. What is private, protected and public inheritance?

A simple example will illustrate the different forms of inheritance:

 class Base;

 class Derv_private : private Base;

 class Derv_protected : protected Base;

 class Derv_public : public Base;

In all the three derived classes, no private member of Base is accessible.

In the case of private inheritance Derv_private, all the public and protected members in Base

become private.

In the case of protected inheritance Derv_protected, all the public and protected members become

protected.

158 Cracking the IT Interview

In Derv_public, public inheritance ensures that public remains public and protected remains

protected.

38. In case of inheritance, what is the execution order of constructor and

destructor?

Constructor execution is always from Base class to Derived class. Destructor execution is always

from Derived class to Base class.

class Base

{

 Base()

{

 cout << “I am Base constructor” << endl;

}

~Base()

{

 cout << “I am Base destructor” << endl;

}

};

class Derived : public Base

{

 Derived()

 {

 cout << “I am Derived constructor” << endl;

 }

 ~Derived()

 {

 cout << “I am Derived destructor” << endl;

 }

};

void main()

{

 Derived d;

}

159C++ Programming

In the above example, when object d is being constructed, it called Base class constructor fi rst and

then executes its own constructor. Also, at the end of main function execution, object d’s destructor

get executed fi rst and then its base class destructor.

Hence, the output of the above code is:

I am Base constructor

I am Derived constructor

I am Derived destructor

I am Base destructor

39. How do we call a base member function from derived class member

function?

To call base class member function from derived class, use scope resolution operator with left

operand as Base class name and right operand as base class method to be called.

class A

{

 public:

 void a()

 {

 cout << “ I am A” << endl;

 }

};

class B : public A

{

 public:

 void a()

 {

 cout << “ I am B” << endl;

 A::a();

 }

};

160 Cracking the IT Interview

Prints

I am B

I am A

40. Are the following operator overloading methods allowed?

 a. void operator +& (int i) // +& is newly user defi ned operator

 b. void operator +(class &obj1, class &obj2)

 a. No. Cannot use new operators other than intrinsic operators like *, +,-, etc

 b. No. Must use same number of arguments as for built-in types (except operator()). For

+ operator only one argument is allowed as the invoking object is implicitly passed

as another argument. However, this statement will work if we declare the method as

friend.

41. Is it possible to invoke an operator overloading function with the statement

like 2+OBj?

Yes. It is possible. Usually, left operand object invokes the operator function and the right operand

will be passed as a parameter. In case if both the argument is required to be passed as parameter or

if the left operand is not an object (something like 2+obj), then friend operator method should be

used.

// for 2+obj as 2 can’t invoke operator;

friend void operator + (int i, Object &obj);

42. Can a function be overloaded based on return types?

Function signature does not depend on the return type. So, overloading cannot be resolved by the

return type alone.

43. What are all the operators that cannot be overloaded? � Direct member access operator. � De-reference pointer to class member operator .* � Scope resolution operator :: � Conditional operator ?: � Sizeof operator sizeof

161C++ Programming

44. Where will you use an assignment operator?

(OR)

Differentiate between a Copy Constructor and an Assignment Operator.

Although the copy constructor and assignment operator perform similar operations, they are used

in different contexts. The copy constructor is invoked when you initialize an object with another

object:

string fi rst = “abc”;

string second(fi rst); //copy constructor

On the other hand, the assignment operator is invoked when an already constructed object is being

assigned a new value:

string second;

second = fi rst; //assignment operator

In the following example, the copy constructor is invoked because d1 is being initialized rather

being assigned.

Date Y2Ktest (“01/01/2000”);

//although ‘=’ is used, the copy constructor is invoked

Date d1 = Y2Ktest;

45. What is shallow and deep copy?

The terms deep copy and shallow copy refer to the way objects are copied. A shallow copy of

an object copies all of the member variables. A deep copy copies all static as well as dynamically

allocated member variables

class CopyMethod

{

 char *ptr;

 public:

 CopyMethod()

 {

 ptr = new char[2];

 ptr = ‘M’;

162 Cracking the IT Interview

 }

 void operator = (CopyMethod &a)

 {

 if(ptr)

 delete ptr;

 ptr = NULL;

 ptr = new char[2];

 strcpy(ptr,a.ptr);

 }

};

void main()

{

 CopyMethod cm1;

 // Default Copy Constructor will do Shallow Copy

 CopyMethod cm2 = cm1;

 // Deep copy using User-Defi ned assignment operator

 CopyMethod cm3;

 cm3 = cm1;

}

In the above example, cm2 object calls default copy constructor, which does memory copy. This

means cm2.ptr = cm1.ptr. This is incorrect, as both cm2’s and cm1’s ptr member points to same

memory. This is the problem of Shallow Copy. However, if we see the last statement cm3=cm1, it

calls the user-defi ned assignment operator method where we have copied the ptr value properly.

This is called Deep Copy. So the moral is, if you have a dynamically allocated variable in a class,

write your own assignment and copy constructor methods.

46. Can a constructor be overloaded?

Yes. The constructor can be overloaded to pass different arguments to the object at the time of

creation.

47. Can a destructor be overloaded?

No. There is no need to overload the destructor as it is called before de-allocating an object.

163C++ Programming

48. What is the difference between overriding and overloading?

Overloading a method (or function) is the ability for methods of the same name to be re-defi ned as

long as these methods have different signatures (different set of parameters). Method overriding is

the ability of the inherited class rewriting the virtual method of the base class.

class CBase

{

 public:

 CBase ();

 void Func (int param);

 void Func (fl oat param); // overloaded func

 virtual void Func1();

 };

 class CDerived : public CBase

 {

 public:

 CDerived ();

 void Func (char param); // overloaded func

 void Func1(); // overrided func

};

void main ()

{

 CDerived derived;

 int param = 1;

 // Calls Base Class overloaded Func(int) method

 derived.Func (param);

 CBase &base = derived;

 // Calls Derived Class overriden Func1() method

 base.Func1()

}

Here is another twist. Suppose you override an overloaded function from the Base class as shown

in the below snippet:

class CDerived : public CBase

164 Cracking the IT Interview

{

 public:

 CDerived ();

 // overridden the overloaded func

 void Func (fl oat param);

 // overridden func

 void Func1();

};

Calling the derived.Func(param) in the main method will surprisingly call Derived.Func(fl oat)

instead of Base.Func(int). Why?

Because, If you override an overloaded member function (virtual or not), your overriden function

hides all overloaded variants of that member function, not just the one you overrode. To properly

override an overloaded member function, you must override all the overloaded variants. In the

above code, if you want to override Func (int) then you need to override Func (fl oat) also.

Another workaround is, in CDerived, bring the method overloaded in the CDerived interface by

using the C++ statement “using”.

class CDerived : public CBase

{

 CDerived ();

 using CBase::Func;

 Func (fl oat param);

};

With this piece of code the CBase::Func(int) is called.

49. How are prefi x and postfi x operator overloading done?

For primitive types, the C++ language distinguishes between ++x; and x++; as well as between --x;

and x--. For objects requiring a distinction between prefi x and postfi x overloaded operators, the

following rule is used:

class Integer

{

 private:

 int i;

 //...

165C++ Programming

 public:

 void operator++(){++i;} //prefi x

 void operator—(){—i;} //prefi x

 void operator++(int unused) {i++;} //postfi x

 void operator—(int unused){i—;} //postfi x

};

Postfi x operators are declared with a dummy int argument (which is ignored) in order to distinguish

them from the prefi x operators, which take no arguments:

void f()

{

 Integer d, d1;

 ++d; //prefi x: fi rst increment d and then assign to d1

 d++; //postfi x; fi rst assign, increment d afterwards

}

50. What is static and dynamic binding?

The process of connecting the function call to a function implementation is called binding. When

the binding happens before the execution (by compiler) of the program, it is called static or early

binding. If the binding occurs at run-time, it is called late or dynamic binding.

51. What is a virtual function? Explain VTABLE with a diagram.

For late binding to happen, there should be a way to identify the type of the object at run-time

whose function/method is to be executed. In C++, we have to declare a function as virtual to

achieve late binding.

class Base

{

 public:

 Base();

 void static_func();

 virtual void dyn_func();

};

class Derv

{

166 Cracking the IT Interview

 public:

 Derv();

 virtual void dyn_func();

};

void main()

{

 Base b;

 b.static_func();

 Base *b1 = new Derv();

 b1->dyn_func();

}

Ptr to b1

Base Object

VPTR*

Array of Base

Class pointer

Derv Object

VPTR*

VTABLE

&

Base::dync_func()

&

Derv::dync_func()

Objects

VTABLE Diagram

On compiling this program, compiler replaces b.static_func() method call with the starting

address of b.static_func() method implementation.

When compiler fi nds the virtual function, it knows that it should do late binding. To accomplish

this, the compiler creates a VTABLE for each class that contains virtual functions as shown in the

VTABLE diagram. The compiler places the addresses of the virtual functions for that particular

class in the VTABLE. In each class with virtual functions, it keeps a pointer, called the vpointer

(abbreviated as VPTR), which points to the VTABLE for that object. So for b1->dyn_func()

method call the compiler quietly inserts code to fetch the VPTR and look up the function address (in

this case it fi nds Derv::dyn_func) in the VTABLE. At runtime, it calls function Derv::dyn_func().

52. Can a constructor be declared as virtual?

A constructor cannot be declared virtual since the constructor invocation model is always from

the base class to the derived class.

167C++ Programming

53. What is a virtual destructor? Why is it needed?

A destructor can be declared virtual. Virtual destructor is mainly useful during inheritance

class Base

{

 public:

 Base() { }

 virtual ~Base() { };

};

class Derv

{

 char *ptr;

 public:

 Derv() { ptr = new char[2];}

 ~Derv() { delete ptr; }

};

void main()

{

 Base basePtr = new Derv();

 delete basePtr;

}

Use of virtual keyword before ~Base() ensures, it calls fi rst ~Derv() and then ~Base() when delete

basePtr statement executed.

An important paradigm of class design is that if a class has one or more virtual functions, it should

have a virtual destructor.

54. What is a virtual base class? (a.k.a The classic Diamond problem)

Multiple inheritance is a powerful and useful feature in C++, but it might result in the Diamond

problem.

Multiple Inheritance introduces the possibility that a class may have the same (direct or indirect)

base class appearing more than once as an ancestor.

168 Cracking the IT Interview

For example: The Diamond shape inheritance

B
/ \

C1 C2

\ /

D

This situation introduces C++ virtual inheritance. When the programmer wants class D to have

one B sub-object, B should be a virtual base class; and if two, B should be a normal (non-virtual)

base class.

class B

class C1 : virtual public B

class C2 : virtual public B

class D: public C1, public C2.

55. What is an abstract class?

An abstract class cannot be instantiated, means objects cannot be created for an abstract class.

A class is made abstract by declaring one or more of its virtual functions to be pure. A pure virtual

function is one with an initializer of = 0 in its declaration.

virtual void Func() = 0; // pure virtual functions

Note: Initializing to zero is just an indication to the compiler.

56. Why cannot a derived class virtual function be called from a base class con-

structor?

This is because the TEMPLATES VTABLE will not be fully initialized until the derived constructor

executes completely.

TEMPLATES

57. What is the advantage of using templates?

Templates provide a means to write generic functions and classes for different data types. Templates

are sometimes called parameterized types. Templates can signifi cantly reduce source code size and

increase code fl exibility without reducing type safety.

169C++ Programming

58. Explain function template.

Function template provides a means to write generic functions for different data types, such as

integer, long, fl oat or user-defi ned objects

template <class T>

T GetMaxValue (T a, T b)

{

 T result;

 result = (a>b)? a : b;

 return (result);

}

int main ()

{

int i=5, j=6, k;

 fl oat l=10.1, m=5.2, n;

 k=GetMaxValue<int>(i,j);

 n=GetMaxValue<fl oat>(l,m);

 cout << “Max Integer Value” << k << endl;

 cout << “Max Float Value” << n << endl;

 return 0;

}

In the above example, we have used the same function GetMaxValue () with arguments of type int

and fl oat having written a single implementation of the function. That is to say, we have written a

function template and called it with two different type of parameters.

As you can see, within our GetMaxValue () template function the type T can be used to declare new

objects:

T result;

result is an object of type T, like a and b

59. Explain class template.

Class template provides a means to write a generic class for different types so that a class can have

members based on generic types that do not need to be defi ned at the moment of creating the class

or whose members use these generic types.

170 Cracking the IT Interview

template <class T>

class pair

{

 T value1, value2;

 public:

 pair (T fi rst, T second)

 {value1=fi rst; value2=second;}

 T getmax ();

};

template <class T>

T pair<T>::getmax ()

{

 T retval;

 retval = value1>value2? value1 : value2;

 return retval;

}

int main ()

{

 pair <int> myobject (100, 75);

 cout << myobject.getmax();

 return 0;

}

In the above class that we defi ned serves to store two elements of any valid type. For example, if we

wanted to declare an object of this class to store two integer values of type int with the values 115

and 36 we would write:

pair<int> myobject (115, 36);

This same class would also serve to create an object to store any other type:

pair<fl oat> myfl oats (3.1, 2.1);

171C++ Programming

60. Differentiate between a Template and a Macro.

In many ways, templates work like preprocessor macros, replacing the templated variable with the

given type. However, there are differences between a macro like this:

#defi ne min(x, y) (((x) < (y)) ? (x) : (y))

and a template:

template<class T> T min (T x, T y){ return ((x < y) ? x : y) }

Here are some problems with the macro: � There is no way for the compiler to verify that the macro parameters are of compatible

types. The macro is expanded without any special type checking. � The x and y parameters are evaluated twice. For example, if either parameter has a post-

incremented variable, the increment is performed two times. � Because macros are expanded by the preprocessor, compiler error messages will refer to the

expanded macro, rather than the macro defi nition itself. Also, the macro will show up in

expanded form during debugging.

61. Differentiate between a template and a void pointer.

Functions that are implemented with void pointers can be implemented with templates. void

pointers are used to allow functions to operate on data of an unknown type. When using void

pointers, the compiler cannot distinguish types, so it cannot perform type checking or type-specifi c

behavior, such as using operator overloading, or constructors and destructors.

With templates, functions and classes can be created that operate on typed data. The type looks

abstracted in the template defi nition. However, at compile time the compiler creates a separate

version of the function for each specifi ed type. This enables the compiler to treat class and the

function templates as if they act on specifi c types. Templates can also improve coding clarity,

because you do not need to create special cases for complex types, such as structures.

62. What is STL?

Standard Template Library (STL) is a C++ library of container classes (along with algorithms that

manipulate the data stored in containers) and iterators (that are used to move through the elements

of the container).

Every container in the STL is a template. The purpose of the container classes is to contain their

objects. Examples of containers are list, vector, and map.

172 Cracking the IT Interview

You can, for example, use a vector<int> in much the same way as you would use an ordinary

C/C++ array, except that vector eliminates the chore of managing dynamic memory allocation

by hand.

63. What are the advantages of using on iterator?

Iterator interfaces (API) are the same for all the containers. For example, a container list can

internally have doubly linked list or singly linked list, but its corresponding iterator interface that is

used to access its elements is always the same.

(iter->next)

64. What is the difference between a vector and a map?

A vector is a sequential container, i.e., all the elements are in a sequence, whereas a map is an

association container, i.e., all elements are stored in the form of a key-value association pair.

MISCELLANEOUS

65. What is casting?

If a class is derived from a base class containing virtual functions, a pointer to that base class type

can be used to call the implementations of the virtual functions residing in the derived class object.

Since a derived class completely contains the defi nitions of all the base classes from which it is

derived, it is safe to cast a pointer up the class hierarchy to any of these base classes.

66. What is RTTI?

Run-time type identifi cation (RTTI) mechanism is used to determine the exact type of an object

pointer or reference during runtime of a program, i.e., it identifi es whether the base class pointer

holds the address of a base class object or a subclass object. RTTI is achieved in C++ via the dynamic_

cast operator, the typeid operator and the type_info class.

Operator typeid retrieves the runtime type information associated with a certain object. typeid

takes an object or a type name as its argument. Thus, to determine if the dynamic type of object x is

of class Y, check whether the expression typeid(x) == typeid(Y) is true:

For example:

#include <typeinfo> // needed for typeid

class File

{

173C++ Programming

};

class TextFile : public File

{

};

class MediaFile : public File

{

};

class menu

{

 void build(const File * pfi le)

 {

 if (typeid(*pfi le)==typeid(TextFile))

 {

 add_option(“edit”);

 }

 else if (typeid(*pfi le)==typeid(MediaFile))

 {

 add_option(“play”);

 }

 }

};

In the above example, menu class build member function verifi es the pfi le pointer’s class type using

typeid.

67. How can you know failure in casting?

bad_cast Exception will be thrown by the C++ runtime.

68. What is the difference between dynamic and static casting?

The static_cast operator can be used for operations, such as converting a pointer to a base

class to a pointer to a derived class. Such conversions are not always safe. � In general static_cast would be in numeric data type conversions, such as enums to

ints or ints to fl oats.

174 Cracking the IT Interview � static_cast conversions are not as safe as dynamic_cast conversions, because

static_cast does no run-time type check, while dynamic_cast does. � A dynamic_cast to an ambiguous pointer will fail, while a static_cast returns as if

nothing were wrong; this can be dangerous. � Although dynamic_cast conversions are safer, dynamic_cast only works on pointers

or references, and the run-time type check is an overhead.

69. What is a namespace?

In C++, namespace is used to group all the related classes. For instance, consider these two C++

header fi les:

// something.h

class String { ... };

// somelib.h

class String { ... };

With these defi nitions, it is impossible to use both header fi les in a single program; the String classes

will clash.

A namespace is a declarative region that attaches an additional identifi er to any names declared

inside it. As long as classes appear in separate namespaces, each name will be unique because of the

addition of the namespace identifi er. For example:

// something.h

namespace SomeThing

{

 class String { ... };

}

// somelib.h

namespace SomeLib

{

 class String { ... };

}

Now the class names will not clash because they become SomeThing::String and

SomeLib::String, respectively.

175C++ Programming

In order to use a namespace, the scope resolution operator or using keyword is used.

namespace myproject

{

 class A

 {

 static int i;

 public:

 static void foo();

};

}

int myproject::A::i=10;

or

class B

{

 using namespace myproject;

 A::foo();

};

70. How would you implement Exception handling in C++?

Exceptions are used to pass information about abnormal runtime conditions and to transfer control

to an appropriate handler.

The keywords try, catch, and throw are used in exception handling. try defi nes a block of

guarded code, i.e., a sequence of one or more statements that might throw an exception. catch

defi nes a catch-block, or a handler, for a particular exception or a set of exceptions. A throw

statement interrupts the current execution fl ow and propagates an exception to a matching

handler.

Example:

class A

{

 public:

 class Except {};

 void foo() { throw Except();}

};

176 Cracking the IT Interview

int main()

{

 A a;

 try

 {

 a.foo();

 } catch(A::Except)

 {

 cout << “caught Except” << endl;

 }

}

71. What is the ellipsis catch handler?

Ellipsis catch handler will catch all the unhandled exceptions.

try

{

 throw “Data”;

}

catch(...)

{

 cout << “No Exception Handler” ;

}

Output in the above example is “No Exception Handler” since there is no matching catch handler

for the statement throw “Data”.

72. What will happen it a thrown exception is not handled?

If a matching handler (or ellipsis catch handler) cannot be found for the current exception, the

predefi ned terminate function is called. (You can also explicitly call terminate function in

any of your handlers.) The default action of terminate function is to call abort function to stop

the program execution. If you want terminate function to call some other function in your program

before exiting the application, call the set_terminate function with the name of the function

to be called as its single argument. You can call set_terminate at any point in your program.

The terminate routine always calls the last function given as an argument to set_terminate.

For example:

177C++ Programming

#include <eh.h> // For function prototypes

//...

void term_func() { // ... }

int main()

{

 try

 {

 // ...

 set_terminate(term_func);

 // ...

 // No catch handler for this exception

 throw “Out of memory!”;

 }

 catch(int)

 {

 cout << “Integer exception raised.”;

 }

 return 0;

}

The term_func function should terminate the program or current thread, ideally by calling exit.

If it does not, and instead returns to its caller, abort is called.

73. What is the advantage of Exception handling?

 Or

 What does Stack Unwinding mean?

The real power of C++ exception handling lies in its ability to automatically call destructor functions

during stack unwinding, for all local objects constructed before the exception was thrown.

The following example demonstrates C++ exception handling using classes with destructor

semantics:

#include <iostream.h>

void MyFunc(void);

178 Cracking the IT Interview

class CTest

{

 public:

 CTest(){};

 ~CTest(){};

 const char *error() const

 { return “Exception in CTest class.”; }

};

class CTester

{

 public:

 CTester();

 ~CTester();

};

CTester::CTester()

{

 cout << “Constructing CTester.\n”;

}

CTester::~CTester()

{

 cout << “Destructing CTester.\n”;

}

void MyFunc()

{

 CTester D;

 cout<< “In MyFunc(). Throwing CTest exception.\n”;

 throw CTest();

}

int main()

{

 cout << “In main.\n”;

 try

 {

179C++ Programming

 cout << “In try block, calling MyFunc().\n”;

 MyFunc();

 }

 catch(CTest E)

 {

 cout << “In catch handler.\n”;

 cout << “Caught CTest exception type: “;

 cout << E. error () << “\n”;

 }

 catch(char *str)

 {

 cout << “Caught other exception:”<<str<< “\n”;

 }

cout << “Back in main. Execution resumés here.\n”;

 return 0;

}

This is the output from the preceding example:

In main.

In try block, calling MyFunc().

Constructing CTester.

In MyFunc(). Throwing CTest exception.

Destructing CTester.

In catch handler.

Caught CTest exception type: Exception in CTest class.

Back in main. Execution resumés here.

Note that in this example, the exception parameter (the argument to the catch clause) is declared

in both catch handlers:

catch(CTest E)

// ...

catch(char *str)

// ...

The above statements need not to be declared; in many cases, it may be suffi cient to notify the

handler that a particular type of exception has occurred. However, if the exception object is not

180 Cracking the IT Interview

declared in the exception-declaration, access will not be there to that object in the catch handler

clause.

A throw-expression with no operand re-throws the exception currently being handled. Such an

expression should appear only in a catch handler or in a function called from within a catch

handler. The re-thrown exception object is the original exception object (not a copy).

For example:

try {

 throw CSomeException();

}

catch(...) { // Handles all exceptions

 // ...

 throw; // Pass exception to some other handler

}

PROBLEMS AND SOLUTIONS

74. Will this code compile?

class A

{

 public:

 void func1(A *a)

 {

 this = a;

 }

};

Answer

No. Because, the ‘this’ pointer is non-modifi able, so assignment to this pointer is not allowed.

75. In the following program, what is the difference between the two statements?

this->a = a; and b = a;?

class A

{

 int a;

181C++ Programming

 int b;

 public:

 void set(int a)

 {

 this->a = a;

 b = a;

 }

};

Answer

In the fi rst statement, to differentiate the local variable ‘a’ and the member variable ‘a’ for the

compiler, this keyword is used for the member variable. Also, for the second the member variable

‘b’ has this implicitly it is not necessary to write explicitly.

76. Write a string class.

class String

{

 public:

 String(const char *str = 0);

 String(const String& s);

 String& operator=(const String& s);

 ~String();

 private:

 char *value;

};

//String Constructor

String::String(const char *str)

{

 value = NULL; // for safety

 if (str)

 {

 value = new char[strlen(str) + 1];

 strcpy(value,str);

 }

182 Cracking the IT Interview

 else

 {

 value = new char[1];

 *value = ‘\0’;

 }

}

//String destructor

String::~String()

{

 if (value)

 {

 delete value;

 }

 value = NULL; // for safety

}

//String assignment operator

String& String::operator=(const String& s)

{

 if (this == &s)

 return *this;

 delete [] value;

 value = new char[strlen(s.value) + 1];

 strcpy(value, s.value);

return *this;

}

183C++ Programming

77. Let us say in your C++ code (in a list of fi les), there are lots of “cout” state-

ments. Now you need to log only fi ve statements out of that to verify a fi x,

however, you do not have time to comment all the cout.

There might be many options to do this, in that, we chose the one that is explained here

Use cerr instead of cout for those fi ve statements. In the command line, while executing type

*.exe >> logFileName

This logs only the fi ve cerr statements.

78. Consider class ‘A’ with a method given below:

void add(fl oat i, fl oat f); //function

A obj; // A’s object

Will this statement obj.add (2,3); work?

Answer

Yes. Always best match is used, i.e., to add integers 2 and 3, if method add(int i,int j) is not

available then add(fl oat j, fl oat j) will be called.

79. Debug the code below:

struct test

{

 int t;

 char a[20];

 virtual void func() { cout << t<< “Hello”; };

};

void main()

{

 test *t = new test;

 memset(t,0,sizeof(t));

 t->func();

}

184 Cracking the IT Interview

Answer

When memset is called on the VTABLE ptr for the func() will be set to NULL. So, when

t->func() is executed the program will crash.

80. Will this code compile?

class B;

class A

{

 B b;

};

class B

{

};

Answer

No. Because when class A is being compiled, it tries to fi nd sizeof class B to allocate instance b.

Forward declaration did not help here.

81. Will this code compile?

//File: A.h

#include “B.h”

class A

{

 B b;

};

//File: B.h

#include “A.h”

class B

185C++ Programming

{

 A a;

};

Answer

No. Because when fi le A.h is being compiled, it tries include fi le B.h, which in turn tries to include

A.h ends in compiler error stating recursive #include inclusion.

82. Consider a class A with two methods given below:

A& operator + (A & obj1)

A& operator * (A & obj2)

Say instances s1,s2 and s3 are created for class A. What is the value of

s1+s2*s3?

Answer

Obey same precedence rules as for built-in types. So * operator has more priority than + operator.

Hence, s2*s3 will be executed fi rst and then result will be added to s1.

83. Implement the friend function in the given class.

class A

{

 friend operator<< (ostream &, const A &);

 private:

 int a;

};

int main (int, char*[])

{

 A a;

 cout << a << endl;

 return 0;

}

186 Cracking the IT Interview

Answer

Use the following code:

ostream & operator<< (ostream & o, const A &a)

{

 o << “A::a = “ << a.a;

 return o;

}

84. Fix the bug in this snippet.

class A

{

 int x;

 void int(int x)

{

 x = x;

}

};

Answer

Statement x=x assigns the local method variable x to itself. To assign the local method value x to

class member variable x, re-write statement as this->x = x;

85. Fix the bug in this code.

class A

{

 public:

 int i;

};

void main()

{

 A *a = new A();

 a->i= 20;

 free(a);

}

187C++ Programming

Answer

Object allocated with new got de-allocated using free(), which is an incorrect approach. Because

free() function does not know how to de-allocate objects. Always use new with delete operator

and malloc with free function.

86. Give one C++ language problem you face when we use multiple inheritance

(apart from diamond case).

Let us assume class derv gets derived from base1 and base2 classes, respectively as given below. The

classes base1 and base 2 have virtual functions that are implemented/overridden in the derv class.

class base1

{

 public:

 virtual void temp1();

};

class base2

{

 public:

 virtual void temp2();

};

class derv : public base1, public base2

{

 virtual void temp1() {};

 virtual void temp2() {};

};

base1 *b1;

base2 *b2;

b1 = new derv;

b1->temp1(); // allowed

b1->temp2(); // error

b2 = new derv;

188 Cracking the IT Interview

b2->temp2(); // allowed

b2->temp1(); //error

Answer

The derv class object could be assigned either to base1 or base2 class pointer/reference. This

confusion exists due to multiple-inheritance.

87. Look at this code snippet.

1) class A

 {

 };

 A a;

2) class B

 {

 virtual int func() {};

 };

 B b;

What are the size of objects, a and b?

Answer

Empty object size is always 1. Hence, size of the object a is 1.

If a class has one or more virtual function then a VPTR (virtual table pointer) will be inserted into

the object created for that class. So the size of the object b is 4 (addr of VPTR).

88. Can you implement a Class using a ‘C’ structure?

In free terms, we could say a class is a collection of related member variables and member functions.

To simulate a Class using C structure, use variables and function pointers.

struct ClassType

{

 int var1;

 int var2;

 void (*funcPtr1) ();

 }ClassType;

189C++ Programming

However, remember that we cannot specify Access level (private, public and protected) for the C

structures as possible in the C++ class.

THINKER’S CHOICE

89. How do you pass an object of a C++ class to/ from a C function?

90. Can an exception be thrown from a destructor?

91. Why cannot the scope resolution operator be overloaded?

92. lo To the String class in Q/6 add the operator+ method.

93. How do you set up a class so that it cannot be inherited?

94. How do you open a stream in binary mode?

95. What is Object Serialization?

96. When do you use container classes rather than arrays?

97. Overload ‘new’ and ‘delete’ operator to allocate and de-allocate memory.

98. Write an implementation for dynamic array.

99. What is a Smart Pointer?

100. What is Object Slicing?

REFERENCES

 1. Bjarne Stroustrup, The C++ Programming Language, 3rd edition, Addison-Wesley.

 2. Bruce Eckel , Thinking in C++, 2nd edition, Prentice Hall.

 3. Scott Meyers, Effective C++, 3rd edition, Addison-Wesley.

 4. Scott Meyers, More Effective C++, Professional Computing Series, Addison-Wesley.

Java

INTRODUCTION

Java is a modern object oriented language, which has been designed keeping the Internet in
mind. Java has mitigated or eliminated many problematic areas found in C++. This chapter
covers the interview questions on various aspects of the Java language and concepts like J2EE.

BASICS

1. Describe a Java source fi le. � A Java source fi le must have ‘.java’ extension. � It should have at-least one top-level, public class defi nition and any number of non-public
class defi nitions. The fi le name (without the extension) should match the public class
name.

File: PublicClass.java

public class PublicClass {

 …

}

class Non-PublicClass {

 …

}

6

191Java

2. What is the Bytecode?

Each Java program is converted into one or more class fi les. The content of the class fi le is a set of
instructions called bytecode to be executed by Java Virtual Machine (JVM). JVM is an interpreter
for bytecode. Java introduces bytecode to create Platform (hardware) independent program.

3. Why does the main method need a static identifi er?

The main method needs a static identifi er because static methods and members do not need an
instance of their class to invoke them and main is the fi rst method, which is invoked.

4. Will the program compile, if the main method does not have static identifi er?

It will compile. But the program cannot be executed.

5. Which is the default parent class for a Java class?

java.lang.Object. By default (implicit), all the Java classes extend this class unless they have
their own parent class. Also, the package java.lang is imported into all Java fi les by default.

6. How are Java objects passed to a method?

In Java, both the primitive types and objects will be passed by value. During object passing, the
object’s reference will be copied.

7. What are native methods?

Native methods are methods implemented in another programming language, such as C. The Java
Native Interface (JNI) is the API to invoke these native methods from a Java class.

8. What are the main differences between an applet and application?

Applets are useful for creating dynamic and interactive web applications. An applet runs under the
control of a browser, whereas an application runs as a stand-alone application on the desktop.

An applet is subjected to tougher security restrictions in terms of fi le and network access, whereas
an application can easily access the fi le system and network.

9. What is the order of declaring class, package and import statements within a

Java fi le?

The order should be package, import statements and then class defi nition.

192 Cracking the IT Interview

10. Which keywords are reserved?

‘goto’ and ‘const’ are the 2 reserved keywords in Java.

11. How are ‘this and ‘super’ keyword used?

 ‘this’ keyword is used to refer to the current object instance. ‘super’ keyword is used to refer to the
variables and methods of the superclass of the current object instance.

12. Can a variable be an unsigned integer?

No. In Java all the data types are signed numeric numbers.

13. Can a private method be static?

Yes.

14. What are the various bit wise operators?

a & b Bit wise AND

a | b Bit wise OR

a ^ b Bit wise exclusive or (XOR)

~a Complement

a<<n Left shift

a>>n Right shift

a>>>n Unsigned right shift

The complement unary operator (~) toggles each bit in its operand, i.e., 0 to 1 and 1 to 0.

The left shift infi x operator (<<) shifts the bits in the operand n places to the left fi lling in the bits
on the right with zero.

The right shift infi x operator (>>) operates in a similar manner but moving bits to the right and
fi lling in the left side with the most signifi cant bit. Thus, given the binary number:

1000 (decimal value is 8), assuming a 4 bit architecture, 1000 >> 2 would produce 1110 (decimal
value is 14).

The >>> operator when applied to the above number:

1000 >>> 2 will produce 0010 (decimal value is 2), i.e., the operator fi lls in the left hand side with
zero bits instead of the most signifi cant bit.

193Java

15. What is the use of ‘Instanceof’ operator?

The instanceof operator verifi es whether its fi rst operand is an instance of its second.

op1 instanceof op2.

op1 must be the name of an object and op2 must be the name of a class/interface/array type.

An object is considered to be an instance of a class if that object directly or indirectly descends from
that class.

class A {

}

 class B extends A{

}

A a = new B();

if(a instanceof A) {

 System.out.println(“Instance of A”);

}

if(a instanceof B) {

 System.out.println(“Instance of B”);

}

In the above example, the output will be

Instance of A
Instance of B

16. Mention the access modifi ers for a class, method, and variables.

Public

A class that is declared as public has global scope and an instance of this class can be created from
anywhere within or outside of the class, i.e., by other classes in the same package as well as classes
in other packages. Only one non-inner class in any fi le can be defi ned with the public keyword. The
public modifi er can be used for variables, methods and classes.

Protected

A protected variable is visible within the same class, same package and in subclasses in other packages.
Any class in the same directory is considered to be in the default package, and thus protected classes
will be visible. This can be used for Methods, Variables and Inner classes.

194 Cracking the IT Interview

Default

A variable defi ned with no access modifi er is said to have default visibility. Default visibility means
a variable/method can be seen within the class and from elsewhere within the same package, but
not from other packages.

Private

Private variables are only visible from within the same class. This means they are NOT visible
within sub classes. This allows a variable to be insulated from being modifi ed by any methods except
those in the current class.

This can only be used for Methods, Variables and Inner classes.

17. What is the widening conversion and narrowing conversion?

A widening conversion happens when we try to cast an object of lesser size to an object of larger
size, e.g., : int to long.

A narrowing conversion is when we try to cast an object of larger size to an object of lesser size, e.g.,
long to int.

18. How can you create Java API documentation?

Using the javadoc tool parses the declarations and documentation comments in a set of Java source
fi les and produces a corresponding set of HTML pages describing (by default) the public and
protected classes, nested classes (but not anonymous inner classes), interfaces, constructors, methods
and fi elds. You can use it to generate the API (Application Programming Interface) documentation
or the implementation documentation for a set of source fi les.

19. What are jar, war and ear fi les?

JAR: It is a Java archive fi le used to package classes, property fi les, etc., as a single fi le. To create a jar
fi le use the jar command. This is similar to the zip fi le in windows.

For example, to create a jar fi le with all class fi les under the current directory:

jar -cvf jarfi lename.jar *.class

WAR: It is a web archive fi le used to package a web application, i.e., classes, JSPs, property fi les, etc.,
as a single fi le.

EAR: It is an enterprise archive fi le. This format is used to package EJB, JSP, Servlets, Property fi les,
etc. This is used to package an entire enterprise application. It can consist of multiple WAR fi les.

195Java

Note: Each WAR and EAR will have its own deployment descriptor. The descriptor is a XML based
fi le.

20. Differentiate Java from C++.

 � Java does not support pointers. � Java does not provide the operator overloading option for programmers though it internally
use it for string concatenation. � Java does not support multiple class inheritance. However, it supports multiple inheritance
using interface. � Java does not support global variables, global functions, typedef, structures or unions. � Java uses fi nal keyword to avoid a class or method to be overridden. Using fi nal with variable
is somewhat similar to using const in C++.

JVM AND GARBAGE COLLECTION

21. How many JVMs can run on a single machine?

No limitation. A JVM is just like any other process.

22. What is the Just-In-Time (JIT) Compiler?

The Java interpreter on any platform will interpret the compiled bytecode into instructions
understandable by the particular hardware. However, the Java Virtual Machine handles one bytecode
instruction at a time. The Java Just-In-Time compiler compiles the bytecode into the particular
machine code (as though the program had been compiled initially on that platform). Once the code
has been (re-)compiled by the JIT compiler, it will usually run more quickly in that system.

23. What is the use of ‘classpath’ environment variable?

Classpath is the list of directories through which the JVM will search to fi nd a class. It is different
from the OS environment variable PATH.

Note: Classpath that a JVM has to use can be specifi ed using the classpath option as follows: If this
is not specifi ed then the value specifi ed for the environment variable is taken.

C:> Java -classpath classpath1;classpath2 MyClass.java

196 Cracking the IT Interview

24. Can Java code be retrieved from byte-code?

Yes, class fi les can be decompiled using utilities like JAD. This takes the class fi le as an input and
generates a Java fi le. This is especially useful when you are confused as to which version of Java fi le
was used to generate the class fi le, in a multi-user environment.

25. What is a garbage collector?

When an object is no longer required (when its reference count is 0), its memory needs to be cleaned
up and freed. This is what the garbage collector does. Garbage Collector is a thread running as part of
the JVM process. This thread scans program for objects that will never be accessed again and release
their resources back to the system. The basic garbage collector uses mark and sweep algorithm.
This algorithm marks all the unused (whose reference count is 0) variables and sweeps them.

26. Can the garbage collector be forced to run?

No. Calling the System.gc() method only suggests that the JVM expend effort toward recycling
unused objects in order to make the memory they currently occupy available for reuse. When control
returns from the method call, the JVM has made a best effort to reclaim space from all discarded
objects. This does not guarantee that the garbage collector is called.

The call System.gc() is effectively equivalent to the call:

Runtime.getRuntime().gc()

STRINGS

27. What is the difference between

1. String s1= new String (“abc”);

2. String s2=“abc”;?

“abc” is known as a string literal. In order to store the string literals, a string pool will be created
by the JVM. When a string literal is found in a class, it will be added to the string pool. However, if
the same literal already exists in the pool, then it uses the existing one in the pool, as string object is
immutable (cannot be modifi ed).

In the fi rst case, a new memory space is allocated in the heap on account of the “new” and also
allocated in the pool on account of the literal “abc”.

In the second case, when the statement is being compiled, a pointer to the string literal “abc” is
stored in s2. However, if the same string had not been present, then it would have created a new
instance in the pool and stored the reference.

197Java

28. What happens when intern(). method on a string object is invoked?

Interned strings avoid duplicate strings. There is only one copy of each String that has been
interned, no matter how many references point to it. The process of converting duplicated strings to
shared ones is called interning. You can compare interned Strings with simple == (which compares
references) instead of equals() method, which compares the characters of the String one by one.
Also, when intern() method is invoked, a reference to the String is added to the String pool.
This is the reason why you can compare the reference using ==. because both the variables hold the
some reference.

29. What is the difference between a String and StringBuffer class?

String class is immutable, i.e., it cannot be modifi ed once declared.

StringBuffer class is not immutable and Strings can be appended to the original String. It is more
effi cient than using String when the string value could be changed.

For example,

 String str= “abc” ;

 str=str+”def”;

This creates a brand new String and puts the pointer in str.

 StringBuffer strBuff=”abc”;

 StrBuff.append(“def”);

This appends to the same String and is more effi cient.

30. What is the use of StringTokenizer class?

The StringTokenizer class allows an application to break a string into tokens. The StringTokenizer
methods do not distinguish among identifi ers, numbers and quoted strings, nor do they recognize
and skip comments.

The set of delimiters (the characters that separate tokens) may be specifi ed either at creation time
or on a per-token basis.

StringTokenizer st = new StringTokenizer(“we are Testing”);

while (st.hasMoreTokens()) {

System.out.println(st.nextToken());

}

198 Cracking the IT Interview

prints the following output:

we are Testing

THREADS

31. Mention the two ways to create a thread.

The fi rst method of creating a thread is to simply extend from the Thread class. This should be done
only if the class does not ever need to be extended from another class.

import java.lang.*;

public class Count extends Thread

{

 public void run()

 {

 }

}

The above example creates a new class Count that extends the Thread class and overrides the
Thread.run() method. The run() method is where all the work of the Count class thread is
done. The same class can be created by implementing the interface Runnable.

import java.lang.*;

public class Count implements Runnable

{

 Thread T;

 public void run()

 {

 }

}

Here, the abstract run() method is defi ned in the Runnable interface and is being implemented.
Note that we have an instance of the Thread class as a variable of the Count class. The only
difference between the two methods is that by implementing Runnable, there is greater fl exibility
in the creation of the class Count. In the above example, the opportunity still exists to extend the

199Java

Count class, if needed. The majority of classes created that need to be run as a thread will implement
Runnable since they probably are extending some other functionality from another class.

An interface only provides a design upon which classes should be implemented. In the case of the
Runnable interface, it forces the defi nition of only the run() method.

32. What does Thread.start() do?

The start method creates the system resources necessary to run the thread and schedules the thread
to run. After the start method has returned, the thread is actually in the Runnable state. When a
thread gets the CPU time, it will be executed.

33. How is a thread prioritized?

Execution of multiple threads on a single CPU, in some order, is called scheduling. The Java runtime
supports a very simple, deterministic scheduling algorithm known as fi xed priority scheduling.
This algorithm schedules threads based on their priority relative to other runnable threads.

When a Java thread is created, it inherits its priority from the thread that created it. You can also
modify a thread’s priority at any time after its creation using the setPriority() method. Thread
priorities are integers ranging between MIN_PRIORITY (1) and MAX_PRIORITY (10) (constants
defi ned in the Thread class). The value 5 is the default priority. The higher the integer, the higher
the priority. At any given time, when multiple threads are ready to be executed, the runtime system
chooses the runnable thread with the highest priority for execution. Only when that thread stops,
yields or becomes not runnable for some reason will a lower priority thread start executing. If two
threads of the same priority are waiting for the CPU, the scheduler chooses one of them to run in a
round-robin fashion. The chosen thread will run until one of the following conditions is true: � A higher priority thread becomes runnable. � It yields, or its run method exits. � On systems that support time-slicing, its time allotment has expired.

Then the second thread is given a chance to run, and so on, until the interpreter exits.

The Java runtime system’s thread scheduling algorithm is also preemptive. If at any time a thread
with a higher priority than all other runnable threads becomes runnable, the runtime system chooses
the new higher priority thread for execution. The new higher priority thread is said to preempt the
other threads.

34. What is the difference between yielding and sleeping in threads?

When a thread invokes its yield() method, it returns to the ready state. When a thread invokes
its sleep() method, it returns to the waiting state.

200 Cracking the IT Interview

35. What is the difference between pre-emptive scheduling and time slicing?

Under pre-emptive scheduling, the highest priority thread executes until it enters the waiting or
dead states or a higher priority thread comes into existence. Under time slicing, a thread executes
for a predefi ned slice of time and then re-enters the pool of ready threads. The scheduler then
determines which thread should execute next, based on priority and other factors.

36. What are synchronized methods and synchronized statements?

Synchronized methods are methods that are used to control access to an object. A thread only executes
a synchronized method after it has acquired the lock for the method’s object or class. Synchronized
statements are similar to synchronized methods. A synchronized statement can only be executed
after a thread has acquired the lock for the object or class referenced in the synchronized statement.
This means that no other thread can access the object till the current thread releases the object. This
is used to make code thread safe and prevent dirty reads.

37. When do you use synchronized statements?

Synchronized statements are good to use when � it is suffi cient to synchronize only a part of the method

void method()

{

 // some statement

 Synchronized(this)

 {

 this.a = 20;

 }

 //some statement

} � if a class whose object to be locked is part of a third party jar fi le

void method()

{

 // some statement

 Synchronized(thirdPartyObject)

 {

201Java

 thirdPartyObject.a = 20;

 }

 //some statement

}

38. How can a dead thread be restarted?

A dead thread cannot be restarted.

39. What invokes a thread’s run() method?

After a thread is started, via its start() method or that of the Thread class, the JVM scheduler
invokes the thread’s run() method once the turn comes for the thread to run.

40. When do threads go out of runnable state?

A thread becomes Not Runnable when one of these events occurs � its sleep method is invoked. � the thread calls the wait method to wait for a specifi c condition to be satisfi ed. � the thread is blocking on I/O.

41. What is a monitor?

A monitor is a lock on an object, which allows only one thread to access/modify the contents of that
object.

42. How do you make code thread safe?

The keyword synchronized is used to temporarily lock an object to have exclusive access to it. It
marks a block of code or an entire method as critical section. Only one thread can execute it at any
point in time. Other threads will wait for their turn to use the critical section.

When an instance method is synchronized, the synchronized code can be run by many threads on
different objects simultaneously, since the locking is on the object. For a synchronized class method,
the locking is on the class object, which thus limits to only one thread executing that code.

43. What does Thread.wait(). Do?

Thread.wait() and Thread.notify() methods are used for inter-thread communication.
Thread.wait() makes the thread go to sleep until some other thread wakes it up using Thread.
notify() method.

202 Cracking the IT Interview

The wait method is defi ned in the object class. Since all classes in Java extend object by default, it is
available in all classes.

44. What is a daemon thread?

Daemon threads are sometimes called “service” threads that normally run at a low priority and
provide a basic service to a program or programs when activity on a machine is reduced.

The garbage collector thread is an example of a daemon thread. This thread, provided by the JVM,
will scan programs for variables that will never be accessed again and free up their resources back
to the system. A thread can set the daemon fl ag by passing a true Boolean value to the setDaemon()
method. If a false Boolean value is passed, the thread will become a user thread. However, this must
occur before the thread has been started.

The JVM scheduler’s basic rule is if there are only Daemon threads running, the Java Virtual
Machine (JVM) will exit.

45. What is the difference between notify(). and notifyall()?

notify(): This can be called only from within synchronized method/block. It wakes up a single
thread, which is waiting on the objects lock. If there is more than one thread waiting, the choice is
arbitrary, i.e., there is no way to specify, which waiting thread should be awakened.

notifyAll(): wakes up all the waiting threads. The JVM scheduler will then decide, which
thread will run.

COLLECTIONS

46. What is the difference between ArrayList and Vector?

ArrayList Vector

Methods are not synchronized; therefore, they are not

thread safe. Hence, more effi cient and faster.

Methods are synchronized. Any method that touches

the Vector’s contents is thread safe.

ArrayList increases its array size by 50 percent when

it gets fi lled.

A Vector defaults to doubling the size of its array,

when it gets fi lled.

47. Which collection sorts data?

TreeMap is a collection class that sorts data.

203Java

The Java API reference states:

It is an implementation of the SortedMap interface. This class guarantees that the map will be in
ascending key order, sorted according to the natural order for the key’s class (see Comparable), or
by the comparator provided at creation time, depending on which constructor is used.

48. What is the difference between Hashtable and HashMap?

Hashtable HashMap

Methods are synchronized. Any method that touches

the Hashtable’s contents is thread safe.

Methods are not synchronized; therefore, they are not

thread safe. Hence, it is more effi cient and faster.

Does not permit null key or null value. Permits null key and null value.

49. What is the difference between Enumeration and Iterator interface?

Iterators differ from enumerations in two ways: � allows the caller to remove elements from the underlying collection during the iteration. � method names have been improved.

EXCEPTION HANDLING

50. What is the order of execution of try catch fi nally? What happens if an

exception occurs in the fi nally block?

try {

 statements;

}

catch (exceptionType1 identifi er1)

{

 // one or multiple statements;

}

catch (exceptionType2 identifi er2)

{

 //statements;

}

...

}

fi nally {

204 Cracking the IT Interview

// one or none statements;

} � Every try block must have either one catch clause or a fi nally clause � We can have multiple catch clauses but only one fi nally clause � The statements within the try block are executed until an exception is thrown or it
completes successfully � We get a compiler-error if the code included in the try statement will never throw one of
the caught checked exceptions � If an exception is thrown, each catch clause is inspected in turn for a type to which the
exception can be assigned � The catch blocks must be ordered from most specifi c to least specifi c.Ex:
catch(Exception e) should come last after all the other Exceptions like
catch(IOException e) � When a match is found, the exception object is assigned to the identifi er and the catch
statements are executed a catch clause may throw another exception � If a fi nally clause is included, it’s statements are executed after all other try-catch
processing is complete � The fi nally clause executes whether or not an exception is thrown or a break or continue are
encountered � If a catch clause invokes System. exit () the fi nally clause WILL NOT execute.

51. What are checked and unchecked Exceptions?

Checked exceptions � represent invalid conditions in areas outside the immediate control of the program (invalid
user input, database problems, network outages, absent fi les) � are subclasses of Exception � methods are obliged to establish a policy for all checked exceptions thrown by its
implementation (either pass the checked exception further up the stack, or handle it
somehow)

Unchecked exceptions

 � represent defects in the program (often invalid arguments passed to a non-private
method) � are subclasses of RuntimeException, and are usually implemented
using IllegalArgumentException, NullPointerException, or
IllegalStateException

205Java � methods are not obliged to establish a policy for the unchecked exceptions thrown by its
implementation (and they almost always do not do so).

52. What is the Throwable class?

The Throwable class is the superclass of all errors and exceptions in the Java language. Only objects
that are instances of this class (or one of its subclasses) are thrown by the Java Virtual Machine or
can be thrown by the Java throw statement. Similarly, only this class or one of its subclasses can be
the argument type in a catch clause.

53. How do you write a custom exception?

Custom exceptions can be written by extending the java.lang.Exception class. The toString () method
should be overridden to print an appropriate error message.

54. What happens if an exception is not caught?

An uncaught exception results in the uncaughtException() method of the thread’s ThreadGroup
being invoked, which eventually results in the termination of the program in which it is thrown.

55. What is printed when printStackTrace () method is invoked?

The Java API ref explains the functionality of the method as follows:

public void printStackTrace()

Prints this throwable and its backtrace to the standard error stream. This method prints a stack
trace for this Throwable object on the error output stream that is the value of the fi eld System.err.
The fi rst line of output contains the result of the toString() method for this object. Remaining
lines represent data previously recorded by the method fi llInStackTrace(). The format of
this information depends on the implementation, but the following example may be regarded as
typical:

java.lang.NullPointerException

 at MyClass.mash(MyClass.java:9)

 at MyClass.crunch(MyClass.java:6)

 at MyClass.main(MyClass.java:3)

This example was produced by running the program:

class MyClass {

 public static void main(String[] args) {

206 Cracking the IT Interview

 crunch(null);

 }

 static void crunch(int[] a) {

 mash(a);

 }

 static void mash(int[] b) {

 System.out.println(b[0]);

 }

}

56. What are the characteristics of Final, Finally and Finalize

keywords?

Final

 � When a variable is marked as fi nal, then the compiler could perform various optimizations
knowing that its value cannot change. � Class member variables can be declared as fi nal without a value assigned to it. This forces all
its constructors to initialize the blank fi nal variables. � When a static variable declared as fi nal, it is similar to constant variable of C. � When a class declared as fi nal, it cannot be sub-classed. � If an object or array (array in Java is an object) is declared as fi nal, it does not stop you from
changing the fi elds in the object or elements of the array. It just stops you from pointing
that variable to a different object or array. If you want to protect the object, you must make
it immutable. � When a method declared as fi nal, it cannot be overridden.

Finally

The keyword fi nally is used in Exception handling. The fi nally block is placed after a try-catch
block. The code contained in the fi nally block would get executed under following conditions: � If exception is thrown in try block

 � If exception is not thrown in try block � If exception is thrown in Catch block

207Java � We usually close resources or clean up variables inside the fi nally block. See the example
below:

class X {

 Void dbUpdate() {

 Connection connection = new Connection(…);

 try {

 doSomeUpdates(); // using connection instance

 }catch (DatabaseException e) {

 System.out.println(“The error is”+e.toString());

 throw e;

}

 fi nally {

 connection.close(); // always executed

 }

}

In this example connection instance is getting closed inside the fi nally as it is safer approach.

Finalize

The fi nalize method is used for garbage collection. You can put clean up code in the fi nalize block.
When an object is about to be garbage collected, its fi nalize method will run. However, we cannot
be sure that, during machine shutdown, the fi nalizers will be called. So you cannot depend on them.
The prototype of fi nalize method is:

protected void fi nalize() throws Throwable {...}

CONSTRUCTORS

57. What is the use of ‘super’ keyword inside a constructor?

The super keyword is used to invoke the constructor of the parent class. This is invoked by default
when the constructor of any class is called, i.e., a call to the default constructor of parent class is
inserted at the beginning of the constructor of child class and it gets executed fi rst and then the
execution continues with the child class constructor.

58. Can a constructor be private?

Yes, it can be private. We use this feature in Singleton pattern to prevent anyone from instantiating
the class directly. Instead an instance can be got by invoking a static method on the class.

208 Cracking the IT Interview

59. How are this() and super() method used with constructors?

this() method within a constructor is used to invoke another constructor in the same class.
super() method within a constructor is used to invoke its immediate superclass constructor.

OVERLOADING AND OVERRIDING

60. Does Java support Operator Overloading?

Java does not allow the programmer to perform operator overloading. However, Java internally
supports operator overloading for performing String concatenation using + operator.

61. When overloaded methods and variables are in child classes, which version of

the method gets called?

Let us take an example:

class A{

 public int a=10;

 public void someMethod(){

 System.out.println(“In the class A”);

 }

}

class B extends A {

 public int a=20;

 public void someMethod(){

 System.out.println(“In the class B”);

 }

}

A objA=new A();

System.out.println(ObjA.a);

System.out.println(ObjA.someMethod());

ObjA=new B();

System.out.println(ObjA.a);

System.out.println(ObjA.someMethod());

209Java

This will print

10

In the class A

20

In the class B

This shows that the member variable, which is displayed, will be based on the type of the object
variable and the method, which is invoked, is based on the type of the object held in the object
variable.

62. What is the overloading and overriding?

Polymorphism refers to the ability of a method to behave differently based on the kind of input.
There are two ways in which polymorphism is implemented in Java. � Overloading � Overriding

Overloading methods

Overloaded methods have the same name, but different parameter lists and returns types and
appears in the same class or subclass. The decision as to which method should be called is taken at
runtime, based on the parameter list. This is known as late-binding.

An example of an overloaded method is abs() in the java.lang.Math class.

public static double abs(double a)

public static fl oat abs(fl oat a)

public static int abs(int a)

public static long abs(long a)

Overriding methods

In overriding, we re-defi ne a method that is inherited from a superclass. � Overridden methods can only exist in subclasses. They have the exact same name and
method signature. � The access modifi er for the overriding method may not be more restrictive than the access
modifi er of the superclass method. � Private methods are not inherited so we can have any access modifi er in subclass. � The throws clause of the overriding method may only include exceptions that are thrown
by the superclass method, including it’s subclasses.

210 Cracking the IT Interview

63. Compare an Interface and an Abstract class. � Neither Interface nor Abstract classes can be instantiated. � Direct multiple inheritance cannot be done in Java, like in C++. We have interfaces to take
care of this problem. A class can implement any number of interfaces, but can extend only
one class. � An interface has all public members and no implementation. An abstract class is a class,
which may have the usual fl avors of class members (private, protected, etc.), but has some
abstract methods. � Use interface as much as possible and only use an abstract class in the case where you want
to provide some (but not all, of course) implementation.

64. Can you instantiate an abstract class?

No we cannot instantiate an abstract class.

To declare that your class is an abstract class, use the keyword abstract before the class keyword in
your class declaration:

abstract public class Number {

 . . .

}

class Integer extends Number {

}

If you attempt to create instance for the abstract class Number, the compiler displays an error and
refuses to compile your program.

65. Can an abstract class be fi nal?

An abstract class cannot be declared as fi nal. The purpose of having an abstract class is that child
classes can extend its functionality.

STREAMS

66. What is the Object Serialization?

Serialization refers to the process of writing the contents of an object to a fi le and re-creating the
object from the fi le at a future date.

211Java

67. What is the use of ‘transient’ keyword?

On Object Serialization, if any of the object’s members need not be serialized, they should be
declared as transient.

68. Compare Byte Streams and Character Streams.

Byte Streams Character Streams

java.io.InputStream and java.io.OutputStream are

the base Byte Stream classes. These are 8-bit

streams.

java.io.Reader and java.io.Writer are the base char-

acter streams. These are 16-bit Unicode character

streams. These are available since JDK1.1.

The method names end with a suffi x InputStream or

OutputStream.

The method names end with a suffix Reader or

Writer.

They are less effi cient. They are more effi cient.

INTERFACE AND INNER CLASS

69. What are the types of variables can be there in an Interface?

An interface is like a class but with a few restrictions. � All its variables must be static fi nal, i.e., constants. � A class can inherit multiple interfaces. � All methods in an interface are implicitly declared public and abstract. � All variables in an interface must be constants. They are implicitly declared public static
fi nal.

70. What is an inner class?

Class present inside a class is called inner class. Inner classes increase the complexity of code and
should be used only if absolutely necessary. Inner classes are used to implement adapters in AWT
program.

class A{

 int a;

 public void doSomething(){

 }

 //Inner class

212 Cracking the IT Interview

 class B {

 public void doAnotherThing(){

 // can access the instance variables of the parent

 a=20;

 }

 }

}

71. What are anonymous classes?

An inner class can be declared without naming it. Here is yet another version of the now-tired
Stack class, in this case using an anonymous class for its enumerator:

public class Stack {

 private Vector items;

 ...//code for Stack’s methods and constructors not shown...

 public Enumeration enumerator() {

 return new Enumeration() {

 int currentItem = items.size() - 1;

 public Boolean hasMoreElements() {

 return (currentItem >= 0);

 }

 public Object nextElement() {

 if (!hasMoreElements())

 throw new NoSuchElementException();

 else

 return items.elementAt(currentItem—);

 }

 }

 }

}

Anonymous classes can make code diffi cult to read. You should limit their use to those classes that
are very small (no more than a method or two) and whose use is well-understood (like the AWT
event-handling adapter classes).

213Java

DATABASE SUPPORT

72. What are the various types of JDBC drivers?

The Sun Java developer Forum describes the types of JDBC drivers as follows:

JDBC technology drivers fi t into one of four categories:

Type 1 A JDBC-ODBC bridge provides JDBC API access via one or more ODBC drivers. Note that
some ODBC native code and in many cases native database client code must be loaded on each
client machine that uses this type of driver. Hence, this kind of driver is generally most appropriate
when automatic installation and downloading of a Java technology application is not important.

Type 2 A native-API partly Java technology-enabled driver converts JDBC calls into calls on the client
API for Oracle, Sybase, Informix, DB2, or other DBMS. Note that, like the bridge driver, this style
of driver requires that some binary code be loaded on each client machine.

Type 3 A net-protocol fully Java technology-enabled driver translates JDBC API calls into a DBMS-
independent net protocol, which is then translated to a DBMS protocol by a server. This net server
middleware is able to connect all of its Java technology-based clients to many different databases.
The specifi c protocol used depends on the vendor. In general, this is the most fl exible JDBC API
alternative. It is likely that all vendors of this solution will provide products suitable for Intranet
use. In order for these products to also support Internet access they must handle the additional
requirements for security, access through fi rewalls, etc., that the Web imposes. Several vendors are
adding JDBC technology-based drivers to their existing database middleware products.

Type 4 A native-protocol fully Java driver converts JDBC technology calls into the network protocol
used by DBMSs directly. This allows a direct call from the client machine to the DBMS server and is
a practical solution for Intranet access. Since many of these protocols are proprietary the database
vendors themselves will be the primary source for this style of driver. Several database vendors have
these in progress. This is the most preferred driver because it improves portability.

73. What does Class.forName () do?

The following is the defi nition given in the API reference:

 public static Class forName(String className)

 throws ClassNotFoundException

Returns the Class object associated with the class or interface with the given string name. Invoking
this method is equivalent to:

 Class.forName(className, true, currentLoader)

214 Cracking the IT Interview

where currentLoader denotes the defi ning class loader of the current class.

For example, the following code fragment returns the runtime Class descriptor for the class named
java.lang.Thread:

Class t = Class.forName(“java.lang.Thread”)

A call to forName (“X”) causes the class named X to be initialized.

Parameters

className—the fully qualifi ed name of the desired class.

Returns

The Class object for the class with the specifi ed name.

Throws

LinkageError—if the linkage fails
ExceptionInInitializerError—if the initialization provoked by this method fails
ClassNotFoundException—if the class cannot be located.

74. What is the URL used to connect using type 4 driver? What does it mean?

jdbc:oracle:thin:@machine_name:port_number:instance_name

where � machine name can be the name or the IP address of the machine on which the Database
instance is running. � port is the port on which the DB is listening, usually 1521 for oracle. � instance name is that particular Database instance you want to connect to. There can be
more than one instance on the same machine.

75. Can the resultset be used after closing the connection?

No. The resultset becomes invalid once the connection is closed.

76. Can a connection object be serialized and used from another machine?

No, a connection object cannot be serialized and used from another machine. This is because the
connection is created for the current machine IP address.

215Java

77. How do you get hold of the column names fetched in a resultset?

To retrieve information about the resultset, which is fetched, use the method con.getMetaData().
It returns a MetaData Object using which the various properties of the resultset can be fetched.

78. What does the connection pooling mean?

Connection pooling is a technique to allow multiple clients to share a cached set of connection
objects that provide access to a database resource. Various application server vendors implement
pooling in different ways.

79. What does setAutoCommit (true) do?

A transaction is one or more SQL statements that form a logical unit of work. Within a transaction,
all SQL statements must succeed or fail as one logical entity. Changes are made to the database only
if all statements in the transaction succeed and a COMMIT is issued. If one or more statements fail,
we must issue a ROLLBACK to undo the changes. This ensures the integrity and security of data in
the database.

By setting AutoCommit to false, we prevent the connection from committing the changes unless
the commit method is called in the program. We can commit or rollback in the code based on
whether all the statements within the transaction succeed.

80. Can a resultset be updated?

Yes, we can update the database values from the resultset.

81. What are the various types of statements? What are the advantages and dis-

advantages of them?

There are three types of statements, these are interfaces and every vendor has his/her own
implementation. The API ref states that

public interface Statement

The object used for executing a static SQL statement and returning the results it produces.

By default, only one ResultSet object per Statement object can be open at the same time. Therefore,
if the reading of one ResultSet object is interleaved with the reading of another, each must have
been generated by different Statement objects. All execution methods in the Statement interface
implicitly close a statement’s current ResultSet object if an open one exists.

216 Cracking the IT Interview

public interface PreparedStatement extends Statement

PreparedStatement objects represents precompiled SQL statements. A SQL statement is precompiled
and stored in a PreparedStatement object. This object can then be used to effi ciently execute this
statement multiple times.

Note: The setter methods (setShort, setString and so on) for setting IN parameter values
must specify types that are compatible with the defi ned SQL type of the input parameter. For
instance, if the IN parameter has SQL type INTEGER, then the method setInt should be used.

If arbitrary parameter type conversions are required, the method setObject should be used with
a target SQL type.

In the following example of setting a parameter, con represents an active connection:

PreparedStatement pstmt = con.prepareStatement(

“UPDATE EMPLOYEES SET SAL = ? WHERE EMPID = ?”

);

pstmt.setBigDecimal(1, 153833.00)

pstmt.setInt(2, 110592)

public interface CallableStatement extends PreparedStatement

The interface used to execute SQL stored procedures. The JDBC API provides a stored procedure
SQL escape syntax that allows stored procedures to be called in a standard way for all RDBMSs.
This escape syntax has one form that includes a result parameter and one that does not. If used, the
result parameter must be registered as an OUT parameter. The other parameters can be used for
input, output or both. Parameters are referred to sequentially, by number, with the fi rst parameter
being 1.

{?= call <procedure-name>[<arg1>,<arg2>, ...]}

 {call <procedure-name>[<arg1>,<arg2>, ...]}

IN parameter values are set using the set methods inherited from PreparedStatement. The type of
all OUT parameters must be registered prior to executing the stored procedure; their values are
retrieved after execution via the get methods provided here.

A CallableStatement can return one ResultSet object or multiple ResultSet objects. Multiple
ResultSet objects are handled using operations inherited from Statement.

For maximum portability, a call’s ResultSet objects and update counts should be processed prior to
getting the values of output parameters.

217Java

82. How to call a stored procedure from JDBC?

Given below is a sample piece of code demonstrating how we can invoke a stored procedure using
CallableStatement.

CallableStatement cstmt = con.prepareCall(

 “{call getTestData(?, ?)}”);

cstmt.registerOutParameter(1, java.sql.Types.TINYINT);

cstmt.registerOutParameter(2, java.sql.Types.DECIMAL, 3);

cstmt.executeQuery();

byte x = cstmt.getByte(1);

java.math.BigDecimal n = cstmt.getBigDecimal(2, 3);

SERVLETS

83. Why is HTTP called a stateless protocol?

HTTP is called a stateless protocol since every request is independent of the previous request. The
server does not keep track of whether the same user is making repeated requests.

84. What is the order in which the life cycle methods are called in a Servlet/

HttpServlet and which ones can be overridden? � init()—Called only once during the initialization of the Servlet. � destroy()—Called only once when Servlet instance is about to be destroyed. � service()—Do not override this method. � doGet(), doPost(), doPut(), doDelete(), doOptions, doTrace().—These
methods are called according to the type of HTTP request received. Override them to
generate your own response. � log()—Writes messages to the Servlet’s log fi les. � getLastModifi ed()—Override this method to return your Servlet’s last modifi ed
date. � getServletInfo()—Override this method to provide a String of general info about
your Servlet such author, version, copyright, etc. � getServletName()—Override this method to return name of the Servlet.

218 Cracking the IT Interview � getInitParameter(), getInitParameterNames()—First one returns value
of given initialization parameter, second one returns an Enumeration object containing
names of all initialization parameters provided.

85. What is the difference between GET and POST requests?

The HTML specifi cations technically defi ne the difference between “GET” and “POST” so that
the former means that form data is to be encoded (by a browser) into a URL while the latter means
that the form data is to appear within a message body. We might say that “GET” is basically for
just getting (retrieving) data whereas “POST” may involve anything, like storing or updating data,
ordering a product or sending E-mail.

86. What is the difference between ServletContext and HttpSession?

The interface ServletContext defi nes a set of methods that a servlet uses to communicate with its
servlet container, for example, to get the MIME type of a fi le, dispatch requests or write to a log
fi le.

There is one context per “web application” per Java Virtual Machine the context can be used as a
location to share global information.

The interface HttpSession provides a way to identify a user across more than one page request or
visit to a Web site and to store information about that user.

The servlet container uses this interface to create a session between an HTTP client and an HTTP
server. The session persists for a specifi ed time period, across more than one connection or page
request from the user. This time period can be set either in a property fi le or in the code. A session
usually corresponds to one user, who may click on various links, thus hitting the website multiple
times. The server can maintain a session in many ways, such as using cookies or rewriting URLs.

This interface allows servlets to � view and manipulate information about a session, such as the session identifi er, creation
time and last accessed time. � bind objects to sessions, allowing user information to persist across multiple user
connections.

87. What is the difference between forward() and sendRedirect() methods?

Forward

It fi nds the Servlet on the local server, and calls its service (request, response) method, passing the
same request and response that was used by the current page.

219Java

The parameters stored in the request object are available to the called request, when we forward a
request. The users will not see a change in the url in their address bar.

Redirect

It sends a response to the client with a meta-refresh that makes the client send a new request to the
page specifi ed. We can also make requests to pages other than those on the local server as well. The
parameters stored in the request object are lost when we redirect. The url in the address bar will
change. The objects shared in session and application scope are available only if the new page is
within the some context. They will not be available if it is in a different context.

88. Are variables declared at the class level in a servlet thread safe?

There is only one copy of the instance variables per instance of the servlet and all of the threads
share this copy. In the case of the multithreaded model, multiple threads may access an instance
variable simultaneously, which makes it unsafe. In the case of the single-threaded model, only one
thread executes the methods of a servlet instance at a time. Therefore, an instance variable is thread-
safe for the single-threaded model.

By wrapping non-thread-safe code in a synchronized code block, you force the requesting thread to
acquire the instance lock in order to gain access to the code block.

Example

synchronized (this) {

count++;

}

89. How many instances of a servlet are created?

Only one instance of a servlet gets created. This instance is accessed by all the requests hitting the
server.

90. How do you make a servlet Single threaded and how many instances are

created?

A Servlet can be made thread safe by implementing SingleThreadModel interface. The
number of instances created depends on what Servlet container decides to do. It may just create one
instance, it might create more.

220 Cracking the IT Interview

91. What is the argument of init() method? What does Interface ServletConfi g

contain?

An object of type ServletConfi g is passed. ServletConfi g is an interface.

A servlet confi guration object is used by a servlet container to pass information to a servlet during
initialization. Some of the methods available are as follows:

getServletName()

getServletContext() etc.

92. What are the exceptions thrown by service method?

The Exceptions thrown are ServletException and IOException.

ServletException is thrown to report any problems encountered in the servlet engine
trying to service the HTTP request, whereas an IOException can be thrown when using the
PrintWriter object to stream web resources back to the client browser.

93. What happens if the service method in HttpServlet is overridden?

If we override the service method in an HttpServlet, we have to take care of calling the default
service method. In some cases, it does make sense to override the service() method. For example,
when you have a lot of Servlets that need to perform the same checks (for example, is the session
authenticated) before processing the request. Rather than having to copy the logic into each Servlet
you write, you can develop a common base class that extends HttpServlet. The logic inside the
service method is effectively:

service(...) {

 common processing logic....

 super.service(...);

}

Another option is to write the logic in a helper method and call it at the beginning of both the doGet
and doPost methods.

221Java

94. How do you keep track of the sessions created in a servlet container?

The session can be tracked using the following two objects:

HttpSessionListener

Implementations of this interface are notifi ed of changes to the list of active sessions in a web
application. To receive notifi cation events, the implementation class must be confi gured in the
deployment descriptor for the web application.

HttpSessionEvent

This is the class representing event notifi cations for changes to sessions within a web application.

95. What are the methods available in HttpSessionListener?

sessionCreated and sessionDestroyed are the two methods available. An HttpSessionEvent object is
passed to these methods by the container when a new session is created or when an existing session
is destroyed.

96. How does an object know when it is put in session?

HttpSessionBindingListener

This causes an object to be notifi ed when it is bound to or unbound from a session. The object is
notifi ed by an HttpSessionBindingEvent object. � The method valueBound(HttpSessionBindingEvent event) Notifi es the object that it is

being bound to a session and identifi es the session. � The method valueUnbound(HttpSessionBindingEvent event) Notifi es the object that it is
being unbound from a session and identifi es the session.

HttpSessionBindingEvent

It has methods like getName, which Returns the name with which the object is bound to or unbound
from the session.getSession, which Returns the session to or from which the object is bound or
unbound.

97. How do you set the session time out for a session? How do you make it infi -

nite?

The method setMaxInactiveInterval in HttpSession can be used to set the timeout

public void setMaxInactiveInterval(int interval)

222 Cracking the IT Interview

interval, specifi es the time, in seconds, between client requests before the servlet container will
invalidate this session. A negative time indicates the session should never timeout.

This can also be set in the confi guration fi les of the application server.

The value set in the code takes precedence over what is specifi ed in the confi g fi le.

98. How do you do session management?

Since HTTP is a stateless protocol, we use a variety of methods to maintain information of the
history of actions performed during a session. There are four ways in which we can do session
management. � Cookies � URL Rewriting � Hidden Fields � HttpSession

Cookies

A cookie is a piece of information stored on the client machine by the browser. Cookies are widely
used by various server-side programming techniques for the purpose of implementing session
tracking. The cookie is a text fi le, which is stored on the client machine. These cookies are sent to the
server whenever a user makes a request to the same server from which the cookies were created. The
Java API provides us various classes and methods designed to allow us to use cookies in servlets.

The constructor sets the name and value of a cookie when the Cookie object is instantiated. The
setValue() method can be used to assign a new value to the cookie after it is instantiated.

The various places where a cookie can be used are as follows: � Storing user preferences � Shopping cart applications, etc.

A cookie has a name, a single value, and optional attributes, such as a comment, path and domain
qualifi ers, a maximum age, and a version number. Some Web browsers have bugs in how they handle
the optional attributes, so use them sparingly to improve the interoperability of your servlets.

The servlet sends cookies to the browser by using the HttpServletResponse.

addCookie(javax.servlet.http.Cookie) method, which adds fi elds to HTTP response
headers to send cookies to the browser, one at a time. The browser is expected to support 20 cookies
for each Web server, 300 cookies total, and may limit cookie size to 4 KB each.

223Java

URL rewriting

In this method, the data is appended to the URL over successive requests. In addition to the current
data, the values of the previous data with which the user invoked the servlet are retrieved from
the incoming URL and appended to the new URL. In other words, the parameter values for each
successive URL that is generated match those of the previous URL. In addition, new parameter
values are added, which represent the current data.

Hidden Fields

In html, we have a type of fi eld called HIDDEN. This type of fi eld is not visible on the browser but
gets passed to the application server. Every time the client makes a request to the server, a HTML
form is created and sent back to the client. Hidden fi elds are added to the form each time it is
created. The hidden fi elds contain the data from the previous request that would be required by the
future requests. Using this approach, the historical data is saved by embedding it in the new HTML
form that is returned to the client. Thus, the historical data need not be saved in a database or in
the server’s fi le system. This method is not recommended. But its advantages are that, it places no
special requirements on the server software and is compatible with all browsers that support HTML
forms.

This approach has been used by CGI programmers (i.e., Pro*C, Pro Cobol, etc.) is reliable, and is
easy to implement.

HttpSession

The HttpSession object is created and maintained by the application server. We can get hold of the
session object using request.getSession(true). Where request is of type HttpServletRequest. Once we
have a handle on this object we can store data in this object and this is shared between the various
requests coming from the same user in one session ie from one browser window. Sessions are used
to maintain state and user identity across multiple page requests. The session persists for a specifi ed
time period. This can be set using setMaxInactiveInterval(int interval). The manner in which the
session is maintained varies from one server to the other. The Java documentation states:

“A session can be maintained either by using cookies or by URL rewriting.” We can add and retrieve
object from a session using the following methods:

void setAttribute(java.lang.String name,java.lang.Objectvalue) ;

java.lang.Object getAttribute(java.lang.String name) ;

224 Cracking the IT Interview

EJB

99. Illustrate State Diagrams/Lifecycle of Entity, Session Beans.

Stateless Session Beans

Doesn't Exist

Container Initiated

Container Initiated

ejbRemove()

Client Initiated

Method-Ready Pool

Class.newInstance()

setSessionContext()

ejbCreate()

Life Cycle State Diagram of the Entity Bean

Doesn't Exit

Pooled

Ready

Business Method

ejbStore()

ejbLoad()

Create()

ejbRemove(

remove(

ejbPassivate
ejbAvtivate()ejbCreate()

ejbPostCreate()

ClassnewInstance()

setSessionContext()

unsetSessionContext()

object.finalize()

225Java

Stateful Session Beans

EJB 1.1 stateful session bean life cycle

Doesn't Exit

Timeout

ejbRemove()

Create()

Timeout

ejbPassivate()

ejbActivate()

Passive
Method

Ready

Business method

ClassnewInstance()

setSessionContext()

ejbCreate()

EJB1.0 life cycle state diagram of the stateful session bean life cycle

Rolback

Doesn't Exit

Timeout

ejbRemove()

Create()

Timeout

ejbPassivate()

ejbActivate()

PassiveMethod

Ready

Business method

ClassnewInstance()

setSessionContext()

ejbCreate()

 Method

 Ready

 In

Transaction
Non Tran

afterBegin()

afterCompletion(false)

afterCompletion(true)

beforeCompletion

Commit

TransactionalBusiness method

226 Cracking the IT Interview

EJB 1.1 life cycle of a stateful session bean with session synchronization interface

Rolback

Doesn't Exit

Timeout

ejbRemove()

Create()

Timeout

ejbPassivate()

ejbActivate()

PassiveMethod

Ready

Business method

ClassnewInstance()

setSessionContext()

ejbCreate()

 Method

 Ready

 In

Transaction
Non Tran

afterBegin()

afterCompletion(false)

afterCompletion(true)

beforeCompletion

Commit

TransactionalBusiness method

EJB 1.0 life cycle of the stateful session bean with session synchronization interface

Rolback

Doesn't Exit

ejbRemove()

Create()

ejbPassivate(

ejbActivate(

PassiveMethod

Ready

 Method

 Ready

 In

Transaction
afterBegin()

afterCompletion(false)

afterCompletion(true)

beforeCompletion

Commit

TransactionalBusiness method

Class.newInstance()

setSessionContext()

ejbCreate()

Business methodNon Tran

227Java

100. What are isolation levels? Mention the various levels of isolation.

Isolation level can be defi ned as:

The degree to which operations on data by a certain transaction are affected by concurrent
transactions, i.e., the other transactions running at the same time. Also, the degree to which
operations on data by a transaction can affect data in concurrent transactions.

The various levels of Isolation are as follows:

Dirty

A dirty read will occur when the fi rst transaction reads uncommitted changes made by a second
transaction. If the second transaction is rolled back, the data read by the fi rst transaction would be
invalid because the rollback reverses the changes. The fi rst transaction will not be aware that the
data it has read has become invalid.

Transaction Attribute EJB 1.1 Text Value EJB 1.0 Constant

Not Supported NotSupported TX_NOT_SUPPORTED

Supports Supports TX_SUPPORTS

Required Required TX_REQUIRED

Requires New RequiresNew TX_REQUIRES_NEW

 Mandatory Mandatory TX_MANDATORY

Never (1.1) Never

Bean Managed (1.0) TX_BEAN_MANAGED

Repeatable

A repeatable read occurs when the data read is guaranteed to look the same if read again during
the same transaction. Repeatable reads can be guaranteed in one of two ways: either the data read
is locked against changes or the data read is a snapshot that does not refl ect changes. If the data is
locked, then it cannot be changed by any other transaction until the current transaction ends. If the
data is a snapshot, then other transactions can change the data, but these changes will not be seen
by this transaction if the read is repeated.

Phantom Reads

Phantom reads occur when new records inserted into the database are detectable by transactions
that started prior to the insert. Queries will include records added by other transactions after their
transaction has started.

228 Cracking the IT Interview

101. What are Heuristic decisions?

Transactions are usually controlled by a transaction manager across multiple databases and servers.
This transaction manager uses a protocol called two-phase commit (2-PC) to manage transactions.
2-PC is a protocol for managing transactions that commit updates in two stages. The transaction
manager controls the transaction, based on the results of a poll against the resources (databases and
other servers), it decides whether all the updates should be committed or rolled back. A Heuristic
decision is when one of the resources makes a decision to commit or roll back by itself, without
permission from the transaction manager. Once a Heuristic decision has been made, the atomicity
of the transaction is lost and possible data integrity errors can occur.

102. What are the various transaction types will be there in EJB?

The following table summarizes the various transaction attributes:

Not Supported

This attribute means that when a method on a bean with this transaction attribute is called, the
transaction gets suspended until the method is completed. This means that the transaction scope is
not propagated to the Not Supportedbean or any of the method calls it makes. Once the method in
the Not Supported bean is done, the original transaction resumes its execution.

Supports

Invoking a bean with this attribute will include it in the current transaction scope, i.e., if the bean or
client that invokes the Supportsbean is part of a transaction scope, the Supports bean and all beans
accessed by that bean become part of the original transaction. However, the Supports bean does not
have to be part of a transaction and can interact with clients and beans that are not included in a
transaction scope.

Required

When a bean’s transaction attribute is set as required, it means that the bean method must be
invoked within the scope of a transaction. If the calling client or bean is part of a transaction, the
Requiredbean is automatically included in its original transaction scope. However, if the calling
client or bean is not involved in a transaction, the Required bean starts its own new transaction. The
new transaction’s scope covers only the Required bean and all beans accessed by that bean. Once the
method invoked on the Required bean is done, the new transaction’s scope ends.

229Java

Requires New

When a bean’s transaction attribute is set as Requires New, it means that a new transaction is always
started. Regardless of whether the calling client or bean is part of a transaction, a method with
the Requires New attribute begins a new transaction when invoked. If the calling client is already
involved in a transaction, that transaction is suspended until the Requires New bean’s method call
returns. The new transaction’s scope only covers the Requires New bean and all the beans accessed
by that bean. Once the method invoked on the Requires New bean is done, the new transaction’s
scope ends and the original transaction resumes.

Mandatory

When a bean’s transaction attribute is set to Mandatory, it means that the bean method must always
be made part of the transaction scope of the calling client. If the calling client or bean is not part of
a transaction, the invocation will fail, throwing a javax.transaction.TransactionRequiredException.

Never (EJB 1.1 only)

When a bean’s transaction attribute is set to never it, means that the bean method must never be
invoked within the scope of a transaction. If the calling client or bean is part of a transaction, the
Never bean will throw a RemoteException. If, however, the calling client or bean is not involved in
a transaction, the Never bean will execute normally without a transaction.

Bean Managed (EJB 1.0 only)

When a bean’s transaction attribute set to Bean Managed it, means that the bean or method does
not have its transactional context implicitly managed by the EJB server. Instead, the developer can
use the Java Transaction API (JTA) to explicitly manage transactions.

103. What is meant by Re-entrant?

The re-entrant element in deployment descriptor of on EJB declares that the bean either allows
loopbacks (re-entrant invocations) or not. This element can have one of two values: True or False.
True means that the bean allows loopbacks; False means that the bean throws an exception if a
loopback occurs. Beans are non re-entrant by default.

When a bean is declared as re-entrant then it means that a method that is downstream in the
sequence of method calls will call back the bean. This is not advisable.

104. How do you commit transactions over multiple databases?

A protocol called 2 phase commit is used. This will commit the transaction only after updates have
gone through on all the different database instances.

230 Cracking the IT Interview

JSP

105. How is a JSP processed?

A JSP is converted into a Servlet by the application server and then the request is serviced. Once
compiled, the Servlet object created from the JSP remains in memory just like any other Servlet.
When a change is made to the JSP then the servlet object get re-created. This could vary depending
on the server.

106. What is an ‘include’? Mention the types of ‘includes’.

We can use the <jsp:include> element to include either a static or dynamic resource in a JSP
page. If the resource is static, its content is included in the calling JSP page as it is. If the resource
is dynamic, it acts on a request and sends back a result that is included in the JSP page. When the
include action is fi nished, the JSP container continues processing the remainder of the JSP page.

If the included resource is dynamic, we can use a <jsp:param> clause to pass the name and value
of a parameter to the resource. As an example, we can pass the string userId and a value to a login
form that is coded in a JSP page.

107. How do you use Tag Libraries in a JSP?

A tag library is a set of actions that encapsulate functionality. These tags are then used within JSP
pages. This helps us to reuse common functionality like connecting to a database.

<%@ taglib prefi x=”sql” uri=”http://java.sun.com/jstl/sql” %>

For JSP pages that do not have a default database, <sql:setDataSource> can prepare a database for
use.

The code below shows how to create a data source.

<sql:setDataSource

 var=”example”

 driver=”oracle.jdbc.driver.OracleDriver”

url=”jdbc:oracle:thin:@<OracleServerName>:1521:<OracleInsta

nceName>”

 user=”scott”

 password=”tiger”

/>

231Java

108. How is exception handling done in JSP?

You can specify error page in the ‘page’ directive. Then if any exception is thrown, the control will
be transferred to that error page where you can display a useful message to the user about what
happened and also inform your sysadmin about this exception depending, obviously, on how
important it may be.

<%@ page errorPage=”ExceptionHandler.jsp” %>

<%@ page isErrorPage=”true” import=”java.io.*” %>

109. What are the implicit objects in JSP?

There are nine implicit objects that are available in a JSP: � Application is the broadest context state available. It is equivalent to ServletContext. It
allows the JSP page’s servlet and any Web components contained in the same application to
share information. � Confi g allows initialization data to be passed to a JSP page’s servlet. This is equivalent to
ServletConfi g object passed to init method in Servlet. � Exception houses exception data to be accessed only by designated JSP “error pages”. � Out provides access to the servlet’s output stream. � Page is the instance of the JSP page’s servlet processing the current request. Not typically
used by JSP page authors. � PageContext is the context for the JSP page itself. It provides a single API to manage the
various scoped attributes. This API is used extensively when implementing JSP custom tag
handlers. � Request provides access to HTTP request data, as well as providing a context for
associating request-specifi c data. � Response enables direct access to the HTTPServletResponse object and is rarely used by
JSP authors. � Session is perhaps the most commonly used of the state management contexts. This is
useful in staring a user’s information when he accesses the web application over several
requests.

110. How do you prevent caching of the page?

You can use Microsoft Internet Information Server (IIS) to easily mark highly volatile or sensitive
pages using the following script at the extreme beginning of the specifi c Active Server Pages (ASP)
pages:

232 Cracking the IT Interview

<% Response.CacheControl = “no-cache” %>

<% Response.AddHeader “Pragma”, “no-cache” %>

<% Response.Expires = -1 %>

111. What are the various ‘scopes’ in a JSP?

The various scopes in a JSP are as follows: � PageScope � RequestScope � SessionScope � ApplicationScope

PROBLEMS AND SOLUTIONS

112. Will this compile?

import java.util.*;

import java.sql.*;

class Test {

 Date d = new Date (2005, 01. 01);

 System.out.println(d.toString());

}

Answer

No. Since both until and Date packages has Date class, Compiler does not know which class to use.

113. Will this code compile?

for (int i=0,int j=0;i<10;i++){}

Answer

No. The above code will throw a compile time exception. We cannot declare more than one variable
in a ‘for’ loop. It is possible to initialize more than one variable but we can declare only one variable.
The right statement is

for (int i=0, j=0;i<10;i++){}

233Java

114. Will this compile?

class Test {

 public static void main(String a[]) {

 boolean i = 1;

 System.out.println(i);

 }

}

Answer

No. Since Boolean data type value must only be true or false.

115. What will be printed if this code is run with the following command line?

java myprog good morning

public class myprog{

 public static void main(String argv[])

 {

 System.out.println(argv[2]);

 }

}

 1. myprog

 2. good

 3. morning

 4. exception raised:java.lang.ArrayIndexOutOfBoundsException:2

Answer

 4. Exception raised:java.lang.ArrayIndexOutOfBoundsException: 2

Unlike C/C++, Java does not start the parameter count with the program name. It does, however,
start from zero. So in this case zero starts with good, morning would be 1 and there is no parameter
2; so an exception is raised.

116. Which of the following statements is true?

 1. Methods cannot be overridden to be more private.

 2. Static methods cannot be overloaded.

234 Cracking the IT Interview

 3. Private methods cannot be overloaded.

 4. An overloaded method cannot throw exceptions not checked in the base class.

Answer

 1. Methods cannot be overridden to be more private.

Static methods cannot be overridden but they can be overloaded. There is no logic or reason why
private methods should not be overloaded. Option 4 is a jumbled up version of the limitations of
exceptions for overridden methods.

117. What will happen if the following code is compiled and executed?

class Base {}

class Sub extends Base {}

class Sub2 extends Base {}

public class CEx{

 public static void main(String argv[]){

 Base b=new Base();

 Sub s=(Sub) b;

 }

}

 1. Compile and run without error

 2. Compile time Exception

 3. Runtime Exception

Answer

 3. Runtime Exception

Without the cast to sub you would get a compile time error. The cast tells the compiler that you
really mean to do this and the actual type of b does not get resolved until runtime. Casting down
the object hierarchy is a problem, as the compiler cannot be sure what has been implemented in
descendent classes. Casting up is not a problem because sub classes will have the features of the base
classes.

118. Which of the following methods can be legally inserted in place of the

comment //Method here?

Class Base{

235Java

 public void amethod(int i) { }

}

public class Scope extends Base{

 public static void main(String argv[]){

 }

 //Method Here

}

 1. void amethod(int i) throws Exception {}

 2. void amethod(long i)throws Exception {}

 3. void amethod(long i){}

 4. public void amethod(int i) throws Exception {}

Answer

2,3

Options 1 and 4 will not compile as they attempt to throw Exceptions not declared in the base class.
Because options 2 and 3 take a parameter of type long they represent overloading not overriding
and there are no such limitations on overloaded methods.

119. What modifi ers would be legal at XX in the below code?

public class MyClass1 {

public static void main(String argv[]){ }

/*Modifi er at XX */ class MyInner {}

}

 1. public

 2. private

 3. static

 4. friend

Answer

1,2,3

public, private, static are all legal access modifi ers for this inner class.

236 Cracking the IT Interview

120. You need to create a class that will store unique object elements. You do not

need to sort these elements but they must be unique. What interface might

be most suitable to meet this need?

 1. Set

 2. List

 3. Map

 4. Vector

Answer

 1. Set

The Set interface ensures that its elements are unique, but does not order the elements. In reality,
you probably would not create your own class using the Set interface. You would be more likely to
use one of the JDK classes than use the Set interface, such as HashSet or TreeSet.

THINKER’S CHOICE

121. What is the difference between AWT and Swing components?

122. What is the component and container?

123. What is the difference between panel and frame class?

124. What is the Model View Control architecture? Explain it with JTable as an

example.

125. Mention the usage of Flow, Border, Grid, Card and GridBag-Layout.

126. What is the difference between Java 1.0 and Java 1.2 event model?

127. Which one is right to use: Observer/Observable or Event Delegation

Model?

128. Why wrapper classes are required for primitive data types?

129. What is meant by Abstract Interface?

237Java

130. What is the RMI?

131. Explain object serialization mechanism.

132. In Socket programming, when to use ServerSocket or DatagramSocket?

133. How can you get the IP address of a machine from its hostname?

134. How do you perform a hostname lookup for an IP address?

135. How can you fi nd out the current IP address for my machine?

136. Why cannot an applet connect via sockets, or bind to a local port?

137. Why does C/C++ give better run-time performance than Java?

138. What is a null interface?

139. What is the class loader?

140. Mention some feature incorporated in current Java SDK.

141. How do you do applet-servlet communication?

REFERENCES

 1. Bruce Eckel, Thinking in Java, 4th Edition, Prentice Hall (2006).

 2. Cay S. Horstmann, Core Java: Advanced Features, Sun Microsystems Press (2005).

 3. Hans Bergsten, Java Server Pages, 3rd Edition, O’Reilly Publication.

 4. Herbert Schildt, The Complete Reference—Java, 7th Edition, Tata McGraw-Hill.

 5. Jason Hunter, Java Servlet Programming, 2nd Edition, O’Reily Publication.

Database

INTRODUCTION

Any enterprise software application invariably has a Database. Understanding the data storage

mechanism is very essential for a software professional. This chapter provides interview

questions and answers on database management system.

DBMS CONCEPT

1. What is an RDBMS?

MSDN documentation states, “RDBMS stands for Relational Database Management System.

Basically, it is a way to store the information in a database, creating relationships among different,

related data in order to enable the user to query many different factors and receive the widest range

of data from a single query. Simply put, it is a system that organizes data into related rows and

columns”.

2. What is SQL?

SQL stands for Structured Query Language. SQL � allows access to a database � can insert/update/delete records in a database � can retrieve data from a database

3. What are the different kinds of database management systems (DBMS)?

DBMS consists following kinds of databases: � Hierarchical � Network

7

239Database � Relational � Object � Object-Relational

In all this, Relational is the most widely used database.

4. What are the feature of a relational database?

The relational model makes no presumptions about the interrelationships between data elements.

Relationships are represented by one table, containing key data extracted from another table.

Relations are dynamic and determined as needed.

In a relational database, everything is stored in TABLES. Tables contain columns and rows. In

formal relational theory, tables are known as relations; hence, these came to be known as relational

databases. Creation of these tables and their columns is done using SQL. Similarly storage and

retrieval of data is also done using SQL.

5. What are data types?

When a column on a table is being created, we need to say what type of data is to be stored in it.

Such column type defi nitions are known as data types. Common data types that can be stored and

manipulated are NUMBER, CHAR or DATE. But many RDBMS also provide the ability to store

newer types, such as TEXT and IMAGE.

6. What is an Entity-Relationship (E-R) diagram?

One of the best methods in designing the database is to draw an image of the tables with the

relationship between them. This graphical representation of database tables is called an Entity-

Relationship or an E-R diagram.

7. What is referential integrity?

Referential Integrity prevents users or applications from entering inconsistent data into a table.

Referential integrity rules are applied when a relationship is created between two tables. Different

RDBMSs have different referential integrity rules. These rules help in maintaining the integrity of

the data.

For example, if we are dealing with ‘order’ table and multiple items contained in an order, it is

possible for us to set referential integrity rule in such a way that all items.

240 Cracking the IT Interview

8. What is a primary key?

Primary key is used to uniquely identify a row of data in a table. This can be a single column of a

table or a combination of more than one column, in which case it is known as composite key.

9. What is a foreign key?

A key column in a table that identifi es records in a different table is called a foreign key.

For example, we have an ‘order’ table and an ‘item’ table. In the item table, let us say that our

primary key is the combination of ‘order_id’ and ‘item_number’. In this case, the ‘order_id’, which

is the primary key of the ‘order’ table is a foreign key in the ‘item’ table.

10. What is an alternate key in a table?

In a database table, apart from primary key column(s), other column, may need to be a key. These

are known as alternate key. This column value may or may not be unique.

For example, if we have a student table, the table contains columns student_num, fi rst_name, last_

name, etc. We have assigned each student_num as the primary key. The student’s last name would

be an alternate key.

11. What is normalization?

Normalization is the process of effi ciently organizing data in a database. This includes creating tables

and establishing relationships between those tables according to normalization rules designed to

make the database more fl exible by eliminating two factors: redundancy and inconsistent

dependency.

Redundant data wastes disk space and creates maintenance problems. If data that exists in more

than one place must be changed, the data must be changed in exactly the same way in all locations.

For example, a customer address change is much easier to implement if that data is stored only in

the Customer’s table and nowhere else in the database.

Inconsistent dependencies can make data diffi cult to access; the path to fi nd the data may be missing

or broken. While, it is intuitive to look in the Customer’s table for the address of a particular

customer, it may not make sense to look there for the salary of the employee who calls on that

customer. The employee’s salary is related to, or dependent on, the employee and thus should be

moved to the Employees’ table.

241Database

There are a few rules for database normalization. Each rule is called a normal form. If the fi rst rule

is observed, the database is said to be in “fi rst normal form.” If the fi rst three rules are observed,

the database is considered to be in “third normal form.” Although other levels of normalization are

possible, third normal form is considered the highest level necessary for most applications.

12. Explain the First Normal Form.

First Normal Form states � eliminate duplicative columns from the same table. � create a separate table for each set of related data and identify each set of related data with a

primary key.

Do not use multiple fi elds in a single table to store similar data. For example, to track an inventory

item that may come from two possible sources, an inventory record may contain fi elds for Supplier

Code 1 and Supplier Code 2.

But what happens when you add a third Supplier? Adding a fi eld is not the answer; it requires

program and table schema modifi cations and does not smoothly accommodate a dynamic number

of vendors. Instead, place all supplier information in a separate table called SupplierDetails, then

link inventory to Supplier with an item number key, or supplier to inventory with a supplier id

key.

13. Explain the Second Normal Form.

Second Normal Form states � create separate tables for sets of values that apply to multiple records. � create relationships between these new tables and their predecessors through the use of

foreign keys.

Records should not depend on anything other than a table’s primary key. For example, consider

a customer’s address in an accounting system. The address is needed by the Customer’s table, but

also by the other tables like Orders, Invoices and Accounts tables. Instead of storing the customer’s

address as a separate entry in each of these tables, store it in one place, either in the Customer’s table

or in a separate Addresse’s table.

14. Explain the Third Normal Form.

Third Normal Form states � eliminate fi elds that do not depend on the primary key.

242 Cracking the IT Interview � values in a record that are not part of that record’s key do not belong in the table. In general,

any time the contents of a group of fi elds may apply to more than a single record in the

table, consider placing those fi elds in a separate table.

For example, in an Employee Recruitment table, a candidate’s university name and address may be

included. But you need a complete list of universities for group mailings. If university information

is stored in the Candidates’ table, there is no way to list universities with no current candidates.

Create a separate Universities’ table and link it to the Candidates’ table with a university code key.

15. Considering the given unnormalized table, try to normalize it to various nor-

malized forms.

Unnormalized table

Student No Advisor Adv-Room Class 1 Class 2

1 Rajesh 123 10–12 13–12

2 Manish 342 98–11 34–01

First Normal Form: Eliminating duplicate column(s)

Since one student has several classes, these classes should be listed in a separate table. Fields Class1,

Class2, & Class3 in the above record are indications of design trouble.

Another way to look at this problem: with a one-to-many relationship, do not put the one side and

the many side in the same table. Instead, create another table in fi rst normal form by eliminating

the repeating columns (Class#), as shown below:

Student No Advisor Adv-Room Class No

1 Rajesh 123 10–12

1 Rajesh 123 13–12

2 Manish 342 98–11

2 Manish 342 34–01

Second Normal Form: Eliminating Redundant Data

Note there is multiple Class number values for each Student number value in the above table. Class

number is not functionally dependent on Student number (primary key), so this relationship is not

in second normal form.

243Database

The following two tables demonstrate second normal form:

Student:

Number Advisor Adv-Room

1 Rajesh 123

2 Manish 342

Registration:

Student Number Class Number

1 10–12

1 13–12

2 98–11

2 34–01

Third Normal Form: Eliminate Data Not Dependent On the Key

In the last example, Adv-Room (the advisor’s offi ce number) is functionally dependent on the

Advisor attribute. However, it is not dependent on Student Number. The solution is to move that

attribute from the Students table to the Faculty table, as shown below:

Student:

Student Number Adv Name

1 Rajesh

2 Manish

Registration:

Student Number Class Number

1 10–12

1 13–12

2 98–11

2 34–01

Faculty:

Adv Name Adv Room

Rajesh 123

Manish 342

244 Cracking the IT Interview

16. What is an index, and how is it used to improve performance?

Index is an ordering of the records in a database according to the values in a particular fi eld or

fi elds. Indexes are used to gain fast access to specifi c (more frequently required) information in

a database table. For example, the name column of the employee table. If we were looking for a

specifi c employee by his/her name, the index would help us to get that information faster than if we

had to search all the rows in the table.

The index provides pointers to the data values stored in specifi ed columns of the table, and then

orders those pointers according to the sort order we specify. The database uses the index much as

we use an index in a book—it searches the index to fi nd a particular value and then follows the

pointer to the row containing that value.

As a general rule, the index should be created on a table only if the data in the indexed columns

will be queried frequently. Indexes take up disk space and slow the adding, deleting and updating

of rows.

Columns should generally be indexed when � the column is a primary or foreign key � the column is sorted � joins will be used on the column � user’s will search for values in that column

17. What are the types of indexes, and if separate indexes are created on each

column of a table, what are the advantages and disadvantages of this

approach?

Indexes are of two types: � Clustered indexes � Non-clustered indexes

When you create a clustered index on a table, all the rows in the table are stored in the order of

the clustered index key. So, there can be only one clustered index per table. Non-clustered indexes

have their own storage separate from the table data storage. Non-clustered indexes are stored as

B-tree structures (so do clustered indexes), with the leaf level nodes having the index key and its

row locater. The row located could be the Row ID or the Clustered index key, depending upon the

absence or presence of clustered index on the table.

If you create an index on each column of a table, it improves the query performance, as the query

optimizer can choose from all the existing indexes to come up with an effi cient execution plan. At the

same time, data modifi cation operations (such as INSERT, UPDATE, DELETE) will become slow,

245Database

as every time data changes in the table, all the indexes need to be updated. Another disadvantage is

that, indexes need disk space, the more indexes you have, more disk space is used.

18. What is SQL Data Manipulation Language (DML)?

SQL (Structured Query Language) is syntax for executing queries and updating, inserting and

deleting records.

These query and update commands together form the Data Manipulation Language (DML) part

of SQL: � SELECT—extracts data from a database table � UPDATE—updates data in a database table � DELETE—deletes data from a database table � INSERT INTO—inserts new data into a database table

19. What is SQL Data Defi nition Language (DDL)?

The Data Defi nition Language (DDL) part of SQL provides syntax for creating or deleting database

tables. We can also defi ne indexes (keys), specify links between tables and impose constraints

between database tables. � CREATE TABLE—creates a new database table � ALTER TABLE—alters (changes) a database table � DROP TABLE—deletes a database table � CREATE INDEX—creates an index (search key) � DROP INDEX—deletes an index

20. What is de-normalization?

De-normalization is the reverse process of normalization. It is the controlled introduction of

redundancy in to the database design. It helps to improve the query performance as the number of

joins could be reduced. This is used in data ware housing /OLAP systems.

21. What is a transaction and ACID properties?

The term ACID stands for Atomic, Consistent, Isolated and Durable. These properties ensure

predictable behavior, reinforcing the role of transactions as all-or-none propositions designed to

reduce the management load when there are many variables.

Atomic: A transaction is a unit of work in which a series of operations occur between the BEGIN

TRANSACTION and END TRANSACTION statements of an application. A transaction executes

exactly once and is atomic—either all of the work is done or none of it.

246 Cracking the IT Interview

Consistent: States that only valid data will be written to the database. If, for some reason, a transaction

is executed that violates the database’s consistency rules, the entire transaction will be rolled back

and the database will be restored to a state consistent with those rules

Isolated: A transaction is a unit of isolation that allows multiple transactions to occur at the same

time without impacting each other’s execution. Isolation requires that each transaction appear to

be the only transaction manipulating the data store even.

Durable: A transaction is also a unit of recovery. If a transaction commits, the system guarantees

that its updates will persist even if the computer crashes immediately after the commit. Durability

is ensured through the use of database backups and transaction logs that facilitate the restoration of

committed transactions in spite of any subsequent software or hardware failures.

22. What is the difference between DELETE TABLE and TRUNCATE TABLE

command?

DELETE TABLE is a logged operation, so the deletion of each row gets logged in the transaction

log, which makes it slow. TRUNCATE TABLE also deletes all the rows in a table, but it will not log

the deletion of each row, instead it logs the de-allocation of the data pages of the table, which makes

it faster.

23. What are constraints? What are the different types of constraints?

Constraints enable the database system to enforce the integrity of the database automatically,

without needing to create triggers, rule or defaults.

Types of constraints: NOT NULL, CHECK, UNIQUE, PRIMARY KEY, FOREIGN KEY

For example, NOT NULL constraint on a column prevents the value of it be as NULL.

24. What are cursors? What are the different types of cursors?

A cursor is like a virtual table, with rows and columns specifi ed by the query. A cursor also has a

notion of a current row, which is essentially a pointer to a row in the virtual table.

Types of cursors: Static, Dynamic, Forward-only, Keyset-driven.

25. What are the disadvantages of cursors? How can avoid cursors?

Each time you fetch a row from the cursor, it results in a network roundtrip, whereas a normal

SELECT query makes only one roundtrip, however large the result-set is. Cursors are also costly

because they require more resources and temporary storage (results in more IO operations). Further,

there are restrictions on the SELECT statements that can be used with some types of cursors.

247Database

Most of the times, set based operations can be used instead of cursors. Here is an example.

You have to give a fl at hike to your employees using the following criteria:

Salary between 30,000 and 40,000—5000 hike

Salary between 40,000 and 55,000—7000 hike

Salary between 55,000 and 65,000—9000 hike

In this situation, many developers tend to use a cursor, determine each employee’s salary and

update his salary according to the above formula. But the same can be achieved by multiple update

statements or can be combined in a single UPDATE statement as shown below:

UPDATE tbl_emp SET salary =

CASE WHEN salary BETWEEN 30,000 AND 40,000 THEN salary + 5000

WHEN salary BETWEEN 40,000 AND 55,000 THEN salary + 7000

WHEN salary BETWEEN 55,000 AND 65,000 THEN salary + 10,000

END

Another situation in which developers tend to use cursors is as follows:

You need to call a stored procedure when a column in a particular row meets certain conditions.

You do not have to use cursors for this. This can be achieved using WHILE loop, as long as there is

a unique key to identify each row.

26. What is a join and explain different types of joins.

Joins are used in queries to explain how different tables are related. Joins also let you select data from

a table depending upon data from another table.

Types of joins: INNER JOIN, OUTER JOIN, CROSS JOIN. OUTER JOIN are further classifi ed as

LEFT OUTER JOIN, RIGHT OUTER JOIN and FULL OUTER JOIN.

27. What is a self-join? Explain it with an example.

Self-join is just like any other join, except that two instances of the same table will be joined in the

query.

Here is an example: An employee’s table, which contains rows for normal employees as well as

managers. So, to fi nd out the managers of all the employees, you need a self-join.

CREATE TABLE emp

(

empid int,

248 Cracking the IT Interview

mgrid int,

empname char(10)

)

INSERT emp SELECT 1,2,’Vyas’

INSERT emp SELECT 2,3,’Mohan’

INSERT emp SELECT 3,NULL,’Shobha’

INSERT emp SELECT 4,2,’Shridhar’

INSERT emp SELECT 5,2,’Sourabh’

SELECT t1.empname [Employee], t2.empname [Manager]

FROM emp t1, emp t2

WHERE t1.mgrid = t2.empid

Here’s an advanced query using a LEFT OUTER JOIN that even returns the employees without

managers (super bosses).

SELECT t1.empname [Employee], COALESCE(t2.empname, ‘No manager’)

[Manager]

FROM emp t1

LEFT OUTER JOIN

emp t2

ON

t1.mgrid = t2.empid

28. How do you implement one-to-one, one-to-many and many-to-many

relationships while designing tables?

One-to-One relationship can be implemented as a single table and rarely as two tables with primary

and foreign key relationships.

One-to-Many relationships are implemented by splitting the data into two tables with primary key

and foreign key relationships.

Many-to-Many relationships are implemented using a junction table with the keys from both the

tables forming the composite primary key of the junction table.

249Database

29. What is the difference between a primary key and a unique key?

Both primary key and unique key enforce uniqueness of the column on which they are defi ned.

But by default, a primary key creates a clustered index on the column, where are unique creates a

non-clustered index by default. Also, primary key does not allow NULL value, but unique key allows

NULL value, but only one.

A default is a value that will be used by a column, if no value is supplied to that column while

inserting data. IDENTITY columns and TIMESTAMP columns cannot have defaults.

30. What does lock escalation mean?

Lock escalation is the process of converting a lot of low level locks (like row locks, page locks) into

higher-level locks (like table locks). Every lock is a memory structure so too many locks occupy

more memory.

31. What are triggers? How do you invoke a trigger on demand?

Triggers are special kind of stored procedures that get executed automatically when an INSERT,

UPDATE or DELETE operation takes place on a table.

Triggers cannot be invoked on demand. They get triggered only when an associated action (like

INSERT, UPDATE and DELETE) happens on the table on which they are defi ned.

Triggers can be used to extend the referential integrity checks also, but wherever possible, constraints

should be used for this purpose, instead of triggers, as constraints are much faster.

32. What is a Stored Procedure? What are the advantages?

A Stored Procedure is a set of pre-compiled T-SQL statements, which can be executed whenever

required.

These are similar to procedures in any other programming language and hence can accept input

parameters, return output parameters and even can return status values advantages of using stored

procedures are as follows: � Increased modularized programming � Faster execution as they are pre-compiled � Reduce the network traffi c by sending the call to the stored procedure, instead of sending

the hundreds of T-SQL lines, which is embedded in the stored procedure

250 Cracking the IT Interview

33. What is the difference between Stored Procedure and a Trigger?

Trigger is a special type of stored procedure that is cannot be called directly by a user. At the time of

creating the trigger, it is defi ned to be executed when a specifi c type of data modifi cation (like Insert,

Update or Delete) is made against a specifi c table or column.

34. What are the different types of parameters available in Stored Procedure?

Parameters are used as the way to communicate to and from a stored procedure. A stored procedure

can have � Input parameters allow the caller to pass the value to the stored procedure. Output

parameters allow the stored procedure to pass the value to the caller. Interestingly, these

parameters act as InOut parameters. Values can also be sent to the stored procedures using

the Output parameters. � In addition to the Input and Output parameters, every stored procedure returns an integer

value to the caller. This can be used to indicate the caller about the success or failure status.

If this is not set inside, the procedure the return code will be 0 (zero).

PROBLEMS AND SOLUTIONS

35. CREATE INDEX myIndex ON myTable(myColumn). What type of Index will get

created after executing the above statement? Why?

Non-clustered index. Because, by default, a clustered index gets created on the primary key, unless

specifi ed otherwise.

36. How do you get the distinct rows in atable/resultset?

By using the DISTINCT keyword, this can be achieved. The following example selects the distinct

names from the employee table.

SELECT DISTINCT lname FROM employee

37. How do you get the distinct rows without using the keyword DISTINCT?

By using the GROUP BY keyword, this can be achieved. The following example selects the distinct

names in the employee table, without using the DISTINCT keyword.

SELECT lname FROM employee GROUP BY lname

251Database

38. How can you get the duplicated rows from the table listed below using a single

query?

Table 1 Duplicated rows from the table using a single query

Field1 Field2 Field3 Field4 Field5

1 2 3 4 5

2 4 5 6 7

2 4 5 6 7

3 4 3 2 1

1 2 3 4 5

SELECT Field1, Field2, Field3, Field4, Field5 FROM Table1GROUP BY

Field1, Field2, Field3, Field4, Field5 HAVING COUNT

(1) > 1

39. How can you get the total number of records in a table?

By using the COUNT () function, this can be achieved. The following example gives the count of

employees in the organization.

SELECT COUNT (1) AS EmpCount FROM employee

40. How can you swap values between two rows in a table using single SQL

Statement?

A straight forward way of doing this is:

UPDATE table SET column = -1 WHERE column = @id1

UPDATE table SET column = @id1 WHERE column = @id2

UPDATE table SET column = @id2 WHERE column = -1

But, as the requirement is to do this in a single SQL statement, the solution is:

UPDATE table SET column =

(CASE WHEN column = @id1 THEN @id2 WHERE column IN (@id1, @id2)

41. How can you insert values in multiple rows using one Insert Statement?

INSERT INTO table

252 Cracking the IT Interview

 select (‘Value1’,’Fernando’)

 UNION ALL

 select (‘Value2’,’Carlos’)

 UNION ALL

 select (‘Value3’,’Vincent’)

THINKER’S CHOICE

42. Which of the following statements contains an error?

 SELECT * FROM emp WHERE empid = 493945;

 SELECT empid FROM emp WHERE empid= 493945;

 SELECT empid FROM emp;

 SELECT empid WHERE empid = 56949 AND lastname = ‘SMITH’;

 The default character for specifying runtime variables in SELECT statements

is � Ellipses � Quotation marks � Asterisk � Ampersand

43. What will happen when a Rollback statement is executed inside a Trigger?

44. What is RAID? What are the different types of RAID confi gurations?

REFERENCES

 1. MSDN—Documentation from Microsoft Developer Network.

Data Networks

INTRODUCTION

Internet is a network of networks. The Internet is used for information (data) exchange

electronically. Knowledge of networking is essential for graduates who would like to be part

of telecom domain companies and those like to be a Network Administrator. This chapter

provides the basic networking questions and answers.

INTERNETWORKING BASICS

1. What is a Network element?

Elements that are part of a network are generally referred to as a network element, host, node or

device.

2. What is Local Area Network (LAN)

A LAN supplies networking capability to a group of computers in close proximity to each other

such as within an offi ce building, a school or a home. A LAN is useful for sharing resources like fi les,

printers, games or other applications.

3. What is Wide Area Network (WAN)?

A WAN spans a large geographic area, such as a state, province or country. WANs often connect

multiple smaller networks, such as local area networks (LANs).

4. What is the difference between internet and intranet?

One of the major differences between internet and intranet is that the internet is an open, public

space, while an intranet is designed to be a private space. An intranet may be accessible from the

8

254 Cracking the IT Interview

Internet, but as a rule it is protected by a password and accessible only to employees or other

authorized users.

5. What does the word ‘protocol’ mean?

When two devices in a network want to communicate, they should know a common language for

communication. This common language that provides rules and regulations for their communication

is known as protocol. In a data network, communication means exchange of messages between any

two machines.

6. What is a reference model?

A reference model is a conceptual blueprint of how communication should take place between

two dissimilar network elements in a given network. All the processes required for this effective

communication are logically grouped into layers. A reference model hides the details of network

hardware and permits disparate network elements to communicate, independent of their physical

connection.

Examples for reference models include: Open System Interconnection (OSI) by International Organization for Standardization (ISO) Department of Defense (DoD)

7. Explain the layers in the OSI reference model.

OSI reference model has seven layers as shown in Figure 8.1.

Host A Host B

Application Data Application

Presentation Data Presentation

Session Data Session

Transport Segments Transport

Network Packets Network

Data Link Frames Data Link

Physical Bits Physical

Figure 8.1 OSI Model

255Data Networks

Application layer

This layer will mainly be used by the application program. The main functionality of this layer

is to identify the application program requested communication partner and establish the

communication channel with it. For example, if the Internet explorer application needs to upload a

fi le to a FTP server, it connects to the FTP server via the FTP protocol

Examples: Telnet, HTTP, FTP, SNMP, SMTP

Presentation layer

The main functionality of this layer is to encode/decode the application layer specifi c data format

into generic data format and vice versa. For example If an application needs to transfer the integer

value 1, at the presentation layer the value 1 will be converted to a generic value using encoding

schemes like BER (Basic Encoding Rule).

Examples: Tiff, JPEG, MPEG

Session layer

The main functionality of this layer is to set up, manage and then clean up sessions established

between the presentation layer entities. Also, it ensures dialogue communication between devices

by offering three different modes: simplex, half-duplex and full-duplex.

Examples: Network File Systems (NFS), Structured Query Language (SQL), Remote Procedure Call

(RPC)

Transport layer

This layer segments and re-assembles data into a data stream. This layer supports connection-

oriented and connectionless transport layer protocol service.

The main functionality of connection oriented transport protocol is to provide reliable, end-to-end

data transport services by establishing logical connection between sending and receiving hosts.

Example: Transport Control Protocol (TCP)

The main functionality of connectionless transport protocol is to provide unreliable, end-to-end

data transport services.

Example: User Datagram Protocol (UDP)

256 Cracking the IT Interview

Network layer

The main functionality of this layer is to manage device addressing, to track the location of the

devices on the network and to determine the best way to move data, which means that this layer

must transport traffi c between devices that are not locally attached. Routers operate at this layer.

Example: Internet Protocol (IP), IPX

Data link layer

The main functionality of this layer is to ensure that messages are delivered to the proper device on

a LAN using hardware addresses and translates messages from the Network Layer into bits (data

frames) for the physical layer to transmit.

Data link layer is sub-divided into two sub-layers: Logical Link Control (LLC)—the upper sub-layer hides underlying network types (Ethernet,

token ring, etc) from the network layers (IPX, TCP/IP). Medium Access Control (MAC)—the lower sub-layer controls and communicates directly

with the physical network media through the network interface card. This layer converts

data frame into bits and vice versa.

Switches and bridges operate at this layer.

Examples: Ethernet, FDDI, 802.11 Wi-Fi, Frame relay, PPP, HDLC, ATM

Physical layer

The main functionality of this layer is to send and receive bits to and from the physical carrier (wire).

Also, this layer defi nes things like pin outs, electrical characteristics, modulation and encoding of

data bits on carrier signals

8. Compare OSI with DoD (TCP/IP) Model.

OSI TCP/IP
 Application
 Presentation

Session Data Application
 Transport Segments Transport
 Network Packets Network
 Data Link
Physical Frames/Bits Physical

Figure 8.2 OSI vs. TCP/IP reference model

257Data Networks

9. What is data encapsulation?

Each layer within the OSI model is primarily responsible for communicating with a peer layer on

another machine. In other words, when two clients communicate, one layer, such as the Transport

Layer, on one client is primarily responsible for communicating with the exact same layer, in this

case the Transport Layer, on the other client (See Figure 8.2).

This communication between peers is done in Protocol Data Units (PDU). The actual name

for the PDU changes from layer to layer. For instance, as Figure 8.2 shows, the Transport layers

communicate via Segments.

Even though this communication logically takes place between peers, each layer is actually dependent

upon the layers below it for the actual delivery. Each layer passes it is PDU to the layer below it.

The underlying layer then adds a header, creating its own PDU. In this manner, the data payload

for lower layers is the PDU of the layer immediately above. This process of taking one PDU and

enveloping it within another is called data encapsulation.

The following diagram depicts the 5 step encapsulation process:

Step1: (Application—Transport Layer)

Data

Step 2: (Transport—Network Layer)

Segment Header Data

Step 3: (Network to Data Link Layer)

Network Header Segment Header Data

Step 4: (Data Link to Physical Layer)

Frame Header Network Header Segment Header Data

Step 5: (Physical Layer to Wire)

10001110000110000111100001110101010

258 Cracking the IT Interview

10. What does the word ‘throughput’ mean?

In computer technology, throughput is the amount of work that a computer can do in a given time

period.

11. What is the difference between baud and bit rate?

Bit rate is a measure of the number of bits (‘0’ or ‘1’) transmitted per unit of time. If we transmit

2400 bits of ‘1’ and ‘0’ per sec then Bit rate is 2400 bps (Bits per sec).

The baud rate is a measure of the number of symbols (characters) transmitted per unit of time.

Each symbol will normally consist of a number of bits, so the baud rate will only be the same as the

bit rate when there is one bit per symbol.

12. What is BER?

BER is Basic Encoding Rule. An encoding standard for converting application data into machine

independent information transmitted across the network. BER is widely used to encode (Abstract

Syntax Notation) ASN.1 data types.

13. What is tunneling?

Tunneling results in the original packet/data frame being hidden inside a new packet/data frame.

Tunneling happens in the same layer whereas encapsulation happens between layers.

NETWORK TECHNOLOGY

14. What is Ethernet technology?

Ethernet technology is a high speed (10Mbps), packet switching, broadcast bus technology. It is bus

because all the stations share a single ether channel; it is broadcast because all the stations receive

every single transmitted signal.

15. What is the use of Network interface card (NIC)?

A network interface card is used to connect a computer to an Ethernet network.

16. Explain Ethernet access scheme.

Ethernet access scheme uses Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

concept.

259Data Networks

In a network, when any host wants to transmit data, before transmission, it checks the carrier (ether

wire) for the presence of digital signal. If no signal is sensed, then it transmits the data. This is

CSMA. However, there may be chances for two hosts to sense the carrier is free and both tries to

send data. In this case, the signal jam (collision) happens. To avoid this, any transmitting host will

constantly monitor the carrier. This is CD.

Note: If station detects the collision, it waits for the random period of time before attempting to

transmit again. This random period is implemented using back-off algorithm.

17. What is token ring technology?

This is a type of network in which all the devices are arranged (schematically) in a circle. A token,

which is a special bit pattern, travels around the circular network.

Whenever a device wishes to send its frame it waits for the token, temporarily stops forwarding other devices frame as soon as it receives the token, it initiates transmission of its frame; passes the token back

to the network; starts forwarding other devices frames

When a device receives the token, it sends only one packet before passing the token. If there is no

one to receive the transmitted frame, it circulates back to the source station, where it is removed.

ETHERNET NETWORKING CONCEPTS

18. What is Broadcast domain?

When a device in the Ethernet LAN transmits a packet, all other devices in the LAN will receive it

as Ethernet follows broadcast technology. However, only the device for which the packet is intended

will accept and forward it to the upper layer while others just discard the packet. Thus, Ethernet

LAN forms a broadcast domain. Usually, broadcast domains will be connected/separated using

routers (See Figure 8.5).

19. What is network segmentation? What is Collision domain?

When two network devices transmit simultaneously, packet collision occurs. Such a condition

would arise if too many devices were on one network. To avoid this, it is good idea to segregate a

network into multiple network segments. Segmenting a LAN can extend the existing network, and

reduce congestion. Each segment is considered as collision domains. Usually, collision domains will

be connected/separated using bridges or switches (See Figure 8.4).

260 Cracking the IT Interview

20. Briefl y explain the functionality of a hub.

A hub is a multi-port repeater. It receives electrical signal, amplifi es it and re-transmits to all the

active ports without looking into the data packet. A hub operates on Physical layer of the OSI model.

A hub is also known as concentrators. As illustrated in the Figure 8.3 hub does not break collision

or broadcast domain.

Hub

Broadcast domain
Collision domain

Figure 8.3 Hub network design

21. Briefl y explain the functionality of a bridge and switch.

Bridge and switch read the destination MAC address from each received data frame; refer the

database; if the MAC addresses port is present then it forwards the frame to the corresponding port

or else fl oods the frame to all the ports. Bridge and switch operate on Data-link layer of the OSI

model.

Some of the major difference between a bridge and a switch are as follows: A switch supports more ports than a bridge Bridges switch using software whereas Switches switch using hardware (Integrated circuits

– ASIC) In Switches each individual port could be confi gured for different data rate.

As illustrated in the Figure 8.4 Bridge/Switch controls collision but not broadcast domain.

261Data Networks

Bridge

Hub

Broadcast domain
Collision domain

Figure 8.4 Bridge and Switch network design

22. Briefl y explain the functionality of a Router.

Routers interconnect multiple (sub-) networks and route information between these networks by

choosing an optimal path (“route”) to the destination. Router operates on Network layer of the OSI

model.

As illustrated in Figure 8.5, Router controls collision and broadcast domains.

Router

Hub

Collision domain

Broadcast domain

Figure 8.5 Router network design

262 Cracking the IT Interview

23. Briefl y explain the functionality of a Gateway.

A gateway is a device that interconnects network that supports different protocols. They usually

operate on Transport layer and above it. For example, gateway could be used to interconnect an IPX

and TCP/IP network.

DATA LINK LAYER

24. What is an MAC address?

An MAC address is a number (typically written as twelve hexadecimal digits, 0 through 9 and

A through F, or as six hexadecimal numbers separated by periods or colons, i.e., 0080003012ef,

0:80:0:3:12: ef) which uniquely identifi es a device that has an Ethernet interface.

The fi rst half of a MAC address contains the ID number of the adapter manufacturer. These IDs

are regulated by an Internet standards body. The second half of a MAC address represents the serial

number assigned to the adapter by the manufacturer. For example:

00:A0:C9:14:12:30

The prefi x “00:A0:C9” – indicates the manufacturer is Intel Corporation.

25. What is the need for spanning-Tree protocol?

Spanning-Tree Protocol is a data-link management protocol that provides path redundancy while

preventing undesirable loops in the network. For an Ethernet network to function properly, only

one active path can exist between two stations. Multiple active paths between stations cause loops

in the network. If a loop exists in the network topology, the potential exists for duplication of

messages.

In the below example, to have network uptime of 24 hours, 7 days, two switches are used between

device A and device B. If any one of the switches become down, the other one will take control over

to transfer data between A and B. Let us say a broadcast frame is delivered by device A. Switch-1

receives the frame via its port-1 and transmits the frame via its port-2. Since the redundancy is

enabled in this network, the frame will also be received by Switch-2 via its port-1. Switch-2 re-

transmits the frame via its port-2 which will again reach Switch-1 via its port-2. This will lead to a

looping. To avoid this looping, spanning tree protocol is developed.

263Data Networks

B

A

Port 1Port 1

Port 2 Port 2

Switch 1 Switch 2

26. What is the use of ATM technology?

ATM is Asynchronous Transfer Mode. It is designed for the high-speed transfer of voice, video,

and data using cell relay technology. The basic unit of information used by ATM is a fi xed-size cell

consisting of 53 octets, or bytes. The fi rst 5 bytes contain header information, while the remaining

48 bytes contain the data, or payload.

27. What are the advantages of ATM technology over Ethernet technology?

The advantages of ATM technology over Ethernet technology are as follows: ATM uses special hardware designed high-speed switches (ASIC) between host and the

other ATM switches. ATM uses optical fi ber connections whose transmission rate is much faster (more 100Mbps)

than copper cables (10Mbps). Because the ATM switch does not have to detect the size of a unit of data (since it is fi xed to

53 octets), switching can be performed effi ciently. The small size of the cell also makes it well suited for the transfer of real-time data, such as

voice and video.

28. What is the use of VPN technology?

VPN is Virtual Private Network. A VPN is used to connect remote users to the private intranet or

an intranet to other intranet via the public network (internet). Prior to VPN technology, enterprises

264 Cracking the IT Interview

(companies) used leased/dedicated lines to have a secure connection between their two remote

intranets or between users and the private network. These leased lines are costly. VPN uses virtual

connections (a secure tunnel) routed through the Internet from the company’s private network to

the remote site.

29. Explain wireless networking in brief.

Wireless networks utilize radio waves and/or microwaves to create communication channels

between network elements.

A wireless network offers advantages and disadvantages compared to a wired network. Advantages of wireless include mobility and elimination of cumbersome cables. Disadvantages of wireless include the potential for radio interference due to weather, other

wireless devices or obstructions like walls.

Popular wireless local area networking (WLAN) products conform to the 802.11 Wi-Fi (Wireless

Fidelity) standards.

Mostly, Wireless Network devices operate at data link layer (layer 2).

IP LAYER

30. What is an IP address?

An IP address is an address used to uniquely identify a device on an IP based network. The address

is made up of 32 binary bits which is divisible into a network portion and host portion. The 32

binary bits are broken into four octets (1 octet = 8 bits). Each octet is converted to decimal and

separated by a period (dot). For this reason, an IP address is said to be expressed in dotted decimal

format (e.g., 172.16.81.100). The value in each octet ranges from 0 to 255 decimal, or 00000000 –

11111111 binary.

31. What is static and dynamic IP address? Which is better to use?

Each network element in a network will be assigned with unique IP address. This IP can be a static

or dynamic one. Static IP address—is usually confi gured by the administrator/user manually. Once this is

assigned that IP address cannot be reused by any other device in the same network. Dynamic IP address—will be provided to each device by DHCP server at the time of their

TCP/IP stack initialization.

265Data Networks

Both the static and dynamic IP address has its advantages and disadvantages.

Dynamic IP address system allows your machine (say laptop) to move to a different subnet and gets

its IP for that subnet from the DHCP server. However, the problem is, if your machine has a name

to IP address mapping in the DNS server then when a new IP comes the DNS server entry, it needs

to be manually updated which is not required for static IP.

32. What are public and private IP addresses? What ranges are reserved for

private IP addresses?

InterNIC has reserved certain IP addresses as private addresses for use with internal Web sites or

intranets. These addresses are not routable on the public Internet, but are meant for devices that

reside behind a router or other Network Address Translation (NAT) device or proxy server. Private

IP addresses are used either to hide systems from the public Internet or to provide an additional

range of addresses to organizations that do not have suffi cient public IP addresses to distribute on

their network.

IPv4 private address: Class A – 10.0.0.0 – 10.255.255.255 Class B – 172.16.0.0 – 172.31.255.255 Class C – 192.168.0.0 – 192.168.255.255

IPv6 private address:

 Site local addresses are similar to RF1918 addresses (10.0.0.x, 192.168.2.x).

 Site local prefi xes begin with fecx, fedx, feex and fefx (fecx is most commonly used).

33. What is Network Address Translation (NAT)?

With the explosion of the Internet and the increase in home networks and enterprise networks,

the number of available IP addresses is simply not enough. The obvious solution is to redesign the

address format to allow for more possible addresses. This is being developed (called IPv6), but will

take several years to implement because it requires modifi cation of the entire infrastructure of the

Internet.

Another solution is to use Network Address Translation (NAT). NAT allows a single device, such

as a router, to act as an agent between the Internet (or “public network”) and a local (or “private”)

network. This means that only a single, unique IP address is required to represent an entire group

of computers.

266 Cracking the IT Interview

Router
(NAT)

Internet

Device 1
(10.1.1.2)

Device 2
(10.1.1.3)

1
2
.1

.1
.2

3

1
0
.1

.1
.1

In the above example, if the Device-1 (10.1.1.2) sends out a packet to the router (10.1.1.1) aimed

at 13.1.1.34, then the IP packet contains the source IP has 10.1.1.2 and source port has say 1080,

together with the destination port (say 1078) and IP address (13.1.1.34).

When it arrives at the router, the router will de-encapsulate the packet and rewrite the source IP as

its IP (12.1.1.23); source port (say 1109) and the newly allocated for this IP and sends out the packet

onto the Internet.

The router will also add an entry into a table it keeps, which maps the internal address (10.1.1.2) and

source port number your machine (1080) generated against the port number (1109) it allocated to

this session. Therefore, when the machine 13.1.1.34 sends a reply packet to the router, the router

can quickly read the map table and replace the destination IP and destination port in the packet

with the Device-1 IP address and port information.

34. Compare MAC addresses with IP addresses.

MAC addressing works at the data link layer (layer 2), IP addressing functions at the network layer

(layer 3). The MAC address generally remains fi xed and follows the network device, but the IP

address changes (Dynamic IP) as the device moves from one network to another.

35. What is Address Resolution Protocol (ARP)?

ARP maps an IP address to its corresponding physical network address. It is a low-level protocol (at

layer 2 in the OSI model) usually implemented in the device drivers of network elements operating

system. ARP is most commonly seen on Ethernet networks, but ARP has also been implemented for

ATM, Token Ring, and other physical networks.

When an IP packet arrives at a router, the router needs to map the destination IP address to the

appropriate MAC address so that it can be delivered over Ethernet. Some IP-to-MAC address

mappings are maintained in an ARP cache, but if the given IP address does not appear there, the

router will send an ARP request that is broadcast on the local network. The host with the given

267Data Networks

IP address sends an ARP reply to the router, which in turn delivers the packet (and updates its

cache).

36. What is Reverse Address Resolution Protocol (RARP)?

Reverse Address Resolution Protocol (RARP) is the reverse of ARP. It is a mechanism to map MAC

addresses to IP addresses. It is used (mainly by disk-less workstations upon boot-up) to fi nd out their

IP addresses from a BOOTP server. The BOOTP server contains all of the boot-up confi guration

fi les that the workstation needs to boot-up.

On NICs (network interface cards) of every network device, there is an empty DIP socket that is

used for holding a Boot PROM. The Boot PROM holds a special software program that tells the

workstation (upon powering up) to go and fi nd a BOOTP server.

One of the fi rst tasks of the workstation is to fi nd out its IP address. The MAC layer address is burnt

into the NIC, and is already known. A RARP broadcast datagram is sent out that asks: “Does any

BOOTP server know what my IP address is?” The BOOTP server will reply with: “Here’s the IP

address that belongs to your MAC address”.

Once the IP address is known, then the rest of the confi guration fi les can be downloaded (for the

disk-less workstation to boot up).

Note: RARP uses the same PDU header as ARP.

37. What is TTL? Why is it required?

TTL is Time To Live. TTL will be used to avoid packet looping in a network. Every IP packet will be

delivered with a TTL value. When a router decodes an IP packet, it decrements TTL value by 1. If

the value, after decrement becomes zero, the packet will be discarded and an error message will be

sent back to the source.

38. What is MTU?

MTU is Maximum Transfer Unit. It specifi es the largest amount of data that can be transferred across

a given physical network. If the receiving network MTU is less than the sender, then fragmentation

is required.

39. What is Network Byte Order?

Network device could send data in little-endian (LSB-MSB) or big-endian (MSBLSB) format. To

create an independent data transmission format, TCP/IP standard specifi es, that data in network

should always be in Big-endian format.

268 Cracking the IT Interview

C language API’s used for Network Byte Order to machine byte order and vice versa are htonl(),

htonls(), ntohl(), ntohs()

40. What is Internet Control Message Protocol (ICMP)?

ICMP messages are delivered in IP packets, are used to report network errors, network congestion,

etc., mentioned as follows: Reports network errors—such as a host or entire portion of the network being unreachable,

due to some type of failure. For example “Destination host is temporarily out of service”

or “Destination address is not valid” errors are indicated to the source using Destination

Unreachable ICMP message. Reports network congestion—When a router begins buffering too many packets, due to an

inability to transmit them as fast as they are being received, it will generate ICMP Source

Quench messages saying “rate of packet transmission to be slowed”. Assist Troubleshooting—ICMP supports an Echo function, which just sends a packet on

a round–trip between two hosts. Ping, a common network management tool, is based on

this feature. Ping will transmit a series of packets, measuring average round-trip times and

computing loss percentages. Announce Timeouts—If an IP packet’s TTL (Time To Live) fi eld drops to zero, the router

discarding the packet will often generate an ICMP response packet announcing this

information. Traceroute is a program that prints the path to destination from a source by

sending a sequence of datagram with TTL set to 1, 2, ... and so on and uses ICMP Time

Exceeded messages that come back to fi nd the routers along the path.

41. What is Internet Protocol (IP)?

IP defi nes the unreliable, connectionless delivery of datagram. IP is the Internet’s most basic

protocol.

IP provides several services. Some of them are mentioned as follows:

 Addressing: IP headers contain 32-bit addresses which identify the sending and receiving

hosts. These addresses are used by intermediate routers to select a network path for the

packet. Fragmentation: IP packets may be split, or fragmented, into smaller packets. This permits

a large packet to travel across a network which can only handle smaller packets. Once a

packet is fragmented, it will be considered as a individual packet with its own IP header. Packet timeouts: Each IP packet contains a Time-To-Live (TTL) fi eld, that is decremented

every time routers process the datagram (IP packet). If TTL reaches zero, the packet is

discarded, preventing packets from looping forever and fl ooding a network.

269Data Networks Options: IP provides several optional features, allowing a packet’s sender to set requirements

on the path it takes through the network (source routing), trace the route a packet takes

(record route) and label packets with security features.

42. Explain the classes of IP address.

IP address are classifi ed into Class A, Class B, Class C, Class D and Class E as shown in Figure 8.6.

The class of an IP address can be determined from the fi ve high-order bits. Figure 8.6 shows the

signifi cance in the fi ve high order bits and the range of addresses that fall into each class.

In a Class A address, the fi rst octet is the network portion, octets 2, 3 and 4 (the next 24 bits) are for

the network manager to divide into subnets and hosts as he/she sees fi t. Class A addresses are used

for networks that have more than 65,536 hosts (actually, up to 16777214 hosts!).

Loopback—The IP address 127.0.0.1 is used as the loopback address. This means that it is used by

the host computer to send a message back to itself. It is commonly used for troubleshooting and

network testing.

In a Class B address, the fi rst two octets are the network portion, octets 3 and 4 (16 bits) are for local

subnets and hosts. Class B addresses is used for networks that have between 256 and 65,534 hosts.

0 7 bits 24 bits (Node ID)

Net ID

1.0.0.0 – 127.255.255.255Class A:

Class B: 1 0 14 bits

Net ID

16 bits (Node ID) 128.0.0.0 – 191.255.255.255

21 bits

Net ID

8 bits (Node ID)1 1 0 192.0.0.0 – 223.255.255.255Class C:

Class D: Multicast Group ID (28 bits)1 1 1 0

Multicast

224.0.0.0 – 239.255.255.255

1 1 1 1 0Class E: Reserved for future use (27 bits)

Experimental

240.0.0.0 – 254.255.255.255

Figure 8.6 Various IP address range

270 Cracking the IT Interview

In a Class C address, the fi rst three octets are the network portion, octet 4 (8 bits) is for local subnets

and hosts—perfect for networks with less than 254 hosts.

Class D is mainly for multicast group and Class E is reserved for future use.

43. What do broadcast, unicast and multicast mean?

Broadcast

Data-link layer: The destination MAC address specifi es that the data frame should be delivered to

all hosts in the network. The broadcast IP address will always be FF.FF.FF.FF.FF.FF

IP layer: The destination IP address specifi es that the packet should be delivered to all hosts in the

network. The broadcast IP address will always be 255.255.255.255

Unicast

The destination IP address specifi es that the packet should be delivered to specifi c host in the

network.

Multicast

The destination IP address specifi es that the packet should be delivered to set of hosts in the same

network or different networks.

44. Explain Network Mask.

A network mask helps you know which portion of the address identifi es the network and which

portion of the address identifi es the node on a given IP address. Network Mask is mainly useful

when a network is divided logically into sub-networks. Class A, B and C networks have default

masks, also known as natural masks, as shown as follows:

Class A: 255.0.0.0

Class B: 255.255.0.0

Class C: 255.255.255.0

An IP address on a Class A network that has not been sub netted would have an address/mask pair

similar to: 12.20.9.1 255.0.0.0. To see how the mask helps you identify the network and node parts

of the address, convert the address and mask to binary numbers.

12.20.9.1 = 00001100.00010100.00001001.00000001

255.0.0.0 = 11111111.00000000.00000000.00000000

271Data Networks

Once you have the address and the mask represented in binary, then identifying the network and

host ID is easier. Any address bits which have corresponding mask bits set to 1 represent the network

ID. Any address bits that have corresponding mask bits set to 0 represent the node ID.

45. Explain Subnetting.

Subnetting allows you to create multiple logical networks that exist within a single Class A, B or C

network. If you do not subnet, you will only be able to use one network from your Class A, B or C

network, which is unrealistic.

Each network must have a unique network ID. If you break a major network (Class A, B or C)

into smaller sub networks, it allows you to create a network of interconnecting sub networks. This

network would then have a unique network/sub network ID. Any device, or gateway, connecting

n networks/sub networks has n distinct IP addresses, one for each network / sub network that it

interconnects.

To subnet a network, extend the natural mask using some of the bits from the host ID portion of

the address to create a sub network ID. For example, given a Class C network of 204.12.8.0, which

has a natural mask of 255.255.255.0, you can create subnets in this manner:

By extending the mask to be 255.255.255.224, you have taken three bits (indicated by “sub”) from

the original host portion of the address and used them to make subnets. With these three bits, it is

possible to create eight subnets. With the remaining fi ve host ID bits, each subnet can have up to 32

host addresses, 30 of which can actually be assigned to a device since host ids of all zeros or all ones

are not allowed. So, with this in mind, these subnets have been created.

272 Cracking the IT Interview

204.12.8.0 255.255.255.224 host address range 1 to 30

204.12.8.32 255.255.255.224 host address range 33 to 62

204.12.8.64 255.255.255.224 host address range 65 to 94

204.12.8.96 255.255.255.224 host address range 97 to 126

204.12.8.128 255.255.255.224 host address range 129 to 158

204.12.8.160 255.255.255.224 host address range 161 to 190

204.12.8.192 255.255.255.224 host address range 193 to 222

204.12.8.224 255.255.255.224 host address range 225 to 254

This mask can be denoted in two ways. First, since you are using three bits more than the actual

Class C mask, you can denote these addresses as having a 3-bit subnet mask. Or, secondly, the

mask of 255.255.255.224 can also be denoted as /27 as there are 27 bits that are set in the mask.

By second method, one of these networks can be described with the notation prefi x/length. For

example, 204.15.5.32/27 denotes the network 204.15.5.32 255.255.255.224.

46. Write out the IPv6 datagram format.

Base Header

(40 octet)

Extn. Header

1 (N octet)

Extn. Header

2 (N octet)
…

Extn. Header

M (N octet)
Data

47. How IPv6 addresses will be represented?

As the Dotted notation used in IPv4 is diffi cult to read 128 bits, IPv6 uses “Colon Hexadecimal

Notation” to represent IP address. For example, an IPv6 number will be represented as follows:

FE05:0:0:12:0:0:0: FD

This can also be written as FE05::: 12:::FD by compressing zeroes.

48. Compare IPv6 with IPv4. Larger Addresses—IPv6 uses 128 bit instead of 32 bit. Flexible Header format—Unlike IPv4 where datagram header size is fi xed, IPv6 allows

optional headers.

273Data Networks Control information—IPv6 allows user to have control information as part of datagram. Resource Allocation—unlike IPv4, IPv6 supports resource pre-allocation by which it

guarantees real-time video.

49. What does ‘Routing’ mean?

Routing refers to the process of identifying a shortest network path to send packets.

50. What is the use of Routing protocol? Mention any two routing protocols.

Routing protocols are used to propagate routing information between any two routers in an

autonomous system.

Routing Information Protocol (RIP) and Open Shortest Path First (OSPF) are the examples of

routing protocols.

TCP LAYER

51. What is Transmission Control Protocol (TCP)?

The Transmission Control Protocol (TCP) is responsible for reliable, end-to-end delivery (segments

of information) of a given piece of data. A segment is the term that is used to describe the data that

is transmitted and received at the Transport level of the OSI model (i.e., where TCP resides).

The reliable, end-to-end delivery of data is accomplished by the following: Connection-oriented service: Segments are acknowledged to the source when received by

the destination. A sliding window is used to enable unacknowledged segments on the “wire”

in order to speed up transmission rates. Sequencing of segments: Data is broken up into segments that are numbered (sequenced)

when transmitted. The destination TCP layer keeps track of the received segments and

places them in the proper order (re-sequences). Requesting retransmission of lost data: If a segment is lost in transmission (missing sequence

number), the destination will timeout and request that all segments starting at the lost

segment are retransmitted. Error checking: Segments are checked for data integrity when received using a 32-bit CRC

check.

274 Cracking the IT Interview

52. What is User Datagram Protocol (UDP)?

The User Datagram Protocol (UDP) is a connectionless, unreliable service that operates at the

Transport layer of the OSI model. UDP relies on the upper layer protocol for both error correction

and reliable service. UDP messages can be lost, duplicated or arrive out of order. Also, packets can

arrive at much faster rate than receiver processing rate. The major uses of this protocol are DNS and

TFTP and delay sensitive deliveries like RTP.

53. Explain the TCP windowing concept.

A TCP window represents the amount of outstanding (unacknowledged by the recipient) data a

sender can send on a particular connection before it gets an acknowledgment back from the receiver

that it has gotten some of it. The primary reason for the windowing is for congestion control.

For example, if a pair of hosts is talking over a TCP connection that has a TCP window size of

128 KB (kilobytes), the sender can only send 128 KB of data and then it must stop and wait for an

acknowledgment from the receiver that some or all of the data has been received. If the receiver

acknowledges that all the data has been received then the sender is free to send another 128 KB. If

the sender gets back an acknowledgment from the receiver that it received the fi rst 64 KB (which

could happen if the second 64 KB was still in transit or it might happen if the second 64 KB got

lost), then the sender could only send another 64 KB since it cannot have more than 128 KB of

unacknowledged data outstanding (the second 64 KB of data plus the third).

54. Explain fl ow control.

Flow control is a technique to properly match the segment transmission rate of sender to that of the

receiver and the network. It is important for the transmission to be at a high enough rates to ensure

good performance, but also to protect against overwhelming the network or receiving host.

55. What is CRC?

The CRC is a very powerful but easily implemented technique to obtain data reliability. The CRC

technique is used to protect blocks of data called Frames. Using this technique, the transmitter

appends an extra n-bit sequence to every frame called Frame Check Sequence (FCS). The FCS holds

redundant information about the frame that helps the transmitter to detect errors in the frame. The

CRC is one of the most used techniques for error detection in data communications. This technique

gained its popularity because it combines three advantages: Extreme error detection capabilities Little overhead Ease of implementation

275Data Networks

APPLICATION LAYER

56. What is Domain Name System (DNS)? What is the advantage of it?

DNS is Domain Name System that maps the human readable string into IP Address. It is diffi cult

to remember IP Address for every internet site we browse. For example, it is easy to remember

www.cisco.com that it is IP Address like 10.101.23.231.

When we type www.cisco.com, the browser will use the default DNS server confi gured in the

machine to query the com server address and from com (Commercial Organization) server it

collects the Cisco server’s IP address.

57. What is Client/Server architecture?

The client/server software architecture is a message-based infrastructure that is proposed to

improve usability, fl exibility, interoperability, and scalability as compared to centralized, mainframe,

time sharing computing. Client/Server model is the widely used in web technology.

Client application is the request provider, which is usually thin application. Client code is usually

Web pages. Server application is the service provider/request responder which is usually thick

application. Server application code is commonly called business logic.

Server

(Web page server)

Client

(Web browser) DB

Two-tier

Three-tier

Request

Response

Request

Response

Note: Client/Server architecture is generally called 2-tier architecture. If the database and server

(business logic) are in different location then it is termed as 3-tier architecture.

58. What is HTML?

HTML is Hyper Text Markup Language, a markup language defi ned by Document Type Defi nition

(DTD). To a document writer, HTML is simply a collection of tags used to mark blocks of text and

assign them special meanings

276 Cracking the IT Interview

File: Test.html

<HTML>

 this is bold information

</HTML>

If you open the above fi le in a web browser, a webpage will be displayed with a message: this is bold

information

59. What is telnet?

Telnet is a Terminal Emulation Protocol that allows you to make a terminal connection to other

computers on the Internet. This requires that you run a telnet client on your computer and connect

to a telnet server on the other machine.

To run a telnet client in windows, type telnet <IP Address> in the command prompt

60. What is an Element Management System (EMS)?

If number of devices in a network becomes more, it is diffi cult to manage them manually. To manage

more number of devices, every equipment vendor provides management software to manage their

network devices. This management application is known as EMS.

61. What is SNMP protocol?

The Simple Network Management Protocol (SNMP) is an application layer protocol that assists

the exchange of management information between network devices.

An SNMP-managed network consists of three key components—managed devices, agents and

element-management systems (EMSs).

A managed device is a network node that contains an SNMP agent and that resides on a managed

network. Managed devices collect and store management information and make this information

available to EMSs using SNMP. Managed devices can be routers and access servers, switches and

bridges, or hubs.

An agent is an element-management software module that resides in a managed device. An agent

has local knowledge of management information and translates that information into a format

compatible with SNMP.

An EMS is an application that monitor and control managed devices. One or more EMSs could

exist on any managed network.

277Data Networks

62. What are the basic SNMP operations?

Managed devices are monitored and controlled using three basic SNMP commands: read, write and

trap.

The read command is used by an EMS to monitor managed devices. The EMS examines different

variables that are maintained by managed devices. There are three read commands: getRequest – for query Scalar objects getNextRequest – for query tabular objects getResponse – response for query objects

The write command is used by an EMS to control managed devices. The EMS changes the values of

variables stored within managed devices. Write command is:

 setRequest – update a scalar are tabular objects

The trap command is used by managed devices to asynchronously report events to the EMS. When

certain types of events occur, a managed device sends a trap to the EMS.

63. What is SNMP Management Information Base (MIB)?

A Management Information Base (MIB) is a collection of management information that is organized

hierarchically. MIBs are accessed using an element-management protocol, such as SNMP. They are

comprised managed objects and are identifi ed by object identifi ers.

A managed object (sometimes called a MIB object or an object) is specifi c characteristics of a

managed device. Managed objects are comprised one or more object instances, which are essentially

variables.

Two types of managed objects exist: scalar and tabular. Scalar objects defi ne a single object instance.

Tabular objects defi ne multiple related object instances that are grouped in MIB tables.

For example, sysName is a scalar MIB object under System tree that represents the device name. ifDescr is a tabular MIB object under interface tree that represents the device interface

description. Interface is a tabular object since a device can have more than one interface.

64. What are the various SNMP protocol versions?

SNMP has three main protocol versions namely SNMPv1, SNMPv2c and SNMPv3.

278 Cracking the IT Interview

65. Why is SNMP protocol good option for EMS?

The main requirements of an EMS application are as follows: Network should not have downtime even in seconds. Management protocol should not access more network bandwidth.

Keeping these conditions in mind, a good management protocol must be chosen. The reasons for

choosing SNMP are as follows: It is running over UDP (connectionless protocol) so that not much bandwidth will be

utilized. As the name suggests, it is Simple to implement.

SECURITY

66. What is a fi rewall?

A mechanism that isolates a network from the rest of the Internet, permitting only specifi c traffi c to

pass in and out is a fi rewall.

67. Why data encryption is required?

Data that traverses unsecured networks is open to many types of attacks. Data can be read, altered or

forged by anybody who has access to the route that your data takes. For example, a protocol analyser

(sniffer) can read packets and gain classifi ed information. Or, an intimidating party can tamper

with packets and cause damage by hindering, reducing or preventing network communications

within your organization.

Encryption provides a means to safeguard network data that travels from one router to another

across unsecured networks. Encryption is particularly important if confi dential or critical data is

being sent.

68. What is public key encryption?

Any cryptographic system uses two keys for encryption/decryption. Public key, known to everyone

and a private or secret key, is known only to the recipient of the message. When Device A wants to

send a secure message to Device B, it uses Device B’s public key to encrypt the message. Device B

then uses its private key to decrypt it.

An important element to the public key system is that the public and private keys are related in such

a way that only the public key can be used to encrypt messages and only the corresponding private

279Data Networks

key can be used to decrypt them. Moreover, it is virtually impossible to deduce the private key if

you know the public key.

The only diffi culty with public-key systems is that you need to know the recipient’s public key to

encrypt a message.

69. What are digital signatures/certifi cates?

An attachment to an electronic message used for security purposes. The most common use of a

digital certifi cate is to verify that a user sending a message is who he/she claims to be, and to provide

the receiver with the means to encode a reply.

An individual wishing to send an encrypted message applies for a digital certifi cate from a Certifi cate

Authority (CA). The CA issues an encrypted digital certifi cate containing the applicant’s public key

and a variety of other identifi cation information. The CA makes its own public key readily available

through print publicity or perhaps on the Internet.

The recipient of an encrypted message uses the CA’s public key to decode the digital certifi cate

attached to the message, verifi es it as issued by the CA and then obtains the sender’s public key and

identifi cation information held within the certifi cate. With this information, the recipient can send

an encrypted reply.

The most widely used standard for digital certifi cates is X.509.

70. What is SSL?

SSL—Secure Sockets Layer, is a technology developed by Netscape Communications Inc. for

encrypting data sent between clients and servers. SSL is the basis for Netscape’s secure communication

technologies.

COMMANDS AND UTILITIES

71. What does ‘ping’ command do?

Ping—Packet Internet Groper is the name of a standard network utility packaged with modern

network operating systems. Ping command uses ‘ICMP’ protocol. This command can be used to

determine if a remote device (such as Web or game server) can be reached on the network and, if so,

roughly how fast the current connection is.

72. How do you get to know your MAC or IP address details?

UNIX: Type shell command ‘ifconfi g –a’

Windows: Type in command prompts ‘ipconfi g /all’

280 Cracking the IT Interview

73. What does the UNIX ‘traceroute’ (‘tracert’ in Windows) command do?

Traceroute displays the routers that are passed through to reach the given destination IP address. This

diagnostic utility determines the route taken to a destination by sending Internet Control Message

Protocol (ICMP) echo packets with varying Time-To-Live (TTL) values to the destination. Each

router along the path is required to decrement the TTL on a packet by at least 1 before forwarding it.

When the TTL on a packet reaches 0, the router is supposed to send back an ICMP Time Exceeded

message to the source system. tracert determines the route by sending the fi rst echo packet with a

TTL of 1 and incrementing the TTL by 1 on each subsequent transmission until the target responds

or the maximum TTL is reached. The route is determined by examining the ICMP Time Exceeded

messages sent back by intermediate routers.

74. What is the command to get the system information on Unix?

sysinfo. This command provides information such as RAM space, hard disk space processor speed,

etc.

PROBLEMS AND SOLUTIONS

Exercise 1

You are given two addresses/mask combinations, written with the prefi x/length notation, which

have been assigned to two devices. Determine if these devices are on the same subnet or different

subnets.

Device A: 174.16.17.30/20

Device B: 174.16.28.15/20

Subnet for Device A:

Looking at the address bits that have a corresponding mask bit set to one, and setting all the other

address bits to zero (this is equivalent to performing a logical “AND” between the mask and

281Data Networks

address), shows you to which subnet this address belongs. In this case, Device A belongs to subnet

174.16.16.0.

Subnet for Device B:

From these determinations, Device A and Device B have addresses that are part of the same

subnet.

Exercise 2

Given the Class C network of 200.12.5.0/24, subnet the network in order to create the network in

below fi gure with the host requirements shown.

netA: 14 hosts

netB: 28 hosts

netC: 2 hosts

netD: 7 hosts

netE: 28 hosts

Figure 8.7 Subnet example

Looking at the diagram shown in Figure 8.7, we can see that we are required to create fi ve subnets.

The largest subnet must support 28 host addresses. To create the fi ve needed subnets we need to use

three bits from the Class C host bits. Two bits would only allow us four subnets.

Since you need three subnet bits that leaves us with fi ve bits for the host portion of the address. With

that we can support 25= 32 (30 usable).

Therefore, we have determined that it is possible to create this network with a Class C network. An

example of how we might assign the sub networks is:

netA: 200.12.5.0/27 host address range 1 to 30 netB: 200.12.5.32/27 host address range 33 to 62

netC: 200.12.5.64/27 host address range 65 to 94 netD: 200.12.5.96/27 host address range 97 to 126

netE: 200.12.5.128/27 host address range 129 to 158

282 Cracking the IT Interview

PROTOCOLS AND STANDARDS

75. What does an RFC mean?

The Requests for Comments (RFC) document series is a set of technical and organizational notes

about the Internet. Memos in the RFC series discuss many aspects of computer networking,

including protocols, procedures, programs and concepts.

The offi cial specifi cation documents of the Internet Protocol suite that are defi ned by the Internet

Engineering Task Force (IETF) and the Internet Engineering Steering Group (IESG) are recorded

and published as standards track RFCs. RFCs must fi rst be published as Internet Drafts and then if

accepted, it will become standards.

76. Mention some important internet protocol’s application that are more fre-

quently used.

FTP—File Transfer Protocol, an Internet client-server protocol for transferring fi les between

computers.

SFTP—Secure File Transfer Protocol, is an interactive fi le transfer program, similar to ftp, which

performs all operations over an encrypted transport layer.

TFTP—Trivial File Transfer Protocol is a simple form of the File Transfer Protocol (FTP). TFTP

uses the User Datagram Protocol (UDP) and provides no security features. It is often used by servers

to boot diskless workstations, X-terminals and routers.

DHCP—DHCP stands for “Dynamic Host Confi guration Protocol”. DHCP’s purpose is to enable

individual computers on an IP network to extract their confi gurations from a server (the ‘DHCP

server’) or servers, in particular, servers that have no exact information about the individual

computers until they request the information. The overall purpose of this is to reduce the work

necessary to administer a large IP network. The most signifi cant piece of information distributed in

this manner is the IP address.

PPP—Point to Point Protocol, a communications protocol that turns a dial-up telephone connection

into a point-to-point Internet connection. This is commonly used to run WWW (World Wide

Web) browsers over a phone line.

SMTP—Simple Mail Transfer Protocol, an internet standard protocol for transferring electronic

mail messages from one computer to another. SMTP specifi es how two mail systems interact and

the format of control messages they exchange to transfer mail.

HTTP—Hyper Text Transfer Protocol, an internet protocol used to transfer HTML information.

283Data Networks

77. Mention some of the 802 standards that are widely used.

802.3—standard for Ethernet technology.

802.5—standard for Token ring technology.

802.11—standard for Wireless LAN (WLAN) technology.

802.15—standard for Wireless Personal Area Network (WPAN) technology

THINKER’S CHOICE

78. What is the difference among DHCP, RARP and BOOTP?

79. What is CIDR? Why is it needed?

80. What issues are involved with operating a packet sniffer on a switched

Ethernet network?

81. Assume you are a System Admin for your campus. What are all the precau-

tionary steps you consider to stop data hack?

82. What is VLAN? What are the advantages and disadvantages of it?

83. What is passive and active connection in TCP?

84. Write TCP segment, UDP segment and IP datagram formats.

85. Explain how TCP handles Out-of-band data.

86. What is Quality of Service (QoS)? Why is it needed?

87. What is Storage Area Networking (SAN)?

88. What are the differences between SNMPv1, SNMPv2c and SNMP v3?

89. Why is switching faster than routing?

90. What is Wireless LAN?

284 Cracking the IT Interview

91. Given IP address as 172.17.52.16 and Subnet mask as 255.255.240.0,

fi nd the number of subnets possible on this network the number of hosts possible on each subnet which subnet this address is on

 range of addresses on that subnet

92. Given the network IP address 154.30.0.0, work out the following: Create 8 subnets Compute the subnet mask Give the starting and the end address of any one subnet

REFERENCES

 1. Andrew S. Tanenbaum, Computer Networks, 4th edition, Prentice Hall.

 2. Douglas E. Comer, Internetworking with TCP/IP, Prentice Hall.

	Title
	Contents
	Introduction
	1 C Programming
	2 Data Structures and Algorithms
	3 Operating Systems
	4 Real Time Operating Systems
	5 C++ Programming
	6 Java
	7 Database
	8 Data Networks

