
EDGE

WI
NNING

WEMcGRAW HILL EDUCATION SERIES

Prof. N B Venkateswarlu completed his M.Tech from IIT-Kanpur in 1988 and earlier in 1986, he completed his B.Tech
from SV University College of Engineering, Tirupathi. He then joined BITS, Pilani as a Lecturer and actively partici-

pated in developing the Computer Science Department. He, along with Prof. Mandke, the then Deputy Director of BITS,
Pilani developed many courses in new emerging areas such as Artificial Intelligence, Neural Networks, Robotics, Pattern
Recognition, Image Processing, Expert Systems, etc. In 1992, Prof. Venkateswarlu got his Ph.d from BITS, Pilani in “Paral-
lel Image Processing Algorithms”. From 1993 Jan. to mid of 1995, he worked at the University of Leeds, UK as a visiting
fellow.

He has published many books such as Advanced Unix Programming, Unix and Windows NT, Linux Programming Tools
Unveiled from BS Publishers Hyderabad, India. His book C and Data Structures: A Snap Shot Oriented Treatise Using Live
Engineering Examples from S Chand is a very popular title.

He has to his credit more than 25 articles in international journals and is a referee to journals such as Pattern Recognition,
Computer Vision and Graphics, etc.

At the end of 1995, he started the RITCH Center at Visakhapatnam to impart training in computers for the general
masses in and around Visakhapatnam.

Presently, he is a senior professor of Computer Science at AITAM, Tekkali. He also served as member of Board of Stud-
ies, JNTU, Kakinada, Andhra University, Visakhapatnam. He worked as a member of National Resource Centre on Free
Open Source Software (NRC-FOSS) which is under the Ministry of Information Technology, Government of India.

About the Author

EDGE

WI
NNING

WEMcGRAW HILL EDUCATION SERIES

Senior Professor

AITAM, Tekkali

McGraw Hill Education (India) Private Limited
NEW DELHI

New Delhi New York St Louis San Francisco Auckland Bogotá Caracas

Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal

San Juan Santiago Singapore Sydney Tokyo Toronto

Published by McGraw Hill Education (India) Private Limited,

P-24, Green Park Extension, New Delhi 110 016.

CS & IT for GATE

Copyright © 2014, McGraw Hill Education (India) Private Limited.

No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical, photocopying,

recording, or otherwise or stored in a database or retrieval system without the prior written permission of the publishers. The program

listings (if any) may be entered, stored and executed in a computer system, but they may not be reproduced for publication.

This edition can be exported from India only by the publishers,

McGraw Hill Education (India) Private Limited.

ISBN (13): 978-1-25-902720-8

ISBN (10): 1-25-902720-1

Vice President and Managing Director—McGraw-Hill Education: Ajay Shukla

Deputy General Manager—Test Prep and School: Tanmoy Roychowdhury

Publishing Manager—Test Prep: K N Prakash

Assistant Sponsoring Editor—Bhavna Malhotra

Asst Manager (Developmental Editing): Anubha Srivastava

Asst Manager—Production: Medha Arora

Senior Production Executive: Dharmender Sharma

Product Specialist: Vikas Sharma

General Manager—Production: Rajender P. Ghansela

Manager—Production: Reji Kumar

Information contained in this work has been obtained by McGraw Hill Education (India), from sources believed to be reliable.

However, neither McGraw Hill Education (India) nor its authors guarantee the accuracy or completeness of any information

published herein, and neither McGraw Hill Education (India) nor its authors shall be responsible for any errors, omissions, or

damages arising out of use of this information. This work is published with the understanding that McGraw Hill Education

(India) and its authors are supplying information but are not attempting to render engineering or other professional services. If

such services are required, the assistance of an appropriate professional should be sought.

Typeset at Script Makers, 19, A1-B, DDA Market, Paschim Vihar, New Delhi 110 063, and text and cover printed at Gopsons, A-2&3,

Sector-64, Noida, U.P. 201301

Cover Designer: K Anoop

RQQYCRYOLZDQR

Dedicated to

Padmasree B.L. Deekshitulu,

The doyen in IT and

Remote Sensing Development in India

Preface

It is with great pleasure that I place before you this book CS & IT for GATE.
I have been actively teaching computer science/IT related courses ever since my teaching career began at BITS,

Pilani. When I started RITCH CENTER at Visakhapatnam to impart computer education to the masses in and around
Visakhapatnam, it became inevitable for me to equip myself to be competent to teach hard core computer science courses.

During this period, I used to guide many students for the GATE and some of them got good ranks even as early as 2000.
Motivated by this, I started spending time and energy in preparing material to ensure that some of my brightest students
cleared GATE.

When some executives of McGraw Hill Education approached me and suggested to release my compiled teaching ma-
terial as a book, I welcomed the idea and that is how this book was conceived. Till recently, only a half handful of good
books are available in the market to guide GATE aspirants.

But during the last two years, the number of students who are appearing for GATE has increased tremendously because
of introduction of GATE qualification in majority of public sector companies. This has naturally increased the scope for
publishing high quality books in this area.

I therefore accepted the proposal from McGraw Hill Education to bring out a comprehensive manual for the aspirants
of Computer Science in GATE. The book before you is a judicious blend of theoretical concepts and plenty of numerical
problems for practice.

There are hundreds of numerical examples which is based on the concepts explained in detail throughout the book.
The syllabus for GATE Computer Science paper contains computer architecture, data structures, automata theory, op-

erating systems, computer networks, software engineering, compiler construction, principles of programming languages,
algorithms, engineering mathematics along with general English and general abilities.

The quality of computer science faculty is not uniform across the country. Thus students are not getting proper expo-
sure to the concepts in their respective colleges. The GATE syllabus tests the fundamental knowledge of the candidates.
Moreover, data structures, algorithms, automata theory, operating systems, computer networks are the ones which decides
the GATE rank of a student. Thus, I have taken utmost care in supplying theoretical background and numerical examples
such that the candidate will be ready to face even the most difficult questions in the above-mentioned areas.

In every chapter, I have added objective questions (with answers) that vary from most easy to most difficult. Also,
I have included many descriptive questions along with answers. In addition, in each chapter I have included recent years’
GATE questions along with explanatory answers.

Apart from GATE, this book will be also used for advanced GRE in Computer Science and UGC NET examinations.
I am hopeful that aspirants would find this book a valuable companion during their preparation.

I wish the aspirants the very best in all their endeavours.

Prof. N B Venkateswarlu

Acknowledgements

Iam profoundly indebted to the students who had undergone training at RITCH center, Visakhapatnam. I am especially
thankful to my wife Dr Sarada and daughter Apurupa for their patient support to me during the preparation of the

manuscript.
Thanks are also due to Prof. B R Gandhi, former professor of BHU, Varanasi and Prof. Roger D Boyle, University of

Leeds, UK and also to many of of his fellow teachers and colleagues for their constant inspiration.
I also wish to put on record my thanks to the following:

Dr Someswara Rao: Chairman AITAM
L L Naidu: Secretary AITAM
Prof. VVN Rao: Director, AITAM
Prof. JVR Murthy, Prof Srinivasa Kumar, Mr MHM Krishan Prasad: JNTU, Kakinada

Also, my thanks are due to Dr Sahu, Mr. Dharmajee, Mr. Ch Ramesh, Mr.G. Nageswara Rao, and other staff members
of CSE/IT of AITAM College. I would also like to thank Mr. Naga Tirumal Rao, Mr. BG Reddy, Mr. Bharat, Mr Ramu,
Mr. Ravi, Mr. Nagendra, Mr. Giridhar, Mr. Raj Kishore, Mrs. Sunitha, Mr. Ramesh, Mr. Satpathy, Mr. B Tirumal Rao,
Mr. RVV Muralikrishna, Mr. Subramanyam, Mr. Chandrasekhar (RVRJC), Mr. Hidayatullah. Dr. Surya Rao, Mdm. Jaya
Rao, Mr. Achari, Dr. Sambhu Prasad, Mr. Govindarajulu and Mr. Bhaskar.

Finally, I would like to acknowledge the whole hearted support of the staff of McGraw Hill Education India in particu-
lar Mr Kannath Prakash (Publishing Manager) and Ms Medha Arora (Assistant Production Manager—Editorial), who
spent considerable time and efforts in coordinating with me to bring out the book in time.

Prof. N B Venkateswarlu

Crossing the GATE
(Graduate Aptitude Test in Engineering)

(GATE) is an All India Examination conducted and administered by the Indian Institute of Science and seven Indian
Institutes of Technology. It is conducted by the National Coordination Board GATE, Department of Higher Education,
Ministry of Human Resource Development, Govt of India.

GATE is conducted through the constitution of eight zones. The zones and the corresponding administrative institutes
are:

 Zone-1: Indian Institute of Science, Bangalore

 Zone-2: Indian Institute of Technology, Bombay

 Zone-3: Indian Institute of Technology, Delhi

 Zone-4: Indian Institute of Technology, Guwahati

 Zone-5: Indian Institute of Technology, Kanpur

 Zone-6: Indian Institute of Technology, Kharagpur

 Zone-7: Indian Institute of Technology, Madras

 Zone-8: Indian Institute of Technology, Roorkee

In the present competitive scenario, where universities and engineering colleges are mushrooming at every nook and
corner of the country, the only yardstick to measure and test the actual calibre of engineering students is the GATE.

There is a general misconception among students that GATE exam is only meant for ME./M.Tech courses that finally
result in a teaching career.

In this context, the following recent developments and points may be noted about GATE.

1. Many Public Sector Undertakings (PSUs totalling 217 in number) are using the GATE score for selecting candidates
for their organizations. Examples are BHEL, Indian Oil Corporation Limited, NTPC, Bhabha Atomic Research Cen-
tre, Power Grid Corporation of India Limited, etc..

2. Students who qualify in GATE are entitled to a stipend of ` 8000/- per month during their M Tech course.

3. Better remuneration is being offered for students of M.Tech/M.E as compared to those of B.Tech /B.E. A good GATE
rank assures a good job. After joining M.Tech. at IITs and IISc, one can look at a salary package ranging from 7 lakh
to 30 lakh per annum, depending upon specialization and performance.

4. Clearing GATE is also an eligibility clause for the award of Junior Research Fellowship in CSIR Laboratories. M.Tech.
degree is mandatory for those wishing to apply for research positions in R&D centers.

5. GATE qualified are eligible for doing Masters Degree from NUS (National University of Singapore), Singapore.

6. GATE score is valid for 2 years.

7. A GATE score has definitely an edge when it comes to joining reputed companies as well as off-campus recruitments.

8. For those who could not study their BTech in IIT, it provides another opportunity to study in the prestigious IITs.

9. Above all, it certainly gives the aspirant a huge technical edge over others in all his/her interviews and career plan-
ning.

10. Availability of GATE application form : Mid of September every year

11. Last date for submitting GATE application form: End of October every year

12. GATE exam date: Generally held on the Second Sunday of February every year1

1Please check the official website for notification and exact dates and schedule

xii Crossing the GATE

In recent years the number of aspirants taking the GATE has grown significantly. From 1.66 lakh aspirants in 2008,
the number of aspirants touched 5.5 lakh in 2011 and touched 8 lakh in 2013. GATE examination is one of the toughest
examinations in our country where competition is very high and one that requires focused study in a planned manner.

It aims at rigorous testing of the students’ capability in engineering concepts along with managerial skills. Engineering
subjects cover 70% weightage while General aptitude and Engineering Mathematics cover 15% respectively.

To secure a high a percentile one should remember that an individual is being judged relatively and not absolutely. The
overall rank achieved depends upon the preparation level of your competitors.

Examination Pattern

The three-hour GATE paper has a total of 65 questions carrying 100 marks. Q.1 to Q.25 (25 questions) carry one
mark each (sub-total 25 marks). Q.26 to Q.55 (30 questions) carry two marks each (sub-total 60 marks). Questions
Q.56 – Q.65 belong to General Aptitude (GA). Questions Q.56 – Q.60 (5 questions) carry 1 mark each (sub-total 5
marks) and questions Q.61 – Q.65 (5 questions) carry 2-marks each (sub-total 10 marks). Questions Q.48 – Q.51
(2 pairs) are common data questions. Question pairs (Q.52, Q.53) and (Q.54, Q.55) are linked answer questions. The
answer to the second question of the linked answer questions depends on the answer to the first question of the pair.
If the first question in the linked pair is wrongly answered or is unattempted, then the answer to the second question
in the pair will not be evaluated.

NEGATIVE MARKING: For Q.1 – Q.25 and Q.56 – Q.60, 1/3 mark will be deducted for each wrong answer. For Q.26
– Q.51 and Q.61 – Q.65, 2/3 mark will be deducted for each wrong answer. The question pairs (Q.52, Q.53), and (Q.54,
Q.55) are questions with linked answers. There will be negative marks only for wrong answer to the first question of the
linked answer question pair, i.e., for Q.52 and Q.54, 2/3 mark will be deducted for each wrong answer. There is no negative
marking for Q.53 and Q.55.

Questions on Engineering Mathematics will carry about 15% of the total marks (excluding General Aptitude
section).

GATE RESULT

GATE scores are valid for two years and one may reappear if he or she is not satisfied with the earlier score and new scores
are used for the admission purposes.

Calculation of GATE Score

The GATE Score is calculated as

S = S S S
M M

M M
q t q

q

t q

+ -()
-

-
,

where,

S = GATE Score (normalized) of a candidate,

Sq = GATE Score assigned to Mq (around 300).

St = GATE Score assigned to M
–

t (around 900),

M = Marks obtained by a candidate in a paper,

Mq = Qualifying Marks for general category candidates in the paper,

M
–

t = Average Marks of top 0.1% or 10 (which ever is higher) of candidates in the paper,

Mq is usually 25 marks(out of 100) or m + s, which ever is higher. m is the mean of marks in a paper and s is standard
deviation.

But at the same time as competition grow, the GATE Score along with the rank matters for induction into PSUs’ jobs/
M.Tech programmes.

Crossing the GATE xiii

Tips for Success in GATE

1. To start with, go through previous years’ question papers for the last 10 years along with solutions.

2. Analyze the subject pattern and focus on those subjects which have maximum weightage. During the last 25 years, it
is observed that questions related to algorithms, data structures, compiler construction, automata theory, operating
systems were instrumental in the aspirants’ success. So I advise you to build a good foundation in these topics.

3. Since this is an academically high level exam, rely on quality books and study material.

4. Books can further be divided into two categories

(a) Books that deal with the fundamentals and focus on conceptual clarity. Here textbooks by reputed publishers are
a must.

(b) Books that provide a great deal of difficult and time consuming questions and are used essentially as practice
material

5. Don’t rely on just one book for a topic. You may have to consult a couple of books for the same topic.

6. Prepare notes after completing each chapter. These can also be made either during self study or during coaching classes.

7. Practice the maximum number of questions possible on a given topic. This certainly strengthens your preparation.

8. There is no need to cover entire syllabus. Topics which are not in GATE syllabus should be certainly left out.

9. Make a list of topics in which you think you are ‘weak’ and focus on them.

10. Have all essential formulae on your fingertips.

11. Try to see if there are shortcut methods for a particular problem.

12. Joining a good coaching institute is beneficial as you would be exposed to a regular systematic study. Also, an expo-
sure to peer group would make one more competitive.

13. Online coaching classes/test series are also beneficial in case one cannot join the regular coaching classes.

14. Don’t hesitate to consult seniors and professors incase of any doubts or clarification.

15. Do not neglect General English and Aptitude.

16. Theory preparation should be finished one month before the exam and then practice, practice, practice.

17. Scores can be assessed from mock tests which are available online and offline

18. One should keep oneself updated about any changes or developments in the GATE examination for the coming year.

19. In the last one week, go through last 10 years’ solutions once again as questions may be repeated and also previous
GRE question papers on the subject.

How to tackle the paper

∑ Start the paper with 1 mark questions (25 in number). Since these are easy to attempt, they will help in building
confidence.

∑ Proceed then to 2 marks questions from Common Data and Linked Answer Questions. Attempt this part with cau-
tion. This portion of exam is certainly instrumental in making the final merit. These add upto 8 more questions in
addition to the 25 attempted above.

∑ Then go to General Aptitude section of 10 questions. All these will add upto 43 questions attempted. All these should
be done in a time frame of 100–110 mins.

∑ Now we are left with 22 questions in technical portion and we can allot 50 minutes to this comfortably.

∑ At the end, you must have 15–20 minutes for a quick revision of the answer sheet to ensure all is in order.

Note:

1. While attempting the paper, leave questions about which you are not sure. The most deciding factor is negative marking.
Avoid making any guesses and try to eliminate choices by analysis and calculations.

2. Aspirants should ensure that they should apply for GATE examinations preferably from their respective branch only, i.e.
candidate with mechanical engineering should preferably apply for Mechanical Engg only and should avoid moving to
other branches like Production and Industrial Engineering, etc. Most of the PSUs induct trainees with their GATE score
from their respective B. Tech branch only.

 For example, please refer to site www.iocl.com for similar details.

Syllabus

ENGINEERING MATHEMATICS

Mathematical Logic: Propositional Logic; First Order Logic.

Probability: Conditional Probability; Mean, Median, Mode and Standard Deviation; Random Variables; Distributions;
uniform, normal, exponential, Poisson, Binomial.

Set Theory & Algebra: Sets; Relations; Functions; Groups; Partial Orders; Lattice; Boolean Algebra.

Combinatory: Permutations; Combinations; Counting; Summation; generating functions; recurrence relations; asymp-
totics.

Graph Theory: Connectivity; spanning trees; Cut vertices & edges; covering; matching; independent sets; Colouring;
Planarity; Isomorphism.

Linear Algebra: Algebra of matrices, determinants, systems of linear equations, Eigen values and Eigen vectors.

Numerical Methods: LU decomposition for systems of linear equations; numerical solutions of non-linear algebraic
equations by Secant, Bisection and Newton-Raphson Methods; Numerical integration by trapezoidal and Simpson’s rules.

Calculus: Limit, Continuity & differentiability, Mean value Theorems, Theorems of integral calculus, evaluation of defi-
nite & improper integrals, Partial derivatives, Total derivatives, maxima & minima.

COMPUTER SCIENCE AND INFORMATION TECHNOLOGY

Digital Logic: Logic functions, Minimization, Design and synthesis of combinational and sequential circuits; Number
representation and computer arithmetic (fixed and floating point).

Computer Organization and Architecture: Machine instructions and addressing modes, ALU and data-path, CPU con-
trol design, Memory interface, I/O interface (Interrupt and DMA mode), Instruction pipelining, Cache and main mem-
ory, Secondary storage.

Programming and Data Structures: Programming in C; Functions, Recursion, Parameter passing, Scope, Binding; Ab-
stract data types, Arrays, Stacks, Queues, Linked Lists, Trees, Binary search trees, Binary heaps.

Algorithms: Analysis, Asymptotic notation, Notions of space and time complexity, Worst and average case analysis; De-
sign: Greedy approach, Dynamic programming, Divide-and-conquer; Tree and graph traversals, Connected components,
Spanning trees, Shortest paths; Hashing, Sorting, Searching. Asymptotic analysis (best, worst, average cases) of time and
space, upper and lower bounds, Basic concepts of complexity classes – P, NP, NP-hard, NP-complete.

Theory of Computation: Regular languages and finite automata, Context free languages and Push-down automata, Re-
cursively enumerable sets and Turing machines, Undecidability.

Compiler Design: Lexical analysis, Parsing, Syntax directed translation, Runtime environments, Intermediate and target
code generation, Basics of code optimization.

Operating System: Processes, Threads, Inter-process communication, Concurrency, Synchronization, Deadlock, CPU
scheduling, Memory management and virtual memory, File systems, I/O systems, Protection and security.

xvi Syllabus

Databases: ER-model, Relational model (relational algebra, tuple calculus), Database design (integrity constraints, nor-
mal forms), Query languages (SQL), File structures (sequential files, indexing, B and B+ trees), Transactions and concur-
rency control.

Information Systems and Software Engineering: information gathering, requirement and feasibility analysis, data flow
diagrams, process specifications, input/output design, process life cycle, planning and managing the project, design, cod-
ing, testing, implementation, maintenance.

Computer Networks: ISO/OSI stack, LAN technologies (Ethernet, Token ring), Flow and error control techniques, Rout-
ing algorithms, Congestion control, TCP/UDP and sockets, IP(v4), Application layer protocols (icmp, dns, smtp, pop, ftp,
http); Basic concepts of hubs, switches, gateways, and routers. Network security – basic concepts of public key and private
key cryptography, digital signature, firewalls.

Web technologies: HTML, XML, basic concepts of client-server computing.

Contents

Preface vii
Acknowledgements ix
Crossing the GATE xi
Syllabus xv

1. Introductory Concepts of Digital Logic Design and Computer Architecture 1.1–1.181

1.1 Analog and Digital Systems 1.1

1.2 Basic Logic Gates 1.2

1.3 Boolean Theorems and Postulates 1.4

1.4 Positive Logic and Negative Logic 1.8

1.5 Simplification of Digital Circuits 1.12

1.6 Quine Mc_Cluskey Theory 1.28

1.7 NAND and NOR Implementation 1.31

1.8 Conversions between Representations 1.33

1.9 XOR and XNOR patterns from Karnaugh Map (Reed-Muller Logic) 1.34

1.10 Hazards and Glitches 1.35

1.11 Realising Combinational Circuits Using ROMS 1.42

1.12 Introduction to Sequential Circuits 1.45

1.13 Number Representation and Computer Arithmetic (Fixed and Floating point) 1.78

1.14 Instruction Set Architecture 1.98

1.15 Addressing Modes 1.100

1.16 Memory Organisation 1.104

1.17 Cache Memory 1.108

1.18 I/O Management 1.121

1.19 Serial Communication 1.127

1.20 Pipelining 1.129

1.21 Instruction Hazards 1.133

1.22 Solved Questions 1.134

Objective Type Questions 1.150

 Previous Years’ GATE Questions 1.173

 Answer Key 1.181

2. Programming, Data Structures and Algorithms 2.1–2.297

2.1 Programming 2.1

2.2 Solved Questions 2.56

2.3 Objective Type Questions 2.66

2.4 Data Structures and Algorithms 2.87

xviii Contents

2.5 Questions on Algorithms 2.254

 Previous Years’ GATE Questions 2.283

 Answer Key 2.297

3. Theory of Computation 3.1–3.89

3.1 Introduction to Theory of Computation 3.1

3.2 Compiler Design 3.31

3.3 Solved Questions 3.64

Objective Type Questions 3.77

Previous Years’ GATE Questions 3.80

 Answer Key 3.89

4. Operating Systems 4.1–4.113

4.1 Process and Threads 4.1

4.2 Inter-process Communication Concurrency, Synchronisation 4.8

4.3 Deadlock 4.15

4.4 CPU Scheduling 4.18

4.5 Memory Management and Virtual Memory 4.20

4.6 File Systems 4.32

4.7 I/O Systems 4.38

4.8 Protection and Security 4.41

4.9 Introduction to Queuing Theory 4.45

4.10 Solved Questions 4.48

Objective Type Questions 4.67

Previous Years’ GATE Questions 4.104

 Answer Key 4.113

5. Entity Relationship Data Model 5.1–5.61

5.1 Entity Relationship (ER) Model 5.1

5.2 Introduction to Tuple Relational Calculus (TRC) 5.11

5.3 Integrity Constraints 5.16

5.4 Database Design and Normalisation 5.17

5.5 Transactions and Concurrency Control 5.25

5.6 Solved Questions 5.39

Objective Type Questions 5.49

 Previous Years’ GATE Questions 5.52

 Answer Key 5.61

6. Information System and Software Engineering 6.1–6.27

6.1 Software Engineering—A Layered Technology 6.1

6.2 The Software Engineering Process 6.2

6.3 Software Requirement Specification 6.4

6.4 Software Cost Estimation 6.6

6.5 Software Design 6.7

6.6 Software Testing Fundamentals 6.9

Contents xix

6.7 Software Quality 6.17

6.8 Solved Questions 6.21

Objective Type Questions 6.21

 Previous Years’ GATE Questions 6.25

 Answer Key 6.27

7. Computer Networks 7.1–7.107

7.1 Introduction to Networks 7.1

7.2 Physical Layer 7.6

7.3 Data Link Layer 7.13

7.4 Network Layer 7.22

7.5 Transport Layer 7.28

7.6 Solved Examples 7.30

7.7 Objective Questions 7.78

7.8 Matching Examples 7.100

7.9 True or False Questions 7.101

 Previous Years’ GATE Questions 7.102

 Answer Key 7.107

8. Introduction to HTML, XML and Client Server Programming 8.1–8.95

8.1 Introduction 8.1

8.2 Cascading Style Sheets (CSS): Introduction 8.26

8.3 A Simple Introduction to XML 8.34

8.4 Client/Server Computing 8.61

8.5 Introduction to J2EE 8.73

8.6 Introduction to JSP 8.81

Objective Type Questions 8.93

 Previous Years’ GATE Questions 8.93

 Answer Key 8.95

9. Engineering Mathematics 9.1–9.58

9.1 The Foundations: Logic and Proofs 9.1

9.2 Basic Structures: Sets, Functions, Sequences and Sums 9.5

9.3 Number Theory and Combinatorics 9.14

9.4 Graph Theory 9.19

9.5 Matrices 9.25

9.6 Numerical Methods 9.41

9.7 Introduction to Calculus 9.44

9.8 Solved Questions 9.47

Objective Type Questions 9.50

 Previous Years’ GATE Questions 9.53

 Answer Key 9.58

10. Verbal Ability and Numerical Reasoning 10.1–10.68

10.1 Verbal Ability (English Language Tips) 10.1

xx Contents

10.2 Numerical Reasoning and Interpretation 10.26

 Solved Questions (Including Previous Years’ GATE Questions) 10.49

 Answer Key 10.68

11. Model Papers for GATE Examination (with Solutions and Explanations) 11.1–11.36

 Test 1 11.1

Answer Key 11.7

 Test 2 11.9

Answer Key 11.18

 Test 3 11.19

Answer Key 11.27

 Test 4 11.28

Answer Key 11.36

1C H A P T E R O N E

Introductory Concepts of Digital Logic

Design and Computer Architecture

1.1 Analog and Digital Systems

Let us explain the difference between analog and digital
systems with the help of some examples which we may find
in our daily life. A good example is none other than our fan
(rather, its control mechanism). In old fans, fan speed can
be specified (controlled) with a knob which contains num-
bers 0–5. When we keep the knob at 0, fan will not run;
at all other places it runs with slow to fast speeds. How-
ever, if we keep it in between two numbers, it will not run
at all. That is, the fan speed is defined at some predefined
numbers (places). If we keep fan knob between any of the
two numbers, the fan will automatically get stopped. That
is, fan speed is defined at locations 1 to 5; but not in be-
tween any of the two numbers. This type of system is called
as Discrete (or digital) System. Now, let us consider fans
that are available today in which we can control speed by
turning a knob (without any numbers). We can change the
speed, the way we like. This type of system can be called
as Analog or Continuous System. Analog systems process
analog signals which can take any value within a range,
for example the output from an LDR (light sensor) or a
microphone. Digital systems process digital signals which
can take only a limited number of values (discrete values),
usually just two values are used: the positive voltage (+V)
and zero volts (0V).

Advantages of Digital Systems

1. Easier to design. Exact values of voltage or current
are not important, only the range (HIGH or LOW) in
which they fall.

2. Accuracy and precision are greater. We can predict
accuracy of a digital system by a method of reasoning
(logic), by understanding the program or by verifying
its truth table or otherwise. Sometimes we can also
pin-point the sequence of events a digital device will
go through in its general functioning. The simplicity
of these devices and the principle underlying makes
all the difference. So we can most of the times predict
how the device will function in a given condition
and also we can set the extreme conditions and can
also specify how the system will respond in such
a condition. So digital systems have nowadays got
very much acceptance and reliability and people are
switching to digitals.

3. Operation can be programmed. Analog systems can
also be programmed, but the variety and complexity
of the available operations is severely limited.

4. Digital circuits are less affected by noise. As long
as the noise is not large enough to prevent us from
distinguishing a High from a Low.

5. More digital circuitry can be fabricated on IC chips.

6. Digital systems interface work well with computer and
are easy to control with SW. New features can often be
added to a digital system without changing hardware.
Often this can be done outside of the factory by
updating the product’s software. So, the product’s
design errors can be corrected after the product is in a
customer’s hands.

7. Information storage can be easier in digital systems
than in analog ones. The noise immunity of digital
systems permit data to be stored and retrieved without

1.2 Computer Science & Information Technology for GATE

degradation. In an analog system, noise from aging
and wear degrade the information stored. In a digital
system, as long as the total noise is below a certain
level, the information can be recovered perfectly.

8. One of the primary advantages of digital electronics is
its robustness. Digital electronics is robust because if
the noise is less than the noise margin then the system
performs as if there is no noise at all. Therefore, digital
signals can be regenerated to achieve lossless data
transmission, within certain limits. Analog signal
transmission and processing, by contrast, always
introduces noise

Certainly benefits of a system are drawbacks of its opponent.
That is all the positive aspects of digital systems are negative
points of analog system. However, analog systems will
continue to survive because there is speed limitation with
digital systems due to their fundamental discrete nature.
Analog will still be preferred at very high frequencies and
sometimes the only possibility in some cases.

Limitations of Digital Systems

In some specific realisations of digital systems, power con-
sumption is more as compared to their analog counter
parts. Also, fabricating a digital system in limited quantities
is expensive compared their analog equivalents.

There is really only one major drawback when using
digital techniques: The real world is mainly analog. Thus,
how nicely we can deal with real world problem very much
depends on how accurately we are able represent the real
world information in digital form.

Sampling and Quantisation

Because we can not record every point in the original sound

wave, we have to sample. We sample at some regular inter-

val called the sampling rate. Faster this rate, more accurate

will be the reproduction. What rate do we need to sample

at? What are limits of human hearing? Most people can

hear sounds up to approximately 20KHz. Based on some-

thing called the Nyquist Rule, which says that the sampling

rate must be at least twice the highest frequency in the sam-

ple, we need to sample at least 40K times per second. For

digital audio, the sampling rate is 44,100 Hz.

Analog to Digital Converter (ADC) and Digital to
Analog Converter (DAC)

In practice, sound waves are captured by a microphone,
which converts the sound pressure to an analog electrical
signal which has some equivalency with analog sound wave

in terms of its voltage or some other property. An ADC
samples this signal and produces a binary number for each
sample. To play the sound, we pass these binary numbers to
a DAC, which converts each sample back to its analog level.
The DAC also interpolates the samples, creating a smooth
electrical signal that is sent to a speaker, which converts it
to a sound wave.

Number of Bits Per Sample

Let us say we want to use 3 bits to represent the value. The
first bit will represent + or –. Then we can use the other two
bits to represent the magnitude of the signal. The more bits
you use, the more accurately we can reproduce the original
sound. CDs use 16 bits.

How much memory is required to record 1 second of
music?

16 bits/sample x 44,100 samples/sec x 2 (stereo) = 1,411,200
bits/sec = 176,400 bytes/sec

1.2 Basic Logic Gates

There are several kinds of logic gates, each one of which
performs a specific function. These are the: (1) AND gate;
(2) OR gate; (3) NOT gate; (4) NAND gate; (5) NOR gate;
and (6) XOR gate.

Table 1.1 Logic Gates and their properties

Gate Description Truth Table

AND Gate

The AND gate is a logic gate
that gives an output of ‘1’
only when all of its inputs
are ‘1’. Thus, its output is ‘0’
whenever at least one of its
inputs is ‘0’. Mathematically,
Q = A · B.

A B
Output

Q

0 0 0

0 1 0

1 0 0

1 1 1

OR Gate

The OR gate is a logic gate
that gives an output of ‘0’
only when all of its inputs
are ‘0’. Thus, its output is ‘1’
whenever at least one of its
inputs is ‘1’. Mathematically,
Q = A + B.

A B
Output

Q

0 0 0

0 1 1

1 0 1

1 1 1

NOT Gate

The NOT gate is a logic gate
that gives an output that is
opposite the state of its in-
put. Mathematically, Q = A’
or Q=

A Output Q

0 1

1 0

Introductory Concepts of Digital Logic Design and Computer Architecture 1.3

NAND and NOR gates. In a nutshell, NAND and NOR can
be realised using two transistors whereas AND, OR needs
three. For better details, we advise readers to refer books on
basic electronics. However, for the sake of completeness we
are presenting those details. Even if you don’t understand
them, don’t worry.

NOT gate

Vcc

Vout

Collector
Vin

Base

Emitter

NAND gate

Vcc

Vout

V2

Vcc

Vout

V1
V2

NOR gate

V1

Exclusive OR gate also called XOR: a pair of ANDs with
one inverted input into an OR gate.

A × B or A ≈ B = A B+ A B◊ ◊

The above truth table and figure demonstrates the equiva-

lence of the above relationships. In a physical sense, out-

put of an XOR gate will be one only when both the inputs

are opposite or complimentary. Thus, its output equation is

given as A B+ A B◊ ◊ ; if one verifies, the Boolean expression

will attain true value if A=1, B=0 or A=0, B=1. For all other

combinations, this Boolean equation value will be false.

NAND and NOR gates are called as Universal gates as

any other gate can be realised using these gates.

1.2.1 Functionally Complete

For gates to be useful we must be able to use them to imple-

ment any Boolean function; we call a set of gates that can

implement any function a “functionally complete” set of

gates. The following are functionally complete sets: {AND,

OR, NOT}, {AND, NOT}, {OR, NOT}, {NAND}, {NOR}.

The first set is functionally complete because it contains the

fundamental operations of Boolean algebra. For each of the

other sets, we can prove that they are functionally complete

by showing how to implement the fundamental operations

(AND, OR, and NOT) using the operations in the set under

consideration.

Gate Description Truth Table

NAND
Gate

The NAND gate is an AND
gate with a NOT gate at
its end. Thus, for the same
combination of inputs, the
output of a NAND gate will
be opposite that of an AND
gate. Mathematically, Q = A
· B.

A B
Output

Q

0 0 1

0 1 1

1 0 1

1 1 0

NOR Gate

The NOR gate is an OR gate
with a NOT gate at its end.
Thus, for the same combina-
tion of inputs, the output of
a NOR gate will be opposite
that of an OR gate. Math-
ematically, Q = A + B.

A B
Output

Q

0 0 1

0 1 0

1 0 0

1 1 0

XOR Gate

The XOR gate (for ‘EXclu-
sive OR’ gate) is a logic gate
that gives an output of ‘1’
when only one of its inputs
is ‘1’. Rather if both the in-
puts are same then output is
0; else output is 1.

A B
Output

Q

0 0 0

0 1 1

1 0 1

1 1 0

X-NOR
Gate

The X-NOR gate (for ‘EX-
clusive NOR’ gate) is a logic
gate that gives an output of
‘1’ when only both of its in-
puts are same else outputs 0.

A B
Output

Q

0 0 1

0 1 0

1 0 0

1 1 1

Figure 1.1 shows the general pictorial representation of the
above elementary logic gates.

x

y
x ^ y

x

y
x y

x

y
x y

x x¢

AND OR XOR

NOT

x

y
()x y ¢

NOR

x

y
()x y ¢

NAND

x

y
()x y ¢

(a) (b) (c)

(d) (e) (f)

(g)

X-NOR

Figure 1.1 Symbols used to Represent Elementary Gates

In fact, logic Gates are made from transistors. For example,
the following illustration contains information about NOT,

1.4 Computer Science & Information Technology for GATE

1.3 Boolean Theorems and Postulates

A set of rules formulated by the English mathemati-
cian George Boole describe certain propositions whose out-
come would be either true or false. With regard to digital
logic, these rules are used to describe circuits whose state
can be either, 1 (true) or 0 (false). In order to fully under-
stand this, the relation between AND gate, OR gate, and
NOT gate operations should be appreciated. A number of
rules can be derived from these relations such as:

P1: X = 0 or X = 1

P2: 0 . 0 = 0

P3: 1 + 1 = 1

P4: 0 + 0 = 0

P5: 1 . 1 = 1

P6: 1 . 0 = 0 . 1 = 0

P7: 1 + 0 = 0 + 1 = 1

The following is a list of basic Boolean laws proposed by
Bool and other scientists. Note that every law has two ex-
pressions, (a) and (b). This is known as duality. These are
obtained by changing every AND(.) to OR(+), every OR(+)
to AND(.) and all 1’s to 0’s and vice versa. It has become
conventional to drop the . (AND symbol), i.e. A.B is writ-
ten as AB.

Closure

If X and Y are in set (0, 1) then operations X + Y and X . Y
are also in set (0, 1)

T1 : Commutative Law

(a) A + B = B + A

(b) A B = B A

T2 : Associate Law

(a) (A + B) + C = A + (B + C)

(b) (A B) C = A (B C)

T3 : Distributive Law

(a) A (B + C) = A B + A C

(b) + (B C) = (A + B) (A + C)

T4 : Identity Law

(a) A + A = A

(b) A A = A

T5 :

(a) A B + AB =A

(b) (A+B) (A+ B) =A

T6 : Redundancy Law

(a) A + A B = A

(b) A (A + B) = A

T7 :

(a) 0 + A = A

(b) 0 A = 0

T8 :

(a) 1 + A = 1

(b) A = A

T9 :

(a) A A=0

(b) A + A=1

T10 :

(a) A+ A B=A+B

(b) A(A + B)=AB

T11 :De Morgan’s Theorem

(a) A B A B+() =

(b) AB A B() = +

That is, the following are equivalent circuits according to
De Morgan.

n Example Prove A+ A B = A + B

(1) Algebraically:

A + A B = A 1 + A B T7(a)

= A (1 + B) + A B T7(c)

= A |AB : A B T3(a)

= A + B (A + A) T3(a)

= A + B T(8)

(2) Using the truth table:

A B A+B A B A + A B

0 0 0 0 0

0 1 1 1 1

1 0 1 0 1

1 1 1 0 1

Using the laws given above, complicated expressions can be
simplified as:

Z = (A + B + C) (A + B C)

Z = AA + A B C + A B + B B C + A C + B C C

Z = A (1 + B C + B + C) + B C + B C C

from laws T8b and Tb

Z = A + B C from laws T8a, T8b and T9b.

Introductory Concepts of Digital Logic Design and Computer Architecture 1.5

1.3.1 Precedence Rules

In order to reduce the number of parentheses, we have the
following set of precedence rules that indicates which sub-
expression or operator to evaluate next:

Evaluate the expression inside a pair of parentheses.

Evaluate NOT

Evaluate AND

Evaluate OR

1.3.2 Evaluating Boolean Expressions

In general, the following rules must always be followed
when evaluating a Boolean expressions.

1. First, perform all inversions of single terms; that is, 0
= 1 or 1 = 0, including the ones in parenthesis also.

2. Then perform all operations within parentheses.

3. Perform an AND operation before an OR operation
unless parentheses indicate otherwise.

4. If an expression has a bar over it, perform the opera-
tions of the expression first and then invert the result.

n Example Precedence Rules Illustration using of expres-
sion NOT(1 OR 0) OR 1 AND 0

Step Expression Explanation

1 NOT(1 OR 0) OR
1 AND 0

1 OR 0 is inside the brackets, so eval-
uate it first. The result is 1, so replace
(1 OR 0) with 1.

2 = NOT(1) OR 1
AND 0

Evaluate the complement next.
NOT(1) = 0. Replace NOT(1) with 0.

3 = 0 OR 1 AND 0 Evaluate the product next. 1 AND 0
= 0. Replace 1 AND 0 with 0.

4 = 0 OR 0 Now, evaluate the sum. 0 OR 0 = 0,
so the result of the expression is 0.

5 = 0 We are done.

1.3.3 Special-output Gates

It is sometimes desirable to have a logic gate that provides

both inverted and non-inverted outputs. For example, a

single-input gate that is both a buffer and an inverter, with a

separate output terminal for each function. Or, a two-input

gate that provides both the AND and the NAND functions

in a single circuit. Such gates do exist and they are referred

to as complementary output gates.

The general symbolic notation for such a gate is the basic

gate figure with a bar and two output lines protruding from

it. An array of complementary gate symbols is shown in the

following illustration (Figure 1.2).

Complementary buffer

Complementary AND gate

Complementary OR gate

Complementary XOR gate

Figure 1.2 Complimentary Gates

Complementary gates are especially useful in “crowded”

circuits where there may not be enough physical room to

mount the additional integrated circuit chips necessary

to provide both inverted and non-inverted outputs using

standard gates and additional inverters. They are also useful

in applications where a complementary output is necessary

from a gate, but the addition of an inverter would intro-

duce an unwanted time lag in the inverted output relative to

the non-inverted output. The internal circuitry of comple-

mented gates is such that both inverted and non-inverted

outputs change state at almost exactly the same time.

It is possible to implement any logic expression using

only NAND gates and no other type of gate. This is because

NAND gates, in the proper combination, can be used to

perform each of the Boolean operations OR, AND, and IN-
VERT.

X = (A*A) = A¢ ¢

(AB)¢
X = AB

X = (A B) = A+B¢ ¢

A

B

A

B

A

INVERTER

A

A

B

A

B

A

B

¢

¢

AND

OR

Figure 1.3 Realising basic Gates using NAND Gates

In a similar manner, it can be shown that NOR gates can be
arranged to implement any of the Boolean operations.

1.6 Computer Science & Information Technology for GATE

X = A+B

A

B

A

B

A

INVERTER

AND

OR

A X = (A+A) = A¢ ¢

(A+B)¢

A

B

¢

¢

A

B

A

B

X = (A +B) = AB¢ ¢

Figure 1.4 Realising basic Gates using NOR Gates

Alternate Logic Gate Representations

The following illustration shows the standard symbol for
each logic gate, and the right side shows the alternate sym-
bol. The alternate symbol for each gate is obtained from the
standard symbol by doing the following:

1. Invert each input and output of the standard symbol.
This is done by adding bubbles (small circles) on in-
put and output lines that do not have bubbles, and by
removing bubbles that are already there.

2. Change the operation symbol from AND to OR, or
from OR to AND. (In the special case of the INVERT-
ER, the operation symbol is not changed.)

AND

OR

NAND

NOR

INVERTER

A

B

A

B

A

B

A A¢

AB = (A+B)¢ ¢

A +B = (AB)¢ ¢ ¢

(A B = (A+B)¢ ¢)

(A +B = (AB)¢ ¢)A

B

A

B

A

B

A

B

AB

A+B

(AB)¢

(A+B)¢

A¢A

Figure 1.5 Alternate logic gates

Several points should be considered regarding the logic
symbol equivalences:

1. The equivalences are valid for gates with any number
of inputs.

2. None of the standard symbols have bubbles on their
inputs, and all the alternate symbols do.

3. The standard and alternate symbols for each gate rep-
resent the same physical circuit: there is no difference
in the circuits represented by the two symbols.

4. NAND and NOR gates are inverting gates, and so
both the standard and alternate symbols for each will
have a bubble on either the input or the output. AND
and OR gates are non-inverting gates, and so the al-
ternate symbols for each will have bubbles on both
inputs and output.

Note

Negative-OR gate function is an OR gate with all its inputs
(A, B) inverted. This is equivalent to NAND of A, B. Neg-
ative-AND gate function is an AND gate with all its inputs
(A, B) inverted. This gate is equivalent to NOR. See above
figures.

n Example Half Adder Circuit

The main objective of this circuit is to add two binary bits

together to give us a SUM and a CARRY. It is known as

a half adder because it only does half the job. That is, it

can generate a carry to the next column, but it cannot use

(bring in) a carry from the previous column. Thus, its name

is half-adder. Truth table for the same can be given as:

A B Sum Carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

If one observes the Sum column in the above table, we can
find that Sum is same as A Exclusive OR B. Similarly, if we
observe the Carry column in the above table, we may find
Carry is same as A AND B. Thus, the half-adder circuit can
be drawn as:

SUM

AND

ZOR

0

1

0

1

CARRY

n Example Full Adder Circuit

Unlike half-adder, a full adder adds two binary numbers

(A,B) together and includes provision for a carry in bit

(Cin) and a carry out bit (Cout). That is, it can use carry bit

previous position and given carry out to the next position

in the binary additions. The truth table for a full adder is:

Introductory Concepts of Digital Logic Design and Computer Architecture 1.7

A B Cin Cout Sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

By considering the 1s in the Cout and Sum columns in the
above table, we can write Boolean equations for Sum and
Cout in Sum of Products form as:

Sum= A B Cin + A BCin + AB C in + ABCin

Cout= A BC in + ABC in + ABCin + ABCin

The resulting circuit can be given below.

Sum

AA

B

B Cin

Cin Cout

A

B

Cin

A
B Cin

We can also create a full-adder by using two half adders as
shown in this figure.

SUM

XOR

AND

CARRY
OUTOR

AND

CARRY IN XOR

0

1

0

1

In the above circuit, first half adder works on the two data
bits giving Sum and Carry. The resulting Sum and Cin are
applied to next half adder circuit. The carry results of both
the half adders are ended to get Cout.

We can link together 3-bit full adder circuits to give us the

ability to add together two 3-bit numbers.

SUM0

SUM1

SUM2

Carry Out

Carry in

A0

B0

A1

B1

A2

B2

Ripple

Down

Carry

This is a simplification, modern computers use a technique
known as ‘look-ahead-carry’ in order to predict the carry
states, rather than waiting for the carry’s to ‘ripple down’
through the adder.

1.3.4 Substituting one type of gate for another

Logic gates are available on ICs which usually contain
several gates of the same type, for example four 2-input
NAND gates or three 3-input NAND gates. This can be
wasteful if only a few gates are required unless they are
all the same type. To avoid using too many ICs you can
reduce the number of gate inputs or substitute one type of
gate for another.

1.3.5 Reducing the number of inputs

The number of inputs to a gate can be reduced by connect-
ing two (or more) inputs together. Figure 1.6 shows a 3-in-
put AND gate operating as a 2-input AND gate.

Figure 1.6 Reducing number of inputs

1.3.6 Making a NOT gate from a NAND or NOR
gate

Reducing a NAND or NOR gate to just one input creates
a NOT gate. Figure 1.7 shows this for a 3-input NAND
gate.

Figure 1.7 Realising a NOT gate using NAND

1.8 Computer Science & Information Technology for GATE

1.3.7 Building any Gate can be built from NAND
or NOR gates

As well as making a NOT gate, NAND or NOR gates can be
combined to create any type of gate! This enables a circuit
to be built from just one type of gate, either NAND or NOR.
For example an AND gate is a NAND gate then a NOT gate
(to undo the inverting function). Note that AND and OR
gates cannot be used to create other gates because they lack
the inverting (NOT) function.
To change the type of gate, such as changing OR to AND,
you must do three things:

Invert (NOT) each input.

Change the gate type (OR to AND, or AND to OR)

Invert (NOT) the output.

For example an OR gate can be built from NOTed inputs
fed into a NAND (AND + NOT) gate.

n Example Draw logic diagram which uses only NOR
gates to realize NAND. Also, explain the Boolean math-
ematical explanation for the same.

n Answer: We know 2-input NAND is referred to X=(AB)’

= A’ + B’
If we use the theorem A+A = A, then the above equation
becomes:

= (A+A)’ + (B+B)’
Also, we know A’=(A+A)’. Thus, we take ((X)’)’. Thus, the
equation becomes:

= (((A+A)’ + (B+B)’)’)’
This can be shown in the following fashion.

A

B

1.4 Positive Logic and Negative Logic

The terms positive logic and negative logic refer to two con-

ventions that dictate the relationship between logical values

and the physical voltages used to represent them. In posi-

tive logic notation, we consider high voltage is considered

as logic 1 (or true) while low voltage as logic 0 (or false).

Whereas in the case of negative logic notation, low volt-

age is considered as logic 1 (or true) while high voltage as

logic 0 (or false). In fact, in the positive logic convention,

the more positive potential is considered to represent True

and the more negative potential is considered to represent

False (hence, positive logic is also known as positive-true).

By comparison, using the negative logic convention, the

more negative potential is considered to represent True and

the more positive potential is considered to represent False

(hence, negative logic is also known as negative-true). No

doubt that positive logic is the more intuitive as it is easy to

relate logic 0 to 0V (zero or “no volts”) and logic 1 to +ve

(the presence of volts or “yes volts”). On this basis, one may

wonder why negative logic was ever invented. The answer

to this is, as are so many things, rooted in history. When

the MOSFET technology was originally developed, PMOS

transistors were easier to manufacture and were more reli-

able than their NMOS counterparts. Thus, the majority of

early MOSFET-based logic gates were constructed from

combinations of PMOS transistors and resistors. Circuits

constructed using the original PMOS transistors typical-

ly made use of a negative power supply (that is, a power

supply with a 0V terminal and a negative (–ve) terminal).

With PMOS transistors, an input connected to the more

positive Vss turns that transistor “off ”, and an input con-

nected to the more negative potential Vdd turns that tran-

sistor “on”. Once again, the final step is to define the map-

ping between the physical and abstract worlds; either 0v is

mapped to false and –ve is mapped to True, or vice versa.

Thus, negative logic is arrived into picture. Do remember

that positive logic systems 1 is called as active high while 0

as active low.

n Example Why one has to minimise Boolean equations?
The goal of logic expression minimisation is to find an
equivalent of an original logic expression that has fewer
variables per term, has fewer terms and needs less logic
gates to implement. That is, to reduce number of gates such
that the circuit may becomes cheap, consumes less power
and increases its speed.

n Example Complete the following timing diagram. As-
sume that A and B are inputs to a NAND gate,
while X is the output.

n Answer : We know NAND gate output is zero if both of
its inputs are 1s, otherwise its output is 1. Based on this, X
is drawn as shown below.

A

B

X

n Example Complete the timing diagram on the right
based on the gate-level schematic given in the left of the
following figure. Assume the following gate delays: tNAND

= 5 ns, tOR = 20 ns, tAND = 10 ns. Indicate if there are any
false outputs.

Introductory Concepts of Digital Logic Design and Computer Architecture 1.9

Z

Y20

1x

x

y
1

y
2

Z

0 10 20 30 40 50 t ns()

Y1
15 ns

25 ns

n Answer: According to the Boolean equation:

= 0

The output should always be 0. However, due to the differ-
ence in timing between the two paths from X to Z, we get a
false output from t = 25 ns to t = 40 ns.

n Example Implement the Boolean expression A ≈ B ≈
C using two half-adders.

n Answer: We know half adder contains two outputs
S (sum) and Cout (Carry out). Truth table for the Boolean
expression A ≈ B ≈ C is given as:

ABC A ≈ B ≈ C

000 0

001 1

010 1

011 0

100 1

101 0

110 0

111 1

The following circuit with half adders give us the required
output as shown in the truth table.

S (Sum)

Carry

A

B

C

Carry

A B C+ +

n Example Implement the function (AB) ≈ C using two
half adders.

n Answer: First, we shall prepare truth table for (AB) ≈ C

ABC AB (AB) ≈ C

000 0 0

001 0 1

ABC AB (AB) ≈ C

010 0 0

011 0 1

100 0 0

101 0 1

110 1 1

111 1 0

This can be achieved through half adders by adding Carry
line first half adder as first input to second half adder as
shown in the following figure.

Carry

S (Sum)

Carry

(AB) C+A

B

C

n Example The following circuit is proposed to test
whether the given four inputs are 0s or not. Explain its
functionality.

n Answer: The circuit is supposed give 1 if all of its four in-
puts are 0; otherwise it has to give 0. The inputs are comple-
mented and fed to first level AND gates whose outputs are
further fed to second level AND gate. If all the four inputs
are 0s then outputs of first level AND gates will be 1. Thus,
finally second level AND gate gives 1. In all other situa-
tions, final output of the circuit will be zero.

A3
A2

A1
A0

n Example Explain the functionality of the following cir-
cuit. It is proposed to check whether all if inputs are 1s or
not. Will it satisfy the requirement?.

n Answer: The circuit is organized in three levels. In first
level, we have NAND gates while in the second third levels
we find AND gates. First level NAND gates gives 0s if both
of their inputs are 1s. These outputs are complemented be-
fore passing through second level AND gates. Thus, second
level AND gates gives 1s only when if all the eight inputs to
the circuit are 1s. Thus, the find AND gate gives 1 when all
the eight inputs of the circuit are 1s else gives 0.

A3

A7

A6

A5
A4

A2

A1

A0

allones

1.10 Computer Science & Information Technology for GATE

n Example The following circuit is proposed as another
alternative circuit for checking for all 1s. Verify its func-
tionality. Which is better?

A3

A6
A5
A4

A2
A1
A0

allones

A7

n Answer: If one verifies, it can also serve the objective.
However, this circuit needs more NOT gates and propaga-
tion delay is more compared to the previous one. Thus, the

previous solution is preferred.

n Example Two four bit binary numbers A3A2A1A0 and
B3B2B1B0 are fed to the following circuit as shown below to
check their equality. Does the given circuit will satisfy the
objective? Explain. Also, what happens if exclusive-NOR
gates are substitutes with exclusive-OR gates?

B3
A3

B2
A2

B1
A1

B0
A0

n Answer: If we observe the circuit, we may not find exclu-
sive-NOR gates in the first level for which respective bits
of both the numbers are fed. Only if both the bits are same
then exclusive-NOR gates gives 1 as their output. The sec-
ond level AND gates gives 1 if all of its inputs are 1s. That
is, if all the respective bits of both the numbers are same,
AND gate output will be 1 otherwise 0. That is, if both the
numbers are same then the circuit output will be 1, else out-
put will be 0.

If we replace exclusive-NOR gates with XOR, we get out-
put 1 if both the inputs are opposite. That is, if both the
given numbers are complements to each other (like 0101
and 1010) we get output as 1, else output will be 0.

n Example The following circuit is proposed to check the
equality of two numbers. Assume carry in is 1 to the circuit
and the first numbers complement is fed into the full ad-
ders. Explain its functionality. Also, support the statement
that carry out of last adder can be used to test A<B.

n Answer: To check the equality, we can calculate B – A
and if it is 0, we can say that A is same as B, else not. We
know in Boolean algebra, B – A = B +(–A). Also, –A can
be calculated by complementing A’s bits and adding 1 to it.
Thus, the circuit takes carry in as 1 while A’s bits are com-

plemented using NOT gates as shown in the circuit. If both
the numbers are same, sum lines of each of the FA will be 0.
Thus, sum lines are complemented before sending to AND
gate. If both the numbers are exactly same, output will be 1
else it gives 1.

s s s s

(1)Carry in

Carry out

A3 B3 A2 B2 A1 B1 A0 B0

FA FA FA FA

Carry out of last FA will be 1 if A is less than B, otherwise
it will be 0.

n Example The following circuit is proposed to check
whether a four bit number A is greater than or equal to an-
other four bit number B. Explore whether it works or not.

n Answer: It will not work. We have replace NOR gate with
OR gate to get the required output.

s s s s

A3 B3 A2 B2 A1 B1 A0 B0

FA FA FA FA

n Example An experimental, single passenger automo-
bile system is to be designed that will sound an alarm under
certain conditions. The alarm is to sound if the seat belt is
not fastened and the engine is running, or if the lights are
left on when the key is not in the ignition, or if the engine is
running, and the door is open.

Determine the number of inputs and outputs, and assign
meaningful names to them. For example, one can chose an
input variable called seatbelt to indicate whether the seat
belt is fastened or not. We can then make the arbitrary de-
cision to let a (logic) 1 mean that the seatbelt is fastened; a
(logic) 0 would obviously mean that the seatbelt is not fas-
tened. List all of the input/output combinations in a single
truth table.

n Answer: We propose to take the following Boolean vari-
ables and their possible values.

seatbelt: To indicate whether seatbelt is fastened (1) or
not (0).

Ignition: To indicate whether engine is ON(1) or Off (0).

Lights: To indicate whether lights are ON(1) or Off (0).

Door: To indicate whether door is closed (1) or not(0).

Alarm: To give sound (1) or not (0).

Introductory Concepts of Digital Logic Design and Computer Architecture 1.11

Except Alarm, all other variables are input variables. Thus,
we will be having 16 possibilities.

Seatbelt 1 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1

Ignition 1 0 1 1 1 1 0 0 1 1 0 0 1 0 0 0

Lights 0 1 0 0 1 1 1 1 1 0 0 0 1 0 1 0

Door 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 0

Alarm 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0

n Example Parity bit is used to detect single bit error. A
typical example is character transmission, in which a parity
bit is attached to a 7 bit character, the value of this bit is se-
lected so that the character has an even number of 1’s (even
parity) or an odd number of 1’s (odd parity). That is, in even
parity approach parity bit is taken as 1 if the data contains
odd number of 1s, otherwise parity bit value is taken as 0.
Where as in the case of odd parity approach, parity bit value
is taken as 1 if the data contains even number of 1s, other-
wise parity bit value is taken as 0. The following circuit is
proposed to such that if there is any error in transmission,
i.e., any data bits gets spoiled the circuit will generate 1, oth-
erwise it generates 0. We assume data bits are D1 to D6 and
parity bit is D7. Validate its suitability for this application.

D0
D1

D2

D7

n Answer:

Data Data + Parity bit Circuit output as-
suming column 2
data is fed into the
circuit.

1001111 1001111 1 (Even Parity) 0

1001011 1001011 0 (Even Parity) 0

1001111 1001111 0 (Odd Parity) 1

1001011 1001011 1 (Odd Parity) 1

Assume a single data bit is
spoiled as shown below.

Circuit output assum-
ing column 2 data is
fed into the circuit.

10 1 11111-(Even Parity) 1

10 1 10110-(Even Parity) 1

10 1 11110-(Odd Parity) 0

10 1 10111-(Odd Parity) 0

From the above table, we can conclude that the circuit can-
not be useful for error detection for both even and odd
parity approaches. If the approach is even parity and then
single data bit error gives raise 1 as output. If the approach
is odd, single data bit error raises 0.

n Example Prepare truth table for the following circuit
and give a statement about its functionality.

A0

A1

A2

n Answer: By observing the following truth table, we can
say that it gives one if the number ones in the given input
are 1 or 3. That is, it works like odd function.

A0A1A2 1st

gate
2nd

level
top
gate

2nd

level
bot-
tom
gate

3rd

level
gate

4th
level
gate

5th

level
top
gate

5th

level
bot-
tom
gate

Out-
put

(final
gate)

000 1 1 1 0 1 1 1 0

001 1 1 1 0 1 1 0 1

010 1 1 0 1 1 0 1 1

011 1 1 0 1 0 1 1 0

100 1 0 1 1 1 0 1 1

101 1 0 1 1 0 1 1 0

110 0 0 0 1 1 0 1 0

111 0 0 0 1 0 1 1 1

n Example Prove that the following circuit is same as
NOT of a (negation of Boolean variable a), that is F(a,b)=a’.

a

b
F

n Answer: If we write F in Boolean equation, F = a’b’ + a’b.
If we take a’ common, F becomes a’(b + b’). We know (b +
b’) is one. Therefore, F(a,b)= a’.

n Example Compare whether the following two circuits
are equivalent or not.

1.12 Computer Science & Information Technology for GATE

A
B

C

D
E
F

A
B

C

D

E

F

n Example Draw timing diagram for function F given

F=(A+B)’C. Neglect gate delays. Timing information of A,

B, and C are given in the figure. Draw F in the same dia-

gram.

n Answer: The following figure contains timing informa-

tion about F.

A

B

C

F

n Example Prove A[AB + C(D’ + A) + B] is equal to

AB+AC.

n Answer:

= A[AB + CD’ + AC + B]

= AB + ACD’ + AC + AB

= AB + AC(D’+1)+AB

As, AB is repeated and D’+1 is 1, the final equation be-

comes:

AB + AC

Therefore, the relation is proved.

1.5 Simplification of Digital Circuits

Boolean algebra finds its most practical use in the simplifi-
cation of logic circuits. If we translate a logic circuit’s func-
tion into symbolic (Boolean) form, and apply certain alge-
braic rules to the resulting equation to reduce the number
of terms and/or arithmetic operations, the simplified equa-
tion may be translated back into circuit form for a logic cir-
cuit performing the same function with fewer components.
If equivalent function may be achieved with fewer compo-
nents, the result will be increased reliability and decreased
cost of manufacture. Also, response time of the circuits be-
comes attractive in addition to other benefits such as ease
of packaging, lower power consumption etc. Circuit mini-
misation is often called as circuit optimisation also. How-
ever, we believe circuit optimisation is a little broader term.
However, minimising the number gates is eternal interests
for circuit designers and considered as integral part of cir-
cuit minimisation.
Circuit minimisation in a nutshell may lead to

Reduction in number of literals (gate inputs)

Reduction in number of gates

Reduction number of levels of gates

Fewer inputs imply faster gates in some technologies. Also,
fan-ins (number of gate inputs) are limited in some tech-
nologies. Fewer levels of gates imply reduced signal propa-
gation delays. Consider the following two alternate circuits
for a function Y.

A

B

C

C

A
Y

5ns

7ns

2ns

7ns

2ns

5ns

Truth table for both the circuits is given below. We may find
that both are equivalents.

A B C C’ AC (B + C)’ Y (first
circuit)

Y (second
circuit)

0 0 0 1 0 1 0 0

0 0 1 0 0 0 1 1

0 1 0 1 0 0 0 0

0 1 1 0 0 0 1 1

1 0 0 1 0 1 0 0

1 0 1 0 0 0 1 1

1 1 0 1 1 0 0 0

1 1 1 0 1 0 0 0

In both the circuit figures, we have given possible delays
with each of the gates. Thus, worst possible delay in the first
one (via B-Y) is 14ns whereas in the second circuit it is 7ns.

Introductory Concepts of Digital Logic Design and Computer Architecture 1.13

Thus, second circuit is preferred over first one. Also, sec-
ond one contains less number of gates compared to the first
one. As mentioned earlier, one of the objective of the circuit
minimisation includes reducing the delays in the circuit
such that the response times of circuits becomes better.

n Example Look at the following circuit. Assume each
gate delay including NOT gate also t units. Find out the
possible delay of the circuit.

A
B

C

D
E

F

n Answer: 6t

1.5.1 Minterms and maxterms

In Boolean algebra, any Boolean function can be expressed
in a canonical form using the dual concepts of mint-
erms and maxterms. Minterms are called products because
they are the logical AND of a set of variables, and max-
terms are called sums because they are the logical OR of a set
of variables. These concepts are called duals because of their
complementary-symmetry relationship as expressed by De
Morgan›s laws. The dual canonical forms of any Boolean
function are a “sum of minterms” and a “product of max-
terms.” The term “Sum of Products” or “SoP” is widely
used for the canonical form that is a disjunction (OR) of
minterms. Its De Morgan dual is a “Product of Sums” or
“PoS” for the canonical form that is a conjunction (AND)
of maxterms. These forms allow us for greater analysis into
the simplification of these functions, which is of great im-
portance in the minimisation or other optimisation of digi-
tal circuits.

For a Boolean function of n variables, a product term
in which each of the n variables appears once (in either
its complemented or un-complemented form) is called a
minterm. Thus, a minterm is a logical expression of n vari-
ables that employs only the complement operator and the
conjunction operator. There are 2n minterms of n variables,
since a variable in the minterm expression can be in either
its direct (prime) or its complemented form(non-prime)-
two choices per n variables.

Indexing minterms

In general, one assigns each minterm an index based on a
conventional binary encoding of the complementation pat-
tern of the variables (where the variables in all the mint-

erms are written in the same order, usually alphabetical).
This convention assigns the value 1 to the direct form (xi)
and 0 to the complemented form (x’i). For example, we as-
sign the index 6 to the minterm ABC’ (110) and denote that
minterm as m6. Similarly, m0 of the same three variables
is A’B’C’ (000), and m7 is ABC (111). Given minterm
number in decimal, we can find the minterm. For example,
in a 4 variable system minterm m14 can be said as ABCD’
(14s binary code is 1110, thus A, B, C are taken in direct
form while D is taken as in complement form).

Maxterms

Similar to minterms, in a Boolean function of n variables,
a sum term in which each of the n variables appears once
(in either its complemented or un-complemented form) is
called a maxterm. Thus, a maxterm is a logical expression
of n variables that employs only the complement operator
and the disjunction operator. Maxterms are a dual of the
minterm idea (i.e., exhibiting a complementary symmetry
in all respects). Instead of using ANDs and complements,
we use ORs and complements and proceed similarly.

There are again 2n maxterms of n variables, since a vari-
able in the maxterm expression can also be in either its di-
rect or its complemented form-two choices per n variables.

Indexing maxterms

Each maxterm is assigned an index based on the oppo-
site conventional binary encoding used for minterms. The
maxterm convention assigns the value 0 to the direct form
(A) and 1 to the complemented form (A’). For example, we
assign the index 6 to the maxterm A’ + B’ + C (110) and
denote that maxterm as M6. Similarly M0 of these three
variables is A + B + C (000) and M7 is A’ + B’ + C’ (111).

Tables 1.2 (a) and (b) contain minterms and maxterms
of a three variable system with Boolean variables being A,
B and C.

Tables 1.2 (a)

A B C Minterm Maxterm

0 0 0 A¢B¢C¢ A+B+C

0 0 1 A¢B¢C A+B+C’

0 1 0 A¢B C¢’ A+B’+C

0 1 1 A¢BC A+B’+C’

Tables 1.2 (b)

1 0 0 AB¢C¢ A’+B+C

1 0 1 AB¢C A’+B+C’

1 1 0 ABC¢ A’+B’+C

1 1 1 ABC A’+B’+C’

1.14 Computer Science & Information Technology for GATE

n Example Consider the following two representations
of a Boolean equation. Discuss which is better in terms of
propagation delay and number of levels.

Z = (A+B’)C+A’BC’ (1)

Z = AC+B’C+A’BC’ (2)

n Answer: If we observe the first version, we may find that
the circuit will be in four levels with:

1. NOT gates of A,B, and C (First Level)

2. A+B’ in second level.

3. Product terms in the third level.

4. Final level contains sum term (OR gate).

Whereas the second version may need only three levels
given as:

1. NOT gates of A,B, and C (First Level)

2. Product terms in the third level.

3. Final level contains sum term (OR gate).

Thus, the second version may give less propagation delay.

1.5.2 Karnaugh maps

In the previous sections, we have seen that applying Bool-
ean algebra postulates can be awkward in order to simplify
Boolean expressions. Apart from being laborious (and re-
quiring the remembering of all the laws) the method can
lead to solutions which, though they appear minimal, are
not. Also, there is no guaranty that everyone gets the same
final simplified form as there is no any strict procedure that
has to be employed by all. Karnaugh Map builds this gap
by giving a uniform procedure for simplifying the Boolean
equations or logic circuits. In essence, in Karnaugh Map
based Boolean equation simplification we use a systematic
graphic oriented solution.

The Karnaugh map provides a simple and straight-for-
ward method of minimising Boolean expressions. With
the Karnaugh map, Boolean expressions having up to four
and even six variables can be simplified. Instead of using
Boolean algebra simplification techniques, we can transfer
logic values from a Boolean statement or a truth table into
a Karnaugh map. The arrangement of 0’s and 1’s within the
map helps us to visualise the logic relationships between
the variables and leads directly to a simplified Boolean
statement. Karnaugh maps, or K-maps, are often used to
simplify logic problems with 2, 3, 4 or 5 variables.

A Karnaugh map provides a pictorial method of group-
ing together expressions with common factors and there-
fore eliminating unwanted variables. The Karnaugh map
can also be described as a special arrangement of a truth
table. Fig. 1.8 illustrates the correspondence between the
Karnaugh map and the truth table for the general case of
a two variable problem. In the following figure, left side is

truth table while the right side part is its Karnaugh map.
Here, the output variable F is function of input variable
A and B. In practice, we will be drawing Karnaugh maps
for each of the output variables. In our example, only F is
the output variable, thus Karnaugh map for F is shown in
Fig. 1.8.

A
B 0

0

1

b

dc

A B F

0

0

1

1

0

1

0

1

a

b

c

d 1

a

Figure 1.8 Karnaugh Map for F

The values inside the squares are copied from the output
column (F) of the truth table, therefore there is one square
in the map for every row in the truth table. Around the edge
of the Karnaugh map are the values of the two input vari-
able. A is along the top and B is down the left hand side. We
can reverse this order also. That is, we can make A as along
column while B along row.

Two variable Karnaugh maps are trivial but can be used
to introduce the concept behind Karnaugh map based Bool-
ean circuit simplification. For example, the Karnaugh map
for a 2-input OR gate looks as shown in Fig. 1.9. We may find
truth table and respective Karnaugh Map for OR gate.

A

B 0

0

1

1

11

A + B

A B F

0

0

1

1

0

1

0

1

0

1

1

1

Truth Table

output

OR 1

Figure 1.9 Karnaugh Map for a 2-input OR gate

As explained earlier, the values of one Boolean variable (A)
appear across the top of the map, defining the column val-
ues of K-Map, while the values of the other Boolean vari-
able (B) appear at the side, defining the values of the vari-
able in each row of Karnaugh map. The Karnaugh map for
the OR gate is completed by entering a ‘1’ in each of the
appropriate cells. Usually, we don’t write in the ‘0’s’.

Most important step in K-Map approach is identifying
groups of 1s in the K-Map. That is, within the map, adjacent
cells containing 1’s are grouped together in twos, fours, or
eights. In this case, there is one horizontal and on verti-
cal group of two. We indicate these groupings by drawing
a circle round each group of 1s. We may allow overlapped
groups also. To extent possible, we will try to see every cell
having 1 will be in at least in one group. In the final step, for

Introductory Concepts of Digital Logic Design and Computer Architecture 1.15

each group, we derive (straightly write from the graphical
arrangements of 1s in that group) a Boolean equation in its
minimal form.

For example, in the above K-Map, the horizontal group
can be made corresponds to a B value of 1. That is, we take
B into our final simplified Boolean equation. How do we
achieve this and what is the background behind this is the
lacuna here.

In the left hand cell of this horizontal group of 1s, A=0
and in the right hand cell, A=1. In other words, the value
of A does not affect the outcome of the Boolean expression
for these cells. Graphically, we can even say that half (one)
of this group of cells are in A and remaining are in A’. Thus,
A will not appear in final Boolean equation. Whereas all
the elements of this group are in B (see K-Map). Thus, B
appears in the final simplified Boolean equation. As this is
a two variable system, minterm is supposed to have at most
two variables or literals. However, the simplified Boolean
term related to this group can be taken as B from the above
discussion. This can be explained or proved algebraically as
follows. Consider Boolean expression for these two cells of
this group: A’B+AB

By taking B as a common term from each term, this re-
duces to:

= B (A’+A)
We know A’+A is 1. Thus, final equation becomes: B
In a similar way, the vertical group could have been written
as: AB’+AB.
From the map, we can see that the value of B does not affect
the value written in the cells for this group. In other words,
the vertical group reduces to:
A

In this way, the Karnaugh map above leads to the overall
expression for F as A + B, which is Boolean OR of A and B.

Of course, this is not very exciting but if we apply the
same method to a more complex logic problem, we will
begin to understand and appreciate how Karnaugh maps
lead to simpler Boolean equations. We shall further explore
about this in the next sections.

1.5.2.1 Exploiting Graphically Logical Adjacency:
The basis for Karnaugh Map

In the previous section, we have used Logical adjacency as
the basis for all Boolean simplification. In a nutshell, the
facility of the K-Map approach is that it transforms logi-
cal adjacency into physical adjacency so that simplifications
can be done by inspection of K-Map graph which we can
call as graphical simplification.

To further understand the idea of logical adjacency, we
would like to recollect two simplifications based on the fun-
damental properties of Boolean algebra. For any Boolean
variables X and Y:

X Y + X Y’ = X (Y + Y’) = X 1 = X

(X + Y) (X + Y’) = X X + X Y’ + Y X +Y Y’

= X X + X Y’ + X Y +0

= X + X (Y’ + Y) = X + X = X

Two Boolean terms are said to be logically adjacent when
they contain the same Boolean variables and differ in the
form of exactly one variable i.e., one variable will appear
negated in one term and in true form in the other term and
all other variables have the same appearance in both terms.
Consider the following lists of terms, the first in 1 variable
and the others are having two variables.

X X’

(X + Y) (X + Y’) (X’ + Y’) (X’ + Y)

The terms in the first list are easily seen to be logically ad-
jacent (also physically when represented in K-Map). The
first term has a single variable in the true form and the
next has the same variable in the negated form.

We now examine the second list, which is a list of prod-
uct terms each with two variables. Note that each of the
terms differs from the term following it in exactly one vari-

-

10, 00, 01.
The third list also displays logical adjacencies in its se-

quence: (X + Y) is logically adjacent to (X + Y’), which is
logically adjacent to (X’ + Y’), which is logically adjacent to
(X’ + Y). Using POS (product of sums) notation, we repre-
sent this list as 00, 01, 11, 10.

Consider the list of product terms when written in the
more usual sequence

(sum of products) notation.
In viewing this list, we can see that the first term is logi-

cally adjacent to the second term, but that the second term

differ in two variables. This type of conclusions can be also
arrived at by viewing the numeric list 00, 01, 10, and 11
which are binary equivalents of Boolean terms. Note that
each of the digits in 01 and 10 is different, so that 01 and 10
can’t represent logically adjacent terms.

n Example Is it possible to say that two terms are logi-
cally adjacent if their Hamming distance is 1?

1.16 Computer Science & Information Technology for GATE

1.5.2.2 Karnaugh Maps for 2, 3, and 4 variables

K-Maps with 5 or more variables are hopelessly complex
to display graphically. The following figure shows the ba-
sic K-Maps for 2, 3, and 4 variables. Note that there are
two equivalent forms of the 3-variable K-Map; the student
should pick one style and use it. We have already explained
how K-Map is formed from the truth table of a Boolean
equation.

X

Y
0

1

0 1
X

Y Z

00

01

11

10

0 1

XY

Z 00 01 11 10

0

1

WX
YZ

00

01

11

10

00 01 11 10

One way to view a K-Map is as a truth-table with the main
exception of the ordering 00, 01, 11, 10. For those inter-
ested, this ordering is called a Gray code. This ordering is
used for ease of graphical simplification.

X Y Z F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

XY
00 01 11 10

0

1

Z

0 0 1 0

0 1 1 1

XY
00 01 11 10

1

1 1 1

Z

0

1

0 0 0

0

XY

Z

0

1

00 01 11 10

In our previous explanation, we have mentioned that the
cells with 1s are usually displayed in K-Map. However, in
practice we can represent the same in other forms also. For

example, the above three K-Map forms are equivalent. In
the first one, we have displayed both 1s and 0s of the truth
table, second one displays only 1s of the truth table, while
the third one displays 0s of the truth table.

The K-Map form omitting the 0’s is used when simplify-
ing SOP expressions, while simplifying POS expression, we
use K-Map for that omits the 1’s.

Note

K-Maps are used to simplify Boolean expressions written
in canonical form.

1.5.3 K-Maps for Sum of Products (SOP)

The first step in using K-Maps to simplify this expression is
to use the SOP numbering to represent these as 0’s and 1’s.
The negated variable is written as a 0, the plain as a 1. Thus,
this function is represented as 011, 101, 110, and 111.

XY
00 01 11 10

1

1 1 1

Z

0

1

Place a 1 in each of the squares with the “coordinates” given
in the list above. In the K-Map at left, the entry in the top
row corresponds to 110 and the entries in the bottom row
correspond to 011, 111, and 101 respectively. Remember
that we do not write the 0’s when we are simplifying expres-
sions in SOP form.

The next step is to notice the physical adjacencies. We
group adjacent 1’s into “rectangular” groupings of 2, 4, or 8
boxes. Here there are no groupings of 4 boxes in the form
or a rectangle, so we group by two’s. There are three such
groupings, labeled A, B, and C (see figure below).

XY
00 01 11 10

1

1 1 1

Z

0

1

A

B
C

The grouping labeled A represents the product term XY as
all the cells of this group are in X and Y. We may find Z term
is missing as half of the cells are in Z and remaining half are
in Z’. Similarly, the B group can be said as representing the
product term YZ while the C group cells representing the

Introductory Concepts of Digital Logic Design and Computer Architecture 1.17

product term XZ. Thus, final simplified Boolean function

Summary of points while simplifying Boolean equations
using K Map

1. Prepare K-Map table from the Boolean equation or
truth table.

2. Only groups of 1’s are selected during simplification
process.

3. Group (block) of 1s (diagonals are not selected).

4. Only groups of cells with number of cells that are in-
teger power of 2 are selected. That is, a group of 1, 2,
4, 8, 16, etc., are selected.

5. Groups (blocks) should be as large as possible.

6. Every 1 must be in at least one group (block).

7. Overlapping of groups is allowed.

8. Wrap around allowed while groups 1s.

9. Fewest number of groups (blocks) that embodies all
1’s in the K-Map is selected. This selected group’s de-
cides the minimal Boolean equation.

10. If we have m variables then we will be having 2m cells
in K-Map. Thus, largest possible group contains 2m

cells only.

11. In a K-Map with 2m cells, if selected group contains 2d

cells then the corresponding simplified Boolean prod-
uct term related to this group contains m-d variables.
While finding which variables will be there in the mi-
nimised Boolean term we follow the following rules.
If all 1s of a group are in column (or row) of input
variable A (or A’), we take A into minimised Bool-
ean expression. This, we apply for each of the input
variables and thus final simplified Boolean equation
for a group if framed graphically. This is the basis for
K-Map method. For example, consider Fig. 1.10 in
which groups of 1s are marked with circles. First, con-
sider bottom left most circle whose 1s are completely
in a and c. Thus, we take Boolean equation ac. Simi-
larly, the bottom right most 1s are completely in a and
b. Thus, we consider ab against this group. In the same
fashion, we can take term bc against another group of
1s of the figure. Thus, final simplified equation for this
K-Map table is: ac + ab +bc.

bc
00 01 11 10

1

1 1 1

a

0

1a

b

c

Figure 1.10 Grouping is in 3-input Karnaugh Map

n Example Simplify A B AB A B+ +

A

B

B

A

n Answer:

Place a check in the A B area.

Place a check in the A B area.

Place a check in the A B area.

Draw loops around pairs of adjacent checks.

Because there are two blocks of 1s, there will be two terms

in the simplified expression. The vertical loop contains A

, B, A , and B . We remove one A to make an undupli-

cated list. The B and B cancel, leaving the remaining A .

From the horizontal loop we remove the duplicate B , then

remove A and A leaving only B in the second term. We

write the Boolean sum of these, and the result is A B+ .

Thus, AB AB AB A B+ + = +

n Example Here is the truth table for a 3-person majority
voting system:

C B A Output

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

This is converted into a Karnaugh map, as follows:

BA

00 01 11 10C

0

1

1

11

A.C A.B B.C+ +

Within the K-map, we can identify three groups of two,
as indicated. The left hand horizontal group combines the

1.18 Computer Science & Information Technology for GATE

cells AB’C and A.B.C. Within this group, the value of B
does not affect the cell values. This means that B can be
eliminated from the expression, leaving AC. Also, we can
infer Boolean equations for the other two groups as AB and
BC. Thus, final simplified Boolean equation which satisfies
the majority voting is: AC + AB + BC.

What are the steps used while designing a practical digital
system?

Step 1: represent input and output signals with Boolean
variables.

Step 2: construct truth table to carry out computation.

Step 3: derive (simplified) Boolean expression using sum-
of products.

Step 4: transform Boolean expression into circuit.

n Example Let’s try another 3 variable map.

bc
00 01 11 10a

0

1

1

1

1

1a

c

b
bc

00 01 11 10a

0

1

1

1

1

1a

c

b

At first it may seem that we have two sets, one on the left
most column of the map and the other on the right most
column. If we observe, 000 and 010 are logically adjacent
as they differ at one variable. Also, 100 and 110 differs by
one variable. Thus, all the four 1s should be considered as
one set because the left and right are adjacent as are the top
and bottom. The expression for all 4 1s is c’. Notice that the
4 1s span both values of a (0 and 1) and both values of b (0
and 1). Thus, only the c value is left. The variable c is 0 for
all the 1s, thus we have c’. The other way to look at it is that
the 1’s overlap the horizontal b line and the short vertical
a line, but they all lay outside the horizontal c line, so they
correspond to c’. (The horizontal c line delimits the c set.
The c’ set consists of all squares outside the c set. Since the
circle includes all the squares in c’, they are defined by c’.
Again, notice that both values of a and b are spanned, thus
eliminating those terms.)

n Example

Y Y1 0

00 01 11 10X

0

1

1

1

1

1

1

1

1

1

The sample below is based on an earlier design shows a
particularly simple problem. We find that all the entries in
the K-Map are covered with a single grouping, thus remov-
ing all three variables. Since the entire K-Map is covered,
the simplification is F = 1. That is for any input variables,
the output is 1.

n Example
Y Y1 0

00 01 11 10X

0

1

1 1 1 1

1 1

The K-Map given above shows an example with overlap of
two groupings of 1’s. All 1’s in the map must be covered and
some should be covered twice. The top row corresponds to
X’. We then form the 2-by-2 grouping at the right to obtain
the term Y1. Thus F = X’ + Y1.

n Example The 2-by-2 grouping in the middle gives rise to
Y0 and left to Y1. So we get simplified equation as = Y0 + Y1.

Y Y1 0

00 01 11 10X

0

1

1 1 1

1 11

n Example A student has shown his assignment for a
problem as the following circuit. Professor shouted at him
saying you did not minimize correctly. Prepare your ver-
sion of minimised circuit which satisfies the function re-
quirement and efficient.

R

S5

S4

S1

S2

S3

A

B

C

n Answer: We first prepare truth table for the above circuit
to find out function requirement.

ABC S1 S2 S3 S4 S5 R

000 1 0 1 1 1 1

001 1 0 0 1 1 1

010 1 1 1 1 1 1

011 1 1 0 0 0 0

100 0 1 1 1 1 0

101 0 1 0 0 0 0

110 0 1 1 1 1 0

111 0 1 0 0 0 0

Introductory Concepts of Digital Logic Design and Computer Architecture 1.19

Karnaugh map for the above system is given as:

A/BC 00 01 11 10

1110

1

Therefore, R= A’B’ + A’C’
If we observe, we may find that in reality the above function
can be realised with two 2-input AND gates, one OR gate
and three NOT gates as shown in the following figure.

R

A

B

C

This is simpler than the circuit given by the student. Also,
it is in three level while our simplified version suggests two
level circuit only. Thus, Professor is correct.

Simplifying four variable Boolean equations

A 4-variable map will contain 24 = 16 cells. It is important
to write the variable values along the columns and rows in
Grey code:

BA

DC

00

01

11

11

00 01 11 11

To simplify the equation:

x = B C D A B C D A B C D A BCD A BCD.+ + + +

The Karnaugh map becomes:

BA

DC

00

01

11

11

00 01 11 11

11

1 1

11

B.D B.C+

To give the simplest Boolean statement, we should put a cir-
cle round the maximum number of terms. In this case, we

can make two groups of four, one of which wraps around
from top to bottom. We identify the two variables which
remain constant in each group and eliminate the other two:

x = B.D + B. C

n Example Simplify q = a’bc’d + a’bcd + abc’d’ + abc’d +
abcd + abcd’ + ab’cd + ab’cd’

cd
ab

00

01

11

11

00 01 11 11

1 1

11

11

1 1

b

d

a

Grouping the 1s together results in the following.

cd
ab

00

01

11

10

00 01 11 10

1 1

11

11

1 1
b

d

a

bd

ab ac

c

The simplified expression for the groupings above is given
as:

q = bd + ac + ab
This expression requires three 2-input and gates and one
3-input or gate.

We could have accounted for all the 1s in the map as
shown below, but that results in a more complex expression
requiring a more complex gate.

cd
ab

00

01

11

10

00 01 11 10

1 1

11

11

1 1

b

d

a

bd

abc¢ ac

c

d¢

The expression for the above is bd + ac + abc’d’. This re-
quires two 2-input and gates, a 4-input and gate, and a 3
input or gate. Thus, one of the AND gate is more complex
(has two additional inputs) than required above. Two in-
verters are also needed.

1.20 Computer Science & Information Technology for GATE

n Example Another example with overlapping groups
Consider the following K-Map.

WX
YZ

00

11

10

00 01 11 10

111

01 1 11

The six ones can be grouped in a number of ways. Consider
the following.

WX
YZ

00

11

10

00 01 11 10

111

01 1 11

This grouping of four and two covers the six one’s in the
K-Map.

WX
YZ

00

11

10

00 01 11 10

111

01 1 11

Another way to consider the simplification of the K-Map is
to group the rectangle and the square as in the figure.

It is important to note that the groupings can overlap if this
yields a simpler reduction.

WX
YZ

00

11

10

00 01 11 10

111

01 1 11

Here we show two overlapping squares.

than either of the other two forms validly produced by the

K-Map method.
The Karnaugh map uses the following rules for the sim-

plification of expressions by grouping together adjacent
cells containing ones

Groups may not include any cell containing a zero

WRONG RIGHT

A
B

A
B

0

1

0

1

0 1 0 1

0

1 11

0

Groups may be horizontal or vertical, but not diago-
nal.

WRONG RIGHT

A
B

A
B

0

1

0

1

0 1 0 1

0

1 11

0

0

1 1

Groups must contain 1, 2, 4, 8, or in general 2n cells.
That is if n = 1, a group will contain two 1’s since 21 =
2. If n = 2, a group will contain four 1’s since 22 = 4.

A
001

1 1

0 01

0

B

Group of 2

RIGHT

AB
C

0 0

01 11 10

1 1 1

0 0 0 01

Group of 3

Group of 4

A
B

0

10

1 1

1

0

RIGHT

1 1

AB
C

0

1

1 1 1 Group of 5

0 0 0 1

WRONG

00 01 11 10

WRONG

Each group should be as large as possible.

AB

C
00 01 11 11

11

1 10

11

0

0

1

RIGHT WRONG

(Note that no Boolean laws broken,
but not sufficiently minimal)

AB
00 01 11 11

0

1

1111

1100

C

Each cell containing a one must be in at least one
group.

Group I

AB
00 01 11 11

0

1

11

100

C

00

0
Group II

I Present in at least one group.

Introductory Concepts of Digital Logic Design and Computer Architecture 1.21

Groups may overlap

AB
00 01 11 10

0

1

111 1

1100

C

Groups overlapping

RIGHT

AB
00 01 11 10

0

1

111 1

1100

C

Groups not overlapping

WRONG

X

X

Groups may wrap around the table. The leftmost cell
in a row may be grouped with the rightmost cell and
the top cell in a column may be grouped with the bot-
tom cell.

AB
00 01 11 11

0

1

111 1

11

C

Right most Cell

Top Cell

Bottom Cell

Left most Cell 1

There should be as few groups as possible, as long as
this does not contradict any of the previous rules.

AB

C
00 01 11 10

11

1 10

11

0

0

1

RIGHT WRONG

AB
00 01 11 10

0

1

1111

1100

C

In a four variable Karnaugh map also, we can group 1s in
wraparound fashion.

BA

0 1 1 0

0 0 0 0

0 0 0 0

0 1 1 0

DC 00 01 11 10

00

01

11

10

Correct

BA

0 1 1 0

0 0 0 0

0 0 0 0

0 1 1 0

DC 00 01 11 10

00

01

11

10

BA

0 0 0 0

1 0 0 1

1 0 0 1

0 0 0 0

DC 00 01 11 10

00

01

11

10

Correct wraparound grouping.

BA

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

DC 00 01 11 10

00

01

11

10

Incorrect

1.5.3.1 Don’t Cares

Sometimes we do not care whether a 1 or 0 occurs for a
certain set of inputs. It may be that those inputs will nev-
er occur so it makes no difference what the output is. For
example, we might have a bcd (binary coded decimal)
code which consists of 4 bits to encode the digits 0 (0000)
through 9 (1001). The remaining codes (1010 through
1111) are not used. If we had a truth table for the prime
numbers 0 through 9, it would be

1.22 Computer Science & Information Technology for GATE

abcd p

0000 0

0001 1

0010 1

0011 1

0100 0

0101 1

0110 0

0111 1

1000 0

1001 0

1010 d

1011 d

1100 d

1101 d

1110 d

1111 d

The d’s in the above stand for “don’t care”, we don’t care
whether a 1 or 0 is the value for that combination of inputs
because (in this case) the inputs will never occur in prac-
tice.

cd
00 01 11 10

ab

1 1

11

1

dddd

b

dd

d

00

01

11

10
a

c

The circle made entirely of 1s corresponds to the expression
a’d and the combined 1 and d circle (actually a combination
of arcs) is b’c. Thus, if the disallowed input 1011 did occur,
the output would be 1 but if the disallowed input 1100 oc-
curs, its output would be 0. The minimised expression is

p = a’d + b’c
Notice that if we had ignored the ds and only made a circle
around the 2 1s, the resulting expression would have been
more complex, a’b’c instead of b’c.

Table 1.2

X = 0 X = 1

Y1Y0 J1 J1

0 0 0 1

0 1 1 0

1 0 d d

1 1 d d

The general rule in considering a simplification with the
Don’t-Care conditions is to count the number of 0’s and
number of 1’s in Table 1.2 and to use SOP simplification
when the number of 1’s is greater and POS simplification
when the number of 0’s is greater. Again we admit that most
students prefer the SOP simplification. With a two-two
split, we try SOP simplification.

Table 1.3

Y1 Y0 X J1

0 0 0 0

0 0 1 1

0 1 0 d

0 1 1 d

1 0 0 1

1 0 1 0

1 1 0 d

1 1 1 d

First we should explain Table 1.3 in detail. The first thing to
say about it is that we shall see similar tables again when we
study flip-flops. For the moment, we call it a “folded over”
truth table, equivalent to the full truth table. The function
to be represented is J1. Lines 0, 1, 4, and 5 of the truth table
seem to be standard, but what of the other rows in which
J1 has a value of “d”. This indicates that in these rows it is
equally acceptable to have J1 = 0 or J1 = 1. We have four
“Don’t-Cares” or “d” in this table; each can be a 0 or 1 inde-
pendently of the others – in other words we are not setting
the value of d as a variable.
Design with flip-flops is the subject of another course.

Observability Don’t Care

For some input patterns, the outputs of the system won’t
change if one output bit of some subsystem changes. So that
bit of that subsystem is a don’t care for such input patterns.

Satisfiability Don’t Care

Some input patterns never appear. The output of the system
are don’t care for such input patterns.

n Example Suppose We have a system with three but-
tons. Each button sends a logic 1 when the button is being
pressed and a zero once it is released. The system should
light an LED (by sending it a logic 1) whenever only one is
button pressed at a time, and should turn off the LED (by
sending it a logic 0) when more than one button is pressed.
At least one button will always be ressed so we do not care
what the circuit does when no buttons are pressed. Design
a minimized circuit to control the LED.

Introductory Concepts of Digital Logic Design and Computer Architecture 1.23

n Answer: Call the buttons A, B, and C. The desired output
is shown in the truth table below, where L is the LED signal.
Do observe the first row, if all the buttons are not pressed
the state of the LED can be anything.

A B C L

0 0 0 X

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

Karnaugh map and maxterm groupings are given below.

BC
00 01 11 10

A

1 0 10

1

X

00 01

From the Karnaugh map, we can find L=A¢B¢+A¢C¢+B¢C¢
Simplification of Boolean equations given minterms or
maxterms.
Sometimes, we will be given Boolean equation in terms of
POS or SOP. We need to simplify the equation. At this junc-
tion, we need to know minterms or maxterms indexes. For
example, Fig. 1.11 displays the minterm numbers for 2, 3
and 4 variable systems.

X

Y
0 1

m1

m3m2

m00

1

m0 m1

m2 m3

m6 m7

m5m4

10
X

Y Z

00

01

11

10

X

Z

Y
00 01 11 10

0

1

m0 m1 m3 m2

m4 m5 m7 m6

XW
ZY 10110100

00

01

11

10

m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14

m10m11m9m8

Figure 1.11 K-Map with minterm indexes

n Example The next example is to simplify F(A, B, C) =
P(3, 5). We shall consider use of K-Maps to simplify POS
expressions, but for now the solution is to convert the ex-
pression to the SOP form F(A, B, C) = S(0, 1, 2, 4, 6, 7). We
could write each of the six product terms, but the easiest

solution is to write the numbers as binary: 000, 001, 010,

100, 110, and 111.

AB
00 01 11 10

C

1 10

1 1

11

1

The top row of the K-Map corresponds to the entries 000,
010, 100, and 110, arranged in the order 000, 010, 110, and
100 to preserver logical adjacency. The bottom row corre-
sponds to the entries 001 and 111. The top row simplifies to
C’. The first column simplifies to A’B’ and the third column

We next consider a somewhat offbeat example not in a
canonical form.

The trouble with K-Maps is that the technique is designed
to be used only with expressions in canonical form. In or-
der to use the K-Map method we need to convert the term

Z, thus obtaining a four-term canonical SOP.
Before actually doing the K-Map, we first apply simple

algebraic simplification to F.

Now that we see where we need to go with the tool, we draw
the four-variable K-Map.

Using the SOP encoding method, these are terms 0000,
0001, 1000, and 1001. The K-Map is

WX

1

1

00 01 11 10YZ

1

100

01

11

10

The first row in the K-Map represents the entries 0000 and
1000. The second row in the K-Map represents the entries
0001 and 1001. The trick here is to see that the last col-
umn is adjacent to the first column. The four cells in the
K-Map are thus adjacent and can be grouped into a square.

1.24 Computer Science & Information Technology for GATE

We simplify by noting the values that are constant in the
square: X = 0 and Y = 0. Thus, the expression simplifies to

WX

1

00 01 11 10YZ

1

100

01

11

10
11

We close the discussion of SOP K-Maps with the example
at right, which shows that the four corners of the square are
adjacent and can be grouped into a 2 by 2 square. This K-
Map represents the terms 0000, 0010, 1000, 1010 or W¢ ¢

¢ ¢ + W¢ ¢ ¢ ¢ ¢ ¢ ¢
Z’. The values in the square that are constant are X = 0 and
Z = 0, thus the expression simplifies to X¢ ¢.

1.5.4 K-Maps for POS

K-Maps for Product of Sums simplification are constructed
similarly to those for Sum of Products simplification, ex-
cept that the POS copy rule must be enforced: 1 for a negat-
ed variable and 0 for a non-negated (plain) variable. Place a
0 at each location, rather than the 1 placed for SOP.

(A’ + B + C). Using the POS copy rule, we translate this to
000, 001, 010, and 100.

AB
00 01 11 10

C

00

1

0 0

0

We begin the K-Map for POS simplification by placing a 0
in each of the four positions 000, 001, 010, 100. Noting that
000 is adjacent to 001, just below it, we combine to get 00–
or (A + B). The term 000 is adjacent to 010 to its right to get
0–0 or (A + C). The term 000 is adjacent to 100 to its “left”
to get –00 or (B + C). As a result, we get the simplified form.

How to Simplify Boolean equation which does not con-
tain canonical terms ?
All the examples which we have discussed till now contain
Boolean equations with canonical terms. How do we tackle
the situation in which the Boolean equation terms are not
canonical? May be, we can prepare truth table from the giv-
en Boolean equation and then prepare Karnaugh map for
simplification. This process is little laborious.

We know the following facts about Karnaugh maps.
For a 2 input function,

i. any term that contains 2 variables = 1 one cell in the
Karnaugh map.

ii. any term that contains 1 variable = 2 cells in the Kar-
naugh map.

For a 3 input function,

i. any term that contains 3 variables = 1 cell in the Kar-
naugh map.

ii. any term that contains 2 variables = 2 cells in the Kar-
naugh map.

iii. any term that contains 1 variable = 4 cells in the Kar-
naugh map.

For a 4 input function,

i. any term that contains 4 variables = 1 cell in the Kar-
naugh map.

ii. any term that contains 3 variables = 2 cells in the Kar-
naugh map.

iii. any term that contains 2 variables = 4 cells in the Kar-
naugh map.

iv. any term that contains 1 variable = 8 cells in the Kar-
naugh map.

If we recapitulate what we have done Karnaugh map simpli-
fication, we know that we have exploited logical adjacency
from Karnaugh map. That is, a group of 1s of size 2, 4 , 8
are represented by a minterm with minimum number of
variables. Thus, if we are given a Boolean equation with-
out canonical terms, we replace the terms with a group of
canonical terms and prepare Karnaugh map for simplifica-
tion. That is, we may be working in exactly opposite way of
grouping terms. The following examples explains our idea.

n Example Simplify the following Boolean Expression
which contains some non canonical terms. The system is
four variable system.

A.B.C.D + B.C.D + B.C.D + A.B.C.D + A.B.D + B.C.D

We take each term individually and put a ‘1’ in the cell of
the Karnaugh map that corresponds to the logic expression
if it is in fully canonical form.

BA

1

00 01 11 10

00

01

11

10

DC

First term A.B.C.D (4 variables = 1 cell in map)

Introductory Concepts of Digital Logic Design and Computer Architecture 1.25

Second term B.C.D is having only 3 variabes while the sys-
tem is four variable system. Missing variable is A. Thus, we
can consider this term as two terms ABC’D’ and A’BC’D’.
That is, in the Karnaugh map this term occupies two cells
as shown in this figure.

BA

1

00 01 11 10

00

01

11

10

1 1

DC

Similarly third term B.C.D can be decomposed into
AB’C’D and A’B’C’D. Thus, in the Karnaugh map this term
contributes 1s to two cells as shown below. Also, fourth

term A.B.C.D contributes 1 to a cell in the Karnaugh map
as shown in this figure.

BA

1

00 01 11 10

00

01

11

10

1 1

1

11

DC

Fifth term A.B.D can be considered some of two canoni-
cal terms AB’CD and AB’C’D. Thus, it contributes 1 to two
cells as shown in this figure. However, AB’C’D is already
one from previous terms.

BA

1

00 01 11 10

00

01

11

10

1 1

1

11

1

DC

Similarly sixth term B.C.D is having only 3 variables, i.e.,
A component is missing. Thus, we consider it as ABC’D
and A’BC’D. Thus, this term contributes to two terms in the
Karnaugh map as shown in this figure.

BA

1

00 01 11 10

00

01

11

10

1 1

1

11

1

1 1

DC

The following Karnaugh shows groupings of 1’s. Final Bool-
ean equation become:

C.D+B.C + A.C + A.B.C

BA

1 0 1 1

0 1 0 0

DC 00 01 11 10

00

01

0 1 0 0

1 1 1 1

11

10

1.5.5 Karnaugh Maps with 5 and 6 Variables

In the case of 5 variable system, Karnaugh map contains
25 = 32 cells. All the cells are organised two four variable
maps (4x4 cells) as shown in Figure 1.12. First variable A
is used to select which of the four variable map while other
four variables BCDE are used to select the cell in the four
variable map.

00 01 11 10

000

001

011

010

B

D

E

DE
ABC

0 1 3 2

4 5 7 6

12 13 15 14

101198

16

00 01 11 10
DE

ABC

D

E

A

C

100 17 19 18

22232120

28 29 31 30

26272524

101

111

110

Figure 1.12 A 5-variable Karnaugh Map

The numbering of the cells (minterms) also shown in Fig.

1.12. Here, we can group cells of 1s of 2, 4, 8, 16 and 32.

While grouping we can consider the two four variable kar-

naugh maps as stacked, i.e., one on the top of the other. For

example, in the following figure we have taken a group of 8

1.26 Computer Science & Information Technology for GATE

1s as a cell in which four 1s are in first part while the other

four are in the second part. If we visualise these two four

cells pairs will be one above the other. If we observe the se-

lected cells, half of them are in A and half in A’. Thus, A will

not appear in the final Boolean term. If one observes, this

is true with C and E also. Also, all the 1s of this group are

completely in D and B’. Thus, simplified Boolean equation

for this group is B’D.

00 01 11 10

000

001

011

010

B

D

E

DE
ABC

0 1 3 2

4 5 7 6

12 13 15 14

101198

16

00 01 11 10
DE

ABC

D

E

A

C

100 17 19 18

22232120

28 29 31 30

26272524

101

111

110

The above thing can be realised like the following also.

Here, middle variable C is zero in first half and 1 in the

second half. This we can verify the codes on the top of the

Karnaugh map. The following figure further enlightens

about grouping in five variable Karnaugh maps. In Figure

1.13, we have grouping of single 1 (A’B’C’DE’), two

1s(BC’D’E’), etc.

00 01 11 10
BC

DE

A=0 00

01

11

10

00 01 11 10

1

11

1 1

1

00

11

10

BC

DE

A=1

f(A,B,C,D,E) = M (2,5,7,8,10,

13,15,17,19,21,23,24,29,31)

=CE + AB E + BC D E

A C D E

S

¢ ¢ ¢ ¢
+ ¢ ¢ ¢ ¢

1

11

11

01

1

Figure 1.13 Grouping in 6-variable Karnaugh Map

CDE
A
B 000 001 011 010 100 101 111 110

00

01

11

10

5- var iab le Karnaugh map (over lay)

In old text books, we have some other form of 5 variable
Karnaugh map is used in which gray code is used at the top
of the Karnaugh map.

CDE
A
B 000 001 011 010 110 111 101 100

00

01

11

10

5-variable Karnaugh map (Gray Code)

When using this version of the K-map, we look for mirror
groups of 1s in both the halves of the map. For example, in
the following 5-variable map, we have shown groups of 1s
which are mirrors in both the halves and their respective
Boolean equation.

CDE
A
B 000 001 011 010 110 111 101 100

00

01

11

10

1 1 1 1 1

1

1 1

1

1 1 1

ACDEA B C D
Mirror line

B C E

A B D E

5-variable Karnaugh map (Gray Code)

A B C E

A B E

We can also represent 5-variable Karnaugh maps as shown
below. Here, each cell is devided into two halves by drawing
a diagonal. First (or last) variable and its complement will
be shown in the same shell. For example, AB’C’D’E’ and
A’B’D’C’E’ will shown in 0th row and 0th column, first one is
below the diagonal and second one as above the diagonal.

Introductory Concepts of Digital Logic Design and Computer Architecture 1.27

bc
00 01 11 10

00

01

11

10

de

bc
00 01 11 10

00

01

11

10

de

a=0

a=1

e=0

e=1

n Example Simplify the Boolean function

F(A, B, C, D, E) = S(0, 2, 4, 6, 9, 11, 13, 15, 17, 21, 25, 27, 29,
31) Writing decimals in binary,

Decimal A B C D E

 0 0 0 0 0 0

 2 0 0 0 1 0

4 0 0 1 0 0

 6 0 0 1 1 0

 9 0 1 0 0 1

 11 0 1 0 1 1

 13 0 1 1 0 1

 15 0 1 1 1 1

 17 1 0 0 0 1

 21 1 0 1 0 1

 25 1 1 0 0 1

 27 1 1 0 1 1

 29 1 1 1 0 1

 31 1 1 1 1 1

We will construct two Karnaugh maps for variables A,B,C
and D when E = 0 and E = 1

00 01 11 10

111100

01

11

10

CD
AB

F=0

00 01 11 10

1111

00

01

11

10

CD
AB

F=1

1111

1 1

From Karnaugh map E = 0, the selected group of 1s gives
Boolean term A’B’E’ from Karnaugh map E=1, the selected
groups of 1s gives Boolean terms BE and AD’E. Thus,

F = A’B’E’ + BE + AD’E

1.5.5.1 Karnaugh Map for 6-Variable System

In the case of six-variable system, we will be having 26=
64 cells. For ease of graphical derivation, these 64 cells are
considered as four 4 variable Karnaugh maps as shown in
Figure 1.14. First two variables AB can be used to select the
four of the four Karnaugh maps.

00 01 11 10

0000

0001

0011

0010
C

E

ABCD

0 1 3 2

4 5 7 6

12 13 15 14

101198

16

00 01 11 10
EF

F

A

D

0100 17 19 18

22232120

28 29 31 30

26272524

0101

0111

0110

ABCD
EF

00 01 11 10

0000

0001

0011

0010

C

E

ABCD

44 45 47 46

42434140

48

00 01 11 10
EF

F

D

0100 49 51 50

54555352

60 61 63 62

58595756

0101

0111

0110

ABCD
EF

32 33 35 34

36 37 3839

B

A

Figure 1.14 Grouping in the 6-variable Karnaugh Map example

In this also, we consider all of these four variable Karnaugh
maps are stacked one by one while grouping the cells. For
example, in the above figure some cells are rounded whose
minterm numbers are 2, 6, 18, 22, 34, 38, 50 and 54. If as-
sume these cells are having 1s, then we can consider them
as two 1s in four layers. The Boolean equation for this group
can be identified as: C’EF’.

For example, the following Karnaugh map shows a group
of 4 1s which are spread across four four variable Karnaugh
map and the respective Boolean term.

ABC

DEF

000 001 011 010

000

001

011

010

010

110

110Out = C F

110

010

110

1

1

1

1

1.28 Computer Science & Information Technology for GATE

1.6 Quine Mc_Cluskey Theory

Quine-McCluskey optimisation is named after two people:
McCluskey and the contemporary philosopher W.V.O.
Quine. The Quine McCluskey method is an algorithmic
method that finds prime implicates, necessary prime impli-
cates, and minimum sum-of-products expressions for digi-
tal systems. Its idea is same as using K-maps, except that
K-maps are very hard to use with variables greater than (5).
The advantages of this method compared to other methods
like K-maps can be summarised in three main points:

There is no limit in the number of the variables used
in the function (theoretically no limit).

The algorithm can be implemented directly and eas-
ily as a software program, which will reduce the hu-
man efforts and the possibilities of human errors.

The final result of the algorithm is the totally mini-
mised (SOP) function.

Minimising a five variable system like the following us-
ing K-Map approach is laborious and cumbersome. Thus,
QMA method is proposed to find out simplified Bool-
ean equation in table driven manner that can be realized
through SW such that it becomes useful for system with
large number of Boolean variables.

f (A, B, C, D, E) = S(0, 1, 3, 4, 5, 7, 9, 10, 12, 13, 21, 24,
26, 28, 29)

Figure 1.15 demonstrates the groupings in a 6-variable Karnaugh map and respective numbering of minterms. Readers
are advised to observe the groupings carefully and check the respective prime implicants.

CD

00 01 11 10EF

11

01

AB=00
00

10 1 1

1

CD

00 01 11 10EF

11

01

AB=01
00

10

CD

00 01 11 10EF

11

01

AB=11
00

10

CD
00 01 11 10EF

11

01

AB=10
00

10

1

11

1 1

11

1 1

11

CD

00 01 11 10

10

11

01

00

EF

AB=00 0 4 12 8

91351

3 7 15 11

101462

16

00 01 11 10

10

11

01

00
AB=01

CD
EF

20 28 24

25292117

19 23 31 27

26302218

00 01 11 10
CD

EF

10

11

01

00
AB=11 48 52 60 56

57615349

51 55 63 59

58625450

00 01 11 10
CD

EF

10

11

01

00AB=10 32 36 44 40

34 38

41453733

39 47 43

4246

35

f (A,B,C,D,E,F) =
Em (2,8,10,18,24,

26, 34, 37, 42, 45, 50
53, 58, 61)

= D EF + ADE¢ ¢ ¢F
+ A CD F¢ ¢ ¢

Figure 1.15 Grouping a 6-variable Karnaugh Map

Introductory Concepts of Digital Logic Design and Computer Architecture 1.29

BC

DE 00 01 11 10

1111

1 1 1 1

1

11

00

01

11

10

A=0

A B E¢ ¢ ¢

A D¢ ¢

111

1 1

1

BD¢

00

01

11

10

00 01 11 10

BC

DE

A=1

CD E¢
BC E¢ ¢

Figure 1.16

\ f = CD¢E = A¢B¢E + A¢D¢ + BC¢E¢ + BD¢
In a nutshell, this approach contains two prominent stages:
1. To find out prime implicates, and 2. To find out essential
prime implicates to get the simplified Boolean equation.

Like the K-map, the QM procedure uses the Boolean
Law: xy +xy’ = x to find the prime implicates by comparing
and combining adjacent product terms.

The method is essentially a tabular one using a sequence
of lists and charts to eventually zero in on the minimum
solution.

The method also uses the fact that the indices of adjacent
minterms differ by a power of 2, since adjacent minterms
differ by only 1 variable.
The QM procedure can be given as follows.

Step 1

Create a list (LIST 1) of minterm indices, grouping them
according to the number of 1’s they contain. Initially, the
indices are written in binary but later we will perform the
procedure using decimal indices.

Step 2

Starting from group 0, compare each term in group I with
the terms in group I+1, that is the adjacent group.

When two terms differ in one variable, put a mark (a tick
will do) next to both terms.

The result of the combination is a term with all of the
original variables but with a “–” in the location of the vari-
able that has been eliminated.

The new term is entered into a 2nd list (LIST 2). List 2 is
completed when all possible comparisons from LIST 1 are
performed.

Each group in LIST 2 (again grouped according to the
number of 1’s the terms contain) corresponds to combina-
tions between a single pair of terms in LIST 1.

Step 3

Continue the process with LIST 2 to generate LIST 3. Com-
pare only terms in adjacent groups AND which have the
same variables eliminated from STEP 2 (i.e. a “–” in the
same location).

Repeat the process until no more combinations are pos-
sible. If duplicate terms arise they can be discarded, but be
sure to check the terms which are combined.

Step 4
The unchecked terms in all of the lists represents the PIs
(prime implicates) of the function.
The next stage is to find the minimum cover.
This is done using a PI (prime implicates) chart and identi-
fying the essential PIs. We shall explain the same with fol-
lowing example.

n Example Simplify the function

F(w, x, y, z) = S(0, 1, 2, 8, 10, 11, 14, 15)
The binary equivalents of the minterms are shown in the
following table:

Minterm w, x, y, z Binary

0 0000

1 0001

2 0010

8 1000

10 1010

11 1011

14 1110

15 1111

Let us group them according to the number of 1’s in each
number:

List 1 w, x, y, z

Grp o 0 0000

Grp 1 1 0001

2 0010

8 1000

Grp 2 10 1010

Grp 3 11 1011

14 1110

Grp 4 15 1111

We now compare adjacent groups, Grp 0 with Grp 1, Grp1
with Grp 2 and so on to generate LIST 2.

Grp 0 0 0000*

Grp 1 1 0001*

2 0010*

8 1000*

Grp 2 10 1010*

Grp 3 11 1011*

14 1110*

Grp 4 15 1111*

0,1 000-

0,2 00-0

0,8 -000

2,10 -010

8,10 10-0

10,11 101-

10,14 1-10

11,15 1-11

14,15 111-

LIST 2 w,x,y,zLIST 1 w,x,y,z

1.30 Computer Science & Information Technology for GATE

The asterisks check off the terms which have been com-
bined.

The interpretation is as follows. If we examine minterms
0 and 1, they are equivalent to w’x’y’z’ and w’x’y’z. These
can be combined and simplified by eliminating the z vari-
able to give w’x’y’.

Thus the 1st entry in LIST 2 which is 000-, is binary for
w’x’y’ with the “–” indicating the eliminated variable z.

LIST 2 is again grouped according to the number of 1’s
in each term. Adjacent groups are again combined, this
time looking for terms with the “–” in the same position.
The adjacent groupings already ensure that the terms only
differ by one variable.

0,1 000- 0,2,8,10 -0-0

Grp0 0,2 00-0* 0,8,2,10 -0-0

0,8 -000* 10,11,14,15 1-1-

Grp1 2,10 -010* 10,14,11,15 1-1-

8,10 10-0*

Grp2 10,11 101-*

10,14 1-10*

Grp3 11,15 1-11*

14,15 111-*

LIST 2 w,x,y,z LIST 3 w,x,y,z

Note that no combination was possible between Grp1 and
Grp2, since none of the entries contained a “–” in the same
position.

We are left with 3 terms (the shaded entries) that cannot
be combined further. The QMA algorithm has terminated.
What we are left with are the Prime Implicants of the func-
tion.
The minimised function is then:

F = w’x’y’ + x’z’ + wy
This can be compared with the answer obtained from the
K-map technique.

Recall from Kmap theory that in order to ensure a mini-
mal solution we had to identify the Essential Prime Impli-
cants (EPIs).

From the map these were the sets of ones that were cov-
ered only by 1 prime implicant.

With the QM algorithm, a table called a PI chart is used
to select the EPIs.

The chart tabulates the minterms in a row across the top
of the table and the unchecked PIs in a column.
The chart is used as follows :

1. In each row, place an “X” in the column correspond-
ing to each minterm of the PI.

2. When all the PI minterms have been identified, find
all the columns which just 1 “X”. Circle these X’s. The
corresponding PIs are the Essential PIs. Check off
these PIs.

3. Draw a line through each EPI and then a vertical line
through each minterm covered by that EPI (the X’s in

each row). These minterms are now covered and need
not be considered any further.

4. The remaining PIs can now be selected to cover the
remaining minterms. Each PI should be chosen to
eliminate as many minterms as possible. Sometimes
it is helpful to draw a second PI table containing the
unselected minterms.

5. The minimal expression is now obtained from the
EPIs and the remaining PIs from Step 4

Applying these rules to our example:

PI 0 1 2 8 10 11 14 15

0,1 X X
0,2,8,10 X X X X
10,11,14,15 X X

X X

The circles represent minterms that are covered by only one
PI. The corresponding PI is an EPI.

PI 0 1 2 8 10 11 14 15

0,1 X X
0,2,8,10 X X X X

10,11,14,15
X X

X X

When we draw a line through the minterms and horizon-
tally through the PIs, in this example we cover all of the
minterms. There is no need to develop a second table.
The answer obtained from the LISTs was in fact minimal.

n Example Minimise the following function using the
QM algorithm:

f(a,b,c,d) = S(0,1,2,5,6,7,8,9,10,14)
Step 1: We develop the lists based on the number of ones
in each minterm, group them and eliminate those which
differ by one literal.

List 1 List 2 List 3

0 ÷ 0, 1 (1) ÷ 0, 1, 8, 9 (1, 8) *

1 ÷ 0, 2 (2) ÷ 0, 2, 8, 10 (2, 8) *

2 ÷ 0, 8 (8) ÷ 0, 2, 8, 10 (2, 8)

8 ÷ 0, 5 (4) * 2, 6, 10, 14 (4, 8) *

5 ÷ 0, 9 (8) ÷ 2, 6, 10, 14 (4, 8)

6 ÷ 0, 6 (4) ÷

9 ÷ 2, 10 (2) ÷

10 ÷ 8, 9 (1) ÷

7 ÷ 8, 10 (2) ÷

14 ÷ 5, 7 (2) *

6, 7 (1) *

6, 14 (8) ÷

10, 14 (4) ÷

Note that we have used decimal numbers. The procedure is
the same in that numbers from adjacent sections are com-

Introductory Concepts of Digital Logic Design and Computer Architecture 1.31

pared with those differing in a power of 2 being combined.
In List 2 both numbers are compared.
The PIs left are:

PIs abcd PIs

1,5 (4), 0001 a’c’d

5,7 (2), 0101 a’bd

6,7 (1); 0110 a’bc

0,1,8,9 (1,8) 0000 b’c’

0,2,8,10 (2,8) 0000 b’d’

2,6,10,14 (4,8) 0010 cd’

f = a’c’d + a’bd + a’bc + b’c’ + b’d’ + cd
Clearly this is not minimal. We go to the PI chart to deter-
mine the essential PIs

0 1 2 5 6 7 8 9 10 14

x

x

x

xx

x

x x

x

xx

x

x x

x

x1,5

5,7

6,7

0,1,8,9

0,2,8,10

2,6,10,14

EPI EPI

x

x

We must include (0, 1, 8, 9) and (2, 6, 10, 14).
We now need to cover minterms 5 and 7 which we see can
be done with PI (5, 7)
Hence the minimum solution is:

fmin = b’ c’ + cd’ + a’bd

1.7 NAND and NOR Implementation

Digital circuits are more frequently constructed with
NAND or NOR gates than with AND and OR gates as
NAND and NOR gates are easier to fabricate.

NAND and NOR gates may be represented using al-
ternative symbols.

x
y
z

F = (xyz)¢

AND-invert

(a) Two graphic symbols for NAND gate.

x
y
z

Invert-OR

Fx + y +z = (xyz)¢ ¢ ¢ ¢

Fx y z = (x+y+z)¢ ¢ ¢ ¢

OR-invert Invert- AND

(b) Two graphic symbols for NOR gate.

x
y
z

F = (x+y+z)¢

Buffer-invert AND-invert OR- invert

(c) Three graphic symbols for inverter.

x
y
z

x x¢ x x¢ x¢x

Figure 1.17 Graphic Symbols for NAND and NOR gates

Inverters (NOT) may be represented by NAND and

NOR gates whose inputs are all connected together.

NAND Implementation

Requires the Boolean function to be simplified in
SOP form

Method 1 (two logic levels)

(1) Simplify the function and express it in SOP form.

(2) Draw Level-1 gates

One 2-input NAND gate with both inputs connected
together for each primed literal

One 2-input NAND gate with both inputs connected
together for each unprimed literal that will go direct-
ly to Level-2

One n-input NAND gate for each product term

(3) Draw Level-2 gate

One n-input NAND gate using the INVERT-OR
symbol

Method 2 (three logic levels)

(1) Simplify the complement of the function and express
it in SOP form.

(2) Draw Level-1 gates

One 2-input NAND gate with both inputs connected
together for each primed literal

One 2-input NAND gate with both inputs connected
together for each unprimed literal that will go direct-
ly to Level-2

One n-input NAND gate for each product term

(3) Draw Level-2 gate

One n-input NAND gate using the INVERT-OR
symbol

(4) Draw Level-3 gate

One 2-input NAND gate with both inputs connected
together to invert the function

n Example F = S(0, 2, 4, 6, 7)
Method 1, NAND logic

A\BC B’C’ B’C BC BC’

A’ 1 0 0 1

A 1 0 1 1

F = AB + C’

A
B

C

AB

C¢

AB+ C¢
F

AND-OR-INVERT Logic

1.32 Computer Science & Information Technology for GATE

A
B

C

(AB)¢

C¢

AB+ C¢
F

NAND Logic

n Example F = S(0, 2, 4, 6, 7)
Method 2, NAND logic

A\BC B’C’ B’C BC BC’

A’ 1 0 0 1

A 1 0 1 1

F’ = A’C + B’C
F = (A’C + B’C)’

A

B

C

AC¢

B C¢

A +B CC¢ ¢
F

(A C+B C)¢ ¢ ¢

AND-OR-INVERT Logic

A

B

C

(A C¢)¢

(B C)¢ ¢

A C + B C¢ ¢
F

(A C+B C)¢ ¢ ¢

NAND Logic

n Example F = P(7, 13, 15)
Method 2, NAND logic

AB\CD C’D’ C’D CD CD’

A’B’ 1 1 1 1

A’B 1 1 0 1

AB 1 0 0 1

AB’ 1 1 1 1

F’ = ABD + BCD
F = (ABD + BCD)’

A

B

C

ABD

BCD

ABD+BCD
F

(ABD=BCD)¢D

AND-OR-INVERT Logic

A

B

C

(ABD)¢

(BCD)¢

ABD+BCD
F

(ABD+BCD)¢D

NAND Logic

NOR Implementation

Requires the Boolean function to be simplified in
POS form.

Method 1 (two logic levels)

(1) Simplify the function and express it in POS form.

(2) Draw Level-1 gates

One 2-input NOR gate with both inputs connected
together for each primed literal

One 2-input NOR gate with both inputs connected
together for each unprimed literal that will go direct-
ly to Level-2

One n-input NOR gate for each product term

(3) Draw Level-2 gate

One n-input NOR gate using the INVERT-AND
symbol

Method 2 (three logic levels)

(1) Simplify the complement of the function and express
it in POS form.

(2) Draw Level-1 gates

One 2-input NOR gate with both inputs connected
together for each primed literal

One 2-input NOR gate with both inputs connected
together for each unprimed literal that will go direct-
ly to Level-2

One n-input NOR gate for each product term

(3) Draw Level-2 gate

One n-input NOR gate using the INVERT-AND
symbol

(4) Draw Level-3 gate

One 2-input NOR gate with both inputs connected
together to invert the function

n Example F = S(0, 2, 4, 6, 7)

Method 1, NOR logic

A\BC B’C’ B’C BC BC’

A’ 1 0 0 1

A 1 0 1 1

F = A’C + B’C

 = (A + C’)(B + C’)

A

B

C

A+C¢

B+C¢

(A+C)(B+C)¢
F

AND-OR-INVERT Logic

Introductory Concepts of Digital Logic Design and Computer Architecture 1.33

A

B

C

(B+C)¢

(A+C)(B+C)¢ ¢
F

(A+C)¢¢

NOR Logic

n Example F = S(0, 2, 4, 6, 7)

Method 2, NOR logic

A\BC B’C’ B’C BC BC’

A’ 1 0 0 1

A 1 0 1 1

F’ = A’C + B’C

= C(A’ + B’)

F = [C(A’ + B’)]’

A

B

C

A +B¢¢

C(A +B)¢ ¢
F

[C(A +B)]¢ ¢ ¢

AND-OR-INVERT Logic

A

B

C

(A +B)¢ ¢¢
(A +B)C¢ ¢

F

[(A +B)C]¢ ¢ ¢

NOR Logic

Rules for NAND and NOR Implementation

Case Function
to

simplify

Standard
form
to use

How to
derive

Imple-
ment
with

Number
of levels
to F

(a) F SOP combine 1’s
in map

NAND 2

(b) F SOP combine 0’s
in map

NAND 3

(c) F’ POS complement
F’ in (b)

NOR 2

(d) F’ POS complement
F in (a)

NOR 3

1.8 Conversions between Representations

In the previous sections, we have dealt many illustrative
examples to convert Boolean equation in SOP to truth
table, and vice versa. Also, we have employed many other
examples to covert from one representation to another rep-
resentation. In this section, we would like to summarise the
same. Figure 1.18 illustrates the possible representations
and conversions carried out in practice.

Minterm
Canonical

SOP
SOP

non SOP

non POS
Truth
Table

Karnaugh
Map

maxterm
Canonical

POS
POS

Figure. 1.18 Conversion between Representations

Converting Minterm to truth table or Kar-
naugh Map

Assuming that we were given a function as sum of mint-
erms like f(A, B, C) = S(0, 4, 6, 7). To achieve the required
thing, we shall follow the following steps:

1. Represent minterm numbers in binary fashion like:
f(A,B,C) = S(000,100,110,111)

2. Place 1 in the truth table (Karnaugh Map) for each
minterm entry.

3. Take all the remaining entries as 0s.

Converting Maxterm to truth table or Kar-
naugh Map

Assuming that we were given a function as sum of max-
terms like f(A, B, C)= p (0, 4, 6, 7). To achieve the required
thing, we shall follow the following steps:

1. Represent minterm numbers in binary fashion like:
f(A, B, C) = p (000, 100, 110, 111)

2. Place 0 in the truth table (Karnaugh Map) for each
maxterm entry.

3. Take all the remaining entries as 0s.

Converting Minterm to Canonical SOP

Assuming that we were given a function as sum of mint-
erms like f(A, B, C) = S(0, 4, 6, 7). To achieve the required
thing, we shall follow the following steps.

1. Represent minterm numbers in binary fashion like:
f(A, B, C) = S(000, 100, 110, 111)

2. Replace 1s and 0s with respective literals and their
complements such as f(A, B, C) = S(A¢B¢C¢, AB¢C¢,
ABC¢, ABC) (Do remember the literals ordering)

3. Then take sum of the terms like: A¢B¢C¢, + AB¢C¢+
ABC¢+ ABC

1.34 Computer Science & Information Technology for GATE

Converting Canonical SOP to minterms

Reverse the steps of above.

Converting Maxterm to Canonical POS

Assuming that we were given a function as sum of max-
terms like f(A,B,C)= p(0,4,6,7). To achieve the required
thing, we shall follow the following steps.

1. Represent minterm numbers in binary fashion like:
f(A,B,C)=p(000,100,110,111)

2. Replace 0s and 1s with corresponding literal and its
complement and prepare sum terms like: f(A,B,C) =
p(A+B+C, A¢+B + C, A¢+B¢+C, A¢ + B¢ + C¢)

3. Take product of the sum terms like: (A+B+C) (A¢ + B
+ C) (A¢ + B¢+ C) (A¢ + B¢ + C¢)

Converting Canonical POS to maxterms

Reverse the steps of above.

POS to SOP and vice versa

We can achieve this by using Boolean postulates which are
explained in the previous chapters.

SOP to Canonical SOP

We can expand the product terms by replacing each of the
missing literal(X) in the product terms with X+X¢ till we get
full canonical product sums. At the end, we can eliminate
common terms.

POS to Canonical POS

We can expand the sum terms by replacing each of the
missing literal(X) in the sum terms with XX¢ till we get full
canonical sum terms. At the end, we can eliminate com-
mon terms.

Canonical SOP to minimal SOP

We can use Karnaugh Maps and groups 1s.

Canonical POS to minimal POS

We can use Karnaugh Maps and group 0s.

Non-SOP to SOP and Non-POS to POS

We can employ Boolean postulates as explained in the pre-
vious section.

SOP to Truth Table

Place a logic 1 in each truth table output entry whose input
value satisfies a given product term is 1. A k-variable prod-

uct term will produce 2n–k 1s in the truth table where n is
the total number of input variables

POS to truth table

Place a logic 0 in each truth table output entry whose input
value satisfies a given sum term is 0. A k-variable sum term
will produce 2n–k 0s in the truth table where n is the total
number of input variables

1.9 XOR and XNOR patterns from Karnaugh Map
(Reed-Muller Logic)

Some digital functions can be difficult to optimise if they
are represented in the conventional sum-of-products
or product-of-sums forms, which are based on ANDs,
ORs, NANDs, NORs, and NOTs. In certain cases, it may
be more appropriate to implement a function in a form
known as Reed-Müller logic, which is based on XORs and
XNORs.

One indication as to whether a function is suitable for
the Reed-Müller form of implementation is if that func-
tion’s Karnaugh Map displays a checkerboard pattern of 0s
and 1s. Consider a familiar two-input function as shown
in the following examples. That is, as of now we have con-
centrated square or rectangular groups of 1s or 0s in the
Karnaugh map. In fact, we can group even diagonal cells
with 1s or cells with some specific offset values. These
groups may lead to XOR or XNOR terms as explained be-
low.
Consider the figure.

C

ab
00 01 11 10

1 1

111

0

For the above Karnaugh Map, we can write simplified Bool-
ean equation as: a ≈ b ≈ c.

Larger checkerboard patterns involving groups of 0s
and 1s also indicate functions suitable for a Reed-Müller
implementation. Larger checkerboard patterns involving
groups of 0s and 1s also indicate functions suitable for a
Reed-Müller implementation. Once we have recognised a
checkerboard pattern, there is a quick “rule of thumb” for
determining the variables to be used in the Reed-Müller
implementation. Select any group of 0s or 1s and identify
the significant and redundant variables, and then simply
XOR the significant variables together (the significant
variables are those whose values are the same for all of the
boxes forming the group, while the redundant variables
are those whose values vary between boxes). For example,
consider Fig. 1.19 and respective simplified Boolean equa-
tions in XOR.

Introductory Concepts of Digital Logic Design and Computer Architecture 1.35

ab
cd 00 01 11 10

00

01

11

10

1

1

1

1

1

1

1

1

y=a + b

ab
cd 00 01 11 10

00

01

11

10

1

1

y=a + c

1

1

1

1

ab
cd 00 01 11 10

00

01

11

10

y=b + d

1

1

1

1

11

11

1

111

10

y=b + c

1 1

1

1

1

ab

cd 00 01 11 10

00

01

11

11

11

10

y=a + b + c

1

ab

cd 00 01 11 10

00

01

11

11

1

1

1

1

1

1

11

10

y=a + b + d

1

ab

cd 00 01 11 10

00

01 1

1

1

1

1

1

11 1

1

1

1

Figure 1.19

As all of the checkerboard patterns shown in the above
illustrations include a logic 0 in the box in the upper left
corner (corresponding to all of the inputs being logic 0),
the resulting Reed-Müller implementations can be realized
using only XORs. However, any pair of XORs may be
replaced with XNORs, the only requirement being that
there is an even number of XNORs.

Alternatively, if the checkerboard pattern includes a
logic 1 in the box in the upper left corner, the Reed-Müller
implementation must contain an odd number of XNORs.
Once again, it does not matter which combinations of in-
puts are applied to the individual XORs and XNORs.
Reed-Müller implementations are often appropriate for
circuits performing arithmetic or encoding functions.

n Example Arrive Reed-Muller simplification of Kar-
naugh maps for the following functions.

BC
A 00 0111 10

1

11

0

kitty- comer

BC

A 00 0111 10

11

0

offset

1

(b)(a)

CD
00 0111 10AB

1

01

00 1

11

CD
00 0111 10AB

1

01

00

11

1

1

1

11

11

10

11

10

CD
00 0111 10AB

01

00

1

1

111

10 1

(c) (d) (e)

In the figure (a) we have marked two cells which are in diag-
onal fashion as group. That is, A’BC and AB’C are grouped.
Thus, we can say they represents (A ≈ B)C.

Similarly, figure (b) contains two 1s separated by a single
empty cell. If we join the respective minterms i.e., AB’C and
ABC’ we find they represents A(B ≈ C).

Similarly, the third figure contains a special pattern of 1s.
If we add them, we get

= A’B’C’D + A’B’CD’ + A’BC’D’ + A’BCD

= A’B’(C ≈ D) + A’B(C ≈ D)’

= A’[(B’)(C ≈ D) + (B)(C ≈ D)’]

= A’[B ≈ (C ≈ D)]
Similarly, figure (d) contains another pattern of 1s which
we add we may get

= A’C’D + AC’D’ + A’BC + AB’C

= C’(A ≈ D) + C(A ≈ B)
In the last figure, we have some other pattern of 1s in the
Karnaugh map whose addition may give:

= A’B’CD + A’BCD’ + ABC’D’ + AB’C’D

= (A ≈ C)(B ≈ D)

n Example What will be the nature of Karnaugh map for
an equation F(A, B, C, D) = A ≈ B ≈ C ≈ D

n Answer: We know from the basic definition of 2-input
XOR, its value is zero if both the inputs are same; otherwise
1. Thus, for this also we will get 0 if all the variables (literals)
are prime (1111) or non-prime (0000), otherwise we will
get 1. Thus, the Karnaugh map my look like the following.

1 1 1

1 1 1 1

1 1 1 1

1 1 1

Similarly, F’ = (A ≈ B ≈ C ≈ D)’ may be having the follow-
ing Karnaugh map.

1

1

1.10 Hazards and Glitches

Unexpected transient output changes are called glitches. A
glitch is an unwanted pulse at the output of a combina-
tional logic network – a momentary change in an output
that should not have changed. A logic circuit is said to have

1.36 Computer Science & Information Technology for GATE

a hazard if it has the potential for these glitches. Thus, haz-
ards are unwanted switching transients which may appear
at the output of a combinational circuit and are caused by
propagation delays of the input signals. To be specifically
a hazard is a condition in a logically correct digital circuit
or computer program that may lead to a logically incorrect
output. Do note that a hazard is something intrinsic about
a circuit; a circuit with hazard may or may not have a glitch
depending on input patterns and the electric characteristics
of the circuit.

There are two types of hazards, viz., function and logic
hazards, if we classify them by specific causes. A function
hazard is associated with multiple-input changes while a
logic hazard is caused by a single-input change. Function
hazards are not in the purview of this book. We can further
classify hazards as being static or dynamic by their output
waveforms. The presence of undesirable glitches at the out-
put during the transition of two input states that have the
same steady state output is called a static hazard. It is a stat-
ic 0 (1)-hazard if the steady-state output is 0 (1). Dynamic
hazard occurs when the steady-state output values of two
input states are different and the output experiences more
than one change.

Static Hazards

If the change of a single variable causes a momentary
change in other variables, which should not occur, then a
static hazard is said to exist. Rather, output of a gate which
is expected to stay consistently either at 1 or 0, will not stay
consistently. For a small duration, it may get reverses and
comes back to its original level. There are two types of static
hazards.
Static 1 hazard: Output should be at constant 1, but when
one input is changed drops to 0 and then recovers to 1. It
cannot occur in a POS implementation of the circuits.
Static 0 hazard: Output should be at constant 0, but when
one input is changed rises to 1 and then drops back to 0. It
cannot occur in an SOP implementation

Dynamic Hazards

If, after switching an input, the output has multiple transi-
tions for a short time, then a dynamic hazard is said to be
existing. It is impossible to see dynamic hazards in 2-level
circuits. Dynamic hazards often occur in larger logic cir-
cuits where there are different routes to the output (from
the input).

For example
S/B: 0 Æ 1
IS: 0 Æ 1 Æ 0 Æ 1

Now let us consider the following circuit in which x and x›
(NOT x) are the input of the AND gate. We know for any

value of x, we are supposed to get 0 as the output. However,
it is not the case with the circuit because of the propagation
delay of the NOT gate. Because of this delay, we get a spike
as shown in Figure 1.20. That is, output value which is sup-
posed to be 0 will raise to 1 for a while and then comes back
to 0 again. This is the unwanted behavior of circuits because
of the delays and is an example for static 0 hazard.

x

Figure 1.20 Glitch due to Delay

Similarly, the following circuit demonstrates the static 1
hazard. That is, we expect 1 from the OR gate. However,
we may observe that the output will be changing to 0 for a
while and returns back to 1 because of the delay of previous
gates.

0

y

x

Figure 1.21 Static Hazard

Now, consider the following circuit x’y’+yz. If the input y is
changed from 0 to 1, control of the output of the OR gate
shifts from one AND gate to the other. Any difference in
delays between the two AND gates will result in a glitch in
the output of the OR gate.

x

y

z

Figure 1.22 An Example Circuit having Hazard

Timing diagram for the above circuit further illustrates the
static 1 hazard. We may find unexpected or unwanted drops
in the output signal which indicates the static 1 hazard.

0 125 250 375 500
input x

input y

input z

output x y + yz¢ ¢

Figure 1.23 Timing Information of the Hazard of the Circuit above

Introductory Concepts of Digital Logic Design and Computer Architecture 1.37

Static 1 hazard detection using a Karnaugh map:
Reduce the logic function to a minimal sum of prime
implicants. A Karnaugh map that contains adjacent,
disjoint prime implicants is subject to a static 1 hazard.
Similarly, we can also represent a function as product
of sums by grouping maxterms (or 0s). Here also, if we
find zero groupings which are adjacent and disjoint may
give raise static 0 hazard.

Adjacent prime implicants are the ones for which only
one variable needs to change value to move from one prime
implicant to the other.

Disjoint prime implicants are the one for which no
prime implicant covers cells of both (all) of the disjoint
prime implicants.

If we have two minterms and there is a literal in one
minterm and its complement in the other minterm, and
there exists just one pair of a literal and its complement,
then these two minterms are adjacent and a hazard could
occur between them.
For the above circuit, Karnaugh map is given as:

yz z
x

00 01 11 10

1

1

1 1
2

654

0

1 x

y

We may find two adjacent, disjoint prime implicants x’y’, yz.
These two prime implicants are adjacent as first implicant
contains y’ where as the other contains y. Thus, we can say
they are adjacent and disjoint. Thus, it shows static 1 haz-
ard. In order to avoid this hazard, we have to add a redun-
dant minterm “to bridge the gap” between the terms. We
can apply AND the remaining literals of both the minterms
to get the redundant term. (This is applicable to maxterms
in staic 0 hazard also). That is, the Karnaugh map with new
term looks like:

Yz z
x

00 01 11 10

1

1

1 1
2

654

0

1 x

y

The resultant equation F= x’y’+yz+x’z. The circuit which
can be free from hazard is given as shown in Fig. 1.24:

x

y

z

Figure 1.24 Circuit that is Free from Hazard

The timing diagram for the above diagram (Fig. 1.24) is
shown in Fig. 1.25 which shows that the circuit is free from
hazard.

0 125 250 375
input x

input y

input z

output x y 1 yz 1 x z¢ ¢ ¢

Figure 1.25 Timing details of the Circuit that is Free from Hazard

We can take care of hazards even by adding delays on the
other paths. However, this is little cumbersome.

n Example Will there be any hazard in the following
function?

F = A¢ C¢ D¢ + ABC

n Answer: In this function A and its complement occurred
in two minterns, but also C and its complement occurred
in the same two minterms. So the two minterms are not
adjacent and no hazard occurs between them. As we can
see the two minterms are not adjacent, so no hazard occurs.

n Example Identify whether the following Boolean func-
tion has any hazards. If it has hazards problem, find out
which redundant terms to be added to avoid the hazards.

F = A¢D + ABC + AB¢C¢

(1) (2) (3)
To detect and avoid hazard for this Boolean function the
program implement the following sequence:

Search for a pair of literal and its complement be-
tween (1) and (2), (A¢ and A) were found.

Check that it is the only pair between the two mint-
erms.

1.38 Computer Science & Information Technology for GATE

Because no other pair exists, AND the remaining
literals in the two minterms, and store the resulting
minterm in hazard. At this step hazard = BCD.

Search for another pair between (1) and (3), (A¢ and
A) were found.

Check that it is the only pair between the two mint-
erms.

Because no other pair exists, AND the remaining
literals in the two minterms, and store the resulting
minterm in hazard. The new added minterm will be
ORed with the one produced before. At this step haz-

ard = BCD + B¢C¢D.

Search for a pair of literal and its complement be-
tween (2) and (3), (B and B¢) was found.

Check that it is the only pair between the two mint-
erms. Because (C and C¢ also exist in the two mint-
erms, (2) and (3) are not adjacent and no hazard oc-
curs between them.

The final output of the Hazard function is hazard = BCD +

B¢C¢D. The following figure contains the Karnaugh before

and after adding the minterms to avoid hazards.

CD

00

01

11

10

00

01

11

10

AB
CD

AB
00 01 11 1000 01 11 10

0

0

0 0 1 1

1

11

1

0

0

0011

0 0

0

0 0

0

00

1 1

1

11

1

11

Do remember that we may find repeated to minterms as

redundant terms when we apply the above automatic pro-

cedure. Thus, we can avoid repeated redundant minterms.

Also, we may get a redundant minterm added to be a subset

of another minterm. Thus, we can eliminate it in the final

circuit design.

n Example The following figure explains how to take care
of static 0 hazard.

We may find a redundant term and as shown in the (d). The
resultant modified circuit is also shown in the figure.

A

D

A
B
C

z(A,B,C,D)

(a)

G2

G3

G1

A

C
G1

0 0

00 0 0

00

0

C

A

D

B

(b)

z(A,B,C,D)
G4

(c)

G5

G3

G2

G1
B

A

D

A

C

A
B

B
C
D

}

0 0

00 0 0

00

0}C

A

D

B

}

(d)

}

Why do hazards matter?

The output of a hazard-prone circuit or program de-
pends on conditions other than the inputs and the
state

The signal passed to another circuit by a hazard-
prone circuit depends on exactly when the output is
read

In edge-triggered logic circuits, a momentary glitch
resulting from a hazard can be converted into an er-
roneous output

n Example Modify the equation F = A¢BC¢ + AD + BCD¢
so that the logic is hazard free.

n Answer: We prepare Karnaugh map and then identify
the adjacent prime implicants. The following figure shows
Karnaugh map and redundant minterms to be added to
avoid hazards.

Introductory Concepts of Digital Logic Design and Computer Architecture 1.39

CD

AB 00 01 11 10

00

01

11

10

1 1

1

1 1

1 1
1

Original Karnaugh Map

00 01 11 10

00

01

11

10

CD

AB

Redundant terms

1 1

1

1 1

1 1

1

Notice there are three pairs of adjacent 1’s not covered by an
implicant. Transitions between these minterms can cause
false outputs. We eliminate these hazards by adding redun-
dant implicants to cover them. We add the prime impli-
cants BC’D, ABC, and A’BD’ giving the new equation:

F = A¢BC¢ + AD + BCD¢ + BC¢D + ABC +
A¢BD¢

n Example Can the logic equation F = X¢Y + WZ + XZ
have false outputs? Why or why not?

n Answer: Yes. Draw the K-map to see that not all adjacent
1’s are covered by the same implicants. For example, the
W¢XYZ and W’X’YZ terms are adjacent but are not both
covered by a single term in the equation for F. As a result,
if the inputs transition from WXYZ = 0111 to WXYZ =
0011, the terms X¢Y and XZ could both be momentarily
false, even though logically one of them should always be
true. This is due to the delay caused by the inverter on X.

n Example Consider the following circuit and analyse its
susceptibility for hazards.

AB

x

A
B

C

A

D

A

C

CD 00 01 11 10

00

01

11

10

11

1 111

1 1 1

1

Karnaugh Map

From the circuit, X=ABC+AC’+A’D+C’D. Karnaugh map is
shown above along with hints about adjacent prime implicants.
If ABCD = 1100 changes to 1000 then no hazard

1100 and 1000 is within the same 1-term group on
the Karnaugh map

X remains true because the term AC does not change

X=ABC+AC¢+A¢D+C¢D

1100 0 1 0 0

1000 0 1 0 0

If ABCD = 0111 changes to 1111 then there could be a haz-
ard

0111 and 1111 are adjacent but in different minterm
groups on the Karnaugh map

X could momentarily transition to 0

X=ABC+AC’+A’D+C’D

0111 0 0 1 0

1111 1 0 0 0

Thus, we need to add redundant terms. Terms ABC, A’D are
adjacent. The redundant term becomes BCD. Similarly, AC’
and A’D are adjacent. The redundant becomes C’D, which
is already a prime implicant. Similarly, AC’ and C’D are ad-
jacent terms. Thus, redundant term become AD. Thus, in
order to avoid hazards, we have to add BCD, and AD terms
to our equation.

Dynamic Hazards

Dynamic hazards rarely occurs in two level circuits. They

are commonly seen in multi-level circuits. Detecting dy-

namic hazards and alleviating them is tedious task. Thus, it

is highly recommended to design practical circuits in two

levels.

The following example illustrates the existence of dy-

namic hazard. For an output to change 0 Æ 1 Æ 0 Æ 1 (i.e.

3 times) in response to a single input change, there must be

at least 3 paths of different length in the circuit

2 gate delays: x1 Æ b Æ f

3 gate delays: x1 Æ a Æ b Æ f

4 gate delays: x1 Æ a Æ c Æ d Æ f

X1

X2

X3

X4

a

b

c d

f

1.40 Computer Science & Information Technology for GATE

One gate delay

X1

X2X3X4

a

b

c

d

f

Timing Diagram

n Example How do you avoid hazards?
The fundamental strategy for eliminating a hazard is to add
redundant prime implicants (extra prime implicants won’t
change F (final output of a circuit), but can cause F to be as-
serted independently of the change to the input that cause
the hazard).
n Example Design a combinational circuit to find 3 digit
(binary) prime number finder. That is, input lines for this
circuit are three and output line is 1. On the three input
lines, we can have inputs from 000 to 111 which may rep-
resents decimal numbers from 0 to 7. If the number given
is prime number, circuit has to give 1 as output, otherwise
it should give 0 as output. The following table explains the
required input and output relations ships. Of course, we do
know that in the field of Mathematics, there exists debate
on 0, 1 and 2 about their primality.

Decimal a2 a1 a0 Q

0 0 0 0 0

1 0 0 1 0

2 0 1 0 0

3 0 1 1 1

4 1 0 0 0

5 1 0 1 1

6 1 1 0 0

7 1 1 1 1

We can draw the Karnaugh map for the above system as:

a2\ a1 a0 00 01 11 10

0 0 0 1 0

1 0 1 1 0

Thus, we can find the Boolean equation for Q = a1a0 + a2a0

n Example Design 3 bit gray code to 3 bit binary code.
We have given gray codes in chapter on number system.
We assume X, Y, Z as Boolean variables representing the
bits of 3 bit gray code, while A, B, C as the Boolean variable
representing bits of required binary code.

Binary out

A

B

C

X

Y

Z

Gray in ?
This can be represented as finding the block box content
which satisfies input and output requirement. The follow-
ing truth table demonstrates the possible input and output
requirements of the required circuit. We have prepared
Karnaugh for each of the output variable A, B and C.

YZ
X 00 01 11 10

0 1 3 2

6754
1 1 1 1

K-map
for A

K-map
for C

0

1

0 1 3 2

6754

1

1

1

1

YZ
X 00 01 11 10

0

1

K-map
for B

00 01 11 10
YZ

X
0 1 3 2

6754

1

0

1 1

1 1

11

X Y Z A B C

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

0

0

1

1

1

1

0

0

1

1

1

1

0

0

0

1

1

0

1

0

0

1

From the Karnaugh maps and their groupings, we can write
equations for A, B, and C as:

A = X

B = XY’+X’Y= X ≈ Y

C = XY’Z’+X’Y’Z + XYZ + X’YZ’ = X ≈ Y ≈ Z
The resultant circuit is:

Gray in

X

Y

Z

A

B

C

Binary out

n Example Four bit Binary to Gray code and vice versa.
Binary to gray code:
Truth Table:

No. Binary Gray

 D C B A G3 G2 G1 G0

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1

2 0 0 1 0 0 0 1 1

3 0 0 1 1 0 0 1 0

4 0 1 0 0 0 1 1 0

5 0 1 0 1 0 1 1 1

6 0 1 1 0 0 1 0 1

Introductory Concepts of Digital Logic Design and Computer Architecture 1.41

No. Binary Gray

7 0 1 1 1 0 1 1 0

8 1 0 0 0 1 1 0 0

9 1 0 0 1 1 1 0 1

10 1 0 1 0 1 1 1 1

11 1 0 1 1 1 1 1 0

12 1 1 0 0 1 0 1 0

13 1 1 0 1 1 0 1 1

14 1 1 1 0 1 0 0 1

15 1 1 1 1 1 0 0 0

We shall draw Karnaugh maps for each of them and then
find out the simplified Boolean equations for each of the
ABCD. Karnaugh map for A can be given as:

1 1

1 1

1 1

1 1

Karnaugh map for B can be given as:

1 1

1 1

1 1

1 1

Karnaugh map for C can be given as:

1 1

1 1

1 1

1 1

If one observes the D column in the truth table, it is same as
G3. Thus, equations for ABCD can be arrived as:
Possible Equations for A, B, C and D are given as:

A = (G3 ≈ G2) ≈ (G1 ≈ G0)

B = (G3 ≈ G2 ≈ G1)

C = G3 ≈ G2

D = G3
Possible circuit diagram for the above is:

G3 G2 G1

CD

MSBBinary

Gray MSB

G0

LSB

B A

We can do reverse design also. That is, given binary code we
want gray code. That is, given ABCD, we want G3G2G1G0.
We shall draw Karnaugh maps for each of them and then
find out the simplified Boolean equations for each of the
G3G2G1G0.
Karnaugh map for G0 can be given as:

1 1 1 1

1 1 1 1

Karnaugh map for G0 can be given as:

1 1

1 1

1 1

1 1

Karnaugh map for G0 can be given as:

1 1

1 1

1 1

1 1

If one observes the G3 column in the truth table, it is same
as D. Thus, equations for G3G2G1G0 can be arrived as:

G0 = B ≈ A

G1 = C ≈ B

G2 = D ≈ C

G3 = D

A B C D

G0

G1

G2

G3

n Example Refer standard books on number systems for
bit stuffing for error detection and correction. We take that
bit number 1 (20), 2 (21), 4(22), 8(23) etc., are the parity bits.
If we assume, 8 bit data is used then we will be having 4 par-
ity bits indexed as 1, 2, 4 and 8. If we assume, C1, C2, ,,,,C12

are the parity bit stuffed data, then C1, C2, C4, C8 are the

1.42 Computer Science & Information Technology for GATE

parity bits. We take about how to calculate values for parity
bits from the data bits. The same can be represented as:

C1 = C3 ≈ C5 ≈ C7 ≈ C9 ≈ C11

C2 = C3 ≈ C6 ≈ C7 ≈ C10 ≈ C11

C4 = C5 ≈ C6 ≈ C7 ≈ C12

C8 = C9 ≈ C10 ≈ C11 ≈ C12

Draw circuit diagram from the above equations.

1.11 Realising Combinational Circuits Using
ROMS

The information in the truth table specification for a com-
binational circuit can be viewed as specifying the contents
for a ROM implementation of the circuit; e.g., the circuit
specification for f below can be implemented by an 8 H 1
ROM whose contents are the given by the following speci-
fication. Simply we store function f values at the addresses
(XYZ) of ROM. That is, at 000 we store 1, at 001 we store
0, and vice versa. When we want this function, simply we
present XYZ values to ROM as address which outputs the
stored value at that address which is nothing but our f val-
ues which we have stored earlier.

X Y Z f

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

1

0

0

0

1

1

0

1

Specification
for
f

Inputs =
Address

X A

Y A

Z A

=

=

=

2

1

0

Address Contents

1

0

0

0

1

1

0

1

000 :

001 :

010 :

011 :

100 :

101 :

110 :

111 :

8 1 ROM

Data
= Output f

n Example See the following combinatorial circuit. Does
it emulates the above function f?

X

Y

Z

f

n Example Consider the following circuit which con-
tains a set of three D flip-flops and RAMS. Analyse working
of this circuit assuming initial state of system is 000. That is,
all the three flip-flops contains 000. Also, assume XY values
are changed as 00, 01, 10, and 11 in continuous cyclic fash-
ion. Prepare state diagram for the same.

Current
State Address Contents

Q = A2 4

Q = A1 3

Q = A0 2

X = A1

Y = A0

Q = B

Q = B

Q = B

2 2

1 1

0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 1 0 0

0 0 1 0 1

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 0

0 1 1 1 1

1 0 0 0 0

1 0 0 0 1

1 0 0 1 0

1 0 0 1 1

1 0 1 0 0

1 0 1 0 1

1 0 1 1 0

1 0 1 1 1

1 1 0 0 0

1 1 0 0 1

1 1 0 1 0

1 1 0 1 1

1 1 1 0 0

1 1 1 0 1

1 1 1 1 0

1 1 1 1 1

0 0 0 1

1 1 1 0

0 0 1 0

0 0 0 1

0 0 0 1

1 1 1 0

0 0 1 0

0 1 0 0

0 1 1 0

1 1 1 0

0 0 0 1

0 1 0 0

1 0 0 0

1 1 1 0

1 1 1 0

1 1 1 0

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

1 1 1 0

1 1 1 0

1 1 1 0

1 1 1 0

32 X 4 ROM

Address Contents

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0 0

0 0 0 1

0 0 1 1

0 1 1 1

1 1 1 1

0 0 0 0

8 X 4 ROM

Q

Q

Q

1

2

3

4Q

Q2

D2

Q1

D1

Q0

D0

X

Y

M2

M1

M0

Z

As mentioned above, the current state information is main-
tained in the 3 D flip-flops given by Q2, Q1, Q0. The next
state is given by the memory data lines labeled M2, M1, M0.

Introductory Concepts of Digital Logic Design and Computer Architecture 1.43

The M2, M1, M0 output values are applied to the inputs of
the D flip-flops, ready to be latched on the transition to the
next state. Since the output associated with each state does
not rely on the transition inputs X, Y, a smaller memory
unit is sufficient for representing this requirement of the
circuit specification. Thus, 8x4 ROM is used to store output
of the state.

A,D/1

C/0
C/0

D/0

A/1 B/0

A/0
A/0

D/0
C/1

B/0

A,B,C,D/0

B,C,D/0

A,B,C,D/0

H/
0000

TI/
0001

S/
0000

T3/
0111

T2/
0011

T4/
1111

B/0

We have observed 6 possible states of the system which we
have labeled as S(Start denoted 000), T1 (001), T2(010),
T3(011), T4(101) and H (Halt denoted by 111). The pos-
sible input states and state outputs are given in the follow-
ing tables.

Inputs X Y

A 0 0

B 0 1

C 1 0

D 1 1

States/State
Outputs 01 02 03 04

S 0 0 0 0

T1 0 0 1 1

T2 0 1 0 1

T3 0 1 1 1

T4 1 0 0 1

H 1 1 1 0

If we observe the circuit diagram, XY and output of the

three flip-flops are used to address the 32x4 ROM while the

three flip-flops output are used to address 8x4 ROM. Thus,

now consider that 000 is available in the three flip-flops.

That is system in state S. If we assume XY is made as 00,

then address of 32x4 ROM is 00000 and for smaller RAM

is 000. We find 0001 and 0000 at those locations. Thus, 000

will be taken as next state of system, 1 becomes Z (output),

while 0000 becomes state outputs. Next if we consider XY as

01. Then the address for larger RAM becomes 00001 where

we find value as 1110. That is, next state as 111 and output

Z as 0. At the same time, we will be getting 0000 from the

smaller ROM which is state outputs. In this fashion, this

system changes its states. The following table elaborates the

working of the above circuit.

Q2 Q1 Q0 X Y M2 M1 M0 Z

Q
2
n

Q1
n

Q0
n

0 0 0 0 0 0 0 0 1

0 0 0 0 1 1 1 1 0

0 0 0 1 0 0 0 1 0

0 0 0 1 1 0 0 0 1

S

0 0 1 0 0 0 0 0 1

0 0 1 0 1 1 1 1 0

0 0 1 1 0 0 0 1 0

0 0 1 1 1 0 1 0 0

T1

0 1 0 0 0 0 1 1 0

0 1 0 0 1 1 1 1 0

0 1 0 1 0 0 0 0 1

0 1 0 1 1 0 1 0 0

0 1 1 0 0 1 0 0 0

0 1 1 0 1 1 1 1 0

0 1 1 1 0 1 1 1 0

0 1 1 1 1 1 1 1 0

1 0 0 0 0 1 0 0 0

1 0 0 0 1 1 0 0 0

1 0 0 1 0 1 0 0 0

1 0 0 1 1 1 0 0 0

1 1 1 0 0 1 1 1 0

1 1 1 0 1 1 1 1 0

1 1 1 1 0 1 1 1 0

1 1 1 1 1 1 1 1 0

H

T2

T3

T4

n Example Realise F(A, B, C, D) = A¢BC + AD + AC us-

ing ROM.

n Answer: First, we will expand the above product terms

into canonical terms and eliminate common terms. The fi-

nal equations becomes:

F(A.B.C,D) = A¢BCD + A¢BCD¢ + AB¢C¢D + AB¢CD +

ABC¢D + ABCD + AB¢CD¢ + ABCD¢

0111 0110 1001 1011 1101 1111 1010 1110

= S m(6, 7, 9, 10, 11, 13, 14, 15)

Thus, ROM with 16x1 should contains Function F values.
ABCD are the addresses for the RAM.

1.44 Computer Science & Information Technology for GATE

ROM Address
ABCD

ROM Contents

0000 0

0001 0

0010 0

0011 0

0100 0

0101 0

0110 1

0111 1

1000 0

1001 1

1010 1

1011 1

1100 0

1101 1

1110 1

1111 1

n Example A ROM based combinatorial circuit which
takes a 4-bit 2s complement number N and outputs (N+25)
mod 16 is proposed to be designed. Assume we have 32 ×
8 bit ROM at our disposal. Do calculate how many ROM
locations gets unused and also calculate ROM content bits
will be unused in our schema of function storage.

n Answer: First, we have to prepare truth table which
elaborates the input/output requirements. The truth table
is given as:

Input Output

0000 1001

0001 1010

0010 1011

0011 1100

0100 1101

0101 1110

0110 1111

0111 0000

1000 0001

1001 0010

1010 0011

1011 0100

1100 0101

1101 0110

1110 0111

1111 1000

ROM Address ROM Contents

00000 00001001

00001 00001010

00010 00001011

00011 00001100

00100 00001101

00101 00001110

00110 00001111

00111 00000000

01000 00000001

01001 00000010

01010 00000011

01011 00000100

01100 00000101

01101 00000110

01110 00000111

01111 00001000

Thus, we have to store output column of the above table in
ROM. As, ROM contains 8 bit words these four bit outputs
has to be stored in least significant 4 bits of each word.

n Example Design a combinational circuit which takes a
3-bit signed number (K) and gives K+1 as R if external in-
put a = 0 else gives N2 mod 7 as R. Realise this circuit using
16x2 ROM chips.

a

3

4
K

R

Combinational

Circuit

n Answer:

a Input Input in
Decimal

Required
Output

Output in
Binary

0 000 0 1 0001

0 001 1 2 0010

0 010 2 3 0011

0 011 3 4 0100

0 100 0 1 0001

0 101 –1 0 0000

0 110 –2 –1 1001

0 111 –3 –2 1010

1 000 0 0 0000

1 001 1 1 0001

Introductory Concepts of Digital Logic Design and Computer Architecture 1.45

a Input Input in
Decimal

Required
Output

Output in
Binary

1 010 2 4 0100

1 011 3 9 mod 7 = 2 0010

1 100 0 0 0000

1 101 –1 1 0001

1 110 –2 4 0100

1 111 –3 9 mod 7 = 2 0010

In order to store the output, we need two 16x2 ROM. The
following figure illustrates the contents of ROM.

ROM Address ROM0 ROM1

0000 00 01

0001 00 10

0010 00 11

0011 01 00

0100 00 01

0101 00 00

0110 10 01

0111 10 10

1000 00 00

1001 00 01

1010 01 00

1011 00 10

1100 00 00

1101 00 01

1110 01 00

1111 00 10

n Example Design a combinational circuit which takes
two 2-bit unsigned integers (K, M) and gives their output R
as unsigned integer. Implement the same using ROM.

4
R

Combinational

Circuit

msb

msb

a

b

c

d

K

M

n Answer: We consider ab lines for K and cd lines for M
as shown in the figure. We know largest possible two bit
unsigned number is 11(3). Thus, the product will be at most
9 for which we need 4-bits at most. Thus, output R is con-
sidered as 4-bit number as shown in the figure. We consider
abcd as the address to the ROM having 4-bit result R. The
following figure demonstrates the ROM contents.

ROM Address ROM

0000 0000

0001 0000

0010 0000

0011 0000

0100 0000

0101 0001

0110 0010

0111 0011

1000 0000

1001 0010

1010 0100

1011 0110

1100 0000

1101 0011

1110 0110

1111 1001

n Example Specify a truth table for a ROM which imple-
ments:

F = AB + A’BC’

G = A’B’C + C’

H = AB’C’ + ABC’ + A’B’C

n Answer: First, we calculate functions F, G, and H values
for each combination of input variables A, B, and C. These
values are stored in ROM as shown this in figure.

ROM Address F G H

000 0 1 0

001 0 1 1

010 1 1 0

011 0 0 0

100 0 1 1

101 0 0 0

110 1 1 1

111 1 0 0

ROM Content

1.12 Introduction to Sequential Circuits

Unlike combinatorial circuits, sequential circuit’s state or
output depends on the previous state or outputs in addi-
tion to current inputs. Evidently, sequential circuits contain
memory elements in addition to other digital components
(Fig. 1.26). Rather, one can state that previous contents of
memory elements influence the outputs and possible next
values (states) of the memory elements.

1.46 Computer Science & Information Technology for GATE

Sequential Circuits are classified into:

1. Synchronous: Common Clock is used with Flip-
Flops (i.e. elementary memory elements)

2. Asynchronous: Employs delays as memory elements.
Only non zero delays are used as memories.

3. Pulse Mode: Employs asynchronous flip-flops such
as the ones with Reset, Clear, Preset.

Figure 1.27 illustrates the difference among the variants of
the sequential circuits.

Further, we know that digital systems respond to high level
or low level or transitions in voltage. Based on their re-
sponse characteristics especially in response to clock signal,
they are classified as:
High level trigger: a response that occurs in the presence
of a high voltage level in the clock signal
Low level trigger: a response that occurs in the presence of
a low voltage level in the clock signal
Positive edge-trigger is a response to a low-to-high voltage
or clock signal transition

Negative edge-trigger: is a response to high-to-low voltage
or clock signal transition

logic

1 pos.

edge

high

neg.

edge

neg.

edge

pos.

edgelow

1.12.1 Flip-flops

A flip-flop is a semiconductor device that has a digital out-
put which can be toggled between two stable states by pro-
viding it with the appropriate digital input signals. Once the
output is put in one state, it remains there until a change in
the inputs causes it to toggle again. This toggling between
two logic states is also referred to as ‘flip-flopping.’ There
are several types of flip-flops, few of which are described
as follows.

Inputs OutputsCombinational

Circuit

Memory

Elements

Combinational

Circuit

Figure 1.26 A typical Sequential Circuit

Delay element

Delay element

Delay element

Asynchronous Model

(Use delay elements)

Synchronous Model

(Use clocked flip-flops)

Y1

Y2

Ym

x1

x2

xn

Flip-Flops

Flip-Flops

Flip-Flops

Combinational

Logic
Combinational

Logic

Combinational

Logic

Flip-

Flops

Flip-

Flops

Flip-

Flops

S

R

S

R

S

R

z1
z2

zk

x1
x2

x3

x1
x2

xn

z1
z2

zk

z1
z2

zk

Asynchronous Pulse

Model

Figure 1.27 Classification of Sequential Circuits

Introductory Concepts of Digital Logic Design and Computer Architecture 1.47

Three classes of flip-flops are commonly employed in digi-
tal design based on their response.

latches: outputs respond immediately while enabled
(no timing control)

pulse-triggered flip-flops: outputs response to the
triggering pulse

edge-triggered flip-flops: outputs responses to the
control input edge

1.12.1.1 The Set-Reset (S-R) Flip-flop

The Set-Reset (SR) flip-flop refers to a flip-flop that obeys
the truth table shown in Table 1.4. It will be having two
inputs, namely, a Set input, or S, and a Reset input, or R.
It also has two outputs, the main output Q and its comple-
ment Q.

Table 1.4 The S-R Flip-flop Truth Table

S R QN+1 Q¢N+1

0 0 QN Q¢N

0 1 0 1

1 0 1 0

1 1 Not Used

A simple representation of an S-R flip-flop is a pair of cross-
coupled NOR gates, i.e., the output of one gate is tied to one
of the two inputs of the other gate and vice versa (see the
circuit used at the beginning of this section which is used to
explain sequential circuits. Just replace NAND with NOR).
The free input of one NOR gate is used as R while the free
input of the other gate is used as S (Figure 1.28)

The output of the gate with the ‘R’ input is used as the Q
output while the output of the gate with the ‘S’ input is used
as the Q output. Thus, resetting an S-R flip-flop’s output Q
to ‘0’ requires R=1 and S=0, while setting Q to ‘1’ requires
S=1 and R=0.

R

S

Q

Q

S R

0

0

1

1

0

1

0

1

latch

0

1

0

Q Q

latch

1

0

0

Figure 1.28 SR Flip-Flop

There are two common versions of the SR Flip-Flop:
Low to High activated SR Flip-Flop.
A Flip-flop (figure 1.28) made from two NORs. The output
will latch when an appropriate Low to High transition is
sent to an input.

High to Low activated Flip-Flop

R

S

Q

Q

Q

Q

R

S

Figure 1.29 High to Low activated SR flip-flop (a) with NAND (b)

OR with inverted inputs

If an SR Flip-Flop is built out of NAND gates instead of
NOR gates, the flip flops output is latched when a High to
Low transition occurs at an input state. While the circuit is
correctly shown using the NAND gates, the preferred gate
diagram is to use ORs with inverted inputs indicating that
Low levels activate the flip-flop.

When working with digital IC chips, these flip flops are
shown using the following alternate circuit diagrams:

Q

QR

S Q

QR

S

High-Level Activate
Flip Flop

Low-Level Activate
Flip Flop

Timing Diagram

Since Flip-Flops are sequential devices, truth tables are
not enough. The state levels are sometimes shown by use
of timing charts. It’s easier to keep track of the states us-
ing timing charts especially for devices which are triggered
by edge transitions. Figure 1.30 shows timing diagram of
an SR flip-flop. We may find when SET line goes from low
to high, output is becoming high. Similarly, even after SET

lows changes from high to low, output is high, which sup-
ports that it has remembered 1. Same behavior is observed
with RESET line also.

Set Input

Reset Input

Set Output Q

Reset Output Q
Time

Figure 1.30 Timing Details of an SR flip-flop

n Example Fill in the table below assuming that the flip-
flop is High to Low activated with ORs as shown in Figure
1.29.

1.48 Computer Science & Information Technology for GATE

S R Q Q

1

1

0

1

1

1

0

0

0

1

1

1

0

1

1

0

1

X

0

X

1

X

1

1

0

X

1

X

0

X

0

0

Time

Latch vs Flip-Flop (The Unbroken Dilemma)

Latch— a device where any data change on the input will
be transferred to the output whenever the proper logic
level is present on the enable input.
Flip-Flop—a device where data on the input will be
transferred to the output when the proper edge-trigger
occurs on the clock input.

In real-world applications, flip-flops are ‘clocked’ so that
one can control the exact moment at which the output
changes its state in response to changes in inputs. The clock
digital input of clocked flip-flops is usually denoted as C.

The fundamental latch is the simple SR flip-flop, where
S and R stand for set and reset, respectively. It can be con-
structed from a pair of cross-coupled NAND logic gates as

shown in the figure. The stored bit is present on the output
marked Q.

Normally, in storage mode, the S and R inputs are both
low, and feedback maintains the Q and Q outputs in a con-
stant state, with Q the complement of Q. If S (Set) is pulsed
high while R is held low, then the Q output is forced high,
and stays high even after S returns low; similarly, if R (Reset)
is pulsed high while S is held low, then the Q output is forced
low, and stays low even after R returns low (Table 1.5).

In electronics design, an excitation table shows the mini-
mum inputs that are necessary to generate a particular next
state when the current state is known. They are similar to
truth tables and state tables, but rearrange the data so that
the current state and next state are next to each other on the
left-hand side of the table, and the inputs needed to make
that state change happen are shown on the right side of the
table. Excitation table for an SR Flip Flop (“X” is “don’t care”)
is shown in Table 1.5. Here, Q(t) is the flip-flop state at time
t and Q(t+1) is its state at time t + 1, i.e., next state. In some
books, we may find the use of QN and QN+1 also for these
quantities.

The behavior of a flip flop can be described by a char-
acteristic table which is basically a truth table. It contains
short description about actions associated with each input.
For example, Table 1.5 contains characteristic table of SR
flip-flop.

Table 1.5 Characteristic and excitation table of S-R Flip-Flop

SR Flip-Flop operation

(X denote a Don't care condition; meaning the signal is irrelevant)¢ ¢

Characteristic table Excitation table

S R Action

Keep state

Q = 0

Q = 1

Unstable combination,

0

0

1

1

0

1

0

1

0

0

1

1

Q (t) Q (t + 1) S R Action

No Change

Set

Reset

No Change

0

1

0

1

0

1

0

X

X

0

1

0

1.12.1.2 The JK Flip-flop

The JK flip-flop is a flip-flop that obeys the truth table in
Table 1.6. The J-K flip-flop differs from the S-R flip-flop
in the sense that its next output is determined by its pres-
ent output state as well, aside from the states of its inputs.
Note that in the J-K flip-flop, the S input is now called the
J input and the R input is now called the K input. Thus, in
a JK flip-flop, the output will not change if both J and K are
‘0’, but will toggle to its complement if both inputs are ‘1’.
Unlike SR (or RS) flip-flop, with JK flip-flop there is no rac-
ing condition when both the inputs are 1s. Instead, if both

J,K inputs becomes 1, flip-flop output gets complimented
as shown in the following characteristic table of JK flip-flop
in Table 1.6.

Table 1.6 J-K Flip-flop’s Truth Table

J K QN+1

QN

0

1

Q¢N

0

0

1

1

0

0

0

1

Figure 1.31 gives details about the JK flip circuit and its symbol
that is used commonly in the digital designs.

Introductory Concepts of Digital Logic Design and Computer Architecture 1.49

J

Clk

KQ

Q

Toggles on leading edge
of clock signal

SR flip-flop

Q

Q
S

R

CircuitSymbol

J

Clk

K

J-K
Flip-flop

Figure 1.31 JK Flip-Flop Circuit and Symbol that are commonly

used.

1.12.1.3 Master-Slave J-K Flip-Flops

The Master-Slave Flip-Flop is basically two J-K bi-stable
flip-flops connected together in a series configuration with
the outputs from Q and Q from the “Slave” Flip-flop being
fed back to the inputs of the “Master” with the outputs of
the “Master” flip-flop being connected to the two inputs of
the “Slave” Flip-flop as shown in figure 1.32.

J

CLK

K

Q

Q

Figure 1.32 Master Slave JK Flip-flop

The input signals J and K are connected to the “Master”
Flip-flop which “locks” the input while the clock (CLK)
input is high at logic level “1”. As the clock input of the
“Slave” Flip-flop is the inverse (complement) of the “Mas-
ter” clock input, the outputs from the “Master” Flip-flop are
only “seen” by the “Slave” Flip-flop when the clock input
goes “LOW” to logic level “0”. Therefore on the “High-to-
Low” transition of the clock pulse the locked outputs of
the “Master” Flip-flop are fed through to the J-K inputs of
the “Slave” Flip-flop making this type of Flip-flop edge or
pulse-triggered. Then, the circuit accepts input data when
the clock signal is “HIGH”, and passes the data to the out-
put on the falling-edge of the clock signal. In other words,
the Master-Slave J-K Flip-flop is a “Synchronous” device as
it only passes data with the timing of the clock signal.

Figure 1.33 contains circuit diagram of JK Master Flip-
Flop along with its timing diagram. If we observe the above
figure, J-K flip-flop output will be changing only when
clock’s falling edge is encountered.

When clock pulse is high slave is isolated while clock
pulse is at low (goes to low) master will be isolated. That is,
when slave is isolated means external input will not change
its current content. That is, any other component which

takes feed from this flip-flop will continue to get current
value of the flip-flop as input. Similarly, when master is iso-
lated its content will be transferred to slave. Assume a digi-
tal system with a set of flip-flops with the outputs of some
flip-flops feeding others. At the beginning of a clock pulse,
some of the masters change their states (that they may get
feed from other flip-flops) but all the flip-flops outputs will
be at their previous states. When clock pulse returns to 0,
some of the outputs change but they will not be influencing
any others masters till next clock cycle. Thus, simultaneous-
ly flip-flops states will be changed in the same clock cycle.

J

Clock

K

S

R

Q

Q
Qm

Qm

Master

S

R

Q

Q

Slave

(a) Circuit diagram

Q

Q

(b) Logic symbol

J

K

Q

Q

CP

(c) Timing diagram

K

J

Clock

Q

Qm

Figure 1.33 JK Master Slave Flip-flop with timing details

1.12.1.4 The T Flip-flop

If the T input is high, the T flip-flop changes state (“tog-
gles”) whenever the clock input is strobed. If the T input is
low, the flip-flop holds the previous value. The schematic
diagram of T flip-flop is given in figure 1.34.

T Q

Q

Figure 1.34

1.50 Computer Science & Information Technology for GATE

Table 1.6 (characteristic table) contains the behavior of T
flip-flop.

Table 1.7 Characteristic table of T flip-flop

T QN QN+1

0 0 0 (QN)

0 1 1 (QN)

1 0 1 (QN’)

1 1 0 (QN’)

In fact, T flip-flop can be realised using J-K flip-flop itself.
In Fig. 1.35. T line is added to J and K lines of J-K flip-flop.
We know that J-K flip-flop state will not change if J and K
are at 0. Also, we know that J-K flip-flop state gets toggled
when we make J and K lines at 1. This principle is simply
used in designing Toggle flip-flop.

T

J Q

Q'K

Figure 1.35

When T is held high, the toggle flip-flop divides the clock
frequency by two; that is, if clock frequency is 4 MHz, the
output frequency obtained from the flip-flop will be 2 MHz.
This ‘divide by’ feature has application in various types of
digital counters. A T flip-flop can also be built using a D
flip-flop (T input and Qprevious is connected to the D input
through an XOR gate).

1.12.1.5 The D-type Flip-flop

The D-type flip-flop is just a clocked flip-flop with a single
digital input D. Every time a D-type flip-flop is clocked, its
output follows whatever the state of D its D line is. A flip-
flop may be used to store or ‘lock’ one bit of information.
This locking of information is also known as ‘latching’, so a
flip-flop may be referred to as a single-bit latch.

There now exist many digital IC›s consisting of a set of
several flip-flops, whose main function is to latch several
bits of data. These IC›s are known as ‘latches’, and are used
to capture data from the data bus of a digital system at pre-
cise moments in time. In fact, simple computer-controlled
circuits use latches as I/O devices. The flip-flop is also the
basic building block of SRAM’s.

Positive Edge Triggered D Flip-flop

In a positive edge-triggered D Flip-flop, the output looks
at the input only during the instant that the clock changes

from low to high. At every raising edge input is set to out-
put (See Figure 1.36).

Clock

D

Q

Figure 1.36 Timing diagram of a positive edge triggered D

Flip-flop

Following block symbol is used representing positive edge
triggered D flip-flop. The “carrot” symbol means edge-trig-
gered.

clk

D Q
V

Negative Edge Triggered D Flip-flop Here, at every falling
edge of the clock, input is set to output. The following tim-
ing diagram illustrates the same.

Clock

D

Q

Figure 1.37 Timing diagram of negative edge triggered D

Flip-flop

The following block diagram is used for representing nega-
tive edge triggered D flip-flop. See the difference between
this and previous one.

clk

D Q
V

Triggering on Edge Sometimes we want to enable flip-flop
briefly for some time on rising edge. To achieve this we can
use a raising edge detect circuit with a NOT and AND gates
as shown in Figure 1.38. Here, NOT is used to induce delay.
Figure 1.38 also contains the timing diagram of the effect of
NOT and AND gates for clock input. We may find that the
NOT gate is inducing a delay which is the reason why we
are getting a narrow width pulse when a raising edge of the
clock arrive. This, we are referring edge and is used to en-
able the D flip-flop. Output of the D flip-flop follows input
when this edge signal arrives.

Introductory Concepts of Digital Logic Design and Computer Architecture 1.51

D Q

en
Clock

en

Clock
edgeRaising

Edge Detect

Clock edge
Clock

Edge

dd

Figure 1.38 Edge Triggered Flip-flop

D-Latch
Another type of latching circuit which doesn’t have an il-
legal state is shown below in Figure 1.39. This is called a
D-Latch. A D-Latch is often used as a bi-stable memory
circuit with a single input called D. Think of it as a single
bit memory.

Enable
D

Q

Q

Figure 1.39 D-Latch

The output Q is set to the state of input D whenever the
Enable is held to High. When the Enable is held Low, the
output states are latched and will not change regardless of
the value of input D. This is summarised in the truth table
below. Symbol is also given below.

Inputs Outputs

Enable D Q Q

0 0 Latched

0 1 Latched

1 0 0 1

1 1 1 0

Enable

D Q

Q

1.12.1.6 Conversion of Flip-Flops from One Type
to Another

Sometimes it just happens that we need a particular type
of flip-flop for a specific application, but all we have avail-
able is another type. This often happens with an application
needing T flip-flops, since these are not generally available
in commercial packages. Rather, it is necessary to re-wire
an available type to perform as a T device.

Fortunately, this is not hard. we have already seen that
a JK flip-flop with its J and K inputs connected to a logic 1
will operate as a T flip-flop.

Converting a D flip-flop to T is quite similar; the Q’ output
is connected back to the D input.

Converting an RS flip-flop to T flip-flop involves a bit
more, as shown in Figure 1.40. However, the simple feedback
connections shown will ensure that the S and R inputs will
always tell the flip-flop to change state at each clock pulse.

T

S Q

QR

V

Figure 1.40 T Flip-flop

Another conversion that is required on occasion is to con-
vert an RS flip-flop to D flip-flop. Figure 1.41. contains a
solution. This change eliminates the possibility of an illegal
input condition, which could otherwise cause spurious re-
sults in some applications.

Q

Q

S

R

V

D

CLK

Figure 1.41 D Flip-flop

In this case, we do need to add an inverter to supply the R
input signal, as shown in Figure 1.42.

CLK

J

K

Q

Q

D

V

Figure 1.42 A stable D Flip-flop

A much more complicated circuit, shown to the above,
is the gating structure needed to convert a D flip-flop to
JK flip-flop. This circuit implements the logical truth that
D = JQ’ + K’Q.

This input circuit is frequently used. CMOS flip-flops

are typically constructed as D types because of the nature

of their internal operation. This approach eliminates the

internal latching effect, or “ones catching,” that occurs with

the general JK master-slave flip-flop. The J and K input

signals must be present at the time the clock signal falls to

logic 0, in order to affect the new output state.

Figure 1.43 shown also another circuit to convert a D

flip-flop to JK flip-flop. Readers are advised to see the con-

ceptual difference between this and the above.

1.52 Computer Science & Information Technology for GATE

Q

Q

CLK

K

J

CLK

CLK JK Q
0
1
1
1
1

XX
00
01
10
11

No change
No change
0
1
Toggle

JK-FF
V

QJ

K

D
LatchV

Figure 1.43 JK Flip-flop with its Excitation Table

The following circuit behaves similar to T flip-flop. We have
given characteristic table in Figure 1.44. which shows its
behavior as same as T flip-flop.

Q

CLK

CLK

T
Q

QT

T-FF
No change

No change

Toggle

CLK T

X

0

1

0

1

1

D
Latch

Figure 1.44 A Circuit which behaves like T Flip-flop

n Example The following circuit is proposed to avoid
forbidden state of RS flip-flop. Analyse and illustrate func-
tioning of this circuit.

Q

CLK

J

K

Q

QR

S Q

n Answer: The following truth table illustrates the working
of the above RS flip-flop. We may find that racing condi-
tion of normal RS flip-flop is avoided here.

J K Qt Qt+1

0
0

0
0

0
1

0
1 (HOLD)

0
0

1
1

0
1

0
0 (CLEAR)

1
1

0
0

0
1

1
1 (SET)

1
1

1
1

0
1

1
0 (TOGGLE)

n Example Analyse the following circuit.

T

CLK

QD Q

n Answer: The following table illustrates the behavior of
the above circuit. It behaves similar to T flip-flop.

T Q Next State Q’

0 0 0

0 1 1

1 0 1

1 1 0

n Example Explain the behavior of the following circuit.

D

en
QR

S Q

n Answer: When en (enable) is low, S and R will be 0. Thus,
flip-flop will now have any change of its state. If enable is
high and D is 0 then R, S values becomes 1 and 0 thus flip-
flop gets cleared while D is 1 then R, S values becomes 0
and 1 thus flip-flop gets set. This type of circuit is called as
level-sensitive flip-flop.

1.12.1.7 Set and Clear Signals

Practical circuits have setting and clearing flip-flops in an
asynchronous manner, i.e., independent of other signals
including clock. Clear forces the output to low regardless
of the other inputs. Preset forces the output to high re-
gardless of the other inputs. The following circuits (Figure
1.45) shows this behavior. The following first circuit we find
flip-flop will be getting preset if preset line is set. That is,
if preset is at logic 1, then R and S lines becomes 0 and 1,
respectively thus flip-flop will be kept at set state. While
the second circuit sets flip-flop state to clear independent
of other signals. That is, if clear =1 then R and S inputs of
the flip-flop becomes 1 and 0, respectively independent of
other signals. Thus, flip-flop will be set in clear or 0 state.

en

D

preset

preset

QR

S Q

en

D

preset

QR

S Q

clear

clear

Figure 1.45 Set and Clear lines with Flip-flops

Introductory Concepts of Digital Logic Design and Computer Architecture 1.53

1.12.2 Shift Registers

A register is a semiconductor device that is used for stor-
ing several bits of digital data. It basically consists of a set
of flip-flops, with each flip-flop representing one bit of the
register. Thus, an n-bit register has n flip-flops.

A special type of register, known as the shift register, is used
to pass or transfer bits of data from one flip-flop to another.
This process of transferring data bits from one flip-flop to
the next is known as ‘shifting’. Shift registers are useful for
transferring data in a serial manner while allowing parallel
access to the data.

A shift register is simply a set of flip-flops interconnected in
such a way that the input to a flip-flop is the output of the
one before it. We know that a D flip-flop will retain value
on its D line as its stored bit when a clock pulse arrives.
Thus, a flip-flop of this register will be getting the data from
a flip-flop that is left to it. Output of right most flip-flop is
considered as serial output or DATA OUTPUT as shown in
Figure 1.46. Also, left most flip-flop will be taking incoming
serial data as its data for each clock cycle. Clocking all the
Flip-flops at the same time will cause the bits of data to shift
or move to the right in one direction (i.e., toward the last
flip-flop). Figure 1.46 shows a simple implementation of a
5-bit shift register using D-type flip-flops.

D

C

Q

Q

D

C

Q

Q

D

C

Q

Q

D

C

Q

Q

D

C

Q

Q

0 1 2 3 4

Data input Data output

Figure 1.46. A Simple Shift Register Consisting of D-type Flip-flops

CLK

DATA
OUTPUT

Q J

SERIAL
DATA IN

J
K
C

Q J
K
C

Q J
K
C

J
K
C

Q
K
C

Q

10 2 3 4

Data can be taken out in a parallel or serial fashion, as
shown in Fig. 1.46. Tapping from the points 0,1,2,3, and 4
at the same time, we get parallel output. That is, we will be
having the contents of each flip-flop on these lines. If we
take them at the same time, we will be getting parallel data.
Thus, the shift register in Figure 1.46 can be used for both
serial to parallel transfer in addition to using the same as
serial-in and serial-out register.

time

Q0 Q1 Q2 Q3 Q4

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

1 1 0 0 0

0 1 1 0 0

1 0 1 1 0

(1011)

(101)

(10)

(1)

1

1

0

1

Figure 1.47 Operation of a serial register

Figure 1.47 illustrates the working of this circuit. Initially,
we assume that all the flip-flops are at their cleared state.
That is, 00000 is available in the register. If we assume serial
input is 1011 then in the first clock cycle first flip-flop will
be getting loaded with 1. During the second clock cycle the
second flip-flop takes this 1 while first flip-flop takes 0. Like
this, serial data will getting loaded and shifted one bit at a
time into the register.

n Example How can you modify the above circuit such
that in place of D flip-flops we can replace T flip-flops.

n Answer: We simply take output of left side flip-flop and
make itself and its complement as the J and K lines of cur-
rent flip-flop as shown below.

Under its basic operation of the above shift register, the
data bit of the last flip-flop is lost once it is clocked out. In
some applications there is a need to bring this back to the
first flip-flop, in which case the data will just be circulated
within the shift register. A shift register connected this way
is known as an end-around-carry shift register, or simply
‘ring rigster’.

1.54 Computer Science & Information Technology for GATE

1.12.2.1 Bi-Directional Shift Register

A more complicated version of a shift register is one that
allows shifting in both directions, left or right. It is aptly
and quite descriptively referred to as the Shift-Right Shift-
Left Register. To accomplish this, a ‘Mode’ control line is
added to the circuit. The state of this ‘Mode’ input deter-
mines whether the shift direction would be right or left. The
following circuit in Figure 1.48 contains shift left and shift
right register.

RIGHT/
LEFT

Serial
data in

clk

DQ

C

DQ

C

DQ

C

DQ

C
Q3Q2Q1Q0

Figure 1.48 Bi-directional Shift Register using D Flip-flops

In the above circuit, we have line name RIGHT/LEFT. If
we want right shift, this line should go high. Similarly, if we
want left shift this line should go low. If we observe the cir-
cuit, we find with each D flip-flop an OR gate is connected
to flip-flops D line. This OR gate is getting feed from two
AND gates. Previous flip-flop output is connected to first
AND gate while next flip-flops output is connected to the
other AND gate. Also, RIGHT/LEFT line is connected to
first AND gate while its complement is connected to the
other AND gate. Thus, when RIGHT/LEFT line high previ-
ous flip-flop value is stored in the current while the same
goes low next flip-flop value is retained. However, in the
case of left most and right most flip-flops, data on the line
serial data in is retained.

S1 S0S0S1

(a) Block diagram

Clock

Shift
Control

Shift register B

clk

Shift register A

clk

Clock

Shift
Control

clk
T1 T2 T3 T4

(b) Timing diagarm

Figure 1.49 An application of shift register

The above diagram in Figure 1.49 illustrates one use of the
shift register, i.e., to transfer content of a register to another

in serial. The SO is again connected to SI in first register
(see encircled portion) such that first register will retain its
original value after transfer.

Figure 1.50 contains another use of shift register. While
adding two numbers, we assume both the numbers are
in two shift registers. Each time one bit of them are made
available to Full Adder circuit which adds them and gener-
ates sum and carry bits. Sum bits are fed back to first shift
register as a serial in such that final sum is available in the
first shift register. Also, carry is stored in a D flip-flop and
used while adding next bits. We have discussed same prob-
lem in state machines also.

For storing sum

Shift
register A

x

y

z
Shift

register B

FA
S

C

Shift
control
CLK

Serial
input

S1

S1
S0

S0

Clear

Q

C

D

Figure 1.50 Application of shift register in adding two numbers

n Example Does the circuit given in Figure 1.50 can be
added to n numbers of size 8-bits. Do assume that shift reg-
ister are of 8-bits size. If possible, explain how? Do inform
any assumptions you make.
n Answer: Assuming that flip-flops in both the registers are
having clear line, we first clear all of them. Thus, both the
registers contain 0s. Now, we present first number (A) via
serial in line of second register while clearing carry flip-flop
also. Then, we present next number and vice versa. After
sending the second number (B), first register contains first
number as 0+A=A. While sending third number via serial
in line of second shift register, first two numbers will be
added and result will be in first result. Like that, first shift
register contains sum of n numbers.

1.12.2.2 Parallel Loading into Registers

In the above example, we have loaded serial data into a reg-
ister. A second method of loading a register is by shifting in
all the bits in parallel at the same time (for example from
a decoder). An example of a 3-bit parallel shift register is

Introductory Concepts of Digital Logic Design and Computer Architecture 1.55

shown below in figure 1.51. Here, we assume X0,X1, X2
etc., are parallel lines. If SHIFT=1 then data on the X0, X1,
X2 lines will be retained in the respective flip-flops.

Shift

X2

A

Q

D
C

Q B C

Clear

X1 X0

Q

D
C

Q

Q

D
C

Q

Figure 1.51 Parallel Shift Register with D flip-flops.

That is, when the shift line goes high, the outputs of the
AND gates take on the values of X. On the next clock, this
information is shifted into the register. To reset the register,
the CLEAR line (an asynchronous signal) goes high so that
all the Q’s will turn low on the next clock pulse.

We can also achieve the same using JK flip-flops as
shown below in Figure 1.52. We assume first RESET line
will made in a clock cycle before loading the data into reg-
ister. Thus, all the flip flops will be in this clear or 0 state.
When we want to load the data we make SHIFT line to go
high such that X values will be available as the output on
the AND gates outputs in first cycle. During the next cycle,
the same will be stored in the flip-flops. Do remember X
values can be 0 or 1. Thus, if X value is 0 then J and K lines
of any flip-flop will be 0. Thus, it retains its value, i.e., 0. Do
remember, the register will be RESET before loading paral-
lel data. Similarly, if X value is 1 then J and K lines of any
flip-flop are 1 and 0 respectively. Thus, flip-flops will be in
their set state or 1 (i.e., X) is said to be stored. Thus, parallel
load is possible using this circuit.

Shift

X2

A

Q

J
C
K

Q B C

Reset

X1 X0

Q

Q

Q

QJ
C
K

J
C
K

Figure 1.52 Parallel Load with JK Flip-flops

Thus this configuration requires two clock pulses; one to
reset and one to load.

n Example Analyse the following circuit which is pro-
posed for parallel load operation into a register with D
flip-flops. Explain what happens when load=1 and load=0.
Compare the same with parallel load circuit in Figure 1.51.

Clock

Load

l0

l1

l2

l3

D

C

D

C

D

C

D

C

A0

A1

A2

A3

n Answer: Load = 1 ; the I inputs (I0 to I3) are transferred
into the register. When load = 1, data on the I0 to I3 are
available on the D lines of the flip-flops which will be stored
in the D flip-flops.
Load = 0 ; maintain the content of the register. Because,
the D flip-flop does not have a “no change” state like other
flip-flops. That is, if load=0, then D lines of the flip-flops
will have their contents itself. Thus, next value of the D flip-
flops becomes current value itself.

Compared to the circuit in Figure 1.51, this does not
have clear facility. Of course, adding it is not so difficult.

1.12.2.3 Parallel Load and to Serial Out Register

The following circuit in Figure 1.53 gives ability to load data
parallel into a register and then outputs the same in serial
manner. When LOAD/SHIFT is made 1, then the data on

Clock

Load/Shift
Serial
Input

Parallel
Data

Serial
Output

D Q

CLK

D Q

CLK

D Q

CLK

Figure 1.53 Parallel Data load and serial output.

parallel lines will be transferred to register. After that, for
every one clock cycle the register content will shifted down.

1.56 Computer Science & Information Technology for GATE

Thus, the loaded data will be available in serial fashion on
the line SERIAL OUTPUT. Here, also ith flip-flop will be
getting feed from flip-flop above it. That is, value available
in a flip-flop will be shifted to a flip-flop below it.

1.12.2.4 Parallel Load and Parallel Out Register

By simply taking output from each of the flip-flops in Figure
1.50, we can get parallel output from a register at any time.

1.12.2.5 Register to Register Parallel Transfer

Sometimes we need to transfer contents of a register to an-
other register in parallel. This can be achieved between a
register with D flip-flops to another register with JK flip-
flops with the following type of circuit in Figure 1.54. If we
see the circuit, we find output of a D flip-flop is connected
to J and K lines of a JK flip-flop. If D flip-flop contains 0,
then J and K lines becomes 0 and 1 thus the JK flip-flop
retains 0. If D flip-flop contains 1, then J and K lines be-
comes 1 and 0 thus JK flip-flop will be retaining 1. Thus, the
content of the register with D flip-flops will be transferred
to the register with JK flip-flops.

CLK

D

C

J

C

K

Q

J

K

C

QD

C

D

C

D

C

J

K

J

K

C

Q

C

Q

Figure 1.54 Register to Register Parallel Transfer

n Example Is it possible to replace JK flip-flops with SR
type without any other change?

n Answer: Yes

n Example Is it possible to replace JK flip-flops with T
type without any other change?

n Answer: No. We need to change the circuit as shown be-
low. First, we assume that the destination register with T
flip-flops will be first cleared before parallel transfer. After
clearing, each flip-flop of the destination register will be
having 0. Now, T flip-flops output and D flip-flop output
will be exclusive ORed. Thus, D flip value is 0, then XOR
output will be 0. So, T flip-flop value will be 0 itself. If D
flip-flop value is 1, then XOR output will be 1, thus T flip-
flop valued will be toggled. Thus, T flip-flop value will be-
come 1 from the clear state.

CLK

T

C

Q

T

C

Q

T

C

Q

T

C

Q

CLEAR

CLEAR

CLEAR

CLEAR

D

C

D

C

D

C

D

C

n Example Explain the functionality of the following cir-
cuit with SR flip-flops.

n Answer: This circuit can be used to load data on a par-

allel lines to a register with SR flip-flops. We assume that

initially all the flip-flops are in cleared state. If we assume

Input data strobe is 1 then data available on data lines will

be available on S lines of flip-flops. If we assume Reset line

0, then the flip-flop will be in its clear state if S=0 else it will

be moved to set state. That is, if a data line contains 1 then

its respective AND gate output is 1, i.e., S=1 in its flip-flop.

Thus, it will be set. Like this, data on the data lines will be

transferred to register. Similarly, we have another part of

the circuit with which data can be sent on output lines. If

output data strobe becomes 1, data in the flip-flops will be

available in the output lines.

Introductory Concepts of Digital Logic Design and Computer Architecture 1.57

Input
data
strobe

Reset
lines

Output
data
strobe

Data lines

Output lines

D18 D17 D16 D15 D14 D13 D12 D11

D01D02D03D04D05D06D07D08

S Q

R

S Q

R

S Q

R

S Q

R

S Q

R

S Q

R

S Q

R

S Q

R

n Example Writing something into one of the flip-flop of
a register using decoder.
Decoder is a circuit used to select one line out of many. For
example, in the following we are using 2x4 decoder. That is,
one in one of the output lines we will have 1 based on two
control inputs. The same can be represented as:

Input Output

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

We want to store whatever available on Data in line in one
of the four D flip flops. We know that D flip flop loads the
available data on its input line when it receives CLK on its
Chip select line. As output lines of decoder are connected
to flip flop’s CLK as shown in the following figure, thus only
one flip flop will be selected out of the four. Thus, that flip
flop loads the data available in data in line.

Decoder

A0 A1

Data in

D

D

D

D

1.12.2.6 Universal Shift Register

If the register has both shifts and parallel load capabilities,
it is referred to as a universal shift register. It will contain

A clear control to clear the register to 0.

A clock input to synchronise the operations.

A shift-right control to enable the shift right opera-

tion and the serial input and output lines associated

with the shift right.

A shift-left control to enable the shift left operation

and the serial input and output lines associated with

the shift left.

A parallel-load control to enable a parallel trans-

fer and the n input lines associated with the parallel

transfer.

n parallel output lines

A control state that leaves the information in the reg-

ister unchanged in the presence of the clock.

This can be realised in many ways. However, designing us-
ing MUXes is somewhat easy. The following circuit uses
4x1 MUXes as shown in figure 1.55. Functioning of this
circuit can be summarised as:

Control
Inputs S1, S0

Action

00 No change in the register content.

01 Shift right: The serial input for shift-right is
transferred to the A3.

10 Shift left: The serial input for shift-left is
transferred to the A0.

11 Parallel load to the register.

1.58 Computer Science & Information Technology for GATE

Parallel outputs

D
C

D
C

D
C

D
C

4X1

MUX

3 2 1 0

4X1

MUX

3 2 1 0

4X1

MUX

3 2 1 0

4X1

MUX

3 2 1 0

Clear

Clk

S1

S0

l3 l2 l1 l0

Serial
input for
shift-right

Serial
input for
shift-left

Parallel inputs

A3 A2 A1 A0

Figure 1.55 Universal Shift register

The MUXes used above taking current flip-flop output,
next flip-flop output, previous flip-flop output and parallel
input on its input lines. Based on the control inputs S1, S0
one of them are loaded into flip-flops.

n Example The following circuit is proposed using D

flip-flops and MUXes for circular shifting. Explore the

functionality of the same. This is called as barrel shifter.

Barrel Shifter

4- bit register - circular shift right of 0, 1, or 3

S0

S1

4
to
1

MUX

0
1
2
3

4
to
1

MUX

0
1
2
3

4
to
1

MUX

0
1
2
3

4
to
1

MUX

0
1
2
3

D D D D

Introductory Concepts of Digital Logic Design and Computer Architecture 1.59

Note that each flip-flop is controlled by a multiplexer,
which is used to select the input sent to the flip-flop. The
multiplexer’s function is to route the value selected accord-
ing to its address lines to the flip-flop’s input. To set up the
circuit as a shift register, the 4 multiplexer input data lines
are simply hooked up to the flip-flop outputs so that each
address matches a shift value, with address 0 matching a
shift of 0, address 1 matching a shift of 1, and so forth. Thus,
the amount of the shift is entered through the address lines
(S0, S1). The circuit can be reconfigured for different shift
patterns by simply hooking up the multiplexer input data
lines to the flip-flop outputs (or other data values) in dif-
ferent ways.

Assuming D3 to D0 are the D flip-flops and MUXes as
M3 to M0 (all considered from left to right). We see output
lines of all D flip-flops are inputs to all multiplexers. For
example, multiplexer M3, outputs of flip-flops D3, D0, D1
and D2 are connected. Similarly for M2 MUX outputs of
D2, D3, D0 and D1, for M1 MUX outputs of D1, D2, D3
and D0 and for M0 MUX outputs of D0, D1, D2, and D3
are connected. Output of a MUX is connected to D line of
the corresponding flip-flop.

For example, if we consider a number 1011 (D3 to D0)
is available in flips flops then M3, M2, M1, M0 MUXes in-
put lines contains 1110, 0111, 1011, and 1101 respectively.
Let, we want to shift the number by two bits. Thus, we set
S0S1 as 10, which make MUXes to select their line 2 input
and send to their output line which is really saved in the
flip-flops. That is, 1110 (D3 to D0) is saved in flip-flops
which is two bits right shifted (circular) version of 1011.

n Example Design a 4-bit register that can shift left by
one bit, shift right by two bits, invert its contents, and load

a new value (respectively, ctrl = 00, 01, 10, 11). Provide
a shift_in input and a shift_out output for use when left
shifting. When right shifting, the register should shift in
zeros and the shift out should be ignored. Use D flip-flops.

n Answer: As we want four different types of operations on
the content of the register, we propose to use output of a 4x2
MUX with each of the D flip-flop as shown in the following
figure. We consider this is more like a barrel shifter. Select
lines S1S0 decides the required function of the circuit. We
assume the following:

1. If the control lines of the MUX is 00, system should

shift the content of register left by one bit. Thus, ith

flip flop output is fed to i-1th flip-flops MUX as shown

in the figure.

2. If the control lines of the MUX is 01, system should

shift the contents of the register right by two bits.

From the problem statement, we can conclude that

most significant two flip-flops should become 0 while

least significant flip flops to get shifted values. Thus,

we have taken MUX inputs of two most significant

flip flops as 0s as shown in the figure while 3rd flip-

flop output is connected to 1st flip-flops MUX and

2nd flip-flop output too 0th flip-flops MUX.

3. If the control lines of the MUXes are 10, we want

complement of the register. Thus, output of a flip flop

is complemented and given as third input to its MUX.

4. If the control lines of the MUXes are 11, we want to

load I3I2I1I0 to the register. Simply, we have fed these

lines as 4th inputs to each of the MUXes as shown in

the following figure.

Shift out

S1S0

0

I2
I1

S1S0 S1S0 S1S0

Shift in

Clk

D Q
00
01

10
11

D Q

00
01

10
11

D Q
00
01

10
11

I10

D Q0
00
01

10
11I3

1.12.3 Counters

In digital logic and computing, a counter is a device which
stores (and sometimes displays) the number of times a par-
ticular event or process has occurred, often in relationship
to a clock signal.

Counters are implemented using register-type circuits.
We have two prominent types of counter designs known as:

Asynchronous (ripple) counters

Synchronous counters

1.12.3.1 Asynchronous counters

The counter’s output is indexed by LSB (least significant bit)
every time the counter is clocked. That is, add each time
one to the current number. For example, if we assume 000

1.60 Computer Science & Information Technology for GATE

is the starting number, the sequence we expect from a 3-bit
counter is given below.

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

If we observes the above, we can conclude that for the low
order bit:

Just swap between 0 and 1 – i.e., it toggles
For higher order bits:

the n’th bit toggles when the n-1’th bit changes
from 1 to 0.
For example, if we want to design a 2-bit binary counter, we
can use the above facts. For example, the following circuit
(Figure 1.56) can serve as a 2-bit counter which uses two JK
flip-flops. Both the flip-flops J and K lines are kept at high
state such that whenever a clock pulse arises, JK flip-flop
state complements. Also, first flip-flop (Q0) outputs com-
plement is the clock for next flip-flop (Q1). If we assume
that both the flip-flops are in their clear state and when 1st
clock pulse arises Q0 gets complemented, i.e., it value be-
comes 1. However, second flip-flop (Q1) will still be in its
0 state. When next clock pulse arrive to Q0 its state gets
complimented again. That is, Q0 becomes 0 and while Q1
changes to 1. When third clock pulse arrives Q0 becomes 1
while Q1 will be at 1 itself. Like this, we may get 00, 10, 01
and 11. Do remember, Q0 is the LSB.

Hi state

Hi state

Clock

J

K

Q0 Q1J

K

Figure 1.56 A simple 2-bit counter

Figure 1.57 contains a 4-bit binary up counter using JK flip-
flops.

CK

1 QJ

K O

QJ

K O

QJ

K O

QJ

K O

Figure 1.57 Design of Binary Down counter Using JK Flip-flops

Consider the following state table of a 3-bit binary down
counter.

Q2Q1Q0

000

111

110

101

100

011

010

001

We find the following features in the above table:

1. Q0 changes alternatively.

2. Q1 toggles whenever Q0 is 0.

3. Q2 toggles whenever Q1=Q=0.

We can generalise that Qi toggles if Qj=0 for all j <i, j>=0

We know that in order to toggle JK flip-flop contents, both

J and K lines should be 1. Thus, we can join complement

output of a flip-flop to J and K lines of next JK flip-flop. The

following shows circuit for 4-bit count down counter using

the above rules. As first flip-flop is supposed toggle each

time, its J and K lines are kept at high (1) always.

Introductory Concepts of Digital Logic Design and Computer Architecture 1.61

CLK

1 QJ

K O

QJ

K O

QJ

K O

QJ

K O

Figure 1.58 A 4-bit countdown counter using JK flip-flops.

QJ

K O

QJ

K O

QJ

K O

QJ

K O

2X1 MUX

UP/DOWN

UP/DOWN

UP/DOWN

CLK

2X1 MUX

2X1 MUX

Figure 1.59 A 4-bit up/down counter using 2X1 MUXes

The following contains both binary up and down counter.
Here, we are using a 2x1 MUX with a line UP/DOWN as
selection line. If it is 0, counter works like a up counter else
it works like a down counter.

n Example How to design a binary up down counter us-
ing T flip-flops.

n Answer: Simply replace JK flip-flops with T and make
the J line as T and remove K line connections in the above
figure.

1.12.3.1.1 Simple Binary Counter Using D
and T Flip-flops

The simplest counter circuit is a single D-type flip-flop (or
T type), with its D (data) input fed from its own inverted
output. This circuit can store one bit, and hence can count
from zero to one before it overflows (starts over from 0).
This counter will increment once for every clock cycle and
takes two clock cycles to overflow, so every cycle it will al-
ternate between a transition from 0 to 1 and a transition
from 1 to 0. Notice that this creates a new clock with a 50%
duty cycle at exactly half the frequency of the input clock.
If this output is then used as the clock signal for a similarly
arranged D flip-flop (remembering to invert the output to
the input), you will get another 1 bit counter that counts
half as fast. Putting them together yields a two bit counter
given in the following table:

Cycle Q1 Q0 (Q1:Q0)dec

0 0 0 0

1 0 1 1

2 1 0 2

3 1 1 3

4 0 0 0

We can continue to add additional flip-flops, always invert-
ing the output to its own input, and using the output from

A0

A1

A2

A3T

CR

T

CR

T

CR

T

CRCount

Logic -1
Rest

(a) With T flip-flops

LSB

A0

A1

A2

A3

Count

Rest

(b) With D flip-flops

LSB

D

CR

D

CR

D

CR

D

CR

Figure 1.60 Simple binary counters using T and D flip-flops.

the previous flip-flop as the clock signal. The result is called
a ripple counter, which can count to 2n–1 where n is the

1.62 Computer Science & Information Technology for GATE

number of bits (flip-flop stages) in the counter. Figure 1.60
contains 4-bit ripple counters using D flip-flops and T flip-
flops.
In the case of ripple counter with T flip-flops, both the T
and clock inputs are kept at logic 1 for LSB flip-flop while
other flip-flops T line is logic 1 while clock line is the output
of previous flip-flop as shown in Figure 1.60 (a). Figure 1.61
displays the timing details of the ripple counter. We find
that output signal at A0 will be half of the original clock
(usually called divide by 2), at A1 output signal frequen-
cy will one fourth of the clock (divide by 4), at A2 output
signal frequency will be one eighth of clock rate, and vice
versa. Thus, we can have frequency dividers at various frac-
tions of original clock rate using this circuit. We shall have
more discussion about this in our next section.

(Count)

Clk

A0

A1

A2

0 1 2 3 4

1

2

3

Figure 1.61 Timing information of a counter with either T or D

flip-flops

Ripple counters suffer from unstable outputs as the over-
flows “ripple” from stage to stage, but they do find frequent

HIGH HIGH

Q0

Q1

Clk

Clk

1

0

1

0

1

0

1 2 3 4 5

0 1 0 1

0 0 1 1

0 1 2 3 0

Set
J Q

QK
Clr

Set
J Q

QK
Clr

Figure 1.62 A simple counter circuit and timing diagram using JK

flip-flops

application as dividers for clock signals, where the instan-
taneous count is unimportant, but the division ratio over-
all is. (To clarify this, a 1-bit counter is exactly equivalent
to a divide by two circuit – the output frequency is exactly
half that of the input when fed with a regular train of clock
pulses).

n Example Design a ring counter using D flip-flops.

Q0 Q1 Q2 Q3

Clk

Reset

1000 0100 0010 0001

D Q

PR Clr Clr

D Q D Q

Clr

D Q

n Answer: In order to have a ring counter, we have to
make output of MSB flip-flop as D line for LSB D flip-flop
as shown above. We assume LSB flip-flop to be equipped
with a special line PR (preset) while others to be having
CLR line. Initially, when we make RESET=1, then except
LSB flip-flop, remaining all will get cleared. That is, 1000 is
assumed to be stored in the register. Now, for every clock
cycle, how register content changes is shown in the above
figure.

1.12.3.1.2 Asynchronous Counter created
from JK Flip-flops

A two-bit asynchronous counter is shown in Figure
1.63. The external clock is connected to the clock input of
the first flip-flop (FF0) only. So, FF0 changes state at the
falling edge of each clock pulse, but FF1 changes only when
triggered by the falling edge of the Q output of FF0. Be-
cause of the inherent propagation delay through a flip-flop,
the transition of the input clock pulse and a transition of
the Q output of FF0 can never occur at exactly the same
time. Therefore, the flip-flops cannot be triggered simulta-
neously, producing an asynchronous operation.

Note that for simplicity, the transitions of Q0, Q1 and
CLK in the timing diagram showns simultaneous, even
though this is an asynchronous counter. Actually, there is
some small delay between the CLK, Q0 and Q1 transitions.

Usually, all the CLEAR inputs are connected together, so
that a single pulse can clear all the flip-flops before count-
ing starts. The clock pulse fed into FF0 is rippled through
the other counters after propagation delays, like a ripple on
water, hence the name Ripple Counter.

Introductory Concepts of Digital Logic Design and Computer Architecture 1.63

The 2-bit ripple counter circuit above has four different
states, each one corresponding to a count value. Similarly,
a counter with n flip-flops can have 2 to the power n states.
The number of states in a counter is known as its mod
(modulo) number. Thus a 2-bit counter is a mod-4 counter.

A mod-n counter may also described as a divide-by-n
counter. This is because the most significant flip-flop (the
furthest flip-flop from the original clock pulse) produces
one pulse for every n pulses at the clock input of the least
significant flip-flop (the one triggers by the clock pulse).
Thus, the above counter is an example of a divide-by-4
counter.

n Example The following circuit is proposed for binary
count down counter using T flip-flop. Does it serve the pur-
pose? What is the problem? How to correct it?

1 1 1

CLKCLKCLK

LSB MSB

T Q T QT Q

n Answer: It will not give expected sequence. To get the
correct results, connect a flip-flops complement output (Q’)
to next flip-flops clock line.

n Example What is the term for the number of counts in
one counter cycle?

n Answer: Modulus of the counter

n Example How is the modulus determined?

n Answer: Based on number of flip-flops in the counter. If
number of flip-flops are N then modulus can be given as 2N.
However, to be specifically modulus can be found by count-
ing number of possible stable states of the counter.

1.12.3.1.3 Asynchronous Decade (decimal
10) Counter

Logic "1" QA QS QC QD ∏10

J Q

CLK

K CLR

J Q

CLK

K CLR

J Q

CLK

K CLR

J Q

CLK

K CLR

Figure 1.63 Mod 10 counter using JK flip-flops

This type of asynchronous counter counts upwards on each
leading edge of the input clock signal starting from “0000”
until it reaches an output “1010” (decimal 10). Both out-
puts QB and QD are now equal to logic “1” and the output

from the NAND gate changes state from logic “1” to a logic
“0” level and whose output is also connected to the CLEAR
(CLR) inputs of all the J-K Flip-flops. This causes all of the
Q outputs to be reset back to binary “0000” on the count of
10. Once QB and QD are both equal to logic “0” the output
of the NAND gate returns back to a logic level “1” and the
counter restarts again from “0000”. We now have a decade
or Modulo-10 counter.

Clock

Count

Output bit Pattern Decimal

ValueQD QC QB QA

1 0 0 0 0 0

2 0 0 0 1 1

3 0 0 1 0 2

4 0 0 1 1 3

5 0 1 0 0 4

6 0 1 0 1 5

7 0 1 1 0 6

8 0 1 1 1 7

9 1 0 0 0 8

10 1 0 0 1 9

11 Counter Resets its Outputs back to Zero

Using the same idea of truncating counter output sequenc-
es, the above circuit could easily be adapted to other count-
ing cycles be simply changing the connections to the AND
gate. For example, a scale-of-twelve (modulo-12) can eas-
ily be made by simply taking the inputs to the AND gate
from the outputs at “QC” and “QD”, noting that the binary
equivalent of 12 is “1100” and that output “QA” is the least
significant bit (LSB).

Standard IC asynchronous counters are available are the
TTL 74LS90 programmable ripple counter/divider which
can be configured as a divide-by-2, divide-by-5 or any com-
bination of both. The 74LS390 is a very flexible dual decade
driver IC with a large number of “divide-by” combinations
available ranging form 2, 4, 5, 10, 20, 25, 50, and 100.

1.12.3.1.4 Modulus 16 counter

A 4-bit counter, which has 16 unique states that it can
count through, is also called a modulo-16 counter, or mod-
16 counter. By definition, a modulo-k or base-k counter is
one that returns to its initial state after k cycles of the input
waveform. A counter that has N flip-flops is a modulo 2N

counter.
A simple implementation of a 4-bit counter is shown in

Figure 1.64, which consists of 4 stages of cascaded J-K flip-
flops. This is a binary counter, since the output is in binary
system format i.e., only two digits are used to represent the
count i.e., ‘1’ and ‘0’. With only 4 bits, it can only count up
to ‘1111’, or decimal number 15.

1.64 Computer Science & Information Technology for GATE

As one can see from Figure 1.64, the J and K inputs of all
the flip-flops are tied to ‘1’, so that they will toggle between
states every time they are clocked. Also, the output of each
flip-flop in the counter is used to clock the next flip-flop.
As a result, the succeeding flip-flop toggles between ‘1’ and
‘0’ at only half the frequency as the flip-flop before it.

J

Clk
K

FF3

Q3Q1Clk

FF1J
K

J

Clk
K

FF2

Q2
Clock

Y

Q0

J

Clk
K

FF0

Figure 1.64 A Simple 4-bit Ripple Counter Consisting of J-K

Flip-flops

Thus, in Figure 1.64 the last flip-flop will only toggle after
the first flip-flop has already toggled 8 times. This type of
binary counter is known as a ‘serial’, ‘ripple’, or ‘asynchro-
nous’ counter. The name ‘asynchronous’ comes from the
fact that this counter’s flip-flops are not being clocked at
the same time.

An asynchronous counter has a serious drawback.
Whatever we have explained above is an ideal case unfor-
tunately the output of a flip-flop, like any gate, is slightly
delayed with respect to a changing input.

So, the toggling of Q1 will be delayed by a few nanosec-
onds.

Q2 will only toggle on a change in Q1 so it will be de-
layed by twice the amount.
This effect will keep on compounding.
These glitches can have quite a disturbing effect.
Consider the case when the counter is at 0111
At the next pulse we would expect the counter to show 1000
However because of the delays the following patterns will
all occur

0110 Q0 changes but Q1 has not caught up yet

0100 Q1 has now changed but Q2 is still to flip over

0000 Q2 now has reacted but Q3 is still to change

1000 Eventually we get the right answer

The major problem with the counters shown is that the
individual flip-flops do not change state at the same time.
Rather, each flip-flop is used to trigger the next one in the
series. Thus, in switching from all 1s (count = 15) to all 0s
(count wraps back to 0), we don’t see a smooth transition.
Instead, output A falls first, changing the apparent count
to 14. This triggers output B to fall, changing the apparent
count to 12. This in turn triggers output C, which leaves a
count of 8 while triggering output D to fall. This last ac-
tion finally leaves us with the correct output count of zero.
We say that the change of state “ripples” through the coun-
ter from one flip-flop to the next. Therefore, this circuit is
known as a “ripple counter.”

This causes no problem if the output is only to be read by hu-
man eyes; the ripple effect is too fast for us to see it. However,
if the count is to be used as a selector by other digital circuits
(such as a multiplexer or de-multiplexer), the ripple effect can
easily allow signals to get mixed together in an undesirable
fashion. To prevent this, we need to devise a method of caus-
ing all of the flip-flops to change state at the same moment.
That would be known as a “synchronous counter” because
the flip-flops would be synchronized to operate in unison.

Thus, its speed is limited by the cumulative propagation
times of the cascaded flip-flops. A counter that has N flip-
flops, each of which has a propagation time t, must there-
fore wait for a duration equal to N x t before it can undergo
another transition clocking.

A better counter, therefore, is one whose flip-flops are
clocked at the same time. Such a counter is known as a syn-
chronous counter.

n Example The following example demonstrates the 4-bit
binary countdown counter. We will still use edge-triggered
master-slave flip-flops The output of each flip-flop changes
state on the falling edge (1-to-0 transition) of the T input.
However, note that in this case each T input is triggered
by the Q’ output of the prior flip-flop, rather than by the Q
output. As a result, each flip-flop will change state when the
prior one changes from 0 to 1 at its Q output, rather than
changing from 1 to 0. Because of this, the first pulse will
cause the counter to change state from 0000 to 1111. Of
course, one may argue that when we reduce (0), we should
get -1. Does this mean, what we are getting in this counter,
i.e., 1111 indicates -1?
The following figure simulates binary countdown counter.

A B C D

T

Q

Q
T

Q

Q
T

Q

Q
T

Q

Q

Summary about Ripple Counters

Only LSB flip-flop controlled by the clock input

Also known as RIPPLE COUNTER

Modulus = number of stable states or counts in each
flip-flop cycle

Modulus = 2N, where N= number of flip-flops

Highest number in count =2N–1

1.12.3.1.5 Building Counter from zero to X
using JK Flip-flops (Any modulus
counter)

Counters can be made to recycle after any desired count
(say X) by using a gate to reset the counter. The following

Introductory Concepts of Digital Logic Design and Computer Architecture 1.65

steps can be followed to building a counter which goes
from 0 to X.

1. First find out smallest number (N) of flip-flops need-
ed. That is, 2N >=X.

2. Take NAND gate and connect its output to each flip-
flop’s clear line.

3. Determine for which flip-flop the output should be
high for X. Connect those FFs Q lines as inputs of the
NAND gate.

For example, we want to design mod 6 counter. So, we need
3 flip-flops as 23 >=6. Now, we connect Q lines of FFs B and
C to NAND gate as shown below.

C J

KC
Clk

1

1

B J

KB
Clk

1

1

A J

KA
Clk

1

1

B

C

ABC

CONVERT MOD 8 TO MOD 6

INPUT CLK

0
1
2
3
4
5
6
7

C B A

UNSTABLE
STATE

0
0
0
0
1
1
1

0
0
1
1
0
0
1

0
1
0
1
0
1
0Master

reset

1.12.3.1.6 Building Self Stopping Counter

Counters can be made to stop counting after any desired
count (X) by using a gate to inhibit the clock at the LSB FF.

D J

KD
Clk

1

1

C J

KC
Clk

1

1

B J

KB
Clk

1

1

A J

KA
Clk

1

1

0 1 01

D
C
B
A

For example, let us assume that we want counter to be
stopped when its value reaches X(1010). We can simply
achieve by taking a NAND gate connecting either output

or complement outputs based on the binary code of the re-
quired X. Output of this NAND gate and clock are ORed
with an OR gate. For example, the following counter stops
when counter reaches 1010.

n Example See the following counter circuit that uses JK
flip-flops. Answer the following.

a. What is the value of the last usable state before the
NAND gate resets the circuitry?

b. What value does the NAND gate reset the value to?

c. What is the modulus of this counter?

d. If count starts at decimal 11 and receives seven clock
pulses, what is the new value on the counter?

e. What is the unstable state of the counter?

S
QJ

C
K

P

R

0V
I

A B C D

S
Q

QN

J
C
K

P

R

S
Q

QN

J
C
K

P

R

S
Q

QN

J
C
K

P

R

QN

n Answer:

a. 11012 = 1310 If we observe the above circuit, NAND
gate inputs are FF A’s complement and other FF’s di-
rect outputs. Thus, if FFs ABCD outputs are at 0111,
then NAND gate resets all the flip-flops. Thus, last us-
able state is one less than 1110 (do remember A is
LSB bit), i.e 1101=13.

b. 10002 = 810. If we observe the circuit, we find NAND
gate output is connected to R (reset) lines of FFs ABC
while the same is connected to S (set) line of FF D.

Thus, when the counter reaches 1110, it resets the
same to 1000, i.e., to 8.

c. 6 . That is, we know from the above discussion that
last usable state is 13 and least is 8. Thus, the number
of states usable becomes 6.

d. 1210. If the state is 11 (1011) then the probable se-
quence is: 1011, 1100, 1101, 1110 (unstable so goes to
1000) ->1000, 1001, 1010, 1011, 1100.

e. 11102 = 1410. (should be clear from the above discus-
sion)

1.66 Computer Science & Information Technology for GATE

n Example See the following circuit and answer the fol-
lowing.

a. What is the value of the unstable state, in decimal?

b. At what value does the NAND gate set the counter to?

c. If QA=1, QB=1, and QC=0, and 5 clock pulses are ap-
plied then what is the final stable state of the counter.

d. What is the modulus of this counter?

0V
I

A B C

S
Q

QN

J
C
K
P

R

S
Q

QN

J
C
K
P

R

+V +V

S
Q

QN

J
C
K
P

R+V

+V

n Answer:
a. 1112 (710). If we observe the circuit, when NAND

gates inputs becomes 111, counter goes to 011.

b. 0112=310

c. 1002(410)

d. 4(Non stable state is 111. Therefore, last stable state is
110. When 111, counter goes to 011. Thus, number of
possible states 110-011=6-3=4(011, 100, 101, 110).

n Example What is ripple effect?.
As the clock input “ripples” from the first flip-flop to the last,
the propagation delays from the flip-flops accumulate. This
causes the Q outputs to change at different times, resulting in
the counter briefly producing incorrect counts. For example,
as a 3-bit ripple counter counts from 7 to 0, it will briefly out-
put the count 6 and 4. The following figure contains timing
diagrams one showing correct results while the other showing
wrong results because of the accumulated delays.

Q2

7640
1110
1100
1000

100 nSec1mSec

Q1

Q0

CLK

1 0

1 0

1 0

1.12.3.2 Synchronous Counters

A synchronous counter is one in which all the flip-flops

change state simultaneously since all the clocks inputs are
tied together. Here, we will not be using the preceding bit
as a pulse to any of the J-K flip-flops. Also, we assume that
the same clock pulse must be used for each flip-flop. Now
the following question arises.
How do we know when to toggle a flip-flop?
We may observe the expected of a binary counter as given
above. The synchronous counter uses the following fact:

A bit will toggle if all the low-order bits in the previous
state are 1.

That is, here we may make all flip-flops to toggle at the
same time – but only if J-K’s are high they will be acting as
expected. Here, J-K’s of a flip-flop are formed by ANDing
the output of the previous bits (i.e., outputs of all the previ-
ous flip-flops).

Because, the new output comes after the toggle by a few
nanoseconds. The new state is not involved in any of the
inputs. The AND gates are sampling the previous state. We
are deliberately using to our advantage the gate delay time.
Figure 1.65 contains the 4-bit synchronous counter based
on the above discussion.

"1"

Clock

J

K
Clk

FF0
Q0

J

K
Clk

FF1

J

K
Clk

FF2

J

K
Clk

FF3

Q3

Q1 Q2

Figure 1.65 A Simple Synchronous Counter Consisting of J-K Flip-

flops and AND gates

Counters are usually constructed of T flip-flops since the

Introductory Concepts of Digital Logic Design and Computer Architecture 1.67

flip-flops only have to toggle at a given sequence. A 3-bit
synchronous counter is shown below in Figure 1.66.

T

C Q

Q
2

T

C Q

Q
3

C B A

T

C Q

Q
1

Figure 1.66 A 3-Bit synchronous counter using T flip-flops

The equations for the flip-flops are 01 = 1; T2 = Q1; T3

= Q1 · Q2. Thus T1 toggles at every clock pulse, T2 toggles

only when Q1 is high, on every other clock pulse, and fi-

nally T3 toggles when both Q1 and Q2 are high, or every

fourth clock pulse. The counting sequence is shown below:

A B C
STATE

1

0

0

0

0 1

0

0102

1103

0014

1015
0116

1117

0008

9 r e p e a t

Count

0

This type of counter that uses T flip-flops can be extended
by the following set of equations.

T1 = 1

T2 = T1

T3 = T1T2

Tn = T1T2…Tn-1

n Example Prepare truth table and find out whether the
following circuit can work like a Mod-11 counter or not.

T

C Q

Q
2

T

C Q

Q
3D

T

C Q

Q
4C B A

AC

T

C Q

Q
1

1.12.3.2.1 Synthesis of Synchronous
Circuits

Let us take a simple example, the design of a Mod-8 coun-
ter using D-FFs. Since 8 distinct outputs are needed, the
design calls for 8 states since each output will depend on
the state we are in. The flow chart (transition diagram see
chapter on State Machines) is as follows:

A B C D E F G H

/111/110/101/100/011/010/001/000

Each state is represented by a circled letter. The arrow
points to the next state following a clock pulse. For a simple
counter, the arrows just follow a string. The number follow-
ing the slash shows the desired output at each transition. If
there was an input it would be put in front of the slash.

Suppose we want an up/down counter dependent upon
an external input, X. When X = 1 the counter has to count
up and for X = 0 the counter has to count down. Thus, we
now have arrows in both directions in the state diagram,
dependent on X.

A B C D E F G H

X/000

X/000

X/001

X/010

X/010

X/011

X/011

X/100

X/100

X/101

X/101

X/110

X/110

X/111

X/111

X/001

On X (when X = 0) the arrows point backwards. The out-
puts follow similar reasoning.

Now for a final extension assume that he new design
calls for two inputs X,Y. On 0, 1 we want to have a down
counter; on 1, 0 we want to have an up counter; and on 0,0
and 1,1 we want to stop counting. Only the first 4 states will
be shown in the following state diagram.

A B C D

01/111

10/000

01/000

10/001

01/001

10/010

01/010

10/011

01/011

10/100

00/000 00/001 00/010 00/011
11111111

Once a good working flow chart (or transition diagram) has
been accomplished we arrive a state table and then driving
equations are found by using K-Map.

Let us work on a simple 4 state up/down counter. As we
need two states only, we need two flip-flops. We refer them
as Q1 and Q2. Now, we shall prepare transition table. This
table simply lists each state on the left, and the transition to
the next state inside the box, dependent on the input vari-
able X. From the state table, an excitation table is written.
Using K-map techniques, a state representation is made
and inserted for each state. Notice that only one variable
changes at a time when using a K-map. Using K-map tech-
niques, the equations for each flip-flop are found. Note that
Q1Q2 are the outputs of flip-flops. The digits inside the box
are for the inputs of the flip-flops.

Q1 Q2 X

A D B

B A C

C B D

D C A

11 01

00 10

01 11

10 00

(A) 00

(B) 01

(C) 11

(D) 10

State Table Excitation Table Excitation Equations

Q1 Q2 X
0 1 0 1

Q1 = 2 2XQ + XQ

2 = 1Q XQ + XQ1

1.68 Computer Science & Information Technology for GATE

Going back to the flow chart, an output table is written. It
may seem a little odd that each state codes for two outputs,
but you must realise that the coding is for the next state, not
the immediate state. Finally, the equations for the outputs
are written.

11 01

00 10

01 11

10 00

(A) 00

(B) 01

(C) 11

(D) 10

Output Table Output Equations

Q1 Q2 X
0 1

Q1 = 2 2XQ + XQ = 1

2 = 1 2 1 2

Q

Q Q Q + Q Q

That is all there is to this type of synchronous synthesis.
Once the equations are written, they can easily be convert-
ed to actual logic.

Here is one more example. It is desired to design a syn-
chronous machine to decode a series of ones and zeros into
a special output sequence. The input is X and the output is Z:

start continue Æ

X0 1 0 0 0 0 1 1 1 0 0 0 1 1 0 1 X

Z0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 Z

The first observation is that there is a 1 output for every
1 input. The next observation is that the output toggles on
a zero input after the first zero input. Start with state A. On
a 1 input, a 1 is output and there is no need to leave state A.
On the other hand, there are two outputs for a zero input so
it takes 2 states to code for the two outputs. Therefore the
flow chart (or state diagram) is as follows:

A B

0/1
1/1

0/1
1/1 Notation : INPUT/OUTPUT

Note that all possible inputs at every state are accounted for.
In this particular case, there are a few simple flow charts
that will do the trick. Experience will allow you to pick the
simplest. In this case, since we will use a D-FF and assign 0
for state A, it is simplest to let everything fall back to A. The
state-output table is:

B/1 A/1

A/1A/0

A

B

0 1
X

1 0

00

(A)

(B)

0 1
XQ

0

1

State-Output Table Excitation Table Excitation Equation

Q -XQ¢

The output table and equation is:

1 1

10

0 1
X

Output Table

(A)

(B)

0

1

Output Equation

Q-X=Q

The final circuit is

0

x

D Q

C Q

n Example Design and build a counter that will go
through the following sequence. Show all work.

0

0

0

0

0

0

0

1

0

r e p e a t

0

0

0

0

1

1

1

0

0

0

0

1

1

0

1

1

0

0

0

1

0

1

1

0

1

0

0

A B C D
STATE

Note: state '4' is skipped

n Example Analyse weather the following works like a
Decimal Counter or not.

DCBA

1

J Q

K Q

J Q

K Q

J Q

K Q

J Q

K Q

n Answer: In decimal counter, we want the counter should
go from 0 to 9. After 9, it should come back to state 0.

Clock Cycle ABCD Remarks

0000 Initially

1 1000

2 0100 B sets while A gets cleared. AND gate of
B gives 1 as A is 1 and D’ is 1.

3 1100 AND gate of B gives 0 as A is 0.

4 0010 AND gate of C gives 1 as both A and
B are 1.

5 1010

6 0110 It continues till 9 and return to 0.

Introductory Concepts of Digital Logic Design and Computer Architecture 1.69

1.12.3.2.2 Design of Synchronous Counter

Decide which type of flip-flop to be used in the coun-
ter design.

Prepare table such that it will be having current state
and next state of the counter. Also, based on the type
of flip-flop selected identify what should be flip-flops
control inputs to achieve the required transition. That
is, for example we are using JK flip-flops and we want
a flip-flop state to be changed from 0 to 1. This, we
can achieve by either place 1, 0 or 1, 1 on its J and K
likes. That is, its J and K lines can be 1 and d (don’t
care). Similarly, if want to change from 1 to 0 then J
and K lines can be either 0, 1 or 1, 1. That is, J and
K lines can be d (don’t care), 1. Do include required
output variables in the table.

For each control inputs of the flip-flops, use combi-
national design to implement the required circuit.
Repeat the same for output variables also.

n Example Design of a 3-bit counter using JK flip-flops.

n Answer: Before really proceeding to our design, first see
the following table which contains the required inputs on

J and K lines of a JK flip-flop to achieve a required transi-
tion. User are advised to remember that this is derived from
excitation table of JK flip-flops discussed elsewhere in this
chapter.

Required transition J K

O to 0 0 d

0 to 1 1 d

1 to 0 d 1

1 to 1 d 0

In the following, we have prepared table along with re-
quired control inputs on the J and K lines of each of the flip
flops. For, example if we consider the counter is at 000 and
we want it to go to 001 then on first and second flip-flop’s J
and K lines we have to place 0 and d while for third flip-flop
we have to place 1 and d. Like this, the following table is
prepared. We have used Ja, Ka, etc., to refer to J and K lines
of first flip-flop A. Now, we have to prepare K-Map for each
of the J and K lines and find out the driving equations for
them as shown below.
From the logic equations, we have drawn the counter dia-
gram.

A B C Ja Ka Jb Kb Jc Kc

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 d 0 d 1 d

0 d 1 d d 1

0 d d 0 1 d

1 d d 1 d 1

d 0 0 d 1 d

d 0 1 d d 1

d 0 d 0 1 d

d 1 d 1 d 1

(a) Truth table

(b) Karnaugh maps

AJa = BC Ka = BC

BC

0

1

00 01 11 10

d d d d

1
A

BC

AJb = C Kb = C

BC

A

BC

AJc = 1 Kc = 1

BC

A

High

Clock

(c) Logic diagram

J B

BK

CK

J B

BK

CK

J C

CK

CK

BC

1

d d d d

00 01 11 10

00 01 11 10

d d

d d1

1

00 01 11 10

d d

d d 1

1

00 01 11 10

d

d

d

d1

1

1

1

00 01 11 10

d

d

d

d 1

1

1

1

0

1

0

1

0

1

0

1

1.70 Computer Science & Information Technology for GATE

n Example Design a 3-bit counter that counts in the se-
quence 101, 010, 000, 111, 101… Choose flip flops with
the appropriate control signals so that a single reset signal
causes the counter to load the initial value 101. Draw the
gate-level schematic of the resulting circuit.

a. Use D flip-flops in the design.

b. Use T flip-flops only in the design

c. Use JK flip-flops in the design.

n Answer:

a. First, we shall prepare transition table. The same is
given below.

Q2 Q1 Q0 N2 N1 N0

0 0 0 1 1 1

0 0 1 X X X

0 1 0 0 0 0

0 1 0 X X X

1 0 0 X X X

1 0 1 0 1 0

1 1 0 X X X

1 1 1 1 0 1

Here, Q2, Q1, Q0 are the outputs of the D flip-flops while
N2, N1, N0 are the lines which are inputs to the D flip-flops.
Notice that N2 can always be equal to N0. This makes sense
since in our count sequence, the most significant bit (MSB)
is always the same as the least significant bit (LSB). Next we
draw the K-maps for N0 and N1.

00 01 11 10

1 x x 0

x 0 1 x

Q1Q0 N0
Q2

0

1

00 01 11 10

1 x x 0

x 1 0 x

Q1Q0 N0
Q2

0

1

From the Karnaugh map, we can find N0=Q1’Q0+Q1Q0,
N1=Q1’. Notice that N0 and N1 are not functions of Q2.
Also, since N2 = N0, we know that Q2 = Q0. Therefore,
there is no need of Q2 flip flop at all. The resultant circuit
can be given as:

RST

CLK Q2 Q1 Q0

D
set

Q D
set

Q

Notice the use of flip flops with appropriate reset and set
capabilities. This will cause the counter to load the value
“101” when reset is asserted.

b. Even if we assume that we take T flip-flops, as Q2 is
same as Q0 we need not required to worry about Q2.
Let us consider preparing transition table for Q1 and
Q0 only. We assume users know the behavior of T flip-
flops which change (toggle) their state when their T
lines becomes logic 1. Transition table can be given as:

Q2Q1Q0 Next State of Q2Q1Q0 T1T0

000 111 1 1

001 XXX X X

010 000 1 0

011 XXX X X

100 XXX X X

101 010 1 1

110 XXX X X

111 101 1 0

If we prepare Karnaugh map for T1 column and group 1s,
we get T1=1. Similarly, Karnaugh map for T0 is given as:

00 01 11 10

1 X X 0

X 1 0 X

Q1Q0

Q2

0

1

From the Karnaugh map, we can find T0=Q1’. Thus, the cir-
cuit is given as:

Q0Q1

Q2 Q1 Q0

RST

CLK

1 T Q

RST

T Q
set

c. Now, we assume JK flip-flops instead of D flip-flops.
As usual, we don’t worry about Q2 as Q2 is same as
Q0. Transition table and required J,K controls for flip-
flops Q1 and Q0 is given below.

Q2Q1Q0 Next State of Q2Q1Q0 J1K1 J0K0

000 111 1 X 1 X

001 XXX X X X X

010 000 X 1 0 X

011 XXX X X X X

100 XXX X X X X

101 010 1 X X 1

110 XXX X X X X

111 101 X 1 X 0

If we prepare Karnaugh maps for J1, K1 columns, we may
find J1=K1=1. Similarly, Karnaugh maps for J0, K0 are giv-
en below from which we can find J0 = K0 = Q1’.

Introductory Concepts of Digital Logic Design and Computer Architecture 1.71

00 01 11 10

1 X X 0

X X X

Q1Q0

Q2

0

1

00 01 11 10

X X X

X 1 0 X

Q1Q0

Q2

0

1X

X

Thus, the final counter circuit with resetting feature can be
given as:

Q1

Q2 Q1 Q0

RST

CLK

1 Q0J
K

Q

set

J
K

Q

RST

n Example Design a counter, with an inc input, that
counts in the sequence 00, 01, 00, 10, 00… Do remember
that this is tricky counter as this counter has to give the
same value twice in the count sequence.

n Answer: Since the same value appears twice in the count
sequence, we need an extra bit to tell us if the current count
is the first “00” or the second “00”. Let’s use Q1Q0 as the
count outputs and Q2 as the extra bit, where Q2 = 0 is for
the first “00” and Q2 = 1 is for the second “00”. The actual
count sequence we’ll implement is therefore 000, 001, 100,
010, 000…

The transition table assuming that D flip-flops are used
is given below. We assume N2, N1, N0 are lines which are
connected to D lines of flip-flops Q2, Q1, and Q0, respec-
tively,

00 01 11 10

0 1 X 0

0 X X X

0 X X X

1 0 X 0

N0

Q1Q0

IQ2

00

01

11

10

00 01 11 10

0 0 X 1

0 X X X

0 X X X

0 0 X 0

N1

Q1Q0

IQ2

00

01

11

10

00 01 11 10

0 0 X 1

0 X X X

0 X X X

0 0 X 0

N2

Q1Q0

IQ2

00

01

11

10

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Q2

0 0 0

0 0 1

0 1 0

X X X

1 0 0

X X X

X X X

X X X

0 0 1

1 0 0

0 0 0

X X X

0 1 0

X X X

X X X

X X X

Q1 Q0 N2 N1 N0inc

Karnaugh maps for N2, N1 and N0 are given above. From
the Karnaugh maps, driving equations for

N2 =inc’Q2+inc.Q0

N1 =inc’Q1+inc.Q2

N0 =inc’Q0+inc.Q2’.Q1’.Q0’

n Example Design a 2-bit gray code counter (i.e., having

the sequence 00, 01, 11, 10, 00…) with clr, set, and inc in-

puts. Make clr the highest priority, followed by set and inc.

The clr input should cause the counter to load zeros, the

set input should cause the counter to load ones, and the

inc input should cause the counter to transition to the next

sequential gray code value.

n Answer: We propose to use two D flip-flops. We assume

their control lines as N1, N0.

Inputs to the system are five which includes control

signals set, clr, inc in addition to the outputs of the two D

flip-flops which are used to represent counter values. The

transition table is given as:

0 0 0 0 0 0 0

0 0 0 0 1 0 1

0 0 0 1 0 1 0

0 0 0 1 1 1 1

0 0 1 0 0 0 1

0 0 1 0 1 1 1

0 0 1 1 0 0 0

0 0 1 1 1 1 0

0 1 - - - 1 1

1 - - - - 0 0

Q1 Q0 N1 N0clr set inc

In the above table, we have not displayed all the rows relat-
ed clr = 1, as all the possibilities are same. Karnaugh maps
for N1 and N0 are given below.

00 01 11 10

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Q1Q0

00

01

11

10

clr = 1

set, inc

00 01 11 10

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Q1Q0

00

01

11

10

clr = 1

set, inc00 01 11 10

0 1 1 0

1 1 0 0

1 1 1 1

1 1 1 1

Q1Q0

00

01

11

10

clr = 0

set, inc

N0

00 01 11 10

0 0 1 1

0 1 1 0

1 1 1 1

1 1 1 1

Q1Q0

00

01

11

10

clr = 0

set, inc

N1

From the Karnaugh maps, the driving equation for N1, N0
are given as:

N1 = clr’ · (set + inc·Q0 + inc’· Q1)

N0 = clr’ · (set + inc·Q1’ + inc’·Q0)
Johnson Counter
Johnson counter gives the following sequence with a four
flip-flops: 0000, 1000, 1100, 1110, 1111, 0111,0011, 0011,
0000. The following circuit satisfies our requirement. Here,
we have simply added last flip-flops complement to D line
of first flip-flop.

1.72 Computer Science & Information Technology for GATE

Q0 Q1 Q2 Q3

CLK
RESET

0000 1000 1100 1110

1111011100110001

Q

PR

D Q

CLR

D Q

CLR

D Q

CLR

D

n Example Analyse the following circuit which contains
a JK and T flip-flop. Assume initially both the flip-flop’s are
at their clear state.

A

B

Clock

QJ

Q¢K

clk

QJ

a¢K

clk

n Answer: The following table illustrates the behavior of
the above circuit for each clock. Circuit stays at 11.
Initial State

JK&T Flip-flops AND gate
output

OR gate
output

Next state of JK
& T Flip-flops

00 0 1 11

11 0 1 11

Pre-settable Counter

We can also design a counter with which we can specify re-
quired count value before incrementing. The following cir-

Clock

Parallel
data inputs

P0

5V

P2 P1

5V
+V

J

K
R

SQ

QNCP

J

K
R

SQ

QNCP

J

K
R

SQ

QNCP

Parallel
Load

PL

cuit illustrates the same. We have P0 to P2 are parallel lines.
When we make PL line as low, some of the FFs will be set.
That is, we can load data on parallel input lines to the coun-
ter in asynchronous manner. After wards, for each clock
pulse counter will be changing its state as defined.

1.12.4 Frequency Dividers

We have studied timing diagrams of ripple counters. We
know that output of a N bit ripple counter generates out-
put signal with the frequency of 1/2N of the frequency of
the input clock. For example, assume we require an accu-
rate 1Hz timing signal to operate a digital clock. We could
quite easily produce a 1Hz square wave signal from a stan-
dard 555 timer chip but the manufacturers data sheet tells
us that it has a typical 1-2% timing error depending upon
the manufacturer, and at low frequencies a 2% error at 1Hz
is not good. However, the data sheet also tells us that the
maximum operating frequency of the 555 timer is about
300kHz and a 2% error at this high frequency would be ac-
ceptable. So by choosing a higher timing frequency of say
262.144kHz and an 18-bit ripple (Modulo-18) counter we
can make a precision 1Hz timing signal as shown below. A
simple 1Hz timing signal using an 18-bit ripple counter/
divider.

R1

262.144 kHz
1Hz
Output

R2

C

Divide - by -2
18 bit

ripple counter

554
timer

What is a divider?

We have explained about a 2-bit counter using JK flip-flops

along with timing details. The only input of the circuit is

a square wave with a fixed frequency f. When we look at

the output waves of each output terminal independently, we

can easily find that the output Q0, and Q1, are both a square

wave with a fixed frequency 0.5f, 0.25f, respectively.
Then, we can see for output Q0, this circuit can be called

as half-frequency divider and for output Q1, it is called
quarter-frequency divider. Thus, we can obtain that the
counter and divider is almost the same machine with only
difference of output terminals.

Introductory Concepts of Digital Logic Design and Computer Architecture 1.73

HIGH HIGH

Q0

Q1

Q1

Q0

CLK

1

0

1

0

1

0

1 2 3 4 5

0 1 0 1

0 0 1 1

0 1 2 3 0

CLK

J

K Q

Q

CLR

SET
J

K Q

Q

CLR

SET

How to design a divider?

There are plenty of ways to design a divider with elements
such as flip-flops and gates. We will follow the steps of de-
signing a sequential machine. First, we should think about
how many states are there. We can see that the amount of
states depends on which frequency of signal we want to
obtain (compared with basic frequency f 1). 0.25f, 1/3f, or
even 1/8f. For 0.25f, we need 4 states and for 1/3f we need 3
states, then, needless to say 1/8f need 8 states indeed.

Then we can make out a transition table make sure that
what will the next-state be in each case and their outputs.
The outputs are designed by ourself; however, we can’t
make them to be all 0 or all 1. Otherwise, we will see that
the output signal is not a periodic signal at all the then say-
ing some words such as frequency would be meaningless.
Still, we can design in which case the output would be 1
and in which case it would be 0. How long does the output
being 1 in one cycle would be mentioned as the term ‘duty
cycle’ which means that the ratio of time being 1 in each
cycle and the time of one cycle.

With the help of Karnaugh maps and transition equa-
tions, we can derive out the expression of each input and
then, we can draw a circuit diagram.

Building dividers with D flip-flop loops

One classical way to build a divider with D flip-flop is
known as D flip-flop loop is given below. These kinds of
circuits, unlike most sequential circuit, contain two parts
only: input circuits and output circuits. Thus, the locations

of input circuits are different than those in usual sequential
circuit. In usual case, there would be input circuits at each
input terminal of flip-flops (or say D terminal). But here,
no matter how many flip-flops are there, we only need to
consider about the input terminal of the first flip-flop. For
other input terminals of following flip-flops, we just con-
nect them directly with the output terminal of the previous
flip-flops. The output circuits have the same function as in
usual case.

INPUT CIRCUIT

OUTPUT
CIRCUIT

D Q

Qclk

D Q

Qclk

D Q

Qclk

Figure 1.67 D flip-flop loop

First, we should find out a sequence of code that can be
assigned to each state. For instance, if we have decided to
build a 1/5-frequency divider, then we have to take 5 states
in our machine. Then, we have to assign one unique code
each state. However, designing a code system is not that
easy as when we design a sequential machine. The code
system which we have used is special and shared the same
specificity: a previous code in the system can be obtained by

left shift the next code with a supplement bit either ‘1’ or ‘0’.

And for the last one, it should be obtained by left shift the

first code. This condition is really strict and we would be
annoyed a lot by this condition when we design our own
divider. Such complex code system would ensure that the
state of our machine would run in a cycle.

In most cases, we can assign an initial value to each D
flip-flop which means that the initial values of the terminal
Qs can be assigned to any one state we have assigned with
its code. Then, what we should do is just design parts of
combinational circuits which make sure that the input of
most left D flip-flop can make up the code of next state after
one clock cycle.

In some situations, we can use the Q terminal of one D
flip-flop as the output terminal. However, we may need to
build more complex output circuit in order to change the
duty cycle.

1
In the following parts of the essay, if we don’t make an announcement, the letter f will always mean the basic frequency of the
original input signal.

1.74 Computer Science & Information Technology for GATE

n Example 1/3-frequency divider
First, we should build our own code system. Fairly easy, we
can obtain the following one: ‘00’ Æ‘10’Æ‘01’Æ‘00’. Then,
we can receive the transition table:

Current State (QAQB) Next State (DBDA)

0 0 0 1

0 1 1 0

1 0 0 0

1 1 X X

As we mentioned above, we only focus on the input ter-
minal of first D flip-flop. Thus, next A (or DA for avoiding
misunderstanding) is using Karnaugh map:

DA = (QA+QB)¢ = QA¢ ×QB¢

Then, we should decide the output, which decides the duty
cycle. Take duty cycle is 66.7% or 2:3, we can obtain output
from the truth table as: Output = QA + QB

Current State (QAQB) Output

0 0 0

0 1 1

1 0 1

1 0 1

In the red frame, it is input circuit, in the blue frame, it is
output circuit.

D

CLK

Q

Q

CLK CLK

D

CLK

Q

Q

Output

n Example 1/5-frequency divider

n Answer: We take the following state codes and their tran-
sitions
‘000’ Æ ‘100’ Æ ‘110’ Æ ‘011’ Æ ‘001’ Æ ‘000’
Truth table of both Inputs and Outputs

Current State
 (QAQBQC)

Next
DA

Output Output

(Duty Cycle:
cycle 40%)

(Duty
Cycle: 50%)

0 0 0 1 0 ~CLK
1 0 0 1 0 0
1 1 0 0 0 0
0 1 1 0 1 1
0 0 1 0 1 1

A. Input equation: DA = QB ¢ × QC ¢ = (QB + QC)¢
Output equation: Output = QC (duty cycle: 40%)

Output = (QA ¢+QC)×(QC+CLK¢) (duty cycle: 50%)
Circuit Diagram can be given as:

clk

output

D Q

Qclk

D Q

Qclk

D Q

Qclk

Figure 1.68 1/5-frequency divider (D flip-flop, Duty cycle: 40%)

clk

output

A

C

Figure1.69 Output circuit for 1/5-frequency divider (D flip-flop,

Duty cycle: 50%)

n Example Input circuits for 1/7-frequency and 1/13-fre-
quency divider

n Answer: The following state codes are taken for 1/7 fre-
quency divider.

‘000’ Æ ‘100’ Æ ‘010’ Æ ‘101’ Æ ‘110’ Æ ‘011’ Æ ‘001’
Æ ‘000’
For 1/13-frequency divider:

‘0000’ Æ ‘1000’ Æ ‘0100’ Æ ‘1010’ Æ ‘0101’ Æ ‘0010’ Æ
‘1001’ Æ ‘1100’ Æ ‘1110’ Æ ‘1111’ Æ ‘0111’ Æ ‘0011’ Æ
‘0001’ Æ ‘0000’
Truth table for Next DA

Current State (QAQBQC) Next DA

0 0 0 1

1 0 0 0

0 1 0 1

1 0 1 1

1 1 0 0

0 1 1 0

0 0 1 0

Current State(QAQBQCQD) Next DA

0 0 0 0 1

1 0 0 0 0

0 1 0 0 1

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

1 0 0 1 1

1 1 0 0 1

Introductory Concepts of Digital Logic Design and Computer Architecture 1.75

1 1 1 0 1

1 1 1 1 0

0 1 1 1 0

0 0 1 1 0

0 0 0 1 0

A. Next DA = QA XNOR QC (for 1/7-frequency divider)

Next DA = (QA + QD + QB × QC)’ + QA × (QB Xor QD)
Circuit Diagram is given as:

output
circuit

Clk

D Q

Clk Q

D Q

Clk Q

D Q

Clk Q

Figure 1.70 1/7-frequency divider (D flip-flop)

Clk

output
circuit

D Q

Clk Q

D Q

Clk Q

D Q

Clk Q

D Q

Clk Q

Figure 1.71 1/13-frequency divider (D flip-flop)

Building 1/2n -frequency dividers with J-K flip-flop
We need n J-K flip-flops to build 1/2n -frequency divider.
All of them should be cascaded. And the output terminal
should be the Q terminal of the last J-K flip-flop.

Build dividers with J-K flip-flops

First, we should decide how we count. Unlike the case of D
flip-flop loop, the order of counting has no limitation. You
can have your choice.

Then we can obtain a transition table, and see what
would Jn Kn be at state n–1. Then, just as when we design a
sequential circuit, we should use Karnaugh map to get the
input equation of each J-K flip-flop.

You may think that the analysis would be too complex
since you may use n-variable Karnaugh map for 2n times.
However, the struggle for making out a code system would

be vanished. Sometimes, in order to make the designing
more easily, we connect J terminal and K terminal of a flip-
flop together and then the designing would be little easier.
When the output of the flip-flop remains to the previous
state, the input ought to be one, otherwise it would be zero.
Then we need only to use Karnaugh Map for n times. Some-
times if the output of the flip-flop doesn’t contain the unit
‘XÆ0Æ0ÆX’, then you can connect the J terminal with the
HIGH signal directly. Similarly, the K terminal can be con-
nected with the HIGH signal directly if the output of the
flip-flop doesn’t contain the unit ‘XÆ1Æ1ÆX’.

n Example 1/3-frenquency divider

We need 2 flip-flops to obtain the final results, and suppose
our count order is ‘00Æ01Æ10’, then we can obtain the fol-
lowing transition table:

Current state (QAQB) Next JA Next KA Next QA Next JB Next KB Next QB

0 0 0 1 0 1 1 1

0 1 1 1 1 0 1 0

1 0 1 1 0 0 1 0

Although you can fill in the column Next JA, KA, JB, KB now

by the truth table of J-K flip-flop, that would make the prob-

lem become little complicated. By observing the cycle of QA

and QB, we see that the cycle of QA is ‘0Æ1Æ0Æ0Æ1Æ0’,

we can see that the cycle contains the unit ‘XÆ0Æ0ÆX’,

thus, KA terminal can be connected with the HIGH signal

directly. For the same reason, the cycle of QB doesn’t con-

tain ‘XÆ1Æ1ÆX’, that is to say, the KB terminal may be

connected with signal HIGH directly. Then, according to
the truth table of J-K flip-flop, we can decide the value of
JA and JB.
In this example, the value of KA and KB has been fixed.
Then we may consider the input equation of JA and JB. By
Karnaugh map, we can get

JA = QA + QB

JB = (QA + QB)’ or JB = JA’

1.76 Computer Science & Information Technology for GATE

Thus, the circuit diagram can be drawn as:

Clk

output
circuit

HIGH

J
C
K

Q

Q

J
C
K

Q

Q

Figure 1.72 1/3-frequency divider (J-K flip-flop)

n Example 1/5-frenquency divider

Current State

(Q Q Q)A B C

N
E

X
T

0

0

0

0

1

0

0

1

1

0

0

1

0

1

0

0

0

0

1

0

0

0

0

1

0

1

1

1

1

1

1

0

0

1

1

1

0

0

1

1

1

1

1

1

0

1

1

1

1

1

0

1

1

0

0

0

0

1

0

0

N
E

X
T

N
E

X
T

N
E

X
T

N
E

X
T

N
E

X
T

N
E

X
T

N
E

X
T

N
E

X
T

QA QCQB JA KA JB KB JC KC

The transition table and the input table have been al-
ready shown above. There is only one thing to say, when
decide the value of JB and KB, we can see that the units,
both ‘XÆ0Æ0ÆX’ and ‘XÆ1Æ1ÆX’ can be found. Then,
we can connect the JB and KB together, once the output
changes, the input should become both ‘1’, otherwise, they
remain both ’0’.
Then, we can derive out the input equations:

JA = QB × QC and KA = HIGH

JB = KB = QB XNOR QC

JC = QA’ and KC = HIGH
Then, the circuit diagram can be drawn as:

J
C
K

Q

Q

J
C
K

Q

Q
Clk

High

J
C
K

Q

Q

output
circuit

Figure 1.73 1/5-frenquency divider (J-K flip-flop)

Cascade

Just like the cascaded transistor circuit, Av = Av1 ¥ Av2 ¥
… ¥ Avn, the function of the dividers may be integrated
as a bigger one. A half-frequency divider cascade with a
1/3-frequency divider can be used as a 1/6-frequency di-
vider. Thus, if we want to change a 1 KHz square frequency
to 1 Hz square frequency, since 1000 = 5 ¥ 5 ¥ 5 ¥ 2 ¥
2 ¥ 2, we can just cascade 3 half-frequency divider and 3
1/5-frequency divider. The output of the previous level di-

vider should be connected with the terminal CLK in all the
circuit diagrams above.

n Example VI: 1/1000-frenquency divider

Clk

High

D Q
ClkQ

D Q
ClkQ

D Q
ClkQ

D Q
ClkQ

D Q
ClkQ

D Q
ClkQ

D Q
ClkQ

D Q
ClkQ

D Q
ClkQ

output

J
C
K

Q

Q

J
C
K

Q

Q

J
C
K

Q

Q

Figure 1.74 1/1000-frequency divider (duty cycle: 50%)

As mentioned, in Figure 1.74, on left there are three 1/5-fre-
quency dividers cascaded here, and on the right, there is
one 1/8-frenquency divider. The red, blue and green lines
are connections between each level. However, the output
of each level has a limitation: there can only be one ‘1’ and
one ‘0’ in each cycle of the output signal. The duty cycle of
the output signal namely the signal we obtained at last is
depend on the output circuit of the last divider only.

n Example Explain the functionality of the following fre-
quency divider.

Input clock
Pulses.

1

1

1

1

1

1

1

1

X0J

K

clk

X1J

K

clk

X2J

K

clk

X3J

K

clk

The J and K inputs of each flip-flop are set to 1 to produce a
toggle at each cycle of the clock input. For each two toggles
of the first cell, a toggle is produced in the second cell, and
so on down to the fourth cell. (This produces a binary num-
ber equal to the number of cycles of the input clock signal.
This device is sometimes called a “ripple through” counter)

Introductory Concepts of Digital Logic Design and Computer Architecture 1.77

Thus, it is useful as a frequency divider which generates
multiple frequencies. If we observe, output of first flip-flop
follows clock pulse, while second flip-flop output will be
having half the clock pulse and vice versa.
Process timer: Used in combination with a line decoder,
a counting circuit like this could be used to implement a
process stepper. As the D flip-flops counts down through a
binary 4 count, the complement of the output is sent to the
decoder which enables one and only one of the output lines
(enabled Low). The truth table for the decoder is given
on the table below. We can connect four devices each of
the output lines such that every device will be selected on a
round robin fashion.

P0

EN

A1 P1

2 to 4 line Decoder

4 down ripple counter

Clock

Q0D

clk Q0

Q1D

clk Q1

A A P0 P1 P2 P3

1 0

0 0 0 1 1 1

0 1 1 0 1 1

1 0 1 1 0 1

1 1 1 1 1 0

n Example Explain how CRC calculation discussed in
chapter on “Number System” can be implemented using
shift registers.

n Answer: We know that we will having a series of XOR
operations while calculating CRC checksum. We advise
readers to refer the previous chapter before continuing
further. Here, we propose to employ a shift register, which
we may denote as CRC which is of length r (the degree
of CRC polynomial) bits. That is, shift register is made to
have r flip-flops (In our case, we assume that flip-flops are
D type Flip-Flops). When the subtractions (exclusive or’s)
are done, it is not necessary to represent the high-order bit,
because the high-order bits of CRC polynomial and the
quantity it is being subtracted from are both 1. The division
process might be described informally as follows:

Initialise the CRC register to all 0-bits.

Get first/next message bit m.

If the high-order bit of CRC is 1.

Shift CRC register content and m together left 1 posi-
tion, and XOR the result with the low-order r bits of CRC
polynomial.

Otherwise,
Just shift CRC register content and m left 1 position. If

there are more message bits, go back to get the next one.
It might seem that the subtraction should be done first,

and then the shift. It would be done that way if the CRC
register held the entire generator polynomial, which in bit
form is bits. Instead, the CRC register holds only the low-
order r bits of CRC polynomial, so the shift is done first, to
align things properly.

Below is shown the contents of the CRC register for the
generator CRC polynomial (G) = x3 + x +1 and the mes-
sage M = x7 + x6 + x5 + x2 + x Expressed in binary, G = 1011
and augmented M = 11100110.

000 Initial CRC contents. High-order bit is 0, so just shift in
first message bit.

001 High-order bit is 0, so just shift in second message bit,
giving:

011 High-order bit is 0 again, so just shift in third message
bit, giving:

111 High-order bit is 1, so shift and then XOR with 011, giving:

101 High-order bit is 1, so shift and then XOR with 011, giving:

001 High-order bit is 0, so just shift in fifth message bit, giving:

011 High-order bit is 0, so just shift in sixth message bit, giving:

111 High-order bit is 1, so shift and then XOR with 011, giving:

101 There are no more message bits, so this is the remainder.
These steps can be implemented with the (simplified) cir-
cuit shown in the figure, which is known as a feedback shift
register.

Polynomial division circuit for G=x + x+13

D2 D1 D0+ + Message
Input

The three boxes in the figure represent the three bits of the
CRC register. When a message bit comes in, if the high-
order bit (D2 box) is 0, simultaneously the message bit is
shifted into the D0 box, the bit in D0 is shifted to D1, the
bit in D1 is shifted to D2, and the bit in D2 is discarded. If
the high-order bit of the CRC register is 1, then a 1 is pres-
ent at the lower input of each of the two exclusive or gates.
When a message bit comes in, the same shifting takes place
but the three bits that wind up in the CRC register have
been exclusive or’ed with binary 011. When all the message
bits have been processed, the CRC holds M mod G.

If the circuit of figure that follows were used for the CRC
calculation, then after processing the message, r (in this
case 3) 0-bits would have to be fed in. Then the CRC regis-
ter would have the desired checksum, But, there is a way to
avoid this step with a simple rearrangement of the circuit.

Instead of feeding the message in at the right end, feed it
in at the left end, r steps away, as shown in figure that follows .

1.78 Computer Science & Information Technology for GATE

This has the effect of pre-multiplying the input message
M by xr. But pre-multiplying and post-multiplying are the
same for polynomials. Therefore, as each message bit comes
in, the CRC register contents are the remainder for the por-
tion of the message processed, as if that portion had r 0-bits
appended.

D2 D1 D0++

Message
Input

CRC circuit for G=x + x+13

n Example Write down at least two functions of a register.

n Answer:

1. Registers are operating as a coherent unit to hold and
generate data.

2. Registers functions also include configuration and
start-up of certain features, especially during initial-
ization, buffer storage e.g. video memory for graphics
cards, input/output (I/O) of different kinds,

n Example The following circuit is designed to generate
the following sequence
000 001 100 110 011 000. Verify its validity.

Q2

Q1¢

Q1¢

Q0

QD
Q2

CLK

QD
Q1

CLK

Q2

Q2¢

Q0¢

Q1¢

Q0¢

QD
Q2

CLK

N2 = Q2 Q1 + Q1 + Q0

N1 = Q2

N0 = Q2 Q0 Q1 Q0

¢ ¢

¢ ¢ + ¢

n Answer: We consider N2, N1, N0 are the lines which
drive or controls the D flip-flops. We know D flip-flop fol-
lows its D line. That is, if it’s D line is 1, flip-flops stores
1, and vice versa. Thus, if we want circuit has to change

from 000 to 010, we have to make N2, N1 and N0 as 010.
However, in the problem description, the expected circuit
behavior is not defined for states 010 101 111. Thus,
we take those states as donot cares. The following table ex-
plains flip-flop states what should be N2, N1 and N0 lines
to go to next state.

Q2 Q1 Q0 N2 N1 N0

0 0 0 0 0 1

0 0 1 1 0 0

1 0 0 1 1 0

1 1 0 0 1 1

0 1 1 0 0 0

0 1 0 X X X

1 0 1 X X X

1 1 1 X X X

Now, we prepare K-Maps for N2, N1 and N0.
K-Map for N2 is given as:

Q2\Q1Q0 00 01 11 10

0 0 1 0 x

1 1 x x 0

K-Map for N1 is given as:

Q2\Q1Q0 00 01 11 10

0 0 0 0 x

1 1 x x 1

K-Map for N0 is given as:

Q2\Q1Q0 00 01 11 10

0 1 0 0 x

1 0 x x 1

From the K-Maps, the driving equations for N2, N1 and N0
are given below which are same as the equations given in
the problem specifications. Thus, circuit is a valid circuit.

N2 = Q2 Q1’ + Q1’ Q0

N1 = Q2

N0 = Q2’ Q0’ + Q1 Q0’

1 .13 Number Representation and Computer
Arithmetic (Fixed and Floating point)

1.13.1 Integer (Fixed) Representations

1. The range of unsigned numbers which can be stored
in a n-bit register is 0 to 2n-1

2. The range of signed numbers which can be stored in
an n-bit register is -(2n-1 -1) to + (2n-1-1) (using sign
magnitude representation).

Introductory Concepts of Digital Logic Design and Computer Architecture 1.79

3. The range of signed numbers which can be stored
in an n-bit register is –(2n–1) to + (2n–1–1) (using 2’s
complement representation).

4. The signed 1’s complement representation of a num-
ber -n is obtained by complementing all the bits of
sign magnitude representation of +n. Whereas signed
magnitude representation –n is obtained by simply
inverting sign bit.

5. Both sign magnitude and signed 1’s complement rep-
resentation has two representations for 0 (+0, and –0).

6. In sign magnitude approach most significant bit is
used as sign bit and remaining n-1 bits are used for
magnitude.

Thus,
+15 in this approach in a 16 bit register is stored as:

0000000000001111
–15 in this approach in a 16 bit register is stored as:

1000000000001111

7. In 2’s complement approach a positive numbers code
is same as its sign magnitude version. Whereas, a neg-
ative numbers 2’s complement is calculated by first
finding its magnitude’s sign magnitude representa-
tion, applying 1’s complement for it and adding 1 to it.

n Example
+15 in 2’s complement approach in a 16 bit register is:

0000000000001111 (same as sign magnitude version).
-15’s 2’s complement is calculated by:

Find out +15’s sign magnitude: 0000000000001111

1’s complement 1111111111110000

Add 1 1

1111111111110001

8. If a numbers 2’s complement is given its most signifi-
cant bit conveys whether the number is positive or
negative. That is, it the msb is 0 positive else negative.

If sign is negative, then to find the magnitude, calculate 1’s
complement and add 1. Otherwise, magnitude is same as
itself.

9. For example find out the number whose 2’s comple-
ment is 1111111111110001.

n Answer:
By seeing the msb we can conclude that the number is neg-
ative.

Magnitude is:

Calculate 1’s complement: 0000000000001110

Add 1 1

0000000000001111

Therefore the number is : –15

10. The 2’s complement can be formed by leaving all least
significant 0’s and the first 1 unchanged and inverting
all remaining bits.

11. Two-s complement representation is having only one
representation for zero unlike sign magnitude approach.

12. In two’s complement approach there is no need of ex-
tra circuit for subtracting a number from the other.

13. The result of two n-bit numbers addition may oc-
cupy at most n+1 bits.

14. The result of two n-bit numbers product may occupy
at most 2n bits.

15. Advantage of sign magnitude numbers is that a num-
bers negative value calculation is easy; i.e just invert
sign bit.

16. Overflow is said to occur if the result of an arithme-
tic operation is too large to store; whereas underflow
is said to be occurred if the result is too small to be
stored. Some systems sends a signal when these things
occurs whereas others store closest value. IEEE stan-
dard specifies a set of special representation (NaN:
Not a Number).

17. While carrying out addition subtraction operations
on two’s complement numbers the overflow is said to
be occurred if carry-in and carry-out are different to
sign bit location.

18. In the case of unsigned number addition, an overflow
is said to be occurred if carry out is detected at most
significant bit position.

19. Arithmetic overflow occurs under a number of cases:

(1) when two positive numbers are added and the re-
sult is negative

(2) when two negative numbers are added and the
result is positive

(3) when a shift operation changes the sign bit of the
result.

20. In the case of signed number addition where an nega-
tive number is assumed to be in 2’s complement form,
an overflow at most significant bit position does not
indicate overflow.

21. In 2’s complement addition/subtraction if we consid-
er carry bit also then the result will be correct even we
generally conclude overflow is occurred.

22. In 2’s complement overflow only occurs when two
numbers of the same sign are added. Similarly, over-
flow may occur when two numbers of different sign
are subtracted.

23. For two n-bit non-negative unsigned numbers, the re-
sult of their difference will never be greater than 2n-1.
The danger here is that the result can be less than zero.

1.80 Computer Science & Information Technology for GATE

For example, 1-2 is calculated as:

1 00000001

-2 11111110

011111111

Here, carry out is zero. The result conveys as 255, which is
not correct.
Thus, we can conclude that for these numbers overflow oc-
curs if carry out is zero.

24. The r’s complement of a n-digit number (N) is given
as: rn -N.

25. The r’s complement of a n-digit number (N) can be
calculated by adding 1 to its (r-1)’s complement.

26. Multiplication of unsigned/signed integers can be
carried out with shift-add method whereas division is
carried out through shift-subtract.

27. BCD is signed notation. Here, we take a sign bit with
usual convention for the sign and for every digit we
take 4 bit code. Thus, -27 BCD code 1 0010 0111.
Whereas +27 BCD code is 0 0010 0111.

28. In BCD addition, in two situations error occurs. Say
5+6=0101+1011=1011 (a invalid BCD digit). The
second is a valid BCD digit but overflow occurs. For
example 8+9=1000+1001=1 (carry) 0001.In either
case by adding 6 to the result gives correct result.

29. BCD equivalent of one’s complement is the nine’s
complement.

30. An n-bit Ripple carry adder (which does normal bi-
nary addition) is formed by cascading n full adders
feeding the carry out of I’th full adder as carry in to
I+1’th full adder and carry in for first full adder as
zero. The computational complexity is Q(n) and size
complexity also same.

31. A carry look ahead addition has complexity of O(lg n).

32. Using carry save addition three numbers addition
can be done with O(lg n) itself.

1.13.1.1 Booths Algorithm

This algorithm gives a procedure for multiplying binary in-
tegers in signed-2’s complement form. It operates on the
fact that strings of 0’s in the multiplier require no addition
for the partial product but just shifting, and a string of 1’s in
the multiplier from bit weight 2k to weight 2m can be treated
as 2k+1 - 2m. For example, the binary number 001110 (+14)
has a string of 1’s from 23 to 21 (k = 3, m = 1). The number
can be represented as 2k+1 - 2m = 24 - 21=14. Therefore, mul-
tiplication of any number M with 14 can be represented as
Mx24 -M21. Thus, the product can be obtained by shifting
the binary multiplicand four times to the left and subtract-
ing M shifted left once.

While applying the following steps are applied

a. The multiplicand is subtracted from the partial prod-
uct upon encountering the first least significant 1 in a
string of 1’s in the multiplier.

b. The multiplicand is added to the partial product upon
encountering the first 0 (provided that there was a
previous 1) in a string of 0’s in the multiplier.

c. The partial product does not change when the multi-
plier bit identical to the previous multiplier bit.

Here, we assume Q, A, B are n-bit registers, Qn+1 is previ-
ous multipliers bit which is initially set as zero. A sequence
counter (SC) is available to iterate the algorithm. Initially
Q is assumed to be loaded with multiplier, A is 0’s, B as
with multiplicand. Finally, result obtained registers A&Q
together.

n Example
Take an example –9 × –13 = 10111 × 10011 = +117
B=10111 B¢=01001 (subtracting is nothing but adding 2’s
complement)
Moreover, here all shifts are arithmetic shifts, shifting is
done along with sign bit and after shifting sign bit sign will
be same as the previous sign.

Qn Qn+1 A Q Qn+1 SC

Initial 00000 10011 0 101

1 0 Subtract B 01001

(add B¢) 01001

ashr 00100 11001 1 100

1 1 ashr 00010 01100 1 011

0 1 Add B 10111

11001

ashr 11100 10110 0 010

0 0 ashr 11110 01011 0 001

1 0 subtract B 01001

(add B¢) 00111

ashr 00011 10101 1 000

Final result is 0001110101 = +117

n Example

–3 × –5 =1101 × 1011 =+15

B =1011 B¢=0101

Q =1101

A Q Qn+1 SC

Initial 0000 1101 0 100

Subtract B 0101

0101

ashr 0010 1110 1 011

Introductory Concepts of Digital Logic Design and Computer Architecture 1.81

A Q Qn+1 SC

Add B 1011

1101

ashr 1110 1111 0 010

Subtract B 0101

0011

ashr 0001 1111 1 001

ashr 0000 1111 1 000

Final result is 00001111 = +15 (acceptable)

n Example Perform 5 x -3 using Booth’s Algorithm us-
ing a 5-bit representation for each operand. Show all your
work. Also indicate how the results of the multiplication
should be interpreted.
Multiplicand = 5 (00101) Multiplier = -3 (11101)

 -5 = (11011)

product: 0 00000 11101 0

subt: 1 11011 11101

shift: 1 11101 11110 1

add: 0 00010 11110

shift: 0 00001 01111 0

subt: 1 11100 01111

shift: 1 11110 00111 1

shift: 1 11111 00011 1

shift: 1 11111 10001

product = 10001 = –15 in two’s complement representation
upper 5 bits = 11111 (sign-extended lower 5 bits), therefore,
no overflow.

n Example Perform 5 x -4 using a 4-bit representation
for each operand. Show all your work. Also indicate how
the results of the multiplication should be interpreted.
Multiplicand = 5 (0101) Multiplier = -4 (1100)
 -5 = (1011)

product: 0 0000 1100

shift: 0 0000 0110

shift: 0 0000 0011

add: 0 0101 0011

shift: 0 0010 1001

subt: 1 1101 1001

shift: 1 1110 1100

product = 1100
upper 4 bits = 1110 (not sign-extended lower 4 bits), there-
fore, OVERFLOW.
We would expect overflow here since -20 can’t be represent-
ed in 4-bits using two’s complement representation.

The real product is available in the low 6 bits of the final
product register (10 1100) with the upper 2 bits of the final
product register being the sign-extended product.

33. Theoretically any combinatorial circuit can be imple-
mented by a ROM configured as a lookup table. For
example, product of two 4 bit numbers can be stored
in a ROM and their product can be simply read when-
ever needed. Using this one can calculate product of
two integers very efficiently. This lookup tables are
used in modern CPU’s. The Pentium floating point
bug is related to this. Though with this lookup tables
multiplications can be done efficiently it needs more
ROM. For example for 4-bit numbers products we
need 256 bytes and for 8bit number 64Kx16 ROM.

34. Wallace trees are another useful combinatorial cir-
cuit used for efficient calculation of products. Though
they are more complex than shift add multipliers, they
produce result very quickly. Here, carry-save adders
and parallel adders are used.

Carry save adder takes 3 (X,Y,Z) inputs and gives results
(S) and carry (C). The sum Si is sum of Xi,Yi,Zi and Ci+1
is the carry. To get final product we have to bit vectors S
and C.

To use a carry-save adder to perform product operation,
we first calculate the partial products of the product then
input them to the carry-save adder.

n Example

P = 111

Q = 110

 000 Partial Product 0

111 Partial Product 1

 111 Partial Product 2

If we consider 5-bit carry-save adder then PP0, PP1, PP2
becomes 00000 (X), 01110 (Y), 11100(Z) respectively. Then
the sum vector (S) becomes 011000 and carry (C) become
100010. Thus their addition becomes 101010=42. Note that
we incorporate the leading and trailing zeroes to the partial
products to align numbers properly.

Similarly, if we assume PP0, PP1, …PP7 are partial prod-
ucts of two 4-bit numbers product calculation then their
product can be easily calculated by employing a hierarchy
of carry-save adders and finally a parallel adder.

A wallace tree allow two n-bit numbers to be multiplied
in (lg n) time using a circuit with (n2).

1.13.2 Excess–127 code

Excess-127 code is mentioned here because it is required
while discussing the IEEE floating point standard. In gen-
eral, we can consider an excess-M notation for any positive
integer M. For an N-bit excess-M representation, the rules
for conversion from binary to decimal are:

1.82 Computer Science & Information Technology for GATE

(1) Evaluate as an unsigned binary number

(2) Subtract M

To convert from decimal to binary, the rules are

(1) Add M

(2) Evaluate as an unsigned binary number

In considering excess notation, here we focus on eight-bit
excess-127 notation. The range of values that can be stored
is based on the range that can be stored in the plain eight-
bit unsigned standard: 0 through 255. Remember that in
excess-127 notation, to store an integer N we first form the
number N + 127. The limits on the unsigned eight-bit stor-
age require that 0 £ (N + 127) £ 255, or – 127 £ N £ 128. As
an exercise, we note the eight-bit excess-127 representation
of – 5, – 1, 0 and 4.

– 5 + 127 = 122. Decimal 122 = 0111 1010 binary, the answer.

 – 1 + 127 = 126. Decimal 126 = 0111 1110 binary, the answer.

0 + 127 = 127. Decimal 127 = 0111 1111 binary, the answer.

4 + 127 = 131 Decimal 131 = 1000 0011 binary, the answer.

1.13.3 Floating Point Numbers

Floating point representation is very similar to scientific
notation with sign, fraction (significand or mantissa), and
an exponent. Example, -1.232212×103. Main drawback of
scientific notation is that the numbers can be represented
in many ways. For example the above number can be even
represented as -12.32212×102, or -0.1232212×104.
Thus, floating point numbers are normalised such that each
numbers significand is a fraction with no leading zeros.
However, the following exceptions can be noted.

a. For the number zero as normalisation cannot be
done, a special value is assigned.

b. Also positive and negative infinity values are repre-
sented specially.

c. Illegal operations are represented as NaN (Not a
Number). Say, •/• or taking the square root of nega-
tive number etc.

As each number is stored in normal form, it is implicit that
the radix point is located to the left of the most significant
bit of the significand and hence does not have to be stored
explicitly.

While storing the exponent normally biased exponent
is employed. That is some value is added to exponent such
that the exponent is always positive and thus there is no
need for sign bit for exponent. For example if 4 bits are
used for exponent then the range of values one can store
is –8 to 7. However, by considering bias value as 8, 8 is
added such that exponent value is in between 0 to 15. The
arithmetic algorithms will account for this when generating
their results.

Precision characterises how precise a floating point value
can be. It is defined as the number of bits in the significand.
If the significand uses F bits, the precision is 1 part in 2F.
The fraction or significand value will be less than 1.

The gap is the difference between two adjacent values.
For example, consider a floating point number with 8-bit
significand and the value .10111010 x 23. Its adjacent val-
ues are .10111011 x 23 and .10111011 x 23, each of which
produce a gap of .00000001 x 23 =2–5. In general, the gap for
floating point value is expressed as 2(exponent-precision).

The range of a floating point representation is bounded
by smallest and largest possible values. For example, a float-
ing point number with an 8-bit significand (assuming the
leading 1 is explicitly stored in the significand register) and
4-bit exponent (-8 to +7) has a range of -.11111111 x 27 to
+.11111111 × 27.

Similarly, in single precision IEEE 754, floating point
numbers are represented with an 23-bit significand (as-
suming the leading 1 is explicitly stored in the significand
register) and 8-bit exponent with a bias of 128 can be hav-
ing a range of -.111 1111 1111 1111 1111 1111 × 2127 to
+.111 1111 1111 1111 1111 1111 × 2127. The gap is 0.1 x
2-128.
Similarly, 48-bit float point representation with 12-bit ex-
ponent, 35-bit significand will have range = +/– (1–2–35)
x2 +2047.

The bias is an excess number added to the exponent so that
internally all exponents become positive. As a consequence,
the sign of the exponent is removed from being a separate
entity. Moreover, when exponents are represented in biased
fashion further arithmetic algorithms get simplified.

1.13.3.1 IEEE 754 Floating Point Representation

Number of bits allocated for significand and exponent for
single precision and double precision according IEEE stan-
dards are given below and this is followed virtually on all
CPU’s which are having floating point capability.

The significand field also includes an implied 1 to the left
of its radix point (exception for special values such as zero,
+/- infinity, and de-normalised numbers as shown in the
following table).

Normalized significands value in this representation fall
in the range of 1<= significand<= 2..

Bias used here is 127 and exponent value for normalised
number ranges from –126 to +127 .
The exponent values 00000000(-127) and 11111111(128)
are used for special purpose.

n Example
Show how the number 6.25 is stored in IEEE 754 represen-
tation in single precision representation.
Binary code of the number is =110.11

Introductory Concepts of Digital Logic Design and Computer Architecture 1.83

Normalized code such that there will 1 before point, i.e
=1.1001 × 22.
Therefore exponent value = 2 + 127 = 129 = 10000001
Significand = 1001 (as is assumes implied 1 to the left).

sign exponent significand

0 10000001 1001 0000 0000 0000 0000 000

n Example How the number 128 can be stored in IEEE
754 single precision representation?

128 = 27 = 10000000 = 1.0 x 27

Sign bit = 0

Exponent = 7 + 127 = 134 = 10000110

Significand = 0000 0000 0000 0000 000

sign exponent significand

0 10000110 0000 0000 0000 0000 0000 000

n Example A real number’s IEEE 754 representation is
given as: 0100 0000 0110 0000 0000 0000 0000 0000? What
is that number?

Sign = + as MSB bit is 0.

Exponent =10000000 -127 =1 (as bias is 127)

Significand bits = 110000000000000=11

Thus, actual Significand =1.11 (1 is implied)

Therefore, number = 1.11 x 21. = 11.1 =3.5

n Example Convert the following single-precision IEEE
754 number into a floating-point decimal value.
1 10000001 10110011001100110011010

1. First, let us put the bits in three groups, sign, expo-
nent and mantissa.

2. Now, look at the sign bit. As the sign bit is 1, num-
ber is negative number.

3. Get the exponent and the correct bias. The exponent
is 10000001bin = 129ten Remember that we will have to
subtract a bias from this exponent to find the power
of 2. Since this is a single-precision number, the bias
is 127.

4. Convert the fraction string into base ten.

 This is the trickiest step. The binary string represents
a fraction, so conversion is a little different.

 0.10110011001100110011010bin = 1*2-1 + 0*2-2 + 1*2-3

+ 1*2-4 + 0*2-5 + 0 * 2-6 + ...

 The fraction is about 0.7000000476837158.

5. Now, we can put these numbers in the expression:

 (-1)sign bit * (1+fraction) * 2 exponent - bias

= (-1)1 * (1.7000000476837158) * 2 129-127

= -6.8

 The answer is approximately -6.8.

 Ofcourse, we can also do last two steps in one go as:

 = (-1)sign bit * (1. 10110011001100110011010)*2129-127 =
= (-1)sign bit * (1. 10110011001100110011010)*22

 =(-1)sign bit * (110.110011001100110011010) (shift-
ing the binary code by two bits).

 Now, we can calculate the number in decimal system.
The smallest positive number among the normalized ones
is= 00000001 (sign) and 0000 0000 0000 0000 0000 000
(significand)=1.0x2-126.
The additional assumed 1 in the mantissa (significand) al-
lows additional bit or precision in the representation. But
prevents the value 0 from being represented correctly. Thus,
IEEE 0 is represented specially. Thus, when exponent field
is 0 then leading bit of the mantissa is assumed as 0. This
type of numbers are called as denormalised numbers and
are used represent smaller nonzero values. The smallest
positive representation for a single precision denormalised
number is .000 0000 0000 0000 0000 0001 x2-126 = 2-149.

n Example The following is the IEEE 754 representation
of a real number. What is the number?
1000 0000 0100 0000 0000 0000 0000 0000

 Sign = - (as MSB bit is one)

 Exponent =00000000

 Significand=1000 0000 0000 0000 0000 000

 As, exponent is 0 and signficand is non zero then the
number is denormalised one.

 Therefore number = 0.1 ¥ 2–126 = 2–127.

In summary, IEEE 754 standard:
The IEEE 754 specifies 3 basic formats, called single,

double and quad formats.

Type Single (number of bits) Double (number of bits) Quad (number of bits)

S= sign 1 1 1

E = exponent 8 11 15

L = leading bit 1 1 1

M = mantissa 23 52 111

Total width 32 64 128

1.84 Computer Science & Information Technology for GATE

Sign bit 0 = + 1 = - 0 = + 1 = - 0 = + 1 = -

Maximum E 255 2047 32767

Minimum E 0 0 0

Bias 127 1023 16383

Precision 1 part in 224 1 part in 253 1 part in 2112

Range (Denormalized) ± 2–149 to (1 – 2-23) × 2-126 ± 2–1074 to (1 – 2–52) × 2–1022

Range (Normalized) ± 2 –126 to (2-2-23) × 2127 ± 2–1022 to (2-2-52) × 21023

Range(App. Decimal) ± ~10–44.85 to ~1038.53 ± ~10–323.3 to ~10308.3

Exponent Field Fraction Field Meaning

0 0 0

0 Not 0 +/-(0.fraction) ¥ 2(1-bias)[depending on sign bit]

Not 0, not all 1s Any +/–(1.fraction) ¥ 2(exponent-bias)[depending on sign bit]

All 1s 0 +/– infinity [depending on sign bit]

All 1s Not 0 NaN

Special Numbers in single precision:

+ infinity 0 11111111 0000000000000000000000

- infinity 1 11111111 0000000000000000000000

NaN 1 11111111 1000000000000000000000

If s is the sign bit value, e is biased exponent, f is fraction
value then the value of the number is = (–1)s2e-127 ¥ (1.f).
The most positive normalised number will have exponent
as 254 and all significand bits as 1’s. The same can be as:
1.1111 1111 1111 1111 1111 111 ¥ 2127 = (2-2–23) ¥ 2127.
Rounding is the process of fitting the results of arithmetic
operations results into the significand bits.

Rounding to nearest or unbiased rounding

The Thogoal of this methods goal is to find a representation
that is as close as possible to the actual desired value. For
example, .1011 1010 to 4 bits yields the value .1100. This has
the maximum error of +/– 1/2LSB, one-half of the value of
the least significant bit of the rounded result.

Round to even

Here, values are rounded to the closest representable num-
ber such that the least significant digit of their result is even.
For example,12.5 rounded to 12 and 13.5 rounded to 14.

Round towards 0

The extra bits are simply truncated. For example, .1011
1111 truncates last 4 bits (1111) if we assume significand
uses 4 bits.
Round toward + •
This can be called as ceiling function. All values are rounded
up to the next possible value. This results in negative values

being truncated and positive values being rounded up to
the next possible value. For example -.1011 1111 becomes
-.1011, .1011 0000 rounded to .1011 and .1011 0001 will
be rounded to .1100.

Round toward – •

This can be called as floor function. This results in nega-
tive values being rounded down and positive values trun-
cated. For example -.1011 0001 becomes -.1100, .10110000
rounded to .1011 and .10111111 will be rounded to .1011.

Definition: The number machine epsilon, denoted emach , is
the distance between 1 and the smallest floating point num-
ber greater than 1. For the IEEE double precision floating
point standard, emach= 2–52.

Be sure to understand many numbers below emach are
machine representable, even though adding them to 1 may
be no effect.

Rounding Rounding is an important concept in scientific
computing. Consider a positive decimal number x of 0.....
with m digits to the right of the decimal point. One rounds
x to n decimal place (n<m) in a manner that depends on
the value of the (n+1)-th digit. If this digit is 0,1,2,3,or 4,
then the n-th digit is not changed and all the following dig-
its are discarded. If it is a 5,6,7,8 or 9, then the n-th digit
is increased by one unit and the remaining digits are dis-
carded. (The situation with 5 as the (n+1)-st digit can be
handled in a variety of ways. For example, some choose to
round up only when the previous digit is even, assuming
that this happens about half time. For simplicity, we always
choose to round up in this situation).

Here are some examples of seven-digit numbers being
correctly rounded to four digits

Introductory Concepts of Digital Logic Design and Computer Architecture 1.85

0.1735 ¨ 0.1735499
1.000 ¨ 0.9999500
0.4322 ¨ 0.4321609

Note: If x is rounded so that x is the n-digit approximation
to it. Then

| x – x | £ 1
2

 ¥ 10–n (2)

In binary also, we have a similar way to do rounding.

IEEE Rounding to Nearest Rule

For double precision, if the 53rd bit to the right of the binary
point is 0, then the round down (truncate after the 52nd bit).
If the 53rd bit is 1, then round up (add 1 to 52 bit), unless
all known bits to the right of the 1 are 0’s, in which case 1 is
added to bit 52 if and only if bit 52 is 1.
Definition: Denote the IEEE double precision floating
point number associated to x, using Rounding to Nearest
Rule, by fl(x).

Similar to the remark above, we have
| () |

| |

fl x x

x
mach

-
£
1

2
e

1.13.3.2 Machine Representation

In this section will discuss a few more details about how a
floating point representation is implemented on a comput-
er. Each double precision floating point number is assigned
an 8 byte word, or 64 bits, to store three parts. The sign is
stored in the first bit, followed by 11 bits representing the
exponent and the 52 bits following the decimal point repre-
senting the mantissa.

The sign bit s is 0 for a positive number and 1 for a nega-
tive number. The 11 bits represent the exponent come from
the positive binary integer number resulting from adding
1023 to the exponent. For exponents between -1022 and
1023, this covers values of these 11 bits from 1 to 2046. The
number 1023 is called the exponent bias of the double pre-
cision. The special exponent 2047 is used to represent in-
finity if the mantissa bit string is all zeros, and NaN, which
stands for Not a Number, if the mantissa bit string is not
all zeros. The special exponent 0, is interpreted as the non-
normalized floating point form

± 0.b1 b2 b3 b52 ¥ 2 –1022

These numbers are called subnormal floating point num-
bers. The smallest representable number in double preci-
sion is 2–1074. The subnormal numbers includes + 0 and –0.
+ 0 has sign 0, exponent all zeros and mantissa 52 zeros. For
–0, all is exactly same, except the sign bit is 1.

There are five distinct numerical ranges that single-pre-
cision floating-point numbers are not able to represent:

1. Negative numbers less than –(2–2–23) × 2127 (negative
overflow)

2. Negative numbers greater than –2–149 (negative un-
derflow)

3. Zero

4. Positive numbers less than 2–149 (positive underflow)

5. Positive numbers greater than (2 – 2–23) × 2127 (posi-
tive overflow)

Overflow means that values have grown too large for the
representation, much in the same way that you can over-
flow integers. Underflow is a less serious problem because
is just denotes a loss of precision, which is guaranteed to be
closely approximated by zero.

Not A Number

The value NaN (Not a Number) is used to represent a value
that does not represent a real number. NaN’s are represent-
ed by a bit pattern with an exponent of all 1s and a non-zero
fraction. There are two categories of NaN: QNaN (Quiet
NaN) and SNaN (Signalling NaN).

A QNaN is a NaN with the most significant fraction bit
set. QNaN’s propagate freely through most arithmetic op-
erations. These values pop out of an operation when the
result is not mathematically defined.

An SNaN is a NaN with the most significant fraction bit
clear. It is used to signal an exception when used in opera-
tions. SNaN’s can be handy to assign to uninitialised vari-
ables to trap premature usage.

Semantically, QNaN’s denote indeterminate operations,
while SNaN’s denote invalid operations.

Note on what happens while doing arithmetic Opera-
tions with IEEE 754 numbers

Operations on special numbers are well-defined by IEEE.
In the simplest case, any operation with a NaN yields a NaN
result. Other operations are as follows:

Operation Result

n ÷ ± Infinity 0

± Infinity × ± Infinity ± Infinity

± nonzero ÷ 0 ± Infinity

Infinity + Infinity Infinity

± 0 ÷ ± 0 NaN

Infinity – Infinity NaN

± Infinity ÷ ± Infinity NaN

± Infinity × 0 NaN

Summary

To sum up, the following are the corresponding values for a
given representation:

1.86 Computer Science & Information Technology for GATE

Float Values (b = bias)

Sign Exponent (e) Fraction (f) Value

0 00 .. 00 00..00 +0

0 00 .. 00 00..01
: 11..11

Positive Denormalized
Real 0.f × 2(-b+1)

0 00..01
: 11 .. 10

XX..XX Positive Normalized Real
1.f × 2(e-b)

0 11 .. 11 00..00 +Infinity

0 11 .. 11 00..01:
01..11

SNaN

0 11 ..11 10..00
: 11..11

QNaN

1 00 .. 00 00..00 -0

1 00 .. 00 00..01:
11..11

Negative Denormalized
Real -0.f × 2(-b+1)

1 00 .. 01
: 11..10

XX..XX Negative Normalized Real
–1.f × 2(e-b)

1 11 .. 11 00..00 -Infinity

1 11 .. 11 00..01:
01..11

SNaN

1 11 ..11 10..00
: 11.11

QNaN

1.13.4 Addition of Floating Point Number

Machine addition consists of lining up the decimal points
of the two numbers to be added, adding them, and then
storing the result again as a floating point number. The ad-
dition itself can be done in higher precision (with more
than 52 bits) since the addition takes place in a register
dedicated just to that purpose.

n Example What will be the magnitude of relative errors
in relation to magnitude of the number?

n Answer: Relative error for representing small numbers is
going to be high, while for large numbers the relative error
is going to be small.
For example, for 256.786, rounding it off to 256.79 accounts
for a round-off error of 256.786 – 256.79 = –0.004
The relative error in this case is

et =
-0 004

256 786
100

.

.
¥

= – 0.001558%
For another number, 3.546, rounding it off to 3.55 ac-

counts for the same round-off error of 3.546 – 3.55 = –
0.004.
The relative error in this case is

et =
-0 004

3 546
100

.

.
¥

= – 0.11280%.
Why do you need normalisation?

To get uniform relative error (while representing real num-
bers) independent of the magnitude of the number which
is stored.

n Example A machine stores floating-point numbers in a
hypothetical 10-bit binary word. It employs the first bit for
the sign of the number, the second one for the sign of the
exponent, the next four for the exponent, and the last four
for the magnitude of the mantissa.

(a) Find how 0.02832 will be represented in the floating-
point 10-bit word.

(b) What is the decimal equivalent of the 10-bit word rep-
resentation of part (a)?

n Answer: (a) For the number, we have the integer part as
0 and the fractional part as 0.02832
Let us first find the binary equivalent of the integer part

Integer part(0)10 = (0)2

Now we find the binary equivalent of the fractional part

Fractional part: .02832 ¥ 2

0.05664 ¥ 2

0.11328 ¥ 2

0.22656 ¥ 2

0.45312 ¥ 2

0.90624 ¥ 2

1.81248 ¥ 2

1.62496 ¥ 2

1.24992 ¥ 2

0.49984 ¥ 2

0.99968 ¥ 2

1.99936

Hence

(0.02832)10 @ (0.00000111001)2

= (1.11001)2 ¥ 2–6

@ (1.1100)2 ¥ 2–6

The binary equivalent of exponent is

(6)10 = (110)2

So

(0.2832)10 = (1.1100)2 ¥ 2–(110)2

= (1.1100)2 ¥ 2–(0110)2

The ten-bit representation bit by bit is

0 1 0 1 1 0 1 1 0 0

(b) Converting the above floating point representation
from part (a) to base 10 by following gives

Introductory Concepts of Digital Logic Design and Computer Architecture 1.87

= (1.1100)2 ¥ 2–(0110)2

= (1 ¥ 20 + 1 ¥ 2–1 + 1 ¥ 2–2 + 0 ¥ 2–3 + 0

¥ 2–4) ¥ 2 –(0 ¥ 23 + 1 ¥ 22 +1 ¥ 21 + 0 ¥ 20)

= (1.75)10 ¥ 2–(6)10

= 0.02734375

How do you determine the accuracy of a floating-point rep-
resentation of a number?

n Answer: The machine epsilon, Œmach is a measure of the
accuracy of a floating point representation and is found by
calculating the difference between 1 and the next number
that can be represented. For example, assume a 10-bit hy-
pothetical computer where the first bit is used for the sign
of the number, the second bit for the sign of the exponent,
the next four bits for the exponent and the next four for the
mantissa.
We represent 1 as

0 0 0 0 0 0 0 0 0 0

and the next higher number that can be represented is

0 0 0 0 0 0 0 0 0 1

The difference between the two numbers is

(1.0001)2 ¥ 2(0000)2 –(1.0000)2 ¥ 2 (0000)2

(0.0001)2

(1 ¥ 1–4)10

(0.0625)10.

The machine epsilon is

Œmach = 0.0625.

The machine epsilon, Œmach is also simply calculated as two
to the negative power of the number of bits used for mantis-
sa. As far as determining accuracy, machine epsilon, Œmach

is an upper bound of the magnitude of relative error that
is created by the approximate representation of a number.

n Example A machine stores floating-point numbers in a
hypothetical 10-bit binary word. It employs the first bit for
the sign of the number, the second one for the sign of the
exponent, the next four for the exponent, and the last four
for the magnitude of the mantissa. Confirm that the magni-
tude of the relative true error that results from approximate
representation of 0.02832 in the 10-bit format (as found in
previous example) is less than the machine epsilon.

n Answer: From the previous example, the ten-bit repre-
sentation of 0.02832 bit-by-bit is

0 1 0 1 1 0 1 1 0 0

Converting the above floating point representation to base-
10 gives

= (0.2734375)10

The absolute relative true error between the number
0.02832 and its approximate representation 0.02734375 is,

| et| = 0 02832 0 02734375

0 02832

. .

.

-

= 0.034472

which is less than the machine epsilon for a computer that
uses 4 bits for mantissa, that is,

Œmach = 2–4

= 0.0625

n Example With x = 0100 0110 1101 1000 0000 0000
0000 0000 and y =1011 1110 1110 0000 0000 0000 0000
0000 representing single precision IEEE 754 floating point
numbers, perform x + y and show all work.

0 10111111 0111110 01000000 00000000

1 10111111 0111110 01000000 00000000

Same number but different sign, the result is 0.

n Example The IEEE 754 floating point standard speci-
fies 64 bit double precision with a 53 bit significand (includ-
ing the implied 1) and an 11 bit exponent. IA 32 offers an
extended precision option with a 64 bit significand and a 16
bit exponent.

i. Assuming extended precision is similar to single and
double precision, what is the bias in the exponent?

n Answer:

216–1 – 1 = 32,767

ii. What is the range of numbers that can be represented
by the extended precision option?

n Answer:

216–1 = 32,768

log10 232768 = log10a

32768(0.3) = log10a

9820 = log10a

a = 109864

Range of representation = 2.010 ¥ 10–9864 ~ 2.010 ¥ 109864

1.13.5 Error Detection and Correction codes

In practice, there can be many reasons for data to get spoiled
either during transmission or while it is stored in a storage
disk. For example, while transmitting a sudden thunder
followed by a giant lightening may disturb our satellite
channel resulting bad data. Also, some memory devices

1.88 Computer Science & Information Technology for GATE

when exposed to high level of X rays or magnetic currents,
the data available in them get spoiled. For example, suppose
we store the bit sequence 0010 1100 on the disk, but due to
a physical defect, what we read later is 0110 1100, which
is erroneous. This could be really bad if the software is
controlling an airplane, or a medical device, or financial
transactions, etc.

Error detection is the process of identifying such a er-
rors while error correction is the process of correcting
the same.

In our daily life, we may find regular use of some or other
form of numbers such as ISBN number, Visa card number,
etc. In order to validate these numbers, there exists some
fixed approaches which are akin to error detection meth-
ods. Evidently, humans may try to cheat automatic systems
which uses the above numbers with pirated or fabricated
numbers. Thus, the automatic systems are supposed to ver-
ify the authenticity of the numbers.

ISBN Check

Every published book gets assigned a unique ISBN (Inter-
national Standard Book Number). For example, if a text-
book’s ISBN is 0-321-38701-5, the 0 means that it was pub-
lished in the US. The 32 is the code for the publisher (in
this case Addison-Wesley). The next 6 digits are the book
number assigned by the publisher. The last character is a
check digit. To verify that that an ISBN is valid, multiply the
first digit by 10, the second by 9, the third by 8, … and the
last by 1. Add up these products, and divide the sum by 11.
That is, (5*1 + 1*2 + 0*3 + 7*4 + 8*5 + 3*6 + 1*7 + 2*8 + 3*9
+ 0*10)%11 is zero (Here, we are following C language syn-
tax where % refers to modulus operator). If the remainder
is 0, then it is a valid ISBN.

n Example Try to transpose 2 digits from the above –
show how the check fails.

IBM Check

The “IBM check”, which is used by MasterCard, VISA, and
most other credit card companies, is an even/odd weighted
code. The digits in the even positions (numbering from the
right) are multiplied by 2, then reduced to a single digit (if
> 9) by “casting out nines” (subtracting 9, which is equiva-
lent to adding the digits). All digits are then summed and a
check digit added to make the result evenly divisible by 10.
For example, given the number

6 1 8 2 0 9 2 3 1 5 5 3

the leading 6 is doubled, giving 12, which is then reduced
to 3 by adding the digits of 12 together; similarly, the 8 be-
comes 16 and then 7; the 0 is impervious to doubling; the
2 becomes 4; the 1 becomes 2; and the 5 in the second-last
position becomes 10 and thus 1. Thus the check equation is

6 # 2 + 1 + 8 # 2 + 2 + 0 # 2 + 9 + 2 # 2 + 3 + 1 # 2 + 5 +
5 # 2 + 3 mod 10 = 0
where ‘#’ represents multiplication with casting out nines,
giving

3 + 1 + 7 + 2 + 0 + 9 + 4+ 3 + 2 + 5 + 1 + 3 mod 10 = 40
mod 10 = 0
This scheme catches all single errors and most adjacent
transpositions, but not jump transpositions (such as 553
becoming 355) or 09 becoming 90. This procedure is used
to validate MasterCard or VISA card.

Electronic Funds Transfer Routing Number Check

The check digit scheme used on routing numbers for Elec-
tronic Funds Transfer (EFT) between banks uses a 9-digit
number with position weightings of 3, 7, and 1. The check
equation for a number a1a2a3a4a5a6a7a8a9 is
3a1 + 7a2 + a3 + 3a4 + 7a5 + a6 + 3a7 + 7 a8 + a9 mod 10 = 0
This scheme is based on the fact that multiplication modulo
10 yields a permutation of all 10 decimal digits if the mul-
tiplication factor is one of the digits 1, 3, 7, or 9, but only a
subset of the decimal digits if the factor is 5 or an even digit,
as illustrated in the following table:

Multiplication modulo 10

0 1 2 3 4 5 6 7 8 9

1 0 1 2 3 4 5 6 7 8 9

3 0 3 6 9 2 5 8 1 4 7

7 0 7 4 1 8 5 2 9 6 3

9 0 9 8 7 6 5 4 3 2 1

This scheme cannot detect adjacent transpositions of digits
that differ by 5.
Consider an example code as 111000025. Now, we apply
the above rule.
3(1 + 0 + 0) + 7(1 + 0 + 2) + (1 + 0 + 5) mod 10 is zero. Thus,
the number 111000025 is valid.

Channel Encoding

In order to identify and correct errors in digital communi-
cation we add some extra bits (which may be called as par-
ity bits or redundant bits). This process is known as channel

01011000

Information
tracks

Parity track

0
1
0
1
1
0
0
0
1

Figure 1.75 Parity bits in magnetic tapes

encoding. Similar bits are also used with data storage also.
For instance, in magnetic tapes parity bits are added for ev-
ery one word. Rather one channel is left for parity data as

Introductory Concepts of Digital Logic Design and Computer Architecture 1.89

shown in Figure 1.75. In Figure 1.75, we have shown parity
bit as 1 for the data 01011000. Of course, here we have used
even parity approach to calculate parity bit value. In the
next pages, we shall be explaining about parity calculation.

Channel coding allows bit errors introduced by trans-
mission of a modulated signal through a wireless or
wire line channel to be either detected or corrected by
a decoder at the receiver end.

The task of channel coding is to represent the source
information in a manner that minimises the error
probability in decoding.

Do not get confused between Encryption and Channel
Coding

Encryption is mainly used to maintain privacy of the data
either during communication or when it is stored.

Figure 1.76 demonstrates the use of channel encoding
in a practical digital communication system. Detailed ex-
planation of Figure 1.76 is beyond the scope of the book.
However, in a nutshell while communicating signals such
as voice first it is sampled and quantized with appropriate
parameters before compression. The resulting bit sequence
encoded and communicated over channels using various
modulation methods. At the receiver end, the decoder re-
verses the operation and generates probably original ana-
logue signal.

sampling
quanti-
zation

LP/BP
transform

baseband-
modulation

channel
encoder

com-
pression

single re-
constr.

DA-
converter

decom-
pression

channel
decoder

Detector

BP/LP -
transform

analogue
channel

analogue
signal

source encoding

disturbances

Likelihood
infromation

digital channel
source decoding

binary sequence
binary sequence

Figure 1.76 Channel Coding

1.13.5.1 Parity Bits

Parity bit is a simplistic approach to identify errors in the
binary data. Here, we add a parity bit to sequences of data
bits. For example, we could add a parity bit to every byte.

Even parity: add a 0 or 1 such that the total number of
1’s is even
Odd parity: add a 0 or 1 such that the total number of
1’s is odd

We do have some related terms such as mark parity,
space parity and none parity. These are very widely used
in serial data communication. Mark parity means that the
parity bit is always set to the mark signal condition (logical
1) and likewise space parity always sends the parity bit in
the space signal condition(logical 0). None parity indicates
that no parity bit is included in the data at all. Detailed dis-
cussion on parity bits is beyond the scope of the book.

n Example Suppose we want to save the sequence 0010
1100 on the disk. Let’s add an even parity bit and write to
the disk. Thus, the data on the disk will be 0010 1100 1

Now, if we read the same data from the disk and is read
as 0110 1100 1; we know something went wrong at some-
where, because the parity is incorrect (there is an odd num-
ber of 1s). That is the idea here is that any single bit error
can be detected with this single parity bit.

n Example If we employ odd parity, if the data is 0101010
then the parity bit value should be 0 whereas if the data is
0101101 then the parity bit value should be 1.

Do remember that modern memory (RAM) includes
parity bits extensively. We may still refer to bytes, but there
are hidden parity bits that are used to make sure that the
data that we read from RAM is the same as that which was
written into RAM.

What’s a weakness of this technique? What if multiple
bits change because of noise?

What’s a common error that people make when copying
long numbers (such as phone numbers or SSNs (social se-
curity numbers))?

transpose digits

confuse double digits (e.g., 334 gets copied as 344)

How could we detect these kinds of errors? Let us look at
an example.

1.13.5.2 LRC(Longitudinal Redundancy Checking)
and VRC(Vertical Redundancy Checking)

Single parity bit explained in above examples are used to
check errors in single byte. LRC is applied to a “column”
of bits within a message. That is, parity is applied to a sin-
gle byte in the message, whereas LRC is applied to all of
them. The LRC is a byte, initially set to 0xFF. Each byte is
exclusive-or’ed (XOR) with the LRC and result is stored in
LRC. After transmitting the bytes the LRC byte also trans-
mitted. At the receiver also same operation is applied on
the received byte including received LRC byte. If the result-
ing LRC value at the receiver is zero then data transmission

1.90 Computer Science & Information Technology for GATE

is considered as error free. (see the following example for
LRC calculation. Here, even parity technique is employed).

LRC
CHARACTER

1 1 1 0 0 0 1

Byte 1 0 1 0 0 1 1 0

Byte 2 1 1 1 0 0 0 1

Byte 3 0 1 0 1 1 1 0

Byte 4 1 1 1 0 0 0 1

Byte 5 0 0 0 0 1 1 0

In fact, error detection can be increased employing LRC
and VRC (vertical redundancy checking). LRC is calcu-
lated in lateral fashion whereas VRC is calculated in verti-
cal fashion. Rather VRC is nothing but single parity bit per
byte as explained above. It is observed that by employing
both VRC & LRC error detection increases two to four or-
ders. However, this technique also may fail if an even num-
ber of bits changes in the same columns of an even number
of bytes. Same columns of an even number of bytes.

0 1 1 1 1
1 0 0 0 1
0 0 0 1 1
1 1 1 1 0
0 0 1 1 0
1 1 1 0 1
0 0 0 1 1
1 1 0 1 1

L R C Direction of transfer of whole block

Direction of transfer of bits

L R C

1.13.5.3 Cyclic Redundancy Checking (CRC)

CRC algorithms are used to check errors both in memories
(storage devices such as Hard disk, RAM) and also in data
communication. Essentially, the data for CRC is a very long
string of 1’s and 0’s (called as message); this is divided by a
fixed binary string which is known as generator polynomial
(see the Table 1.8 for widely used standard polynomials)
using modulo-2 arithmetic’s and the remainder of this divi-
sion is called as CRC checksum. This is appended at the end
while sending the message and at the receiver again CRC
checksum is calculated using the same divisor polynomial.
If the checksum is zero then the transmission is said to be
error free. Main attraction with this technique is that it can
detect single and double bit errors.

While practically calculating CRC checksum, first a
series of 0’s are appended to the message whose count is
equal to the generator polynomial order (see the Table 1.8
for commonly employed polynomials)

Table 1.8 List of CRC polynomials.

CRC12 CCITT
/CRC-ITU or
CRC-CCITT

CRC16 CRC32

Checks-
um size

12 bits 16 bits 16 bits 32 bits

Genera-
tor
Polyno-
mial

X12 + x11

+ x3 +
X2 + x + 1

X16 + x12 +
x5 + 1

X16 + x15

 + x2+1
X32 + x26 + x23 +
X22 + x16 + x12+

x11 + x10+
X8 + x7 + x5 +
x4 + x2 + x + 1

n Example Consider the following example for under-
standing.

 Message: 11100110

 Generator Polynomial = 11001 (i.e. order is 4)

As mentioned above, we add four 0000s as we are taking
polynomial 11001 for division, i.e., X4 + x3 + 1.
11001)11100110 0000(10110110

11001
 01011
 10111
 11001
 11100
 11001
 01010
 10100
 11001
 11010
 11001
 00110
Checksum 0110
As mentioned above, we add this checksum to the frame
during transmission. Thus, transmitted Frame: 11100110
0110
At the receiver side, we simply divide with the same poly-
nomial as worked out below. Of course, we don’t add 0s
now.
11001)11100110 0110(10110110

11001
 01011
 10111
 11001
 11100
 11001
 01010
 10101
 11001
 11001
 11001
 00000
Checksum 0000

Introductory Concepts of Digital Logic Design and Computer Architecture 1.91

As reminder is zero, therefore no errors occurred during
transmission.
Do remember that, in Internet communication also we use
this technique for error detection.

1.13.5.4 Error Correcting Codes (Block Codes):
Hamming Codes

Consider two binary sequences 011101 and 001111 that are
selected for communication on a noisy channel. We need
to find possibility of error in communication and also what
is really sent by the sender. That is, we want to detect and
correct the error. For example, if we assume that we have
received 011111 and if we assume that at most one bit gets
distorted during communication then we can certainly
conclude that there is communication error as the received
code is not matching with any of the two sequences. Also,
we may receive 011111 if 2nd bit gets spoiled in 011101
or 5th bit gets spoiled in 001111. Thus, from the received
011111 we cannot conclude now which is really commu-
nicated, either 011101 or 001111. Now, consider that the
two sequences which are communicated are 011101 and
001110 and the received sequence is still 011111. If we as-
sume that at most only one bit gets spoiled during commu-
nication then we can conclude that the sequence which is
sent is 011101 as with it only if one bit gets spoiled we may
get 011111. This is not possible with the other sequence
001110. Thus, we are able to correct the communication er-
ror. That is, we can conclude that the actual message sent
011101. This way, we can communicate information in
practical systems with errors.

We can analyse the above examples as follows with the
help of Hamming distance, a similarity measure between
two binary sequences. The Hamming distance is the num-
ber of bit positions where two codes (binary strings) of
same length differ. If we say that Hamming distance be-
tween two sequences A and B is 1, then by changing one bit
of B we can get sequence A or vice versa. Similarly, we have
Hamming weight of a binary sequence or vector is defined
as the number 1s in the sequence.

In the first case (or example used above), Hamming dis-
tance between 011101 and 001111 is 2 while with the sec-
ond case hamming distance between 011101 and 001110
is 3. In the first case, hamming distance between received
011111 and the original sequences is same and is 1. Thus,
we cannot decide which is really sent by the sender as one
bit error with any of the two sequences may lead to 011111.
Of course, we are able to conclude that there is an error in
communication as received 011111 is not matching with ei-
ther 011101 or 001111. However, in the case of second case,
Hamming distance between received 011111 and 011101 is

1 while 011111 and 001110 is 2. Thus, in the second set we
can conclude that the actual sequence which is sent from
the sender as 011101 as it is the only one which can lead to
011111 if we assume during communication only one bit
gets spoiled. This is the main concept in error correcting
using Hamming codes. Imagine what happens if the two se-
quences which we have sent are having Hamming distance
of 1? If we send one sequence, the receiver may receive a
sequence of the other because of one bit error in communi-
cation. This is very serious situation compared to the others
what we have discussed above. In practice, we never want
such a situation at all. Thus, in a nutshell if we take two se-
quences with a minimum hamming distance of three then
we can detect and correct the error at the receiver end. This
is the theme in Hamming code based error detection and
correction.
In a nutshell, the above discussion explains the folliwing
point.

1. If we take two binary sequences of m-bits length with
Hamming distance of 1 then there is danger of mis-
interpretation at the received end even single bits gets
spoiled during communication. Hamming distance of
1 between them indicates that they differ only at one
bit. If that bit gets distorted then we may wrongly con-
clude that we have received the other message which
is not correct and acceptable.

2. If we take two binary sequence of m-bits length with
Hamming distance of 2 then any single bit communi-
cation error leads to reception of m-bit code which is
not matching with either of the codes. Thus, we can
conclude that there exists communication error dur-
ing communication. That is, we can detect the com-
munication error.

3. If we take two binary sequences of m-bits length with
Hamming distance of 3 bits then we can detect and
correct single bit communication error. We know that
Hamming distance of 3 means that the two sequences
differs at three bit locations in their codes. Assuming
that channel induces single bit errors and if we send
one of the two sequences then the sequence what we
will receive will be having least Hamming distance
with the sequence what we have really sent compared
to the other sequence. In no case Hamming distance
between the received and code and the two selected
codes will be same. Thus, if we have two codes with
Hamming distance of 3 then we can detect and cor-
rect the single bit error.

Consider a practical situation where we have eight symbols
(say A to H) to be stored or communicated. If we think of
using the binary sequence numbers 000 to 111 as the codes

1.92 Computer Science & Information Technology for GATE

to symbols A to H, then there is a un-avoidable danger of
one symbol getting misinterpreted as some other symbol
even if one bit gets disturbed or spoiled during communi-
cation.

We want to have some codes (of more number bits than
three bits length) to be assigned for each symbol (A-H)
such that even if one (or some) bit gets spoiled during com-
munication yet we can know what is really communicated.
Consider the following table having codes for our symbols.
In this case, the minimum Hamming distance is 3. This
is an important attribute of this set of codes. If one bit is
spoiled in any of the symbols code, we don’t misinterpret
the same as another symbol as it will not be matching with
any other codes. Of course, we will be interested in which
symbol is really sent. This can be decided by calculating
Hamming distance with all the symbols and the received
symbol. Then, we classify the received symbol as the sym-
bol for which distance is minimum.

Symbol Code

A 000000

B 001111

C 010011

D 011100

E 100110

F 101001

G 110101

H 111010

Suppose we receive the code 111100, what symbol does
it represent which is transmitted originally? Well, first we
calculate it’s Hamming distance from the original codes of
all the symbols as shown below:

Symbol Code Distance

A 000000 4

B 001111 4

C 010011 5

D 011100 1

E 100110 3

F 101001 3

G 110101 2

H 111010 2

In this case, the nearest code is the one for the letter D.
Because we know that the smallest Hamming distance be-
tween any 2 correct codes is 3, we can assume that that the
code that was transmitted was 011100.

Thus, the main theme behind block (Hamming) coding
is to add some redundant bits to data bits and communicate
(Figure 1.77). That is, if we assume source sends m-bit mes-

sages then we will be having 2m possible messages. We map
these messages into another set of messages of larger length
say n-bits where n is greater than m. That is, we know in
n-bits we will be really having 2n possible messages, how-
ever only 2m of them are sent by the channel encoder. If
we happened to select these 2m messages of length n-bits
such that they are sufficiently apart in terms of Hamming
distance. When an error occurs during communication, we
can detect and correct the same as explained above. This is
explained as below. However, most important aspect here
is selecting 2m code words (valid code words) of length n-
bits!.

outputInput

(m bit)

channel
encoder

digital
channel

channel
decoder

(m bit)(n bit)(n bit)

Figure 1.77 The main theme of Hamming Coding

According to Hamming coding theory, if we assume that
the number of data bits are m, number of redundant (can
be called as parity bits) bits are p, then to detect and correct
single bit errors we have to select p such that the following
condition has to be satisfied.
m + p + 1< = 2p

We are sure readers have understood our emphasis of
selecting the codes having minimum hamming distance of
3 to detect and correct one bit error. However, most impor-
tant aspect which we have not emphasised is: How could we
build one of these codes? Let’s say that we wanted to trans-
mit 4 bits and we wanted to be sure that we could correct
every 1 bit error that occurs.

From the above theorem we can find that it takes 3 par-
ity bits to ensure that we detect 1-bit errors in 4 bits of data.
However, as we increase the number of parity bits, the
number of data bits we can encode increases quickly as
shown in the following table.

Number of Parity Bits Number of Data Bits

4 11

5 26

6 57

7 120

8 247

9 502

10 1013

Note that the above table contains number of parity bits
that can only correct 1-bit errors. How it could be possible
to correct more number of bit errors? Answer is to develop
a code with larger Hamming distance between the code val-
ues. For example, if the minimum Hamming distance is 5,
then we can correct 2 bit errors.

Introductory Concepts of Digital Logic Design and Computer Architecture 1.93

n Example Calculate minimum Hamming distance for
the following code vectors and comment on the same

1

2

3

4

5

1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

1 0 0 0 1

0 1 1 0 0

Index codewords

6

7

8

9

10

Index

0 1 0 1 0

0 1 0 0 1

0 0 1 1 0

0 0 1 0 1

0 0 0 1 1

codewords

n Answer:
See the following table which contains the Hamming dis-
tance between each of the code vectors. We may find that
the minimum Hamming distance between the code vectors
is 2. Thus, we can only detect single bit errors.

1

2

3

4

5

6

7

8

9

10

Index

0 2 2 2 2 2 2 4 4 4

2 0 2 2 2 4 4 2 2 4

2 2 0 2 4 2 4 2 4 2

2 2 2 0 4 4 2 4 2 4

2 2 4 4 0 2 2 2 2 4

2 4 2 4 2 0 2 2 4 2

2 4 4 2 2 2 0 4 2 2

4 2 2 4 2 2 4 0 2 2

4 2 4 2 2 4 2 2 0 2

4 4 2 2 4 2 2 2 2 0

1 2 3 4 5 6 7 8 9 10

Minimum (Hamming) distance: =2hmin

n Example See the following figure which contains code
vectors that are shown as nodes of a cube. Calculate hmin

and comment on the error detection and correction abili-
ties of the codes.

110 111

101

011

001

100

010

000

110 111

011010

101

000 001

100

110 111

010 011

000 001

100 101

n Answer :
First Case:
hmin value is 1. Thus, we cannot detect or correct errors
even of single bit.
Second Case:
hmin value is 2. Thus, we can detect single bit error but can-
not correct single bit errors.
Third Case:
hmin value is 3. Thus, we can detect and correct single bit
errors.

Calculating the Hamming Code (Bit Stuffing)

This Hamming coding is also popularly called as parity bit
stuffing. This is also akin to the method used above; how-
ever it is little more convenient for computer implementa-
tion. Here, m message bits are stuffed with r check bits and
frame is prepared for communication. In the frame, bits
are numbered from 1 at the left and bits 1,2,4,8 etc (which
are powers of 2) are called as parity or check bits and bits
3,5,6,7, etc are the data bits. In order to calculate hamming
bits expressing all bits positions whose value is one in bi-
nary number and XOR operation is applied for them. At
the receiver end, to determine bit position where error has
occurred, extract the Hamming bits and XOR them with
the binary code for each data bit positions that contain a 1.
The resulting binary code indicates the bit position where
error is occurred and to correct simply flip the bit. This
method is used only to correct single bit errors.

n Example Assume message bits: 010101011101

0 1 0 1 0 1 0 1 1 1 0 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

The above figure contains data bits of the message in their
respective cells of the frame while Hamming bits in cells 1,
2, 4, 8 and 16 are empty. To calculate Hamming bit values,
we simply apply XOR for the cell indexes of the data bits
whose values are 1s as shown below.

Bit Position
where data bit
value is 1
5
7

10

12

13

14

17

XOR operation
00101
00111
00010
01010
01000
01100
00100
01101
01001
01110
00111
10001
10110 Hamming bits (last 0 goes to
first cell as first Hamming bit and vice versa).

1.94 Computer Science & Information Technology for GATE

Frame stuffed with Hamming bits that can detect and cor-
rect single bit errors is given below.

0 1 0 1 1 0 1 0 0 1 0 1 1 1 0 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

n Example If our 4 bit sequence is 1011, then find out the
hamming code after adding 3 parity bits to recover from 1
bit errors.

n Answer: 1, 2, 4 are party bits while data bits with value
1 are: 3,6, 7. By applying XOR for 3, 6 and 7, we calculate
parity bits:

 011

 110

 101(XOR result)

 111

 010(XOR result)

 Position 1 parity is: 0

 Position 2 parity is: 1

 Position 4 parity is: 0

This gives us a resulting Hamming code as: 0110011.

n Example Calculate Hamming code for a byte of data:
10011010

n Answer: Indexes of the data bits whose values are 1
= 3,7,9,11
We may need 4 parity bits. To find out the parity bits, we
apply XOR operation for 3, 7, 9, and 11 as shown below.

 0011

 0111

 0100(XOR result)

 1001

 1101(XOR result)

 1011

 0110(XOR result)

Thus, final Hamming code word parity bits stuffed be-
comes: 011100101010.

We advise readers to visit http://candle.ctit.utwente.nl/
wp5/tel-sys/exercises/datalinkp2p/hamming74demo.html
and experiment the available online Hamming code demo.

At the receiver, all bit position values there is 1 are XO-
Red (data bit only) along with the Hamming code that is
received and this result is called the (SYNDROME). The
syndrome value represent one of the following situations:

1. If the syndrome is zero, no error has been detected.

2. If the syndrome contains one and only one bit set to 1,
then an error has occurred in one of the check bits, no
correction is required.

3. If the syndrome contains more than one bit set to 1
then the numerical value of the syndrome indicates
the position of the data bit in error. This data bits is
inverted for correction.

First consider an n block for data 001110010 using Ham-
ming code encoding.
8 bit data require 4 check bit and distributed as follows:

Bit position 12 11 10 9 8 7 6 5 4 3 2 1

Position number 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001

Distribution D8 D7 D6 D5 C4 D4 D3 D2 C3 D1 C2 C1

0 0 1 1 1 0 0 1

Then D6, D5, D4, and D1 position number is XORed to
find check bits.

Check bits = D6 XOR D5 XOR D4 XOR D1

= 1010 XOR 1001 XOR 0111 XOR 0011 =
0111

C1 = 1, C2 = 1, C3 = 1, C4 = 0

Now we assume that for the above example the received
message is 001101101111. We find the syndrome and cor-
rect message if possible. As usual, we identify data bits and
their cell indexes as shown below.

D8 D7 D6 D5 C4 D4 D3 D2 C3 D1 C2 C1

0 0 1 1 0 1 1 0 1 1 1 1

1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001

 Thus,

 SYNDROME = XOR(D6, D5, D4, D3, D1, 0111)

 = XOR (1010, 1001, 0111, 0110, 0011, 0111) = 0110

Then this indicates that bit position (0110) which is 6th in
error and correct message is

 001101001111 removing check bits

 00111001 = data

Single error correcting, double error detecting code

If an overall parity check is included at position 0, then the
Hamming code word extended by this bit becomes a single
error correcting, double error detecting code. The following
4 cases cover all possibilities for 2 or fewer errors:

Introductory Concepts of Digital Logic Design and Computer Architecture 1.95

1. no parity error, no Hamming error fi no error de-
tected

2. no parity error, Hamming error fi double error de-
tected

3. parity error, no Hamming error fi parity bit in error

4. parity error, Hamming error fi correctable error de-
tected

Notice that

If there are no errors, there are no parity errors for
any of the checks and no error correction is needed.
This is the “no parity error, no Hamming error” case.

If 2 bits are in error in the overall code word, then the
overall parity will be unaffected; ie., the overall parity
check will find no error. On the other hand, since at
least one of the errant bits is in the Hamming code
word, the Hamming parity checks will flag an error.
This is the “no parity error, Hamming error” case, and
flags occurrence of a double error. In this case error
correction no longer applies, since there is no way
to determine which 2 bits are in error, even if one of
them happens to be the parity bit, but the double er-
ror has been detected.

If a single bit is in error then an overall parity error
will be flagged. If the bit is the parity bit, then the
Hamming code word generates no errors. This is the
“parity error, no Hamming error” case, and the parity
error can be corrected by changing the parity bit (so
single error correction remains in effect).

If a single bit is in error and it is in the Hamming
code word, then the Hamming parity checks locate
the position of the bit. This is the “parity error, Ham-
ming error” case, and the error can be corrected using
the Hamming decoding technique.

This covers all possibilities of 0, 1, or 2 errors being present.
If more than two errors are present, one of these cases will
occur, but the result will be erroneous.

In general, Hamming code is designed to correct single
bit error. However, table below list the number of check or
Hamming bits required for various data lengths for single
error correction, and double error correction.

Data bits Check bits
(single error
correction)

Check bits
(single error correction)
(double error correction)

8 4 5

16 5 6

32 6 7

64 7 8

128 8 9

256 9 10

1.13.6 A Note on Weighted and non-Weighted
codes

The binary code, hexadecimal code, etc., are called as
weighted codes as for each digit there will be an associated
positional value. We advise readers to refresh first unit of
this chapter where we have represented a number as a poly-
nomial with some weights. If the weights are positives then
the number is said to be positively weighted code num-
ber else negatively weighted code number. Those number
which does not have no such weights associated with each
digit are called as non-weighted codes. Gray code, Excess-3
code are the best examples of this category.

Sequential Code is the one in which each successive num-
ber will be having a difference of one such that mathemati-
cal manipulations becomes easy.

Self Complimenting Code is the in which 9s complement
of a number N (i.e 9-N) can be achieved by simply comple-
menting bits of N. Conventionall binary code (8421) is not
self complimenting. However, Excess-3 code is self compli-
menting. For example, 3’s binary code in Excess-3 is 0110
while 6 is 1001. Nines complement of 3, i.e 9-3 = 6, whose
Excess-3 code is 1001 which we can achieve by comple-
menting 0110. Thus, Excess-3 code is self complimenting.

Cyclic codes are the ones in which each successive code
word differs at one bit position. Good example of this cat-
egory is gray code. They are also called as reflected codes.
Digital systems are usually designed to process data in dis-
crete form only. Many physical systems supply continous
data. These data should be conveted into digital or discrete
form before applying to digital system. Here, these codes
are very much used.

1.13.7 A Note on Gray Codes

Gray codes are cyclic and self complimenting type which
were used in electromechanical devices. Nowadays, they are
used in many application areas such as terrestrial commu-
nication, TV communication, Karnaugh maps, Genetic al-
gorithms, Neural Networks, etc. Evidently, successive codes
differs in single bit position. The following table contains
4-bit gray codes. Of course, to verify the self-complementary
property, we can neglect MSB bit.

Decimal Binary Gray

0 0000 0000

1 0001 0001

2 0010 0011

3 0011 0010

4 0100 0110

5 0101 0111

1.96 Computer Science & Information Technology for GATE

Decimal Binary Gray

6 0110 0101

7 0111 0100

8 1000 1100

9 1001 1101

10 1010 1111

11 1011 1110

12 1100 1010

13 1101 1011

14 1110 1001

15 1111 1000

To convert binary code to gray code, we can take MSB of bi-
nary code as MSB of gray code and subsequent bits starting
from MSB to LSB can be found by XORing successive bits
and retaining the subsequent bits of resultant gray code.
For example: 010s gray code can be found as: 0 0≈1 1≈0.
That is, 011. We can get in the same way binary code given
the gray code. The following Figure 1.78 summarises this
operation pictorially.

Bin

XOR XOR

Gray

(a)

0 1 0

110 Bin

XOR XOR

Gray

(b)

1 1 0

001

Figure 1.78 Binary to gray and gray to binary conversion of a 3

bits number

To get gray code, we use the following recursive approach.
To get n + 1 bit gray code from n-bit gray code,

1. prefix n-bit representation with 0

2. append to this n-bit representation in reverse order
prefixed by 1.

For example, see the following work out having details
about calculating 2 bit gray code for 1 bit, 3 bit gray code
from 2 bit gray code and vice versa.

1-bit 2-bit 3-bit 4-bit

0 00 000 0000

1 01 001 0001

11 011 0011

10 010 0010

110 0110

111 0111

101 0101

100 0100

1100

1-bit 2-bit 3-bit 4-bit

1101

1111

1110

1010

1011

1001

1000

n Example If we assume base of a number system as 1
what are possible digits?
Or
Why we cannot consider base of a number system as 1?

n Answer: If base of a number system is 1 then possible
symbols or digits are only 0. Thus, we can represent 0 only
in this system.

n Example Give an example of communication where
error correcting code works better than error detection and
an example, where neither error detection nor error correc-
tion is needed.

n Answer: Error correcting code works better in the case of
communication between a space shuttle and its land con-
trol station. Due to long distance, the error rates are high
and so is the end-to-end latency. Data retransmission can
be avoided by including error-correcting codes.

In interactive continuous media application, the maxi-
mum acceptable end-to-end latency is in the order of tens
of milliseconds. Data retransmission is ruled out, as late
data is useless in audio/video applications. Since, human
eye and ear have a “built-in” error correction mechanism
small gaps in data stream would not be noticeable thus
eliminating the need for error correcting codes.

n Example Assuming that the messages are required to
be sent to receiver:

0 0000 1 0001 2 0010 3 0011

4 0100 5 0101 6 0110 7 0111

8 1000 9 1001 A 1010 B 1011

C 1100 D 1101 E 1110 F 1111

There are 16 different messages. These 4-bits messages are
mapped to the following Sixteen Valid Code words

0 0 0 0 0 0 0 0 8 1 0 0 1 0 1 1

1 0 0 0 0 1 1 1 9 1 0 0 1 1 0 0

2 0 0 1 1 0 0 1 A 1 0 1 0 0 1 0

3 0 0 1 1 1 1 0 B 1 0 1 0 1 0 1

4 0 1 0 1 0 1 0 C 1 1 0 0 0 0 1

5 0 1 0 1 1 0 1 D 1 1 0 0 1 1 0

6 0 1 1 0 0 1 1 E 1 1 1 1 0 0 0

7 0 1 1 0 1 0 0 F 1 1 1 1 1 1 1

Introductory Concepts of Digital Logic Design and Computer Architecture 1.97

Verify whether these 16 code words are sufficient to detect
and correct 1 bit errors or not?

n Answer:
If we observe, minimum Hamming distance between any
two words is 3. Thus, it can correct and detect single bit
errors. Also, it satisfies Hamming condition. Checking the
hamming equation:
Data bits d=4, parity bits p=3 and
4+3+1 is less than 23. Thus, the code words are perfect.

n Example Assume that a communication system used
the above 7 bit Hamming codes to send 4 bit data. Assum-
ing that the received code word is 0000001, calculate the
Hamming distance between this received code word and all
the code words and then recover the actual code word sent
along with the data bits sent.
The following table contains the Hamming distance be-
tween each of the code word and 0000001.

Code word Hamming
Distance

Code Word Hamming
Distance

0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 3

0 0 0 0 1 1 1 2 1 0 0 1 1 0 0 4

0 0 1 1 0 0 1 2 1 0 1 0 0 1 0 4

0 0 1 1 1 1 0 5 1 0 1 0 1 0 1 3

0 1 0 1 0 1 0 4 1 1 0 0 0 0 1 2

0 1 0 1 1 0 1 3 1 1 0 0 1 1 0 5

0 1 1 0 0 1 1 3 1 1 1 1 0 0 0 5

0 1 1 0 1 0 0 4 1 1 1 1 1 1 1 6

As the minimum Hamming distance is 1 with 0000000,
the receiver concludes that the actual transmitted code is
0000000, which is the correct. The actual data bits are 0000.

n Example Is 8421 code is self complimentary? Explain
by taking 3 as an example.

n Answer: The 8421 is same as normal binary code in
which weights are 8,4, 2, 1 from MSB to LSB. In this code, 3

can be represented as 0011. Number 6, which is 3s comple-
ment (9-3) code is 0110. As 1s complement of 0011 is not
0110. This system is not self-complimenting type.

n Example Is 4221 code is self complimentary?. Explain
by taking 3 as an example.

n Answer: Code of 3 in 4221 representation is 0011. Num-
ber 6, which is 3s complement (9-3) in 4221 is 1100 which
is same as 1s complement of 0011, we can say that 4221
code is self complimenting.

n Example Prove 7421 code is not self complimentary
type.

n Example What is 8421 coding?. What are the weights
for this?. Explain. Is it self-complimenting type?.

n Answer: In this representation, first two bits weights are
separately dealt. If these bits values are ones, respective
digit weights are subtracted. For example, number 9s code
in this representation is 1111 which we can verify with by
expanding: 8 + 4 – 2 – 1 = 9.
This code is self complimentary. For example, 3s code in
this representation is 0101. Number 6 is 3s complement
(9–3) whose representation in this code is 1010 which we
get by complimenting 0101. Thus, this code is self-compli-
menting type.

n Example A communication channel is reported to be
having error rate of 1 in 106 bits. Find out the probability of
a bit getting spoiled out of 8 bits.

nAnswer: The error rate 1 in 106 bits indicates that if we send
a data unit of size 1000000 bits then certainly 1 bit gets spoiled.
If we assume that this 1000000 bits data unit is split into 8-bit
frames only one frame gets spoiled remaining are not. Thus,
probability of a bit getting spoiled out if 8-bits = 8/1000000.

n Example Assuming that 5-bit code words are proposed
such that they exactly contains two 1s. During communica-
tion if any bit gets spoiled, we can detect the error in commu-
nication by simply counting the number of 1s in the received
data. Assume that the following codes are proposed for each
of the 10 digits. Comment on the error detection procedure.

Digit 0 1 2 3 4 5 6 7 8 9

Code 00011 00101 01001 10001 00110 01010 10010 01100 10100 11000

n Answer: It can detect single bit errors and also multiple
errors in adjacent bits.

n Example Consider the following code C:
{0101010, 1001100, 0011001, 1110000, 0100101,
1000011, 0010110 }

 What is the Hamming distance of code C?. Which types
of error can code C correct? . What code word can you add
into the code C yet retaining the same Hamming distance?

n Answer:
Let us find out minimum hamming distance for the code.

1.98 Computer Science & Information Technology for GATE

0101010 1001100 0011001 1110000 0100101 1000011 0010110

0101010 0 4 4 4 4 4 4

1001100 0 4 4 4 4 4

0011001 0 4 4 4 4

1110000 0 4 4 4

0100101 0 4 4

1000011 0 4

0010110 0

Minimum Hamming distance of the above code is:4 (low-
est value of the above matrix)
Thus, we can correct 1 error.
If we add 1111111 to the code, the Hamming distance be-
tween other code vectors can be given as: 4. If we observe
all the code vectors, we find four zeros in each of them thus.
Thus, Hamming distance between 1111111 and each of the
code vectors becomes 4. Therefore, minimum Hamming
distance of the code will still be 4.

n Example Recover the correct data word from the re-
ceived 7-bit code word 0111001, given that odd parity is
used.

n Answer: We know 1st, 2nd, and 4th bits are parity bits in
the received data(0111001).
Now, we expand the indexes (3, 7) of the data bits which are
ones (0111001). That is,

 1 + 2

 1 + 2 + 4

As we are using odd parity, according to received data par-
ity bits should be 110. However, received parity bits are 011.
That is, at 1st and 4th bits parity values are not matching.
Thus, we can conclude that 5th bit(1 + 4) is the one spoiled
bit. Therefore, corrected data frame can be 1110101 in
which actual data is 1101.

n Example For 010101012 give the parity bit that will
produce odd parity

n Answer: 1
There is an even number of 1s in the data word, so that the
parity bit must be 1 to obtain an odd weight for the com-
plete code work (data word plus parity bit)

n Example For 010101012 give the parity bit that will
produce even parity.

n Answer: 0
There is an even number of 1s in the data word, so that the
parity bit must be 0 to maintain an even weight for the com-
plete code work (data word plus parity bit)

n Example For 1111112 give the parity bit that will pro-
duce odd parity

n Answer: 1
There is an even number of 1s in the data word, so that the
parity bit must be 1 to obtain an odd weight for the com-
plete code work (data word plus parity bit)

n Example Find the transmitted message for 00110101,0
011010101110011,01010101 and 0101010101010101

n Example Find corrected message for each of the fol-
lowing.
001000110111,101010111110,010111111100001101011

n Example Explain the use of most significant bit as a
sign bit.

n Answer: MSB is used to indicate the sign of an integer
number. In sign-magnitude approach, MSB 0 indicates it
is a positive integer, otherwise it is negative integer. In 2s
complement approach also, sign bit is used.

n Example In the following table, we have gives different
coding schemes A, B and C for 0-7. Which is gray code?
Explain why?

Value Code A Code B Code C

0 000 111 000

1 001 011 001

2 011 010 011

3 010 110 010

4 100 100 011

5 101 000 111

6 111 001 101

7 110 101 100

n Answer: Code A is not valid. Two bits change from 3 → 4.
Code B is Valid. We may find only one bit change between
any two adjacent codes including 7 to 0 also. Code C is also
not valid as the code “011” appears twice.

1.14 Instruction Set Architecture

A machine language or assembly language programmer
views the machine at the level of abstraction provided by
the ISA. The ISA defines the personality of a processor and

Introductory Concepts of Digital Logic Design and Computer Architecture 1.99

indirectly influences the overall system design. It specifies
how a processor functions: what instructions it executes
and what interpretation is given to these instructions.

One of the characteristics that influence the ISA is the
number of addresses used in the instructions. Since typical
operations require two operands, we need three addresses:
two source addresses to specify the two input operands and
a destination address to indicate where the result should
be stored. Most processors specify three addresses. We can
reduce the number of addresses to two by using one ad-
dress to specify a source address as well as the destination
address. The Pentium uses two-address format instruc-
tions. It is also possible to have instructions that use one
or even zero address. The one-address machines are called
accumulator machines and the zero-address machines are
called stack machines.

The number of addresses used in instructions partly
influences the number of data registers and their use. For
example, stack machines do not require any data registers.
However, as noted, part of the stack is kept internal to the
processor. This part of the stack serves the same purpose
that registers do. In three- and two-address machines, there
is no need for the internal data registers. However, as we
have demonstrated before, having some internal registers
improves performance by cutting down the number of
memory accesses.

1.14.1 Design Decisions for Instruction Sets

Short Instructions are typically better.

Instructions of a fixed length are easier to decode but
waste space.

Memory organisation affects instruction format.

How many different types of addressing modes we
want?

n Example Implement the following instruction in three
address, two address, one address and zero address ma-
chines. Give number of memory operations with each of
them.

 A = B + C * D – E + F + A

 Three address implementation (T is assumed as tem-
porary variable):

 mult T, C, D ; T = C*D

 add T, T, B ; T = B + C*D

 sub T, T, E ; T = B + C*D – E

 add T, T, F ; T = B + C*D – E + F

 add A, T, A ; A = B + C*D – E + F + A

Two address implementation (T is assumed as temporary
variable):
load T, C ; T = C

 mult T, D ; T = C*D

 add T, B ; T = B + C*D

 sub T, E ; T = B + C*D – E

 add T, F ; T = B + C*D – E + F

 add A, T ; A = B + C*D – E + F + A

 One address or accumulator machine implementa-
tion:

 load C ; load C into the accumulator

 mult D ; accumulator = C*D

 add B ; accumulator = C*D + B

 sub E ; accumulator = C*D + B – E

 add F ; accumulator = C*D + B – E + F

 add A ; accumulator = C*D + B – E + F + A

 store A ; store the accumulator contents in A

 Stack machine implementation:

 push E ; <E>

 push C ; <C, E>

 push D ; <D, C, E>

 mult ; <C*D, E>

 push B ; <B, C*D, E>

 add ; <B + C*D, E>

 sub ; <B + C*D – E>

 push F ; <F, B + D*C – E>

 add ; <F + B + D*C – E>

 push A ; <A, F + B + D*C – E>

 add ; <A + F + B + D*C – E>

 pop A ; < >

In the three-address machine, each instruction takes four
memory accesses: one access to read the instruction itself,
two for getting the two input operands, and a final one to
write the result back in memory. Since there are five instruc-
tions, this machine generates a total of 20 memory accesses.

In the two-address machine, each arithmetic instruction
still takes four accesses as in the three-address machine. Re-
member that we are using one address to double as a source
and destination address. Thus, the five arithmetic instruc-
tions require 20 memory accesses. In addition, we have the
load instruction that requires three accesses. Thus, it takes
a total of 23 memory accesses.

The count for the accumulator machine is better as the
accumulator is a register and reading or writing to it, there-
fore, does not require a memory access. In this machine,
each instruction requires just two accesses. Since there are
seven instructions, this machine generates 14 memory ac-
cesses.

Finally, if we assume that the stack depth is sufficiently
large so that all our push and pop operations do not exceed
this value, the stack machine takes 19 accesses. This count

1.100 Computer Science & Information Technology for GATE

is obtained by noting that each push or pop instruction
takes two memory accesses, whereas the five arithmetic in-
structions take one memory access each.

This comparison leads us to believe that the accumulator
machine is the fastest. The comparison between the accu-
mulator and stack machines is fair because both machines
assume the presence of registers. However, we cannot say
the same for the other two machines. In particular, in our
calculation, we assumed that there are no registers on the
three- and two-address machines. If we assume that these
two machines have a single register to hold the temporary
T, the count for the three-address machine comes down to
12 memory accesses. The corresponding number for the
two-address machine is 13 memory accesses. As you can
see from this simple example, we tend to increase the num-
ber of memory accesses as we reduce the number of ad-
dresses.

1.15 Addressing Modes

Instruction consists of the op-code that tells the process
what instruction to perform and, the operand or address
field which tells the processor where to find that data to be
operated upon. This address is known as the Effective Ad-
dress (EA).

To determine the EA, the processor uses one of a num-
ber of addressing modes that are defined by the operand
field of the instruction. Getting the EA from the addressing
mode may be quite simple (e.g., the operand is [the con-
tents of] a data register) or complex (e.g., the operand is in
memory, the address of which is contained in an address
register).An assembly language instruction may use one of
the following addressing modes to generate this address.

The addressing mode specifies a rule for interpreting or
modifying the address field of the instruction before the
operand is actually referenced. Variety of addressing modes
are supported on or both of the following reasons.

a. To give programming versatility to the user by pro-
viding such facilities as pointer to memory, counters
for loop control, indexing of data, especially when
manipulating data structures such as arrays, and for
program relocation. For example, in 8086 the Base-
indexed addressing mode lets you set BX and SI (reg-
isters) to the row and column offsets, respectively, of
any element in the table such that the elements can be
accessed easily.

b. To reduce the number of bits in the addressing field of
the instruction.

In some computers the addressing mode of the instruction is
specified with a distinct binary code, just like operation code.
Other computers use a single binary code that designates
both the operation and the addressing mode of the operand.

The following are the commonly used addressing modes.
A microprocessor’s instruction set use some or all of these
modes, depending on its design. In these examples, we have
used LDAC instruction; the LDAC instruction loads data
from memory into the microprocessor’s AC (accumulator)
register.

Direct Mode

In this mode, the instruction includes a memory address(s)
as operands; the CPU accesses that location in memory. For
example, the instruction LDAC 5 instruction reads the data
from memory location, 5 and stores the data in the CPU’s
accumulator. This mode is typically used to load operands
and values of variables into the CPU.

Indirect Mode

Indirect mode starts off very much like direct mode, but
then performs a second memory access. The address speci-
fied in the instruction is not the address of the operand; it is
the address of a memory location that contains the address
of the operand. For example, the LDAC 5 instruction in in-
direct mode, often denoted as LDAC @5 first retrieves the
contents of location 5, say 10. Then the data into the CPU.
This addressing mode is used by compilers and operating
systems with re-locatable code and data.

Register Direct & Register Indirect Modes

Register modes work the same as direct and indirect modes,
except they do not specify a memory address; instead, they
specify a register as operand. If register R contains the val-
ue 5, the LDAC R instruction copies value 5 from register
R into the CPU’s accumulator (AC). The register indirect
instruction, LDAC @R, performs just as the as the above
mode. Here, we assume that the Register contains memory
address. Thus, the instruction copies the value (address)
from the register R to AC. By doing now a memory access,
actual operand is read from the memory. Here the indirec-
tion comes from reading the address from the register in-
stead of the first memory access. The advantage of register
indirect mode instruction is that the address field of the in-
struction uses fewer bits to select a register than would have
been required to specify a memory location.

Autoincrement or Autodecrement Mode

This is similar to the register indirect mode except that the
register is incremented or decremented after (or before) its
value is used to access memory. This helps to access table
data in memory efficiently.

Immediate Mode

The immediate mode, the operand specified is not an ad-
dress; it is actual data to be used in the instruction. The in-
struction LDAC #5 moves the data 5 into the accumulator.
Normally, literals are used in this fashion.

Introductory Concepts of Digital Logic Design and Computer Architecture 1.101

Implicit Mode

Implicit mode does not explicitly specify an operand; the
instruction implicitly specifies the operand because it al-
ways applies to a specific Register. This isn’t usually used
for load instructions. It is more commonly found in such
instructions as CLAC, which clears the accumulator (sets
its value to zero). Similarly, some instructions such as ISZ
(increment and skip if zero), CMP (Complement) No op-
erand is loaded because this instruction always refers to the
accumulator. This mode is used in CPUs that use a stack to
store data. They do not have to specify an operand, since
it is implicit that the operand must come from the stack.
These instructions which runs on the stack are also called
as zero-address instructions since the operands are not
explicitly available in the instructions. Rather they are im-
plied to be on top of the stack.

Relative Mode

This mode, the operand supplied is an offset, not the actual
address. It is added to the contents of the CPU’s program
counter register to generate the required address. The pro-
gram counter contains Address of the current instruction
being executed, so the same relative instruction will pro-
duce different addresses at different locations in the pro-
gram. The address part of the instruction can be a signed
number. When this is added to PC, the result produces EA
whose position in memory is relative to the address of the
next instruction.

The relative mode instruction LDAC $5 is located at
memory location 10 (and assume PC value is 10), and it
takes up two memory locations, the next instruction is at
location 12. The instruction reads data from location (12
+ 5 =) 17 and stores it in the accumulator. This mode is
particularly useful for short jumps and re-locatable code.

To further clarify, let PC value is 825 and the address
part of the instruction is 24. The instruction at location
825 is read during the fetch phase and the PC is then in-
cremented to 826. The EA for the relative address mode is
826+40=850. This is 24 memory location forward from the
address of the next instruction.

Relative addressing is often used with branch instructions
when the branch address is in the area surrounding the in-
struction word itself. It results in shorter address field in the
instruction format since the relative address can be specified
with a smaller number of bits compared to the number of
bits required to designate the entire memory address.

Index Mode & Base Address Mode

Index mode works like relative mode, except the address
supplied by the instructions is added to the contents of an in-
dex register instead of program counter. 1f the index register
contains the value 10, the instruction LDAC (5) reads data
from location (5 + 10 =) 15 and stores it in the accumulator.

Base address mode works exactly the same as index
mode, except at the index register is replaced by a base ad-
dress register. In the index mode instructions supply the
base address and the index register supplies the offset to
that base address. Base address mode instructions supply
the offset to the base address stored in the base address reg-
ister. In practice, only one of the two modes is used, usually
Index mode.

1.15.1 A Glimpse of 8086 Addressing Modes

Programming Model for the 8086

Accumulators AH AL (AX), BH BL (BX), CH, CL(CX),
DH, DL (DX),

Index Registers BP, SP, SI, DI

Segment Registers CS, SS, DS, ES

Status and Control IP, D I T S Z A P C Flags

The Data Registers, Four registers, named data registers or
general purpose registers (GPR), can be used to hold work-
ing variables, constants and counters for use in arithmetic
and logical calculations. Although they are 16 bits in size
they can be used for operations on 8-bit BYTE or 16-bit
WORD data.

AX (accumulator) AX is called the accumulator register
because it is favoured by the CPU for arithmetic operations.
Other operations are also slightly more efficient when per-
formed using AX.

BX (base) In addition to the usual GPR functions, BX has
special addressing abilities. It can hold a memory address
that points to another variable. Three other registers with
this ability are SI, DI, and BP. When using the processor
in 32 bit mode, any of the 8 GPRs can be used to hold ad-
dresses.

CS (counter) This acts as a counter for repeating or looping
instructions. Such instructions automatically repeat and
decrement CX and quit when it equals 0.

DX (data) This has a special role in multiply and divide
operations. E.g. in multiply it holds the high 16 bits of the
product.

The Segment Registers The CPU contains four segment
registers, used as base locations for program instructions,
data, and stack. In fact, all references to memory on the PC
involve a segment register used as a base location.

CS (code segment) Base location of all executable instruc-
tions (code) in a program.

DS (data segment) Default base location for variables.

SS (stack segment) Contains the base location of the stack.

ES (extra segment) An additional base location for mem-
ory variables.

1.102 Computer Science & Information Technology for GATE

The Index Registers Index registers contain the offsets of
variables. The term offset refers to the distance of a variable,
label, or instruction from its base segment. Index registers
speed up the processing of strings, arrays, and other data
structures containing multiple elements.

SI (source index) Takes its name from the string move-
ment instructions in which the source string is pointed to
by the SI register. It usually contains an offset value from
the DS register, but it can address any variable.

DI (destination index) This acts as the destination for
string movement instructions. It usually contains an offset
value form the ES register, but it can address any variable.

BP (base pointer) Contains an asumed offset from the SS
register as does the stack pointer. BP is often used by a sub-
routine to locate variables that were passed on the stack by
a calling program.

Special Registers The IP and SP registers are grouped to-
gether here, since they do not fit into any of the previous
categories.

IP (instruction pointer) IP always contains the offset of
the next instruction to be executed. CS and IP combine to
form the complete address of the next instruction to be ex-
ecuted.

SP (stack pointer) SP contains the offset, or distance from
the beginning of the stack segment to the top of stack. SS
and SP combine to form the complete top-of-stack address.

Flags Registers The Flags register is a special 16-bit register
with individual bit positions assigned to show the status of
the CPU or the results of arithmetic operations. Each rel-
evant bit position is given a name; other positions are un-
defined:

Bit position

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x x x x O D I T S Z x A x P x C

 0 = Overflow S = Sign

 D = Direction Z = Zero

 I = Interrupt A = Auxiliary Carry

 T = Trap P = Parity

 x = Undefined C = Carry

The 8086 supports a number of addressing modes, shown
by the following addressing mode examples. In the table,
a displacement is either a number or the offset of a vari-
able. The EA of an operand refers to the offset (distance) of
the data from the beginning of a segment. BX and BP are
base registers, and SI and DI are index registers. In many
instructions the operand can only be specified by certain
addressing modes.

As discussed earlier the use of a register operand, im-
plies the register AM. In 8086, the
Register Operand A register operand may be any 8-bit or

16-bit register. In general, this AM is the most efficient be-
cause registers are part of the CPU and no memory access
is required. Some examples using the MOV instruction are:

 mov ax,bx

 mov cl,al

 mov si,ax

Immediate Operand An immediate operand is a constant
expression, such as a number, a character, or an arithmetic
expression. The assembler must be able to determine the
value of an immediate operand at assembly time. Its value
is inserted directly into the machine instruction.
Direct Operand A direct operand refers to the contents
of memory at the offset of a variable. The assembler keeps
track of every label, making it possible to calculate the ef-
fective address of any direct operand. In the following ex-
ample, the contents of memory location count are moved
into AL:

 count db 20

 .
 .

 mov al,count

OFFSET Operator When it is necessary to move the offset
of a label into a register or variable, the OFFSET operator
does the trick. Since the assembler knows the offset of every
label as the program is being assembled, it simply substi-
tutes the offset value into the instruction. Assuming that
the offset of the variable aWord in the following example
is 0200h; the MOV instruction would move 200h directly
into BX:

 aWord dw 1234

 .
 .

 mov bx,offset aWord

 ; the above assembles as: mov BX,0200

Indirect Operand When the offset of a variable is placed
in a base or index register, the register becomes a pointer
to the label. For variable containing a single element this
is of little benefit but for a list of elements a pointer may be
incremented – within a loop, say – to point to each element.

n Example If we create a string in memory at location
0200h and set BX to the base offset of the string, we can ac-
cess any element in the string by adding its index to BX. The
letter ‘F’ is at index 5 in the following example:

 ;indices are: 0123456

 aString db “ABCDEFG”

 .
 .

 mov bx,offset aString ; BX = 200

 add bx,5 ; BX = 205

 mov dl,[bx] ; DL = ‘F’

Introductory Concepts of Digital Logic Design and Computer Architecture 1.103

Segment Defaults If BX, SI, or DI is used, the EA is by de-
fault an offset from the DS (data segment) register. BP, on
the other hand, is an offset for the SS (stack segment) regis-
ter. Assuming that the stack segment and data segment are
at different locations, the following two statements would
have different effects even if the SI and BP registers con-
tained the same values:

mov dl,[si] ; look in the data segment

mov dl,[bp] ; look in the stack segment

If one really must use BP in the data segment, a segment
override operator forces the issue:

mov dl,[si] ; look in the data segment

mov dl,ds:[bp] ; ditto

Based and Indexed Operands based and indexed operands
are basically the same: A register is added to a displacement
to generate an EA. The register must be SI, DI, BX or BP.
A displacement is either a number or a label whose offset
is known at assembly time. The notation may take several
equivalent forms:
Register added to an Offset

 mov dx,array[bx]

 mov dx,[bx+array]

 mov dx,[array+bx]

Register added to a Constant

 mov ax,2[si]

 mov ax,[si+2]

 mov dx,-2[bp]

 mov dx,[bp-2]

n Example If we create an array of bytes in memory at lo-
cation 0200h and set BX to 5, BX can then be used to access
the 6th element of the array (note: array indices start at 0).

 ;indices: 0 1 2 3 4 5 6 7 8

 array db 00,02,04,08,16,32,64,128,256

 .

 .

 mov bx,5

 mov al,array[bx] ; AL = 32

Based-Indexed Operand An operand’s EA is formed by
combining a base register with anindex register. Suppose
BX = 202h and SI =6; then the following instuction would
calculate an EA of 208h:

mov al,[bx+si]

This technique is often useful for two-dimensional arrays,
where BX can address the row and SO the column:

 array db 10h,20h,30h,40h,50h

 db 60h,70h,80h,90h,A0h

 db B0h,C0h,D0h,E0h,F0h

 ..

 mov bx,offset array ; point to array

 add bx,5 ; select 2nd row

 mov si,2 ; select 3rd col

 mov al,[bx+si] ; get element

Two base registers or two index registers cannot be com-
bined, so the following would be incorrect:

 mov al,[bx+bp] ; error: 2 base regs

 mov dx,[si+di] ; error: 2 index regs

Base-Indexed with Displacement An operands effective
address is formed by combining a base register, an index
register, and a displacement.

Using the previous two-dimensional array example, we
no longer have to set BX to the beginning of the array – we
just set BX to the address of the second row relative to the
beginning of the table. This makes the code simpler:

 array db 10h,20h,30h,40h,50h

 db 60h,70h,80h,90h,A0h

 db B0h,C0h,D0h,E0h,F0h

 ..

 mov bx,5 ; select 2nd row

 mov si,2 ; select 3rd col

 mov al,array[bx+si] ; get element

A DEBUG example : The following example program shows
how a variety of addressing modes may be used when ac-
cessing elements of an array. The array is located at offset
150, and the sum will be stored at offset 153:

Statement Comment

A 150 Assemble data at offset 150

db 10,20,30,0 1st 3 bytes are array, last is sum

<ENTER> ends assembly

A 100 Assembly code at offset 100h

mov bx,150 BX points to the array

mov si,2 SI will be an index

mov al,[bx] Indirect operand

add al,[bx+1] Base-offset operand

add al,[bx+si] Base-indexed operand

mov [153],al Direct operand

int 20 End program

<ENTER> ends assembly

T Trace each instruction

.

.

D 150,153 Dump array and sum

1.104 Computer Science & Information Technology for GATE

PROBLEM QUESTIONS

1. An instruction is stored at location 300 with its ad-
dress field at location 301. The address field has the
value 400. A processor register R1 contains the num-
ber 200. Evaluate effective address if the addressing
mode of the instruction is

A. Direct B. Indirect

C. Immediate D. Relative

E. Register

F. Register with R1 as index register

 Answer:

A. Direct - 400

B. Indirect - value at memory location 400

C. Immediate - No concept effective address

D. Relative - 400 + 302

E. Register - No concept of effective address

F. Indexed - 200+400

2. The following information is available in a computers
memory. Explain what will be operand values if dif-
ferent addressing modes are used. Assume PC=200,
R1(processor register)=400, XR (index register)=100.

 Address Memory Content

 200 LDAC with AM bits

 201 500

 399 450

 400 700

 500 800

 600 900

 702 325

 800 300

 Answer:

Addressing Mode Effective Address Content of AC

Direct Address 500 800

Immediate Address 201 500

Indirect Address 800 300

Relative Address 702 325

Indexed Address 600 900

REGISTER --- 400

Register Indirect 400 700

Autoincrement 400 700

Autodecrement 399 450

3. A two-word instruction is stored in memory at an ad-
dress designated by symbol W. The address field of the
instruction (stored at W+1) is designated by the oper-
and Y. The operand used during the execution of the
instruction is stored at an address symbolised by Z.
An index register contains the value X. State how Z is
calculated from the other addresses if the addressing
mode of the instruction is

A. direct

B. indirect

C. relative

D. indexed

 Answer: (Assuming M(X) indicates value of memory
at X).

A. Z= M(Y) value at the address Y

B. Z= M(M(Y))

C. Z=M(PC+2+Y) (assuming instruction is occupy-
ing 2 words).

D. Z=M(X+Y)

1.16 Memory Organisation

Integrated RAM IC’s are used while building up the re-
quired size RAM. The capacity of the RAM depends on two
parameters; the number of words and the number of bits
per word. An increase in the number of words requires that
the number of bits in address will be increased. Every bit
added to the length of the address doubles the number of
words in memory.

Consider the possibility of constructing 256Kx8 RAM
using 64Kx8 RAM chips. Here, to make 256K words, we
have used 4 IC’s of 64K. Number of address lines for 64K
IC is 16 bits where as for the required system we may need
18bits out of which 16 bits (low order) for address lines of
each chip where as last two bits (most significant) for chip
select. We employ decoders to select chips.

A Memory-design problem that the computer architect
may encounter is the following: Given that N x w-bit RAM
IC denoted as MN,W are available, design an N’x w’-bit
RAM, where N¢> N and/or w¢ > w¢. A general approach is
to construct a pxq array of the MN,w ICs, where p= ÈN¢/N˘,
q = Èw¢/w˘ , and [x] denotes the smallest integer greater
than or equal to x. In this IC array each row stores N words
(except possibly the last row), while each column stores a
fixed set of w bits from every word (except possibly the last
column). For example, to construct a 1GB RAM using 64M
x 1-bit RAM ICs requires p = 16, q= 8, and a total of pq
=128 copies of the 64Mb RAM. When N¢ > N, additional
external address decoding circuitry is usually required.

Introductory Concepts of Digital Logic Design and Computer Architecture 1.105

Coincident Decoding
Main drawback of above organisations which are also called
as linear organisations is that they need large decoders.

Inside a RAM chip, the decoder with k inputs and 2k

outputs requires 2k AND gates with k inputs per gate if a
straightforward design approach is used. In addition if the
number of words is large, and all bits for one bit position in
the word contained in a single RAM bit slice, the number of
RAM cells sharing the read and write circuits is also large.
The electrical properties resulting from both of these situa-
tions cause the access and write cycle times of the RAM to
become long, which is undesirable.

Here the m-bit address of the word is divided into two
parts, X and Y, consisting of mx and my bits, respectively. The
cells are arranged in a rectangular array of Nx<= 2mx, rows
and Ny <= 2my columns, so the total number of cells is N =
Nx.Ny. A cell is selected by the coincidence of signals applied
to its X and Y address lines. The 2-D organisation requires
much less access circuitry than a 1-D organisation for the
same storage capacity. For example, if Nx = Ny = sqrt(N),
the number of address drivers needed is 2 sqrt(N), whereas
the 1-D RAM we may require N address drivers. In addition,
the 2-D organization is a good match for the inherently two-
dimensional layout structures allowed by VLS1 technology.

Total number of decoder gates, the number of inputs
per gate and the number of RAM cells per bit slice can all
be reduced by employing two decoders a coincident selec-
tion scheme. In one possible configuration, two k/2-input
decoders are used instead of one k-input decoder. One
decoder controls the row selection and the other selects
column selection scheme. If the RAM chip has m words
with 1 bit per word, the scheme selects the RAM cell at the
intersection of the Word Select row and the Bit Select col-
umn. Since the Word Select is no longer strictly selecting
words, its name is changed to Row Select. An output from
the added decoder that selects one or more bit slices is re-
ferred to as a Column Select.

Commercial DRAM chips uses this organisation very
commonly. Moreover, in order to reduce the no of pins
first row select address is sent on address lines and followed
by column select address in DRAM’s.

1.16.2 Isolated I/O & Memory Mapped I/O
Devices

In the isolated I/O CPU has distinct instructions for mem-
ory read/write and I/O read/write. The addresses what we

1.16.1 High Order Interleaving & Low Order Interleaving

If two 8 x 2 chips could be configured as illustrated in Fig.1.79 memory locations of first chip becomes 0 to 7 (0000 to
0111) and the lower chip as locations 8 to 15 (1000 to 1111). For the upper chip a1ways has A3 = 0 and the lower chip
has A3 =: 1. This difference is to select one of the two chips. When A3 = 0, the upper chip is enabled and the lower chip is
disabled. This configuration uses high-order interleaving. All memory locations within a chip are contiguous within sys-
tems memory. Consider the other configuration shown in Fig.1.79, which uses low-order interleaving. The upper chip is
enabled when A0 = 0, or by addresses XXXO, in this case words 0, 2, 4, 6, 8, l0, 12, and 14 belongs to this chip. The lower
chip is enabled when A0 = l, which is true for addresses 1, 3, 5, 7, 9, 11, 13, and 15. Both look the same the CPU, but low-
order interleaving can offer some speed advantage for pipelined memory access.

A2
A1

A0

8 2¥
A2

A1

A0

D1

D0

ROM

CE OE

D1

D0

8 2¥
A2

A1

A0

D1

D0

ROM

CE OE

A3

A3
A2

A1

8 2¥
A2

A1

A0

D1

D0

ROM

CE OE

D1

D0

8 2¥
A2

A1

A0

D1

D0

ROM

CE OE

A0

(a) Higher order interleaving (b) Lower order interleaving

Figure 1.79 “Memory Interleaving

1.106 Computer Science & Information Technology for GATE

use for accessing a device may be same as one of the address
in the memory however separate lines are used to indicate
it is I/O device address (IO/M). After loading the address
by enabling this line processor indicates that the address is
for external interface registers. (In 8085 processor address
lines are 16. However, I/O ports have 8-bit addresses only).

In the case of memory mapped devices; their interface
registers are memory mapped on to the address space of
memory. Thus the interface register is treated as being part
of the memory. However, assigned addresses can not be
used for memory words. Thus, reduces the memory ad-
dress range available. The CPU can manipulate I/O date
residing the interface registers with the same instructions
what it uses for normal memory words.

Problems

1. Design a 16x4 memory subsystem with high-order
interleaving using 8x2 memory chips for a computer
system with an 8-bit address bus.

 Answer:

 No of RAM chips needed = 16x4/8x2=4

 RAM chips organized as 2x2 array such that word
size becomes 4 bits and number of words becomes 16.

 Actual No of address lines required = log2(16)=4

 \ Out of the eight address lines only 4 are used and
as higher order interleaving is needed, least signifi-
cant 3 bits are common lines for each chip where as
4’th bit is used for chip select.

2. Design a 32x8 memory subsystem with high-order
interleaving using 16x2 memory chips for a computer
system with an 8-bit address bus.

 Answer:

 No of RAM chips needed = 32x8/16x2 = 8

 RAM chips organized as 2x4 array such that word size
becomes 8 bits and number of words becomes 32.

 Actual no. of address lines required = log2(32) = 5

 \ Out of the eight address lines only 5 are used and
as higher order interleaving is needed, least signifi-
cant 4 bits are common lines for each chip where as
5’th bit is used for chip select.

3. Design a 16x4 memory subsystem with low-order
interleaving using 8x2 memory chips for a computer
system with an 8-bit address bus.

 Answer:

 No of RAM chips needed = 16x4/8x2=4

 RAM chips organized as 2x2 array such that word
size becomes 4 bits and number of words becomes 16.

 Actual no. of address lines required = log2(16)=4

 \ Out of the eight address lines only 4 are used and
as low order interleaving is needed, least significant 1

bit is used for chip select and next 3 bits are used as
common bits.

4. Design a 32x8 memory subsystem with low-order in-
terleaving using 16x2 memory chips for a computer
system with an 8-bit address bus.

 Answer:

 No of RAM chips needed = 32x8/16x2=8

 RAM chips organized as 2x4 array such that word size
becomes 5 bits and no. of words becomes 32.

 Actual no. of address lines required = log2(32)=5

 \ Out of the eight address lines only 5 are used and
as low order interleaving is needed, least significant 1
bit is used for chip select and next 4 bits are used as
common bits.

5. Design a 32x8 memory subsystem with split-order in-
terleaving (one high order bit and one low order bit
are interleaved) using 8x4 memory chips for a com-
puter system with an 8-bit address bus.

 Answer:

 No. of RAM chips needed = 32x8/8x4=8

 RAM chips organized as 2x4 array such that word size
becomes 5 bits and no. of words becomes 32.

 Actual no. of address lines required = log2(32)=5

 \ Out of the eight address lines only 5 are used and
as split-order interleaving is needed, least significant 1
bit is used for selecting first 2x2 chips versus next 2x2
chips, next 3 bits are common for all chips, the next
bit (high order bit) is used to select either chips in top
row or bottom row.

6. How many 128x8 RAM chips are needed to provide
a memory capacity of 2048 bytes. How many lines of
the address bus must be used to access 2048 bytes of
memory? How many of these lines will be common to
all chips. How many lines must be decoded for chip
select? Specify the size of the decoders.

 Answer:

 No. of address lines are=log2(2048) = 11 bits

 No. of chips needed are =2048/128=16

 No. of lines common for all chips = 7

 No. of lines required for chip select = 11–7=4

7. A computer uses RAM chips of 1024x1 capacity. How
many chips are needed, and how should their address
lines be connected to provide a memory capacity of
1024 bytes? Similarly, find out how many chips are
needed to provide a memory of capacity of 16K bytes?

 Answer:

 To make 1024 bytes:

 No. of chips needed are = 8 (they are connected hori-
zontally such that all the address lines should be com-
mon to all chips)

Introductory Concepts of Digital Logic Design and Computer Architecture 1.107

 To make 16K bytes:

 We need = 16x8=128 chips

 Address lines are = 14

 Out of which common lines are=10

 Chip select lines are = 4

8. A memory system is made up of 4096 bytes of RAM
(with 1Kx8 byte RAM IC’s) and 4096 bytes of ROM
with two 2048Kx8 byte ROM IC’s. Draw the memory
map table.

 Answer:

IC Name Address range in Hex system

RAM Chip 1 0000-03FF

RAM Chip 2 0400-07FF

RAM Chip 3 0800-0BFF

RAM Chip 4 0C00-0FFF

ROM Chip 1 1000-17FF

RAM Chip 4 1800-1FFF

9. A computer employs RAM chips of 512x8 and ROM
chips of 2048x8. The computer system needs 2K bytes
of RAM, 4K bytes of ROM, and four interface units,
each with four registers. A memory mapped I/O con-
figuration is used. The two highest order bits of the
address bus are assigned 00 for RAM, 01 & 10 for
ROM and 11 for interface registers. How many RAM,
and ROM chips are needed?. Give the address range
in Hex for RAM, ROM and interface.

 Answer:

 Total Memory size required =2K+4K+registers = ~6K

 No. of address lines needed are = 13 bits

Chip Binary Address Range Hex Address

RAM Chip 1 0 0000 0000 0000-0 0001 1111
1111

0000-01FF

RAM Chip 2 0 0010 0000 0000-0 0011 1111
1111

0200-03FF

RAM Chip 3 0 0100 0000 0000-0 0101 1111
1111

0400-05FF

RAM Chip 4 0 0110 0000 0000-0 0111 1111
1111

0600-07FF

ROM Chip 1 0 1000 0000 0000-0 1111 1111
1111

0800-0FFF

ROM Chip 2 1 0000 0000 0000-1 0111 1111
1111

1000-17FF

Interface
registers

Can have any address starts
with 11

10. An 8-bit computer has a 16-bit address bus. The first
15 lines of the address are used to select a bank of 32K
bytes of memory. The high order bit of the address is

used to select a register which receives the contents of
the data bus. Explain how this configuration can be
used to extend the memory capacity of the system to
eight banks of 32K bytes each, for a total of 256K bytes
of memory.

 Answer:

 Memory banks are used to increase memory capacity
of the computer. Selection ports and bank switching
registers are used to select the appropriate bank. This
is combined SW and HW solution used in early micro
computers (Please refer Dogulus V Hall).

11. A computer system is having 512 bytes of RAM (four
128 × 8bit) and 512 byte ROM. Find how many ad-
dress lines are needed. Also, prepare Memory address
map.

 Answer:

 As total memory (RAM + ROM) is 1024 bytes, we
need 10 address lines.

IC Hexadecimal Address

RAM Chip 1 0000-007F

RAM Chip 2 0080-00FF

RAM Chip 3 0100-017F

RAM Chip 4 0180-01FF

ROM chip 0200-03FF

12. The following memories are specified by the num-
ber of word times the number of bits per word. How
many address lines and input-output data lines are
needed in each case?

(a) 8kx32 (b) 256Kx64

(c) 32Mx32 (d) 4Gx8

 Answer:

(a) Address Lines = 13 Data Lines = 32

(b) Address Lines = 18 Data Lines = 64

(c) Address Lines = 15 Data Lines = 32

(d) Address Lines = 32 Data Lines = 8

13. How many 32Kx8 RAM chips are needed to provide
a memory capacity of 1M bytes? How many address
lines are needed?

 Answer: 32 Address lines are=20

14. How many lines must be decoded for the chip select
inputs for the problem 13?. Specify the size of the de-
coder.

 Answer: As number of chips of size 32Kx8 needed are
32 for making 1M, we need 5 bits for chip select. Thus,
we need 5x32 decoder for chip select.

15. Using the 64Kx8RAM construct the 256Kx32 RAM.

 Answer: No of chips required of size 32Kx8 are =
256Kx32 /(64Kx8)=4x4=16

1.108 Computer Science & Information Technology for GATE

1111 1111 00b

3FCh

0A7h

000h

1020

0 1

M1 (01)

1021

M2 (10)

1022

M3 (11)

1023

0000 0000 00b
0000 0000 11b

003h

3FFh

1111 1111 11b

2 3

 Note on Virtual Memory: Readers are advised to refer to the Operating Systems module for page replacement
algorithms, page table, etc.

 Chip select bits = log2(16) = 4

 Decoder size needed = 4x16

16. What will be the size of the ROM which maintains
truth table of square of 3 bit numbers?

 Answer: 8x4 (square of largest 3 bits number 111 oc-
cupies 4 bits only. Thus 4 bits are sufficient to store
square of any 3-bit number is ROM such that it can
read instead of calculating).

17. What will be the size of the ROM which maintains
the truth table for product of two 8 bit numbers?

 Answer: Product of two 8 bit numbers requires at
most 16 bits. Total number of possibilities are 256x256
and each product requires 16 bits. Thus, 64Kx16 bits.

18. A 32Kx8 RAM chip uses coincident decoding by split-
ting the internal decoder into row and column select.
Assuming that the RAM cell array is square (almost),
what is the size of each decoder, and how many AND
gates are needed for decoding and address?

 Answer: Actual address lines needed = 15bits

 If we organize the RAM as 256x128 bit slice proces-
sors we may need 8 bits for row selection and 7 bits
for column selection.

19. A DRAM has 12 address pins and its row address is
1 bit longer than its column address. How many ad-
dresses total does the DRAM have?

 Answer: 12+11=23

20. 256Mb DRAM uses 4-bit data and has equal length
row and column addresses. How many address pins
does the DRAM have?

 Answer: 12 bits each.

21. A 1K word RAM is made up of memory modules
having 256 words. Draw and determine the memory
bank/module address (lower order interleaving(LOI))
and the address of the word 301H in the bank/mod-
ule.

 Answer:

Memory capacity = 1Kwords = 210 = 10 bits for main
memory address

Module/bank size(capacity) = 256 = 28 = 8 bits for
word in bank/module

Total number of bank/module = memory capacity/
module(bank) size = 210 /28 = 4 module/bank

There are 4 memory banks/modules, 22, thus 2 bit for
the banks/modules address

 Memory address = 301H = 1010 0111 00

 Memory bank/module address = 00

 Address of the word in the bank/module = 1010 0110
= A7h

1.17 Cache Memory

1. Cache addresses Von Neumann bottleneck and gives
fast, single access to its memory.

2. In Harvard architecture, separate memory is available
for instructions and data. Where as in Von Neumann
architecture, both instructions and data is stored in
the only one available memory unit.

1/0

ALU

Instructions
memory

Data
memory

Control
unit

Introductory Concepts of Digital Logic Design and Computer Architecture 1.109

3. The speed difference (latency) between memory and
CPU is handled by the cache.

4. Memory, virtual memory transfers are taken care by
OS. This is transparent to application programmers
but visible for system programmers.

5. Cache, memory transfers are transparent to both ap-
plication and system programmers.

6. Cache and memory are directly accessible by CPU but
not paging disk.

7. Cache coherence or cache in-consistency is seen in
Uni-processor’s also.

8. Write back or copy back copies cache content to RAM
only the selected cache word for replacement is dirty,
i.e., modified one.

9. In write through caching, for each write operation on
cache updating will be done in RAM.

10. For example for the following code for (i=1;i<100;i++)
x=x+i+1. When we employ write through caching
then 100 times memory is accessed for updating x;
where as in the case of write back only one memory
access is made while updating information about x.

11. When write miss occurs two approaches are possible :
(1) write allocate (2) write–no allocate. In the case of
write allocate first a location in cache is allocated then
the required word is read from memory then writing
is done in the cache memory. Where as in the write-
no allocate, writing will be done directly into memo-
ry. Write back employs write allocate policy where as
write through uses write-no allocate policy.

12. Write buffer is employed to take care of write misses
in write through caching. A write buffer stores the
data while waiting to be written into memory. After
writing into cache, and buffer the processor continues
execution. When the data is written into memory it
is removed from buffer. If the buffer is full processor
must stall. If write occurs in bursts then stalls may
increase. To reduce stalls, buffers with more depth
is employed. DEC3100 uses buffer with four words
deep.

13. A victim cache is a cache used to hold blocks evict-
ed from a CPU cache upon replacement. The victim
cache lies between the main cache and its refill path,
and only holds blocks that were evicted from the main
cache. The victim cache is usually fully associative,
and is intended to reduce the number of conflict miss-
es. Many commonly used programs do not require an
associative mapping for all the accesses. In fact, only a
small fraction of the memory accesses of the program
require high associativity. The victim cache exploits

this property by providing high associativity to only
these accesses.

14. Trace cache: One of the more extreme examples of
cache specialisation is the trace cache found in the
Intel Pentium 4 microprocessors. A trace cache is a
mechanism for increasing the instruction fetch band-
width and decreasing power consumption (in the case
of the Pentium 4) by storing traces of instructions that
have already been fetched and decoded.

15. Exclusive versus inclusive: Multi-level caches intro-
duce new design decisions. For instance, in some pro-
cessors, all data in the L1 cache must also be some-
where in the L2 cache. These caches are called strictly
inclusive. Other processors (like the AMD Athlon)
have exclusive caches — data is guaranteed to be in at
most one of the L1 and L2 caches, never in both. Still
other processors (like the Intel Pentium II, III, and 4),
do not require that data in the L1 cache also reside in
the L2 cache, although it may often do so.

16. Prominently two type of caching is employed with re-
spect to cache, memory, processor and their physical
connectivity with bus. They are look aside and look

though. In the case of look aside all the things are con-
nected to same I/O bus. Where as in the case of look
through caching, cache and memory are connected to
special (local) bus whose width can be wider than I/O
bus width.

17. Split cache are I-cache and D-cache (Instruction
cache, Data cache)

18. If main memory size increases even more cache levels
may be desirable.

19. All PowerPC models have an LRU block (line) re-
placement policy with either 32 or 64 bytes line sizes.
Write back policy on cache miss is employed.

20. Empirical studies indicated that by doubling cache
size hit ratio is raised by 30%.

21. Increasing the associativity of a cache, hit rate is in-
creased while conflict misses are reduced.

22. Assuming cache size fixed and if we increase the
length of the line then the no of sets or lines reduces
and thus conflict misses increases. Associativity re-
duces.

23. Caches are also dividable into two types based on
what address they are caching. They are (1) physical
address caches and (2) virtual address caches.

24. Aliasing: Different logically addressed data have the
same index/tag in the cache (Example multiple pro-
cesses with the same range of virtual address spaces).

1.110 Computer Science & Information Technology for GATE

25. Physical address caches : No aliasing is allowed so
that the address is uniquely transferred; no need of
cache coherence; fewer cache bugs in OS kernels. Bus
watching may be needed for proper functioning with-
out frequent cache flushes.

26. Virtual address cache is used then cache flushing is
required for each context switch, before I/O writes,
after I/O reads.

27. Caches can be divided into 4 types, based on whether
the index or tag correspond to physical or virtual ad-
dresses:

Physically Indexed, Physically Tagged (PIPT) cach-
es use the physical address for both the index and the
tag. While this is simple and avoids problems with
aliasing, it is also slow, as the physical address must
be looked up (which could involve a TLB miss and
access to main memory) before that address can be
looked up in the cache.

Virtually Indexed, Virtually Tagged (VIVT) caches
use the virtual address for both the index and the tag.
This caching scheme can result in much faster look-
ups, since the MMU doesn’t need to be consulted first
to determine the physical address for a given virtual
address. However, VIVT suffers from aliasing prob-
lems, where several different virtual addresses may
refer to the same physical address. The result is that
such addresses would be cached separately despite
referring to the same memory, causing coherency
problems. Another problem is homonyms, where
the same virtual address maps to several different
physical addresses. It is not possible to distinguish
these mappings by only looking at the virtual index,
though potential solutions include: flushing the cache
after a context switch, forcing address spaces to be
non-overlapping, tagging the virtual address with an
address space ID (ASID), or using physical tags. Ad-
ditionally, there is a problem that virtual-to-physical
mappings can change, which would require flushing
cache lines, as the VAs would no longer be valid.

Virtually Indexed, Physically Tagged (VIPT) caches
use the virtual address for the index and the physical
address in the tag. The advantage over PIPT is lower
latency, as the cache line can be looked up in paral-
lel with the TLB translation, however the tag can’t
be compared until the physical address is available.
The advantage over VIVT is that since the tag has the
physical address, the cache can detect homonyms.
VIPT requires more tag bits, as the index bits no lon-
ger represent the same address.

Physically Indexed, Virtually Tagged (PIVT) caches
are only theoretical as they would basically be useless.

28. Aliasing with kernel and user data is major problem
with virtual address caches.

29. Flushing will not overcome the aliasing problem with
shared memory, with memory mapped files and co-
py-on-write Unix systems. Every system call forces a
cache flush.

30. VAC may lead to poor performance unlike most pro-
cesses are compute bound.

31. With frequently flushed cache debugging becomes
difficult.

32. There exists optimum block size for cache.

33. As cache size increases (very large) many words are
fetched which may never used.

34. Hit ratio approaches zero if block size become cache
size.

35. Hit ratio may decrease as the no of sets increases for a
fixed cache capacity.

36. Sector mapping cache: Here both RAM, cache is par-
titioned into fixed size sectors. Then a fully associative
search is performed. That is each sector can be placed
in any of the available sector frames.

37. Cache directory is a old terminology which indicates
address, data pairs.

38. Cache directory is implemented as an implicit lookup
or explicit lookup table.

39. Implicit lookup indicates simultaneous searching of
address tags & fetching of corresponding data.

40. Explicit lookup indicates first address tag is searched
and then data is fetched.

41. When a page fault occurs context switching may take
place as context switching overhead is much smaller
than page replacement overhead.

42. Cache miss service time is much less than page fault
service time.

43. Cache misses are frequent than page faults.

44. A cache read miss from an instruction cache gener-
ally causes the most delay, because the processor, or at
least the thread of execution, has to wait (stall) until
the instruction is fetched from main memory.

45. A cache read miss from a data cache usually causes
less delay, because instructions not dependent on the
cache read can be issued and continue execution until
the data is returned from main memory, and the de-
pendent instructions can resume execution.

46. A cache write miss to a data cache generally causes
the least delay, because the write can be queued and
there are few limitations on the execution of subse-
quent instructions. The processor can continue until
the queue is full.

Introductory Concepts of Digital Logic Design and Computer Architecture 1.111

48. Process do not context switch on a cache miss.

49. Context switching will invariably make a process to
make initial cache misses in an attempt to restore its
“locality set”.

50. A unified cache is called as homogeneous.

51. A cache is said to be multiported if two or more re-
quests can be made to cache concurrently (a priority
algorithm is mandatory).

52. A cache is always pipelined in mainframes. For exam-
ple the following stages are possible in the pipelined
cache: Priority selection, TLB access, Cache access,
replacement status update.

53. If a cache supports multiple contexts then context
switch may increase “cold-start” miss ratio.

54. “Warm-Start” – means steady state miss ratio.

55. To improve cache performance which supports mul-
tiple contexts use main memory to save a process con-
text when context switching takes place and load en
masse when selected next.

56. Cache coherence may occur even in Uni-processor
also when I/O devices request for the memory and
the word in cache and memory are not same.

57. Bit selection algorithm is used in set associative cach-
ing.

58. No of sets and blocks per set are inversely propor-
tional.

59. For a given cache size the miss ratio improves with
increase in block size and increase in block size cap-
tures spatial locality; but it may deteriorate temporal
locality.

47. Three Cs

Compulsory misses are those misses caused by the first reference to a location in memory. Cache size and associativ-
ity make no difference to the number of compulsory misses. Pre-fetching can help here, as can larger cache block
sizes (which are a form of prefetching). Compulsory misses are sometimes referred to as cold misses.

Capacity misses are those misses that occur regardless of associativity or block size, solely due to the finite size of the
cache. The curve of capacity miss rate versus cache size gives some measure of the temporal locality of a particular
reference stream. Note that there is no useful notion of a cache being “full” or “empty” or “near capacity”: CPU
caches almost always have nearly every line filled with a copy of some line in main memory, and nearly every alloca-
tion of a new line requires the eviction of an old line.

Conflict misses are those misses that could have been avoided, had the cache not evicted an entry earlier. Conflict
misses can be further broken down into mapping misses, that are unavoidable given a particular amount of associa-
tivity, and replacement misses, which are due to the particular victim choice of the replacement policy.

Compulsory Misses Conflict Misses Capacity Misses

Double the associativity
(capacity and line size constant)
(halves # of sets)

No effect

If the data wasn’t ever in the
cache, increasing associa-
tivity with the constraints
won’t change that.

Decrease

Typically higher associativ-
ity reduces conflict misses be-
cause there are more places to
put the same element.

No effect

Capacity was given as a con-
stant.

Halving the line size
(associativity and # sets con-
stant)
(halves capacity)

Increase

Shorter lines mean less
“prefetching” for shorter
lines. It reduces the cache’s
ability to exploit spatial lo-
cality.

No effect

Same # of sets and associativ-
ity.

Increase

Capacity has been cut in half

Doubling the number of sets
(capacity and line size constant)
(halves associativity)

No effect

If the data wasn’t ever in the
cache, increasing the num-
ber of sets with the con-
straints won’t change that.

Increase

Less associativity

No effect

Capacity is still constant

1.112 Computer Science & Information Technology for GATE

60. For a given block size, a cache increase improves miss
ratio because of temporal locality.

61. Accessing larger caches will be increasing cache word
access times. Thus though hit rates increases with
increase in cache size but the real benefit of average
access time will not be so substantial. Rather if we in-
crease cache size radically we may find worse average
access times.

62. Several copies of same physical block may exists in
cache with different names. It is known as synonym
problem and leads to coherence problem.

63. Translation look aside buffer (TLB) used to speed up
virtual-to-physical address translation for both ex-
ecutable instructions and data.

64. Inverse Translation Buffer (ITB) is accessed on a
physical address and indicates all the virtual addresses
associated with that physical address in the cache.

65. It is observed that significant fraction of misses is due
to task switching for execution of supervisory tasks.
To solve this employ use user cache and supervisory
cache. Supervisory cache has high-miss ratio because
of large working set.

66. Snoopy cache is inconsistent state of the cache.

67. Disk Cache

 A disk cache is a portion of system memory used to
cache reads and writes to the hard disk. In some ways
this is the most important type of cache on the PC,
because the greatest differential in speed between the
layers mentioned here is between the system RAM
and the hard disk. While the system RAM is slightly
slower than the level 1 or level 2 cache, the hard disk
is much slower than the system RAM.

 Unlike the level 1 and level 2 cache memory, which
are entirely devoted to caching, system RAM is used
partially for caching but of course for other purposes
as well. Disk caches are usually implemented using
software (like DOS’s SmartDrive).

68. Peripheral Cache

 Much like the hard disk, other devices can be cached
using the system RAM as well. CD-ROMs are the
most common device cached other than hard disks,
particularly due to their very slow initial access
time, measured in the tens to hundreds of millisec-
onds (which is an eternity to a computer). In fact, in
some cases CD-ROM drives are cached to the hard
disk, since the hard disk, despite its slow speed, is still
much faster than a CD-ROM drive is.

69. A cache controller sends a memory request both to
cache and main memory. If satisfied (cache hit) in
cache itself data is transferred to CPU while aborting
main memory request.

70. Cache misses are (1). Compulsory miss (also known
as cold miss) occurs the first time a location is used.
(2). Capacity miss is caused by a too large working set.
(3). Conflict miss happens when two locations map to
the same location in the cache.

71. If h1, h2, h3 are cache hit ratios in a 3 level cache
schema and TL1, TL2, TL3 are their access times then
the average memory access time is given as assuming
Tmain is the main memory access time and hit rates
till that level.

 Ta v = h 1 * T L 1 + (h 2 – h 1) * (T L 1 + T L 2) + (h 3 – h 2 –
h1)*(TL1+TL2+TL3)+(1–h1–h2–h3)*(Tmain+ TL1 + TL2 +
TL3)

72. The best case memory access is same as cache access
time where as worst case is same as main memory ac-
cess time in a memory system with caching.

73. The set associative cache gives more hit rates than the
direct mapped.

74. The set associative cache is slower than direct mapped
but the higher hit rates will compensate the same.

75. Analysing a piece of code for conflict misses is easy in
direct mapped cache than set associative. This analy-
sis is very much needed in embedded program de-
sign.

76. CPU stall

 The time taken to fetch one cache line from memory
(read miss or read latency) makes CPU to run out of
things to do while waiting for the cache line. This
state is called as a CPU stall.

 As CPUs become faster, stalls due to cache misses
hampers execution speed. Various techniques have
been employed to keep the CPU busy during this
time.

 Out-of-order CPUs (Pentium Pro and later Intel
designs, for example) attempt to execute independent
instructions after the instruction that is waiting for
the cache miss data.

 Another technology, used by many processors, is
simultaneous multithreading (SMT), or in Intel’s ter-
minology, hyper-threading (HT), which allows an al-
ternate thread to use the CPU core while a first thread
waits for data to come from main memory.

77. A uni-processor system uses split cache (instruction,
data) with hit ratio’s hi and hd. Any cache access time
takes c cycles, block transfer time is b cycles. Among
all memory references fi is the percentage of instruc-
tions, among blocks replaced fdir is percentage of
dirty block. Assuming write back policy the effec-
tive memory access time = fi(hic+(1-hi)(b+c)) + (1-fi)
((hd)c+ (1-hd)((b+c)(1-fdir)+(2b+c)fdir))

Introductory Concepts of Digital Logic Design and Computer Architecture 1.113

78. Loop tiling breaks up a loop into a set of nested loops
with each inner loop performing the operations on
a subset of data. See the following versions of a loop
fragments.

 Fragement1 :

 for(I=0;I<n;I++)

 for(j=0;j<n;j++) c[I]=a[I][j]*b[I]

 Fragment2 :

 for(I=0;I<n;I+=2)

 for(j=0;j<n;j+=2)

 for(II=I;II<min(I+2,n);II++)

 for(jj=j;jj<min(j+2,N);jj++) c[II]=a[II][jj]*b[II]

 Loop tiling may change the order of access of elements
of the array. This will effect the cache performance.

79. Consider the following code fragment. The arrays a, b
base addresses are 1024 and 4099. Let they are mapped
to same block. Let every access brings 4 words. Thus
there is a danger of repeated cache misses in a alter-
native manner. To reduce this padding can be used.

 for(I=0;I<n;I++)

 for(j=0;j<n;j++)a{j][I]=b[j][I]*c

80. Given the following memory characteristics, draw
the memory configuration for a direct mapped cache,
2-way set-associative cache, 4-way set-associative,
and 8-way set-associative.

 Cache memory: 256 bytes

 Main memory: 1024 bytes

 Cache line size/block size: 4 bytes

 Include in the description of each memory system the
fields of which the main memory addresses are com-
posed.

 Specifically indicate the cache blocks to which the fol-
lowing main memory addresses are mapped:

 Main memory address 0

 Main memory address 100

 Main memory address 256

 Answer:

 Direct-mapped:

 Main memory address 0 fi 0/4 = 0 = main memory
block number

 0 % 64 = 0 = cache block number

 Main memory address 100 fi 100/4 = 25 = main
memory block number

 25 % 64 = 25 = cache block number

 Main memory address 256 = 256/4 = 64 = main mem-
ory block number

 64 % 64 = 0 = cache block number

 Main memory address (10 bits)

Tag Index Offset

2 6 2

 2-way set-associative:

 Main memory address 0 fi 0/4 = 0 = main memory
block number

 0 % 32 = 0 = cache set number; cache block numbers
0, 1

 Main memory address 100 fi 100/4 = 25 = main
memory block number

 25 % 32 = 25 = cache set number; cache block num-
bers 50, 51

 Main memory address 256 = 256/4 = 64 = main mem-
ory block number

 64 % 32 = 0 = cache set number; cache block numbers
0, 1

 Main memory address (10 bits)

Tag Index Offset

3 5 2

 4-way set-associative:

 Main memory address 0 fi 0/4 = 0 = main memory
block number

 0 % 16 = 0 = cache set number; cache block numbers
0,1,2,3

 Main memory address 100 fi 100/4 = 25 = main
memory block number

 25 % 16 = 9 = cache set number; cache block numbers
36, 37, 38, 39

 Main memory address 256 = 256/4 = 64 = main mem-
ory block number

 64 % 16 = 0 = cache set number; cache block numbers
0,1,2,3

 Main memory address (10 bits)

Tag Index Offset

4 4 2

 8-way set-associative:

 Main memory address 0 fi 0/4 = 0 = main memory
block number

 0 % 8 = 0 = cache set number; cache block numbers
0,1,2,3,4,5,6,7

 Main memory address 100 fi 100/4 = 25 = main
memory block number

 25 % 8 = 1 = cache set number; cache block numbers
8,9,10,11,12,13,14,15

 Main memory address 256 = 256/4 = 64 = main mem-
ory block number

 64 % 8 = 0 = cache set number; cache block numbers
0,1,2,3,4,5,6,7

1.114 Computer Science & Information Technology for GATE

 Main memory address (10 bits)

Tag Index Offset

5 3 2

81. When a CPU writes to the cache, both the item in
the cache and the corresponding item in the memory
must be updated. If data is not in the cache, it must be
fetched from memory and loaded in the cache. If tl is
the time taken to reload the cache on a miss, then the
effective average access time of the memory system is
given by:

 tave = htc + (1 – h)tm + (1 – h)tl.

E X E R C I S E

1. Only read access is seen in

A. Instruction cache B. Data cache

C. TLB D. L1 cache

2. First hardware cache that is used in a computer sys-
tem is

A. Instruction cache B. Data cache

C. TLB D. L1 cache

3. Execution time for R1<– R2 + R3, R4<– R1 +
R3, R5<– R6 + R3 is ___cycles. (Assume three
stages with last stage being execution and write back).

 Answer: 6 cycles. If we observe both second third
instructions have read after write dependency on first
instruction. Thus, they can be executed only after first
instruction completing its third stage. Thus, second
instruction has to wait (stall) for one cycle. That is,
first completes by 3 cycles, while second instruction
completes in 5th cycle, while third instruction
completes in 6th cycle.

4. A computer system has a cache with access time 10ns,
a hit ratio of 80% and average memory access time
is 24ns. Then what is the access time for physical
memory?

 Answer: 24=0.8*10 +0.2(x+10)

 Where x is memory access time

 X = 70ns

5. A computer has a cache and a disk used for virtual
memory. If a referenced word is in the cache, 5ns are
required to access it. If it is in main memory, but not
in cache, 60ns are needed to load it into cache and the
reference is made in the cache. If the word is not in
main memory, 15 ms are needed to fetch the word
from disk, followed by 60 ns to copy it to the cache,
and then the reference is made in the cache. The
cache hit ratio is 93 % and the main memory hit ratio

is 0.65. What is the average time required to access a
referenced word on this system?

 Answer: 0.93 * 5 ns + (0.07 * 0.65 * (60ns + 5ns)) +
(0.07 * 0.35 * (15ms + 60 ns + 5 ns))

 = 4.65 ns + 2.9575 ns + 1.96ns = 9.5675 ns

6. The one which takes more latency

A. Cache read miss in instruction cache

B. Cache read miss in data cache

C. Cache write miss in a data cache

7. We have two caches A and B. In which tag field length
is more? Assume physical address is 32 bits.

 Cache A: 8KB 4 way set associative with 64 bytes
cache blocks.

 Cache B: 256KB 8 way set associative with 128 bytes
cache blocks.

 Answer: In cache A, there are 8KB/64 = 128 cache
blocks. As it’s 4-way set associative, it contains
128/4=32 sets (and hence 2^5 = 32 different indices).
There are 64=2^6 possible offsets. Since the CPU ad-
dress is 32 bits, this implies physical address 32 bits is
decomposed into 21 tag, 5 bits index and 6 bits offsets.
In the case of cache B, the same 32 physical address
implies 32=17+8+7, and where 17 bits is tag field.
Thus, cache A tag field is more than cache B.

8. What is the average memory access time of a m/c
whose hit rate is 93%, with cache access time of 5ns
and main memory access time of 80ns?

 Answer: Average access time = 0.93*5ns + 0.07 *(80ns
+ 5ns) =11.5ns

9. If we want an average memory access time of 6.5ns,
our cache access time is 5ns, and our main memo-
ry access time is 80ns, what cache hit rate must we
achieve?

 Answer: Let required hit rate = x

 6.5ns = x*5ns + (1 – x)*(80 + 5)

 x = hit rate required = .98 = 98.12%

10. Assume that a system has two level cache with hit
ratios 90%, 97% and access times 4ns and 15ns and
main memory access time is 80ns. What is the average
memory access time?

 Answer: Average access time = 0.9*4ns + (1–0.9)*0.97
* (15ns + 4ns) + (1–0.9–(1–0.9)*0.97) * (80ns + 4 +
15)

11. Consider a direct mapped cache with 64 blocks and a
block size of 16 bytes. What block number does byte
address 1200 map to?

 Answer: Binary code of the address 1200

 = 10010110000

 Block number = 001011 = 11

Introductory Concepts of Digital Logic Design and Computer Architecture 1.115

12. If a cache has 64 byte cache lines how long does it
takes to fetch a cache line if main memory takes 20ns
cycles to respond to each memory request and returns
2 bytes of data in response to each request?. What will
be the same if page mode DRAM is used with 20 cy-
cles for first 2 bytes and 10 cycles for subsequent each
2 bytes?

 Answer:

a. 64/2*20 = 640 cycles

b. 20 + (64–2)/2*10 = 330 cycles

13. In a 16KB direct mapped cache with line length of 32
bytes how many bits are needed to determine the byte
that a memory operation references within a cache
line, and how many bits are used to select the line in
the cache that may contain data.

 Answer:

 Log2 32=5 bits

 16KB/32=512=9bits

14. A certain memory has four levels with hit ratios 0.8,
0.95, 0.99 and 1.0 respectively. A program makes 3000
references to this memory system. Calculate the exact
number of references made and that are satisfied at
each level.

 First level =0.8*3000=2400 references

 Second level = (1–0.8)*0.95*3000= 570 references

 Third level = (1– 0.8 – (1–0.8)*0.95) *.97 * 3000=29.7

 Fourth level =0.3

15. A two level memory has access times of 10–8 and 10–
3. What should be the hit ratio in order for the access
efficiency to be at least 65 percent of its maximum
possible value.

 Answer: Cache access time =10ns

 Memory access time =1ms

 Required average memory access time =0.65ms

 Let hit ratio = x

 0.65ms = x*10ns + (1– x)*1ms

 x = 0.035 = 3.5%

16. How many total bits are needed for a direct mapped
cache with 64KB of data and one word blocks, assum-
ing a 32bit addresses and computer is a 32 bit com-
puter.

 Address lines=32bits

 Instruction size=32bits

 No of locations=64KB/4bytes=16K words=214

 Therefore, tag bits=32–14–2=16 (here 2 bits is for byte
offset)

 Valid bit=1

 Therefore, total cache size = 214 *(32+16+1) = 784 k
bits = 98 KB

17. Assume direct mapped cache with 4 locations. Find
out the final content of cache if the sequence of re-
quests are 001, 010, 011, 100, 101 and 111. Repeat
the same for two way set-associative cache. Assume
with both LRU replacement policy. The content of the
memory is as follows. Assume initially cache is empty.

Address Data

000 0101

001 1111

010 0000

011 0110

100 1000

101 0001

110 1010

111 0100

 Answer: For Direct Caching

Block Tag Data

00 1 1000

01 1 0001

10 0 0000

11 1 0100

 For Set associative with 4 sets

Set Block0
Tag

Block0
Data

Block1
Tag

Block1
Data

00 1 1000

01 0 1111 1 0001

10 0 0000

11 0 0110 1 0100

 For set associative with 2 sets

Set Block0
Tag

Block0
Data

Block1
Tag

Block1
Data

0 01 0000 10 1000

1 10 0111 11 0100

18. Consider the following program

 main(){

 int a[128],b[128],c[128],I;

 for(I=0;I<128;I++)a[I]=b[I]+c[I];

 }

 Suppose the program is running on m/c with 32-KB
and 16KB data and instruction caches. Each cache is
direct mapped with 128 byte cache line and integers
are 4 bytes.

a. Does the system’s choice of where to place the in-
structions of the program in memory affect the
hit rate of either cache? (Assume only one pro-
gram is running, ignore OS).

1.116 Computer Science & Information Technology for GATE

b. Is it possible place the arrays such that there are
no conflict or capacity misses in the data cache. If
so, what are the constraints on how three arrays
are placed in memory?

 Answers:

a. No effect. Only if we consider OS then there is a
possibility of conflict misses.

b. No possibility of capacity misses as the total
memory of arrays are 1.5KB which is very less
compared to cache size. To eliminate conflicts we
have to make sure that three arrays are mapped to
different groups of sets in cache.

19. For a cache with 128-bytes cache lines the address
of the first word in the line containing address
0xa23847ef is 0xa238480.

 Answer:

 As the cache line is 128 bytes, the low 7 bits of the ad-
dress indicate which byte within the line an address
refers. Since lines are aligned the address of the first
word in the line can be found by setting low order 7
bits in the given address to 0’s.

20. A cache has 64KB capacity, 128-byte lines, and is
4-way set-associative. The system containing the
cache uses 32 bit addresses. Then calculate number of
lines, sets, entries in the tag array, number of bits in
the tag. If the cache is write-through how many bits
are needed for each entry in the tag array, and how
much total storage is required for the tag array if an
LRU replacement is used? What is the cache is write-
back?

 Answer:

 No of lines = 64KB/128bytes = 512

 \ No of tag entries = 512

 No of sets = 512/4=128

 As there are 128 sets, 7 bits are needed to select the
set.

 As the line size is 128 bytes other 7 bits are needed for
selecting word in a line

 \ Tag bits = 32 – 7 – 7 = 18

 As LRU replacement is used and cache is 4-way asso-
ciative 2 bits are needed to hold the age of the line. Ad-
ditional 1 bit is needed as valid bit. Thus 18+2+1=21
bits are needed in the tag. As there are 512 lines, total
memory of the tag array = 512*21=10752 bits.

 Write-back policy if used additional dirty bit is need-
ed. Thus tag array contains 512*22 bits, i.e. 11264 bits.

21. Suppose a given cache has an access time (cache hit
latency) of 10ns and miss rate 5 percent. A given
change to the cache will decrease the miss rate to 3
percent, but it will increase the cache hit latency to

15ns. Under what conditions does this change result
in greater performance (lower average memory access
time)?

 Answer:

 (15 ns*0.97 + Tmiss * 0.03) < (10ns*0.95 + Tmiss *0.05)

 Solving for Tmiss, Tmiss = 252.5. As long as Tmiss penal-
ty is greater than this value the reduction in the cache
miss frequency will be more significant than the in-
crease in the cache hit time.

22. A cache has hit rate of 95%, 128 byte lines and a cache
hit latency of 5ns. The main memory takes 100ns to re-
turn the first 32 bits of a line and 10ns to return to sub-
sequent word. What is the miss penalty for this cache
(Assume that the cache waits until the line has been
fetched into the cache and then reexcutes the memory
operation, resulting in a cache hit. Neglect the time re-
quired to write the line into the cache once it has been
fetched from the main memory. Also assume that the
cache takes the same amount of time to detect that a
miss has occurred as to handle a cache hit).

 If doubling the cache line length reduces the miss rate
of 3 percent, does it reduce the average memory ac-
cess time?

 Answer:

 As the cache lines are 128 bytes and each word is 32
bits, thus the time required when cache miss occurs
= 100ns + 31*10ns = 410ns. As the cache the re-exe-
cutes the operation that caused the miss taking 5 ns.
Then total cache miss time becomes 410ns + 2*5ns =
420ns.

 Average memory access time = 0.95*5ns + 0.05*420ns
= 25.75

 If we double the cache line length cache miss time be-
comes = 100ns + 63 * 10ns + 2*5ns = 740ns.

 \ Average memory access time = 0.95*5ns + 0.03 *
740ns = 27.1ns.

 \ Average memory access time increases.

23. A system initially has split caches of 16KB. They are
replaced with unified cache with 48KB. 50 percent
more than the total capacity of the two caches, but
a given program sustains more total cache misses
(counting both instruction and data references) after
the change than before.

a. If the program takes 10KB of memory references
64KB of data, what is the most likely explanation
for the increase in misses?

b. Suppose the program takes up 10KB of memory
and references 15KB of data. What would the
most likely explanation for the increase in cache
misses be?

Introductory Concepts of Digital Logic Design and Computer Architecture 1.117

 Answer:

a. Miss rate may increase as both instructions and as
well as data references may compete for the cache
locations. Thus hit rate may increase.

b. Probably the location of program and data in the
memory is reason.

24. Suppose we have a processor with a base CPI (cycles
per instruction) of 1.0, assuming all references hit in
the primary cache and clock rate of 500MHz. Assume
a main memory access time 200ns, including all the
miss handling. Suppose the miss rate per instruction
at the primary cache is 5%. How much faster will the
machine be if we add a secondary cache that has a
20ns access time for either a hit or a miss and large
enough to reduce the miss rate to main memory to
2%.

 Answer:

 The miss penalty to main memory = 200ns/2 ns/clock
cycle = 100 clock cycles

 Total CPI= base CPI + Memory stall cycles per in-
struction

 For the m/c with one level caching Total CPI = 1. +
5%100 = 6

 With two levels of caching, the miss penality = 20ns /
2ns/clock cycle =10 clock cycles

 Total CPI= 1+ Primary stall per instruction + Second-
ary stalls per instruction

 =1+(5% – 2%) of 10 + 2% of (100 + 10) = 3.5

 Thus the machine with secondary cache is faster by
=6.0/3.5 = 1.7

25. Consider details of two cache memories. Which is
faster in accessing memory? In each case, tc is the ac-
cess time of the cache memory, tm is the access time
of the main store, and h is the hit ratio.

 Cache A. tm = 70 ns, tc = 10 ns, h = 0.9

 Cache B. tm = 60 ns, tc = 5 ns, h = 0.9

 Answer:

 Cache A: effective memory access time = 0.9*10ns +
0.1(70+10)ns = 17ns

 Cache B: Effective memory access time = 0.9*5ns +
0.1(60+5)ns = 11ns

 Therefore, cache B is better than cache A.

26. For the following system, calculate the hit ratio h re-
quired to achieve the stated speedup ratio S compared
to the system with only memory. Use following de-
tails:

 tm = 50 ns, tc = 10 ns, S = 2.0

 Answer: 2*(h*10ns+(1-h)*(50+10)ns)=50ns

 10h + 60 – 60h = 25

 50h = 35

 h = 35/50 = 0.7 = 70%.

27. A computer performs both internal operations and
memory accesses. The average time to execute an in-
struction is

 tave = Finternal.tcyc + Fmemory . [h.tc + (1 – h)(tc + td)].tcyc

Finternal = fraction of time doing internal operations

Fmemory = fraction of time spent doing memory ac-
cesses operations

tcyc = clock cycle time

tc = cache access time in clock cycles

td = additional penalty paid when accessing
main memory

 For the following systems calculate the average cycle
time

a. Finternal = 20%, tcyc = 20 ns, tc= 1, td= 3, h = 0.95

b. Finternal = 50%, tcyc = 20 ns, tc= 1, td= 3, h = 0.9

 Answer: 0.2*20 + 0.8 [0.95*1 + 0.05(1+3)]*20=4 +
16(9.5+2) = 188ns

 b. 0.5*20 + 0.5[0.9*1 + 0.1*(1+3)]*20 =10+10
(9+0.4)=104ns

28. Cache can be accessed in parallel or serial with main
memory. In a parallel access mode both the cache and
the main store are accessed simultaneously. If a hit
occurs, the access to the main store is aborted. In a
serial access, the cache is first examined and, if a miss
occurs, the main store is accessed. Assume that the
hit-ratio is h and that the ratio of cache memory ac-
cess time to main store access time is k (k < 1). Derive
expressions for the speedup ratio of both a parallel ac-
cess cache and a serial access cache

 Answer: Assuming Tc, Tm are cache and memory ac-
cess times. Also k = Tc/Tm

 Effective memory access time in the case of parallel
access = h*Tc + (1–h)Tm

 Effective memory access time in the case of serial ac-
cess = h*Tc + (1–h)(Tc+Tm)

 Speed up = (h*Tc + (1–h)Tm)/(h*Tc + (1–h)(Tc+Tm))

 Taking Tc = kTm

Speed up = (hkTm + (1–h)Tm) / (hkTm + (1–h)(k+1)
Tm)

= (hk – h +1)/ (hk + k+1–hk–h)

= (h(k–1) +1)) / (k+1–h)

29. Given a 2 Kbytes two-way set associative cache with
16 byte lines and the following code:

 for (int i = 0; i < 1000; i++) A[i] = 40 * B[i];

1.118 Computer Science & Information Technology for GATE

 Compute the overall miss rate (assume array elements
takes 4 bytes). What kind of cache locality is being
exploited?

 Answer: Each array contains 1000 elements. Each
cache line contains 4 words. Since each array element
will be accessed only once, all misses shall be com-
pulsory misses. Since every 4 words will be loaded or
written back simultaneously in a cache, the miss rate
is 25% since every 4th access misses.

 Spatial locality is being exploited.

30. Consider a cache with the following characteristics:

 32-byte blocks

 8-way set associative

 256 sets

 32-bit addresses

 Write back policy

 LRU replacement policy

 How many bytes of data storage are there?

 256 × 8 × 32 = 218 = 64 KB

 How many tag bits per set?

 32- log2256-log232=32-8-5=19 bits per set

 What operation is needed upon a read-miss (the pro-
gram wants to read from a memory location that is
not in the cache)?

a. Find the LRU cache line to replace. If it is dirty,
write the block to next level cache / memory.

b. Fetch 32-byte memory data from next level cache/
memory of that memory address and other data
from the same block/line;

c. Update the tag bit of that cache line.

 What operation is needed upon a write-miss (the pro-
gram wants to write to a memory location that is not
in the cache)?

a. Find the LRU cache line to replace. If it is dirty,
write the block to next level cache / memory.

b. Fetch 32-byte memory data from next level cache/
memory of that memory address and other data
from the same block/line;

c. Write to the memory location in that cache line.
Mark the cache line as dirty. Update the tag bit of
that cache line.

31. Consider a 3-way set associative cache. A, B, C, D are
memory addresses that have the same index bits but
different tag bits from each other. In a program, the
reference sequence is as follows:

 A, B, A, C, D, A, D, C, A, C

 What is the miss rate if the cache is using LRU
replacement policy?

 40%

 What is the miss rate if the cache is using MRU re-
placement policy?

 50%

 Assuming the memory addresses being accessed are
still A, B, C and D, provide a case of memory refer-
ence sequence with length=10, in which MRU per-
forms better than LRU. Show the reference sequence
and the miss rate of LRU and MRU policy.

 For example: A,B,C,D,A,B,C,D,A,B

32. A cache has a 90% hit rate. It also equipped with a
predictor which predicts correctly 75% of the time if
there is a cache hit. A cache hit with a correct predic-
tion will take 2 cycles, a cache hit with an incorrect
prediction will take 4 cycles, and a cache miss (way-
prediction irrelevant) will take 60 cycles. Compute
the average memory access time of the cache with
way-prediction.

 Without prediction (the original 2-way set associative
cache) has the same hit rate and miss time, but a 3
cycle hit time. By how many cycles does prediction
improve the average memory access time?

 Note: It is important to notice that 60 cycles is the miss
time, not the miss penalty (miss time = miss penalty +
hit time).

 Answer:

 Average memory access time= (0.9)((0.75)2 + (0.25)4)
+ (0.1)60 = (0.9)(1.5 + 1) + 6 = (0.9)(2.5) + 6 = 8.25

 Average memory access time (without WP) = (0.9)
(3) + (0.1)(60) = 2.7 + 6 = 8.7

 Improvement: 8.7 – 8.25 = 0.45

33. Examine the code given below to compute the average
of an array:

 total = 0;

 for(j=0; j < k; j++) {

 sub_total = 0;

 for(i=0; i < N; i++) {

 sub_total += A[j*N + i];

 }

 total += sub_total/N;

 }

 average = total/k;

 When designing a cache to run this application, given
a constant cache capacity and associativity, will you
want a larger or smaller block size? Why?

 Answer: Examining the code it is good to see that the
program accesses consecutive addresses and never
reuses any of them. Because of this you will want to
leverage its spatial locality by using a larger blocker
size to reduce compulsory misses

Introductory Concepts of Digital Logic Design and Computer Architecture 1.119

34. Examine the code given below (note it is slightly dif-
ferent than previous question):

 total = 0;

 for(i=0; i < N; i++) {

 sub_total = 0;

 for(j=0; j < k; j++) {

 sub_total += A[j*N + i];

 }

 total += sub_total/k;

 }

 average = total/N;

 Generally, how will the size of the array and the cache
capacity impact the choice of line size for good per-
formance? Why?

 Answer: Here we have to explain how to pick a line
size given a cache capacity and array size. Changing
the size of the array or the cache were not options.

 Basically you want to be able to fit at least one itera-
tion of the outer loop in the cache with a block size ≥
2 words. To do this, you want at least two “columns” of
A to be able to fit in the cache at a time, so the you will
get some hits from spatial locality. Without this, the
program will suffer 100% misses. If the block size is
two and en entire column can fit, one iteration of the
outer loop result in all misses, but the next iteration
will be all hits.

 As the size of the array gets smaller relative to the
cache capacity, the “columns” are “shorter,” so you will
want a larger line size to reduce compulsory misses.

 As the size of the array gets larger relative to the cache
capacity, the “columns” will get “taller.” You will need
to make the line size smaller to get more lines in the
cache to reduce conflict misses so it can still hold an
entire iteration of the outer loop.

35. A block direct mapping cache has lines/slot that con-
tains 4 words of data. The cache size is 64Kline and
the main memory capacity is 16Mbytes.

a. Given the following main memory address 3AF-
F80h, find the values for tag, line/slot and word
field in hexadecimal.

b. Given the following information, find the main
memory address in hexadecimal.

tag line/slot word 11 word 10 word 01 word 00

3Fh 9DA3h Data

 Answer:

 Physical address length: 16Mbyte = 24 × 220 = 24 bits

 Number of bits required to access individual for
words in cache=4 bytes = 22 = 2 bits

 Number of bits required to access all for lines/slots in
cache= 64Kline = 26 × 210 = 16bits

 Therefore, Tag= 24-16-2 = 6bits , line (index) = 16bits,
word = 2bits

a. Tag line word

 0011 10 10 1111 1111 1000 00 00

 Tag = 00 1110 = 0Eh, Line = 10 1111 1111 1000
000 =BFE0h, word =00 = 0h

b. Tag line word

 11 1111 1001 1101 1010 0011 10 = FE768Eh

36. Consider a machine with a byte addressable main
memory of 216 bytes and block size of 8 bytes. Assume
that a direct mapped cache consisting of 32 lines is
used with this machine.

a. How is a 16-bit memory address divided into tag,
line number, and byte number? Tag-8, (index)
line-5,word-3

b. Into what line would bytes with each of the fol-
lowing address be stored?

 0001 0001 0001 1011-- 03

 1100 0011 0011 0100 -- 06

 1101 0000 0001 1101 -- 03

 1010 1010 1010 1010 – 15

 As line is 5 bits long, we can find the answer by con-
sidering 3rd to 7th bits of the addresses from LSB
(shown in bold and underlined). The lines in which
the addresses gets mapped are: 3,6,3, and 15.

c. Suppose the byte with address 0001 1010 0001
1011 (1A1B) is stored in the cache. What are the
addresses of the other bytes stored along with it?

 As the block size is 8 bytes, along with the required
byte other bytes whose addresses given below are
stored.

 0001 1010 0001 1000 (1A18)

 0001 1010 0001 1001 (1A19)

 0001 1010 0001 1011 (1A1A)

 0001 1010 0001 1100 (1A1C)

 0001 1010 0001 1101 (1A1D)

 0001 1010 0001 1110 (1A1E)

 0001 1010 0001 1111 (1A1F)

d. How many total bytes of memory can be stored in
the cache?

 For each line, no of bits = tag + (no of word* word
size) = 8 + (8 *8) = 72 bits

 For 32 lines , total no of bits = 32 * 72= 2304 bits

 =
2304

8
288= bytes

1.120 Computer Science & Information Technology for GATE

37. A set associative cache size of 16Kline divided into
2-line sets (2-way) with block a line of 4 words. Main
memory capacity is 32Mbyte.

a. What is cache address (in hexadecimal) for the
following main memory address 133AC0Bh?

b. What is main memory address (in hexadecimal)
for the following cache data?

Tag Set word 11 word 10 word 01 word 00

34Ah 1B5Ch Data

 Answer:

 Number of how many bits are used for main memory
address= 25 bits

 Number of modules (sets) in cache = 16K/2 = 8K

 Number of bits for set numbers=13 bits

 Number of bits for block words= 2 bits

 Thus, Tag: 25-13-2 =10bits, set- 13 bits, word 2 bits

a. Address 133AC0Bh can be decomposed into tag,
set and word by representing the same in binary
code. Middle bits of this binary code indicates the
cache address, which is 2B02.

 01001100111 01011 00000010 11 ----- 2B02h

b. Tag, set, word 10bit 13 bits 2 bits

 = 11 1000 1010 1 1101 0101 1100 01

 Grouping 4bits from left : the required address
becomes: 1C57571h

38. A set associative cache size of 64Kline divided into
4-line sets (4-way) with block of 4 words. Main mem-
ory capacity is 64 Mbyte.

e. How many bits are used for main memory ad-
dress?

 64M = 26 × 220 =26 bits

f. How many modules (set) in cache?

 =
lines

noofways
=

64K

4
=16Ksets

g. How many bits for set numbers? =16K = 24 × 210 =
14 bits

h. How many bits for block words? = 4 = 22 = 2bits

i. Show the format of main memory addresses with
tag, set and word bits.

 Tag = 26-14-2=10 bits, set =14 bits,word=2 bits

j. What is cache address (in hexadecimal) for the
following main memory address 377AC01h?

 11 0111 0111 1010 1100 0000 0001 = 2B00h

k. What is line size (cache word/cache block size)?

 = tag + (no of word per line * word size)

 = 10 +(4 * 8) = 42 bits for each line

1. What is main memory address (in hexadecimal)
for the following cache data?

Tag Set word 11 word 10 word 01 word 00

34Ah 3B5Ch Data

 11 0100 1010 11 1101 0101 1100 11 = 34AF573h

39. A machine has a two-level caches L1 and L2. Further,
out of every 100 memory references, 5 misses are seen
at the L1 cache and 2 misses at the L2 cache. Cal-
culate various miss rates, local and global. Using the
miss rates, what is the average memory access time
assuming the L2 miss penalty is 200 cycles, the L2 hit
time is 20 cycles, and the L1 hit time is 1 cycle

 Answer: various miss rates are:

 L1 global: 5%

 L1 Local: 5%

 L2 global: 2%

 L2 Local : 40%

 Average Memory access time= 0.95*1 + 0.02*(1+20)+
0.03(1+20+200)=0.95+4.2+ 6.63= 11.78 cycles.

40. Effective Access Time Example: A computer has a
single cache (off-chip) with a 2 ns hit time and a 98%
hit rate. Main memory has a 40 ns access time. What
is the computer’s effective access time? If we add an
on-chip cache with a .5 ns hit time and a 94% hit rate,
what is the computer’s effective access time? How
much of a speedup does the on-chip cache give the
computer?

 Answers:

 Effective memory access time in the first case= 0.98*2
ns + .02 * (40+2) ns = 2.8 ns.

 Effective memory access time with on-chip cache= .5
ns + .06 * (2 ns + .02 * 40 ns) = .668 ns.

 Therefore, speedup is 2.8 / .668 = 4.2.

41. Virtual memory problem: Assume a computer has
on-chip and off-chip caches, main memory and virtu-
al memory. Assume the following hit rates and access
times: on-chip cache 95%, 1 ns, off-chip cache 99%,
10 ns, main memory: X%, 50 ns, virtual memory:
100%, 2,500,000 ns. Notice that the on-chip access
time is 1 ns. We do now want our effective memory
access time to increase much beyond 1 ns. Assume
that an acceptance effective access time is 1.6 ns.
What should X be (the percentage of page faults) to
ensure that EMAT is no worse than 1.6 ns?

 Answer: EMAT = 1ns + .05 * (10 ns + .01 * (50 ns +
(1 – X) * 2,500,000 ns)). Since we want EMAT to be
no more than 1.6 ns, we solve for X with 1.6 ns = 1ns
+ .05 * (10 ns + .01 * (50 ns + (1 – X) * 2,500,000 ns)).
X = 1 – ((((((1.25 ns – 1 ns) / .05) – 10 ns) / .01) – 50
ns) / 2,500,000). X = 0.99994 = 99.994%. Our miss
rate for virtual memory must be no worse than .006%.

Introductory Concepts of Digital Logic Design and Computer Architecture 1.121

42. Cache/Memory Layout: A computer has an 8 GB
memory with 64 bit word sizes. Each block of memory
stores 16 words. The computer has a direct-mapped
cache of 128 blocks. The computer uses word level
addressing. What is the address format? If we change
the cache to a 4-way set associative cache, what is the
new address format?

 Answers:

 With 8 GB and a 64 bit word size, there are 8 GB / (8
bytes / word) = 1 GW of memory. This requires 30
bits for an address. Of the 30 bits, we need 4 bits for
the word on the line and 7 bits for the block number,
leaving 30 – (7 + 4) = 19 bits for the tag. So the ad-
dress format is 19 – 7 – 4.

 If we have a 4-way set associative cache instead, then
there will be 4 sets with 128 / 4 = 32 blocks per set. So
we would only need 5 bits for the block number, leav-
ing 30 – (5 + 4) = 21 bits for the tag. So the address
format is 21 – 5 – 4.

43. Direct Mapping Question: Assume a computer has
32 bit addresses. Each block stores 16 words. A direct-
mapped cache has 256 blocks. In which block (line)
of the cache would we look for each of the following
addresses? Addresses are given in hexadecimal for
convenience.

a. 1A2BC012

b. FFFF00FF

c. 12345678

d. C109D532

 Answers: Of the 32 bit address, the last four bits de-
note the word on the line. Since four bits is used for
one hex digit, the last digit of the address is the word
on the line. With 256 blocks in the cache, we need 8
bits to denote the block number. This would be the
third to last and second to last hex digit.

a. this would be block 01, which is block 1

b. this would be 0F which is block 15

c. this would be 67 which is block 103 (remember,
67 is a hex value)

d. this would be 53 which is block 83.

44. A computer has a simple singlelevel paged virtual
memory system (with no segments), a hardware load-
ed TLB (that is, the hardware consults the page table
stored in memory directly on a cache miss), and no
cache, give a symbolic formula for the average mem-
ory access time, as a function of:

 PT = probability of a TLB miss

 PP = probability of a page fault, given a TLB miss oc-
curs

 TT = time to access TLB

 TM = time to access memory

 TD = time to transfer a page to/from disk

 PD = probability page is dirty when replaced

 Answer: The average access latency in a simple single-
level paged virtual memory system with hardware-
loaded TLB, no cache, probability pt of a TLB miss,
probability pp of a page fault given a TLB miss occurs,
probability pd that a page is dirty when replaced, time
tt to access the TLB, time tm to access memory, and
time td to access the disk is:

 tt + tm + pt (tt + tm + pp (td + pd td)).

 This formula quantifies the following: the TLB and
memory are always accessed; whenever there is a TLB
miss, the TLB and memory are accessed a second
time; whenever the TLB miss is a page fault, the disk
is accessed; whenever the page fault replaces a dirty
page, the disk is accessed a second time.

1.18 I/O Management

1. By making the I/O instructions illegal to execute when
not in kernel or supervisor mode, user programs can
be prevented from accessing the devices directly.

2. Once OS initiates an operation on the device it must
poll continuously since the OS does not know when
the device will actually respond and want to initiate
transfer.

3. A CPU that sustains 300 million instructions per sec-
ond and average 50000 instructions in the OS per I/O
operation.

 A memory backplane bus capable of sustaining a
transfer rate of 100 MB/sec. SCSI-2 controllers with a
transfer rate of 20MB/sec and accommodation up to
seven disks. Disk drives with read/write bandwidth of
5MB/sec and an average seek plus rotational latency
of 10ms.

 If the workload consists of 64-KB reads and the
user program needs 100000 instructions per I/O op-
eration find the max sustainable I/O rate and the no of
disks and SCSI controllers required. Assume that the
reads can always be done on an idle disk if one exists.

 Max I/O rate of CPU= 300*106 /(50+100)*103 = 2000

 Each I/O Transfer takes 64KB, so Max I/O rate of bus
= 100*106/(64000)=1562

 Thus the bus is the bottleneck.

 Time per I/O at disk = Seek time + Transfer time =
10ms + 64KB/5MB= 22.8ms

 Number of I./O’s per second = 43.9

 Thus the no of disks req=1562/43.9 = 36

1.122 Computer Science & Information Technology for GATE

4. Early systems used programmed I/O. What impact
does that have on multi-programming?

 Programmed I/O is where the process performs a
busy waiting check until the I/O operation has fin-
ished. For example,

 perform some I/O;

 while (I/O not finished)

 {

 check if I/O has finished;

 }

 This type of busy waiting consumes a large amount
of CPU time. One of the primary aims of multi-pro-
gramming is to interleave CPU execution and I/O.
However with multi-programming the CPU execu-
tion that occurs during I/O is NOT USEFUL.

 Using interrupt driven I/O, the process that asks for
some I/O operation to be performed, will be taken off
the CPU until it the I/O operation is complete. Dur-
ing that time the CPU can be given to another process
that will carry out some useful work.

5. With DMA, intelligent peripheral devices read data
from, or write data to, main memory without the in-
tervention of the CPU. DMA is nearly always done to
operating system buffers, and not to buffers within a
process. In a couple of paragraphs, describe the vari-
ous reasons why operating system buffers are used
with DMA.

 Here, buffers meant buffers owned by operating
system in main memory.

 DMA is generally done for whole blocks, e.g from
disk devices. Processes generally don’t request I/O in
whole-block sizes: they might ask for any amount of
data e.g., 10 bytes, 50000 bytes etc. Processes of course
don’t know the actual block size.

 Therefore the OS must buffer the incoming block,
and then copy part of the block into the process’
memory space. Ditto if the process asks for data span-
ning 2 blocks: the OS must get both blocks and then
do the copying.

 Another reason for buffering in the OS: the OS can
cache recently requested blocks, and give faster ac-
cess to the data if the blocks are heavily used. Finally,
some I/O isn’t done specifically for processes. For ex-
ample, pageouts are not done at a process’ behest, but
are caused by the OS.

6. Synchronous data transfer can employed between
processor and peripherals which are located in the
same computer or which are in proximity. They can
share common clock.

7. Average seek times of the disks are advertised. How-
ever, depending on the application the actual seek
time will be 25% to 33% of the advertised one because
of locality of disk references.

8. Asynchronous data transfer does not demand com-
mon clock.

9. Polling can be called as processor initiated data trans-
mission where processor sends a request to device to
transfer the data. The device processes this request
and sets device ready signal till which point the pro-
cessor will be waiting or blocked.

10. Polling also wastes CPU time.

11. Wait states are used to obviate polling. For example
a disk drive might assert the wait signal until it is po-
sitioned its R/W head and then it de-asserts such that
CPU can transfer data. This though do not stop CPU
waiting but it makes programmers life simpler.

12. Interrupts are two types 1. HW and 2. SW (signals).
HW ones arrive from devices where as signals may
arrive from users, programs.

13. HW interrupts further can be classified as Exter-
nal and internal. External interrupts arrive from
external I/O devices. Whereas internal ones occur
entirely within CPU (Example timer which is used
to allocate CPU to different tasks). Devide by zero
exception, arithmetic overflow page faults, invalid
instruction codes all comes under this internal in-
terrupts category.

14. Interrupt service routine is executed only after com-
pletion of the current instruction. Otherwise we have
to save many registers as well as state information in
control unit. Thus only after completion of current in-
struction service routine is started when an interrupt
arrives in which case only PC value has to be saved.

15. Moreover, when a task is running a interrupt is ar-
rived after t1 sec of starting time slice b sec and in-
terrupt routine takes t2 secs then after completion of
service routine this task is going run for b-t1-t2 sec.

16. Vectored interrupts are the ones which send address
(either partial or full) of service routine along with
interrupt; whereas non-vectored ones will not send
any address (here CPU service routines are available
are fixed locations).

17. Service routine address is sent to CPU via systems
data bus.

18. Very commonly handler routine first disables any fur-
ther interrupts and clears current interrupt (In some
m/c’s CPU itself clears this while handler routine is
accessed). Before loading previously saved PC value

Introductory Concepts of Digital Logic Design and Computer Architecture 1.123

from stack to PC the handler routine does restored
other state information and enables previously dis-
abled interrupts.

19. Daisy chaining is used to make a set of device with
some priority among themselves to share interrupt.
SCSI devices uses this concept. Here, irrespective of
which device has sent interrupt request the high pri-
ority device will be given preference.

20. The vector address what every device sends to CPU
may not be same.

21. Main drawback of DMA are 1. Yet CPU has to do
some work for I/O. 2. Multiple transfers require sepa-
rate DMA transfers. 3. Some times data has to be pro-
cessed which DMA can not do. These shortcomings
are addressed by I/O processors which are also called
as I/O controllers, channel controllers, peripheral
processing units (PPU’s).

22. An I/O processor manages multiple devices which are
connected to separate I/O bus.

23. The I/O instructions given to I/O processor are called
as commands. These commands can be classified as
block transfer commands, processing commands
which does operations such as arithmetic, logical on
data before transferring data to cpu, and control com-
mands.

24. USB port supports 127 devices connected to a single
port. USB devices require addresses to differentiate
them.

25. In USB, token packets are used to initiate data trans-
fer.

26. USB transmits data in packets.

27. USB version 1.1 supports 1.5Mbps where as 2.0 sup-
ports 480Mbps.

28. USB communication can be considered as serial com-
munication.

29. RS-232-C supports nine signals, RTS, CTS, TD, DTR,
DSR, RD, CD, RI, and ground.

30. RI (ring indicator) is needed in modems which are set
to answer incoming calls.

31. Both RS-232-C, RS-422 uses differential voltage while
sending data.

32. RS-232 terminals uses 25 pin connector employs se-
rial communication.

33. Memory mapped terminals will not communicate
to computer via serial lines; they are integral part of
the computer itself. Typically in IBM PC addresses
0xB0000 for monochrome and 0xB8000 for color dis-
plays.

34. Each character occupies more than one byte in video
RAM as attributes are also stored along with the char-
acter code. For example in some m/c’s 2 bytes are used
for every character in video RAM.

35. In Bit-mapped terminal every bit in the video RAM
controls one pixel in the screen.

36. Each I/O bus controller may have DMA processor.

37. If the system uses caches then DMA transfer may be-
comes little efficient as processor can proceed with-
out accessing memory all the time during which pe-
riod DMA can use available memory bandwidth.

38. Cache in the system also leads to stale data problem
when we use DMA as DMA directly transfer data to
memory.

39. Another main difficulty in virtual memory systems
with DMA is that whether DMA should work at vir-
tual address level or physical address level?.

40. Overlapped seeks are done by controllers or device
driver SW in which seeks on two or more drives are
carried out at the same time. While writing on one
drive reading will be continued from the other drive
here.

41. No need of seek or rotational optimization in RAM
disks.

42. RAM disks are especially used to store frequently
used programs.

43. Device mounting can not be done in MSDOS.

44. Memory mapped I/O all can use either polling or in-
terrupt strategy.

45. An individual process will execute sequentially across
the processor and the I/O device.

46. In polling device driver itself does all the necessary
task.

47. If API among different device drivers is same then
application programmer life becomes easy. However,
each driver implementation is specific to the device.

48. Main motivation of interrupts in HW is to eliminate
the need for the device driver to constantly poll the
controller status register.

49. When a process makes an I/O request context switch-
ing takes place. Only after satisfying I/O request the
process waits. If it is not implemented like this, there
is a danger of the process working on trash or old val-
ue of the object (say x in the following code).

 x=10;

 read(deviceX, “%d”, x);

 Y=f(x)

50. The average time to execute a process is much less
with interrupts than it will polling.

1.124 Computer Science & Information Technology for GATE

51. In memory mapping of devices, the devices are asso-
ciated with logical primary memory addresses (don’t
confuse virtual addresses) instead of having special-
ised device addresses.

52. Memory mapped I/O reduces the no of instruction
types in the processor.

53. Buffering is keep slower I/O devices during times
when a process is not requiring I/O operation. Also,
buffering is to explicitly overlap a process’s use of the
CPU and its devices.

54. In some disks, homing command is available with
which the head can quickly return to track 0 or last
track. Such that Scan or cscan disk arm scheduling
algorithms can perform better.

E X E R C I S E

1. Assume that the number of clock cycles for a poll-
ing operation — including transferring to the polling
routine, accessing device, and restarting the user pro-
gram, is 400 cycles, and that the processor executes
with a 500 MHz clock. Determine the fraction of CPU
consumed for the following three cases assuming that
you poll often enough so that no data is ever lost and
assuming that the devices are potentially always busy.

a. The mouse must be polled 30 times per second.

b. The FDD which transfers 16-bit data at data rate

of 50KB/sec. No data transfer can be missed.

c. The HDD which transfers 4-word chunks at 4MB/

sec. Again no transfer can be missed.

 Answer:

a. Clock cycles for polling = 30*400=12000 cycles
per second

 Fraction of the processor cycles consumed

= 12000/500*1000000=0.002%

b. For FDD, the rate at which we must
poll=50KB/2bytes = 25Kpolling accesses/sec

 Cycles for second polling = 25K*400

 Fraction of the processor cycles consumed=25K*400/

(500*1000000) = 2%

c. For HDD, the rate at which we must poll =
4MB/16bytes = 250K polling accesses/sec.

 Cycles for second polling = 250K*400

 Fraction of the processor cycles consumed=250K*400/
(500*1000000) = 20%

 In the first two cases polling overhead is not much,
whereas in the third one 20% cycles of the processor
is spent on polling.

2. Consider a system with 500 MHz clock. The HDD
which transfers 4-word chunks at 4MB/sec. No trans-
fer can be missed. Interrupt driven I/O is used. The
overhead for each transfer including the interrupt is
500 clock cycles. Find the fraction of the processor
consumed if the HDD is only transferring 5% of the
time.

 Answer:

 For HDD, the rate at which we must transfer =
4MB/16bytes=250K polling accesses/sec.

 Fraction of CPU consumed = 250K*500/
(500*1000000) = 25%

 Cycles for second polling=250K*500

 Assuming that the disk transferring data 5% , then the
fraction of the processor consumed on average=25 %
of 5%=1.25%

3. Suppose we have processor with 500MHz clock rate
and HD as above. Assume that the initial setup of a
DMA transfer takes 1000 clock cycles for the proces-
sor and assume the handling of the interrupt at DMA
completion takes 500 clock cycles for the processor.
The HD transfer rate is 4MB/sec and uses DMA. If the
average transfer from the disk is 8KB what fraction
of the 500MHz processor is consumed if the disk is
actively transferring 100% of the time. Ignore any im-
pact from bus contention between the processor and
DMA.

 Answer:

 Each DMA transfer takes = 8KB/4MB/sec=2 *10–3

 So if the disk is constantly transferring, it requires

 (1000 + 500)/(2*10–3)=750*103

 Since the processor runs at 500MHZ,

 Fraction of processor consumed 750*103/(500*106) =
0.2%

4. In virtually all systems that include DMA modules,
DMA access to main memory is given higher priority
than processor access ot main memory. Why?

 Or

 Cycle stealing occurs when the I/O processor and the
CPU try to access the same memory module or the
same bus simultaneously. Why does the I/O processor
normally get priority?

 Answer : A major aim of multi-programming is
to achieve efficient use of the computer systems

Introductory Concepts of Digital Logic Design and Computer Architecture 1.125

resources. This means you want the CPU executing
instructions, the printer printing documents, the
display displaying output and the disk drive storing
information. That means you want interleaved I/O
and CPU execution.

 I/O devices are very, very slow when compared to the
CPU. The CPU will want to access memory and the
bus much more regularly than I/O devices of any de-
scription.

 I/O is given precedence because you want the I/O de-
vice to use the memory or the bus and then to start
doing its I/O operation. Once serviced the I/O device
will take a long time before asking for the bus again.
During this period the CPU can be executing.

5. Suppose a process makes a request to transfer 500 sec-
tors from a disk. Consider two possible approaches: a
DMA controller that reads one sector and interrupts
the CPU after reading it; and an I/O processor that
handles the operations for all 500 sectors.

 Suppose it takes 0.5ms to respond to an interrupt and
issue another read. How much time does the CPU save
if the second approach is used? How many instruc-
tions could it have executed in this time? Assume the
CPU can execute one instruction in 500 nanoseconds.

 1,000,000 nano-seconds = 1 milli-second

 Using the DMA controller the following will happen
500 times

 I/O operation occurs

 interrupt is generated

 interrupt must be handled and process ask for more
I/O

 Answer:

 The first two steps will not take any CPU time and the
last step will consume 0.5ms. That means using the
DMA controller will result in the following amount of
CPU time being used

 500 x 0.5ms = 250ms

 Using the I/O processor this 250ms of CPU time is
not used. Given that the CPU can execute one in-
struction every 500 nanoseconds. This means that
the CPU can execute 2000 instructions for every mil-
lisecond which means the CPU could execute 500,000
instructions in 250ms

6. Checking for interrupts is normally part of the in-
struction cycle. What is the advantage of doing it this
way instead of using a separate machine language in-
struction?

 Answer:

 Most computers use the same basic instruction execu-
tion cycle.

 This cycle is built into the hardware and as a result
goes relatively quick.

 What would happen if the check for an interrupt was
a separate machine language instruction?

 That would imply that the programmer could control
when interrupts are handled. What does this imply?

if the user decides not to do it, it won’t get done

which implies the handling of interrupts will slow
down a great deal

also checking interrupts as a separate instruction
may be slower than having it handled automatically
by the hardware

7. Explain the motivation behind disk arm scheduling,
and why the elevator algorithm is often used. To
which software layer in I/O does disk arm schedul-
ing belong? Justify your answer in a couple of para-
graphs.

 Answer: Motivation: to minimize arm movement
which is very slow. Achieved by reordering pending
arm motion requests so minimize overall seeks. This
depends on there being a queue which can be reor-
dered.

 The elevator algorithm is one such queue reordering
algorithm. The queue is reordered so that the head
starts at one end of the disk, and moves towards the
other end, servicing requests in that order, until there
are no more requests in that direction. The arm then
reverses direction, and services requests the other
way. One nice property is, given any collection of re-
quests, the upper bound on the motion is fixed at ex-
actly 2 * the number of tracks.

 The algorithm is only dependent on the number of
tracks/cylinders on a disk. The algorithm doesn’t need
to know the disks commands in to reorder the queue.
Therefore, it is possible to keep the elevator algorithm
in the device-independent part of the I/O stack. This
would allow it to be shared across all disk devices.

8. Why is it important to try to balance file system I/O
among the disks and controllers on system in a multi-
tasking environment?

 Answer: By spreading disk activity out amongst mul-
tiple disks and controllers you can have many differ-
ent disk accesses all being served at once. A single
disk/controller can only handle one request at a time.
Spreading disk activity out should improve efficiency.

1.126 Computer Science & Information Technology for GATE

9. What is the average time to read a 512-byte sector for
a typical disk rotating at 3600 RPM? The advertised
average seek time is 12ms, the transfer rate is 5MB/
sec and the controller overhead is 2ms. Assume that
the disk is idle so that there is no waiting time. Re-
peat the same for disk rotating speeds of 5400RPM
and 7200RPM.

 Answer: Average disk access time = average seek time
+ average rotational delay + transfer time + controller
overhead

 = 12 ms + 0.5 rotation/3600RPM + 0.5KB/5MB/sec +
2ms= 12ms + 8.3 ms + 0.1ms + 2ms=22.4ms

 For 5400 RPM:

 = 12 ms + 0.5 rotation/5400RPM + 0.5KB/5MB/sec +
2ms= 12ms + 5.6 ms + 0.1ms + 2 ms=19.7ms

 For 7200 RPM

 =12 ms + 0.5 rotation/7200RPM + 0.5KB/5MB/sec +
2ms=12ms + 4.15ms + 0.1ms + 2ms=18.25 4ms

1.18.1 Direct Memory Access

Disks

Standard floppy and hard disks use magnetic recording
technology. The disk surfaces are divided into concentric
tracks (hundreds per surface on a hard disk), and each track
is divided into sectors (typically a few tens per track). The
position of tracks and sectors are marked on the disk by
magnetically-recorded formatting information identifying
each sector with its track and sector number. Magnetically-
recorded data is written to or read from the data portion in
each sector, and a sector will hold a fixed number of bytes,
usually 512.

The access time of a disk is the time it takes the head to
get into position above the required sector, and is made up
of two parts, the track seek time (the time it takes to move
the head to the required track), plus the rotational latency
to get to the required sector. Seek times are typically a few
milliseconds for hard disks, and 100’s ms for floppies. Flop-
pies usually rotate at 360 rpm, and hard disks typically at
3600, 5400 or 7200 rpm, so the average rotational latency is
83ms for a floppy and, at 3600 rpm, 8.3ms for a hard disk.
Data transfer rates are largely determined by how closely
the bits can be packed on the disk surface (the recording

density) and are typically 500 kbit/sec for a floppy and 10

Mbit/sec or more for a hard disk.

Disk Controllers

All disk drives require controllers, to interface the disk
electronics to something the rest of the computer can
understand. Hard drives usually contain quite sophisti-

cated disk controllers built into the disk drive unit. The
two common standards for communication with these
controllers are IDE, and SCSI : the IDE standard is suit-
able where the disk is inside the computer case, while
SCSI is rather more flexible, and is intended to be used
for internal and external drives. An IDE bus is very sim-
ilar in structure to the processor’s own memory bus it
has data, address and control signals so very little hard-
ware is required to interface the processor to the IDE
bus. In the case of SCSI, a SCSI bus controller is needed,
through which the CPU operates the SCSI bus. The CPU
interface of a floppy or IDE disk controller is the usual
I/O controller bank of registers, typically eight, mapped
into the CPU I/O bus address space (if the CPU has a
separate I/O bus), or memory-mapped. The registers are
used to transfer data bytes or words, and control and sta-
tus information, such as desired track and sector num-
ber, current track and sector number, etc. The individual
functions carried out by the disk controller for the CPU
are quite complex, and one register, written by the CPU,
is usually designated the command register the byte writ-
ten to this register determines which complex sequence
the controller carries out next.

Typical commands could be:

Seek n Move the head to track n

Read Sector m Wait for sector m to rotate under head,
then read the data from it
Write Sector m Wait for sector m, then write new data
into it

Format Track Initialize the track, writing the sector
marks and identifying information

Using a disk controller

If the CPU wishes to read the data from a particular sector
(the filing system will provide the mapping from parts of
files to physical disk sectors), it must first issue a seek com-
mand to the required track. 10’s or 100’s of ms later, the
seek will complete, and the disk controller will interrupt
the CPU. Next the CPU issues a read sector command for
the required sector.

Again, there may be a long delay for the rotational la-
tency, so the controller will interrupt again when the head
is above the requested sector. Now the data must be trans-
ferred, a byte at a time, and at floppy rates (eg 500kbit/sec),
this is one byte per 16 micro seconds. Assuming a status
register in the disk controller (at address fdstat) contains
a bit indicating that the next byte is ready, and the disk
controller data register is at address fddata, R2000 code to
do the transfer for a read sector command might be (with
register $4 pointing on entry to the base of the 512 byte
buffer for the data in memory):

Introductory Concepts of Digital Logic Design and Computer Architecture 1.127

addui $8,$4,512 # $8 points just after end of buffer

la $10,fdstat

la $11,fddata

fdloop: lbu $9,($10) # get the status

andi $9,$9,fdmask # mask to get required bit

beqz fdloop # wait until next data byte ready

lbu $9,($11) # get data byte

sb $9,($4) # put it in buffer

addiu $4,$4,1 # update pointer
bne $4,$8,fdloop # repeat until $4 reaches $8

Here, the CPU polls the status bit for each data byte
transfer. The CPU is tied up for 512 * 16_s, i.e., 8ms, dur-
ing which time interrupts must be disabled. An interrupt-
driven alternative might be possible, but the interrupt re-
sponse time of many processors is barely fast enough: to
process an interrupt request, save the interrupted process’s
context, and to restore context on return from the interrupt
might take several microseconds. Ideally, what we want is
to relieve the CPU entirely of the task of moving the data
between the buffer in memory and the disk controller, and
this can be done if we arrange for the disk controller to be
able to access the memory directly itself.

Direct Memory Access
The disk controller needs to be able to transfer a block of
bytes to or from memory. For this, additional hardware is
needed, called a direct memory access (DMA) controller.
The DMA controller includes an address register, holding
the address in memory of the next byte to be read/written,
a data register, through which data is transferred from/
to memory, and a length register holding the number of
bytes still to be transferred. To read a byte from memory,
the DMA controller outputs the contents of the address
register onto the memory address bus, and asserts the read
signal in the memory control bus. The memory responds
with the data byte, which the DMA controller copies into
the data register, to be sent as a serial data stream to the
disk. The address register is then incremented, ready for the
next byte, and the length register decremented. The DMA
operation is complete when the length register reaches
zero. Writing to memory is similar, except that the DMA
controller outputs the data bytes onto the memory data bus.

To read or write a sector, the CPU must first issue the
command to seek to the correct track as before, then write
initial values into the DMA controller address register (i.e.
a pointer to the data buffer in memory) and the length reg-
ister, and then issue the disk command read sector m or
write sector m. The disk operation now proceeds without
further CPU intervention— once the head is above the re-
quired sector, that data is transferred between the disk and
the memory buffer by the DMA controller, and the CPU is
interrupted only when the operation is complete.

Data

Control
Address

CPU

Bus
Grant

Bus
Request

DISK CONTROLLER

MEMORY

Address
register

To/from
disk

Data
register

Length register

Bus Arbitration

We now have two devices the CPU and the disk DMA

controller, both controlling the memory bus — how do we

ensure that they do not both try to use the bus at the same

time? This is achieved with a circuit in the CPU called the

bus arbiter, which arbitrates between requests by the CPU

to use the memory bus and requests by the DMA control-

ler. The DMA controller is connected to the arbiter by two

wires, a signal to the arbiter called bus request and an ac-

knowledgement signal from the arbiter called bus grant.

When the DMA controller has a word to transfer, it as-

serts bus request. When the CPU has finished any momory

access already in progress bus grant to the DMA controller

will be denied; otherwise granted.

1.19 Serial Communication

This is the barest possible means available in every PC to
communicate with each other. IBM PC will be having two
ports COM1: (address 0x3F8), COM2: (0x2F8). Normally
this communication is used between computer and devices
outside. It is evident that CPU does not communicate se-
rially with such devices. Rather it communicate through
UART interface which takes care of converting serial data
to parallel data and vice versa. Prominently asynchronous
and synchronous serial communication techniques are in
wide use. For example, modem is a good example for the
first type.

1.19.1 Asynchronous Serial Communication

The connected devices do not have common clock, must
synchronize their data transfer. This is carried out by mak-
ing both sides to agree on some transmission parameters

1.128 Computer Science & Information Technology for GATE

before data transfer. They are: 1. Speed (mentioned in ei-

ther in data rate in bits per second or baud rate2/signaling

rate) 2. No of data bits per transmission, 3. Whether uses

parity (odd parity or even parity) or not. 4. No of stop bits

and start bits.

Usually when the transmission line is idle its value is

logic 1. Usually least significant bit of the data is transmit-

ted first. After sending the last bit, parity bit will be send

till that point receiver will be waiting. Usually 1, 1 1/2, 2

stop bits are used. The width of the start bit is same as any

data bit.

N81 setting in which one stop/start bits with 8-bit data

(including parity) is the one which is commonly used in

many modem transmissions. Here percentage of overhead

is 20.

1.19.2 Synchronous Serial Communication

Especially this method is proposed to reduce the transmis-

sion overhead. This is achieved by sending a block of data

rather then byte by byte. It does appends header and trailer

information such as source address, destination address,

checksum (for error detection), start/stop bit sequences and

then the resulting data unit known frame is sent. Though

this additional information also overhead but normally this

is at lower percentage than asynchronous communication.

High level Data Link Control (HDLC) is a common

synchronous communication transmission standard. Here

total overhead bits are 48 bits. If we assume data is 256 bits

then the overhead is 15.79%. Even if the data size grows the

overhead percentage will be reduce, as overhead bits will

not change from 48 bits. This is not true in the case of asyn-

chronous serial communication.

When a byte or series of bytes (frame) is received or

transmitted at constant time intervals with uniform phase

differences, the communication can be called as synchro-

nous. Bits of a data frame are sent in a fixed maximum time

interval. Where as in Iso-synchronous mode the maximum

time interval can be varied. Two salient characteristics of

this style of communication are:

1. Frames can not be sent at random intervals. Thus no

need of handshaking.

2. A clock ticking at a certain rate has to be always there

for transmitting serially the bits of all the frames.

2A 1200 bps line transmitting 7-bit bytes with 1 parity, stop, start bits

can send 120 bytes per second

1.19.3 Universal Asynchronous Receiver/Trans-
mitter (UART)

As mentioned above the CPU always communicates in
parallel mode. Thus in order to communicate on serial
lines UART’s are used which takes the responsibility of
converting to serial data stream to parallel stream and vice
versa.

The UART is the one which is responsible for generating
start, stop, and parity bits as well as removing them. The
processor can send control signals to UART to indicate
speed, word size, parity, and no of parity bits.

UART employs Transmit Holding Register (THR),
Transmit Shift Register (TSR). While one byte is transferred
from CPU to THR, the one is TSR is sent on the line. This
is one form of double buffering employed to reduce delays.

Example devices using UART’s are: keypad, mouse,
modem, character input/output devices (terminals).

1.19.4 Serial Communication Standards
(RS232-C)

At most only one device can be connected to this device
unlike USB port. Serial ports of most of the PC’s can
transmit data up to 115,200bps. This standards supports
nine signals given as:

RTS (Request to send)

CTS (Clear to Send)

TD Transmit Data

DTR Data Terminal Ready

DSR Data Set ready

RD Receive Data

CD Carrier Detect

RI Ring Indicator

G Ground

P
C
C

O
M

P
o
rt

CD

DSR

RD

DTR

RTS

CTS

TD

Serial Port at
Modem

Usually RS232-C connector is a 25 pin D-connector (of
course 9 pin D-connectors can be also used). At the barest
level only 3 circuits are used as shown below and resulting
cabling is known as Null Modem.

Introductory Concepts of Digital Logic Design and Computer Architecture 1.129

XMIT (2)

RECV (3)

(2) RECV

(3) XMIT

XMIT (2)

RECV (3)

(2) RECV

(3) XMIT

Ground

1.19.5 A complete Null Modem cabling

TD(2)
RD(3)
RTS(4)
CTS(5)
DSR(6)
G(7)
CD(8)
DTR(20)
RI(22)

(2) TD
(3) RD
(4)RTS
(5) CTS
(6)DSR
(7)G
(8)CD
(20)DTR
(22)RI

A maximum separation of 15m at 9600bps is supported in
this standard. This uses NRZ-L signalling.

Main drawbacks of RS232C is its limited distance of 15m
and if the ground reference pin 7 is different for both sides
then undesirable electrical disturbances will be applied to
transmitted signal.
RS-449 calls for two sets of connectors: 37-pin for data,
control, timing, diagnostics, and a 9-pin for secondary
channel. Whereas, RS232C has a single 25 pin connec-
tor. RS449 supports both balanced and unbalanced while
RS232C supports only unbalanced. A balanced one is in
which the signals are carried between the DTEs on a pair
of wires. They are sent as a current down on one wire and
return on the other; the two wires create complete circuit.
In unbalanced one the signal is sent over a single wire with
DTEs sharing a common ground. A balanced is less effect-
ed by noise.

RS422A and RS423A supports balanced and unbalanced,
respectively. RS422A supports 100000bps for 1000m and
10000000bps for 10m whereas RS423A support 3000bps
for 1000m and 300000bps for 10m.

1.19.6 The Universal Serial Bus Standards

Unlike RS232-C here we can connect at most 127 devices
to a USB port. The data is transmitted in packets. The USB
port is much faster than RS232-C port. USB version 1.1
supports 1.5Mbps (3m channel), 12Mbps for 25m channel,
where as version 2 supports 480Mbps for 25m channel.

USB bus cable has four wires, one for +5V, two for twist-
ed pairs and one for cable. There will be termination im-
pedance at each end.

Serial signals are NRZI (non return to zero) type.

USB supports data transfer of 4 types given as:

1. controlled data transfer support guaranteed bus ac-
cess

2. bulk data transfer support low priority large data
transfer

3. interrupt driven support periodic bandwidth

4. iso-synchronous transfers which support guaranteed
bandwidth

USB employs device polling. USB controllers are further
classified as UHCI (universal host controller interface),
OHCI (open host controller interface). Communication
overhead is more on host CPU in UHCI.

The USB standard specifies four types of packets such as
token, data, handshake, and special.

The token packet is used to initiate data transfers. It
specifies address (ADDR), direction specifier (packet iden-
tifier PID), end of packet (ENDP), and CRC checksum.

Data packets contains no address. Data field value can be
upto 8192 bits. Handshake packets are to either send ACK
or NACK (negative ACK).

n Problem A computer sends 0.5KB(6144 bits) of data to
one of its USB peripherals.

a. Show the packets sent by the computer to perform
this transfer. What is the total no of bits trans-
ferred?

b. What percentage of the bits transmitted is over-
head?

c. How many bits would be required to send the
same data using an RS232C serial ort with no par-
ity, 8 data bits and 1 stop bit is used?

n Answer:
According to the above discussion, a data packet in a USB
standard can have at most 8192 bits. Our data is only 6144
bits. Thus, no of overhead bits=8+16=24.
Percentage of overhead=24/(6144+24)=0.38%

In the case of RS232C for every 1 byte 1 start bit and 1 stop
bit has to be sent. Thus overhead bits = 2*0.5*1024=1024bits
Percentage of overhead = 1024/(6144+1024)=14.3%

1.20 Pipelining

1. For the following code fragment, 2 stage pipeline is
proposed; 1’st stage for multiplication (10 ns) and sec-
ond 2’nd stage for addition (10 ns) is required. Then
how much time it takes to complete.

 for I = 1 to 100 do A[I] = B[I]*C[I]+D[I]

A. 2000 ns B. 1010 ns

C. 1020 ns D. 2010 ns

1.130 Computer Science & Information Technology for GATE

 Answer: Pipeline Time = (n – k + 1)*cycle time =
(100 – 2 + 1)*10ns = 1010ns

2. Repeat the above problem assuming latching in pipe-
line require 2 ns and fetching time is ignored.

A. 2000 ns B. 1012 ns

C. 1212 ns D. None

 Answer: Pipeline time = (100-2+1)*12ns=1212ns

3. A pipeline has k stages with time delays Ti, i=1,..,k
and each stage has a latch with latch access time Tl
then the clock period of this linear pipeline is given as

A. max{T1,T2,….Tk} + Tl

B. min{T1,T2,….Tk} + Tl

C. max{T1,T2,….Tk}

D. None

4. A pipeline has 4 stages with time delays 60 ns, 50 ns,
90 ns and 80 ns. The interface latch has a delay of 10
ns then cycle time of this pipeline is

A. 90 ns B. 100 ns

C. 60 ns D. None

 Answer: Cycle time = max{60, 50, 90, 80}ns +
10ns=100ns

5. For the same problem clock frequency of the pipeline is

A. 10MHz B. 13MHz

C. 20MHz D. None

 Answer: Clock Frequency = 1/cycle time = 1/100ns =
10MHz

6. A pipeline has 4 stages with time delays 20 ns, 20 ns,
100 ns and 40 ns then in order to get maximum per-
formance which stage can be divided?

A. Stage with 20 ns B. Stage with 100ns

C. Stage with 40 ns D. None

 Answer: The stage which has maximum delay such
that variance in stage delays is minimum.

7. A pipeline has 5 stages with time delays 20 ns, 20 ns,
50 ns, 50 ns and 40 ns then in order to get maximum
performance which two stages can be combined?

A. First two B. 3’rd & 4’th

C. 4’th & 5’th D. None

8. A RISC processor has a pipeline with 3 stages with
delays 40 ns, 80 ns and 50 ns, respectively. What is the
clock period and steady state speedup of the pipeline?
If a non-pipelined CPU can process an instruction
within 160ns what is the actual steady-state speedup
of the pipeline?

 Answer:

 Cycle time = max{40,80,50}=80ns (which is same as
the pipeline time)

 Non-Pipelined time=160ns

 Steady state speed-up = Non-pipelined time/pipe-
lined time=160ns/80ns=2

9. An non-pipelined processor has a cycle time of 25 ns
then what will be the cycle time and pipeline laten-
cies if the pipelined version of processor has 5 equally
divided pipeline stages with 1ns latency latches? What
is going to happen if the stages are made as 50 equally
divided stages?

 Answer:

5 Stage one

 Cycle time = 25/5 + 1 = 6 ns

 Pipeline latency = 6*5= 30ns

 (This is general rule of thumb is pipeline latency =
cycle time * no of stage)

 50 Stage one

 Cycle time = 25/50+1=1.5ns

 Pipeline latency=1.5*50=75ns

10. An non-pipelined processor with a 25ns cycle time is
divided into 50 stage with latencies 5,7,6,3, and 4ns. If
the pipeline latch latency is 1 ns what is the cycle time
of the resulting processor?

 Answer: max{5, 7, 6, 3, 4} +1ns = 8ns

 Throughput = 1/8ns = 125MHz

 Pipeline latency = 5*8 = 40ns

11. Given an non-pipelined processor with 10ns cycle
time and pipeline latches with 0.5ns latency, what are
the cycle times of pipelined versions of the processor
with 2, 4, 8 and 16 stages if the data path is evenly di-
vided among the stages?. What is the latency of each
pipelined versions of the processor?.

 Answer:

 Cycle times are: 5.5, 3, 1.75 and 1.125ns

 Pipeline Latencies are: 11, 12, 14 and 18ns

12. For the above pipeline how many stages are required
to get cycle time of 2ns? 1ns?

 Answer:

 No of stages = 10/(2 – 0.5) = 6.67 is 7 stages if the re-
quired cycle time is 2ns

 No of stages = 10/(1 – 0.5) = 20 stages if the required
cycle time is 1ns

13. For the above problem what is the minimum cycle
time achievable with a 4-stage pipeline if additional
logic is assigned to the final stage to balance the ad-
ditional latency of the pipeline latches in the other
stages?

 Answer:

 Total latency = 10 +1.5 = 11.5ns (assuming the last
one doesn’t have any latch)

 Thus clock time = 11.5/4 = 2.875

Introductory Concepts of Digital Logic Design and Computer Architecture 1.131

14. A pipelined processor has stages with latencies
2,3,4,7,3,2, and 4 with 1ns latency latches. What is the
minimum cycle time that can be achieved?

 Answer: 8ns

15. If the first two stages are combined, and 5’th and 6’th
is combined giving 5 stages then what is the latency?

 Answer: 40ns

16. If we limit to two stages, what is the minimum cycle
time?

 Answer :

 2,3,4,7 and 3,2,4 as identified to be combined to get
two stages. Their latencies are 16 and 9ns. Or reverse
is also acceptable. i. e 2,3,4 and 7,3,2,4. Thus their la-
tencies are 9 and 16ns. Only after the first one latch is
required.

 Thus cycle time is 16ns.

 Pipeline latency is 32ns.

17. An arithmetic pipeline contains 4 stages with 60, 70,
100 and 80 ns cycle times and the interface registers
have a delay of 10ns. Calculate speedup (largest pos-
sible)

 Answer:

 Cycle tme=100+10=110ns

 Non-pipelined processor time req = 60 + 70 + 100 +
80 + 10 = 320

 (assuming after calculation in last stage results are
stored in in registers).

 Speedup = 320/110 = 2.9

18. A non-pipelined system takes 50ns to process a task.
The same tack can be processed using 6 segment
pipeline with a clock cycle of 10ns then calculate the
speedup ratio assuming no of tasks are 100? What is
the max speedup that can achieved?

 Answer: (100*50)ns/((6+99)*10ns)=4.76

 Max possible speed-up=6

19. A arithmetic pipeline has 4 stages with time delays
50,30,95 and 45ns. The interface registers delay is 5ns
then calculate how long it takes to complete 100 tasks
and how can we reduce the total time about one half?

 Answer

 Cycle time = 95 + 5ns = 100ns

 Total time required = 100*100 = 10000ns

 Divide 3’rd stage into two stages with latencies 50 and
45 ns and then time will be reduced to almost half.

20. A three stage pipeline is used to execute the code seg-
ment

 For I=1to n do {X[I] = ((A[I].B[I]) + C[I])*D[I]}

 The first stage multiplies A[I]*B[I] in 20ns, then the

second stage adds this product to C[I] in 15ns and
in the last stage final multiplication with D[I] is done
within 20ns. What is the clock period of this pipeline?
What is the steady state speedup for this pipeline? For
what values of n does the pipeline produces results
more quickly than a non-pipelined unit? For what
value of n is the speedup exactly 1.5? Assume latch
time is 5ns.

 Answers:

 Clock cycle = 20ns

 Steady state Speed-up = (20 – 5 + 15 – 5 + 20)/20

 = 2.25

 (assuming last stage is not having latch)

 Pipeline delay = 3*20=60ns

 In a non-pipelined version every operation requires
45ns.

 Therefore for n greater than 2 then pipeline is better
than non-pipelined one.

 1.5 = n*45/((3+n-1)*20)

 n = 2

21. A CPU has a clock period of 25ns. Some instructions
can be removed from its instruction set to form a
second CPU with a clock period of 24ns. These in-
structions comprise 1% of typical code and must be
replaced by four instructions each.

A. Which CPU is better?

B. What percentage of typical code would be re-
moved instruction have to comprise in order to
for the two CPU’s to have same performance?

C. How many instructions would have to be needed
to replace each of the remove instructions for the
two CPU’s to have same performance?

D. For what value of clock period of the original CPU
would the two CPU’s have the same performance?

E. For what value of the clock period of the second
CPU would the two CPU’s have the same perfor-
mance?

 Answer:

 Assume every instruction requires same number of
cycles to complete (let c)

 In the first CPU thus requires 25c ns to complete any
instruction.

 A. Average time required for second

 CPU=0.99*24c+0.01*(4*24)c=24.72c ns

 Therefore second CPU is better.

 B. 25c = (1-x)*24c +x*4*24c

 x = 0.01388888

 That is 1.38888% of typical code has to be removed

1.132 Computer Science & Information Technology for GATE

C. 25c = 0.99*24c +0.01*x*24c

 x = 5.16

 i.e 6 instructions to be replaced.

D. 24.72 ns

E. 25c = 0.99*xc + 0.01*4*xc

 x = 24.27ns

22. Repeat the above problem with a clock period 15ns
and a reduced CPU with a clock period of 12ns. In-
structions removed are 2% and are emulated through
6 instructions each.

 Answer:

 Assume every instruction requires same number of
cycles to complete (let c)

 In the first CPU thus requires 25c ns to complete any
instruction.

A. Average time required for second

 CPU = 0.98*12c + 0.02*(6*12)c = 13.2c ns

 Therefore second CPU is better.

B. 15c = (1-x)*12c +x*6*12c

 x = 0.05

 That is 5% of typical code has to be removed.

C. 15c = 0.98*12c + 0.02*x*12c

 x=13.5

 i.e 14 instructions to be replaced.

D. 13.2 ns

E. 15c = 0.98xc + 0.02*6*xc

 x=13.63 ns

23. A CPU has a clock period of 20ns. It is possible to
remove some (2%) instructions to make clock period
as 18ns. This 2% instructions can be realised with 3
left over instructions in assembly. Will there be any
advantage?

 Answer:

 Assume every instruction requires same number of
cycle to complete (let c) In the first CPU thus requires
20c ns to complete any instruction. Time required for
any instruction in second CPU can be calculated as:

 0.98*18c+0.02(3*18c) = 18.72c

 There fore second CPU requires less time to execute
any instruction.

24. Calculate execution time of the following instructions
in a 5-stage pipeline (all operands are registers).

 ADD r1,r2,3

 SUB r4,r5,r6

 MUL r8,r2,r1

 ASH r5,r2,r1

 OR r10,r11,r4

 Answer: (A instruction is said to be issued when it
enters into execution stage)

 Dependencies MUL, ASH depends on ADD

 If ADD issues at n’th cycle then

 SUB issues at n+1’th cycle

 MUL issues at n+3’rd cycle

 ASH issues at n+4’th cycle

 OR issues at n+5’th cycle

 Then, execution time = 5 + 5 = 10 cycles

25. Calculate execution time of the following set of in-
structions assuming a 5-stage instruction pipeline (all
operands are registers).

 ADD r3,r4,r5

 SUB r7,r3,r9

 MUL r8,r9,r10

 ASH r4,r8,r12

 Answer:

 Dependencies SUB depends on ADD

 If ADD issues at n’th cycle then

 SUB issues at n+3’rd cycle

 MUL issues at n+4th cycle

 ASH issues at n+7’th cycle

 Execution time = 5 + 7 = 12 cycles

26. Re-order the above set of instructions in the following
manner. Calculate execution time.

 ADD r3,r4,r5

 MUL r8,r9,r10

 SUB r7,r3,r9

 ASH r4,r8,r12

 Answer: If ADD issues at n’th cycle then

 MUL issues at n+1’th cycle

 SUB issues at n+3’rd cycle

 ASH issues at n+4’th cycle

 Execution time = 5 + 4 = 9 cycles

27. Repeat the above problem assuming bypassing is
available (Note: bypassing reduces dependency delay
to 2 in the case of non-branch instructions).

 Answer:

 If ADD issues at n’th cycle then

 MUL issues at n + 1’th cycle

 SUB issues at n + 2’rd cycle

 ASH issues at n + 3’th cycle

 Execution time = 5 + 3 = 8 cycles.

Introductory Concepts of Digital Logic Design and Computer Architecture 1.133

Note

The pipeline is actually slower than the non-pipelined
arithmetic unit due to delays of the latches at the end
of each stage.

Maximum speedup occurs when each stage has the
same delay.

If the no of stages increases HW cost, area increases
and pipeline delay also increases.

If a instruction enters into execute stage it is said to
be issued.

1.21 Instruction Hazards

As long as instructions are independent then the pipeline
can show throughput of 1/cycle time. However, there are
many factors which limit the pipeline throughput such as
dependencies, branch instructions, etc. The instruction
hazards are classified as follows:

Read After Read (RAR): ADD r1,r2,r3

 SUB r4,r5,r3

RAR hazard does not cause any problem. Thus both the in-
structions can be executed sequentially.

Read After Write (RAW): ADD r1,r2,r3

 SUB r4,r5,r1

Here, a instruction uses a register which is modified by pre-
vious instruction as shown above. These hazards are called
as data dependencies or true dependencies. When a RAW
hazard occurs then the dependent instruction gets stalled
till all the operands are available. This can be done by either
by HW or optimizing compiler. This is called as pipeline
stall or bubble. HW may include no-operation (NOP) into
the code.

Write After Read (WAR): ADD r1,r2,r3

 SUB r2,r5,r6

Write After Write (WAW): ADD r1,r2,r3

 SUB r1,r5,r6

WAR, WAW are called as name dependencies. They do not
cause any delays in the pipeline. For a system with large
number of registers the chances of these hazards becomes
less always the compiler can select other independent reg-
isters in the instructions.

1.21.1 Branch Instructions

Another major problem with pipelining is branch instruc-
tions. As processor can not determine which instruction to
fetch next until the branch has executed. Particularly branch
instructions involving some conditions create data depen-
dencies between the branch instruction and the instruction

fetch stage of pipeline. For example, for a 5-stage (fetch, de-
code, read registers, execute, write back) pipeline only after
branch instruction completes execute stage PC value is up-
dated thus the next instruction can be initiated in the next
cycle. Thus, if there exists a branch instruction is issued on
n’th cycle then the following instruction will be issuing at
n+4’th cycle. If the pipeline computed the new value of PC
before execute stage then branch delay may become 3 cycles.

Branch delays are also called as control hazards. Branch
prediction techniques are employed to reduce this delay.

1.21.2 Structural Hazards

These things occur if pipeline HW does not support simul-
taneous pipeline operations. For example, if write back and
register read operations can not be performed simultane-
ously then delays may occur.

Scoreboarding is used to identify whether registers are
available for reading or they are waiting for previous pipe-
line instruction to be modified.

Result Forwarding (by-pasing) Results of execute stage
will be forwarded to previous stages of the pipeline such
that these instructions will be allowed without waiting for
the result to be written into register file. However, result
forwarding of branch instructions may not improve branch
instruction delays as the result of branch instructions are
not written into register file commonly. Result forwarding
reduce the latency of non-branch instruction to one cycle.

Note on RISC Processors

In RISC processors all the instructions are of same
size.

Number of addressing modes in RISC processors are
limited unlike CISC processors.

RISC processors limit interaction with memory to
loading and storing data. Where as CISC processors
supports instructions to directly AND (logical) with
memory words.

RISC processors uses extensively instruction pipelin-
ing.

RISC processors contains large number of registers.

Another unique characteristic of RISC processors is
that they contain hardwired control unit unlike CISC
processors which contains programmable control
unit.

In order to take care of waiting times (stalls) delayed
loading, delayed branches are employed.

Speculative execution of instructions is employed to
take care of delays (Itanium processor handles jumps
without any time loss at all).

RISC processors are usually supported by optimising
compilers such that number of stalls are minimised.

1.134 Computer Science & Information Technology for GATE

Separate instruction and Data streams are employed
to avoid memory access conflicts.

1.21.3 Register Windows

Although many registers are available in RISC processors it
may not possible to access all of them at a time. These reg-
isters are divided into Global and register windows (where
a window is a set of registers). It is acceptable that a set of
registers can be common to more than one window. In fact
functions communicate parameters, return values through
this overlapped windows.

Most RISC processors use about 8 windows.

Annuling is the process in which results of a instruction
are not stored though calculated because of branching.

CISC processors are designed for assembly language
programs where as RISC are designed for compiler, high-
level language programs.

The same compiled high-level program may require
more instructions for a RISC than CISC.

CISC processors are backward compatible (Ex Intel
Family).

PowerPC employs a combination of RISC & CISC tech-
nology.

CISC program takes less space in memory.

1.22 Solved Questions

1. Explain about Working Set and Thrashing.

 Working set means the set of pages (for virtual mem-
ory) or memory blocks that is actively used during a
limited time window. If the working set exceeds the
size of the physical memory, then pages will keep
swapping in and out and slow down the overall com-
puter speed (for virtual memory). It will be similar for
the cache. If the number of active memory blocks ex-
ceeds the total size of the cache, then memory blocks
will keep being copied in and out, and slow down the
computer performance. This phenomenon is called
thrashing.

2. A DMA module is transferring characters to memory
using cycle stealing, from a device transmitting at
9600 bit per second. The processor is fetching instruc-
tions at the rate of 3 million instructions per second
(MIPS). By how much will the processor be slowed
down due to DMA activity?

 Answer:

 In one second: 1200 characters (bytes) being sent to
memory.

 If DMA is transferring w number of characters, then
it takes w * 1/1200 seconds to transfer them.

 “3 million instructions per second” processor is
slowed down by the time to send 1200 bytes.

 That is, to execute 3 million instructions, it now takes
1 second + w/1200 seconds.

 e.g. if w = 1200, then 3 MIPS becomes 1.5 MIPS.

3. Design a 2M by 32 bit memory using SRAM chips of
size 128K × 1 bit. Give the array configuration of the
chips on the memory board, showing all required in-
put and output signals. Is it possible to come up with
a design so that the memory system is byte and word
addressable?

 Answer:

 16 x 32 128K x 1 bit chips

 17 bits used to address within each chip

 4 bits used to select row (using chip select and decod-
er)

4. A dynamic RAM that has refresh cycle of 64 times per
ms. Each refresh operation requires 150 ns; a memory
cycle requires 250 ns. What percentage of the memo-
ry’s total operating time must be given to refreshes?

 Answer: In 1ms : refresh = 64 times, memory cycle

 =
1ms

250ns
=4000 times

 Therefore, % refresh time

 =
64 150

4000 250

9600
100 0 96

¥

¥
= ¥ =

ns

ns

ns

1000000ns
% . %

5. Given an 8-bit data word stored in memory is 11001010. (a) Using the Hamming algorithm, determine what check
bits would be stored in memory with the data word.

Bit Position 12 11 10 9 8 7 6 5 4 3 2 1

Position Num 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001

Data bit D8=
 1

D7=
 1

D6=
 0

D5=
 0

D4=
 1

D3=
 0

D2=
 1

D1=
 0

Check bit C8=
 0

C4=
 1

C2=
 0

C1=
 1

Introductory Concepts of Digital Logic Design and Computer Architecture 1.135

Answer :

 C1 = EXOR (D1, D2, D4, D5, D7) = 1

 C2 = EXOR (D1, D3, D4, D6, D7) = 0

 C4 = EXOR (D2, D3, D4, D8) = 1

 C8 = EXOR (D5, D6, D7, D8) = 0

 (b) If the check bits received when reading the stored
word are 0000, what word was read? Show why.

Answer :

 0000 EXOR 0100 = 0100 indicates bit position 4 is
wrong. That is check bit C4

 0000 EXOR 0101 = 0101 indicates bit position 5 is
wrong. That is data bit 2.

 So, that word read, 11001010, is actually correct.

 So, the word read was 11001000, rather than the cor-
rect word 1101010.

6. Given a single platter disk with the following param-
eters: 7200 rpm, 2000 tracks, 600 sectors per track,
10 msec per track head travel speed, calculate average
seek time, average rotational latency time, average re-
quest time.

 Average Seek time =10m sec/track * 2,000 tracks * .5 =
10 ms

 Average Rotational Latency time = (7200 rpm / 60
sec/min = 120 rps)=1/ 120 rps * .5 = 4.17 ms

 Average request time = (Transfer time = 8.33 ms/rev /
600 sectors/track = 13.88m sec)

 Seek time + Latency time + Transfer time = 10 ms +
4.17 ms + .01388 ms = 14.18 ms

7. Assume that we are planning to enrich a computer
by two possible changes: making multiply instruc-
tions to run five times faster than before, or making
memory access instructions to run three times faster
than before. We repeatedly run a program that takes
100 seconds to execute. Of this time, 25% is used for
multiplications, 45% for memory access instructions,
and 30% for other tasks.

A. What will the speedup be if we improve only mul-
tiplication?

B. What will the speedup be if we improve only
memory access?

C. What will the speedup be if both improvements
are made?

 Answer:

 T1= time before enhancement = 100 sec

 T1= Tmemory + Tmult + Tother

 Tmemory = .45*100 = 45 sec

 Tmult = .25*100 = 25 sec

 Tother = 30 sec

A. If we improve only multiplications:

 T = 45+ 25/5 +30 = 80 sec

 Speed up = 100/80 = 1.25

B. If we improve only memoery access:

 T = 45/3 + 25 + 30 = 70 sec

 Speed up = 100/70 = 1.428

C. If we improve multiplication and memory access:

 T= 45/3 + 25/5 + 30 = 50

 Speed up = 100/50 = 2

8. A given C++ application runs for 4 seconds. An im-
proved compiler is released that requires 0.8 as many
instructions as the old one, but it increases CPI by 1.2.
How fast can we expect the new program with this
new compiler and same system?

 Answer : Old execution time = I * CPI* clock cycle
time = 4 second

 New execution time= 0.8*I * 1.2* CPI * clock cycle
time = 0.8*1.2*(I * CPI* clock cycle time) = 0.8 * 1.2*
4 = 3. 84

 So, the new program is 4/3.84(=1.04) faster than old
program.

9. Machine A implements all floating point operations
in hardware while machine B implements them in
software using integer instructions.

 Program P has the following mix of instructions:
floating-point multiply: 10%, floating-point add:
10%, floating-point divide: 10%. The rest are integer
instructions.

 On machine A floating-point multiplication takes
6 cycles, floating-point add 4 cycles, floating-point di-
vide 20 cycles. All integer instructions take 2 cycles.

 On macine B all integer instructions take one cycle.
Floating-point multiplication takes 30 instructions,
floating-point add 20, floating-point divide 50.

 Both machines A and B have a clock rate of 100
MHz. Program P executes 100 million instructions on
machine A.

A. What is the CPI (cycle per instruction) on ma-
chine A?

 Answer: 6x10% + 4x10% + 20x10% + 2x70% = 44

B. How many instructions does program P execute
on machine B?

 Answer: 0.1*100*106 x 30 + 0.10*100*106 * 20 +
0.10*100*106* 50 + 0.70*100*106 = (300+200+500+7
0)*106=1,070,000,000

C. What is the CPI of program P on machine B?

 (Hint: all FP instructions in P are executed using
integer instructions)

 Answer: 1.0

1.136 Computer Science & Information Technology for GATE

D. How many millions of floating-point instructions
per second are executed of program P on machine
A?

 Answer:

of FP instructions in P

execution time of P
 =

30 10

IC

6¥
¥ CPI CC¥

 =
30 10

 100 10 4.4 10ns

6

6

¥
¥ ¥ ¥

 = 6.81 × 106

10. Assume that we want to compare the performance
of two different computers. Both computers have the
same ISA, use the same compiler, and will execute the
same program. Computer A is built using the single-
cycle implementation. Execution times for each type
of instruction for Computer A are given as:

Instruction Total

beq 5 ns

sw 8 ns

j (jump) 2 ns

lw 9 ns

R-format 7 ns

 Computer B is implemented using the multiple-clock-
cycle implementation with the cycle time of 2 ns.

 Assume the instruction mix for the workload of both
computers is 20% beq, 15% sw, 10% jumps, 30% lw,
and 25% R-format. Which computer is faster and by
how many times?

 CPU__ exec __ time = IC × CPI × cycle __ time

 For Computer A:

 CPU__ exec __ time = IC × 1 × 1ns = 9 ICns

 For Computer B:

CPI = (0.2) (3) + (0.15) (4) + (0.1) (3) + (0.3) (5)
+ (0.25) (4)

 = 0.6 + 0.6 + 0.3 + 1.5 + 1.0

= 4.0

 CPU__ exec __ time = IC × 4.0 × 2ns = 8 ICns

Perf B

Perf A

CPU exec time

CPU exec time

ICns

ICns
A

B

_

_

_ _

_ _
.= = =

9

8
1 125

 Computer B is 1.125 times faster than Computer A.

11. In a system, a instruction will be broken down into
the following five (5) stages: 1) fetch the instruction
(FE), 2) read the registers and decode the instruction
(RR), 3) use the ALU to perform the specified opera-
tion or to compute an address (ALU), 4) access data
in memory (DA), and 5) write results into a register
(RW). Assume each stage of the pipeline requires
the same amount of time to complete, 2 ns, all five
steps are used for each instruction, the single-cycle
datapath modified for pipelining is used, the register
file can be read and written in the same clock cycle,
and that all other functional units operate the same
as they did for the single-cycle implementation. Draw
the multiple-clock-cycle pipeline diagram showing
the pipelined execution of the following instruction
sequence as it is shown.

 Is it possible to improve the execution of the pipe-
line? If so, identify any hazards present in the origi-
nal sequence, describe any changes made to the code
sequence to create the improvements, and draw the
resulting multiple-clock-cycle pipeline diagram
showing the improved execution. If not, indicate
that performance cannot be improved . Calculate any
speedup realized by your changes compared to the
pipelined execution.

 lw $s0, 10($t0)

 lw $s1, 100($t0)

 add $s2, $s0, $t1

 sub $s3, $s5, $t1

 add $s4, $s5, $t1

 Answer: Execution of instructions in the given pipe-
line is shown below along with probable stalls. It takes
22 ns to complete the execution of all the instructions.

FE RR ALU DA RW

DAALU RWFE RR

FE RR ALU DA RW

DAALUFE RR

ALUFE RR

Iw

Iw

add

sub

add

= PIPELINE STALL

RW

DA RW

2 4 6 8 10 12 14 16 18 20 22

time (ns)

Introductory Concepts of Digital Logic Design and Computer Architecture 1.137

12. Assume that we have two machines M1 and M2 with
the same instruction set architecture. Machine M1
has a clock rate of 500MHz and takes an average of
2.0 clock cycles per instruction (CPI) for a program.
Machine M2 has a clock rate of 400MHz and a CPI of
1.2 for a program.

A. Which machine is faster while running this pro-
gram, and by how much?

B. If a test program executes in 10 million instruc-
tions (on both machines), how long will it take to
run the program on Machine M1? Machine 2?

C. Suppose that instructions implemented on M1
fall into two performance classes, the first (Class
A) takes one clock cycle to execute, while the sec-
ond (Class B) takes 5 clock cycles to execute. How
many Class B instructions are executed when our
test program is run?

 Answer: Do remember about the following equation
to find the time in seconds required to execute a pro-
gram.

Seconds

Program

Instructions

Program

Clock cycles

Instruction
= ¥ ¥¥

Seconds

Clock cycle

A. Assume I as the number of instructions in the
given program. Therefore,

 Execution TimeM1 = I × 2.0 × 1/(500 × 106) = I/
(250 × 106) = 4I × 10–9 seconds

 Execution TimeM2 = I × 1.2 × 1/(400 × 106) = 0.3I/
(100 × 106) = 3I × 10–9 seconds

 Since both M1 and M2 are running the same in-
structions (same program, same instruction set),
we can use I in both equations. Comparing the
execution times for M1 and M2, I divides out,
and we see that the Execution TimeM1 / Execution
TimeM2 = 4/3. From this we can conclude that the
program runs 33% slower on Machine M1.

B. Same formulas from (a), but now we have number
of instructions in the program, I = 107 . Therefore,

 Execution TimeM1 = I × 2.0 x 1/(500 × 106) = 107/
(250 × 106) = 1/25 = 0.04 seconds

 Execution TimeM2 = I × 1.2 × 1/(400 × 106) = 0.3
× 107/(100 × 106) = 3/100 = 0.03 seconds

C. Let A be the number of Class A instructions, and
B the number of Class B instructions. So, A + B =
107

 The execution time for M1 (calculated in clock
cycles) is: (1A + 5B)(clock cycle time).

 The CPI for the entire program is 2.0. That means
that, on average, every instruction executed takes
2 clock cycles to run. In terms of CPI, the total
execution time is therefore:

 CPI × (clock cycle time) (number of instructions)
= 2.0 I (clock cycle time) Thus, A + 5B = 2.0I = 2
× 107

There exists a data hazard with register $s0.

The code sequence can be changed as shown below to improve the execution in the pipeline.

 lw $s0, 10($t0)

 lw $s1, 100($t0)

 sub $s3, $s5, $t1

 add $s4, $s5, $t1

 add $s2, $s0, $t1

The resulting multiple-clock-cycle pipeline diagram with the modified code sequence is shown below. We may find that
this will be taking 18 ns to complete all the instructions.

FE RR ALU DA RW

DAALU RWFE RR

RR ALU DA RW

DAALURR

ALURR

Iw

add

sub

add

RW

DA RW

2 4 6 8 10 12 14 16 18 20 22

time (ns)

FE

FE

FE

Iw

Thus, the Speedup = 22/18 = 1.22

1.138 Computer Science & Information Technology for GATE

 (A + 5B) – (A + B) = 4B = (2 × 107) – 107 = 1 × 107.

 Therefore, 4B = 1 x 107

 And B = 2.5 × 106 = 2,5 million instructions.

13. What does ISA conveys to us?

 Answer: The Instruction Set Architecture (ISA) pro-
vides a view of a processor’s features as seen from
the perspective of an assembly or machine language
programmer. ISA describes the instructions that the
processor understands, the way those instructions
are presented to the processor, the register set, and
the way memory is organised. Of course, a real-world
processor’s ISA would also include a few additional
items, such as its interrupt and/or exception handling
facilities, basic data types, and different modes of op-
eration, e.g. supervisor vs. normal mode.

14. In stack based machines, where does stack is physi-
cally located?. What is stack depth?

 Answer: Stack machines are implemented by making
the top portion of the stack internal to the processor
(i.e., in registers). This is referred to as the stack depth.
The rest of the stack is placed in memory. Thus, to ac-
cess the top values that are within the stack depth, we
do not have to access the memory. Obviously, we get
better performance by increasing the stack depth. Most
scientific calculators also use stack-based operands.

15. Differentiate between Little Endian versus Big Endi-
an machines. Explain how Hex number 12345678 is
stored in both the systems?

 Little-endian machines:

 Machines that store a multiple-byte data with its least
significant byte first (at the lower address) and its
most significant byte last. This method is used by Intel
microprocessors (Most PCs).

 Big-endian machines:

 Machines that store a multiple-byte data with its most
significant byte first (at the lower address) and its least
significant byte last. This method is used by Motorola
microprocessors and most UNIX machines.

 Given Hex Value is Stored in both Big and Little En-
dian Format as shown here.

Address æÆ 00 01 10 11

Big Endian 12 34 56 78

Little Endian 78 56 34 12

 In the following example, table cells represent bytes,
and the cell numbers indicate the address of that byte
in main memory.

 Note: by convention we draw the bytes within a mem-
ory word left-to-right for big-endian systems, and
right-to-left for little-endian systems.

Word
Address

Big-Endian Word
Address

Little-Endian

0 0 1 2 3 0 3 2 1 0

4 4 5 6 7 4 7 6 5 4

8 8 9 10 11 8 11 10 9 8

12 12 13 14 15 12 15 14 13 12

 MSB æÆ LSB MSB æÆ LSB

Note: an N-character ASCII string value is not treated
as one large multi-byte value, but rather as N byte val-
ues, i.e. the first character of the string always has the
lowest address, the last character has the highest ad-
dress. This is true for both big-endian and little-endi-
an. An N-character Unicode string would be treated
as N two-byte value and each two-byte value would
require suitable byte-ordering.

 The following example show the contents of mem-
ory at word address 24 if that word holds the number
given by 122E 5F01H in both the big-endian and the
little-endian schemes?

 Big Endian Little Endian

MSB æÆ LSB MSB æÆ LSB

24 25 26 27 27 26 25 24

Word 24 12 2E 5F 01 Word 24 12 2E 5F 01

 The following example show the contents of main
memory from word address 24 if those words hold
the text RAMANA RAO.

Big Endian Little Endian

+0 +1 +2 +3 +3 +2 +1 +0

Word 24 R A M A Word 24 A M A R

Word 28 N A R Word 28 R A N

Word 32 A O ? ? Word 32 ? ? O A

 The bytes labelled with ? are unknown.

16. Assume We are exploring alternative design of a CPU
architecture, and tried to reduce the average clocks
per instruction from 3.5 to 2.7 (due to an improve-
ment in the ALU) with decreases clock speed by 25%.
Is this worth it?

 CPUtime = InstructionCount × CPI × ClockCycle-
Time

 Here, InstructionCount is same with both the CPU’s.
So, we divide CPUtime’s of original by modified ones
as shown by:

 CPUtime(o)/CPUtime(m) = 3.5 × 1.0 / (2.7 × 1.25) =
1.037

 So the modified version is almost 4% faster than the
original. This, trial is productive trail in the design of
the CPU.

Introductory Concepts of Digital Logic Design and Computer Architecture 1.139

 RAM chips per memory module

 =
Width of Memory Word

Width of RAM Chip
= 16/4 = 4

 18 bits are required to address a RAM chip (since
256K = 218 = Length of RAM Chip)

 A 4Mx16 bit word-addressed memory requires 22 ad-
dress bits (since 1M = 220)

 Therefore 4 bits (=22–18) are needed to select a mod-
ule.

 The total number of RAM Chips = (4M × 16) / (256K
× 4) = 64.

 Total number of Modules = Total number of RAM
chips / RamChipsPerModule = 64/4 = 16

18. If the clock rates of machines M1 and M2 are 200
MHz and 300 MHz, find the clock cycles per instruc-
tion for program 1 given the following:

Program Time on M1 Time on M2

 1 10 sec 5 sec

 2 3 sec 4 sec

Program Instructions on
M1

Instructions on
M2

 1 200 × 106 160 × 106

 Answer:

CPI= Cycles per second / Instructions per sec-
ond. So

M1 = 200 × 106 / (200 × 106 / 10 sec) = 10 cycles
per instruction

M2 = 160 × 106 / (160 × 106 / 5 sec) = 9.4 cycles
per instruction

19. Consider 2 different implementations, M1 and M2 of
the same instruction set. There are four classes of in-
structions (A, B, C and D) in the instruction set. M1
has a clock rate of 500MHz. The average number of
cycles for each instruction class on M1 is:

Class CPI for this class

A 1

B 2

C 3

D 4

 M2 has a clock rate of 750 MHz. The average number
of cycles for each instruction class on M2 is:

Class CPI for this class

 A 2

 B 2

 C 4

 D 4

 Assume that peak performance is defined as the fast-
est rate that a machine can execute an instruction se-
quence chosen to maximize that rate. What are the
peak performances of M1 and M2 expressed as in-
structions per second?

 Answer: For M1 the peak performance will be
achieved with a sequence on instructions of class A,
which have a CPI of 1. The peak performance is thus
500 MIPS.

 For M2 , a mixture of A and B instructions both of
which have a CPI of 2, will achieve peak performance
which is 375 MIPS.

20. Consider 2 different implementations, M1 and M2, of
the same instruction set. There are three classes of in-
structions (A, B and C) in the instruction set. M1 has
a clock rate of 400 MHz and M2 has a clock rate of 200
MHz. The average number of cycles for each instruc-
tion set is given in the following:

Class CPI M1 CPI M2 C1 Usage C2 Usage 3rd party

 A 4 2 30% 30% 50%

 B 6 4 50% 20% 30%

 C 8 3 20% 50% 20%

17. Design a Main Memory of size 4M x 16 bit (word addressable), using RAM chips of size 256K × 4 bit.

Module 0 Module 1 Module 2 Module 3

≠

218

Ø

C
H
I
P
0

C
H
I
P
1

C
H
I
P
2

C
H
I
P
3

C
H
I
P
4

C
H
I
P
5

C
H
I
P
6

C
H
I
P
7

C
H
I
P
8

C
H
I
P
9

C
H
I
P
10

C
H
I
P
11

C
H
I
P
12

C
H
I
P
13

C
H
I
P
14

C
H
I
P
15

4 × 4 bits 4 × 4 bits 4 × 4 bits 4 × 4 bits

1.140 Computer Science & Information Technology for GATE

 The table also contains information of how the three
different compilers use the instruction set. C1 is a
compiler produced by the makers of M1, C2 is pro-
duced by the makers of M2 and the other is a third
party compiler. Assume that each compiler uses the
same number of instructions for a given program but
that the instruction mix is as described in the table.
Using C1 on both M1 and M2 how much faster can
the makers of M1 claim that M1 is over M2? Using C2
how much faster is M2 over M1? If we purchase M1
which compiler should we use? For M2?

 Answer:

 Using C1, the CPI on M1 = 4 * .3 + 6 * .5 + 8 *.2 = 5.8

 M2 = 2 * .3 + 4 * .5 + 3* .2 = 3.2

 So assuming that M1 is faster we have: (3.2/200E6) /
(5.8/400E6) = 1.10 or M1 is 10% faster than M2 using
C1

 Using C2, the CPI on M1 = 4*.3 + 6*.2 + 8*.5 = 6.4

 M2 = 2 * .3 + 4 * .2 + 3* .5 = 2.9

 Assuming that M2 is faster we have (6.4/400E6) /
(2.9/200E6) = 1.10 or now M2 is 10% faster than M1
using C2.

 For the 3rd party compiler:

M1 = 4*.5 + 6*.3 + 8*.2 = 5.4

 M2 = 2 * .5 + 4 * .3 + 3* .2 = 2.8

 This tells us that the 3rd party compiler is better for
both machines since the CPI is lower. If we try M2 as
the faster machine we get:

 (5.4/400E6) / (2.8/200E6) = .964

 So M1 is the faster machine. How much faster? Re-
verse the equation:

 (2.8/200E6) / (5.4/400E6) = 1.037 or M1 is 3.7% faster
than M2.

21. Consider a program P, with the following mix of op-
erations:

 floating-point multiply 10%

 floating-point add 15%

 floating-point divide 5%

 integer instructions 70%

 Machine MFP has floating point hardware and can
implement the floating point operations directly. It
requires the following number of clock cycles for each
instruction class:

 floating-point multiply 6

 floating-point add 4

 floating-point divide 20

 integer instructions 2

 Machine MNFP has no floating point hardware and
so must emulate the floating-point operations using
integer instructions. The integer instructions take
2 clock cycles. The number of integer instructions
needed to implement each of the floating point op-
erations is:

 floating-point multiply 30

 floating-point add 20

 floating-point divide 50

 Both machines have a clock rate of 1000 MHz. Find
the native MIPS rating for both machines.

 Answer: MIPS = Clock Rate / CPI x106

 CPI for MFP = .1*6 + .15*4 + 0.05*20 + .7*2 = 3.6

 CPI of MNFP = 2.

 MIPS for MFP = 1000/CPI = 278

 MIPS for MNFP = 1000/CPI = 500

22. If the machine in MFP in the last exercise needs 300
million instructions for a program, how many integer
instructions does the machine MNFP requires for the
same program?

 Answer: This is really just a ratio type problem:

INSTRUCTION Count on
MFP in 106

Count on
MNFP in 106

floating-point multiply 30 900

floating-point add 45 900

floating-point divide 15 750

integer instructions 210 210

TOTAL 300 2760

23. The table below shows the number of floating point
operations executed in two different programs and
the runtime for those programs on three different
machines: (times given in seconds)

Program FP ops Computer
A

Computer
B

Computer
C

1 10,000,000 1 10 20

2 100,000,000 1000 100 20

 Which machine is faster given total execution time?
How much faster is it than the other two?

 Answer:Total execution time for Computer A is 1001
seconds, Computer B is 110 seconds and C 40 sec-
onds. So C is the fastest. It is 1001/40 = 25 times faster
than A and 110/40 = 2.75 times faster than B.

24. What are Benchmarks? List some popular processor
benchmarks.

 Programs that are specifically chosen to measure
performance of processors are called as benchmarks.

Introductory Concepts of Digital Logic Design and Computer Architecture 1.141

They are used to compare running a program on
Computer A vs. Computer B. There exists various
Types of benchmarks such as: Database access, Math
floating point programs, compilers, etc.

 Well-known benchmarks:

 Whetstone: Synthetic program used for performance
testing which emphasizes floating point operations.

 Dhrystone: Emphasises integer operations

 SPEC: System Performance Evaluation Coopera-
tive:

 Non-profit organisation formed to establish stan-
dardised benchmarks

 SPEC ratio: How fast this computer is relative to a Sun
Ultra 5_10 at 300 MHz?

 Set of programs to test integer (SPECint92), floating
point (SPECfp92), web accesses (SPECweb99), client-
server, etc.

 Problems with benchmarks:

 Often compilers are optimised for the benchmark –
not YOUR program.

 Characteristics of THEIR programs may be different
than YOUR program.

 Proper use of benchmarks:

 Use programs typical of expected workload.

 Use programs typical of expected class of applications:
compilers/editors, scientific applications, games.

 Using Benchmarks

 Weighting each program by its use

 Consider the following scenario:

Time on System A Time on System B

Program X 1 10

Program Y 1000 100

 If the two programs were used 50% of the time we
could add the use together to find weighted time:

 System A = (.5)(1) + (.5)(1000) = 500.5

 System B = (.5)(10) + (.5)(100) = 55

 System B appears faster than System A.

 If the program is used 90% and Program Y 10% of the
time, then the weighted time:

 System A = (.9)(1) + (.1)(1000) = 100.9

 System B = (.9)(10) + (.1)(100) = 19

 System B still appears faster than System A!

 When would System A appear faster than SystemB?

 1n + 1000(1-n) < 10n + 100(1-n)

 1000 + 1n – 1000n < 10n – 100n + 100

 900 < 909n

 900/909 < n

 n > .9900990099

 SystemA = .99(1) + .01(1000) = 10.99

 SystemB = .99(10) + .01(100) = 10.9

 Thus, SystemB is faster always compared to SystemA.

25. A new computer design improves the clock rate from
2 GHz to 2.5 GHz, but has a lower efficiency in the
CPI of 1.6 instead of 1.3 due to memory access bottle-
necks. The compiler remains the same. Is the comput-
er worth building?

 Time before changes= IC*1.3*1/2000 = 0.00065IC

 Time after changes= IC*1.6*1/2500= 0.00064IC

 As the second one is smaller than first one, the chang-
es can be said as positive benefit on CPU time. So, one
can build the computer with the proposed modifica-
tions.

26. A given application written in Java runs 15 seconds on
a desktop processor. A new Java compiler is released
that requires only 60% as many instructions as the
old compiler. Unfortunately, it increases CPI by 10%.
How fast can we expect the new application to run
using this new compiler?.

 Time before changes: IC*CPI*cycles/second=15sec

 Time after changes:0.6*IC*1.1*CPI*cycles/second

 = 0.66*IC*CPI*cycles/second

 = 0.66*15=9.9sec

 Therefore, speedup=15/9.9=1.515

 Example: The following table gives execution times
and use distributions for a set of programs. Which
system will have the best performance, considering
their projected use?

Execution Time Use
DistributionSystem A System B System C

Compiler 10 15 20 10%

Billing 500 600 400 30%

Editor 30 10 15 30%

Service 800 750 850 30%

 System A=0.1*(10) + 0.3(500) + 0.3(30) + 0.3(800) =
400

 System B=0.1*(15) + 0.3(600) + 0.3*(10) + 0.3*(750)
=409.5

 System C = =0.1(20) + 0.3(400) + 0.3(15) + 0.3(850) =
381.5

 Thus, System C is better.

27. Explain about datapath and internal bus architec-
tures.

 Answer: A typical CPU can be divided into a data
section and a control section. The data section, which
is also called the datapath, contains the registers and

1.142 Computer Science & Information Technology for GATE

the ALU. The datapath is capable of performing cer-
tain operations on data items. The control section
is basically the control unit, which issues control sig-
nals to the datapath. Internal to the CPU, data move
from one register to another and between ALU and
registers. Internal data movements are performed via
local buses, which may carry data, instructions, and
addresses. Externally, data move from registers to
memory and I/O devices, often by means of a system
bus. Internal data movement among registers and be-
tween the ALU and registers may be carried out using
different organisations including one-bus, two-bus,
or three-bus organisations. Dedicated datapaths may
also be used between components that transfer data
between themselves more frequently. For example,

the contents of the PC are transferred to the MAR to
fetch a next (new) instruction at the beginning of ev-
ery instruction cycle.

 One-Bus Organisation

 Using one bus, the CPU registers and the ALU use
a single bus to move outgoing and incoming data.
Since a bus can handle only a single data movement
within one clock cycle, two-operand operations will
need two cycles to fetch the operands for the ALU.
Additional registers may also be needed to buffer data
for the ALU. This bus organisation is though simple
and cheap it limits the amount of data transfer that
can be done in the same clock cycle, which will kill
the overall performance. The following figure shows a
one-bus datapath.

General
Purpose
Registers

PC

IR

MAR

MDR

Memory
Bus

A B

ALU

Program Counter (PC), and ALU

Figure 1.80 One-bus datapath

 Two-Bus Organisation

 Here, general-purpose registers are connected to two
buses. Data can be transferred from two different reg-
isters to the input point of the ALU at the same time.
Therefore, a two operand operation can fetch both
operands in the same clock cycle. An additional buf-
fer register may be needed to hold the output of the
ALU when the two buses are busy carrying the two
operands. Figure 1.81 a shows a two-bus organisation.

In some cases, one of the buses may be dedicated for
moving data into registers (in-bus), while the other
is dedicated for transferring data out of the registers
(out-bus). In this case, the additional buffer register
may be used, as one of the ALU inputs, to hold one
of the operands. The ALU output can be connected
directly to the in-bus, which will transfer the result
into one of the registers. Figure b shows a two-bus or-
ganisation with in-bus and out-bus.

Memory Bus

General
Purpose
Registers

Bus 2

IR

MAR

MDR

ALU

PC

Bus 1

(a)

A

Figure 1.81(a) Two-bus organization

 Three-Bus Organisation

 Here, two buses are used as source buses while the third is used as destination. The source buses move data out of
registers (out-bus), and the destination bus may move data into a register (in-bus). Each of the two out-buses is con-

Introductory Concepts of Digital Logic Design and Computer Architecture 1.143

nected to an ALU input point. The output of the ALU is connected directly to the in-bus. As can be expected, the
more buses we have, the more data we can move within a single clock cycle. However, increasing the number of buses
will also increase the complexity of the hardware. The following figure shows an example of a three-bus datapath.

Memory Bus

General
Purpose
Registers

IR

MAR

MDR

ALU

PC

In-bus

Out-bus

A

(b)

Memory Bus

General
Purpose
Registers

IR

MAR

MDR

ALU

PC

In-bus

Out-bus 1

Out-bus 2

Figure 1.81(b) and (c) Three-bus organizations

28. What are typical elements of a machine instruction?

 Answer: Operation code, source operand reference,
result operand reference, next instruction reference.

29. What types of location can hold source and destina-
tion operands?

 Answer: - Main or virtual memory

 - Processor register

 - I/O device

30. What types of operands are typical in ISA?

Answer: Addresses, numbers, characters, logical data

31. Given the following memory values and a one address
instruction with an accumulator, what values do the
following instructions load into the accumulator?

 Word 20 contains 40

 Word 30 contains 50

 Word 40 contains 60

 Word 50 contains 70

 Answer:

20 40

30 50

40 60

50 70

 LOAD IMMEDIATE 20 : 20

 LOAD DIRECT 20 : 40

 LOAD INDIRECT 20 : 60

 LOAD IMMEDIATE 30 : 30

 LOAD DIRECT 30 : 50

 LOAD INDIRECT 30 : 70

32. Lets the address stored in the program counter be
designated by the symbol X1. The instruction stored
in X1 has an address part (operand reference) X2. The
operand needed to execute the instruction is stored in
the memory word with address X3. An index register
contains the value X4. What is the relationship be-
tween these various quantities is the addressing mode
of the instruction is

A. direct B. indirect

C. relative D. indexed

 Answer:

A. direct X3=X2
B. indirect X3=[X2]
C. relative X3=X2 + X1 +1
D. indexed X3=X2 + X4

33. Consider a 16-bit processor in which the following
appears in main memory, starting at location 200:

200 Load to AC Mode

201 500

202 Next Instruction

1.144 Computer Science & Information Technology for GATE

 The first part of the first words indicates that this
instruction loads a value into an accumulator. The
mode field specifies an addressing mode and if appro-
priate indicates a source register; assume that when
used, the source register is R1, which has the value
of 400. There is also a base register that contains the
value 100. The value 500 in location 201 may be part
of the addressing calculation. Assume that location
399 contains the value 999, location 400 contains the
value 1000 and so on. Determine the effective address
and the operand to be loaded for the following ad-
dress modes:

A = contents of an address field in the instruction

R = contents of an address field in the instruction
that refers to a register

EA = actual (effective) address of the location con-
taining the referenced operand

(X) = contents of memory location X or register X

 Answer:

 A = 500; R1 = 400, Rbase=100

 Memory Content:

OPCODE OPERAND

ISA Load to AC Mode

201 500

202 Next Instruction

203

399 999

400 1000

401 1001

500 1100

501 1101

502 1102

600 1200

601 1201

602 1202

700 1300

701 1301

702 1302

1000 1600

OPCODE OPERAND

ISA Load to AC Mode

1001 1601

1002 1602

1100 1700

1101 1701

1102 1702

REGISTER

R1 400

BX 100

 Direct

 EA = A = 500;
 Operand = [500] = 1100
 Immediate

 EA = 201;
 Operand = A = 500;
 Indirect

 EA = (A) = [500] = 1100;
 Operand = [1100] = 1700
 Register

 EA = R1;
 Operand = R1 = 400
 Register indirect

 EA = (R) = [R1] = 400;
 Operand = [400] = 1000
 Displacement

 EA = A + (Rbase) = 500 + 100 = 600
 Operand = [600] = 1200
 Relative

 EA = A + (PC) = 500 + 202 = 702

 Operand = [702] = 1302

34. Given a simple instruction format as follows:

Opcode
(6 bits)

Operand Reference
(12 bits)

Operand Reference
(12 bits)

A. What is the maximum directly addressable mem-
ory capacity (in bytes)?

 4096 words

B. How many opcodes are allowed for this ISA?

 26 = 64 opcodes

C. How many bits are needed for program counter
(PC)?

 12 bits in PC

D. How many bits are needed for instruction register
(IR)?

30 bits in IR

Introductory Concepts of Digital Logic Design and Computer Architecture 1.145

35. What facts go into determining the allocation of bits
for instruction formats?

 Answer:

 Number of addressing modes

 Number of operands

 Register vs. memory

 Number of register sets

 Address range

 Address granularity

36. Draw the instruction format the following:

The machine operates on 16 bit words

Total opcodes is 32

2 types of instructions

Memory Reference Instructions – Opcode 0-29,
1 bit for addressing mode, 1 bit for page, 9 bit for
displacement

Input/Output Instructions – Opcode 30, 128 de-
vices, 16 I/O opcode (I/O command)

Memory Reference Instructions (MRI): Opcodes 5
bit, 1 bit for addressing mode, 1 bit for page, 9 bit for
displacement

 I/O I: Opcodes 4bit, 7bit for devices, 4bit for I/O op-
code (I/O command)

37. Consider a hypothetical system with Main memory
having 32-words and Cache having 8-words. The fol-
lowing tables contains content of main memory and
cache. The addresses are referred while executing
some set of instructions are: 22,26,22,26, 16, 3,16 and
18. Calculate the number of misses.

 Answer:

 Format address main (CPU): 25=32 Æ 5 bit

 Cache = 23 = 8 Æ 3 bit (line/slot)

 Format address main = 5 bit =

2 3

 MSB (tag) (line/slot) LSB

Memory Map: Main Memory

Hex Dec Address Cont (Hex)

1F 31 11111 11

1E 30 11110 10

1D 29 11101 01

1C 28 11100 A1

Cache Memory 1B 27 11011 F5

1A 26 11010 F4

19 25 11001 F3

Dec Address
(line/slot)

Tag
(2 bit)

Content
(word)

18 24 11000 F1

7 111 xx xx 17 23 10111 FF

6 110 xx xx 16 22 10110 91

5 101 xx xx 15 21 10101 10

4 100 xx xx 14 20 10100 19

3 011 xx xx 13 19 10011 13

2 010 xx xx 12 18 10010 02

1 001 xx xx 11 17 10001 01

0 000 xx xx 10 16 10000 EE

F 15 01111 DD

E 14 01110 CC

D 13 01101 BB

1.146 Computer Science & Information Technology for GATE

Memory Map: Main Memory

Hex Dec Address Cont (Hex)

C 12 01100 AA

B 11 01011 FF

A 10 01010 C1

9 9 01001 C2

8 8 01000 5F

7 7 00111 13

6 6 00110 23

5 5 00101 B1

4 4 00100 B0

3 3 00011 A3

2 2 00010 A1

1 1 00001 AB

0 0 00000 01

CPU Generate Main Memory:

Generated Address Format Address Read Operation Cache

Address Tag Line/Slot Hit Miss Update Cache Read

(Dec) (Bin) Content

22 10110 91 10 110 ÷ ÷ ÷

26 11010 F4 11 010 ÷ ÷ ÷

22 10110 91 10 110 ÷ ÷

26 11010 F4 11 010 ÷ ÷

16 10000 EE 10 000 ÷ ÷ ÷

3 00011 A3 00 011 ÷ ÷ ÷

16 10000 EE 10 000 ÷ ÷

18 10010 02 10 010 ÷ ÷ ÷

Cache Content (uninitialised)

Dec Address
(line/slot)

Tag
(2 bit)

Content
(word)

Dec Address
(line/slot)

Tag
(2 bit)

Content
(word)

7 111 xx xx 7 111 xx xx

6 110 xx xx 6 110 10 91

5 101 xx xx 5 101 xx xx

4 100 xx xx 4 100 xx xx

3 011 xx xx 3 011 00 A3

2 010 xx xx 2 010 11 10 F4 02

1 001 xx xx 1 001 xx xx

0 000 xx xx 0 000 10 EE

BEFORE AFTER (UPDATING)

 Number of misses = 5.

Introductory Concepts of Digital Logic Design and Computer Architecture 1.147

38. There are 4 segments in a pipeline with the follow-
ing delays. Assume interface delay as 3ns. Draw space
diagram assuming 5 instructions are pumped into
pipeline. Calculate speed-up with respect to serial
computer.

Segment Name Segment Execution
Time (ns)

Instruction Fetch & Decode (IF) 52

Operand Fetch (OF) 40

Instruction Execute (IE) 30

Operand Store (OS) 40

 The simple block diagram of the pipeline is shown
here. Do observe that the last stage is not having any
interface unit.

R IF R ROF IE

R OS

 The space time diagram for the pipeline (5 instruc-
tions):

T1 T2 T3 T4 T5 T6 T7 T8 T9 T110

IF I1 I2 I3 I4 I5

OF I1 I2 I3 I4 I5

IE I1 I2 I3 I4 I5

OS I1 I2 I3 I4 I5

 Pipeline cycle time, tp = Longest segment execution
time + interface delay = 52 + 3 = 55ns

 Execution time for 5 tasks:

 A = Time taken for executing I1 = 4 tp = 4 * 55

 = 220 ns

 B = The result of the I2, I3, I 4 and I5 will be output at
every clock cycle Æ 4 * 55 = 220 ns

 Therefore time to execute 5 instructions = A+B = (220
+ 220) ns = 440 ns

 Serial execution time of an instruction= (52 + 40 + 30
+ 40) ns = 162 ns

 Therefore, time needed for 5 instructions = 162 * 5 =
810 ns

 Therefore real speedup = Execution in Serial / Execu-
tion in Pipeline = 810/440 = 1.84

39. A Computer has clock frequency of 500MHz. Its in-
terrupt handler consumes 400 cycles and a total of
100 cycles are to be spent for data transfer. Assume
the data rate as 4 MB/s and 50% of the instructions
are observed to be I/O transfers. For driven I/O inter-
rupt, data is transfer in block with size of 16 B. On the
other hand, direct memory access (DMA) setup takes
1600 cycles with 16KByte page transfer and one inter-
rupt per page. Calculate the processor overhead dur-
ing I/O operation for both I/O interrupt and DMA by
filling in the table below with the correct value.

 Answer:

Parameter I/O interrupt DMA

Cycle time Cycle time = 1/Clock rate =(1/500M) sec

No of
transfer/sec

(4M B/s)/(16 B/transfer)
= 222 / 24 = 218 transfer/s

(4M B/s)/(16 KB/
transfer) = 222 / 214

= 28 transfer/s

Total cycle
for data
transfer

Interrupt cycle + data
transfer cycle = 400 + 100
= 500 cycles

Interrupt cycle + data
transfer cycle = 400 +
1600 = 2000 cycles.

Total time
for data
transfer

500 × cycle time = 500 ×
(1/500M) sec = (1/M) sec
 =(1 × 10–6)sec

2000 × cycle time =
2000 × (1/500M) sec
= (4/M) sec
= 4 × 10-6 sec

CPU
overhead

[50/100 × 218 transfer/s
× (1 × 10-6) = 0.125
or
= 0.125 × 100%
= 12.5%

50/100 × 28 transfer/s
× 4 ×10–6 = 0.00512
or
= 0.00512 × 100%
= 0.0512%

40. Consider a processor with a main memory and single
level cache. Assume 50% of the instructions of a pro-
gram are of data access type. It takes 3 clock cycles for
the data to be sent from the cache to the processor. It
requires 24 clock cycles to copy a unit from memory
to cache. If the cache hit ratio is 90%,

A. what is the average memory access time?

B. what is the memory stall cycles?

C. with 1000 instructions being executed, what is the
number of the wasted cycles?

 Answer:

A. AMAT = Hit time + (Miss rate x Miss penalty)

 = 3 + (0.1 × 24) = 5.4 cycle

B. Memory stall cycle = Memory access x Miss rate x
Miss penalty

 = 0.5I × 0.05 × 24 = 0.6I cycle

C. Wasted cycle = 0.6 × 1000 = 600 cycle

1.148 Computer Science & Information Technology for GATE

1.23 Objective Questions

1. What is the mantissa portion of float number 0.085
when it is stored in 32 bit floating point representa-
tion?

A. 3019899 B. 2019899

C. 3019898 D. None

 Answer: 0.085 when stored in computer it will be like
00111101101011100001010001111011. The under-
lined portion represents the mantissa which 3019899.

2. The following are coded representations of the num-
bers 2 ,4 , 6, 8. Which is not a Gray code

A. 1110,1010,1111,0101

B. 1001,0011,1111,1100

C. 1101,1000,0010,0111

D. None

3. Assume a program consists of 8 pages and a computer
has 16 frames of memory. A page consists of 4096
words and memory is word addressable. Currently,
page 0 is in frame 2, page 4 is in frame 15, page 6 is in
frame 5 and page 7 is in frame 9. No other pages are
in memory. Translate the memory addresses below.

A. 111000011110000

B. 000000000000000

 Answers: The first three bits denote the page number
(8 pages) and we swap it out for the four bit frame
number (16 frames).

A. 111 (page 7) becomes 1001 (frame 9) so
111000011110000 becomes 1001000011110000

B. 000 (page 0) becomes 0010 (frame 2) so
000000000000000 becomes 0010000000000000

4. We have two computer memory management systems with 36-bit physical addresses, 44-bit virtual addresses, and
4-byte PTEs. One system is a single-level page table with 2KB pages and the while the other is a hierarchical page
table which supports both 2KB and 16MB pages. The following figure summarizes the hierarchical page table struc-
ture and indicates the sizes of the page tables and data pages.

Data Page

Data Page

2 kb

L2 Table

(1024 PTEs,4kb)

L3 Table

(8192 PTEs,32kb)

L1 Table

(102 PTEs,4kb)

Root ptr.

(Processor

register)

 Calculate how much space is needed for each system for the page table for one user process if one 2KB data page is
allocated?

 2KB page => 11 bit offset

 Size of single level page table = No.of pages * PTE= 244/211*4= 235B = 32GB

 Size of hierarchical page table 40KB. Because, we are not allocating whole hierarchy of page tables. We will be al-
locating just necessary entries in each of the levels as shown in above figure.

 Page Table Size = (size of L1) + (size of 1 L2) + (size of 1 L3)

 = 4KB + 4KB + 32KB = 40KB

 The processor has a fully-associative data TLB with 128 entries, and each entry can map either a 2KB page or a 16MB
page. After a TLB miss, a hardware engine walks the page table to reload the TLB. The TLB uses a first-in/first-out
(FIFO) replacement policy.

 We will evaluate the execution of the following program which adds the elements from three 4MB arrays and
stores the results in a fourth 4MB array (note that, 1MB = 1,048,576 Bytes, the starting address of the arrays are given
below):

Introductory Concepts of Digital Logic Design and Computer Architecture 1.149

double A[524288]; // 4MB array 0x00001800000

double B[524288]; // 4MB array 0x00001c00000

double C[524288]; // 4MB array 0x00002000000

double Y[524288]; // 4MB array 0x00002400000

for(int i=0; i<524288; i++)

 Y[i] = A[i] + B[i] + C[i];

 Assume that the above program is the only process
in the system, and ignore any instruction memory or
operating system overheads. The data TLB is initially
empty.

 How many TLB misses will the program incur with
the system that uses the single-level page table?

 The program shown above will access 16MB (four
arrays each of size 4MB) of consecutive data, and it
never reuses the same data.

 Number of misses = (total memory)/(page size) =
16MB/2KB = 224–11 = 213 = 8K misses

 How many TLB misses will the program incur with
the hierarchical page table using 2KB pages? What
about if it uses 16MB pages?

 Misses with 2KB pages: 8k(Page table doesn’t affect
TLB miss rate).

 Misses with 16MB pages 2

 Although all four arrays could fit in one page, the
addresses are not correctly aligned, so the program’s
data will span two pages.

 Example Would a system with only protection be
useful (i.e., no translation and no virtual memory)? If
so, describe how such a system might be used. If not,
explain why.

 Yes, protection is useful whenever you want to run
more than one application at a time. The other fea-
tures might not be needed in an embedded system.
Protection improves fault tolerance since buggy code
“shouldn’t” be able to damage other code. Even if only
one application is running, it might be made of mul-
tiple pieces of code that have bugs, and thus need pro-
tection from itself.

 Example Would a system with only protection and
translation (i.e., no virtual memory) be useful? If so,
describe how such a system might be used. If not, ex-
plain why.

 Yes, it just isn’t able to swap out pages to offer the illu-
sion of larger memory capacity. This might be useful
with a supercomputer where your job should all fit in
memory for peak performance.

 Example Would a system with only protection and
virtual memory (i.e., no translation) be useful? If so,
describe how such a system might be used? If not, ex-
plain why.

 Yes, but it would be very slow.

 Example Mark whether the following modifica-
tions will cause each of the categories to increase, de-
crease, or whether the modification will have no ef-
fect. Assume the baseline system uses a two-level page
table with a single page size.

Page Table Size TLB Hit Rate Internal Fragmentation

Increase page size

Decrease

Larger pages means less pages for
the same virtual address space.
Less pages means less PTEs which
should make a smaller page table.

Increase (probably)

The TLB’s reach has been extended
since each entry maps more
memory. For this to improve hit
rate there needs to be some spatial
locality (there should be).

Increase

With larger pages there is a
greater chance that each page will
not be completely filled.

Making the page
table 3 level
(page size and
virtual address size
constant)

Decrease if program has sparsely
populated address space.
Increase if program has more
densely populated address space.

No effect

Page size is the same so the same
TLB entries will get the same
amount of hits and misses.

No effect

Page size is the same, so there
should not be a change in
fragmentation.

Adding support for
multiple page sizes

Decreases if the new page size is
larger since we will need less PTEs.

Could increase if we support a
smaller page size and need more
PTEs.

Increases with larger pages for
same reason as above.

Should decrease as the smallest
page to hold data is used to reduce
fragmentation.

Could increase if larger pages are
used to increase TLB hit rate.

1.150 Computer Science & Information Technology for GATE

OBJECTIVE TYPE QUESTIONS

1. Possible number of digits which are used to represent
any number in base-r system

A. r B. r–1

C. log2r D. 2

2. Assuming a flip-flop can take 4 unique stages or lev-
el, then the range of positive numbers which we can
store in n such a flip-flop’s.

A. 0 to 2n–1 B. – (2n–1) to (2n–1)

C. 0 to 4n–1 D. None

3. If Hamming code is 1010101 then the data is

A. 1010 B. 1101

C. 1110 D. 0111

E. 1110

4. If Hamming code received is 0010111 then which bit
position has encountered error?

A. 1 B. 6

C. 3 D. 7

E. 5

5. The number system whose digits weights sum is itself,
is called

A. Binary B. Decimal

C. Excess-3 D. None

6. If x is a number represented in n-bit binary system,
then –x in 1s complement becomes

A. Just inverse MSB B. 2n–x–1

C. Complement LSB D. None

7. An 8-bit number x is 00001100, then –x in 1s comple-
ment is

A. 12s binary

B. 243 binary code in 8 bits

C. 111011100

D. None

8. If x is a number represented in n-bit binary system,
then –x in 2s complement becomes

A. Just inverst MSB B. 2n–x

C. Complement LSB D. None

9. An 8-bit number x is 00001100, then –x in 1s comple-
ment is

A. 12s binary

B. 244 binary code in 8 bits

C. 111011100

D. None

10. If we apply two times 2s complement operation on a
8-bit number N, we get

A. 0 B. 28

C. N D. 28–N

11. When overflow is occurred, then __ of carry in and
carry out of MSB is one.

A. OR B. NXOR

C. XOR D. NOR

12. Overflow in 2s complement addition occurs when

A. Both numbers are largest possible positive num-
bers

B. Both numbers are smallest possible negative
numbers

C. Both A and B are possible

D. One number is positive and another number is
negative

13. In a n-bit 2s complement addition, overflow occurs if
the result N is

A. Greater than 2n–1–1 B. Less than –2n–1

C. Both D. None

14. Overflow in 2s complement subtraction occurs when

A. Both numbers are largest possible positive num-
bers

B. Both the numbers are smallest possible negative
numbers

C. Both a and b are possible
D. One number is largest positive and another num-

ber is largest negative

15. Assuming 5-bit addition or registers, the sum 12 + 7
leads

A. 19 B. –13

C. Overflow D. None

16. If B and C largest possible positive numbers then over
flow may occur

A. B+C B. B–(–C)

C. –B–C D. All

17. Error detection and correction abilities of a code are
determined by

A. Code length

B. Number code vectors

C. Minimum distance dmin

D. Spacing between parity bits of a code word

18. If the code words are m-bits length and minimum
distance of the code is n, then number errors needed
to convert a valid code word as another valid code
word is

A. m B. n

C. m–n D. n–m

Introductory Concepts of Digital Logic Design and Computer Architecture 1.151

19. To detect single bit errors minimum distance needed
for the n-bit code is

A. 3 B. 4

C. n D. 2

20. To correct single bit errors minimum distance needed
for the n-bit code is

A. 3 B. 4

C. n D. 2

21. If the minimum distance of a code is 5 then it can

A. Correct single error

B. Detect double bit error

C. Detect three bit errors

D. All

22. Find odd man out of the following

A. 01111011 B. 11111011

C. 10000100 D. 10000101

E. 10010011

23. How do we know that a 2’s complement code repre-
sents a negative number?

A. The least significant bit is 1.

B. The least significant bit is 0.

C. The most significant bit is 1.

D. The most significant bit is 0.

24. If the following Gray code sequence, what is the miss-
ing code? 11010?10000

A. 11011 B. 11110

C. 10000 D. 11000

E. 10001

25. What is the base x for this addition operation to hold:
(223)x + (46)x = (302)x?

A. 5 B. 6

C. 7 D. 8

E. 9

26. Given the following code: { 10001010, 01011011,
10110001, 01110010, 11101110 } . What is the Ham-
ming distance of this code?

A. 2 B. 3

C. 4 D. 5

E. 6

27. A certain value is represented in the 4-bit sign-and-
magnitude, 2s complement, 1s complement and ex-
cess-8 schemes as shown below. Which of the follow-
ing is NOT a representation of this value?

A. (1011)sm B. (1100)2s

C. (1100)1s D. (0101)excess-8

E. None of the above

28. Convert the 5-bit binary number (11101)2 into its
standard Gray code equivalent.

A. (11101)gray B. (00010)gray

C. (10110)gray D. (10011)gray

E. (11110)gray

29. In which of the following coding schemes that 0111
represents the largest value?

A. The standard 4-bit Gray code

B. The BCD code

C. The Excess-3 code

D. The 84-2-1 code

E. The 2821 code

30. The tribesmen could only count up to 1000 (thou-
sand) as they believed that there was no number
beyond that value. Using their number system, how
many digits would they need to represent the value
1000?

A. 5 B. 7

C. 10 D. 14

E. 10,000

31. Which of the following addition operations in 5-bit
2’s complement number system results in an over-
flow?

A. (00100)2s + (01011)2s

B. (11011)2s + (01111)2s

C. (11101)2s + (10110)2s

D. (10010)2s + (11001)2s

E. (00000)2s + (11111)2s

32. Which is true about parity bits?

A. In an odd-parity scheme, a ‘1’ must always be ap-
pended to the data.

B. It is possible to correct error with the parity
scheme.

C. It is possible to detect a 2-bit switch with the par-
ity scheme.

D. Using parity scheme allows for faster transmis-
sion of data.

E. None of the above.

33. The decimal number 2875 is coded as follows in some
coding approach. Which of the coding schemes could
be self-complementing?

A. 0010 1000 0111 0101

B. 0100 1100 1001 0111

C. 1000 1010 0111 0101

D. 1111 0001 0000 1010

E. None of the above

1.152 Computer Science & Information Technology for GATE

34. In Hamming codes, parity bits in parity bit stuffed
frames are

A. MSB bit B. 0th bit

C. 1st bit D. 3rd bit

35. In the following parity bit stuffed frames which are
received by a receiver, the one which contains error

A. 001110010100 B. 101110010100

C. 000110010100 D. 001010000100

36. If the received parity bit stuffed frame contains
101110010100, then error is at

A. 4 B. 5

C. 3 D. 12

37. If the received parity bit stuffed frame is 001100010100,
then

A. Parity bits 2,4 are not matching

B. Parity bits 1,3 are not matching

C. Parity bits 1,2 are not matching

D. Parity bits 1,5 are not matching

38. Assuming even parity, seven bit parity code for data
0111 is

A. 0101110 B. 0111110

C. 0001111 D. 1100111

39. The number system in which two representations of
zero are available?

A. Sign-magnitude B. Floating point

C. 2s complement D. None

40. In 2s complement, if two numbers with the same sign
is added then over flow is said to be occurred if

A. If result is also same sign

B. If result has opposite sign

C. If result is zero

D. None

41. Find odd-one out in terms of 2s complement repre-
sentation out of the following.

A. 101 B. 1101

C. 11101 D. 11001

42. The following truth table represents

A B Output

0 0 1

0 1 0

1 0 0

1 1 1

A. XNOR B. NAND

C. AND D. None

43. Which of the following is NOT a recognised type of
GATE?

A. AND

B. OR

C. NOT

D. EXCLUSIVE OR (XOR)

E. LATCH

44. The symbol in the figure below is

A. A NOT gate B. An NAND gate

C. A NOR gate D. An XOR gate

E. An XNOR gate

F. A
B
C

Out

45. Find odd one out

A. AND B. NAND

C. NOT D. XOR

46. In the following, digital one is

A. Telephone B. Cassette Player

C. DVD Player D. None

47. To control real world things through computer, we
need

A. Sampling B. Digitization

C. Both D. None

48. Real world things are

A. Digital B. Analog

C. Both D. None

49. Find incorrect one

A. Binary value 1 indicates a voltage of 1V

B. Binary value 0 indicates a voltage of 0V

C. Binary value 0 indicates a voltage of -1V

D. None

50. System which is better immune to noise

A. Digital B. Discrete

C. Analog D. Continuous

51. Find incorrect one regarding Boolean variables

A. AA=A B. A’A’=A’

C. A’A’=A D. AA’=0

52. Device which takes care of sudden power require-
ments in a circuit

A. SMPS B. capacitor

C. resistor D. UPS

53. Find odd one out

A. An exact voltage of 5V indicates Boolean 1 in TTL

B. An exact voltage of 0V indicates Boolean 0 in TTL

C. A small range around 5V indicates Boolean 1 in
TTL

D. None

Introductory Concepts of Digital Logic Design and Computer Architecture 1.153

54. The technology which has better noise susceptibility

A. TTL B. CMOS

C. Both D. None

55. Single T-state Machine

A. RISC B. 386

C. Z80 D. Z180

56. Universal gate

A. NOT B. AND

C. NAND D. XOR

57. The dual of A + 1 = 1?

 (Note: * = AND, + = OR and ‘ = NOT)

A. A * 1 = 1 B. A * 0 = 0

C. A + 0 = 0 D. A * A = A

E. A * 1 = 1

58. A literal

A. A Boolean variable

B. The complement of a Boolean variable

C. 1 or 2

D. A Boolean variable interpreted literally

E. The actual understanding of a Boolean variable

59. (A+B+C)(D+E)’ + (A+B+C)(D+E) = .

A. A + B + C B. D + E

C. A’B’C’ D. D’E’

E. None of the above

60. Dual of the Boolean property x + x¢y = x + y?

A. x¢(x + y¢) = x¢y¢ B. x(x¢y) = xy

C. x*x¢ + y = xy D. x¢(xy¢) = x¢y¢

E. x(x¢ + y) = xy

61. Given the function F(X,Y,Z) = XZ + Z(X¢+ XY), the
equivalent most simplified Boolean representation for
F is

A. Z + YZ B. Z+XYZ

C. XZ D. X + YZ

E. None of the above

62. Which of the following Boolean functions is algebra-
ically complete?

A. F = xy B. F = x + y

C. F = x’ D. F = xy + yz

E. F = x + y’

63. Equivalent to Boolean expression (A + B)¢(C + D +
E)¢ + (A + B)¢

A. A + B B. A¢B¢

C. C + D + E D. C¢D¢E¢

E. A¢B¢C¢D¢E¢

64. Given that F = A¢B¢+ C¢+ D¢+ E¢, the F¢ can also repre-
sented as

A. F’= A+B+C+D+E B. F¢= ABCDE

C. F’= AB(C+D+E) D. F¢= AB+C¢+D¢+E¢

E. F’= (A+B)CDE

65. The Boolean expression A¢ + 1 is same as

A. A B. A¢

C. 1 D. 0

66. Simplification of the Boolean expression AB + ABC +
ABCD + ABCDE + ABCDEF is

A. ABCDEF

B. AB

C. AB + CD + EF

D. A + B + C + D + E + F

E. A + B(C+D(E+F))

67. NOT can be realized using

A. OR B. AND

C. NAND D. XOR

68. No combination of ___ gates can be used to get NOT.

A. AND B. NAND

C. NOR D. None

69. A two input XOR can be realized using

A. Two two input AND

B. Two two input AND, Two NOT and one two in-
put OR gates

C. Two two input NAND, Two XOT and one two in-
put OR gates

D. Two two input NOR, Two NOT and one two in-
put NOR gates

70. Select the Boolean expression that is not equivalent to
x·x+x·y

A. x · (x + y) B. (x + y) · x

C. y D. x

71. Select the expression which is equivalent to x · y + x ·
y · z

A. x · y B. x · z

C. y · z D. x · y · z

72. Select the expression which is equivalent to (x + y) · (x
+ y)

A. y B. y0

C. x D. None

73. Select the expression that is not equivalent to x · (x +
y) + y

A. x · x + y · (1 + x) B. x · y + y

C. x · y D. y

74. Equivalent Boolean equation for the following circuit

A

B

Q

1.154 Computer Science & Information Technology for GATE

A. Q=A’ B. Q=A

C. Q=B D. Q=0

75. What is the simplified equation of Q?

Q

A

B

C

A. Q=A B. Q=0

C. Q=1 D. None

76. 1+1=10 is valid in

A. Decimal B. Binary

C. Hex D. OR

77. 1+1=1

A. Decimal system B. Hexadecimal system

C. Binary system D. Result of OR gate

78. In TTL logic, 1 indicates

A. Vcc B. Ground

C. 5V D. None

79. If 00 is input, output is zero in

A. AND, OR, NAND B OR, AND, XNOR

C. OR, AND, XOR D. AND, NAND, NXOR

80. If input is 11, then output is 1 in

A. AND, OR, NAND B. OR, AND, XNOR

C. OR, AND, XOR D. AND, OR, NXOR

81. The smallest logical unit of a digital system

A. Transistor B. Gate

C. N, P junctions D. None

82. Logic gates are not constructed from

A. Relays B. Transistors

C. Vacuum tubes D. Transformers

83. Which of the following boolean formulas can be used
to implement a parity checker for a 4 bit code stored
in binary variables a3, a2, a1, a0? If odd number of 1s
are there in the given four bits, we should get parity
value as 1 otherwise 0.

A. a3+a2+a1+a0

B. a3 · a2 · a1 · a0

C. a3ˆa2ˆa1ˆa0 (where ˆ represents the exclusive OR
operation)

D. a0+a1+a2+a3

84. AB ≈ (A+B) =

A. 1 B. AB

C. A+B D. AB+A’B’

E. A’B+AB’

85. abc¢ + bc + a¢bc¢ =

A. abc B. b

C. b ≈ c D. None

86. ((X ≈ Y) ≈ (X ≈ Y)) =

A. 0 B. 1

C. XY D. X’Y

E. X¢Y+XY¢

87. If G, K are Boolean variables, G.K + G¢.K¢ stands for

A. XOR B. XNOR

C. NAND D. NOR

E. NOT

88. If K is a Boolean variable then K+K+ …+K gives

A. 1 B. 0

C. K D. K’

89. If K is a Boolean variable then K.K. ….K gives

A. 1 B. 0

C. K D. K’

90. If K is a Boolean variable then K+K¢+K+K¢+K+K¢
gives

A. 1 B. 0

C. K D. K’

91. If K is a Boolean variable then K.K¢.K.K¢.K.K¢ gives

A. 1 B. 0

C. K D. K¢

92. Find the correct one

A. ((A·B¢)¢ + B¢)·B =AB

B. A+((A·B¢)¢·C) = BC

C. A + ((B+C)¢·A) =A

D. A + ((B+C)¢·A) =A+B+C

93. To change OR gate to AND gate, we have to

A. Invert each input B. Invert output

C. Do both a and b. D. None

94. The following circuit is

A. XNOR B. XOR

C. NOR D. NAND

95. The following circuit is equivalent to

A. XNOR B. XOR

C. NOR D. NAND

96. It was developed by George Boole, and is often used to
refine the determination of system status or to set or
clear specific bits.

Introductory Concepts of Digital Logic Design and Computer Architecture 1.155

A. On B. NXOR

C. Boolean Logic D. AND

97. Boolean Logic uses ____ to determine how bits are
compared and simulates ____ .

A. Operators, Gates B. Buffers, AND

C. Truth Tables, Off D. NOR, NAND

98. An operation says if and only if all inputs are on, the
output will be on. The output will be off if any of the
inputs are off. Compliment of this operation is

A. OR B. NAND

C. NOR D. AND

99. The _____ operation says if any input is on then the
output will be off.

A. NOT B. OR

C. NOR D. XOR

100. If and only if all of the inputs are on, the output will be
off. This is called _____ .

A. NAND B. NOR

C. Truth Tables D. On

101. This operation says that if any input is on, the output
will be off. What operation is this?

A. Boolean Logic B. XOR

C. NOR D. AND

102. _____ says that if the inputs are different then the out-
put will be on.

A. Gates B. Low

C. NXOR D. XOR

103. _____ simply changes the input to the opposite (0 to 1
or 1 to 0).

A. Operator

B. A 2-input NOT gate with both of inputs being
same.

C. A 2-input NAND gate with both of inputs being
same.

D. A 2-input OR gate with both of inputs being same.

104. F = A¢ + B¢ is same as

A. AND between A and B

B. NAND between A¢ and B¢

C. NAND between A and B

D. NOR between A and B

105. F = A¢ B¢ is same as

A. AND between A and B

B. NAND between A¢ and B¢

C. NAND between A and B

D. NOR between A and B

106. A¢ + B¢ =

A. AB¢ B. A+B¢

C. (AB)¢ D. None

107. A three level circuit

A. AB+BC B. A(B+C)+BC¢

C. (A+B)(A+C) D. None

108. Three level equivalent representation of circuit
BA+D+AC

A. AB + AC + D B. A(B + C) + D

C. (A + B)(A + C)D D. None

109. F outputs 1 when a is 0 and b is 0, or when a is 0 and
b is 1

A. F(a,b)=a B. F(a,b)=a’b’+a’b

C. F(a,b)=ab’+a’b D. None

110. Find the odd man out

A. F(a,b)=a’ B. F(a,b)=a’b’+a’b

C. F(a,b)=(a’+b)(a’+b’) D. F(a,b)=a

111. Find incorrect Boolean equation for the statement “F
outputs 1 when a is 0, regardless of b’s value”.

A. F(a,b)=a’ B. F(a,b)=a’b’+a’b

C. F(a,b)=(a’+b)(a’+b’) D. F(a,b)=a

112. The basic building block for a logical circuit is

A. A Flip-Flop B. A Logic Gate

C. An Adder D. None

113. Digital quantity

A. Volume of a loud speaker

B. Output of a microphone

C. Timer in a microwave Owen

D. None

114. Next number to (477)8

A. 478 B. (478)8

C. (500)8 D. None

115. Number before (600)8

A. 478 B. (478)8

C. (577)8 D. None

116. Equivalent universal gate for F=A’+B’

A. NOT B. NOR

C. NAND D. AND

117. A Boolean function Q(x, y) is implemented using a
2×4 decoder as shown below. What is Q?

1

x

y
Q

2x4

DEC 0

1

2

3

S1

S0

EN

1.156 Computer Science & Information Technology for GATE

A. Q(x, y) = x B. Q(x, y) = x’

C. Q(x, y) = y D. Q(x, y) = y’

E. Q(x, y) = x ¢ y

118. The circuit below compares three unsigned 4-bit bi-
nary numbers X, Y, and Z using the 4-bit magnitude
comparators. Which of the following values of X, Y,
and Z will result in S being 1?

Z
S4

4

4

4

x

y

4- bit
COMP

A>B

A=B

A<B

A

B

4- bit
COMP

A>B

A=B

A<B

A

B

A. X = 0000, Y = 1000, Z = 1111

B. X = 1111, Y = 1000, Z = 0000

C. X = 1111, Y = 0000, Z = 1000

D. X = 1000, Y = 1111, Z = 0000

E. None of the above

119. The circuit below shows a 1:4 demultiplexer with in-
put 0 and selection lines 10. What are the outputs?

1 0

0

1:4 Y0

Y1

Y2

Y3
S0

S1

DEMUX

A. Y0 = 0; Y1 = 0; Y2 = 0; Y3 = 0

B. Y0 = 1; Y1 = 0; Y2 = 0; Y3 = 0

C. Y0 = 0; Y1 = 1; Y2 = 0; Y3 = 0

D. Y0 = 0; Y1 = 0; Y2 = 1; Y3 = 0

E. Y0 = 0; Y1 = 0; Y2 = 0; Y3 = 1

120. A Boolean function Z(A,B,C) is implemented using a
4:1 multiplexer as shown below. What is Z?

0

1

2

3

4:1

MUX

0
1

A C

Z
0

1

B

A. Z(A,B,C) = S m(1, 4, 5, 6)

B. Z(A,B,C) = S m(2, 3, 4, 6)

C. Z(A,B,C) = S m(0, 2, 5, 6)

D. Z(A,B,C) = S m(2, 4, 6, 7)

E. Z(A,B,C) = S m(2, 4, 5, 6)

121. Tom implemented the Boolean function W(A,B,C) =
S m(0, 2, 5, 6) using a decoder as shown below. In-
stead of connecting A, B, C to S2, S1, S0 respectively,
he has mistakenly connected C, B, A to S2, S1, S0, re-
spectively. When will his mistake be exposed?

3X8

DEC 0
1
2
3
4
5
6
7

S2

S1

S0

C

B

A

W

A. When the inputs ABC = 000

B. When the inputs ABC = 010

C. When the inputs ABC = 101

D. When the inputs ABC = 110

E. When the inputs ABC = 111

122. An 8-to-3 encoder accepts only certain valid inputs.
Suppose a Boolean function V(A,B,C,D,E,F,G,H)

generates 1 if the values of A,B,C,D,E,F,G,H are
valid inputs for the encoder, or 0 otherwise, what is
V(A,B,C,D,E,F,G,H) in Sm notation?

A. Sm(0, 1, 2, 3, 4, 5, 6, 7)

B. Sm(1, 2, 3, 4, 5, 6, 7, 8)

C. Sm(0, 1, 2, 4, 8, 16, 32, 64)

D. Sm(1, 2, 4, 8, 16, 32, 64, 128)

E. Sm(1, 3, 7, 15, 31, 63, 127, 255)

123. Given an excess 3 code ABCD, a Boolean function
F(A,B,C,D) generates 1 if the actual digit represented
by ABCD is divisible by 5, or 0 otherwise. Employing
don’t-care outputs, what is the simplified SOP expres-
sion for F?

A. A¢ · B¢ + B¢ · C¢ · D¢

B. B¢ · (A¢ + C¢ · D¢)

C. A¢ · B¢ + A · B¢ · C¢ · D¢

D. A¢ · B¢ · C · D + A · B¢ · C¢ · D¢

E. B¢

124. Which of the following combinations can form a 3×8
decoder?

A. Two 2×4 decoders and an inverter.

B. Two 2×4 decoders and one 1×2 decoder.

C. Four 1×2 decoders and one 2×4 decoder.

D. All of the above.

E. None of the above.

125. The circuit which converts 2n lines to n lines, where n
is positive integer

A. Decoder B. Encoder

Introductory Concepts of Digital Logic Design and Computer Architecture 1.157

C. Adder D. Subtractor

126. The circuit which converts n lines to 2n lines, where n
is positive integer

A. Decoder B. Encoder

C. Adder D. Subtractor

127. The circuit which always gives one in only one of its
output lines

A. Decoder B. Encoder

C. Adder D. Subtractor

128. What will be the value of all output lines of a decoder
if enable is not selected?

A. 1 B. 0

C. X D. None

129. The circuit which always expects one in only one of its
input lines is

A. Decoder B. Encoder

C. Adder D. Subtractor

130. What will be the value of all output lines of a end-
coder if all of its inputs or 0s

A. 1 B. 0

C. X D. None

131. How many full adders are used in bit-serial adder?

A. 2 B. 3

C. 1 D. n

132. The binary numbers A = 1100 and B = 1001 are ap-
plied to the inputs of a comparator. What are the out-
put levels?

A. A > B = 1, A < B = 0, A < B = 1

B. A > B = 0, A < B = 1, A = B = 0

C. A > B = 1, A < B = 0, A = B = 0

D. A > B = 0, A < B = 1, A = B = 1

133. A particular Full Adder has

A. 3 inputs and 2 outputs

B. 3 inputs and 3 outputs

C. 2 inputs and 3 outputs

D. 2 inputs and 2 outputs

134. For a 3-to-8 decoder how many 2-to-4 decoders will
be required?

A. 2 B. 1

C. 3 D. 4

135. For a 4-to-8 decoder how many 2-to-4 decoders will
be required?

A. 2 B. 1

C. 5 D. 4

136. The four outputs of two 4-input multiplexers, con-
nected to form a 16-input multiplexer, are connected
together through a 4-input _______ gate.

A. AND B. OR

C. NAND D. XOR

137. BCD to 7-Segment decoder has

A. 3 inputs and 7 outputs

B. 4 inputs and 7 outputs

C. 7 inputs and 3 outputs

D. 7 inputs and 4 outputs

138. Demultiplexer has

A. Single input and single outputs.

B. Multiple inputs and multiple outputs.

C. Single input and multiple outputs.

D. Multiple inputs and single output.

139. Single input multiple output

A. MUX B. Decoder

C. DEMUX D. None

140. The following device is most likely a

D0

D1

D2

D3

S0

S1

EN

Y

A. Comparator B. Multiplexer

C. Demultiplexer D. Parity generator

141. Demultiplexer converts _____ data to _______ data

A. Parallel data, serial data

B. Serial data, parallel data

C. Encoded data, decoded data

D. All of the given options.

142. Multiplexer converts ____ data to _______ data

A. Parallel data, serial data

B. Serial data, parallel data

C. Encoded data, decoded data

D. All of the given options.

143. In an n variable system, the term which takes maxi-
mum number of literals contains __ number of liter-
als.

A. 1 B. n

C. log2(n) D. n/2

144. In an n variable Karnaugh map, the implicant term
which contains half of the cells of map as adjacent 1s
will be giving a product term with ___ number of lit-
erals.

A. 1 B. n

C. log2(n/2) D. n/2

1.158 Computer Science & Information Technology for GATE

145. In an n variable Karnaugh map, the group which con-
tains ___ adjacent 1s will be giving a product term
with log2(2n/2) number of literals.

A. 1 B. n

C. 2n/2 D. n/2

146. When can we say that no input variable has effect on
output variable in an n input variable digital circuit?.

A. If all cells in Karnaugh map are having 0s

B. If all cells in Karnaugh map are having 1s

C. Both a and b.

D. We cannot conclude that simply.

147. Each cell in a Karnaugh map is ___

A. Logic gate B. Logic unit

C. Minterm or maxterm D. A Boolean theorem

148. Each cell in a Karnaugh map holds __

A. An integer B. 0

C. 1 D. b&c

149. Each cell in a Karnaugh map represents ___

A. An AND gate B. Product

C. Sum D. Canonical term

150. Valid grouping of Karnaugh maps is

A. 3 cells

B. Two cells in diagonal

C. Consecutive cells which are of the form 21, 22, 23

etc.,

D. None

151. The variables (literals) are organised in Karnaugh
map in ___ such that they are in logically and graphi-
cally adjacent.

A. Binary code B. Grey code

C. ASCII code D. UNICODE

152. Karnaugh map can be used

A. To detect racing condition

B. To calculate delay in the circuit

C. To simplify the circuit complexity

D. None

153. Karnaugh map the values are ordered in a ___, such
that precisely one variable changes between any pair
of cells.

A. Gray code B. Hypercube

C. Mesh D. Algorithm

154. F(a,b,c)=a’+b+c. What should be the nature of K-
Map.

A.
1 1 1

1 1 1 1

B.
1 1 1

1 1 1 1

C.
1 1 1

1 1 1 1

D.
1 1 1 1

1 1 1

155. Canonical forms

A. Minterms B. Maxterms

C. Both D. Prime implicants

156. Minterm

A. Is product term

B. Contains n literals in an n-variable system

C. Is a canonical form

D. All

157. Canonical forms are usually not minimal. That is,
they contains all the literals in primed or non-primed
form (Y/N).

158. In a three variable system, if f = a¢bc + ab¢c¢ + ab¢c

+abc¢ +abc then f ¢ = a¢b¢c¢ + a¢b¢c + a¢bc¢ (Y/N).

159. In a three variable system, if f = (a + b + c)(a + b + c’)

(a + b¢ + c) then f¢ = (a + b¢ + c¢)(a¢ + b + c)(a¢ + b +

c¢) (a¢ + b¢ + c)(a + b + c¢) (Y/N).

160. Product terms are

A. Minterms B. Maxterms

C. Both D. None

161. In a four variable system with Boolean literal A,B,C,D
essential prime implicants out of the prime implicants
A¢B¢D, BC¢, AC,A¢C¢D,AB, B¢CD

A. AB B. AC

C. ABD D. B¢CD

162. In a four variable system, minimum cover if the prime
implicants are A¢B¢D, BC¢, AC,A¢C¢D,AB, B¢CD

A. AC+BC¢+AB B. AC+BC+AB

C. AC+BC¢+A¢B¢D D. None

163. In a four variable system, the essential prime im-
plicant if the prime implicants are BD, ABC¢, ACD,
A¢BC, A¢C¢D

A. ACB B. ABC¢

C. BD D. AB¢C¢

164. In a four variable system, minimum cover if the prime
implicants are BD, ABC¢, ACD, A¢BC, A¢C¢D

A. BD+AB

B. ABC¢+ACD+A¢BC

C. ABC¢+ACD+A¢BC+A¢C¢D

D. None

165. In Karnaugh map, two adjacent Maxterms differ in
___ variables

A. 2 B. 1

C. n D. n

Introductory Concepts of Digital Logic Design and Computer Architecture 1.159

166. In a Karnaugh map with n variables, two adjacent
maxterms differ in ____ variables.

A. 1 B. 2

C. 3 D. 4

167. In a Karnaugh map with m variables, maximum pos-
sible grouping contains

A. m cells B. m–1 cells

C. m2 cells D. 2m cells

168. In a Karnaugh map with m variables, a grouping of n
cells (where n is less than or equal to m and n is some
integer power of 2) gives ___ number of variables in
product term.

A. log2(n) B. m-log2(n)

C. 1 D. None

169. In a Karnaugh map with m variables, a grouping of n
cells (where n is less than or equal to m and n is some
integer power of 2) gives a prime implicant with __
variables.

A. log2(n) B. m-log2(n)

C. 1 D. None

170. In a Karnaugh map with m variables, a grouping of
2n cells (where n is an integer) gives ___ number of
variables in product term.

A. log2(n) B. m-n

C. 1 D. None

171. If we add two 1s which are in diagonal style in Kar-
naugh map, we get an ___ term.

A. AND B. Product

C. OR D. XOR

172. In four variable Karnaugh map, two ends of the prin-
cipal diagonal cells differs in __ literals.

A. 1 B. 2

C. 4 D. 3

173. In four variable Karnaugh map, two ends of the prin-
cipal diagonal cells differs in __ literals.

A. 1 B. 2

C. 4 D. 3

174. In four variable Karnaugh map, the minterm whose
binary code 1111 is located in

A. 2nd row

B. 3rd row

C. Last column

D. Last row and last column

175. Once a Karnaugh map is filled in, simplifying the SOP
expression involves

A. circling the largest number of 1’s possible.

B. Circling the largest number of 1’s such that a
group contains 1, 2, 4 ,8 etc., 1s.

C. None

D. Both

176. While taking 1s into groups in Karnaugh map, we
have consider them only once (Y/N).

177. The process of building a circuit from a description
such as a Boolean equation or truth table is ____.

A. Karnaugh mapping B. Gating

C. Synthesis D. Analysis

178. A product term in a Boolean expression where all
variables appear once in true or compliment form is a
____.

A. Maxterm B. Minterm

C. DeMorgan D. Canonterm

179. How many adjacent cells in a Karnaugh map must be
circled to eliminate 3 variables?

A. 2 B. 3

C. 6 D. 8

180. How many literals will be eliminated if adjacent cells
in a Karnaugh map , where grouped adjacent cells are
8?

A. 2 B. 3

C. 6 D. 8

181. The cell marked 6 in 4-variable K-Map represent min-
term 6 or the maxterm 6 having the following binary
value of variables A, B, C and D. Select correct option:

A. A=1, B=1, C=0, D=0 B. A=0, B=1, C=1, D=0

C. A=0, B=0, C=1, D=1 D. A=1, B=0, C=0, D=1

182. An example of SOP expression is

A. A + B(C + D)

B. A¢B + AC¢ + AB¢C

C. (A¢ + B + C)(A + B¢ + C)

D. both (a) and (b)

183. Which of the following terms is not adjacent to oth-
ers?

A. wxyz¢ B. w¢xyz¢

C. wxy¢z D. w¢x¢y¢z¢

E. wx¢yz

184. A group of eight 1s in a four variable Karnaugh map
gives prime implicant with __ literals while the same
with three variable Karnaugh map gives prime impli-
cant with ___ literals.

A. 1, 0 B. 1, 1(constant 1)

C. 2, 0 D. None

185. A group of eight 1s in a four variable Karnaugh map
gives prime implicant with __ literals while the same
with six variable Karnaugh map gives prime implicant
with ___ literals.

1.160 Computer Science & Information Technology for GATE

A. 1, 0 B. 1, 3

C. 2, 0 D. None

186. The Boolean expression A + B¢ + C is

A. a sum term B. a literal term

C. a product term D. a complemented term

187. The Boolean expression AB¢CD¢ is

A. a sumterm B. a product term

C. a literal term D. always 1

188. Number of cells in Karnaugh map will be same as
number vertices of an equivalent Boolean cube (Y/N).

189. Find odd man out of the following with regard to
grouping of 1s with Karnaugh map.

A. 4 B. 32

C. 31 D. 64

190. Find odd man out of the following with regard to
grouping of maxterms with Karnaugh map.

A. 4 B. 8

C. 7 D. 2

191. A logic circuit with an output X ABC AB= + consists
of ________.

A. two AND gates, two OR gates, two inverters

B. three AND gates, two OR gates, one inverter

C. two AND gates, one OR gate, two inverters

D. two AND gates, one OR gate

192. Following is standard POS expression

 A B C D A B C D A B C D+ + +() + + +() + + +()

 A B C D A B C D+ + +() + + +()

A. True

B. False

193. In a four variable Karnaugh map, total number cells
for representing both for minterms and maxterms
are:

A. 8 B. 16

C. Half D. All 1s

194. BCD to 7-Segment decoder has

A. 3 inputs and 7 outputs

B. 4 inputs and 7 outputs

C. 7 inputs and 3 outputs

D 7 inputs and 4 outputs

195. When minterms of a four variable Karnaugh map
with don’t cares are grouped, we have got the SOP as:
A¢B¢+AC. What is minimum possible don¢t cares that
are seen in Karnaugh map?

A. 1 B. 4

C. 8 D. None

196. When minterms of a four variable Karnaugh map are
grouped along with don’t cares, the resultant Boolean
equation is observed to be 1. Then, in worst case how
many cells may be don¢t cares.

A. 1 B. 15

C. 8 D. None

197. When minterms of a four variable Karnaugh map are
grouped along with don’t cares, the resultant Boolean
equation is observed to be 1. Then, in the best case
how many cells may be having don’t cares.

A. 1 B. 15

C. 8 D. None

198. If we group 2m minterms in an n variable Karnaugh
map, then worst possible number of cells with don’t
cares can be

A. 2m B. 2m–1

C. m–1 D. n

199. If we group 2m minterms along with don’t cares in an
n variable Karnaugh map, then best possible number
of cells with don’t cares in that group can be

A. 2m B. 2m–1

C. m–1 D. 1

200. Some grouping of minterms along with don’t cares
gave prime implicant with m-n terms in an n variable
system. Then the worst possible number of don’t care
cells in the grouping can be

A. m-n–1 B. 2m–1

C. 2m–n–1 D. None

201. Some grouping of minterms along with don’t cares
gave prime implicant with m-n terms in an n variable
system. Then the best possible number of don’t care
cells in the grouping can be ___

A. m–n–1 B. 2m–1

C. 2m–n-1 D. 1

202. In an n variable Karnaugh map more than half cells
are observed to be having don’t care type. If we group
half of the cells of Karnaugh map, then minimum
possible number of don’t care cells in it are:

A. 1 B. n/2

C. 2n D. We cannot say

203. In an n variable Karnaugh map more than half cells
are observed to be having don’t care type. If we group
half of the cells of Karnaugh map, then maximum
possible number of don’t care cells in it are:

A. 1 B. 2n/2 C. 2n D. 2n–1

204. In an n variable Karnaugh map, 2n/4 minterms are
grouped then the respective prime implicant contains
___ literals.

Introductory Concepts of Digital Logic Design and Computer Architecture 1.161

A. 4 B. n–2

C. n/2 D. None

205. In an n variable Karnaugh map (where n is 2), 2n/4
minterms are grouped then the respective prime im-
plicant contains ___ literals.

A. 4 B. 1

C. n/2 D. None

206. In an n variable system, if four 1s are grouped then the
respective prime implicant contains ____ less than n
literals.

A. 1 B. 4

C. n/4 D. 2

207. In an n variable Karnaugh map, two groups of 2n/2
minterms with overlap is seen. Then, the total number
of literals in resulting SOP equation are __

A. n/2 B. 2n–1

C. 2n–2 D. None

208. In an n variable Karnaugh map, two groups of 2n/4
minterms with overlap is seen. Then, the total number
of literals in resulting SOP equation are __

A. n/2 B. 2n–1

C. 2n–4 D. None

209. In an n variable Karnaugh map, two groups of 2n/2
minterms without any overlap is seen. Then, the total
number of literals in resulting SOP equation are __

A. n/2

B. 2n–1

C. 2n-2

D. 1(The resulting equation itself 1)

210. In an n variable Karnaugh map, two groups of 2n/2
minterms with overlap are found. How many cells are
common to them?

A. n/4 B. 2n/4

C. n/2 D. None

211. In an n variable Karnaugh map, two groups of 2n/2
minterms with overlap are found. What will be per-
centage of overalp?

A. 25% B. 50%

C. 75% D. None

212. In an n variable Karnaugh map, two groups of 2n/4
minterms without any overlap is seen. Then, the total
number of literals in resulting SOP equation are

A. n/2

B. 2n-4

C. 2n-2

D. 1(The resulting equation itself 1)

213. In an n variable Karnaugh map, a group of minterms
may contain ___ number of cells.

A. 2n B. 2n

C. 3n D. 3n

214. Find odd man out with respect to an n variable Kar-
naugh map and grouping of minterms.

A. 4 B. 2n

C. 2n/2 D. 3n

215. In an n variable Karnaugh map simplification, SOP
equation is reported to be having two product terms
with n-1 literals. Then, size of the minterm groups is

A. n cells B. 2n cells

C. 2n/2 cells D. None

216. In a Karnaugh map, a cell represents a minterm or
maxterm or don’t care. It is observed that the minterm
or maxterms are having four literals. Then, how many
cells are seen in the Karnaugh map?.

A. 4 B. 8

C. 16 D. 64

217. In a 6 variable Karnaugh map, center most 2x2 cells
are found to be 1s in all the four planes (or stack of
Karnaugh map parts). How many literals will be seen
in the resulting product term?.

A. 1 B. 2

C. 4 D. 16

218. A function F=∑(0,1,2,4,5,6,8,9,12,13,14) is simplified
using Karnaugh map. Possible total number of literals
in the simplified equation for F is

A. 16 B. 12

C. 5 D. 6

 (Answer: F becomes Y’+W’Z’+X’Z)

219. A function F(W,X,Y,Z)=∑(0,1,2,4,5,6,8,9,12,13,14) is
simplified using Karnaugh map. Possible simplified
equation of F contains

A. Two terms with two literals

B. One term with one literal

C. Total three terms

D. All true

220. In a three variable Karnaugh map, assuming three
groups of 1s with two cells are having one cell com-
mon to all three groups. Then, possible number of lit-
erals in the resulting simplified SOP equation are

A. 4 B. 5

C. 6 D. 3

221. In a three variable Karnaugh map, assuming three
groups of 1s with two cells are having one cell com-
mon to all three groups. Then, possible number of
non-primed literals (literals with complement) in the
resulting simplified SOP equation can be:

1.162 Computer Science & Information Technology for GATE

A. 6 B. 0

C. 2 D. All

222. In a four variable Karnaugh map, we found three
groups of 1s size 2x2 cells along the principal diagonal
with 1 common cell to each of the group. Then, the
possible number of cells in the simplified SOP equa-
tion is

A. 4 B. 5

C. 6 D. 7

223. The minimum cover of F(A, B, C, D) = ∑(0, 1, 4, 5,
712, 14, 15) does not contain

A. AC B. A¢C¢

C. ABD¢ D. BCD

224. When the following Karnaugh map is used to find
SOP equation. Number of product terms are:

1 1 1 1

11

11

ab
cd

00 01 11 10

c

b

d

a

00

01

11

10

A. 4 B. 3

C. 6 D. 8

225. When the following Karnaugh map is used to find
SOP equation. Assuming that a group is having singe
1, then number of product terms with four 1s are

1 1 1 1

11

11

ab
cd

00 01 11 10

c

b

d

a

00

01

11

10

A. 4 B. 2

C. 6 D. 8

226. Assuming simplified Boolean equations (in SOP) are
found for each of the following Karnaugh maps. Pos-
sible number of literals in each of them are:

1 1

1

ab
cd

00 01 11 10

00

01

11

10

1

1

1

1

1

1

ab

cd
00 01 11 10

00

01

11

10

1

1

1 1

1

1

ab
cd

00 01 11 10

00

01

11

10 1

1

A. 5,9,10 B. 5,6,2

C. 5,4,2 D. 12,2,4

227. Assuming simplified Boolean equations (in SOP)
are found for each of the following Karnaugh maps.
Which one contains single product term?

1 1

1

ab
cd

00 01 11 10

00

01

11

10

1

1

1

1

1

1

ab

cd
00 01 11 10

00

01

11

10

1

1

1 1

1

1

ab
cd

00 01 11 10

00

01

11

10 1

1

A. First one B. Second one

C. Third one D. None

228. After simplifying F(A,B,C,D)=∑ m(0,2,3,6,8,12,13,15),
the number of groups with two 1s are

A. 2 B. 3

C. 4 D. 5

229. After simplifying F(A,B,C,D)=∑ m(0,2,3,6,8,12,13,15),
the number of product terms with three literals are

A. 2 B. 3

C. 4 D. 5

230. After simplifying F(A,B,C,D)=∑ m(0,2,3,6,8,12,13,15),
the number of terms with two literals are

A. 0 B. 3

C. 4 D. 5

231. After simplifying F(A,B,C,D,E)=∑ m(5, 7, 13, 15, 21,
23, 29, 31), the number of groups with two 1s are

A. 0 B. 3

C. 4 D. 5

232. After simplifying F(A,B,C,D,E)=∑ m (5, 7, 13, 15, 21,
23, 29, 31), the number of terms with two literals are

A. 0 B. 1

C. 4 D. 5

Introductory Concepts of Digital Logic Design and Computer Architecture 1.163

233. From Karnaugh map, we found F(A,B,C)=A ≈ B ≈ C,
then the number of 1s in the Karnaugh map are

A. 2 B. 3

C. 4 D. 5

234. From Karnaugh map, we found F(A,B,C)=A ≈ B ≈
C, then the number of groups having four 1s in the
Karnaugh map are

A. 0 B. 3

C. 4 D. 5

235. ___ are the terms which cannot be simplified further.

A. Minterms B. Maxterms

C. Canonical terms D. Prime implicants

236. Prime implicants of Q=A’B’C’D’ + A’B’C’D + AB’CD’
+ ABCD’

A. ABC, AB’D B. A’B’C’, ACD’

C. AB’C’, ACD D. ABC, A’CD’

237. In a four variable Karnaugh map for F(A, B, C, D), if
middle two rows fully contains 1s and don’t cares then
possible prime implicant is

A. AB B. AC

C. B D. A

238. Following two alternative groupings are suggested
in a four variable Karnaugh map, which one is pre-
ferred?

0 0 1 0

1

0

0

00

0 0

111

1

1

0 0 1 0

1

0

0

00

0 0

111

1

1

A. First one as it gives less number prime implicants

B. First one as it gives prime implicants with less
number of total literals

C. Second as it gives less number of prime impli-
cants.

D. None

239. Following two alternative groupings are suggested
in a four variable Karnaugh map, which one is pre-
ferred?

1 0

1

0

11

1

1

11

0

1 1 1

11

1 1

1

0

11

1

1

11

0

1 1 1

11

A. First one as it gives less number prime implicants

B. Second one as it gives prime implicants with less
number of total literals

C. Second as it gives less number of prime impli-
cants.

D. None

240. Simplification of a four variable Karnaugh gave SOP
equation as A+B+D¢, then number groups eight ones
are

A. 5 B. 6

C. 3 D. 4

241. In a Karnaugh map, number of maxterms and mint-
erms are found to be exactly same and no don’t care
terms are available. All the minterms are adjacent and
maxterms also adjacent. Then,

A. SOP equation contains single literal and single
term.

B. POS equation contains single literal and single
term.

C. Both are true.

D. None

242. There exists m minterms in a n-variable system. If
related Boolean equation is represented in canonical
form then total number of literals are:

A. mn B. mn/2

C. mn’ D. None

243. If an n-variable Karnaugh map contains half of its ele-
ments as 1s then total number of literals in the result-
ing Boolean equation when represented in minterms
form and each term is canonical

A. m2 B. 2n/2n

C. n(n-1)/2 D. None

244. Most important Boolean postulates which is basis for
Karnaugh map grouping is

A. AA=1 B. AA¢=A

C. A+A¢=1 D. None

245. Most important Boolean postulates which is basis for
Karnaugh map grouping is

A. AA=1 B. AA¢=0

C. A+A¢=A D. None

246. Q(A,B,C)= ABC+ABC¢ + A¢BC is equivalent to

A. AB+A¢BC B. BC+ABC¢

C. Both are valid D. None is valid

247. In an n variable Karnaugh map simplification, a prod-
uct term in SOP is observed to be having m literals,
then number adjacent cells which lead to this product
term is:

A. m–n B. n–m

C. 2n–m D. 2m–n

248. In a SOP equation of a four variable system, a prod-
uct term is identified to be having only two literals. If
we expand the same into canonical terms, how many
minterms we may get?.

A. 2 B. 4/2

C. 4 D. None

1.164 Computer Science & Information Technology for GATE

249. In a four variable (A,B,C,D) Karnaugh map, we have
found four groups of two 1s which are horizontal in
nature and one in each row . Each group contains
off-diagonal element of that row and element in next
column. Then the resulting Boolean equation in SOP
form is

A. ABC + ABD + ABC¢ +BCD¢

B. ABC + AB¢C + ABD¢ + ACD

C. A¢B¢D¢ + A¢BC+ AB¢C¢+ABD

D. None

250. In a four variable (A,B,C,D) Karnaugh map, we have
found four groups of two 1s which are horizontal in
nature and one in each row . Each group contains
off-diagonal element of that row and element in next
column. Then prime implicant is:

A. ABC B. ABD¢

C. ABD D. ABC’

251. In a four variable (A,B,C,D) Karnaugh map, we have
found four groups of two 1s which are vertical in na-
ture and one in each row . Each group contains off-
diagonal element of that row and element below it.
Then the resulting Boolean equation in SOP form is

A. ABC + ABD + ABC¢ +BCD¢

B. B¢C¢D¢ +A¢CD¢+BCD+AC¢D

C. A¢B¢D¢ + A¢BC+ AB¢C¢+ABD

D. None

252. In a four variable (A,B,C,D) Karnaugh map, we have
found four groups of two 1s which are vertical in na-
ture and one in each row. Each group contains off-
diagonal element of that row and element below it.
Then prime implicant is:

A. ABC B. ABD

C. A’CD’ D. None

253. A distinguished cell

A. Is the one which is covered by more than one
prime implicants

B. Canonical form

C. Is the one which is covered by exactly one prime
implicant

D. None

254. If all the elements of both the diagonals of a 4 variable
Karnaugh map are 1s, then the number of terms in
the resulting SOP are

A. 3 B. 8

C. 4 D. 2

255. If all the elements of both the diagonals of a 4 variable
Karnaugh map are 1s, then the number of literals in
the resulting SOP are

A. 3 B. 8

C. 4 D. 2

256. If all the elements of both the diagonals of a 6 variable
Karnaugh map are 1s in all of the four planes, then the
number of terms in the resulting SOP are

A. 3 B. 8

C. 4 D. 2

257. If all the elements of both the diagonals of a 6 variable
Karnaugh map are 1s in all of the four planes, then the
number of terms in the resulting SOP are

A. 3 B. 8

C. 4 D. 2

258. If all the elements of middle two rows and columns of
a 4 variable Karnaugh map are 1s then the resulting
SOP equation contains

A. Two literals

B. Two product terms

C. All literals are in their prime form

D. All

259. If in each plane, all the elements of middle two rows
and columns of a 6 variable Karnaugh map are 1s then
the resulting SOP equation contains

A. Two literals

B. Two product terms

C. All literals are in their prime form

D. All

260. Number essential prime implicants of a three variable
Karnaugh map with minterms 1,2,3 and 6 as 1s

A. 1 B. 3

C. 4 D. 2

261. For F(A,B,C)=Sm(1,2,3,6), essential PI

A. AC B. A¢C

C. A¢C¢ D. A¢B

262. F(A,B,C) = Sm(0,1,6,7) in simplified form is

A. (A+B)¢ B. (A ≈ B)

C. (A ≈ B)¢ D. None

263. Number of literals in the SOP equation of F(A,B,C) =
Sm(0,1,2,3,5,6,7)

A. 6 B. 5

C. 3 D. 4

264. Number of prime literals in the SOP equation of
F(A,B,C)=Sm(0,1,2,3,5,6,7)

A. 6 B. 5

C. 3 D. 2

265. How many gates are needed from the SOP equation
of F(A,B,C) = Sm(0,1,2,3,5,6,7)

A. 3 two input AND and one 3 input OR

Introductory Concepts of Digital Logic Design and Computer Architecture 1.165

B. 3 input OR

C. 3 input OR and NOT

D. None

266. From a four variable Karnaugh, a simplied SOP equa-
tion is given as A¢B¢C¢D + A¢BC + AC¢D¢ + AB¢D¢,
then number minterms with 1s are

A. 10 B. 9

C. 7 D. 6

267. Some expression can be both SOP and POS. Which
of the following are such expressions?

i. x¢ ii. xy + x¢z + xy¢z¢

iii. xyz¢ iv. x + y + z¢

A. (i) and (iii) only B. (i) and (iv) only

C. (iii) and (iv) only D. (ii), (iii) and (iv) only

E. (i), (iii) and (iv) only

268. Given a Boolean function F(x,y,z) = z·(x¢ + y) + x·y.
Which of the following is correct?

A. F(x,y,z) = S m(1, 5, 6, 7)

B. F(x,y,z) = S m(1, 3, 6, 7)

C. F(x,y,z) = S m(3, 5, 6, 7)

D. F(x,y,z) = S m(2, 5, 6, 7)

E. F(x,y,z) = S m(0, 1, 3, 4)

269. Number PIs and EPIs in the following Karnaugh map

0 0 0 1

1 0 X X

X 0 X 1

0 0 X X

A. 3, 1 B. 4, 1

C. 4, 2 D. 5, 2

E. 5, 1

270. SOP of the following Karnaugh map assuming vari-
ables are W,X,Y,Z.

0 0 0 1

1 0 X X

X 0 X 1

0 0 X X

A. WX¢ +W¢X¢Z B. WX¢ + X¢Z

C. YZ¢ +XY¢Z¢ D. YZ¢+XZ¢

E. YZ+XZ

271. POS of the following Karnaugh map assuming vari-
ables are W,X,Y,Z.

0 0 0 1

1 0 X X

X 0 X 1

0 0 X X

A. Z + X¢Y¢ B. XZ¢+YZ¢

C. Z¢(X+Y) D. (X+Y)(Y+Z)(Z¢+Y)

272. Number of EPIs and PIs in a Karnaugh map with m
(0,2,4,5,6,7,8,10,13,15)

A. 3, 3 B. 3, 4

C. 4, 3 D. 4, 2

E. 3, 2

273. Number of product terms in simplified a Karnaugh
map with m(0,2,4,5,6,7,8,10,13,15)

A. 1 B. 2

C. 3 D. 4

E. 5

274. The following three Boolean functions are given:

 F(A,B,C,D,E) = PM(0, 1, 2, 4)

 G(A,B,C,D,E) = Sm(0, 2, 4, 6)

 H(A,B,C,D,E) = PM(3, 4, 5)

 What is the Boolean function F · G · H?

A. Sm(4) B. Sm(6)

C. Sm(1, 3, 5, 6) D. Sm(0, 1, 2, 3, 4, 5, 6)

E. None of the above

275. In a 5 variable system, which of the following mint-
erms differs in one literal?

A. m1, m4 B. m7, m9

C. m16, m16 D. m18, m20

E. m19, m23

276. Given the following Karnaugh map, __ is not a prime
implicant.

AB
CD

00 01 11 10

00

01

11

10

1 1 0 1

0 1 1 0

0 1 1 1

0 1 0 0

A. A¢B¢D¢ B. A¢BC

C. ABC D. A¢B¢C¢

277. Given the following Karnaugh map, __ is not a prime
implicant.

AB
CD

00 01 11 10

00

01

11

10

1 1 0 1

0 1 1 0

0 1 1 1

0 1 0 0

A. A¢B¢D¢ B. BD

C. ABC D. A¢B¢C¢

1.166 Computer Science & Information Technology for GATE

278. Given the following Karnaugh map of a function
F(A,B,C,D), then W’ in SOP form.

AB
CD

00 01 11 10

00

01

11

10

1 1 0 1

0 1 1 0

0 1 1 1

0 1 0 0

A. A.B¢.C + A¢.B.D¢ + A.C¢.D¢ + B¢.C.D

B. A.B.C¢ + A.B¢.D¢ + A¢.C.D¢ + B.C¢.D

C. A.B¢.C + A¢.B.D¢+ A.C¢.D + B¢.C.D¢

D. A.B.C + A.B.D¢+ A.C¢.D¢ + B.C¢.D

E. A.B.C + A¢.B.D¢+ A.C¢.D¢ + B.C.D¢

279. For a six-variable Boolean function, which of the fol-
lowing sets of minterms can be combined into a single
product term?

A. m0 and m63

B. m0, m5, m10 and m15

C. m16, m17, m32 and m33

D. m21, m29, m53 and m63

E. m60, m61, m62 and m63

280. Find correct statement

A. An OR function can be created from only AND
gates.

B. An NOR function can be created from only
NAND gates.

C. Every product-of-sums expression is a product-
of-maxterms expression.

D. A minimal SOP expression can be obtained by
including only the essential prime implicants but
leaving out all the non-essential prime implicants.

E. None of the above.

281. Given this four-variable Boolean function F:

 F = C¢.D + A¢.B.D + A.B.C¢+ B¢.C¢.D¢+ A¢.B¢.C¢

 How many distinct minterms does the sum-of-mint-
erms expression for F contain?

A. 8 B. 9

C. 10 D. 11

E. 12

282. Given a K-map of a 10-variable Boolean function and
a particular prime implicant on the K-map contains
64 minterms. How many literals are there in the prod-
uct term corresponding to that prime implicant?

A. 4 B. 6

C. 16 D. 32

E. 24

283. From a Karnaugh map, a function is given as:
F(a,b,c,d) = (b ≈ d). Then select possible structure of
the Karnaugh map.

A. 0

1 1 0

1 1 0

0

B.

1 1 1

1 1 1

C. 0 0

0 0

0 0

0 0

D. 1 1

1 1

1 1

1 1

284. From a Karnaugh map, a function is given as:
F(a,b,c,d) = (b ≈ d)’ . Then select possible structure of
the Karnaugh map.

A. 1

1 1 1

1 1 1

1

B.

1 1 1

1 1 1

C. 1

1 1

1 1

1

D. 1 1

1 1

1 1

1 1

285. From a Karnaugh map, a function is given as:
F(a,b,c,d)=(a ≈ c)’. Then select possible structure of
the Karnaugh map.

A. 1 1

1 1

1 1

1 1

B. 1 1

1 1

1 1

1 1

C. 1

1 1

1 1

1

D. 1 1

1 1

1 1

1 1

286. EPIs and PIs for the following Karnaugh map:

1 1

1 1

1 1

1 1 1

A. bd, bd¢, acd B. bd, b¢d¢, acd

C. bd, b¢d¢, acd, acd¢ D. abd, bc, bd

287. From a Karnaugh map, a function is given as:
F(a,b,c,d)=(c ≈ d). Then select possible structure of
the Karnaugh map.

Introductory Concepts of Digital Logic Design and Computer Architecture 1.167

A. 1

1 1 1

1 1 1

1

B.

1 1 1

1 1 1

C. 1

1 1

1 1

1

D.

1 1 1 1

1 1 1 1

288. Find odd one out of the following.

A. Sum term B. Canonical term

C. Product term D. literal

289. In minterms or maxterms literals will be always in
non-compliment form (Y/N)

290. In an n variable input digital system with one output,
sum of minterms values will be at most

A. log2(n) B. n

C. 2n D. None

291. The function f(A,B,C) = AB + AC ¢ + A¢C is equiva-
lently mentioned as

A. Sm(0,2,3,4) B. Sm()

C. pm(1,3,4,6,7) D. None

292. The function f(A,B,C) = A(A + C ¢). It can equally rep-
resented as

A. Sm(0,1,2,3,4) B. SM(0,1,2,3)

C. SM(1,2,3,9) D. p M(0,1,2,3)

293. The function f(A,B,C) = A. It can be equally repre-
sented as

A. Sm(0,1,2,3,4) B. SM(0,1,2,3)

C. SM(1,2,3,9) D. pM(0,1,2,3)

294. The function f(A,B,C) = (A + C ¢). It can be equally
represented as

A. pm(0,1,2,3,4) B. SM(0,1,2,3)

C. SM(1,2,3,9) D. pM(1,3)

295. The function f(A,B,C) = A(A + C ¢). It can be equally
represented as

A. Sm(4,5,6,7) B. SM(0,1,2,3)

C. SM(1,2,3,9) D. Sm(0,1,2,3)

296. A function f(A,B,C) is found to be same as A after
grouping 0s and don’t cares in the Karnaugh map.
Maximum possible number of don’t care cells that are
considered while deriving sum term as A is

A. 1 B. 2

C. 3 D. None

297. A function f(A,B,C) is found to be same as A after
grouping 0s and don’t cares in the Karnaugh map.

Maximum possible number of don’t care cells that are
considered while deriving sum term as A is

A. 1 B. 2

C. 3 D. None

298. A function f(A,B,C,D) is found to be same as A after
grouping 0s and don’t cares in the Karnaugh map.
Maximum possible number of don’t care cells that are
considered while deriving sum term as A is

A. 1 B. 2

C. 3 D. 7

299. A function f(A,B,C,D) is found to be same as A+C af-
ter grouping 0s and don’t cares in the Karnaugh map.
Maximum possible number of don’t care cells that are
considered while deriving sum term as A+C is

A. 1 B. 2

C. 3 D. 7

300. A function f(A,B,C,D,E,F) is found to be same as AF’
after grouping 1s and don’t cares in the Karnaugh
map. Maximum possible number of don’t care cells
that are considered while deriving product term as
AF’ is

A. 15 B. 2

C. 3 D. 7

301. A function f(A,B,C,D,E,F) is found to be same as AF¢
after grouping 1s and don’t cares in the Karnaugh
map. Minimum possible number of don’t care cells
that are considered while deriving product term as
AF’ is:

A. 1 B. 2

C. 3 D. 7

302. A function f(A,B,C) is found to be same as A(A+C¢)
after grouping 0s and don’t cares in the Karnaugh
map. Maximum possible number of don’t care cells
that are considered while deriving POS equation
A(A+C’) is:

A. 1 B. 2

C. 5 D. 7

303. Minimizing using Karnaugh map

A. Increases number of levels in the resultant circuit

B. Reduces number of levels in the resultant circuit.

C. Gives circuits with two levels.

D. None

304. A minimal solution will never contain

A. Prime implicants

B. Essential prime implicants

C. Non-prime implicants

D. None

1.168 Computer Science & Information Technology for GATE

305. Non-prime implicant in the following Karnaugh map

AB

CD
00 01 11 10

00

01

11

10

1

1

1

1

1

1

1

1

1

A. ABC¢D B. AB

C. CD¢ D. AB

306. ________ is invalid number of cells in a single group
formed by the adjacent cells in K-map.

A. 2 B. 8

C. 12 D. 16

307. The diagram given below represents __________

A

B
B

C

D
A

C

A. Demorgans law B. Associative law

C. Product of sum form D. Sum of product form

308. A non-standard POS is converted into a standard
POS by using the rule _____

A. A + A = 1 B. A A = 0

C. 1 + A = 1 D. A + B = B + A

309. In the following K-Map which is redundant term that
is used to avoid hazard?

0 0 0 0

0 0 1 1

1 1 1 1

1 1 0 0

AB
CD

00 01 11 10

00

01

11

10

A. AB B. AC’

C. BC D. None

310. A function F (A,B,C,D) in its minimalistic form is
given as: (A+C)(A¢ + D¢). The redundant term that
can be used to avoid hazard

A. BCD B. C¢ + D

C. A + D D. None

311. A function F (A,B,C,D) in its minimalistic form is
given as: (A + C)(A¢ + D¢). This has ___.

A. Static 1 hazard B. Static 0 hazard

C. Function hazard D. Dynamic hazard

312. A function F (A,B,C,D) in its minimalistic form is
given as: (A+C)(A¢ + D¢)(B¢+C¢+D)(C+D¢). Note the
redundant term

A. A + B¢ + D B. C¢ + D

C. A¢ + B¢ + C’ D. A + B + C

313. A function F(x,y,z)=S(2,3,5,7) has ___ .

A. Static 1 hazard B. Static 0 hazard

C. Function hazard D. Dynamic hazard

314. The redundant term to be added to avoid hazard in
function F(x,y,z) = S(2,3,5,7) is

A. x+y B. xz

C. yz D. None

315. The redundant terms to be added to avoid static 1
hazard in the function F(x,y,z,w) = x¢y + xw + zw + yz’

A. yw B. xy

C. xw D. None

316. In a function F(x,y,z) = xz¢ + yz, the variable whose
transition gives static 1 hazard

A. x B. y

C. z D. All

317. The function F = AC¢ + A¢D+C¢D has

A. Static 1 hazard B. Static 0 hazard

C. No hazard at all D. Dynamic hazard

318. Hazards can be avoided by

A. Inducing delays

B. Sample only when stable output is available

C. Avoiding asynchronous inputs

D. Using synchronized clock

E. Using redundant terms

F. All

319. The redundant terms that can be added to make the
function F(A,B,C,D) = AC¢ + A¢D + C¢D as hazard
free

A. AB B. BD

C. Both D. None

320. Which of these statements are true?

A. A minterm equation is an unreduced sum-of-
products Boolean expression.

B. A minterm equation requires the least number of
logic gates when implemented.

C. A maxterm equation is an unreduced sum-of-
products Boolean expression.

D. A maxterm equation is an unreduced product-of-
sums Boolean expression.

321. Gray codes

A. are used to express negative Boolean numbers.

B. are used to order the cells in a Karnaugh map.

C. change only in last bit in sequential numbers.

D. make a halftone image when printed.

Introductory Concepts of Digital Logic Design and Computer Architecture 1.169

322. _________ is one of the examples of synchronous in-
puts.

A. J-K input B. EN input

C. Preset input (PRE) D. Clear Input (CLR)

323. ___________ is one of the examples of asynchronous
inputs.

A. J-K input B. S-R input

C. D input D. Clear Input (CLR)

324. The _____________ input overrides the ________
input

A. Asynchronous, synchronous

B. Synchronous, asynchronous

C. Preset input (PRE), Clear input (CLR)

D. Clear input (CLR), Preset input (PRE)

325. __________occurs when the same clock signal ar-
rives at different times at different clock inputs due to
propagation delay.

A. Race condition B. Clock Skew

C. Ripple Effect D. None of given options

326. Consider an up/down counter that counts between 0
and 15, if external input(X) is “0” the counter counts
upward (0000 to 1111) and if external input (X) is “1”
the counter counts downward (1111 to 0000), now
suppose that the present state is “1100” and X=1, the
next state of the counter will be ___________

A. 0000 B. 1101

C. 1011 D. 1111

327. A 8-bit serial in / parallel out shift register contains
the value “8”, _____ clock signal(s) will be required to
shift the value completely out of the register.

A. 1 B. 2

C. 4 D. 8

328. 5-bit Johnson counter sequences through____states.

A. 7 B. 10

C. 32 D. 25

329. Assume that a 4-bit serial in/serial out shift register is
initially clear. We wish to store the nibble 1100. What
will be the 4-bit pattern after the second clock pulse?
(Right-most bit first.)

A. 1100 B. 0011

C. 0000 D. 1111

J Q

QK

SET

CLR

CLK

J-K flip-flop1
1

J Q

QK

SET

CLR

J-K flip-flop 2
1

J Q

QK

SET

CLR

J-K flip-flop 3
1

F0 F1 F2

330. Above is the circuit diagram of _______.

A. Asynchronous up-counter

B. Asynchronous down-counter

C. Synchronous up-counter

D. Synchronous down-counter

331. The sequence of states that are implemented by a n-bit
Johnson counter is

A. n+2 (n plus 2)

B. 2n (n multiplied by 2)

C. 2n (2 raise to power n)

D. n2 (n raise to power 2)

332. At T0 the value stored in a 4-bit left shift was “1”. What
will be the value of register after three clock pulses?

A. 2 B. 4

C. 6 D. 8

333. An 8-bit serial in / parallel out shift register contains
the value “8”, _____ clock signal(s) will be required to
shift the value completely out of the register.

A. 1 B. 2

C. 4 D. 8

334. When both the inputs of edge-triggered J-K flop-flop
are set to logic zero _________

A. The flop-flop is triggered

B. Q=0 and Q’=1

C. Q=1 and Q’=0

D. The output of flip-flop remains unchanged

335. How many stats does a module 4 counter have?

A. 1 B. 2

C. 4 D. 16

336. How will a serial in and out shift register accept data
serially?

A. One bit at a time B. 8 bit

C. Only after a load plus D. Only after being clear

337. The invalid state of SR latch occur when

A. S=1, R=0 B. S=0, R=1

C. S=1,R=1 D. S=0,R=0

338. To serially shift a byte of data in to a shift register
there must be

A. 1 clock plus

B. One load plus

C. 8 clock plus

D. One clock plus for each in the data

339. What is the decimal value of the terminal count of 4
bit binary count?

A. 10 B. 12

C. 15 D. 16

1.170 Computer Science & Information Technology for GATE

340. Divide- by-10 Johnson counter needs __ flip flops.

A. 5 B. 10

C. 4 D. None

341. Divide- by-10 ring counter needs __ flip flops.

A. 5 B. 10

C. 4 D. None

342. A multiplexer with its inputs from a register can be
used to

A. Parallel to serial data B. Serial to serial

C. Serial data to parallel D. None

343. To parallel load a byte into a shift register we need

A. One clock pulse

B. One clock pulse for one bit

C. n/2 clock pulses.

D. None

344. S=1 and R=0, then Q(t+1) = ______ for positive edge
triggered flip-flop

A. 0 B. 1

C. Invalid D. Input is invalid

345. If S=1 and R=1, then Q(t+1) = _________ for nega-
tive edge triggered flip-flop

A. 0 B. 1

C. Invalid D. Input is invalid

346. The operation of J-K flip-flop is similar to that of the
SR flip-flop except that the J-K flip-flop ___________

A. Does not have an invalid state

B. Sets to clear when both J = 0 and K = 0

C. It does not show transition on change in pulse

D. It does not accept asynchronous inputs

347. The minimum time for which the input signal has to
be maintained at the input of flip-flop is called ______
of the flip-flop.

A. Set-up time

B. Hold time

C. Pulse interval time

D. Pulse stability time (PST)

348. Positive edge-triggered flip-flop changes its state
when _____

A. Low-to-high transition of clock

B. High-to-low transition of clock

C. Enable input (EN) is set

D. Preset input (PRE) is set

349. Negative edge-triggered flip-flop changes its state
when _______

A. Enable input (EN) is set

B. Preset input (PRE) is set

C. Low-to-high transition of clock

D. High-to-low transition of clock

350. ___the Q output of the last flip-flop of the shift regis-
ter is connected to the data input of the first flip-flop.

A. Moore machine B. Mealy machine

C. Johnson counter D. Ring counter

351. ________ Q output of the last flip-flop of the shift
register is connected to the data input of the first flip-
flop of the shift register.

A. Moore machine B. Mealy machine

C. Johnson counter D. Ring counter

352. Which is not characteristic of a shift register?

A. Serial in/parallel in B. Serial in/parallel out

C. Parallel in/serial out D. Parallel in/parallel out

353. Assume that a 4-bit serial in/serial out shift register is
initially clear. We wish to store the nibble 1100. What
will be the 4-bit pattern after the second clock pulse?
(Right-most bit first.)

A. 1100 B. 0011

C. 0000 D. 1111

354. The counter whose LSB flip-flop is driven by high
logic with its inputs

A. counter with JK FFs B. counter with RS FFs

C. counter with D FFs D. None

355. The counter whose LSB flip-flop only receives clock

A. Synchronous B. Asynchronous

C. A ripple D. Ripple

356. Maximum possible modulus value in a counter with
K flip-flops

A. K B. 2K

C. 2K–1 D. K/2

357. A ripple counter with ___ FF at its LSB will be having
its complement output will be connected to its inputs.

A. RS B. SR

C. JK D. D

358. Number of counts in a counter cycle

A. Norm B. Magnitude of counter

C. Modulus D. None

359. Since only the first flip-flop of a ripple counter is con-
trolled by a clock, the counter is _________?

A. Binary B. Asynchronous

C. Synchronous D. Modulus-n

360. ___ is the mod number of a counter with 5 FFs.

A. 10 B. 9

C. 32 D. 16

361. Find odd man out of the following

A. Serial counter B. Ripple counter

Introductory Concepts of Digital Logic Design and Computer Architecture 1.171

C. Asynchronous counter

D. Synchronous counter

362. Without using jumper wires between inputs and out-
puts, IC7493 can operate as

A. Mod 2 and mod 10 B. Mod 2 and mod 9

C. Mod 2 and mod 8 D. None

363. In order to use as a ___ counter, we have to connect
Q0 and CP1.

A. 2 B. 8

C. 6 D. 12

364. To make it work like a mod 12 counter, we have to
connect

A. Q0 and CP1 B. Q1 and CP2

C. CP1 and CP0 D. None

365. Using IC 7493, we can realise mod ___ counter.

A. 7 B. 6

C. 12 D. 31

366. Highest count which we can achieve in IC7493

A. 14 B. 15

C. 16 D. 8

367. To make IC7493 to work like a mod 6 counter, we
have to MR1, MR2

A. Q0, Q1 B. Q1, Q2

C. Q2, Q3 D. Q2, Q0

368. If we connect Q2, Q0 to MR1, MR2 lines, then we get
mod __ counter.

A. 11 B. 12

C. 5 D. 6

369. The flip-flop which has indeterminate state

A. SR B. JK

C. Master slave D. D

370. The flip-flop which does not have inputs which com-
plements the flip-flop content

A. T B. JK

C. Master Slave JK D. D

371. The flip-flop which does not have inputs which does
not change the flip-flop state, i.e., flip-flop which does
not have no-change situation

A. T B. JK

C. Master Slave JK D. D

372. The flip-flop whose indeterminate state is changed to
complement state

A. SR B. JK

C. T D. D

373. Drawbacks of asynchronous counters is

A. Speed B. Rippling effect

C. Both D. None

374. Synchronous counters

A. Faster than their asynchronous counterparts

B. Accurate compared to their asynchronous coun-
terparts

C. All FFs receives clock at the same time

D. Complex compared to their asynchronous coun-
terparts

E. All are valid

375. In Serial shift register that uses D flip-flops, clock is
broadcaster to all flip-flops (Y/N)

376. To make JK flip-flop to change from 0 to 0, we have to
apply ___ on its J, K lines

A. 0,0 B. 0,1

C. Both D. None

377. To make SR flip-flop to change from 0 to 0, we have to
apply ___ on its S,R lines.

A. 0,0 B. 0,1

C. Both D. None

378. In a multiprocessor system, ____ is used to connect
processors.

A. Switch B. Cable

C. Bus D. Computer network

379. In a multiprocessor system, inter-process communi-
cation is carried out through

A. Data bus B. Address bus

C. Shared memory D. Message passing

380. Stack machines are

A. One addressed machines

B. Zero addressed machines

C. Two address machines

D. Akin to Penitium machines ISA

A N S W E R K E Y

1. A 2. C 3. B 4. D

5. A 6. B 7. B 8. B

9. B 10. C 11. C 12. C

13. C 14. D 15. C 16. D

17. C 18. B 19. D 20. A

21. D 22. E 23. C 24. D

25. C 26. B 27. B 28. C

29. B 30. A 31. D 32. B

33. E 34. C 35. B 36. C

37. D 38. C 39. C 40. B

41. B 42. A 43. E 44. C

45. D 46. A 47. C 48. B

1.172 Computer Science & Information Technology for GATE

49. D 50. A 51. C 52. B

53. A 54. A 55. A 56. C

57. C 58. C 59. A,E 60. E

61. E 62. E 63. B 64. E

65. C 66. B 67. C 68. A

69. B 70. C 71. A 72. D

73. C 74. B 75. D 76. B

77. D 78. C 79. C 80. D

81. B 82. D 83. C 84. E

85. B 86. A 87. B 88. C

89. C 90. A 91. B 92. C

93. C 94. B 95. B 96. C

97. A 98. B 99. C 100. A

101. C 102. D 103. C 104. C

105. D 106. C 107. B 108. B

109. B 110. D 111. D 112. B

113. C 114. C 115. C 116. C

117. C 118. C 119. A 120. E

121. D 122. D 123. A 124. D

125. B 126. A 127. A 128. B

129. B 130. C 131. C 132. A

133. A 134. A 135. C 136. B

137. B 138. C 139. C 140. B

141. B 142. A 143. B 144. A

145. C 146. C 147. C 148. D

149. A 150. C 151. B 152. C

153. A 154. B 155. C 156. D

157. Y 158. N 159. N 160. B

161. B 162. C 163. B 164. C

165. B 166. A 167. D 168. B

169. B 170. B 171. D 172. D

173. D 174. B 175. B 176. N

177. D 178. B 179. D 180. B

181. B 182. D 183. D 184. B

185. B 186. A 187. B 188. Y

189. C 190. C 191. C 192. A

193. B 194. B 195. A 196. B

197. A 198. B 199. D 200. C

201. D 202. A 203. D 204. B

205. B 206. D 207. C 208. C

209. D 210. B 211. B 212. D

213. B 214. D 215. C 216. C

217. B 218. C 219. D 220. C

221. D 222. C 223. A 224. B

225. B 226. C 227. C 228. D

229. D 230. A 231. A 232. B

233. C 234. A 235. D 236. B

237. C 238. B 239. B 240. C

241. C 242. A 243. B 244. C

245. B 246. C 247. C 248. C

249. C 250. C 251. B 252. C

253. C 254. D 255. C 256. D

257. C 258. D 259. D 260. D

261. B 262. C 263. C 264. D

265. C 266. D 267. E 268. B

269. C 270. D 271. C 272. D

273. B 274. B 275. E 276. B

277. D 278. A 279. E 280. D

281. E 282. A 283. C 284. D

285. D 286. C 287. D 288. D

289. Y 290. C 291. C 292. D

293. D 294. D 295. A 296. C

297. C 298. D 299. C 300. A

301. A 302. C 303. C 304. C

305. A 306. C 307. C 308. B

309. A 310. B 311. B 312. D

313. A 314. C 315. A 316. C

317. C 318. F 319. C 320. A

321. B 322. A 323. C 324. A

325. C 326. B 327. D 328. D

329. C 330. C 331. B 332. D

333. A 334. D 335. C 336. A

337. C 338. C 339. C 340. B

341. A 342. A 343. B 344. B

345. C 346. A 347. A 348. A

349. D 350. C 351. D 352. A

353. A 354. A 355. B,D 356. C

357. D 358. C 359. B 360. C

361. D 362. C 363. D 364. A

365. D 366. B 367. B 368. C

369. A 370. D 371. D 372. D

373. C 374. E 375. N 376. C

377. C 378. C 379. C 380. B

Introductory Concepts of Digital Logic Design and Computer Architecture 1.173

Previous Years’ GATE Questions

1. The smallest integer that can be represented by 8 bit
number in 2’s complement form is (GATE 2013)

A. –256 B. –128

C. –127 D. 0

2. In the following truth table, V=1 if and only if input is

valid (GATE 2013)

D0 D1 D2 D3 X0 X1 V

0 0 0 0 x x 0

1 0 0 0 0 0 1

x 1 0 0 0 1 1

x x 1 0 1 0 1

x x x 1 1 1 1

 What function does the truth table represents?

A. Priority encoder B. Decoder

C. Multiplexer D. De-multiplexer

3. In a k-way set associative cache, the cache is divided
into v sets, each of which contains k lines. The lines
of a set are placed in sequence one after another. The
lines in set s are sequenced after lines in set s+1. The
main memory blocks are numbered 0 onwards. The
main memory block numbered j must mapped to any
one of the cache lines from (GATE 2013)

A. (j mod v)*k to (j mod v)*k + (k-1)

B. (j mod v)*k to (j mod v) + (k-1)

C. (j mod k) to (j mod k) + (v-1)

D. (j mod k)*v to (j mod k)*v + (v-1)

4. Which of the following functions does not represent
exclusive NOR of x and y? (GATE 2013)

A. xy + x’y’ B. x ≈ y’

C. x’ ≈ y D. x’ ≈ y’

5. Consider the following sequence of micro operations

(GATE 2013)

 MBR ¨ PC

 MAR ¨ X

 PC ¨ Y

 Memory ¨ MBR

 Which one of the following is a possible operation
performed by the sequence?

A. Instruction fetch

B. Operand fetch

C. Conditional branch

D. Initiation of interrupt service

6. Consider an instruction pipeline with five stages
without any branch prediction. Fetch instruction (FI),
decode instruction (DI), Fetch operand (FO), Execute
Instruction (EI), and Write operand (WO). The stage
delays for FI, DI, FO, EI and WO are 5ns, 7ns, 10ns,
8ns, and 6 ns respectively. There are intermediate stor-
age buffers at each stage and the delay for each buffer
is 1ns. A program consisting of 12 instructions I1, I2,
I3, I4, …I12 is executed in this pipelined processor.
Instruction I4 is the only branch instruction and its
branch target is I9. If the branch is taken during the
execution of this program, the time (in ns) needed to
complete the program is: (GATE 2013)

A. 132 B. 165

C. 176 D. 328

7. A RAM chip has a capacity of 1024 words of 8 bits
each (1k × 8). The number of 2 × 4 decoders with
enable line needed to construct a 16k × 16 RAM from
1K × 8RAM is (GATE 2013)

A. 4 B. 5

C. 6 D. 7

 The following code segment is executed on a proces-
sor which allows only register operands in its instruc-
tions. Each instruction can have two source operands
one destination operand. Assume that all variables
are dead after this code segment

 c=a+b

 d=c*a

 e=c+a

 x=c*c

 if (x>a) {

 y=a*a

 }

 else

 {

 d=d*d

 e=e*e

 }

8. Suppose the instruction set architecture of the pro-
cessor has only two registers. The only allowed com-
piler optimization is code motion, which moves state-
ments from one place to another while preserving
correctness. What is the minimum number of spills
to memory in the compiled code? (GATE 2013)

A. 0 B. 1

C. 2 D. 3

9. What is the minimum number of registers needed
in the instruction set architecture of the processor to

1.174 Computer Science & Information Technology for GATE

compile the code without any spill to memory. Do not
apply any optimisation other than optimising register
allocation. (GATE 2013)

A. 3 B. 4

C. 5 D. 6

 A computer has 46 bit virtual address, 32 bit physi-
cal address, and a three level paged page table organ-
isation. The page table base address stores the base
address of the first level table (T1), which occupies
exactly one page. Each entry in T1 stores the base ad-
dress of a page of the second-level table (T2). Each
entry of the table T2 stores the base address of a page
of the third level table T3. Each entry of T3 stores a
page table entry (PTE). The PTE is 32 bits size. The
processor used in the computer has a 1MB 16-way
set associative virtually indexed physically indexed
tagged cache. The cache block size is 64 bytes.

10. What is the size of a page in KB in this computer?
(GATE 2013)

A. 2 B. 4

C. 8 D. 16

 Answer: It directly visible from the problem state-
ment that is system is using 32 bit physical address
space. Thus, 232 B= 22*230 B =4KB.

11. What is the minimum number of page colors needed
to guarantee that no two synonyms map to different
sets in the processor cache of this computer?

(GATE 2013)

A. 2 B. 4

C. 8 D. 16

12. The truth table

X Y f(X,Y)

0 0 0

0 1 0

1 1 1

1 1 1

represents the Boolean function (GATE 2012)

A. X B. X+Y

C. X ≈ Y D. Y

13. The decimal value 0.5 in IEEE single precision float-
ing point representation has (GATE 2012)

A. Fraction bits of 000…000 and exponent value of 0

B. Fraction bits of 000…000 and exponent value of
−1

C. Fraction bits of 100…000 and exponent value of 0

D. No exact representation

14. Register renaming is done in pipelined processors

(GATE 2012)

A. As an alternative to register allocation at compile
time

B. For efficient access to function parameters and lo-
cal variables

C. To handle certain kinds of hazards

D. As part of address translation

15. What is the minimal form of the Karnaugh map
shown below? Assume that X denotes a do not care
term. (GATE 2012)

1 X X 1

ab
cd 00 01 11 10

00

01

11

10

1X

1 X

A. b d B. b d + b c

C. b d + ab c d D. b d + b c+ c d

16. Consider the virtual page reference string

 1, 2, 3, 2, 4, 1, 3, 2, 4, 1

 on a demand paged virtual memory system running
on a computer system that has main memory size of 3
page frames which are initially empty. Let LRU, FIFO
and OPTIMAL denote the number of page faults un-
der the corresponding page replacement policy. Then,

(GATE 2012)

A. OPTIMAL < LRU < FIFO

B. OPTIMAL < FIFO < LRU

C. OPTIMAL = LRU

D. OPTIMAL = FIFO

17. A computer has a 256 KByte, 4-way set associative,
write back data cache with block size of 32 Bytes. The
processor sends 32 bit addresses to the cache control-
ler. Each cache tag directory entry contains, in addi-
tion to address tag, 2 valid bits, 1 modified bit and 1
replacement bit.

 The number of bits in the tag field of an address is

(GATE 2012)

A. 11 B. 14

C. 16 D. 27

 Answer: Cache size is 256KB=216Bytes

 Therefore, tag bits are 16, as cache uses 16 bit address-
es.

18. The size of the cache tag directory is (GATE 2012)

A. 160 Kbits B. 136 Kbits

C. 40 Kbits D. 32 Kbits

 Answer: Tag directory entry = 16+2+2=20bits

 Number of Tag entries = 256KB/32*20 bits = 160Kbits

Introductory Concepts of Digital Logic Design and Computer Architecture 1.175

19. The simplified SOP (Sum of product) form of

the Boolean expression P + Q + R P + Q + R()⋅()⋅

P + Q + R() is

A. PQ + R() B. P + QP()
C. PQ R+() D. PQ R-()

 f = P R P Q+() +()
 = P Q R-

1 1 1

QR
P 00 01 11 10

0

1

 First, we have prepare Karnaugh map as shown above
and then simplified expression is arrived at. This is
matching with option B.

20. Which one of the following circuits is NOT equiva-
lent to a 2-input XNOR (exclusive NOR) gate?

(GATE 2011)

(A)

(C)

(B)

(D)

21. The minimum number of D flip-flops needed to de-
sign a mod-258 counter is (GATE 2011)

A. 9 B. 8

C. 512 D. 258

 We want n value such that 2n >= 258. Thus, n = 9.

22. Let the page fault service time be 10ms in a computer
with average memory access time being 20ns. If one
page fault is generated for every 106 memory accesses,
what is the effective access time for the memory?

(GATE 2011)

A. 21ns

B. 30ns

C. 23ns

D. 35ns

Answer: Effective Access time =((106– 1)*20ns +
(10ms+20ns))/106 = (106 * 20ns + 10ms)/106

 = (106 * 20*10–6 ms + 10ms)/106

 = (20 + 10)ms/106 = 30ns

23. Consider a hypothetical processor with an instruction
of type LW R1, 20(R2), which during execution reads
a 32-bit word from memory and stores it in a 32-bit

register R1. The effective address of the memory loca-
tion is obtained by the addition of constant 20 and the
contents of register R2. Which of the following best
reflects the addressing mode implemented by this in-
struction for the operand in memory? (GATE 2011)

A. Immediate Addressing

B. Register Addressing

C. Register Indirect Scaled Addressing

D. Base Indexed Addressing

 Answer: Here 20 will act as base and content of R2
will be index.

24. A computer handles several interrupt sources of
which the following are relevant for this question.

(GATE 2011)

 Interrupt from CPU temperature sensor

 Interrupt from Mouse

 Interrupt from Keyboard

 Interrupt from Hard Disk

A. Interrupt from Hard Disk

B. Interrupt from Mouse

C. Interrupt from Keyboard

D. Interrupt from CPU temp sensor

25. Consider an instruction pipeline with four stages (S1,
S2, S3 and S4) each with combinational circuit only.
The pipeline registers are required between each stage
and at the end of the last stage. Delays for the stages
and for the pipeline registers are as given in the figure.

State S1
Delay
5ns

Pipeline
Reg
Delay
1ns

State
S2
Delay
6ns

Pipeline
Reg
Delay
1ns

State
S3
Delay
11ns

Pipeline
Reg
Delay
1ns

State
S4
Delay
8ns

Pipeline
Reg
Delay
1ns

 What is the approximate speed up of the pipeline in
steady state under ideal conditions when compared to
the corresponding non-pipeline implementation?

(GATE 2011)

A. 4.0 B. 2.5

C. 1.1 D. 3.0

 In the given pipeline for every max{5,7,12,9}=12ns we
will be getting a completed instruction. Where as in
the case of non-pipelined execution, we will be need-
ing 5+6+11+8=30ns to complete an instruction. Thus
speed-up=30/12=2.5.

26. An 8KB direct mapped write-back cache is organized
as multiple blocks, each of size 32-bytes. The proces-

1.176 Computer Science & Information Technology for GATE

sor generates 32-bit addresses. The cache controller
maintains the tag information for each cache block
comprising of the following.

 1 Valid bit

 1 Modified bit

 As many bits as the minimum needed to identify the
memory block mapped in the cache.

 What is the total size of memory needed at the cache
controller to store metadata(tags) for the cache?

(GATE 2011)

A. 4864 bits B. 6144 bits

C. 6656 bits D. 5376 bits

27. On a non-pipelined sequential processor, a program
segment, which is a part of the interrupt service rou-
tine, is given to transfer 500 bytes from an I/O device
to memory.

 Initialise the address register

 Initialise the count to 500

 LOOP: Load a byte from device

 Store in memory at address given by address register

 Increment the address register

 Decrement the count

 If count != 0 go to LOOP

 Assume that each statement in this program is equiv-
alent to a machine instruction which takes one clock
cycle to execute if it is a non-load/store instruction.
The load-store instructions take two clock cycles to
execute. The designer of the system also has an alter-
nate approach of using the DMA controller to imple-
ment the same transfer. The DMA controller requires
20 clock cycles for initialization and other overheads.
Each DMA transfer cycle takes two clock cycles to
transfer one byte of data from the device to the mem-
ory.

 What is the approximate speedup when the DMA
controller based design is used in place of the inter-
rupt driven program based input-output?

(GATE 2011)

A. 3.4 B. 4.4

C. 5.1 D. 6.7

 No. of clock cycles required by using load-store ap-
proach = 2 + 500 × 7 = 3502

 and that of by using DMA = 20 + 500 × 2 = 1020

 Required speed up=3502/1020 = 3.4

 Consider the following circuit involving three D-type
flip-flops used in a certain type of counter configura-
tion.

Clock

Clock

Clock

P

Q

R

D Q

Q

D Q

Q

D Q

Q

28. If all the flip-flops were reset to 0 at power on, what
is the total number of distinct outputs (states) repre-
sented by PQR generated by the counter?

(GATE 2011)

A. 3 B. 4

C. 5 D. 6

29. If at some instance prior to the occurrence of the clock
edge, P. Q and R have a value 0, 1 and 0 respectively,
what shall be the value of PQR after the clock edge?

(GATE 2011)

A. 000 B. 001

C. 010 D. 011

30. The minterm expansion of f (P, Q, R) = PQ + QR¢ +
PR’ is (GATE 2010)

A. m2 + m4 + m6 + m7

B. m0 +m1 + m3 + m5

C. m0 +m1 + m6 + m7

D. m2 + m3 + m4 + m5

 Answer: Each term of the given equation is repre-
sented in canonical form first and common terms are
eliminated.

 f(P,Q,R)=PQR + PQR¢ + PQR¢+ P¢QR¢ + PQR¢+PQ¢R¢

 f(P,Q,R)=PQR+PQR¢ + P¢QR¢ + PQ¢R¢

 As we want minterm expansion, the min terms are:
111, 110, 010, and 100. That is, 2, 4, 6 and 7.

31. A main memory unit with a capacity of 4 megabytes
is built using 1M×1-bit DRAM chips. Each DRAM
chip has 1K rows of cells with 1K cells in each row.
The time taken for a single refresh operation is 100
nanoseconds. The time required to perform one re-
fresh operation on all the cells in the memory unit is

(GATE 2010)

Introductory Concepts of Digital Logic Design and Computer Architecture 1.177

A. 100 nanoseconds

B. 100*210 nanoseconds

C. 100*220 nanoseconds

D. 3200*220 nanoseconds

32. P is a 16-bit signed integer. The 2’s complement repre-
sentation of P is (F87B)16. The 2’s complement repre-
sentation of 8*P is (GATE 2010)

A. (C3D8)16 B. (187B)16

C. (F878)16 D. (987B)16

 Answer: (F87B)16 = 1111100001111011

 As it is 2s complement and we want to multiply, first
we have to find what is that number. As MSB bit is 1, it
is negative number. Therefore, to get the magnitude of
the number, we apply 1s complement and add 1. The
result is 0000011110000101. As we want to multiply
with 8, we simply shift by 3 bits left. Thus, resulting
number becomes 0011110000101000. As the number
is negative, by multiplying with 8 does not change
the sign. To get 2s complement of the result, we again
apply 1s complement and add 1. The final result is
1100001111011000. The same in hex becomes C3D8.

33. The Boolean expression for the output f of the multi-
plexer shown below is (GATE 2010)

A. P Q R≈ ≈ B. P ≈ Q ≈ R

C. P + Q + R D. P Q R+ +

R

R
R
R

P Q

F

34. A system uses FIFO policy for page replacement. It
has 4 page frames with no pages loaded to begin with.
The system first accesses 100 distinct pages in some
order and then accesses the same 100 pages but now
in the reverse order. How many page faults will occur?

(GATE 2010)

A. 196 B. 192

C. 197 D. 195

 Answer: As the pages are distinct, during first phase
all the 100 page references gives page faults. During
second phase pages are referred in the reverse or-
der. That is, for pages 100, 99, 98, and 97 we will not
be having page faults as they are already available in
RAM. Thus, in total 196 page faults takes place.

35. What is the Boolean expression for the output f of the
combinational logic circuit of NOR gates given be-
low?

A. Q R+ B. P Q-

C. P R- D. P Q- + R

P
Q

Q

R

P
R

Q

R

F

36. In the sequential circuit shown below, if the initial
value of the output Q1Q0 is 00, what are the next four
values of Q1Q0? (GATE 2010)

A. 11, 10, 01, 00 B. 10, 11, 01, 00

C. 10, 00, 01, 11 D. 11, 10, 00, 01

1

Clock

Q0 Q1

T QT Q

37. A 5-stage pipelined processor has Instruction Fetch
(IF), Instruction Decode (ID), Operand Fetch (OF),
Perform Operation (PO) and Write Operand (WO)
stages. The IF, ID, OF and WO stages take 1 clock
cycle each for any instruction. The PO stage takes 1
clock cycle for ADD and SUB instructions, 3 clock cy-
cles for MUL instruction, and 6 clock cycles for DIV
instruction respectively. Operand forwarding is used
in the pipeline. What is the number of clock cycles
needed to execute the following sequence of instruc-
tions? (GATE 2010)

Instruction Meaning of instruction

I0 : MUL R2, R0, R1 R2 ¨ R0 * R1

I1 : DIV R5, R3, R4 R5 ¨ R3 / R4

I2 : ADD R2, R5, R2 R2 ¨ R5 + R2

I3 : SUB R5, R2, R6 R5 ¨ R2 – R6

A. 13 B. 15

C. 17 D. 19

 A computer system has an L1 cache, an L2 cache, and
a main memory unit connected as shown below. The
block size in L1 cache is 4 words. The block size in

1.178 Computer Science & Information Technology for GATE

L2 cache is 16 words. The memory access times are 2
nanoseconds, 20 nanoseconds and 200 nanoseconds
for L1 cache, L2 cache and main memory unit respec-
tively.

L1
Cache

L2
Cache

Main
Memory

Data Bus

4 Words

Data Bus

4 Words

38. When there is a miss in L1 cache and a hit in L2 cache,
a block is transferred from L2 cache to L1 cache. What
is the time taken for this transfer? (GATE 2010)

A. nanoseconds B. 20 nanoseconds

C. 22 nanoseconds D. 88 nanoseconds

39. When there is a miss in both L1 cache and L2 cache,
first a block is transferred from main memory to L2
cache, and then a block is transferred from L2 cache
to L1 cache. What is the total time taken for these
transfers? (GATE 2010)

A. 222 nanoseconds B. 888 nanoseconds

C. 902 nanoseconds D. 968 nanoseconds

40. What is the minimum number of gates needed to
implement the Boolean function f=AB+C if we have
to use only 2-input NOR gates? (GATE 2009)

A. 2 B. 3

C. 4 D. 5

 Answer: f=AB+C= (A+C)(B+C)

 (f ’)’=f=(((A+C)(B+C))’)’= ((A+C)’ + (B+C)’)’

 Thus, 3 NOR gates.

41. How many 32Kx1RAM chips are needed to provide a
memory capacity of 256K-bytes? (GATE 2009)

A. 8 B. 32

C. 64 D. 128

 Answer: 256K-bytes/32K × 1= 256 × 210 × 8/(32 ×
210) = 221/215 = 26 = 64

42. A CPU generally handles an interrupt by executing an
interrupt service routine (GATE 2009)

A. As soon as interrupt is raised

B. By checking the interrupt register at the end of
fetch cycle

C. By checking the interrupt register after complet-
ing the current instruction

D. By checking the interrupt register at fixed time
intervals.

43. In which of the page replacement algorithms, Belody’s
anomaly may occurs? (GATE 2009)

A. FIFO B. Optimal

C. LRU D. MRU

44. The essential content(s) of each entry of a page table
is/are (GATE 2009)

A. Virtual page number

B. Page frame number

C. Both virtual page number and page frame num-
ber

D. Access right information

45. Consider a 4 stage pipeline processor. The number
of cycles needed for instructions I1, I2,I3 and I4 in
stages S1, S2, S3, S4 is shown below. (GATE 2009)

S1 S2 S3 S4

I1 2 1 1 1

I2 1 3 2 2

I3 2 1 1 3

I4 1 2 2 2

 What is total number cycles needed to execute fol-
lowing loop:

 for(1 to 2){I1;I2;I3;I4}

A. 16 B. 23

C. 28 D. 30

46. Consider a 4-way set associative cache (initially
empty) with total 16 blocks. The main memory con-
sists of 256 blocks and the request for memory blocks
is in the following order:

 0,255, 1,4,3,8, 133,159,216,129,63,8,48,32,73,92,155

 Which one of the following memory block will
NOT in cache if LRU replacement policy is used?

 (GATE 2009)

A. 3 B. 8

C. 129 D. 216

47. A multilevel page table is preferred in comparison to
a single level page table for translating virtual address
to physical address because (GATE 2009)

A. It reduces memory access time to read or write
to a memory location

B. It helps to reduce the size of the page table need-
ed to implement virtual address space of a pro-
cess

C. It is required by the translation look aside buffer

D. It helps to reduce number of page faults in page
replacement algorithms.

48. In the IEEE floating point representation the hexa-
decimal value 0x00000000 corresponds to

(GATE 2008)

A. The normalized value 2–127

B. The normalized value 2–126

Introductory Concepts of Digital Logic Design and Computer Architecture 1.179

C. The normalized value +0

D. The special value +0

49. In the Karnaugh map shown below, X denotes a don’t
care term. What is the minimal form of the function
represented by the Karnaugh map? (GATE 2008)

ab

cd 00 01 11 10

00

01

11

10

1 1 1

X1 1

X

X

A. b d a d. .+ B. a b b d a b d. . . .+ +

C. b d a b d. . .+ D. a b b d a d. . .+ +

50. Let r denote number system radix. The only value(s)
of r that satisfy the equation ÷121 = 11 is / are

(GATE 2008)

A. decimal 10 B. decimal 11

C. decimal 10 and 11 D. any value >2

51. Given f1, f3 and f in canonical sum of products form
(in decimal) for the circuit (GATE 2008)

f1

f2

f3

f

 f1 = Sm (4, 5, 6, 7, 8)

 f3 = Sm (1, 6, 15)

 f = Sm (1, 6, 8, 15)

 then f2 is

A. Sm (4, 6) B. Sm (4, 8)

C. Sm (6, 8) D. Sm (4, 6, 8)

52. If P, Q, R are Boolean variables, then (P+Q¢)(PQ¢+PR)
(P¢R¢+Q¢) simplifies to (GATE 2008)

A. PQ¢ B. PR¢

C. PQ¢+R D. PR¢+Q

 Answer: (P+Q¢)(PQ¢+PR)(P¢R¢+Q¢)

 = (PQ¢+PR+PQR)(P¢R¢+Q¢) = (PQ¢+PR(1+QR))
(P¢R¢+Q¢) =(PQ¢+PR)(P¢R¢+Q¢) =P(Q¢+R) (P¢+Q¢)
(R¢+Q¢)=PQ¢

53. Which of the following is/are true of the auto-incre-
ment addressing mode? (GATE 2008)

I. It is useful in creating self-relocating code

II. If it is included in an Instruction Set Architecture,
then an additional ALU is required for effective
address calculation

III. The amount of increment depends on the size of
the data item accessed

A. I only B. II only

C. III only D. II and III only

54. Which of the following must be true for the RFE (Re-
turn from Exception) instruction on a general pur-
pose processor? (GATE 2008)

I. It must be a trap instruction

II. It must be a privileged instruction

III. An exception cannot be allowed to occur during
execution of an RFE instruction

A. I only B. II only

C. I and II only D. I, II and III only

55. For inclusion to hold between two cache levels L1 and
L2 in a multi-level cache hierarchy, which of the fol-
lowing are necessary? (GATE 2008)

I. L1 must be a write-through cache

II. L2 must be a write-through cache

III. The associativity of L2 must be greater than that of
L1

IV. The L2 cache must be at least as large as the L1
cache

A. IV only B. I and IV only

C. I, II and IV only D. I, II, III and IV

Answer:

 Inclusion: If data at L1 is always a subset of data at L2
hence the L2 cache must be at least as large as the L1
cache.

 In a write-through cache, every write to the cache
causes a synchronous write to the backing store,
hence L1 must be write-through cache and L2 need
not be write-through.

56. Which of the following are NOT true in a pipelined
processor? (GATE 2008)

I. Bypassing can handle all RAW hazards

II. Register renaming can eliminate all register car-
ried WAR hazards

III. Control hazard penalties can be eliminated by dy-
namic branch prediction

A. I and II only B. I and III only

C. II and III only D. I, II and III

57. The use of multiple register windows with overlap
causes a reduction in the number of memory accesses
for (GATE 2008)

I. Function locals and parameters

II. Register saves and restores

III. Instruction fetches

A. I only B. II only

C. III only D. I, II and III

1.180 Computer Science & Information Technology for GATE

58. In an instruction execution pipeline, the earliest that
the data TLB (Translation Lookaside Buffer) can be
accessed is (GATE 2008)

A. Before effective address calculation has started

B. During effective address calculation

C. After effective address calculation has completed

D. After data cache lookup has completed

59. Which of the following statements about synchro-
nous and asynchronous I/O is NOT true?

(GATE 2008)

A. An ISR is invoked on completion of I/O in syn-
chronous I/O but not in asynchronous I/O

B. In both synchronous and asynchronous I/O, an
ISR (Interrupt Service Routine) is invoked after
completion of the I/O

C. A process making a synchronous I/O call waits
until I/O is complete, but a process making an
asynchronous I/O call does not wait for comple-
tion of the I/O

D. In the case of synchronous I/O, the process wait-
ing for the completion of I/O is woken up by the
ISR that is invoked after the completion of I/O

60. A processor uses 36 bit physical addresses and 32 bit
virtual addresses, with a page frame size of 4 Kbytes.
Each page table entry is of size 4 bytes. A three level
page table is used for virtual to physical address trans-
lation, where the virtual address is used as follows

Bits 30-31 are used to index into the first level page
table

Bits 21-29 are used to index into the second level
page table

Bits 12-20 are used to index into the third level page
table, and

Bits 0-11 are used as offset within the page

 The number of bits required for addressing the next
level page table (or page frame) in the page table en-
try of the first, second and third level page tables are
respectively (GATE 2008)

A. 20, 20 and 20 B. 24, 24 and 24

C. 24, 24 and 20 D. 25, 25 and 24

 Consider a machine with a 2-way set associative data
cache of size 64Kbytes and block size 16bytes. The
cache is managed using 32 bit virtual addresses and
the page size is 4Kbyts. A program to be run on this
machine begins as follows:

 double ARR [1024][1024] ;

 int i, j ;

 /* Initialize array ARR to 0.0 * /

 for i 0;i 1024; i

 for j 0; j 1024; j

 ARR[i][j]= 0.0;

 The size of double is 8Bytes. Array ARR is located
in memory starting at the beginning of virtual page
0xFF000 and stored in row major order. The cache is
initially empty and no pre-fetching is done. The only
data memory references made by the program are
those to array ARR

61. The total size of the tags in the cache directory is

(GATE 2008)

A. 32Kbits B. 34Kbits

C. 64Kbits D. 68Kbits

62. Which of the following array elements has the same
cache index as ARR[0][0]? (GATE 2008)

A. ARR[0][4]

B. ARR[4][0]

C. ARR[0][5]

D. ARR[5][0]

63. The cache hit ratio for this initialization loop is

(GATE 2008)

A. 0% B. 25%

C. 50% D. 75%

64. Delayed branching can help in the handling of control
hazards

 For all delayed conditional branch instructions, irre-
spective of whether the condition evaluates to true or
false (GATE 2008)

A. The instruction following the conditional branch
instruction in memory is executed

B. The first instruction in the fall through path is ex-
ecuted

C. The first instruction in the taken path is executed

D. The branch takes longer to execute than any other
instruction

65. The following code is to run on a pipelined processor
with one branch delay slot:

 I1 = ADD R2 ¨ R7 + R8

 I2 = SUB R4 ¨ R5 – R6

 I3 = ADD R1 ¨ R2 + R3

 I4 = STORE Memory ÎR4˚ ¨ R1

 BRANCH to Label if R1 = = 0

Which of the instructions I1, I2, I3 or I4 can legiti-
mately occupy the delay slot without any other pro-
gram modification? (GATE 2008)

A. I1 B. I2

C. I3 D. I4

Introductory Concepts of Digital Logic Design and Computer Architecture 1.181

A N S W E R K E Y

1. B 2. A 3. B 4. D

5. D 6. C 7. B 8. C

9. B 10. B 11. C 12. A

13. B 14. C 15. B 16. B

17. C 18. A 19. B 20. D

21. A 22. B 23. D 24. D

25. B 26. D 27. A 28. B

29. D 30. A 31. A 32. A

33. B 34. A 35. A 36. A

37. B 38. C 39. A 40. B

41. C 42. C 43. B 44. B

45. B 46. D 47. B 48. D

49. A 50. D 51. C 52. A

53. C 54. B 55. B 56. C

57. A 58. C 59. B 60. D

61. B 62. B 63. C 64. A

65. B

2C H A P T E R T WO

Programming, Data Structures

and Algorithms

2.1 Programming

In this chapter we will study Programming in C, Functions, Recursion, Parameter Passing, Scope, Binding, Abstract data
types and Arrays.

2.1.1 Origin of C

The C Programming Language was initially developed by Denis Ritchie using a Unix system in 1972. This was varied and
modified until a standard was defined by Brian Kernighan and Dennis Ritchie in 1978 in “The C Programming Language”.

Advantages/Features of C

C language has become the language of choice of more than four decades among system programmers and application
programmers. Possible Reasons for its popularity can be summarised as:

1. Powerful and flexibility: The power and popular UNIX are written in C. The complier and interpreter for FORTAN,
PASCAL, LISP, and BASIC are written in C.

2. Portability: C program written in one system can be run on other system with little modifications.
3. Efficiency: The program written in C language is highly efficient like assembly language in speed and memory man-

agement.
4. Programmer oriented: It has the flexible control structure and gives access to hardware and enables to manipulate

individual bits of memory.
5. Modularity: C program can be modularising for step wise refinement. The complex program can be modularised

into simple programs.

2.1.1.1 C Program Structure

C program is traditionally arranged in the following order but not strictly as a rule.

Function prototypes and global data declarations

The main() function

Function definitions

2.2 Computer Science & Information Technology for GATE

Header files contain function prototypes of the standard library functions and declarations for the various variables or
constants needed. The line

#include <stdio.h>
instructs the pre-processor to include the file stdio.h into the program before compilation so that function declarations of
standard input/output functions are included in our C program. The angle braces denote that the compiler should look
in the default “INCLUDE” directory for this file. A pair of double quotes indicate that the compiler should search in the
specified path, e.g.

#include “d:\\myfile.h”

The main() function is also called as driver or entry point. Program execution starts from main.

2.1.1.2 A Note on Programming Languages

Programming languages are classified as shown in Table 2.1.

Table 2.1 Classification of Programming Languages

Programming
Languages

Low Level Languages Ex: - Machine Language, Assembly Language.

Medium Level Languages Ex: - C

High Level Languages Ex: - C, C++, Java, Fortran, COBAL, BASIC.

High Level Languages (HLL) uniquely identified through their rich grammar and structure with which we can specify
what we wanted in a straightforward manner, where as low-level languages will not be having high level grammar.

High Level Languages statements are self-complete. For example, consider a statement in C language A = A – B. This
is understandable for any one even though they do not have skill in C language. Everyone can understand that B value is
subtracted from A and result is stored in A. Now, consider an equivalent assembly statement SUB A,B. No doubt, here
also the action is same as above. However, it raises many doubts; Whether A has to be subtracted from B or B has to be
subtracted from A. Where to store the results? In A or B? That is, this type of instructions are not straightforward or self
complete like HLL instructions.

Low level languages will be having freedom to access the parts of the machine such as registers, etc. directly. Also, a low
level program takes less resources (CPU time, memory) compared to equivalent HLL.

No two processors will be having the same machine language instruction sets or “Assembly Language” instruction sets.
Thus, programs written using a processors “Machine Language (OR) Assembly Language” will work only on that proces-
sor. That is, Machine Level Language Programs (OR) Assembly Language Programs are not portable.

HLL Programs can work on variety of machines without many modifications. Thus, they are portable and thus their
value will be more. Medium level language is the one which contains both the flavours.
According to Software Engineering, a programming language should have the following characteristics:

1. program should be easily readable
2. program should be easily understandable
3. program should be easily repairable
4. program should be easily upgradable
5. program should be concise(short)
6. program should be easily portable

2.1.1.3 What are Translators?

In general, translators convert programs written in one language to another language. For example, we have the following
types of translators:

Assemblers
Compilers
Converters
Interpreters

Programming, Data Structures and Algorithms 2.3

An assembler takes “Assembly Language Programs” as input and converts them into machine language. Usually as-
semblers are specific to processors. That is, universal assemblers are not available as of now. For example, for Intel family
of processors the following assemblers are available:

MASM Microsoft Assembler

TASM Turbo Assembler

NASM GNU Assembler

Compilers take High Level Language Program as input and convert it into machine language. Of course, we do not have
universal compilers which take any “High Level Language Program” and give machine language program which run’s on
any machine. Instead, for one HLL language alone we may find hundreds of compilers. For example:

Names of C – Language Compilers

DOS / Windows Unix

Microsoft ‘C’ Sun ‘C’

Turbo ‘C’ Solaris ‘C’

Borland ‘C’ MIPS ‘C’

Zortex ‘C’ GNU ‘C’

Speed ‘C’

PCC ‘C’

DJGPP ‘C’

Of course, every language will have its standards. For C language, we have “American National Standard Institute (ANSI)
C” standards. No doubt, it is possible that more than one person/company will be selling their C - Language Compiler.
All of them supposed to follow ANSI C standards. However, these vendors supply their compilers along with some ready-
made programs or libraries to attract the customers. If we develop our programs using these readymade programs, then
our programs lacks portability. Thus, we have to worry about portability of the code also.

Converters, convert programs in one high level language to another high-level language. For example, Pascal to ‘C’ and
FORTRAN to ‘C’, etc.,

High-level language programs are converted into machine language only if they are free from language wise mistakes
(which are also called as syntactical errors or compile time errors). Of Course, unless machine language programs are
available, we cannot run the program.

Interpreter’s takes High-level language programs instructions one after another and executes immediately. Usually
Interpreter’s are needed to identify run time errors, which are also called as bugs.

Neither compilers nor assemblers cheek the logical mistakes in our programs. Logic is the sole responsibility of the
programmer.

2.1.1.4 Errors Possible during Programming

Saliently, errors during programming are classified as:
Compile Time Errors (syntactical errors or language wise errors)

Run Time Errors (Bugs)

Computational Errors

Compile time errors occur when we violate language rules while writing our programs. For example, an executable
statement in C language has to be ended with a semicolon. If we violate this in our program, we get an error which we can
call as compile time error or syntactical error. Unless, we correct all the language wise errors in our program, it will not be
converted to machine language. Unless, machine language file is available, we cannot run our program. These errors are
reported with respect to our source program itself. Thus, it is relatively easy to identify and correct them.

Those errors which occur during the execution of a program are called as run-time errors or bugs. Run time errors may
occur because of many reasons such as:

2.4 Computer Science & Information Technology for GATE

(1) If our programs violate the rules and regulations of the operating system. For example, if our program tries to access
memory which is not allocated to us, we may get an error such as “Memory Segment Violation”.

(2) The errors depend on data and program.
(3) Because of HW faults also, we may get run-time errors.

Consider the calculation of square root of the discriminant function of a quadratic equation ax2+bx+c=0.
Probable steps in the program can be:
1. Read coefficients a, b and c.
2. Calculate dis = sqrt(b*b–4*a*c)

3. Print dis.
Now, assume that we have entered values “1 4 1”. The program may give us 3.464. Let us assume that we have entered
values “4 1 1”. This time, we may get an error such as “Domain Error” as we are trying to calculate square root of a negative
number. This type of error is run-time error and it is depending on the data and problem.

Because, we may not get same error with any program with same input “4 1 1”.
Usually, run-time errors are reported with respect to machine language file. Thus, it is very difficult to understand and

correct. Thus, when a program is giving run time errors, we will run interpreters to find the reason. The process of identi-
fying or finding the run-time errors and fixing them is called as de-bugging or bug fixing.

Computational errors are the ones, which will distort the final value of the program. These errors are may occur be-
cause of many reasons including the finite behaviour of the computers such as finite word size, etc.,. Also because of math-
ematical equations, and operations on them may lead to computational error.
For example, if x = 10/3 = 3.3333…. y = x*3
According to mathematics, y = 10, but in computers, y = 9.999999.

Note

Most of the computers give real valued results accurately until 6th decimal point.

In some applications such as astronomy, biology requires high precision. Mistakes in the 31st decimal point may also lead
to catastrophic results. Thus, we have to give proper attention to computational errors also.

Syntax and Semantics

Syntax is the grammar of a language: the rule governing the structure and contents of semantics. In other words, it is a rule
that tells us whether program written using programming languages are correct or not. Semantics means the relationship
between words or symbols and their intended meaning in programming. Programming languages are subject to certain
semantic rules thus, program statements can be syntactically correct but semantically incorrect.
Difference between Syntax and Semantics

Syntax Semantics

(1) It is grammatical rule, governed by the programming
language

(1) It is the meaning of a grammatical rule of a programming
language

(2) Difficult to learn and understand (2) Easy to learn and understand

(3) It has got only one approach to perform a job (3) It has many way to complete the syntax

(4) Errors are created if rules violated (4) Errors are created when sentences or statements doesn’t
form properly

2.1.1.5 Program Development Stages

A typical program development involves:
1. Preparing Algorithm
2. Preparing Flow Chart
3. Coding
4. Compiling and Commissioning

Programming, Data Structures and Algorithms 2.5

Programming Techniques (paradigms)
There are various programming techniques such as:

Structural programming
Modular design
Top-down designing
Bottom up designing
Object oriented programming

Structural programming
Structural programming can be seen as subset of procedural programming, one of the major techniques for program-
ming. Procedural programming is based on the idea of modularity, where the entire program is divided into modules.
Again each module is composed of one or more procedures also called as functions or subroutines. E.g.: C
Features

Emphasis is given on procedure
Programs are divided into different functions
Top down method is used in programs

Advantages
Complexity of the program is reduced
Easy maintenance
Location of error is possible
Debugging time decreases

Disadvantages

More memory space is required. When the numbers of modules are out of certain range, performance of program
is not satisfactory.

Modular design

In modular approach, large program is divided into many small discrete components called –modules. For example: Pascal
procedure or function C, C++ function. Modules are debugged and tested separately and are combined to build system.
Top down

In this approach, designers convert the large structure of a program in terms of smaller operations, implement and test the
smaller operations, and then tie them together into a whole program.

Bottom-Up designing
In this approach software is constructed from small piece of code to whole system. The first step is to identify individual
subtask which can be used as building clock to compose the overall task tools and libraries.

Object oriented programming
Object-oriented programming gives greater flexibility and easy maintenance in programming, and is thus widely popular
in large-scale software systems development.
Class : The unit of definition of data and behavior (functionality) for some kind-of-thing. A class is the basis of modularity
and structure in an object-oriented computer program. For example, the ‘class of Dogs’ might be a set which includes the
various breeds of dogs. Consider a stencil which is a thin sheet of material, such as paper, plastic, or metal, with letters or
a design cut from it, used to produce the letters or design on an underlying surface by applying pigment (color) through
the cut-out holes in the stencil. If we apply red color, we get matter with red color; if we apply blue color, we get the same
matter with blue color. We can consider this stencil as a class while the text in red or text in blue as objects.
Object: An instance of a class, an object is the run-time manifestation (instantiation) of a particular exemplar of a class.
Each object has its own data, though the code within a class.
Method (also known as message) : How code can use an object of some class. A method is a form of subroutine operating
on a single object.
Inheritance: A mechanism for creating subclasses, inheritance provides a way to define a (sub) class. A subclass inherits
all the members of its superclass(es), but it can extend their behavior and add new members.
Abstraction: Combining multiple smaller operations into single unit that can be referred to by name.
Encapsulation: Separating implementation from interfaces. User only needs to “What objects does” rather than “how the
objects does”.

2.6 Computer Science & Information Technology for GATE

Polymorphism: Using the same name to do different operations on objects of different data types.
Reusability: Once the objects are created, they can be reused again and again.

2.1.1.6 Introduction to C Compiling: A Unix/Linux example

The easiest case of compilation is when we have all our source code set in a single file. Let us assume there is a file named
‘x.c’ that we want to compile. We will do so using a command similar to:

cc x.c (In most of the flavors of UNIX’s)
gcc x.c (In Gnu C compiler)
acc x.c (In Solaris)

Every compiler might show its messages (errors, warnings, etc.) differently, but in all cases, we will get a file ‘a.out’ as
a result, if the compilation completed successfully. In the case of Windows systems, if our file is xyz.c then the resultant
executable file name will be xyz.exe. It is true with Turbo C and Dev-C++ compilers also.

C program file compilation in general is split into roughly 5 stages (as shown in Fig. 2.1): Preprocessing, Parsing, Trans-
lation, Assembling, and Linking. With most of the compilers, similar stages are seen.

C or C++
Source Code
(.C or .C File)

GNU
C or C++
Compiler

Assembly
Code
(.s File)

GNU
Assembler
(Gas)

Relocatable
Object

File (.0 File)

System-Supplied or Static Libraries
(.so or .a Files)

GNU
Linker

Linked
Executable

(or Shared Library)

User-Supplied or Static Libraries
(.so or .a Files)

Figure 2.1 Stages in C Program Compilation using GNU C compiler

Understanding the Compilation Steps

Now that we have learned that compilation is not just a simple process, let us try to see what is the complete list of steps
taken by the compiler in order to compile a C program.

Driver: We can invoke it by typing “cc” or “gcc”. This is actually the “engine”, that drives the whole set of tools the compiler
is made of. We invoke it, and it begins to invoke the other tools one by one, passing the output of each tool as an input to
the next tool.

C Pre-Processor: Normally called “cpp”. It takes a C source file, and handles all the pre-processor definitions (#include
files, #define macros, conditional source code inclusion with #ifdef, etc.)

The C Compiler: Normally called “cc1”. This is the actual compiler, which translates the input file into assembly language.

Optimiser: Sometimes comes as a separate module and sometimes found inside the compiler module. This one handles
the optimisation on a representation of the code that is language-neutral. This way, we can use the same optimiser for
compilers of different programming languages.

Assembler: Sometimes called “as”. This takes the assembly code generated by the compiler, and translates it into machine
language code kept in object files.

Linker-Loader: This is the tool that takes all the object files (and C libraries), and links them together, to form one execut-
able file, in a format the operating system supports. A common format these days is known as “ELF”. On SunOS systems,
and other older systems, a format named “a.out” was used. This format defines the internal structure of the executable file
- location of data segment, location of source code segment, location of debug information and so on.

Programming, Data Structures and Algorithms 2.7

Suppose that we want the resulting program to be called with another name other than “a.out”, then we can use the
following line to compile it:

cc –o executable_filename x.c

gcc –o executable_filename x.c

Running the Resulting Program

Once we created the program, we wish to run it. This is usually done by simply typing its name at the command prompt.
executable_filename

However, this requires that the current directory be in our PATH (which is a variable telling our UNIX shell where to
look for programs we are trying to run). In many cases, this directory is not placed in our PATH. Thus in order to run our
program we can try:
./executable_filename

This time we explicitly told our UNIX shell that we want to run the program which is in the current directory.

2.1.1.7 Compilation Steps under Dos/Windows

No doubt the compilation process under Windows/DOS plat forms also works in almost same fashion. However, resultant
file names may change. For instance, final executable file name will be having an extension of EXE.

2.1.2 Variables, Data Types, I/O and Operators

In order to store data, variables are used in programming languages. However, based on what we wanted to store in the
variables, we associate different types to variables. For example, an integer can represent the age of a person reasonably.
So, the variable in which we would like to store age will be declared as integer type.

2.1.2.1 Basic Data Types

In C language, there are five basic data types char, int, float, double, and void. Note that the size of an int depends on the
operating system. The following table contains various data types and their memory sizes.

 char 1 byte (8 bits) with range -128 to 127

 int 16-bit OS : 2 bytes with range -32768 to 32767
 32-bit OS : 4 bytes with range -2,147,483,648 to 2,147,483,647

 float 4 bytes with range 10-38 to 1038 with 7 digits of precision

 double 8 bytes with range 10-308 to 10308 with 15 digits of precision

 void generic pointer, used to indicate no function parameters etc.

Modifying Basic Types
Except for type void type, the meaning of the above basic types can be altered by combining with the following keywords.

signed
unsigned
long
short

The signed and unsigned modifiers may be applied to types char and int and will simply change the range of possible
values. For example, an unsigned char has a range of 0 to 255, all positive, as opposed to a signed char which has a range
of -128 to 127. An unsigned integer on a 16-bit system has a range of 0 to 65535 as opposed to a signed int which has a
range of -32768 to 32767. Note however that the default for type int or char is signed so that the type signed char is always
equivalent to type char and the type signed int is always equivalent to int.

The long modifier may be applied to type int and double only. A long int will require 4 bytes of storage no matter what
operating system is in use and has a range of -2,147,483,648 to 2,147,483,647. A long double will require 10 bytes of storage
and will be able to maintain up to 19 digits of precision.

The short modifier may be applied only to type int and will give a 2 byte integer independent of the operating system
in use.

2.8 Computer Science & Information Technology for GATE

Note that the keyword int may be omitted without error so that the type unsigned is the same as type unsigned int, the type
long is equivalent to the type long int, and the type short is equivalent to the type short int.

2.1.2.2 Variables

A variable is a named piece of memory which is used to hold a value which may be modified by the program. A variable
thus has three attributes that are of interest to us: its type, its value and its address. The variable’s type informs us what
type and range of values it can represent (or store) and how much memory is used to store that value. The variable’s ad-
dress informs us where in memory the variable is located. C variables are declared as:
type variable-list;
For example:

int i;

char a, b, ch;

Variables are declared in three general areas in a C program. When declared inside functions as follows they are termed
local variables and are visible (or accessible) within the function (or code block) only.

void main(){

int i, j ;

}

A local variable is created i.e., allocated memory for storage upon entry into the code block in which it is declared and
is destroyed i.e., its memory is released on exit. This means that values cannot be stored in these variables for use in any
subsequent calls to the function.

When declared outside functions they are termed global variables and are visible throughout the file or have file scope.
These variables are created at program start-up and can be used for the lifetime of the program.

int i ;

void main(){

}

When declared within the braces of a function they are termed the formal parameters of the function which is explained
later. However, the variables declared inside function (as shown), are again automatic type.

int func1(int a, char b) {

int x, y;

}

Variable Names
Names of variables and functions in C are called identifiers and are case sensitive. The first character of an identifier must
be either a letter or an underscore while the remaining characters may be letters, numbers, or underscores. Identifiers in
C can be up to 31 characters in length.
Identifiers and Keywords
An identifier can be defined as the name of the variable, function, arrays, structures, constants etc. are created by the pro-
grammer. They are the fundamental requirements of any programming language.
Keywords
Keywords are reserved identifiers and they cannot be used as names for the program variables. The keywords are also called as
reserved words. The meaning of the keywords are already given to the compiler. There are 32 keywords available in C:

auto cons double float int

short struct unsigned break continue

else for long signed switch

void case default enum goto

register sizeof typedef volatile char

do extern if return static

union while

Delimiters
Delimiters are used for syntactic meaning in C. These are as follows:

Programming, Data Structures and Algorithms 2.9

: colon used for label
; semicolon end of statements
() parenthesis used in expression
{} curly braces used for block of statements
[] square bracket used for array
hash preprocessor directives
, comma variables delimiter
Initialising Variables

When variables are declared in a program it just means that an appropriate amount of memory is allocated to them for
their exclusive use. This memory however is not initialised to zero or to any other value automatically and so will contain
random values unless specifically initialised before use. That is, soon after declaration of a variable, it is said to be un-
initialised or it is said to be having garbage value or trash value. Never, one is supposed to use un-initialised variables to
the right hand side of an equality or expression.

type var-name = constant ;

For example:
char ch = ‘N’ ;

double d = 12.2323 ;

int i, j = 20 ;/*note in this case only j is initialised */

2.1.2.3 Storage Classes

There are four storage class modifiers used in C which determine an identifier’s storage duration and scope.
auto
static
register
extern

An identifier’s storage duration is the period during which that identifier exists in memory. Some identifiers exist for a
short time only, some are repeatedly created and destroyed and some exist for the entire duration of the program. An
identifier’s scope specifies what sections of code it is accessible from.

The auto storage class is implicitly the default storage class used and simply specifies a normal local variable which is
visible within its own code block only and which is created and destroyed automatically upon entry and exit respectively
from the code block.

The register storage class also specifies a normal local variable but it also requests that the compiler store a variable so
that it may be accessed as quickly as possible, possibly from a CPU register.

The static storage class causes a local variable to become permanent within its own code block i.e. it retains its memory
space and hence its value between function calls.

When applied to global variables the static modifier causes them to be visible only within the physical source file that con-
tains them i.e., to have file scope. Whereas the extern modifier which is the implicit default for global variables enables them
to be accessed in more than one source file.

For example in the case where there are two C source code files to be compiled together to give one executable and
where one specific global variable needs to be used by both then extern class allows the programmer to inform the com-
piler of the existence of this global variable in both files.

2.1.2.4 Constants

Constants are fixed values that cannot be altered by the program and can be numbers, characters or strings. For example,
the following lines contains various types of constants:

char : ‘M’, ‘$’, ‘9’
int : 19, 190, -1900
unsigned : 0, 255
float : 12.123456, -1.573e10, 1.347654E-13
double : 433.34534545454, 1.3556456456456E-200

2.10 Computer Science & Information Technology for GATE

long : 65536, 2222222

string : “Hello Welcome to C Jungle\n”
Floating point constants default to type double. For example the following code segment will cause the some compilers to
issue a warning pertaining to floating point conversion in the case of fval but not in the case of dval.

float fval ;
double dval ;
fval = 123.345 ;
dval = 123.345 ;

However, the value may be coerced to type float by the use of a modifier as follows:
f = 123.345F ;

Integer constants may also be forced to be a certain type as follows:
1080U --- unsigned
1800L --- long

Integer constants may be represented as either decimal which is the default, as hexadecimal when preceded by “0x”, e.g.
0x2A, or as octal when preceded by “O”, e.g. O27.

Character constants are normally represented between single quotes, e.g. ‘a’, ‘b’, etc. However, they may also be repre-
sented using their ASCII (or decimal) values e.g. 97 is the ASCII value for the letter ‘a’, and so the following two statements
are equivalent.

char ch = 97 ;
char ch = ‘a’ ;

There are also a number of special character constants sometimes called Escape Sequences, which are preceded by the
backslash character ‘\’, and have special meanings in C. Table 2.2 illustrates the same.

Table 2.2

\n newline

\t tab

\b backspace

\’ single quote

\” double quote

\0 null character

\a beep sound

\xdd represent as hexadecimal constant

2.1.2.5 Console Input / Output or Interactive Input/output

This section introduces some of the more common input and output functions provided in the C standard library.
printf()

The printf() function is used for formatted output and uses a control string which is made up of a series of format specifiers
to govern how it prints out the values of the variables or constants required. The more common format specifiers are as
follows :

%c character %f floating point

%d signed integer %lf double floating point

%i signed integer %e exponential notation

%u unsigned integer %s string

%ld signed long %x unsigned hexadecimal

%lu unsigned long %o unsigned octal

%% prints a % sign

Programming, Data Structures and Algorithms 2.11

Field Width Specifiers

Field width specifiers are used in the control string to format the numbers or characters output appropriately.
%[total width printed][.decimal places printed]format specifier

Where square braces indicate optional arguments.
There are also a number of flags that can be used in conjunction with field width specifiers to modify the output format.

These are placed directly after the % sign. A – (minus sign) causes the output to be left-justified within the specified field,
a + (plus sign) displays a plus sign preceding positive values and a minus preceding negative values, and a 0 (zero) causes
a field to be padded using zeros rather than space characters.

The printf() function returns how many characters it has printed. For example, the following code fragment gives
output in two lines, in first line 19289 and in the second line 6. Though, n variable takes 2 or 4 bytes in memory, while
printing it will be converted to ASCII digits (6 digits). In the innermost printf(), we are printing 5 digits plus newline.
Thus, the innermost printf() returns 6, which outer printf() prints.

int n=19289;

printf(“%d\n”, printf(“%d\n”,n));

Similarly, the following code will display 26 as the last printf() output.

printf(“%d\n”, print(“Hello Welcome To C Jungle\n”));
Similarly, the following code will display 12 as the last printf() output.

float n=-1.23338;

printf(“%d\n”, printf(“%20f8\n”,n));

scanf()

This function is similar to the printf function except that it is used for formatted input. The format specifiers have the same
meaning as for printf() and the space character or TAB character or the newline character are normally used as delimiters
between different numerical inputs.

The and character is the address of operator in C, it returns the address in memory of the variable it acts on. (This is
because C functions are nominally call--by--value. Thus in order to change the value of a calling parameter we must tell
the function exactly where the variable resides in memory and so allow the function to alter it directly rather than to use-
lessly alter a copy of it).

The scanf function has a return value which represents the number of fields it was able to convert successfully. For
example:

num = scanf(“%c %d”, &ch, &i);

This scanf call requires two fields, a character and an integer, to be read in so the value placed in num after the call should
be 2 if this was successful. However if the input was “a Rambo” then the first character field will be read correctly as ‘a’ but
the integer field will not be converted correctly as the function cannot reconcile “Rambo” as an integer. Thus the function
will return 1 indicating that one field was successfully converted. Thus to be safe the return value of the scanf function
should be checked always and some appropriate action taken if the value is incorrect.

The following program gives a run-time error as we are trying to store the value that is read from the keyboard in the
memory location which is not allocated. The scanf function needs addresses as its arguments after first argument. Here,
we have declared variable x. As we are simply using x in scanf() function, and x is not initialised, it assumes the value
entered by the user to be stored in the memory pointed by the value of x which is garbage. Thus, we get run time error.

 int x;

 printf(“%d\n”,scanf(“%d”, x));
getchar() and putchar()

These functions are used to input and output single characters. The getchar() function reads the ASCII value of a character input
at the keyboard and displays the character while putchar() displays a character on the standard output device i.e., the screen.

The input functions described above, scanf() and getchar() are termed buffered input functions. This means that
whatever the user types at the keyboard is first stored in a data buffer and is not actually read into the program until either
the buffer fills up and has to be flushed or until the user flushes the buffer by hitting ret whereupon the required data is
read into the program. The important thing to remember with buffered input is that no matter how much data is taken

2.12 Computer Science & Information Technology for GATE

into the buffer when it is flushed the program just reads as much data as it needs from the start of the buffer allowing
whatever else that may be in the buffer to be discarded.
_flushall()
The _flushall function writes the contents of all output buffers to the screen and clears the contents of all input buffers. The
next input operation (if there is one) then reads new data from the input device into the buffers. This function should be
used always in conjunction with the buffered input functions to clear out unwanted characters from the buffer after each
input call.
getch() and getche()

These functions perform the same operation as getchar() except that they are unbuffered input functions i.e., it is not nec-
essary to type ret to cause the values to be read into the program they are read in immediately the key is pressed. getche()
echoes the character hit to the screen while getch() does not.

2.1.2.6 Operators

Assignment Operator

int x ;

 x = 20 ;

Some common notation:
lvalue -- left hand side of an assignment operation

rvalue -- right hand side of an assignment operation
Type Conversions: The value of the right hand side of an assignment is converted to the type of the lvalue. This may some-
times yield compiler warnings if information is lost in the conversion. For example:

int x ;

char ch ;

ch = x ; /* ch is assigned lower 8 bits of x, the remaining bits are discarded so we have a possible

information loss */

x = f ; /* x is assigned non fractional part of f only within int range, information loss possible */

Multiple assignments are possible to any degree in C, the assignment operator has right to left associatavity which means
that the rightmost expression is evaluated first. For example:

x = y = z = 1000 ;
In this case the expression z = 1000 is carried out first. This causes the value 1000 to be placed in z with the value of the
whole expression being 1000 also. This expression value is then taken and assigned by the next assignment operator on
the left i.e. x = y = (z = 1000).
Arithmetic Operators
+ – * / --- same rules as mathematics with * and / being evaluated before + and -.
% -- modulus / remainder operator
For Example:

int a = 5, b = 2, x ;

x = a / b ; // integer division, x = 2.

x = 5 % 2 ; // remainder operator, x = 1.

x = 7 + 3 * 6 / 2 - 1 ;

// x=15,* and / evaluated ahead of + and -.

Note that parentheses may be used to clarify or modify the evaluation of expressions of any type in C in the same way as
in normal arithmetic.
Modulus operator (%) or Remainder operator: It is a binary operator i.e., it requires two operands. The operands should
be integer type; they can be integer variables, constants or expressions (not float type arguments).

Programming, Data Structures and Algorithms 2.13

If A, B are two operands then A%B is remainder of |A| / |B| with the sign as that of first operand.
Example:

10%3 = 1 –10%3 = -1 10%-3 = 1 –10%-3 = –1
If a, b are two integers and a%b value is zero then b can be said as factor to a.
If a, b are two integers then a%b values lies between 0 to (b–1).
If a is an integer and a%2 value is zero then a can be said as even number; otherwise a can be said as odd number.
If a, b are two integers and a is less than b then a%b value is a.
If a is an integer and then a%1 value is 0.
The Comma Operator

The comma operator can be used to link related expressions together. A comma separated list of expression is evaluated
left to right and value of right most expression is the value of the combined expression.
For example the statement

value = (x = 10, y = 9, x + y);
First assigns 10 to x and 9 to y and finally assigns 19 to value. Since comma has the lowest precedence in operators the
parenthesis is necessary.

2.1.2.7 Unary Operators

C language supports variety of unary operators (which takes one operand) such as:
(1) Unary minus
(2) Negation operator(!)
(3) Unary increment/decrement

We need not required to give emphasis about unary minus as its semantics is same as mathematics.
Negation operator is a unary operator, whose operand can be a variable or constant of any type. If the operand is true

negation of it becomes false; if the operand is false then the negation of it becomes true.
Increment and Decrement Operators
There are two special unary operators in C, Increment ++, and Decrement -- , which cause the variable they act on to be
incremented or decremented by 1, respectively.
For example: x++ ;
/* equivalent to x = x + 1 ; */
++ and -- can be used in prefix or postfix notation. In prefix notation the value of the variable is either incremented or
decremented and is then read while in postfix notation the value of the variable is read first and is then incremented or
decremented.

Operators Postfix Prefix
Increment i++ ++i
Decrement i-- --i

Unary Increment / Decrement operators are applicable to integer type of variables only (which includes int, char, long,
etc.,); but not to constants or expressions. Postfix Increment/Decrement operator if applied to a variable in an expression
then the current value of the variable is used in evaluating the expression and then the variable value will be Incremented
/Decremented by one. Similarly Prefix Increment/Decrement operator when applied to a variable in an expression, first
the value of the variable is Incremented or Decremented by one and then the modified value of the variable is used in
evaluating the expression.

In an expression, a variable contains m prefix and n postfix operators then before evaluating the expression the vari-
able value will be modified by m times, with the modified value expression will be evaluated after that the variable will be
further modified by n times.
Implicit Assignment Operators
Many C operators can be combined with the assignment operator as shorthand notation. For example:

x = x + 10 ; can be replaced by
x += 10 ;

Similarly, we can use -=, *=, /=, %=, etc.
These shorthand operators improve the speed of execution as they require the expression, the variable x in the above ex-
ample, to be evaluated once rather than twice.

2.14 Computer Science & Information Technology for GATE

Relational Operators
The full set of relational operators are provided in shorthand notation

> >= < <= == !=
Result of a relational operator will be true or false (numerically 1 or 0 respectively). They can be used with all type of vari-
ables and constants including int, float, long, char.
Logical Operators

A B A&&B A||B

T T T T

T F F T

F T F T

F F F F

C language supports two logical operators given as:
1. Logical AND (&&)
2. Logical OR (||)

Logical And or logical Or operators are binary operators, i.e., two operands are required for them. The operands can be
variables, constants or expressions of any type. The result of “Logical AND”, “Logical OR” operators is always true or false;
numerically one or zero, respectively.

The result of the logical AND will be true only if both operands are true otherwise false.
Where as the result of “Logical OR” is true only if at least one of the operand is true. See the above truth table.
While evaluating logical AND operator if the first operand itself is identified to be false, then the second operand will

not be evaluated; even if it is true, final result will be false. Similarly, while evaluating the logical OR operator, if the first
operand itself is identified to be true then the second operand will not be evaluated at all.

With out loosing the logical significance, one can use *, + in place of logical AND, logical OR. However, it does not
mean that in place of *, +, we can use Logical AND, Logical OR in arithmetical statements without distorting the value.
Logical AND, Logical OR will be faster than arithmetic operators.
Bitwise Operators
These are special operators that act on char or int arguments only. They allow the programmer to get closer to the machine
level by operating at bit-level in their arguments.

& Bitwise AND | Bitwise OR
^ Bitwise XOR ~ Ones Complement
>> Shift Right << Shift left

Recall that type char is one byte in size. This means it is made up of 8 distinct bits or binary digits normally designated as
illustrated below with Bit 0 being the Least Significant Bit (LSB) and Bit 7 being the Most Significant Bit (MSB). The value
represented below is 13 in decimal.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 0 0 0 0 0 1 0 1

An integer on a 16 bit OS is two bytes in size and so Bit 15 will be the MSB while on a 32 bit system the integer is four
bytes in size with Bit 31 as the MSB.
Bitwise AND (&)
If any two bits in the same bit position are set then the resultant bit in that position is set otherwise it is zero. For example:

1011 0010 (178)
& 0011 1111 (63)
= 0011 0010 (50)
Bitwise OR (|)
If either bit in corresponding positions are set the resultant bit in that position is set. For example:

1011 0010 (178)
| 0000 1000 (63)
 = 1011 1010 (186)

Programming, Data Structures and Algorithms 2.15

Bitwise XOR (^)
If the bits in corresponding positions are different then the resultant bit is set. For example:

1011 0010 (178)
^ 0011 1100 (63)
 = 1000 1110 (142)
Shift Operators (<< and >>)

These move all bits in the operand left or right by a specified number of places.
variable << number of places

variable >> number of places

For example:
2 << 2 = 8

i.e.
0000 0010 becomes 0000 1000

Note : shift left by one place multiplies by 2
shift right by one place divides by 2

Ones Complement (~)

Complement operator reverses the state of each bit of the operand. For example:
1101 0011 becomes 0010 1100

The bitwise operators are most commonly used in system level programming where individual bits of an integer will rep-
resent certain real life entities which are either on or off, one or zero. The programmer will need to be able to manipulate
individual bits directly in these situations.

A mask variable which allows us to ignore certain bit positions and concentrate the operation only on those of specific
interest to us is almost always used in these situations. The value given to the mask variable depends on the operator being
used and the result required.
Implicit and Explicit Type Conversions

In mixed type expressions all operands are converted temporarily up to the type of the largest operand in the expression.
Normally, this automatic or implicit casting of operands follows the following guidelines in ascending order.

long double

double

float

unsigned long

long

unsigned int

signed int

For Example:

int i ;

f1 = f2 + i ;

Since f2 is a floating point variable the value contained in the integer variable is temporarily converted or cast to a floating
point variable also to standardise the addition operation in this case. However it is important to realise that no permanent
modification is made to the integer variable.
Explicit casting coerces the expression to be of specific type and is carried out by means of the cast operator which has
the following syntax.
(type) expression

For example if we have an integer x, and we wish to use floating point division in the expression x/2 we might do the fol-
lowing

(float) x / 2

2.16 Computer Science & Information Technology for GATE

which causes x to be temporarily cast to a floating point value and then implicit casting causes the whole operation to be
floating point division. The same results could be achieved by stating the operation as

x / 2.0
which essentially does the same thing but the former is more obvious and descriptive of what is happening.

It should be noted that all of these casting operations, both implicit and explicit, require processor time. Therefore for
optimum efficiency the number of conversions should be kept to a minimum.
Size of Operator

The sizeof operator gives the amount of storage, in bytes, associated with a variable or a type (including aggregate types
as we will see later on). The expression is either an identifier or a type-cast expression (a type specifier enclosed in paren-
theses).
Precedence of Operators
When several operations are combined into one C expression the compiler has to rely on a strict set of precedence rules
to decide which operation will take preference. The precedence of C operators is given below.

Precedence Operator Associativity

Highest () [] –> . left to right

! ~ ++ -- +(unary) –(unary) (type) * & sizeof right to left

* / % left to right

+ – left to right

<< >> left to right

< <= > >= left to right

== != left to right

& left to right

^ left to right

| left to right

&& left to right

|| left to right

? : right to left

= += –= *= /= %= &= ^= |= <<= >>= right to left

Lowest , left to right

Operators at the top of the table have highest precedence and when combined with other operators at the same expression
level will be evaluated first. For example take the expression

2 + 10 * 5 ;
Here * and + are being applied at the same level in the expression but which comes first ? The answer lies in the precedence
table where the * is at a higher level than the + and so will be applied first.

When two operators with the same precedence level are applied at the same expression level the associativity of the
operators comes into play.
For example in the expression

2 + 3 – 4 ;
the + and - operators are at the same precedence level but associate from left to right and so the addition will be performed
first. However in the expression
 x = y = 2 ;
as we have noted already the assignment operator associates from right to left and so the rightmost assignment is first
performed.

Note

As we have seen already parentheses can be used to supersede the precedence rules and force evaluation along the lines we
require. For example to force the addition in 2 + 10 * 5 ; to be carried out first we would write it as (2 + 10) * 5;

Programming, Data Structures and Algorithms 2.17

n Example What is the value of z after execution of the following statements.
 int z, x = 5,y = -10, a = 4, b = 2;
 z = x++ - --y * b /a;
n Answer: Note that as x contains postfix operator, its value will be changed only after evaluating the expression. That is,
expression will be evaluated with the current value of x that is 5. First y is incremented by 1. Thus it becomes -11. Then y
will be multiplied by b. Thus, we get -22. This 22 will be divided by 4. Thus we get -5. This is subtracted from x value that
is 5. Thus, expression value becomes 10 and after that x values becomes 6. Thus z value becomes 10.

z= (5 - (((-11) * 2)/4))

= (5-(-22/4))

= (5-(-5)) // 22/4 = 5.4 since integers so, 5 will be taken .4 dropped!

= 5+5=10

2.1.2.8 Type Overflow & Underflow

When the value to be stored in a variable of a particular type is larger than the range of values that type can hold, we call it as
overflow. Likewise when the value is smaller than the range of values the type can hold, we say it as underflow. Overflow and
underflow are only a problem when dealing with integer arithmetic. This is because C simply ignores the situation and con-
tinues on as if nothing had happened. With signed integer arithmetic adding two large positive numbers, the result of which
will be larger than the largest positive signed int, it will lead to a negative value being returned as the sign bit will be overwrit-
ten with the result of the sum. Similarly, with unsigned integer arithmetic adding 1 to the largest unsigned integer will give 0.

Floating point overflow is not a problem as the system itself is informed when it occurs which causes your program to
terminate with a run-time error. If this happens we need to promote the variables involved in the offending operation to
the largest possible and try again.

2.1.3 Control Statements

There are two types of control statements: iteration statements that allow us to repeat one or more simple statements a
certain number of times and decision statements that allow us to choose to execute one sequence of instructions over one
or more others depending on certain circumstances. Control statements are often regarded as compound statements in
that they are normally combined with simpler statements which carry out the operations required. However, it should be
noted that each control statement is still just a single statement from the compiler’s point of view.

2.1.3.1 Decision Statements

2.1.3.1.1 If Statement

The if statement is the most general method for allowing conditional execution in C.
if (condition){

 statement body ;}

else

 {statement body ;}

or just :

if (condition)

 {statement body ;}

In the first more general form of the statement one of two code blocks are to be executed. If the condition evaluates to
TRUE the first statement body is executed otherwise for all other situations the second statement body is executed.

In the second form of the statement the statement body is executed if the condition evaluates to TRUE. No action is
taken otherwise.

As with all other control statements the statement body can also involve multiple statements, again contained within
curly braces.

2.18 Computer Science & Information Technology for GATE

Nested if statements

if – else statements like all other decision or iteration statements in C can be nested to whatever extent is required. Care
should be taken however to ensure that the if and else parts of the statement are matched correctly -- the rule to follow is
that the else statement matches the most recent unmatched if statement.
if - else - if ladder

When a programming situation requires the choice of one case from many different cases successive if statements can be
tied together forming what is sometimes called an if-else-if ladder.

 if (condition_1)

 statement_1 ;

 else if (condition_2)

 statement_2 ;

 else if (condition_3)

 statement_3 ;

 . . .

 else if (condition_n)

 statement_n ;

 else

 statement_default ;

Essentially, what we have here is a complete if-else statement hanging onto each else statement working from the bottom
up.
Caution is advisable when coding the if-else-if ladder as it tends to be prone to error due to mismatched if-else clauses.

2.1.3.1.2 Conditional Operator ?

This is a special shorthand operator in C and replaces the following segment
if (condition)

 expr_1 ;

else

 expr_2 ;

with the more elegant
condition ? expr_1 : expr_2 ;

or

variable=condition ? expr_1 : expr_2 ;

The ?: operator is a ternary operator in that it requires three arguments. One of the advantages of the ?: operator is that
it reduces simple conditions to one simple line of code which can be thrown unobtrusively into a larger section of code.

2.1.3.1.3 The Switch Statement

This is a multi-branch statement similar to the if - else ladder (with limitations) but clearer and easier to code.
 switch (expression)

 {

 case constant1 : statement1 ;

 break ;

 case constant2 : statement2 ;

 break ;

Programming, Data Structures and Algorithms 2.19

 ...

 default : statement ;

 }

The value of expression is tested for equality against the values of each of the constants specified in the case statements in
the order written until a match is found. The statements associated with that case statement are then executed until a break
statement or the end of the switch statement is encountered.

When a break statement is encountered execution jumps to the statement immediately following the switch statement.
The default section is optional, however if it is not included the default is that nothing happens and execution simply

falls through the end of the switch statement.
The switch statement however is limited by the following

Can only test for equality with integer constants in case statements.
No two case statement constants may be the same.
Character constants are automatically converted to integer.

Note

The break statement need not be included at the end of the case statement body.

2.1.3.2 Iteration Statements

2.1.3.2.1 For Statement

The for statement is most often used in situations where the programmer knows in advance how many times a particular
set of statements are to be repeated. The for statement is sometimes termed a counted loop.
for ([initialisation] ; [condition] ; [increment])

 [statement body] ;

initialisation: this is usually an assignment to set a loop counter variable for example.
condition: determines when loop will terminate.
increment: defines how the loop control variable will change each time the loop is executed.
statement body: can be a single statement, no statement or a block of statements.
The for statement executes as follows:

initialisation

test condition

statement body

increment

FALSE

continue
with next
iteration

end of statement

TRUE

Note

The square braces above are to denote optional sections in the syntax but are not part of the syntax. The semi-colons must
be present in the syntax.

2.20 Computer Science & Information Technology for GATE

Multiple Initialisations
C has a special operator called the comma operator which allows separate expressions to be tied together into one state-
ment. For example it may be tidier to initialise two variables in a loop as follows:

for (x = 0, sum = 0; x <= 100; x++)

{

 printf(“%d\n”, x) ;

 sum += x ;

}

Any of the four sections associated with a for loop may be omitted but the semi-colons must be present always. Thus, an
infinite loop may be created as follows:

for (; ;)

 statement body ;

or indeed by having a faulty terminating condition.
Sometimes a statement may not even have a body to execute as in the following example where we just want to create a
time delay.

for (t = 0; t < big_num ; t++) ;

It is possible to build a nested structure of for loops, for example the following creates a large time delay using just integer
variables.

unsigned int x, y ;

for (x = 0; x < 65535; x++)

 for (y = 0; y < 65535; y++) ;

While statement
The while statement is typically used in situations where it is not known in advance how many iterations are required.

while (condition)

 statement body ;

FALSE
test condition

TRUE

statement body

end of statement

continue

with next

iteration

A for loop is of course the more natural choice where the number of loop iterations is known beforehand whereas a while
loop caters for unexpected situations more easily.
do-while
The terminating condition in the for and while loops is always tested before the body of the loop is executed, so of course
the body of the loop may not be executed at all. In the do while statement on the other hand the statement body is always
executed at least once as the condition is tested at the end of the body of the loop.

do

{

 statement body ;

 } while (condition) ;

Programming, Data Structures and Algorithms 2.21

FALSE

test condition
TRUE

statement body

end of statement

continue

with next

iteration

For example: To read in a number from the keyboard until a value in the range 1 to 10 is entered.

int i ;

 do {

 scanf(“%d\n”, &i) ;

 }while (i < 1 || i > 10) ;

In this case we know at least one number is required to be read so the do-while might be the natural choice over a normal
while loop.
break statement
When a break statement is encountered inside a while (or for, do/while or switch) statement the statement is immediately
terminated and execution resumes at the next statement following the while (or for, do/while or switch) statement. For
example:

for (x = 1 ; x <= 10 ; x++){

if (x > 4) break ;

printf(“%d “ , x) ;

}

Output : “1 2 3 4”
...

continue statement
The continue statement terminates the current iteration of a while, for or do/while statement and resumes execution back
at the beginning of the loop body with the next iteration. For example:

int n=0, s=0,m;

while(1){

scanf(“%d”, &m);

if(m==0) break;

if(m%2) continue;

s+=m;

n++;

}

if(n) printf(“%d\n”, s/n);

Consider the above code fragment:
It is an infinite loop which reads integers in each iteration. It runs till we enter 0. If we enter 0, the control comes out of
the loop and prints the average because of execution of break statement. If the number entered is not even then it executes
continue statement making program execution to go to while(1) statement. The statements after continue will not be ex-
ecuted in that iteration. Control simply goes to while(1) when we execute continue statement.

Also, consider the following code fragment. If x value is 3, then control goes to x++. Thus, we get 1, 2 4, 5 as output.

2.22 Computer Science & Information Technology for GATE

for (x = 1; x <= 5; x++){

if (x == 3) continue ;

printf(“%d “, x) ;

}

2.1.3.3 Unnecessary Type Conversions

C is a weakly typed language. Most unnecessary conversions occur in assignments, arithmetic expressions and parameter
passing. Consider the following code segment which simply computes the sum of a user input list of integers and their
average value.

double average, sum = 0.0 ;

short value, i ;

...

for (i=0; i < 1000; i ++) {

 scanf(“%d”, &value) ;

 sum = sum + value ;

}

average = sum / 1000 ;

1. The conversion from value, of type short int, to the same type as sum, type double, occurs 1000 times in the for loop
so the inherent inefficiency in that one line is repeated 1000 times which makes it substantial.

 If we redefine the variable sum to be of type short we will eliminate these conversions completely. However as the
range of values possible for a short are quite small we may encounter overflow problems so we might define sum to
be of type long instead. The conversion from short to long will now be implicit in the statement but it is more efficient
to convert from short to long than it is from short to double.

2. Because of our modifications above the statement

average = sum / 1000 ;

now involves integer division which is not what we require here. (Note however that an implicit conversion of 1000
from int to long occurs here which may be simply avoided as follows:

average = sum / 1000L ;

 with no time penalty whatsoever as it is carried out at compile time.)
 To remedy the situation we simply do the following:

average = sum / 1000.0 ;

3. The statement

sum = sum + value ;

 also involves another source of inefficiency. The variable sum is loaded twice in the statement unnecessarily. If the
shorthand operator += were used instead we will eliminate this.

sum += value ;

2.1.4 Arrays and Strings

An array is a collection of variables of the same type that are referenced by a common name. Specific elements or variables
in the array are accessed by means of an index into the array. In C all arrays consist of contiguous memory locations. The
lowest address corresponds to the first element in the array while the largest address corresponds to the last element in the
array. C supports both single and multi-dimensional arrays.

Arrays are needed if we need to use same related data more than once in a program. For instance, consider the problem
of calculating average marks of those students whose marks are more than class average. Without array if we want the
program, first we have to read all the students marks to calculate average and then second time also we have to read all

Programming, Data Structures and Algorithms 2.23

the students marks to compare with the class average. If we plan to use array, once we can read the students marks into
an array and use any number of times. Thus, input operations of a program can be reduced; thus program becomes fast.

2.1.4.1 Single Dimensional Arrays

We can declare 1-D array as:
type A[size] ;
where type is the type of each element in the array, A is any valid C identifier, and size is the number of elements in the
array which has to be an integer constant value.

In C language, all arrays use zero as the index of their first element.
For example a five element integer array can be declared as:

 int array[5] ;

The above array storage in the memory can be considerd as follows for a 32-bit system where each int requires 4 bytes.

 array[0] 12 locn 1000

 array[1] –345 locn 1004

 array[2] 342 locn 1008

 array[3] –30000 locn 1012

 array[4] 23455 locn 1016

The valid indices for array above are 0 .. 4, i.e. 0 to number of elements – 1. To determine to size of an array at run time
the sizeof operator can be used. This returns the size in bytes of its argument. The name of the array is given as the operand
 size_of_array = sizeof (array_name) ;
We can also declare the array as:

int array[N];

where N is a symbolic constant,
C carries out no boundary checking on array access; thus the program has to ensure that array element accesses should be
within the bounds of the array. If the program tries to access an array element outside of the bounds of the array, C will
try and accommodate the operation. For example, if a program tries to access element array[5] above which does not exist
the system will give access to the location where element array[5] should be i.e. 5 x 4 bytes from the beginning of the array.

 array[0] 12 locn 1000

 array[1] –345 locn 1004

 array[2] 342 locn 1008

 array[3] –30000 locn 1012

 array[4] 23455 locn 1016

 array[5] 123 locn 1020

This piece of memory does not belong to the array and is likely to be in use by some other variable in the program. If we are
just reading a value from this location the situation isn’t so drastic our logic just goes haywire. However if we are writing to
this memory location we will be changing values belonging to another section of the program which can be catastrophic.
Initialising Arrays
Arrays can be initialised at time of declaration in the following manner.

type array[size] = { value list };

For example:
int i[5] = {1, 2, 3, 4, 5 } ;

i[0] = 1, i[1] = 2, etc. We can also refer the elements as: 0[i], 1[i], etc.
The size specification in the declaration may be omitted which causes the compiler to count the number of elements

in the value list and allocate appropriate storage. For example: the following declaration allocates 5 elements for array A.
int A[] = { 1, 2, 3, 4, 5 } ;

2.24 Computer Science & Information Technology for GATE

2.1.4.2 Strings

In C a string is defined as a character array which is terminated by a special character, the null character ‘\0’, as there is
no string type as such in C. Thus, the string or character array must always be defined to be one character longer than is
needed in order to cater for the ‘\0’. For example, we can declare a string to hold 5 characters as:

char s[6] ;

A string constant is simply a list of characters within double quotes. For example “Hello” with the ‘\0’ character being
automatically appended at the end by the compiler. A string may be initialised as simply as follows :

char s[6] = “Hello” ;

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

as opposed to
char s[6] = { ‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘\0’ } ;

Again the size specification may be omitted allowing the compiler to determine the size required.

2.1.4.3 Multidimensional Arrays

Multidimensional arrays of any dimension are possible in C but in practice only two or three dimensional arrays are work-
able. The most common multidimensional array is a two dimensional array for example the computer display, board
games, a mathematical matrix etc.

type name [rows] [columns] ;

For example: A 2D integer array of dimension 2 × 3 can be declared as:
int d[2] [3] ;

d[0][0] d[0][1] d[0][2]

d[1][0] d[1][1] d[1][2]

A two dimensional array is actually an array of arrays, in the above case an array of two integer 1-D arrays (the rows) each
with three elements, and is stored row-wise in memory. That is, first all the elements of 0th row are stored in memory, then
all the elements of 1st row, and vice versa. To initialise a multidimensional array all but the leftmost index must be speci-
fied so that the compiler can index the array properly. For example:

 int d[5] [3] = { 1, 2, 3, 4, 5, 6 };

int d[] [3] = { 1, 2, 3, 4, 5, 6 };

However, it is more useful to enclose the individual row values in curly braces for clarity as follows.
int d[] [3] = { {1, 2, 3}, {4, 5, 6} } ;

int d[5] [3] = { {1, 2, 3}, {4, 5, 6} } ;

In all the above initialisations, first and second rows are filled with the specified integer constants.

2.1.4.4 Arrays of Strings

An array of strings is in fact a two dimensional array of characters but it is more useful to view this as an array of individual
single dimension character arrays or strings. For example:

char A[10] [30] ;

where the row index is used to access the individual row strings and where the column index is the size of each string, thus
A is an array of 10 strings each with a maximum size of 29 characters leaving one extra for the terminating null character.

We can also declare and initialise a 2-D character array as:

char A[10][20]={ “Rama”, “Abhi”, “Anuj”} or

char A[][20]={ “Rama”, “Abhi”, “Anuj”}

Here, A[0] is string “Rama”, A[1] is “Abhi” and vice versa. However, in the later one, number of strings or rows becomes 3.

Programming, Data Structures and Algorithms 2.25

2.1.5 Functions

Functions are essentially just groups of statements that are to be executed as a unit in a given order and that can be refer-
enced by a unique name. The only way to execute these statements is by invoking them or calling them using the function’s
name.

Traditional program design methodology typically involves a top-down or structured approach to developing software
solutions. The main task is first divided into a number of simpler sub-tasks. If these sub-tasks are still too complex they are
subdivided further into simpler sub-tasks, and so on until the sub-tasks become simple enough to be programmed easily.

Functions are the highest level of the building blocks given to us in C and correspond to the sub-tasks or logical units
referred to above. The identification of functions in program design is an important step and will in general be a continu-
ous process subject to modification as more becomes known about the programming problem in progress.
Syntax of a function definition is given as:

return_type function_name (parameter_list)

{

body of function ;

}

Many functions will produce a result or return some information to the point at which it is called. These functions specify
the type of this quantity via the return_type section of the function definition. If the return type is void it indicates the
function returns nothing.

The function_name may be any valid C identifier and must be unique in a particular program.
If a function requires information from the point in the program from which it is called this may be passed to it by

means of the parameter_list. The parameter list must identify the names and types of all of the parameters to the func-
tion individually. If the function takes no parameters the braces can be left empty or use the keyword void to indicate that
situation more clearly.

2.1.5.1 Function Prototype (declaration or signature)

When writing programs in C it is normal practice to write the main() function first and to position all user functions after
it or indeed in another file. Thus if a user function is called directly in main() the compiler will not know anything about it
at this point, i.e. if it takes parameters etc. This means we need to give the compiler this information by providing a func-
tion prototype or declaration before the function is called.

type_spec function_name(type_par1, type_par2, etc.);

This declaration simply informs the compiler what type the function returns and what type and how many parameters it
takes. Names may or may not be given to the parameters at this time.

2.1.5.2 Function Definition and Local Variables

A function definition actually defines what the function does and is essentially a discrete block of code which cannot be
accessed by any statement in any other function except by formally calling the function. Thus any variables declared and
used in a function are private or local to that function and cannot be accessed by any other function.

Local variables are classed as automatic variables because each time a function is called the variable is automatically
created and is destroyed when the function returns control to the calling function. By created we mean that memory is
set aside to store the variable’s value and by destroyed we mean that the memory required is released. Thus a local variable
cannot hold a value between consecutive calls to the function.

2.1.5.3 Static Local Variables

The keyword static can be used to force a local variable to retain its value between function calls. The static variable is cre-
ated when the function is first called. The variable retains its last value during subsequent calls to the function and is only
destroyed when the program terminates.

2.26 Computer Science & Information Technology for GATE

2.1.5.4 Scope Rules

The scope of an identifier is the area of the program in which the identifier can be accessed.
Identifiers declared inside a code block are said to have block scope. The block scope ends at the terminating curly brace

‘}’ of the code block. Local variables for example are visible, i.e. can be accessed, from within the function, i.e. code block,
in which they are declared. Any block can contain variable declarations be it the body of a loop statement, if statement,
etc. or simply a block of code marked off by a curly brace pair. When these blocks are nested and an outer and inner block
contain variables with the same name then the variable in the outer block is inaccessible until the inner block terminates.

Global variables are variables which are declared outside all functions and which are visible to all functions from that
point on. These are said to have file scope.

All functions are at the same level in C, i.e. cannot define a function within a function in C. Thus within the same source
file all functions have file scope i.e. all functions are visible or can be called by each other (assuming they have been pro-
totyped properly before they are called).

2.1.5.5 Return Value

The return statement is used to return a value to the calling function if necessary.
return expression ;

If a function has a return type of type void the expression section can be omitted completely or indeed the whole return
statement can be omitted and the closing curly brace of the function will cause execution to return appropriately to the
calling function.

The return value of the function need not always be used when calling it. In the above example if we are not interested
in know how often hello() has been called we simply ignore that information and invoke the function with

hello() ;

When the main() function returns a value, it returns it to the operating system. Zero is commonly returned to indicate
successful normal termination of a program to the operating system and other values could be used to indicate abnormal
termination of the program. This value may be used in batch processing or in debugging the program.

2.1.5.6 Function Arguments

The types of all function arguments should be declared in the function prototype as well as in the function definition.
In C, arguments are passed to functions using the call-by-value scheme. This means that the compiler copies the value

of the argument passed by the calling function into the formal parameter list of the called function. Thus if we change the
values of the formal parameters within the called function we will have no effect on the calling arguments. The formal
parameters of a function are thus local variables of the function and are created upon entry and destroyed on exit.

int add (int a, int b) {

int result ;

result = a + b ;

return result ; // parentheses used for clarity here

}

In the formal parameter list of a function the parameters must be individually typed.
The add() function here has three local variables, the two formal parameters and the variable result. There is no con-

nection between the calling arguments, x and y, and the formal parameters, a and b, other than that the formal parameters
are initialised with the values in the calling arguments when the function is invoked. The situation is depicted below to
emphasise the independence of the various variables.

main() add()

resulta

by

x Value copied

Value copied

Programming, Data Structures and Algorithms 2.27

2.1.5.7 Recursion

A recursive function is a function that calls itself either directly or indirectly through another function. For example to
evaluate the factorial of a number, n

n! = n * n–1 * n–2 * ... * 3 * 2 * 1.

We can represent factorial calculation recursively as somehow calculate factorial n-1 and multiply it with n to get factorial
n. That is,

n! = n * (n-1)!
where the original problem has been reduced in complexity slightly. We continue this process until we get the problem
down to a task that may be solved directly, in this case as far as evaluating the factorial of 1 which is simply 1.

So a recursive function to evaluate the factorial of a number will simply keep calling itself until the argument is 1. All of
the previous (n-1) recursive calls will still be active waiting until the simplest problem is solved before the more complex
intermediate steps can be built back up giving the final solution.

short factorial(short num) {

if (num <= 1) return 1 ;

else

return (num * factorial(num - 1)) ;

}

This function will not work very well as it is, because the values of factorials grow very large very quickly. For example, the
value of 8! is 40320 which is too large to be held in a short so integer overflow will occur when the value entered is greater
than 7. What can be the solution to this ?

While admittedly simple to encode in certain situations programs with recursive functions can be slower than those
without because there is a time delay in actually calling the function and passing parameters to it. There is also a memory
penalty involved. If a large number of recursive calls are needed this means that there are that many functions active at
that time which may exhaust the machine’s memory resources. Each one of these function calls has to maintain its own set
of parameters on the program stack.

2.1.5.8 Arrays as Arguments to Functions (1-D)

In C it is impossible to pass an entire array as an argument to a function—instead the address of the array is passed as a
parameter to the function.

The name of an array without any index is the address of the first element of the array and hence of the whole array as it
is stored contiguously. However we need to know the size of the array in the function—either by passing an extra param-
eter or by using the size of operator. For example:

void main(){

int array[20] ;

func1(array) ;/* passes pointer to array to func1 */

}

Since, we are passing the address of the array the function will be able to manipulate the actual data of the array in main().
This is call by reference as we are not making a copy of the data but are instead passing its address to the function. Thus
the called function is manipulating the same data space as the calling function.

array

data at
address 1000

refers to data
at address 1000

func1main ()

x

In the function receiving the array the formal parameters can be declared in one of three almost equivalent ways as
follows:

2.28 Computer Science & Information Technology for GATE

As a sized array :

func1 (int x[10]) {

...

}

As an unsized array :

func1 (int x[]) {

...

}

As an actual pointer

func1 (int *x) {

...

}

All three methods are identical because each tells us that in this case the address of an array of integers is to be expected.
Note that in cases 2 and 3 above where we specify the formal parameter as an unsized array or simply as a pointer we

cannot determine the size of the array passed in using the sizeof operator as the compiler does not know what dimensions
the array has at this point. Instead size of returns the size of the pointer itself, two in the case of near pointers in a 16-bit
system but four in 32-bit systems.

2.1.5.9 Passing Multidimensional Arrays

Function calls with multi-dimensional arrays will be the same as with single dimension arrays as we will still only pass the
address of the first element of the array.

However, to declare the formal parameters to the function we need to specify all but one of the dimensions of the array
so that it may be indexed properly in the function. For example :
2D array of doubles: double x[10][20] ;
Call func1 with x a parameter: func1(x) ;
Declaration in func1:

func1(double y[][20]) {

...

}

The compiler must at least be informed how many columns the matrix has to index it correctly. For example to access ele-
ment y[5][3] of the array in memory the compiler might do the following

element No = 5 * 20 + 3 = 103.
Multi-dimensional arrays are stored row-wise so y[5][3] is the 4th element in the 6th row.

Since, we are dealing with an array of doubles this means it must access the memory location 103 X 8 bytes from the
beginning of the array.

Thus the compiler needs to know how many elements are in each row of the 2D array above. In general the compiler
needs to know all dimensions except the leftmost at the very least.

2.1.5.10 #define directive

This is a pre-processor command which is used to replace any text within a C program with a more informative pseud-
onym. For example:

When the pre-processor is called it replaces each instance of the phrase PI with the correct replacement string which is
then compiled. The advantage of using this is that if we wish to change the value of PI at any stage we need only change it
in this one place rather than at each point the value is used.

Programming, Data Structures and Algorithms 2.29

2.1.5.11 Macros

Macros make use of the #define directive to replace a chunk of C code to perform the same task as a function but will ex-
ecute much faster since the overhead of a function call will not be involved. However, the actual code involved is replaced
at each call to the macro so the program will be larger than with a function.

Macros can also be defined so that they may take arguments. For example:

void main(){

}

What the compiler actually sees is : printf(“%8.2f “, num) ;
While admittedly advantageous and neat in certain situations care must be taken when coding macros as they are no-

torious for introducing unwanted side effects into programs. For example:

void main(){

int i = 20, j = 40 , k ;

printf(“ i = %d, j = %d\n”, i, j);

...

}

The above program might be expected to output the following
i = 21, j = 41

whereas it produces the following as its output
i = 21, j = 42

where the larger value is incremented twice. This is because the macro MAX is actually translated into the following by
the compiler

((i++) > (j++) ? (i++) : (j++))

so that the larger parameter is incremented twice in error since parameter passing to macros is essentially text replace-
ment.

Take another example:

We might be expecting r and s values as 5 and square root of 41. However, we get 5 and 4. This is because, when expanded
the second one becomes: s = sqrt(p+1*p+1+q+1*q+1). That is, sqrt(2p + 1 + 2q + 1).

As we have mentioned previously the use of functions involves an overhead in passing parameters to them and obtain-
ing a return value from them. For this reason they can slow down your program if used excessively.

The alternative to this is to use macros in place of functions. This eliminates the penalty inherent in the function call
but does make the program larger. Therefore, in general macros should only be used in place of small ‘would be’ functions.

The penalty involved in the function call itself is also the reason why iterative methods are preferred over recursive
methods in numerical programming.

2.1.6 Pointers

Pointers are one of the most important mechanisms in C. A pointer is a variable that is used to store a memory address.
Most commonly the address is the location of another variable in memory. If one variable holds the address of another
then it is said to point to the second variable.

2.30 Computer Science & Information Technology for GATE

Address Value Variable

1000
1004 1012 ptr
1008
1012 23 A
1016

In the above illustration, A is a variable of type int with a value 23 and stored at memory location 1012. ptr is a variable of
type pointer to int which has a value of 1012 and is stored at memory location 1004. Thus ptr is said to point to the variable
A and allows us to refer indirectly to it in memory.

Note

It should be remembered that ptr is a variable itself with a specific piece of memory associated with it, in this 32-bit case
four bytes at address 1004 which is used to store an address.

2.1.6.1 Pointer Variables

Pointers like all other variables in C must be declared as such prior to use.
type *ptr ;

which indicates that ptr is a pointer to a variable of type type. For example
int *ptr ;

declares a pointer ptr to variables of type int.

Note

The type of the pointer variable ptr is int *. The declaration of a pointer variable normally sets aside just two or four bytes of
storage for the pointer. In 16-bit systems two byte pointers are termed near pointers and are used in small memory model
programs where all addresses are just segment offset addresses and 16 bits in length. In larger memory model programs,
addresses include segment and offset addresses and are 32 bits long and thus pointers are 4 bytes in size and are termed far
pointers. In 32-bit systems we have a flat address system where every part of memory is accessible using 32-bit pointers.

2.1.6.2 Pointer Operators * and &

We already know that & is a unary operator that returns the address of its operand which must be a variable. For Example:
int *m ;

int count=125, i;

m = &count ; /* m is a pointer to int, count, i are integers */

The address of the variable count is placed in the pointer variable m.
The * operator is the complement of the address operator & and is normally termed as the indirection operator. Like

the & operator it is a unary operator and it returns the value of the variable located at the address its operand points. For
example:

i = *m ;

assigns the value (count variable value) which is located at the memory location whose address is stored in m, to the in-
teger i. So essentially in this case we have assigned the value of the variable count to the variable i. The final situation is
given as follows :

indirection

count mi

125 125 1000

182417241000

Programming, Data Structures and Algorithms 2.31

One of the most frequent causes of error when dealing with pointers is using an un-initialised pointer. Pointers should be
initialised when they are declared or in an assignment statement. Like any variable if we do not specifically assign a value
to a pointer variable it may contain any value. This is extremely dangerous when dealing with pointers because the pointer
may point to any arbitrary location in memory, possibly to an unused location but also possibly to a memory location that is
used by the operating system. If our program tries to change the value at this address it may cause the whole system to crash.
Therefore, it is important to initialise all pointers before use either explicitly in our program or when defining the pointer. A
pointer may also be initialised to 0 (zero) or NULL which means it is pointing at nothing. This will cause a run-time error
if the pointer is inadvertently used in this state. It is useful to be able to test if a pointer has a null value or not as a means of
determining if it is pointing at something useful in a program.

Note that NULL is #defined in <stdio.h>.
For Example:

int var1, var2 ;

int *ptr1, *ptr2 = &var2 ;

int *ptr3 = NULL ;

...

ptr1 = &var1 ;

ptr1 and ptr2 are now pointing to data locations within the program so we are free to manipulate them at will, i.e. we are
free to manipulate the piece of memory they point to.

2.1.6.3 Call by Reference

We can write function which takes addresses as their arguments. This style if called as passing by address. When we send
address of a scalar variable to a function then what ever operations the function does in this address really takes place on
the actual argument. The following example uses this concept to exchange values of two integer variables.

#include <stdio.h>

void swap(int *, int *) ;

void main(){

int a, b ;

printf(“Enter two numbers”) ;

scanf(“ %d %d “, &a, &b) ;

printf(“a = %d ; b = %d \n”, a, b) ;

swap(&a, &b) ;

printf(“a = %d ; b = %d \n”, a, b) ;

}

void swap (int *ptr1, int *ptr2) {

int temp ;

temp = *ptr2 ;

*ptr2 = *ptr1 ;

*ptr1 = temp ;

}

The swap() function is now written to take integer pointers as parameters and so is called in main() as
 swap(&a, &b) ;

where the addresses of the variables are passed and copied into the pointer variables in the parameter list of swap(). These
pointers must be de-referenced to manipulate the values, and it is values in the same memory locations as in main() we
are swapping unlike the previous version of swap where we were only swapping local data values.

2.32 Computer Science & Information Technology for GATE

2.1.6.4 Pointers and Arrays

There is a very close relationship between pointer and array notation in C. As we have seen already the name of an array (
or string) is actually the address in memory of the array and so it is essentially a constant pointer. For example:

char str[80], *ptr ;

ptr = str ;

/* causes ptr to point to start of string str */

ptr = &str[0] ;

/* this performs the same as above */

It is illegal however to do the following.
str = ptr ; /* illegal */

as str is a constant pointer and so its value i.e. the address it holds cannot be changed.
Instead of using the normal method of accessing array elements using an index we can use pointers in much the same

way to access them as follows.
char str[80], *ptr , ch;

ptr = str ;// position the pointer appropriately

ch = *(ptr + 1) ;// access second element i.e. str[1]

Thus *(array + index) is equivalent to array[index].
Note that the parentheses are necessary above as the precedence of * is higher than that of +. The expression

 ch = *ptr + 1 ;

for example says to access the character pointed to by ptr (str[0] in above example with value ‘a’) and to add the value 1 to
it. This causes the ASCII value of ‘a’ to be incremented by 1 so that the value assigned to the variable ch is ‘b’.

In fact so close is the relationship between the two forms that we can do the following.
int x[10], *ptr ;

ptr = x ;

ptr[4] = 10 ; /*accesses element 5 of array by indexing a pointer*/

2.1.6.5 Pointer Arithmetic

Pointer variables can be manipulated in certain limited ways. Many of the manipulations are most useful when dealing
with arrays which are stored in contiguous memory locations. Knowing the layout of memory enables us to traverse it
using a pointer and not get completely lost.
Assignment

int count, *p1, *p2 ;

p1 = &count ;// assign the address of a variable directly

p2 = p1 ;//assign the value of another pointer variable

Pointer Addition / Subtraction
The value a pointer holds is just the address of a variable in memory, which is normally a four byte entity. It is possible to
modify this address by integer addition and subtraction if necessary. Consider the following we assume a 32-bit system
and hence 32-bit integers.

int *ptr ; Address Value

int array[3] = { 100, 101, 102 } ; ptr 1000 2008

ptr = array ;

array[0] 2008 100

array[1] 2012 101

array[2] 2016 102

Programming, Data Structures and Algorithms 2.33

We now have the pointer variable ptr pointing at the start of array which is stored at memory location 2008 in our illustra-
tion. Since we know that element array[1] is stored at address 2012 directly after element array[0] we could perform the
following to access its value using the pointer.

 ptr += 1 ;

This surprisingly will cause ptr to hold the value 1012 which is the address of array[1], so we can access the value of ele-
ment array[1]. The reason for this is that ptr is defined to be a pointer to type int, which are four bytes in size on a 32-bit
system. When we add 1 to ptr what we want to happen is to point to the next integer in memory. Since an integer requires
four bytes of storage the compiler increments ptr by 4. Likewise a pointer to type char would be incremented by 1, a
pointer to float by 4, etc.

Similarly we can carry out integer subtraction to move the pointer backwards in memory.
ptr = ptr - 1 ;

 ptr -= 10 ;

The shorthand operators ++ and -- can also be used with pointers. In our continuing example with integers the statement
ptr++ ; will cause the address in ptr to be incremented by 4 and so point to the next integer in memory and similarly ptr-- ;
will cause the address in ptr to be decremented by 4 and point to the previous integer in memory.

Note

Two pointer variables may not be added together (it does not make any logical sense).

char *p1, *p2 ;

p1 = p1 + p2 ; /* illegal operation */

Two pointers may however be subtracted as follows.
int *p1, *p2, array[3], count ;

 p1 = array ;

 p2 = &array[2] ;

 count = p2 - p1 ; /* legal */

The result of such an operation is not however a pointer, it is the number of elements of the base type of the pointer that
lie between the two pointers in memory.
Pointer Comparisons

We can compare pointers using the relational operators ==, <, and > to establish whether two pointers point to the same
location, to a lower location in memory, or to a higher location in memory. These operations are again used in conjunction
with arrays when dealing with sorting algorithms etc.
Strings and pointers

Strings can be initialised using pointer or array notation as follows

char *str = “Hello\n” ;

char string[] = “Hello\n” ;

in both cases the compiler allocates just sufficient storage for both strings. However, str is dynamic pointer variable while
string is constant pointer variable.

2.1.6.6 Arrays of Pointers

It is possible to declare arrays of pointers in C the same as any other ‘type’. For example
int *x[10] ;

declares an array of ten integer pointers.
To make one of the pointers point to a variable one might do the following.

 x[2] = &var ;

To access the value pointed to by x[2] we would do the following
 *x[2]

2.34 Computer Science & Information Technology for GATE

which simply de-references the pointer x[2] using the * operator.
Passing this array to a function can be done by treating it the same as a normal array which happens to be an array of

elements of type int *. For example:

int t ;

for (t=0; t < size; t++)

}

Note that q is actually a pointer to an array of pointers as we will see later on with multiple indirection.
A common use of pointer arrays is to hold arrays of strings.

2.1.6.7 Command Line Arguments

Command line arguments allow us to pass information into the program as it is run. For example the simple operating
system command type uses command line arguments as follows

c:\\Windows>type text.dat

where the name of the file to be printed is taken into the type program and the contents of the file then printed out.
In C there are two in-built arguments to the main() function commonly called argc and argv which are used to process

command line arguments.
 void main(int argc, char *argv[]) {

 ...

 }

argc is used to hold the total number of arguments used on the command line which is always at least one because the
program name is considered the first command line argument.

argv is a pointer to an array of pointers to strings where each element in argv points to a command line argument. For
example argv[0] points to the first string, the program name. The above thing can be also written as:

void main(int argc, char **argv) {

...

}

The following version of main is used to access environment variables.
void main(int argc, char *argv[], char **environ) {

...

}

2.1.6.8 Dynamic Memory Allocation

This is the means by which a program can obtain and release memory at run-time. This is very important in the case of
programs which use large data items, e.g. databases which may need to allocate variable amounts of memory or which
might have finished with a particular data block and want to release the memory used to store it for other uses.

We already know that while creating language supported arrays, we need to supply size of array as a constant. This style
has some drawbacks such as: 1. Program lacks flexibility, 2. There will be a great wastage of memory. In fact, all applica-
tions will not know in advance how many elements are needed in for arrays. By declaring or creating dynamic arrays, we
can alleviate the above draw backs in addition to increase the utility of memory.

The functions malloc() and free() form the core of C’s dynamic memory allocation and are prototyped in <malloc.
h>. malloc() allocates memory from the heap, i.e. unused memory while available and free() releases memory back to the
heap.

The following is the prototype for the malloc() function
void * malloc(size_t num_bytes) ;

Programming, Data Structures and Algorithms 2.35

malloc() allocates num_bytes bytes of storage and returns a pointer to type void to the block of memory if successful,
which can be cast to whatever type is required. If malloc() is unable to allocate the requested amount of memory it returns
a NULL pointer.

For example to allocate memory for 100 characters we might do the following
#include <malloc.h>

void main(){

char *p ;

if (!(p = malloc(sizeof(char) * 100)) {

 exit(1) ;

 }

}

The return type void * is automatically cast to the type of the lvalue type but to make it more explicit we would do the
following

if (!((char *)p = malloc(sizeof(char) * 100)){

 exit(1) ;

}

To free the block of memory allocated we do the following
free (p) ;

There are a number of memory allocation functions included in the standard library including calloc(), _fmalloc(), etc.
Care must be taken to ensure that memory allocated with a particular allocation function is released with its appropriate
de-allocation function, e.g. memory allocated with malloc() is freed only with free().
Consider the following example:

int *array, N, i,j;

printf(“Enter the size of the array to be created \n”);

scanf(“%d”, &N);

/* allocating memory for the array */

array=(int *) malloc(N* sizeof(int));

 In the above statement, malloc() function is called to allocate a chunk of memory. As we are interested to create 1-D
integer array; for the portability reasons we are sending value of the expression N*sizeof(int) to specify required memory.
The malloc function allocates memory and returns the generic address of the same. In reality, we can see this chunk of
memory whatever way we want. The same can be seen as array of 1-D characters, or integer array or float array. However,
type casting the returned address to integer address, we are assigning address of first element to the pointer variable array,
and the allocated memory can be seen as 1-D integer array. If array value is the address of first element, then array+1,
array+2, … are the addresses of subsequent elements. If array value is 100 and the machine uses 2 byte integers, then the
addresses of subsequent elements will be 102, 104, 106, etc.

Similarly, if we want to look at the chunk of memory as 1-D float array then we have to declare a float type of pointer
variable and the starting address of this chunk of memory has to be assigned to it after type casting. If array is pointer to
such a array and its value is 100 then subsequent elements addresses becomes 104, 108, etc., as usually float takes 4 bytes.
Thus, pointer arithmetic’s depends on pointer type.

Note

Dynamic memory life is entire life of the program or till we free it. Scope is also global. Any function can access it if it
knows the array dynamic address.

2.36 Computer Science & Information Technology for GATE

100 102 104 108

array array+1 array+2 array+3 array+N-1

Summary

array is pointer to first element of the array
array+i is the address of the i’th element of the array which is created
*(array+i) is the value of the i’th element of the dynamic array created
with dynamic array also, we can use array[i] to access value of the i’th element.

Reading the data into array
In general, while reading, we have to inform the scanf() function that what type of data to be read and where (memory cell
number) it has to be stored. Thus, in the following line we are trying to read data into the dynamic array which pointed by
pointer, array. As usual, we have to read data into an array, element by element by supplying element addresses to scanf()
function. Thus, here, we supply array+i to scanf() function as second argument to inform that the scanf() about where
to store the data which it reads. Here, array+i is the address of the ith element of the dynamic array. In a nutshell, the
following statement reads data into dynamically created 1-D array.

for(i=0;i<N;i++) scanf(“%d”, array+i);

In order to print the array element either we can use indirection operator to address, i.e., *(array+i) or array[i].
for(i=0;i<N;i++) printf(“%d %d\n”, *(array+i), array[i]);

Increment and Decrement Operators on Pointers
Like normal variables, we can also apply increment and decrement operators on (dynamic) pointers. Consider the fol-
lowing code fragment. We have pointer p which points a dynamically created array having three elements 17, 2 and 3.
Assuming p is pointing to first element of the array, i.e., p value is address of the first element which is 0x0010. Assuming
that integer takes 4 bytes on our machine, p++ make p to point to next element in the array, i.e., 2. That is, after the execu-
tion of the first p++ statement p value becomes 0X0014, which is the address of second element of the array. Similarly,
after the execution of the second p++ statement, p will be pointing to third element of the array, which is 3. Thus, p value
becomes 0x0018.

Similarly, the following code contains dynamically created character array for which q is pointer. That is, q value is the
address of the first element of the array. That is, we assume q value 0X0007. Now, after the execution of first q++ state-
ment, q will be pointing to the second element of the array. That is, q value becomes 0X0008 as character takes 1 byte.
Similarly, after execution of second q++ statement, q value becomes 0X0009 which is the address of the third element of
the string.

Thus, as p is integer pointer, its value will be incremented by 4 after increment operator. Similarly, as q is character
pointer, after applying increment operators its value is incrementing by one. This is applicable for other type of pointer
also.
n Example What is the difference between string variables a and p in the following program. Will this program gets
compiled? Will it be executed?

#include<stdio.h>

int main(){

char a[]=”string”, *p=”string”;

printf(“\n%s %s\n”, a, p);

a++;

p++;

printf(“%s %s\n”, a, p);

return 0;

 }

n Answer: a is a constant pointer whereas p is not.
Memory allocated for array a is in initialised data segment, where as p is in un-initialised data segment.
Program will not be compiled; error will appear on a++ line as a is constant pointer.

Programming, Data Structures and Algorithms 2.37

n Example What will be the output of the following program.
char a[]=”Rama”, *p=”Rams”;

printf(“%c %c”, 1 [a], 1 [p]);

n Answer: Displays a a. Index value followed by array name in square brackets is also. Acceptable way of accessing array
elements.
n Example What is the difference between string variables a and p in the following program.

char *a=”Rama”, *p;

p=(char *) malloc(10);

strcpy(p,”Rama”);

printf(“\n%s %s\n”, a, p);

printf(“%p %p\n”, a, p);

n Answer: Memory allocated for array a is un-initialised data segment, where as p is in stack segment.
n Example Does the following program fragment compiles and runs?

int *a={1,2,2,2,2}, *p;

p=(int *) malloc(10);

printf(“%p %p\n”, a, p);

n Answer : No. Memory cannot be created for the first array.
Dangling Memory
The memory which is allocated at our request but we are unable to access the same. This is a logical mistake which is
commonly occurs in functions. For example, while we are in a function, we may allocate arrays dynamically and use them
and while we leave the function the allocated memory will not be de-allocated leading to dangling memory problem. In
our account, memory is allocated, but the same can not be accessed in callee function or program as we do not return any
information about the allocated memory to callee function.
Dangling Pointer
It is also a pointer, which points to a memory which is not currently in our account. Any attempt to access the informa-
tion in the memory pointed by this type of pointer will lead to memory segment violation. Usually, this occurs because of
user’s mistake. After freeing the memory using free() function, yet, the pointer variable will be having its value pointing
to previous memory. Unknowingly, if we access that memory through this pointer, we will be facing this difficulty. See the
following code.

char *p;

p=(char *) malloc(80);

scanf(“%s”, p):

printf(“Address of the string %p and string is %s”, p, p);

printf(“Address of the string %p and string is %s”, p, p);

/* Trying to access after de-allocation*/

Note

On some compilers, we will not have any difficulty with the above code.

Precedence of Operators on pointers and Arithmetic of pointers
Conducting arithmetical operations on pointers is little different than conducting them on other integer data types. To
begin, only addition and subtraction operations are allowed to be conducted, the others make no sense in the world of
pointers. But, both addition and subtraction have a different behaviour with pointers according to the size of the data type

2.38 Computer Science & Information Technology for GATE

to which they point to. When we saw the different data types that exist, we saw that some occupy more or less space than
others in the memory. For example, in the case of integer numbers, char occupies 1 byte, short occupies 2 bytes and long
occupies 4. Let’s suppose that we have 3 pointers:

char *mychar;

 short *myshort;

 long *mylong;

and that we know that they point to memory locations 1000, 2000 and 3000, respectively.
So if we write:

 mychar++;

 myshort++;

 mylong++;

mychar, as you may expect, would contain the value 1001. Nevertheless, myshort would contain the value 2002, and my-
long would contain 3004. The reason is that when adding 1 to a pointer we are making it to point to the following element
of the same type with which it has been defined, and therefore the size in bytes of the type pointed is added to the pointer.

This is applicable both when adding and subtracting any number to a pointer. It would happen exactly the same with
the following also

 mychar = mychar + 1;

 myshort = myshort + 1;

 mylong = mylong + 1;

It may result important to warn you that both increase (++) and decrease (--) operators have a greater priority than the
reference operator asterisk (*), therefore the following expressions may lead to confusion:

 *p++;

The first one is equivalent to *(p++) and what it does is to increase p (the address where it points to - not the value that
contains). The second, because both increase operators (++) are after the expressions to be evaluated and not before, first
the value of *q is assigned to *p and then they are both q and p increased by one. It is equivalent to:

 p++;

Like always, we recommend to use of parenthesis () in order to avoid unexpected results.
For the operators ++, --, and the pointer reference for indirection *, precedence is from right to left. When one of those

operators is detected by the compiler, the compiler will determine whether indirection is required. The following cases
using a pointer to an integer help to illustrate this point:
Given the following definitions:

 int *p, i;

The compiler determines the operation to be performed:
*p Access the contents of i via the pointer p

++p Increment p to point to the next integer

p Access the address stored in p

++*p Increment the contents of i via the pointer p before referencing

*++p Increment p to point to the next integer, then reference the integer.

*p++ Increment p to point to the next integer, after the current integer pointed to by p is referenced.

p++* ILLEGAL unless * is used to multiply the pointer value

p*++ ILLEGAL

Programming, Data Structures and Algorithms 2.39

n Example The code fragment is to demonstrate the above concepts.
int i, j, k, *p;

static int array[]= { 1,2,3 };

printf(“%d\n”,*p); /* prints: 10 */

printf(“%d\n”,++*p); /* prints: 11 */

printf(“%d\n”,*++p);

integer j would be passed to printf(). This is the makings of a major bug. This is shown only to

illustrate how a pointer could be misused without the compiler catching the problem. */

printf(“%d\n”,*p++);

 /* prints: 999, p gets incremented after it passes 999 */
 /* it just so happens that the next integer would be k, since k is defined after j. This would normally create a bug for the
programmer that could be difficult to find. */

printf(“%d\n”,*p);

 /* prints: 1234, Since p was incremented on the
previous line, the pointer was incremented to point
to the next integer. This just happens to be the
integer k - watch out for bugs like these! */

/ * A better utilisation of pointer arithmetic could be implemented when the contents of an array are accessed.*/

p=array; /*make a pointer from the array ..*/

printf(“%d\n”,*p); /* prints: 1 */

printf(“%d\n”,++*p); /* prints: 2 */

printf(“%d\n”,*++p); /* prints: 2 */

printf(“%d\n”,*p++); /* prints: 2 */

printf(«%d\n»,*p); /* prints: 3 */

void pointers
The type of pointer, void is a special type of pointer. void pointers can point to any data type, from an integer value or a
float to a string of characters. Its sole limitation is that the pointed data cannot be referenced directly (we cannot use refer-
ence asterisk * operator on them), since its length is always undetermined, and for that reason we will always have to resort
to type casting or assignations to turn our void pointer to a pointer of a concrete data type that we can refer.
One of its utilities may be for passing generic parameters to a function:

#include <stdio.h>

 void increase (void* data, int type){

 switch (type) {

 case sizeof(char) : (*((char*)data))++; break;

 case sizeof(short): (*((short*)data))++; break;

 case sizeof(long) : (*((long*)data))++; break;

}

2.40 Computer Science & Information Technology for GATE

}

 int main (){

 char a = 5;

 long c = 12;

 increase (&a,sizeof(a));

 increase (&b,sizeof(b));

 increase (&c,sizeof(c));

printf(“%d %d %d\n”, a,b,c);

 return 0;

}

2.1.6.9 Multiple Indirection – Pointers to Pointers

It is possible in C to have a pointer point to another pointer that points to a target value. This is termed multiple indi-
rection in this case double indirection. Multiple indirection can be carried out to whatever extent is desired but can get
convoluted if carried to extremes.

In the normal situation, single indirection, a pointer variable would hold the address in memory of an appropriate vari-
able, which could then be accessed indirectly by de-referencing the pointer using the * operator.

In the case of double indirection, we have the situation where a variable may be pointed to by a pointer as with single
indirection, but that this pointer may also be pointed to by another pointer. So we have the situation where we must de-
reference this latter pointer twice to actually access the variable we are interested in. De-referencing the pointer to a pointer

once gives us a normal singly indirected pointer, de-referencing the pointer to a pointer secondly allows us to access the
actual data variable. The situation is depicted in Fig. 2.2.

double _ptr

address 2 address 3 Value

address 3address 2address 1

single _ptr variable

single indirectionsingle indirection

double indirection

Figure 2.2 Single and double indirection

To declare a pointer to a pointer we include another indirection operator

which in this case defines a pointer to a pointer to type float.
The following illustrates some valid operations using double indirection.

 p = &x ;

…

int array2[] = {10,20,30,40,50} ;

Programming, Data Structures and Algorithms 2.41

int *pointers[2] ; // an array of pointers to type int

int **ptr ; // a doubly indirected pointer

ptr = pointers ; // initialise pointer to array of pointers

*ptr++ = array1 ; // now we simply de-reference the pointer to a pointer

*ptr = array2 ; // once and move it on like any pointer

**ptr = 100 ; // ptr is pointing at pointers[1] which in turn is pointing

// at array2 so array2[0] is assigned 100

For Example: Allocation and initialisation of an m x n matrix using double indirection.
What we require here is to allocate an n x n matrix as a collection of discrete rows rather than just as one block of

memory. This format has advantages over a single block allocation in certain situations. The structure we get is shown in
Fig. 2.3.

pointer to
pointer to
double

array of m
pointers to rows

arrays of n doubles;
the rows

ptr_rows

Figure 2.3 Array of Pointers

n Example What is the output for the following program?
 main(){

int arr2D[3][3];

printf(“%d\n”, ((arr2D==* arr2D)&&(* arr2D == arr2D[0])));

}

n Answer: This is due to the close relation between the arrays and pointers. N dimensional arrays are made up of (N-1)
dimensional arrays. arr2D is made up of a 3 single arrays that contains 3 integers each.

arr2D

arr2D[1]

arr2D[2]

arr2D[3]

The name arr2D refers to the beginning of all the 3 arrays. *arr2D refers to the start of the first 1D array (of 3 integers) that
is the same address as arr2D. So the expression (arr2D == *arr2D) is true (1). Similarly, *arr2D is nothing but *(arr2D
+ 0), adding a zero doesn’t change the value/meaning. Again arr2D[0] is the another way of telling *(arr2D + 0). So the
expression (*(arr2D + 0) == arr2D[0]) is true (1). Since both parts of the expression evaluates to true the result is true(1)
and the same is printed.

2.42 Computer Science & Information Technology for GATE

2.1.6.10 Pointers to Functions

A function even though not a variable still has a physical address in memory and this address may be assigned to a pointer.
When a function is called it essentially causes an execution jump in the program to the location in memory where the
instructions contained in the function are stored so it is possible to call a function using a pointer to a function.

The address of a function is obtained by just using the function name without any parentheses, parameters or return
type in much the same way as the name of an array is the address of the array. A pointer to a function is declared as follows

return_type (* fptr) (parameter list) ;

where fptr is declared to be a pointer to a function which takes parameters of the form indicated in the parameter list and
returns a value of type return_type.

The parentheses around * fptr are required because without them the declaration
return_type * fptr(parameter list) ;

just declares a function fptr which returns a pointer to type return_type !
To assign a function to a pointer we might simply do the following

int (*fptr)() ;

fptr = getchar ; /* standard library function */

To call the function using a pointer we can do either of the following
ch = (*fptr)() ;

ch = fptr() ;

n Example Which of the following solution are better in assigning 0s to an array elements.
a.

 for (k = 0; k < 100; k++)

 array[k] = 0.0 ;

b.

 ptr = array ;

 for (k = 0; k < 100; k++)

 *(ptr + k) = 0.0 ;

c.

 ptr = array ;

 for (k = 0; k < 100; k++)

 *ptr++ = 0.0 ;

n Answer: Option C is better answer in this case we just incur the addition of size of (double) onto the address contained
in the pointer variable for each iteration.

n Example What will be the output of the following program? Explain.

#include<stdio.h>

int main()

{

 int *p, i=10;

 p=&i;

 printf(“\n%d %d\n”,*p, *&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&i);

return 0;

 }

n Answer: We will be getting output as: 10 10. Here, &i is the address of the variable i. If we apply * for &i, we are referring
to i itself. Similarly, & to *&i indicates address of i while * of &*&i refers to i itself. Here we have used & and * operators
recursively. Thus, entire expression conveys *&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&i the value of i only.

Programming, Data Structures and Algorithms 2.43

n Example What is the value of
&&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*p
in the above program?

n Answer: It refers to i assuming i address is assigned to pointer variable p. As p is pointer to i, *p refers to i, while &*p
refers to address of i. Also, *&*p refers to i. Thus, * followed by a series of &* indicates i.

n Example What is going to happen when we try to run the following program?
#include<stdio.h>

int main()

 {

 int Num;

 printf(“Enter a Number\n”);

 scanf(“%d”, Num);

 printf(“Value of the number l=%d\n”, Num);

 return 0;

 }

n Answer: In Unix, when we run the above program, we will get core dumped error message and program will be ter-
minated. If we observe the scanf statement, we have not used & to Num variable. Actually we have to send format string
and a list of addresses to scanf() statement such that it reads values and stores in the given addresses. However, here in
this example we did not use address (&) operator to Num variable in scanf() function. Thus, scanf() understands that the
value read has to be stored in the memory which is pointed by the value of Num variable which is trash (garbage) as it is
un-initialised. By doing so, we are violating the rules and regulations of operating system thus we will get the error mes-
sage and then the program will be terminated abnormally.

Note

Same program may run without any runtime error under Turbo C compiler!!!

Some important notations and representations about pointers are summarised below.
int *p; /* p can be a pointer to an integer quantity or to an integer array */
int *p[10] ; /* p is a 10 element array of pointers to integer quantities /*

int (*p)[10]; /* p is a pointer to a 10-element integer array /*
int *p(void); /* p is a function that returns a pointer to an integer quantity /*
int p(char *a); /* p is a function that accepts an argument which is a pointer to a character returns an integer

quantity */
int *p(char *a); /* p is a function that accepts an argument which is a pointer to a character returns a pointer to an

integer quantity */

int (*p)(char *a); /* p is a pointer to a function that accepts an argument which is a pointer to a character returns an
integer quantity */

int (*p(char *a))[10] /* p is a function that accepts an argument which is a pointer to a character returns a pointer to a
10 element integer array */

int p(char (*a)[]); /* p is a function that accepts an argument which is a pointer to a character array returns an inte-
ger quantity */

int p(char *a[]) ; /* p is a function that accepts an argument which is an array of pointers to characters returns an
integer quantity */

int *p(char a[]); /* p is a function that accepts an argument which is a character array returns a pointer to an inte-
ger quantity */

2.44 Computer Science & Information Technology for GATE

int *p(char (*a)[]); /* p is a function that accepts an argument which is a pointer to a character array returns a pointer
to an integer quantity */

int *p(char *a[]); /* p is a function that accepts an argument which is an array of pointers to characters returns a
pointer to an integer quantity */

int (*p)(char (*a)[]); /* p is a pointer to a function that accepts an argument which is a pointer to a character array
returns an integer quantity */

int *(*p)(char (*a)[]); /* p is a pointer to a function that accepts an argument which is a pointer to a character array
returns a pointer to an integer quantity */

int *(*p)(char *a[]); /* p is a pointer to a function that accepts an argument which is an array of pointers to characters
returns a pointer to an integer quantity */

int (*p[10])(void); /* p is a 10 element array of pointers to functions;

 Each function returns an integer quantity */

int (*p[10])(char a); /* p is a 10 element array of pointers to functions each functions
 Accepts an argument which is a character, and returns an integer quantity */
int *(*p[10])(char a); /* p is a 10 element array of pointers to functions, each function accepts an argument which is a

character, and returns a pointer to an integer quantity */
int *(*p[10])(char *a); /* p is a 10 element array of pointers to functions, each function accepts an argument which is a

pointer to a character, and returns a pointer to an integer quantity */

n Example Explain the purpose of each of the following declarations
(a) float (*x) (int *a);

(b) float (*x(int *a))[20];

(c) float x(int (*a)[]);

(d) float x(int *a[]);

(e) float *x(int a[]);

(f) float *x(int(*a)[]);

(g) float *x(int *a[]);

(h) float (*x)(int (*a)[]);

(i) float *(*x)(int *a[]);

(j) float (*x[20])(int a);

(k) float *(*x[20](int *a);

n Answers:
(a) x is a pointer to a function that accepts an argument which is a pointer to an integer quantity and returns a floating-

point quantity.
(b) x is a function that accepts an argument which is a pointer to an integer quantity and returns a pointer to a 20 ele-

ment floating-point array.
(c) x is a function that accepts an argument which is a pointer to an integer array and returns a floating point quantity.
(d) x is a function that accepts an argument which is an array of pointer to integer quantities and returns a floating point

quantity.
(e) x is a function that accepts an argument which is an integer array and returns a pointer to a floating point quantity.
(f) x is a function that accepts an argument which is a pointer to an integer array and returns a pointer to a floating

point quantity.
(g) x is a function that accepts an argument which is an array pointers to integer quantities and returns pointer to a

floating point quantity.
(h) x is a pointer to a function that accepts an argument which is a pointer to an integer array and returns a floating

point quantity.
(i) x is a pointer to a function that accepts an argument which is an array of pointers to integer quantities and returns

a pointer to a floating point quantity.

Programming, Data Structures and Algorithms 2.45

(j) x is a 20 element array of pointers to functions; each function accepts an argument which is an integer quantity and
returns a floating-point quantity.

(k) x is a 20 element array of pointers to functions; each function accepts an argument which is a pointer to an integer
quantity and returns a pointer to a floating-point quantity.

n Example Write an appropriate declaration for the following situations involving pointers.
(a) Declare a function that accepts an argument which is a pointer to an integer quantity and returns a pointer to a six-

element character array.

(b) Declare a function that accepts an argument which is a pointer to an Integer array and returns a character.

(c) Declare a function that accepts an argument which is an array of pointer to integer quantities and returns a character.

(d) Declare a function that accepts an argument which is an integer array and returns a pointer to a character.

(e) Declare a function that accepts an argument which is a pointer to an Integer array and returns a pointer to a character.

(f) Declare a function that accepts an argument which is an array of pointers to integer quantities and returns a pointer
to a character.

(g) Declare a pointer to a function that accepts an argument which is a pointer to an Integer array and returns a character.

(h) Declare a pointer to a function that accepts an argument which is a pointer to an integer array and returns a pointer
to a character.

(i) Declare a pointer to a function that accepts an argument which is an array of pointers to Integer quantities and re-
turns a pointer to a character.

(j) Declare a 12 element array of pointers to functions. Each function will accept two double-precision quantities as
arguments and will return a double-precision quantity.

(k) Declare a 12 element array of pointers to functions. Each function will accept two double-precision quantities as
arguments and will return a pointer to a double-precision quantity.

(l) Declare a 12 element array of pointers to functions. Each function will accept two pointers to double-precision quan-
tities as arguments and will return a pointer to a double-precision quantity.

n Answers:

(a) char (*p(int *a))[6];

(b) char p(int (*a)[]);

(c) char p(int *a[]);

(d) char *p(int a[]);

(e) char *p(int (*a)[]);

(f) char *p(int *a[]);

(g) char (*p)(int (*a)[]);

(h) char *(*p)(int (*a)[]);

(i) char *(*p)(int *a[]);

(j) double (*f [12])(double a, double b);

(k) double *(*f [12])(double a, double b);

(m) double *(*f [12])(double *a, double *b);

n Example What is the difference between arrays and pointers?

n Answer: Pointers are used to manipulate data using the address. Pointers use * operator to access the data pointed by
them. Arrays use subscripted variables to access and manipulate data. Array variables can be equivalently written using
pointer expression. Name of array is considered as constant pointer. Like normal pointers, we cannot apply ++,-- opera-
tors on them.

n Example What is the purpose of realloc()?

2.46 Computer Science & Information Technology for GATE

n Answer: To adjust the memory of an dynamic array. The function realloc(ptr,n) uses two arguments; first argument
ptr is a pointer to a block of memory for which the size is to be altered. The second argument n specifies the new size. The
size may be increased or decreased. If n is greater than the old size and if sufficient space is not available subsequent to the
old region, the function realloc() may create a new region and all the old data are moved to the new region. Do test the
returned value from the realloc() before doing any further work.

n Example What is dynamic and static memory allocation?

n Answer: Usually memory is allocated for variables during compilation time itself in the data area of the program. As-
signing address of this type of variables to a pointer variable is known as static memory allocation. memory is assigned
during compilation time. Dynamic memory allocation uses functions such as malloc() or calloc() to get memory dy-
namically. If these functions are used to get memory dynamically and the values returned by these functions are assigned
to pointer variables, such assignments are known as dynamic memory allocation. Memory is assigned during run time.
This memory is allocated from heap portion of the memory.

n Example Which are called as stack variables?

n Answer: Memory which is allocated during a function call can be called as stack variables as for them memory is al-
located from run-time stack.

n Example How are pointer variables initialised? Can we assign arbitrary number to a pointer variable?

n Answer: Pointer variable are initialised by one of the following two ways 1. Static memory allocation 2. Dynamic
memory allocation. We cannot assign arbitrary number to a pointer variable except 0.

n Example Are pointers integers?

n Answer: No, pointers are not integers. A pointer is an address. We know addresses of a system starts from 0 and in-
creases 2word-1, where word is the word size of the computer. Thus pointer is merely a positive number and not an integer.

n Example What is a pointer variable? How does it differ from other variables?

n Answer: A pointer variable is a variable that may contain the address of another variable or any valid address (allocated
address) in the memory. That is, for a pointer variable one can assign allocated memory cell number only. In today’s, 32-bit
operating systems, 4 bytes of memory is allocated for any type of pointer.

n Example What is a pointer value and address?

n Answer: A pointer value is a data object that is in the memory which is referred by the pointer variable. Each memory
location is numbered in the memory. The number attached to a memory location is called the address of the location.

n Example Is a pointer variable is an acceptable lvalue?

n Answer: Yes.

n Example Is it possible to compare pointers?

n Answer: Yes. If they belong to same chunk of memory, comparison is meaningful.

2.1.7 Structures

A structure is a customised user-defined data type in C. It is by definition a collection of variables (elements) of any type
that are referenced under one name, providing a convenient means of keeping related information together.
Defining Structures: We declare a structure like the following manner

struct tag {

 type var_1 ;

 type var_2 ;

...

 type var_n ;

 } ;

The keyword struct tells the compiler that we are dealing with a structure and must be present whenever we refer to the
new type, tag is an identifier which is the name given to the customised “type”. A variable of this new type can now be

Programming, Data Structures and Algorithms 2.47

defined as follows for example. Note that the keyword struct has to be used in conjunction with our own name for the
structure, tag.

For Example, in the following we are declaring a structure to store a person’s details along with the declaration of such a
variable.

 int rollno ;

 char name[30] ;

 char town[40] ;

 char country[20]

 } ;

The compiler will automatically allocate enough storage to accommodate all the elements. To find out how much storage
is required one might do the following

or

Note

The name of a structure is not the address of the structure as with array names.

Accessing Structure Elements

The elements of the structure are accessed using the dot operator, . , as follows

Thus we treat structure elements exactly as normal variables and view the dot operator as just another appendage like the
indirection operator or an array index.
Initialising Structures

Structure elements or fields can be initialised to specific values as follows:
struct id {

 char name[30] ;

 int rno ;

 } ;

struct id student = { “Govindu”, 4563 } ;

Structure Assignment

The name of a structure variable can be used on its own to reference the complete structure. So instead of having to assign
all structure element values separately, a single assignment statement may be used to assign the values of one structure to
another structure of the same type. For example:

struct {

int a, b ;

} x = {1, 2 }, y ;

Creating More Complex Structures with Structures
Once again emphasising that structures are just like any other type in C we can create arrays of structures, nest structures,
pass structures as arguments to functions, etc.

2.48 Computer Science & Information Technology for GATE

For example we can nest structures as follows creating a structure employee that has another structure as one of its
members.

struct time {

 int hour ;

 int min ;

 int sec ;

} ;

struct employee{

 char name[30] ;

 } Abhi;

To access the hour field of time in the variable Abhi, we have to just apply the dot operator twice

If a company needs to keep track of more than one employee, then an array of employee would be useful.

struct employee workers[100] ;

To access specific employees we simply index using square braces as normal, e.g. workers[10]. To access specific members
of this structure we simply apply the dot operator on top of the index.

When structures or arrays of structures are not global they must be passed to functions as parameters subject to the usual
rules. For example

function1(Abhi) ;

implements a call to function1 which might be prototyped as follows
void function1(struct employee emp);

Note that a full local copy of the structure passed is made so if a large structure is involved memory the overhead to simply
copy the parameter will be high so we should employ call by reference instead as we will see in the next section.

Passing an array of structures to a function also follows the normal rules but note that in this case as it is impossible to
pass an array by value no heavy initialisation penalty is paid - we essentially have call by reference. For example

function2(workers);

passes an array of structures to function2 where the function is prototyped as follows.
function2(struct employee staff[]) ;

2.1.7.1 Structure Pointers

As we have said already we need call by reference calls which are much more efficient than normal call by value calls when
passing structures as parameters. This applies even if we do not intend the function to change the structure argument. A
structure pointer is declared in the same way as any pointer for example

struct address {

 char name[20] ;

 char street[20] ;

 } ;

struct address person ;

struct address *ptr ;

declares a pointer ptr to data type struct address.
To point to the variable person declared above we simply write

Programming, Data Structures and Algorithms 2.49

ptr = &person ;

which assigns the address of person to ptr.
To access the elements using a pointer we need a new operator called the arrow operator or de-referencing operator, ->,
which can be used only with structure pointers. For example

ptr -> name;

Note that even though we are not changing any values in the structure variable we still employ call by reference for speed
and efficiency.

2.1.7.2 Dynamic Allocation of Structures

The memory allocation functions may also be used to allocate memory for user defined types such as structures. All mal-
loc() basically needs to know is how much memory to reserve. For example:

struct coordinate {

 int x, y, z ;

 } ;

struct coordinate *ptr ;

ptr=(struct coordinate*)malloc(sizeof(struct coordinate));

To allocate an array of ten coordinate type of variables:

struct coordinate *ptr ;

ptr= (struct coordinate*)malloc(10*sizeof(struct coordinate));

Here, ptr[0], ptr[1], etc refers to coordinate type variables while ptr[0].x, ptr[0].y, etc refers to data members of then. Here,
ptr[i].x, (*(ptr+i)).x, (ptr+i)->x refers to same where i is in integer.

2.1.7.3 Bit--Fields

Bit--fields are based directly on structures with the additional feature of allowing the programmer to specify the size of
each of the elements in bits to keep storage requirements at a minimum. However bit--field elements are restricted to be
of type int (signed or unsigned). For example:

struct clock {

 unsigned hour : 5 ;

 unsigned minutes : 6 ;

 unsigned seconds : 6 ;

 } time ;

This time structure requires 17 bits to store the information now so the storage requirement is rounded up to 3 bytes. Us-
ing the normal structure format and 32-bit integer elements we would require 12 bytes so we achieve a substantial saving.

Bit-fields can be used instead of the bitwise operators in system level programming, for example to analyse the indi-
vidual bits of values read from a hardware port we might define the following bit-field.

struct status {

 unsigned bit0 : 1 ;

 unsigned bit1 : 1 ;

...

 unsigned bit15 : 1 ;

 } ;

If we are interested in bit 15 only we need only do the following
struct status {

 unsigned : 15 ;

2.50 Computer Science & Information Technology for GATE

 unsigned bit15 : 1 ;

 } ;

There are two further restrictions on the use of bit--fields
Cannot take the address of a bit--field variable
Cannot create an array of bit--field variables

2.1.7.4 Unions

A union is data type where the data area is shared by two or more members generally of different type at different times.
For example:

ival

b0b1b2b3

cval

fval

union u_tag {

short ival ;

char cval ;

} uval ;

The size of uval will be the size required to store the largest single member, 4 bytes in this case to accommodate the float-
ing point member.

Union members are accessed in the same way as structure members and union pointers are valid.
uval.ival = 10 ;

uval.cval = ‘c’ ;

When the union is accessed as a character we are only using the bottom byte of storage, when it is accessed as a short inte-
ger the bottom two bytes, etc. It is up to the programmer to ensure that the element accessed contains a meaningful value.

A union might be used in conjunction with the bit-field struct status in the previous section to implement binary con-
versions in C. For Example:

 union conversion {

 unsigned short num ;

 struct status bits ;

 } number ;

We can load number with an integer
scanf(“%u”, &number.num);

Since the integer and bit--field elements of the union share the same storage if we now access the union as the bit--field
variable bits we can interpret the binary representation of num directly.
i.e. if (uvar.bits.bit15)

 putchar(‘1’) ;

 else

 putchar(‘0’) ;

 ...

 if (uvar.bits.bit0)

 putchar(‘1’) ;

 else

 putchar(‘0’) ;

Admittedly rather inefficient and inelegant but effective.

Programming, Data Structures and Algorithms 2.51

2.1.7.5 Enumerations

An enumeration is a user defined data type whose values consist of a set of named integer constants, and are used for the
sole purpose of making program code more readable.

enum tag { value_list } [enum_var] ;

where tag is the name of the enumeration type, value_list is a list of valid values for the enumeration, and where enum_var
is an actual variable of this type. For example:

enum colours { red, green, blue, orange } shade;

// values red - 0, green - 1, blue - 2, orange - 3

enum day { sun = 1, mon, tue, wed = 21, thur, fri, sat } ;

enum day weekday ;

//values of sun, mon, tue, etc are 1, 2, 3, 21, 22, 23, 24

Variables declared as enumerated types are treated exactly as normal variables in use and are converted to integers in any
expressions in which they are used. For example:

int i ;

shade = red ;// assign a value to shade enum variable

i = shade ;// assign value of enum to an int

shade = 3 ;// assign valid int to an enum, treat with care

2.1.7.6 The typedef Keyword

C makes use of the typedef keyword to allow new data type names to be defined. No new type is created, an existing type
will now simply be recognised by another name as well. The existing type can be one of the in-built types or a user-defined
type.

typedef type name ;

where type is any C data type and name is the new name for this type. For example:

// can now declare a variable of type ‘INTEGER’

 typedef double * double_ptr ;

 double_ptr ptr ;

// no need of * here as it is part of the type

 typedef struct coords {

 int x, y ;

 } xycoord ;

 xycoord coord_var ;

The use of typedef makes program code easier to read and when used intelligently can facilitate the porting of code to a
different platform and the modification of code. For example, in a first attempt at a particular program we might decide
that floating point variables will fill our needs. At a later date we decide that all floating point variables really should be of
type double so we have to change them all. This problem is trivial if we had used a typedef as follows:

To remedy the situation we modify the user defined type as follows

2.52 Computer Science & Information Technology for GATE

2.1.7.7 Nodes or Self-Referential Structures

A structure that contains a pointer member that points to a structure of the same type as itself is said to be a self-referential
structure. For example:

struct node {

char name[20] ;

struct node *next ;

};

This defines a new type, struct node, which has a pointer member, next, which points to a structure of the same type as
itself. This node pointer allows this current node to be linked to another and so a list of linked nodes can be built up.

Note that even though the structure is not fully defined when the next field is specified the compiler does not have a
problem as all it needs to know is that there is such a type.

The above definition of struct node allows us to build a singly linked list, i.e. each node only knows where the node
following it is located. A null pointer is used to indicate the end of a linked list structure.

Figure 2.4 illustrates how this node structure would be used to represent our linked list above. Each node contains two
fields the actual data and a pointer link to the next node. The final node in the list contains a null pointer link as indicated
by the slash in the diagram. The following code fragment may create this list.

strcpy(A.name,”Ram”);

strcpy(D.name,”Sai”);

D.next=0;

Ram Ravi Abhi Sai

Figure 2.4

2.1.8 File I/O

The C I/O system provides a consistent interface known as file stream in C to work with devices such as hard disk, tape
drive, the screen, printer port, etc. All I/O through the keyboard and screen that we have employed so far is in fact done
through special standard streams called stdin and stdout for input and output, respectively. So in essence the console
functions that we have used so far such as printf(), etc. are special case versions of the file functions. There are two types
of streams : text and binary. These streams are basically the same in that all types of data can be transferred through them
however there is one important difference between them which we will elucidate now.

Text Streams

A text stream is simply a sequence of characters. However, the characters in the stream are open to translation or inter-
pretation by the host environment. For example, the newline character, ‘\n’, will normally be converted into a carriage
return/linefeed pair and ^Z will be interpreted as EOF. Thus the number of characters sent may not equal the number of
characters received.

Binary Streams

A binary stream is a sequence of data comprised of bytes that will not be interfered with so that a one-to-one relationship
is maintained between data sent and data received.

Programming, Data Structures and Algorithms 2.53

2.1.8.1 Opening and Closing Files: File Pointers

A stream will be associated with a specific file by performing an open operation on the file. Once a file is opened, informa-
tion can be exchanged between it and our program. An opened file will have a unique file control structure of type FILE.
A file pointer (or file stream pointer) is a pointer to this FILE structure which identifies a specific file and defines various
things about the file including its name, read/write status, and current position. A file pointer variable is defined as follows

The fopen() function whose prototype is given below opens a stream for use and links a file with that stream returning a
valid file pointer which is positioned correctly within the file if all is correct.

Here first argument is filename and second argument is mode string which indicates in which mode the file has to be
opened. Table 2.3 lists acceptable values for mode string.

Table 2.3

r opens a text file for reading (must exist)

w opens a text file for writing (overwritten or created)

a append to a text file

rb opens a binary file for reading

wb opens a binary file for writing

ab appends to a binary file

r+ opens a text file for read/write (must exist)

w+ opens a text file for read/write

a+ append a text file for read/write

rb+ opens a binary file for read/write

wb+ opens a binary file for read/write

ab+ append a binary file for read/write

If fopen() cannot open the requested file in the given mode, it will a return a NULL pointer.
The fclose() function is used to disassociate a file from a stream and free the stream for use again. The fclose() function

needs file pointer as argument.
 fclose(fptr) ;

fclose() will automatically flush any data remaining in the data buffers to the file.

2.1.8.2 Formatted Reading and Writing

We can use fprintf(), fscanf() functions which are akin to printf(), scanf() functions with the exception that they will be
taking file stream pointer as an additions first argument. Prototypes of these functions can be given as:
fprintf(FILE *, format string, list of variables or expressions whose values to be printed);
fscanf(FILE *, format string, list of addresses into which values to be stored);
Reading & Writing Characters
Once a file pointer has been linked to a file we can write characters to it using the fputc() function.

fputc(ch, fp) ;

If successful the function returns the character written otherwise EOF. Characters may be read from a file using the fgetc()
standard library function.

ch = fgetc(fp) ;

When EOF is reached in the file fgetc() returns the EOF character which informs us to stop reading as there is nothing
more left in the file.

2.54 Computer Science & Information Technology for GATE

Working with strings of text
To read and write a string, we can use fputs(), fgets() functions whose prototypes are given as:

Note

There are several I/O streams opened automatically at the start of every C program. They are:

 stdin --- standard input i.e. keyboard

 stdout --- standard output i.e. screen

 stderr --- again the screen for use if stdout malfunctions
It is through these streams that the console functions we normally use operate. For example in reality a normal printf call
such as

printf(“%s %d”, s, t) ;

is in fact interpreted as
fprintf(stdout, “%s %d”, s, t) ;

2.1.8.3 Binary reading using fread() and fwrite()

These two functions are used to read and write blocks of data of any type. Their prototypes are as follows where size_t is
equivalent to unsigned.

where buffer is a pointer to the region in memory from which the data is to be read or written respectively, num_bytes is
the number of bytes in each item to be read or written, and count is the total number of items (each num_bytes long) to
be read/written. The functions return the number of items successfully read or written.

Note

Unlike all the other functions we have encountered so far fread and fwrite read and write binary data in the same format
as it is stored in memory so if we try to edit one these files it will appear completely garbled. Functions like fprintf, fgets,
etc. read and write displayable data. fprintf will write a double as a series of digits while fwrite will transfer the contents of
the 8 bytes of memory where the double is stored directly.

Random Access I/O

The fseek() function is used in C to perform random access I/O and has the following prototype.

where origin specifies one of the following positions as the origin in the operation
 SEEK_SET --- beginning of file

 SEEK_CUR --- current position

 SEEK_END --- EOF
and where num_bytes is the offset in bytes to the required position in the file. fseek() returns zero when successful, oth-
erwise a non-zero value.

For example, if we had opened a file which stored an array of integers and we wish to read the 50th value we might do
the following

fscanf(fp, “%d”, &i) ;

Programming, Data Structures and Algorithms 2.55

from anywhere in the program.

2.1.8.4 Low -- Level I/O

We can also use system calls to do file operations. For instance, Low level I/O makes use of a file handle or descriptor,
which is just a non-negative integer, to uniquely identify a file instead of using a pointer to the FILE structure as in the case
of stream I/O. As in the case of stream I/O a number of standard files are opened automatically:
standard input --- 0
standard output --- 1
standard error --- 2
The following table lists some of the more common low level I/O functions, whose prototypes are given in <io.h> and
some associated constants are contained in <fcntl.h> and <sys\stat.h>.

open()

close()

read() reads a buffer of data from disk

write() writes a buffer of data to disk

The open function has the following prototype and returns -1 if the open operation fails.

where filename is the name of the file to be opened, oflag specifies the type of operations that are to be allowed on the file,
and pmode specifies how a file is to be created if it does not exist.
oflag may be any logical combination of the following constants which are just bit flags combined using the bitwise OR
operator.

binary mode

read only access

read write access

text mode

write only access

pmode is only used when O_CREAT is specified as part of oflag and may be one of the following values

This will actually set the read / write access permission of the file at the operating system level permanently unlike oflag
which specifies read / write access just while your program uses the file.

The close() function has the following prototype

int close (int handle) ;

and closes the file associated with the specific handle.
The read() and write() functions have the following prototypes

int read(int handle, void *buffer, unsigned int count) ;

int write(int handle, void *buffer, unsigned int count) ;

where handle refers to a specific file opened with open(), buffer is the storage location for the data (of any type) and count
is the maximum number of bytes to be read in the case of read() or the maximum number of bytes written in the case of

2.56 Computer Science & Information Technology for GATE

write(). The function returns the number of bytes actually read or written or -1 if an error occurred during the operation.
Low level file I/O also provides a seek function lseek with the following prototype.

long _lseek(int handle, long offset, int origin);

_lseek uses the same origin, etc. as fseek() but unlike fseek() returns the offset, in bytes, of the new file position from the
beginning of the file or -1 if an error occurs.

n Example To determine the size in bytes of a file, we can simply open the file and call lseek to end of file before calling
ftell()

handle=open(

_END) ; printf(“The length of %s is %ld bytes \n”, name, length) ;

2.2 Solved Questions

1. The following recursive function is proposed to cal-
culate (n+2)/n!. Is it correct way of implementation?
Do you get correct results? For which values of n, it is
going to give correct results?

 if(n<=1) return 1;

 else

 return ((n+2)/(n*sum(n-1)));

 }

Answer: No.
 We are supposed to get 3, 2, 5/6, 6/24, etc for n values

of 1, 2, 3, 4 . See the snap shot of the recursive call n
value of 4.

First call Second call Third call Fourth call

n = 4
return((6)/
(4*sum(3))

n = 3
return ((5)/
(3*sum(2))

n = 2
return((4)/
(2*sum(1))

n = 1
return 1

return(6/
(4*5/6))

return(5/
(3*2))

return(4/
(2*1))

 You may find the from the above snap shot for n val-
ues of 1, 2 and 3 it is giving correct results while for n
value of 4, it is giving wrong value.

2. How many times, we get the message “Hi” from the
following code fragment?

 int i,j,k,l=0, n=5;

 for(i=0;i<n;i++)

 for(j=0;j<n;j++)

 printf(“Hi\n”);

 Answer: Only once. The variable l value is getting
incremented by 1 each time. The if condition will be
executed each time. When l value becomes 100, loop

control goes to PRINT label (That is, out of all the
loops) and executes printf statement. Thus, we get
the message only once. By this time inner most loop
might have executed 100 times.

3. How many times “Hi” message will be printed when
we execute the following code fragment? What is the
value of l after completing all the loops?

 int i,j,k,l=0, n=5;

 for(i=0;i<n;i++)

 for(j=0;j<n;j++){

 printf(“Hi %d\n”,l);

 }

 Answer: 25 times. Initial value of l is 0. Thus, the if
condition in inner most loop will be always true and
the control comes out of the inner most loop each
time and prints “Hi”. Never, l++ statement will be ex-
ecuted. Thus, l value will be 0 after completing all the
nested loops also.

4. When the following code fragment is executed, we
have got the following sequence as output:

1 6 11 16 18 23 28 33

45 50 52 57 62 67 69 74

86 91 96 101 103

 Explain how it is possible.
 int i,j,k,l=0, n=5;

 for(i=0;i<n;i++)

 for(j=0;j<n;j++){

 printf(“%d\t”,l);

 }

Programming, Data Structures and Algorithms 2.57

 Answer: The variable l value will be printed whenever
the if condition is true (that is l value is 0, 17, 34, etc
multiples of 17) and also whenever control comes out
of the inner k loop. That is, whenever k value is 5, l
value will be printed. Also, if you observe the if con-
dition, we find l value will be incremented in postfix
manner. Thus, when l value is 0, if condition becomes
true and automatically l value will be incremented by
one. Because of this reason l value 1 is printed first.

5. The following code fragment is executed with interac-
tive input values as 10 60 90, what is the output?

 int l;

 scanf(“%d%d%d”,&l,&l, &l);

 printf(“%d\n”, l);

 Answer: 90. Only last value is assigned to l.
6. What is the output of the following program assum-

ing call-by-reference is used for all variables in proce-
dure P.

 Program Main(input,output);
 Var a,b:integer;
 Procedure P(x,y,z:integer);
 Begin
 y:=y+1;

 z:=z+x;

 Begin
 a:=2; b:=3;
 P(a+b, a,a);
 Write(a);
 End.
 Answer: 6. When function is called from Main,

a+b=5 is sent as first argument. Thus,, formal variable
x becomes reference to this result. Similarly, formal
arguments y and z becomes references to a. After the
execution of y=y+1, a value becomes 3. After the ex-
ecution of z=z+x statement, a value becomes 6.

7. Analyse the following function and program assum-
ing that the arguments of the function are working in
passing by reference style.

 void ff(int x, int y){

 x=0;

 y++;

 }

 main(){

 int a[]={10,10,20,20,20}

 ff(a[1],a[1]);

 printf(“%d\n”, a[1]);

 }

 Answer: If we assume passing by reference then both
x and y becomes aliases to a[1]. If x is made zero ac-
tually a[1] becomes zero. As y is also reference to a[1]
its value becomes 1 because of y++ statement. If we
assume the method is passing by value-result then x
& y values becomes 10 initially. After that x value be-
comes zero where as y becomes 11. When we return
from the function then x value is written into a[1]
thus it becomes 1 then y value is written into a[1] thus
it becomes 11 (if we assume that sequence).

8. Analyse the following function and program in terms
of pass by value style and pass by address style.

 int a=20;

 void fff(int x){

 a=1;

 x=x+a;

 }

 main(){

 fff(a);

 }

 Answer: In the case of call by reference, variable a val-
ue after function call becomes 2 where as in the case
of call by value, result of the value of a after function
call becomes 21.

9. In the following fragment, what is the meaning of int
(*f)()? Explain what is happening and what will be the
output?

 int x1(){

 printf(“1\n”);

 }

 int* x2(){

 int (*f)()=x1;

 return (int*)f;

 }

 int main() {

 int (*ff)()=(int (*)())x2();

 (*ff)();

 return 0;

 }

 Answer: Meaning of int(*f)() is that f is a pointer to
a function which takes no arguments. In C language,
function cannot return functions. However, we know
function names are pointers to the functions. Thus, in
function x2() we are typecasting f to int * and return-
ing. In the main, the received address is type casted
back and then function is invoked. Thus, the function
x1() gets executed. So, we get output as 1.

2.58 Computer Science & Information Technology for GATE

 Exercise Do understand what happens in the fol-
lowing code fragment. Think in the same lines of the
above explanation.

 int x1(int n){
 while(--n)printf(“1\n”);

 }

 int* x2(){

 int (*f)(int)=x1;

 return (int*)f;

 }

 int main() {

 int (*ff)(int)=(int (*)(int))x2();

 (*ff)(10);

 return 0;

 }

10. See the following code fragment having two ways of
displaying the elements of a 3-D array? Does the out-
puts will be same in both approaches?

 int *p;

 for(int i=0;i<3;i++)

 for(int j=0;j<2;j++)

 for(int k=0;k<2;k++)

 printf(“%d\t”,*(*(*(a+i)+j)+k));

 printf(“\n”);

 p=&a[0][0][0];

 for(int i=0;i<3*2*2;i++)

 printf(“%d\t”,*(p+i));

 Answer: Yes. Second approach is preferred over the
first one as it needs less number of indirection opera-
tions.

11. The following statement gave output as 65565. Before
executing this statement i value is 5. Explain.

 printf(“%d%d%d%d%d%d”,i--,i++,--i,++i,i);

 Answer: While processing functions, variables are
pushed into stack left to right then processed. Thus, i
value is processed first, then ++i and vice versa. Thus,
we get the above output.

12. Does the code fragment gives same output? What
happens if we add x[0]=’r’; statement at the end?

 char *x=”Rama”, *y=”Rama”;

 printf(“%p %p\n”,x,y);

 Answer: Both will give results. While storing con-
stants, if more than one constant is same, only one of
them is stored in memory. Thus, only one “Rama” is
store in memory and its address is assigned to x and
y pointer variables. Thus, x and values are same ad-
dresses.

13. Does the code fragment gives same output? What
happens if we add x[0]=’r’; statement at the end?

 char x[]=”Rama”, y[]=”Rama”;

 printf(“%p %p\n”,x,y);

 Answer: No.
14. Does the memory allocated for x and y are same? Or

in the same area? If we try to send x and y as argu-
ments to size of method, do we get same values as out-
put?

 char *x=”Rama”; char y[]=”Rama”;

 printf(“%d %d\n”, sizeof(x), sizeof(y));

 Answer: No. We get 4 and 5 as output.
15. A smart student represented the following if else state-

ments in a compact form as: j = i, j?(i,j)?i:j:j;
. Is it equivalent?

 if(i,j){

 if(i,j)

 j = i;

 else

 j = j;

 }

 else

 j = j;

 Answer: Yes.
16. Explain how the following statements makes variable

i as 1.
 int a=5,b=10,c=0;

 int i=b>a>c;

 Answer: i = (b > a) > c;
 i = (10 > 5) > 0;
 i = 1 > 0;
 i = 1

17. Can the following code fragment be compiled?

 switch(5/4/3){

 break;

 break;

 break;

 default: printf(“Lincoln”); break;

 }

 Answer: No. We have two cases for expression value
of 0. Thus, we get error “duplicate case value”.

Programming, Data Structures and Algorithms 2.59

18. What is the output of the following printf statement?
Explain.

 Answer: M
 In C language, the following style of concatenation of

string constants gives a string.
 “AB””CD” “MMM”
 For example, the above gives a string constant “ABCD-

MMM”. Also, we know string name itself pointer to
the string. Thus, “AB””CD” “MMM”+strlen(“AB”)
becomes a string “CDMMM”. When this is passed as
argument to strlen function, it returns 5. This is used
as the index of the string “ABCDMMM”, in which 5th

character is M.
19. What will be value of z at the end of the following

statements?
 int z, x = 5, int y = –10, a = 4, b = 2;

 z = x++ – ––y * b /a;

 Answer: 10
 First y is incremented by 1. Thus it becomes 11.
 Then y will be multiplied by b. Thus, we get 22
 This 22 will be divided by 4. Thus we get 5
 This is added to x value that is 5. Thus, expression

value becomes 10 and after that x values becomes 6.
 Thus z value becomes 10.

20. The format strings %f , %lf are same with both printf
and scanf functions?

 Answer: No.
 Scanf considers them differently.

21. Consider an assignment statement “ float f=26;”. We
know 26.0 is stored in f. When this conversion takes
place? During compile time or run time?

 Answer: During compile time
22. The following recursive function is proposed to calcu-

late (n+2)/n! for a given value of n. Is it correct imple-
mentation?

 if(i<=1) return 1;

 else return ((i+2)/(sum(i-1)*i));

 }

 Answer: No
 The recursion relation is incorrect. To put it little

differently, let’s look at it using induction. Suppose
sum(n-1) gave us the correct answer, then it would
have returned (n – 1 + 2)/(n – 1)! = (n + 1)/(n – 1)!

 Now we have defined sum(n) = (n + 2)/(sum(n–1)*n)
 Substitute the result from sum(n–1).

 We get
 sum(n) = (n+2)*(n–1)! / (n+1)!
 which is obviously not what we want.
 So this shows that the recurrence relation is not cor-

rect. To solve for a function f(n) using recursion, we
must try to express f(n) as a function of f(n–1) and n.

 We can verify this by preparing snap shot also. Con-
sider the function is called with 4.

1st call
i=4
return (6/
sum(3)*4)
after return
from fourth
call
return (6/1*4).
That is, it
returns 24

2nd call
i=3
return (5/
sum(2)*3)
after return
from 3rd call
return(5/
(2*2)). That is,
it returns 1.

3rd call
i=2
return (4/
sum(1)*2)
after return
from fourth
call
return(4/
(1*2)). That
is, it returns 2.

Fourth
call
i=1
return (1)

23. Does the following program generates the sequence 5
4 3 2 1?

 int main(){
 static int var = 5;

 printf(“%d “,var--);

 if(var) main();

 return 0;

}

 Answer: Yes.
24. The following gives 64. Explain how.

 int i=320;

 char *ptr=(char *)&i;

 printf(“%d”,*ptr); }

 Answer: Assuming that the machine uses 2 byte inte-
gers. 320 will be stored in memory as

 0000 0001 0100 0000

 See the following code:

 #include<stdio.h>

 #include<stdlib.h>

 int main(){

 int i=320;

 char *ptr=(char *)&i;

 printf(“%d\n”, &i);

 printf(“%ld %ld\n”, ptr, (ptr+1));

 printf(“%d %d\n”,*(ptr), *(ptr+1));

 return 0;

 }

2.60 Computer Science & Information Technology for GATE

 Output:
 2293620
 2293620 2293621
 64 1

 Address of i 2293620
 Address of first byte is assigned to ptr.
 My program tries to print ptr and ptr+1 values.
 We find they are 2293620 and 2293621

 That is first value of 320, i.e 01000000 is stored at
2293620 while 00000001 at 2293621. Thus, when we
try to print *ptr you are getting 64. We tried to print
*(ptr+1) also which gave value as 1.

 This computer is little endian style, thus the result is
like this. If the computer is big endian style, we may
get the reversed values.

25. The following statements giving 115 as output. Ex-
plain.
char *p=”hai”;

 printf(“%d\n”,*p+1); (it shows 115)

 Answer:

 Here, p is a pointer variable. String constant “hai”
is stored in computer memory and its address is as-
signed to p.

 First cout prints h as *p refers to that character
 We are printing *p+1 where *p is h, that is its ASCII

code is 114 for which 1 is added and thus we are get-
ting 115.

26. Explain why we are getting 2 as output?
enum value{VAL1=0,VAL2,VAL3,VAL4,VAL5} var;

 printf(“%d\n”,sizeof(var));

 Answer: var is enum type whose values can be either
VAL1 or VAL2, etc which are integers. In the given
machine, for an integer 2 bytes may be allocated.
Thus, you are getting 2.

27. Consider the following function and its sample call.
What will be the value of variable i, after the function
call? Explain.

 if (number < 10) {

 array[*i] = number;

 *i = *i +1;

 } else {

 array[*i] = number%10;

 *i = *i +1;

 }

 }

 main(){

 int array[100];

 int i = 0, n = 123;

 }

 Answer: At the end, in i you will have the size of the
array. Rather, number of digits of the third argument.

28. The following is a recursive function that determines
whether a given integer array is sorted or not. It is
missing one line of code, which is a return statement
in the recursive case of the code. Complete the func-
tion by supplying this missing line of code.

 public static boolean isSorted(int[] data, int
n){

 // base case

 if(n == 1) return true;

 else{

 // Recursive case

 boolean temp = isSorted(data, n-1);

 // Here is the missing line of code

 return (temp) && (data[n-2] <= data[n-1]);

 }

 }

Answer: The above program itself is having the miss-
ing return statement.

29. There exists three algorithms p,q, and r for a problem
with the following worst case time complexity. Repre-
sent the same in big-oh notation and comment which
one do you prefer.

 p: T(n)=17

2n+20

2n+42nlog10n+12log2n+3

 Answer:

 Algorithm p is preferred over others.

30. Explain how to create a 3-D array of size 5x12x27 dy-
namically. How to free the same?

 int i,j, ***array;

 array = (int ***) malloc(5 * sizeof(int **));

 for (i = 0; i < 5; ++i) {

 array[i] =

 (int **) malloc(12 * sizeof(int *));

 for (j = 0; j < 12; ++j)

 array[i][j] =

 (int *) malloc(27 * sizeof(int));

 }

Programming, Data Structures and Algorithms 2.61

 To free the array:
 for(i=0;i<5;i++)

 for(j=0;j<12;j++)free(array[i][j]);

 for(i=0;i<5;i++)free(array[i];

 free(array)

31. Below are three variable declarations, followed by 5
code fragments, each ending with a conditional. State
for each fragment whether it will print ’True’ or not.
Assume int a=5, b=7,c=11; is the first statement be-
fore each fragment.
if((a <= 5) && (b > 7)) {

 }

 if(((a < 5) && (b > 7)) || (a < b) || (b > 1000)

) {

 }

 if(!(!(a <= 5) && !(b > 7))) {

 }

 if(((a <= 5) && (b > 7)) != 0 || (c >= a*b)

) {

}

 }

 Answer:

 Fragment 1 false: true and false is false
 Fragment 2 true: false or true or false is true
 Fragment 3 true: not (not true or not false) is not

(false) is true
 Fragment 4 false: (true and false) != false or false is

false or false is false
 Fragment 5 true : (watch out c=1 means assign 1 to c,

and has the value ’1’, true): true or false or false is true
32. Consider the following six figures I to VI. Assume

that you have given x and y coordinates of a point.
Write a C statement to check whether the given point
is inside the shaded area of each of the figures.

 Answer:

 I : (x>=1 && x<=3 && y>=1 && y<=2)
 II : (x-1)*(x-1)+(y-1)*(y-1) <= 1

 III : !(x>1 && x<3 && y>1 && y<2) && x>=0 && y>=0
 IV : (y>=x && y >= -x && y<=2-x && y<= x+2)
 V : (x>=0 && x<=3 && y>=0 && y<=2)
 VI : (x>=1)

2

1

0 1 2 3 0

1

–1 1

2

1

0 1 2 3

2

1

0 1 2

2

1

0 1 2 3 0

1

1 2

2

1

I II

III IV

V VI

33. Consider the following functions which are calling
others also internally. Assuming that each of them are
called initially with 4, give possible outputs of them.
Do comment which of them may enter into infinite
loop.

 a(int y) {
 while(y >=0) {

 printf(“%d”, y) ;

 y = y - 1 ;

 }

 }

 b(int y) {

 if(y >=0) {

 b(y - 1) ;

 printf(“%d”, y) ;

 }

 }

 c(int y) {

 printf(“%d”, y) ;

2.62 Computer Science & Information Technology for GATE

 c(y - 1) ;

 }

 d(int y) {

 while(y > 0) {

 printf(“%d”, y) ;

 d(y - 1) ;

 }

 printf(“%d”, y) ;

 }

 e(int y) {

 while(y > 0) {

 printf(“%d”, y) ;

 y = y - 1 ;

 }

 e(y - 1) ;

 printf(“%d”, y) ;

 }

 f(int y) {

 if(y >=0) {

 printf(“%d”, y) ;

 }

 f(y – 1) ;

 }

 Answer:

 Function a: 43210 TERMINATES

 Function b: 01234 TERMINATES

 Function c: 43210-1-2-3... DOES NOT TERMINATE

 Function d: 43210101010...DOES NOT TERMINATE

 Function e: 43210 TERMINATES

 Function e: 43210 DOES NOT TERMINATE

34. Is n++ is faster or n=n+1 is faster?

 Answer: n++ is fast.

35. Can we apply modulus operator to float type oper-
ands?

 Answer: No. It is applicable for int, long, char.

36. Can we apply bitwise operators to float type oper-
ands?

 Answer: No.

37. Can we use string constants in switch cases?

 Answer: No. We can use symbolic constants, integer
constants, character constants only.

38. Is it possible to use an integer array element as an in-
dex of another integer array?

 Answer: Yes.

39. Is it possible to use a function name to the right hand
side of =.

 Answer: Yes. If that function returns address, we can
use it.

40. How many ways we can return more than one value
from a function?

 Answer:

A. Though global variables by storing the values to
be returned in thoese global variables.

B. By sending a dummy array and storing the values
to be returned in this array.

C. By sending some addresses and storing the values
to be returned in those addresses.

D. By creating a dynamic array and storing the val-
ues to be returned in that array and return the
starting address of this array.

E. By return a structured variable and storing the
values to be returned in the data members of that
structured variable

41. Is it better to write a function such that it takes
addresses of the arrays instead of arrays themselves?

 Answer: Functions taking addresses.
42. What is the output of the following program.

 #include<stdio.h>
 int main(){

 int i=0;

 while (i <= 10){

 printf(“%d\n”,i);

 }

 return 0;

 }

 Answer: Un-ended zero’s.
43. What is the output of the following program?

 #include<stdio.h>

 int main()

 {

 int i=7;

 printf(“%d\n”, i=7 != 8);

 printf(“%d\n”,i);

 return 0;

 }

 Answer: First 7!=8 is evaluated and its value is as-
signed to i. Thus, we get

 1
 1

44. What is the output of the following program?
 #include<stdio.h>

Programming, Data Structures and Algorithms 2.63

 int main(int z){

 printf(“%d\n”,z);

 return 0 ;

 }

 Answer: 1
45. Does the following program compiles and executes?

 #include<stdio.h>

 abc(){

 printf(“hi”);

 }

 int main(){

 printf(“%x\n”,abc);

 return 0;

 }

 Answer: Yes. It prints addess of the function abc.
46. Which is better; navigating an array using a pointer or

subscripts?
 Answer: C compiler to generate optimal code for tra-

versal using pointers than for subscripts.
47. Is using exit() the same as using return? Mention with

respect to main()?
 Answer: Yes. However, with respect to call in other

functions, the exit() function is used to exit your
program and return control to the operating system.
It flushes all the opened streams before exiting. The
return statement is used to return from a function
and return control to the calling function.

48. What is the use of atexit() function?
 Answer: To execute code even after the program exits

the main() function.
49. What is the heap memory?

 Answer: The heap is that area of our program under
execution from which malloc(), calloc(), and
realloc() get memory. Getting memory from the
heap is much slower than getting it from the stack.
On the other hand, the heap is much more flexible
than the stack. Memory can be allocated at any time
and deallocated in any order. Such memory isnt
deallocated automatically; you have to call free().

 Run-time stack is developed in the heap itself.
Recursive data structures are almost always
implemented with memory from the heap. Strings
often come from there too, especially strings that
could be very long at runtime. If we can keep the data
in a local variable (and allocate it from the stack), our
code will run faster than if we put the data on the

heap. Sometimes we can use a better algorithm if we
use the heap faster, or more robust, or more flexible.
Its a tradeoff. If memory is allocated from the heap,
its available until the program ends. Thats great if we
remember to deallocate it when we are done with
the allocated memory. If we forget, its a problem.
A memory leak is some allocated memory thats
no longer needed but is not deallocated. If we have
a memory leak inside a loop, we can use up all the
memory on the heap and not be able to get any more.
(When that happens, the allocation functions return
a null pointer.) In some environments, if a program
does not deallocate everything it allocated, memory
stays unavailable even after the program ends. It grows
toward lower addresses.

50. What is a dangling pointer. How to avoid it?

 Answer: We assign NULL to the elements (pointer)
after freeing them such that some catastrophic things
will not happen in future. After a pointer has been
freed, we can no longer use the pointed-to data.
The pointer is said to dangle; it does not point at
anything useful. If we NULL out or zero out a pointer
immediately after freeing it, our program can no
longer get in trouble by using that pointer.

51. What is the output of the following program?
 int main(int n){

 printf(“%d\n”,n);

 if(n)main(n–1);

 return 0;

 }

 Answer: Here, n value becomes 1 when we start the
program without any command line arguments. Sec-
ond time n value is becoming 0, thus main will not be
called again recursively. Output of the above program
is:

 1
 0

52. What will be the output of the following program?
 int v=

 int main(){

 printf(“%d\t”,v);

 if(--v)main();

 return 0;

 }

2.64 Computer Science & Information Technology for GATE

 Answer:

 9 8 7 6 5 4 3 2 1

53. Does the following code gets compiled?

 int j=22;

 while(--j--)

 printf(“Hi”);

 Answer: No, We get error non lvalue in decrement.

54. How many times the following while loop runs?

 int j=22;

 while(--j,--j)

 printf(“Hi\n”);

 Answer: 10 times. Value of j is decremented two times
each. Thus, j value changes as 20, 18, 16, 14, 12, 10, 8,
6, 4, 2. When it becomes 0, it will not enter into loop.

55. How many times the following while loop runs.

 int j=20;

 while(--j,j--)

 printf(“Hi\n”);

 Answer: It j value is odd it terminates after j/2 times.
Else it becomes as infinite loop.

56. How many levels of pointers can you have? That is,
like pointer to pointer (**), etc.,.

 Answer: We can have in at least 12 levels like:

 int i = 0;

 int *ip01 = & i;

 int **ip02 = & ip01;

 int ***ip03 = & ip02;

 int ****ip04 = & ip03;

 int *****ip05 = & ip04;

 int ******ip06 = & ip05;

 int *******ip07 = & ip06;

 int ********ip08 = & ip07;

 int *********ip09 = & ip08;

 int **********ip10 = & ip09;

 int ***********ip11 = & ip10;

 int ************ip12 = & ip11;

 int *************ip13 = & ip12;

 int **************ip14 = & ip13;

 int ***************ip15 = & ip14;

 The ANSI C standard says all compilers must handle
at least 12 levels. On our Blood-shed compiler, we
have got 15.

57. Does the following function gets compiled?
void f()

 {

 break;

 }

 Answer: No. We can not use break as it use. It should
be used either in loop or switch.

58. Explain why the following code works like an infinite
loop.

 main() {

 char ch ;

 for (ch = 0 ; ch <= 255 ; ch++)

 printf (“\n%c %d, ch, ch) ;

 }

 Answer: Can you believe that this is an indefinite
loop? Probably, a closer look would confirm it. Rea-
son is, ch has been declared as a char and the valid
range of char constant is –128 to +127. Hence, the
moment ch tries to become 128 (through ch++), the
value exceeds the character range, therefore the first
number from the negative side of the range, i.e. –128,
gets assigned to ch. Naturally the condition is satisfied
and the and the control remains within the loop eter-
nally.

59. Is the following code is acceptable?
 void f(){

 goto xx;

 }

 int main(){

 bool a=true;

 xx:

 }

 Answer: No. We can not have non local jump through
goto. We will get compilation error.

60. Is there be any problem in the following code frage-
ment?

printed*/

 x++;

 printf(“%d\n”, *x); /* Second element we want

*/

Answer: No. This gives an error during the compil-
ing. We can not increment the x value as it is constant
pointer.

61. The following code fragement is giving 5 and 8 as the
output. Explain.

Programming, Data Structures and Algorithms 2.65

 printf(“%d\n”, *x+2 - *x+3);

 printf(“%d\n”, *(x+2) - *(x+3));

 Answer: Here, in the first printf(), *x is first element
value, which is 1. Thus, 1+2-1+3 is calculated. Where
as in the second one *(x+2) means 9 and *(x+3) means
1. Thus, result is 8.

62. Why the following code fragement is giving output as
“Not Same”?

 int main(){

 y=10/3*3;

 if(x==y)printf(“Same\n”);

 else printf(“Not Same\n”);

 return 0;

 }

 Answer: Because of integer division, y value becomes
9 (not 10).

63. What is NaN?
 Answer: It stands for Not a Number. NaN is a value

or symbol that is usually produced as the result of an
operation on invalid input operands, especially in
floating-point calculations.

 The following practices may cause NaN:
All mathematical operations with a NaN as at least
one operand
The divisions 0/0, •/•, •/–•, –•/•, and –•/–•

The multiplications 0 × • and 0 × –•

The additions • + (–•), (–•) + • and equivalent sub-
tractions.

Applying a function to arguments outside its domain,
including taking the square root of a negative num-
ber, taking the logarithm of a negative number, tak-
ing the tangent of an odd multiple of 90 degrees (or
p/2 radians), or taking the inverse sine or cosine of a
number which is less than -1 or greater than +1.

64. When we have executed the following program, we
have got same as the addresses of the the data mem-
bers of a union. Explain.

 #include<stdio.h>

 #include<stdlib.h>

 int A;

 } A;

 int main(){

 }

 010 00404010 00404010

 Answer: For union type variables, memory is allo-
cated commonly. We will be storing only any one of
the data member only. Thus, addresses for all the data
members will be same.

65. Does the following function returns last digit of 3n,
for given positive value of n?

 int last_digit_3n(int x)

 {

 return d[x % 4];

 }

 Answer: Yes. Series 3n will be 3, 9, 27,81,243,729….
If we observe last digits they will be 3, 9, 7, 1, 3, 9…
Thus, the above function can be used for the purpose
of finding last digit of 3n.

66. What is the output of the following C code fragment?
Explain.

 int p=x*1000;

 else

 printf(“No\n”);

 Answer: We get No. Because, 0.085 when stored in
float variable it will be stored like 0.08500000089406
9671630859375. Thus, p value becomes 85 while
1000*x becomes 85.000000894069671630859375. As
p is not same as this number, we get No as the output.

67. What is the output of the following code fragment?

 double x1 = 0.3;

 double x2 = 0.1 + 0.1 + 0.1;

 else

 printf(“No\n”);

 double z1 = 0.5;

 double z2 = 0.1 + 0.1 + 0.1 + 0.1 + 0.1;

 else

 printf(“No\n”);

 Answer: No and Yes. When 0.3 is represented in float
it takes infinite series. Where as 0.5 can be represent-
ed in correct form. Thus, we get No in the first case
and Yes in the second case.

2.66 Computer Science & Information Technology for GATE

2.3 Objective Questions

1. Valid fact about goto statement of C language
A. It is used to increase the logical clarity of the pro-

gram
B. It makes debugging easy
C. It is the only way to come out of innermost loop
D. Its use is highly discouraged

2. Minimum number of temporary variables needed to
exchange two unsigned character type variables.
A. 1 B. 2 C. 0 D. 3

3. Assume that we wanted to exchange values of two un-
signed character type variables values. Only one op-
erator is permitted to be used. What is it?
A. + B. – C. << D. ^

4. How many times “Hi” message will be displayed when
we execute the following for loop?

 for(i=0; i%2?1:0;i++) printf(“Hi\n”);

A. 5 B. 2 C. 0 D. 1
5. Modulus operator is applicable for

A. double B. float C. int D. None
6. The ternary operator

A. + B. * C. % D. ?:
7. False one in the following.

A. –100 b. 0 C. 1 D. None
8. The – operator is

A. Unary B. Binary C. Both D. None
9. The driver program ___

A. scanf B. main C. printf D. None
10. ____ statement allocates memory in a C program.

A. scanf B. main
C. variable declaration D. variable address

11. The variable type which has range of -128 to 127.
A. char B. unsigned char
C. byte D. int

12. The ?: operator is ___
A. Unary B. Binary
C. Low level D. Ternary

13. A variable acquires meaningful value through
A. Reading B. Assignment
C. Initialisation D. All

14. Garbage value is __
 A. Infinite
B. Negative infinite
C. No one can predict what it is going to be
D. Zero

15. The variable type which has the range of 0-255.
A. char B. unsigned char
C. byte D. int

16. C supports byte type variables.
A. True B. False
C. Not applicable D. None

17. A program has to declare a variable which is supposed
to store values between 0 to 65535 as
 A. int B. Two byte int
C. Long D. None

18. Find uncommon one with respect to variable declara-
tion.
A. int B. long
C. void D. long

19. The data type used to specify the function return
types is
A. int B. char C. void D. long

20. Find odd one
A. int B. char C. float D. long

21. Find incorrect one
A. signed int B. unsigned char
C. unsigned float D. None

22. The statement to declare a constant
A. const B. #define C. Both D. None

23. The symbolic constant
A. #define N 10 B. const N=10;
C. Both D. None

24. The keyword which can make a variables value to not
to get changed
A. define const B. const
C. volatile D. None

25. Find odd man out.
A. TAB B. New line
C. Carriage return D. Comma

26. Acceptable variable name
A. scanf B. Keywords
C. main D. abc
E. int

27. The scanf needs
A. stdio.h to be included
B. Format string
C. List of addresses
D. All

28. The format to print a float variable value in exponen-
tial form is
A. %f B. %lf C. %e D. None

Programming, Data Structures and Algorithms 2.67

29. The %f is the format string with scanf function, then
it can take ___ from the keyboard.
A. Only numbers with decimal point
B. Only integers
C. Both
D. None

30. The error which we get if we use a variable which is
not declared
A. No such variable name
B. Use of undeclared variable
C. Variable declaration missing
D. Undefined symbol

31. C is ___
A. Procedural language
B. Not strictly typed language
C. Medium level language
D. All

32. In Indian banking system, while calculating interests
we need precision of
A. Huge digits B. Two digits
C. 6 decimals D. None

33. Invalid operator
A. += B. –= C. /= D. >==
E. %=

34. Find odd man with respect to ;
A. printf B. main
C. scanf D. #define
E. #Include

35. What is the return type of printf function?
A. string B. int
C. char D. None

36. What is the output of the following printf statement?
 printf(“%d\n”, printf(“%3d %3d\n”, x, x));

A. Error B. 8 C. 6 D. None
37. The probable error which we may get with sqrt func-

tion
A. Overflow
B. Domain error
C. math.h is not included
D. None

38. f A and B are two integers, then A%B value can be
A. A B. –A C. B-1 D. 0
E. All

39. Fastest operator
A. + B. – C. * D. |
E. None

40. The scanf function returns
A. integer
B. Number of values which it reads
C. Both
D. None

41. The operator +=
A. Sum
B. Implicit assignment statement
C. Binary
D. None

42. With logical AND operator, if first operand is false
then
A. Second operand will be evaluated
B. Second operand will not be evaluated
C. The final result will be false
D. None

43. With logical AND operator, if first operand is true
then
A. Second operand will be evaluated
B. Second operand will not be evaluated
C. The final result will be false
D. None

44. Logical operators precedence
A. Higher than modulus
B. Higher than *
C. Lower than /
D. None

45. The default storage type
A. Static B. Automatic
C. Register D. External
E. None

46. Is it possible to declare variables in between compu-
tational statements? (Y/N).

47. Value of variable i after the execution of the following
statement is__. Assume initial value of i is 10.

 i = i++ + (i++);
A. 12 B. 22 C. 23 D. None

48. Value of variable i after the execution of the following
statement is__. Assume initial value of i is 10.

 i = ++i + (i++);
A. 12 B. 22 C. 23 D. None

49. Output of the following program
 #include<stdio.h>

 int main(){

 int i=0, j=0,k=0;

 j=i||++i;

2.68 Computer Science & Information Technology for GATE

 k=i&&++i;

 printf(“%d %d %d\n”, i,j,k);

 return 0;

 }

A. 0,0,1 B. 1,1,1 C. 2,1,1 D. 2,1,0
50. In C language, we can declare variable wherever we

want. (Y/N)
51. In C language, all the variables has to be declared at

the beginning of a block. (Y/N)
52. Does the following versions of scanf and printf func-

tions gets compiled? (Y/N)
 scanf(“”);
 printf(“”);

53. Is there any mistake in the following code fragment?
 #include<stdio.h>

 int main(){

 int x=10;

 printf(“%d\n”, x):

 }

54. C language uses _____ characters.
A. ASCII B. ISCII
C. UNICODE D. EBCDIC

55. ASCII code is ___ bit code
A. 8 B. 16 C. 12 D. None

56. To convert an uppercase character to lowercase, we
have to add ___
A. 32 B. 16 C. 48 D. None

57. The digit 9 is not same as
A. 9 B. ‘9’ C. 00111001 D. b&c

58. The upper case A is not same as
A. ‘A’ B. 01000001C. O101 D. None

59. Escape character
A. ‘\A’ B. ‘\n’ C. ‘\M’ D. None

60. The beep sound
A. ‘\a’ B. ‘\b’ C. ‘beep’ D. None

61. We can assign a character to an integer variables.
(Y/N)

62. One can assign an integer to a character variables.
(Y/N)

63. To get digit value from digit, we have to subtract ___
from digit.
A. 8 B. 16 C. 32 D. 48

64. In which bit position, upper case and lower case char-
acters differs? Assume least significant bit is referred
to 0th bit.
A. 5 B. 6 C. 9 D. 4

65. The range of unsigned integers which we can store in
a character variable.
A. –100 to 100 B. –128 to 127
C. –255 D. None

66. The range of integers which we can store in a charac-
ter variable.
A. –100 to 100 B. –128 to 127
C. –255 D. None

67. In C, number of bytes needed to store any symbol is _
A. 4 B. 2 C. 1 D. None

68. Memory needed to store ‘\n’
A. 1
B. 2
C. Depends on computer
D. None

69. Memory needed for a character constant.
A. 1 B. 2 C. 3 D. None

70. Value of V after executing the following statements.
 char C=‘P’;
 ++P++;

A. ‘R’
B. V
C. Statement will not get compiled
D. None

71. Value of V after executing the following statements.
 char C=‘P’;
 P++=P++;

A. ‘R’
B. V
C. Statement will not get compiled
D. None

72. Value of V after executing the following statements.
 char C=‘P’;
 ++P=P++;

A. ‘R’
B. ‘Q’
C. Statement will not get compiled
D. None

73. Is it possible to store all the possible human blood
groups types in a character variable? (Y/N)

74. Either if or else block contains only single statement,
then curly braces are not mandatory. (Y/N)

75. The main block should need to have both the curly
braces even if it contains single statement. (Y/N)

76. We can use comma separated list in if condition.
(Y/N)

Programming, Data Structures and Algorithms 2.69

77. Conditional expression of if can be null (i.e., empty)
also. (Y/N)

78. Is it possible to use print statement inside if constructs
condition ? (Y/N)

79. What is the output of the following code fragment?
 int i=10;

 if(scanf(“”))printf(“%d\n”, i);

A. Does not get compiled
B. Garbage
C 10

D. None
80. What is the output of the following code fragment?

 int i=10;

 if(printf(“”))printf(“%d\n”, i);

A. Does not gets compiled
. B. Garbage

C. 10
D. None

81. What is the output of the following code fragment?
 int i=10;

 if(printf(“%d “, i))printf(“%d\n”, i);

A. Does not gets compiled
B. Garbage
C. 10 10
D. None

82. What is the output of the following code fragment?
 int i=10;

 if(i=scanf(“%d”, i)){

 printf(“%d\n”, i);

 }

A. 10 B. 0
C. 1 D. What ever we enter

83. What is the output of the following code fragment?
 int i=10;

 if(i=printf(“%d”, i)){

 printf(“%d\n”, i);

 }

A. 10 B. 0 C. 102 D. 2
84. We can use any type of constants with case constructs

of switch. (Y/N)
85. What is the output of the following code fragment?

A. 10 10
B. Program will not be compiled
C. 10 D. None

86. What is the output of the following code fragment?
A. 10 10
B. Program will not be compiled
C. 10 11
D. None

87. Unreachable code error occurs with
A. switch B. ?: C. If D. None

88. Does the printf statement is going to get executed any
time in the following code fragment? (Y/N)

 switch(i){

 case 10:

 break;

 printf(“%d\n”, i);

 default:

 break;

 }

89. Is it recommended to use goto from switch? (Y/N)
90. Unconditional jump

A. if B. switch C. goto D. break;
91. Is it mandatory to have default case at the end in a

switch? (Y/N).
92. Does switch accepts comma separated statements in

its expression? (Y/N).
93. What is the output of the following code fragment.

A. Program will not be compiled at all.
B. If we give 11, we get 11 on the screen
C. If we enter any other number, say, x, we get output

as x x
D. None

94. Is it recommended to use goto inside a if or else block?
(Y/N).

95. One can use break and continue statements inside if
or else blocks. Do assume that these if and else blocks
are not inside any loop. (Y/N).

96. Does the following if gets compiled? (Y/N).
 if(continue) { }

97. Does the following if gets compiled? (Y/N).
 if(break) { }

98. What is the output of the following code fragment?
 int i=10;

 if(i++?i++:-i){

 printf(“%d\n”, i);

 }

99. 10 B. 11 C. 12 D. None
99. Does the statement switch(i); {} gets compiled? (Y/N)

100. How many Hi’s are printed the following code frag-
ment if we enter 9?

 int i;

 scanf(“%d”, &i);

 switch(printf(“%d”,i)) {

 case 1: printf(“Hi”); break;

2.70 Computer Science & Information Technology for GATE

 default:printf(“HiHiHi”);break;

 }

A. 1 B. 2
C. 3 D. None

101. We wanted a program using switch such that if we en-
ter any single digit number, it should print Hi once.
Similarly, if we enter ant two digit number, it should
print two Hi’s. Also, if we enter a three digit number,
it should print Hi three times. The following is pro-
posed. Will it work? (Y/N)

 #include<stdio.h>

 #include<stdlib.h>

 int main(){

 int i;

 scanf(“%d”, &i);

 switch(printf(“%d”,i)){

 case 1: printf(“Hi”); break;

 case 2: printf(“HiHi”);break;

 case 3:printf(“HiHiHi”);break;

 }

 return 0;

 }

102. Is there any mistake in the following code fragment?
(Y/N).

 int i=10;

 if(scanf(“%d”, &i)); printf(“Hi”);

 else{

 printf(“%d\n”, i);

 }

103. Does practical compilers accepts infinite number of
nested if conditions? (Y/N)

104. While loop condition cannot be null statement.
(Y/N).

105. While loop condition can accept comma separated
statements. (Y/N)

106. The loop which runs for 4 times.
 A. int i=0; while(i<5){ i++;}
 B. int i=1; while(i<=5){ i++;}

 C. int i=5; while(i--);
 D. int i=5; while(--i);
107. The statement which makes a while loop to skip state-

ments in the current iteration and goes straight to
while condition checking.
A. break B. continue
C. skip D. None

108. The code which does not give factorial n (assuming n
is positive value) into variable f.

A. f=1; i=1; while(i<=n) { f=f*i; i++);
B. f=1; i=1; while(i<=n) f *=i++;
C. f=n; while(--n) f *=n;
D. f=n; while(n--)f*=n;

109. The code which gives into f for n (assuming n is posi-
tive value).
A. f=1; i=1; while(i<=n) { f=f*i; i++);
B. f=1; i=1; while(i<=n) f *=i++;
C. f=n; while(--n) f *=n;
D. f=n; while(n--)f*=n;

110. Output of the following code fragment.
 int i=5;

 while(scanf(“”)){

 printf(“%d\n”, i);

 }

A. None
B. 5
C. Code will not get compiled at all
D. None

111. Output of the following code fragment.
 int i=5, j=3;

 while(i++<5, j--) printf(“Hi”);

A. Program will not get compiled
B. HiHiHi
C. HiHiHiHiHi
D. HiHHi

112. Output of the following code fragment.
 int i=5;

 while(printf(“”)){

 printf(“%d\n”, i);

 }

A. None
B. 5
C. Code will not get compiled at all
D. None

113. What is the output of the following code fragment?
 int i=5, j=3;

 while(i++<5&& j--) printf(“Hi”);

A. None B. Hi
C. HiHiHi D. HiHiHiHiHi

114. What is the output of the following code fragment?
 int i=5, j=3;

 while(i--<5&& j--) printf(“Hi”);

A. None B. Hi
C. HiHiHi D. HiHiHiHiHi

Programming, Data Structures and Algorithms 2.71

115. What is the output of the following code fragment?
 int i=5, j=3;
 while(i--<5&& j--) printf(“Hi”);

A. None B. Compilation Error
C. Infinite Hi’s D. HiHiHi

116. What is the output of the following code fragment?
 int i=0, j=3;
 while(i++<5|| j--) printf(“Hi”);

A. None B. HiHiHi
C. HiHiHiHiHi D. HiHiHiHiHiHiHiHi

117. What is the output of the following code fragment?
 int i=0, j=3;

 while(i++<5&&j--) printf(“Hi”);

A. HiHiHiHiHiHiHiHi B. Hi
C. HiHiHi D. HiHiHiHiHi

118. What is the output of the following code fragment?
 int i=0, j=3;

 while(i++<5, j--) printf(“Hi”);

A. None B. Hi
C. HiHiHi D. Hi word 8 times

119. What is the output of the following code fragment?
 int i=0, j=3;

 while(i++<5, j--);

 printf(“%d %d”, i, j);

A. Does not get compiled
B. None
C. 4 –1
D. 4 7

120. We have two code fragments with while loops.

Fragment 1: Fragment 2:

int i=0, j=3; int i=0, j=3;

while(i++<5, j--); while(i++<5&& j--);

printf(“%d %d”, i, j); printf(“%d %d”, i, j);

A. Two will not gets compiled
B. Second one gets compiled and runs
C. Both give 4 –1 as output.
D. Both runs for 4 times.

121. The following code fragment is said to be running in-
finite times. Explain.

 int i=0;

 while(scanf(“%d”, &i))

 printf(“%d\n”, i);

122. Find odd man out of the following.
A. int i=0; while(i<5){ i++;}
B. int i=1; while(i<=5){ i++;}

C. int i=5; while(i--);
D. int i=5; while(--i);

123. Find odd man out of the following.
A. int i=0, n=5; while(i<n);
B. int i=0, n=5; while(i<n){i++;}
C. while(1){}
D. int i=5; while(printf(“%d”, i--));

124. First element index of a 1-D array in C language is
A. 1 B. 2 C. 0 D. None

125. We can store all the possible human blood groups us-
ing string variables. (Y/N).

126. Both scanf and printf requires first argument as string.
(Y/N).

127. Does the following loop prints the string and ends the
loop? (Y/N)

 int i=0;

 for(; x[i]; i++) printf(“%c”,x[i]);

128. What is the output of the following code fragment?
A. Program will not be compiled
B. R
C. M
D. None

129. Does the following code fragment prints the string?
(Y/N).

 int i=0;

 for(; i[x];printf(“%c”,i++[x]));

130. What is the output of the following code fragment?

 int i=0;

 for(; i[x]&&i[y];printf(“%c%c”,i++[x],i[y]));

A. Compilation error B. Run-time error
C. RRAAMO D. ARMAAO

131. What is the output of the following code fragment?

 int i=0;

 for(; i[x]||i[y];printf(“%c%c”,i++[x],i[y]));

A. Compilation error B. Run-time error
C. RRAAMO D. ARMAAO

132. What is the output of the following code fragment?

 int i=0;

 for(; i[x]&&i[y];printf(“%c%c”,i[x],i++[y]));

A. Compilation error B. Run-time error
C. RRAAMO D. ARMAAO

2.72 Computer Science & Information Technology for GATE

133. We can use string constants case labels in a switch
statement. (Y/N).

134. While reading data into a string variable using scanf,
we need not apply address operator to the string vari-
able as the string variable names itself refers to some
memory location in C. (Y/N).

135. If we declare a 4-element character array, we can store
more than 4 characters also in practice. (Y/N).

136. The function which is used to store formatted in a
string is
A. printf B. formatprintf
C. sprint D. None

137. First argument in sprint is
A. An integer B. A string variable
C. A float D. None

138. The following code fragment is proposed to replace
all the occurrences of second character with *. Will it
work? (Y/N).

 char x[80]=”Ramamam”;

 int i = 0;

 while(i[x]=(i[x]==1[x])?’*’:i[x], i++[x]);

139. The following code fragment is proposed to replace
all the occurrences of second character with *. Will it
work? (Y/N).

 char x[80]=“Ramamam”;

 int i=0;

 while(i[x]=(i[x]==‘a’)? ‘*’ :i[x], i++[x]);

140. The following code output will be
 char x[80];

 int i=0;

 sccanf(“%s”, x);

 while(i++[x]);

 printf(“%d\n”, i);

A. Does not get compiled at all.
B. Length of the string
C. One more than the number of characters in the

string.
D. None

141. Does the following two code fragments gives same
value of i?

Fragment 1: Fragment 2:

char x[80];

int i=0;

sccanf(“%s”, x);

while(i++[x]);

printf(“%d\n”, i);

char x[80];

int i=0;

sccanf(“%s”, x);

while(x[i]!=’\0’)i++;

printf(“%d\n”, i);

A. Yes
B. No.
C. Second fragment gives i value as 1 more than first

fragment.
D. None

142. The following code fragment is proposed to check
whether the given string is having ‘ . ’ Character or
not. Will it work correctly? (Y/N).

 char x[80];

 int i=0;

 scanf(“%s”,x);

 printf(“%s\n”,x);

 while(i[x]&&i++[x]!=’.’);

143. The function which converts an integer to string

A. atoi B. itoa C. atof D. ftoa
144. Both while and do-while loops behavior is same al-

ways. (Y/N).
145. The loop which runs once before checking the condi-

tion is:
A. while B. do-while
C. switch D. If and goto

146. The differences between while loop and do-while
loop.
A. In do-while condition is checked after executing

loop block once.
B. In do-while loop, after closing parenthesis of the

loop condition, we should use ;
C. In while loop, we need not required to put ; after

the closing parenthesis of while condition.
D. All

147. What is the output of the following code fragment?
 do

 printf(“%d “,i++);

 while(i<5);

A. It will not get compiled at all.
B. 0 1 2 3 4
C. 1 2 3 4 5
D. None

148. What is the output of the following code fragment?
 do
 ;

 while(printf(“%d “,i++), i<5);

A. It will not get compiled at all.
B. 0 1 2 3 4
C. 1 2 3 4 5
D. None

Programming, Data Structures and Algorithms 2.73

149. What is the output of the following code fragment?
A. It will not get compiled at all
B. 0 1 2 3 4
C. 1 2 3 4 5
D. Runs for infinite times as printf returns a positive

number always.
150. Find odd man out of the following.

A. int i=0; do; while(printf(“%d “,++i), i<5);

B. int i=1; do; while(printf(“%d “,i++), i<=5);

C. int i=1; do; while(printf(“%d “,i), ++i<=5);

D. None
151. Out of the following which does not behave like infi-

nite loop?
A. int i=1; do; while(printf(“%d “,i), ++i<=5);

B. int i=1; do; while(printf(“%d “,i), i<=5);

C. int i=1; do; while(i++<=5, printf(“%d “,i));

D. int i=1; do; while(1);

152. What is the output of the following code fragment?
int i=1; do printf(“%d “, i); while(scanf(“”));

A. It will not be compiled at all
B. Infinite times
C. 1
D. None

153. What is the output of the following code fragment?
int i=1; do printf(“%d “, i); while(printf(“”));

A. It will not be compiled at all
B. Infinite times
C. 1
D. None

154. Is it possible to use comma separated lists inside a do-
while loops condition? (Y/N).

155. If do-while block contains no statements at all, then
we can remove curly braces and replace them with a
single semicolon. (Y/N).

156. When the following do-while loop terminates?
 int i; do; while(scanf(“%d”, &i), printf(“%d”, i)!=4);

A. Never
B. If we enter a 4 digit number
C. It will not get compiled at all
D. None

157. C language for loops accepts comma separated lists as
its operands. (Y/N).

158. All the three operands in for loop can be null lists.
(Y/N).

159. If all the three operands of a for loop are null lists,
then for loop works like an infinite loop. (Y/N)

160. If for block contains no statement at all, then we can
remove curly braces and replace them with a single
semicolon. (Y/N).

161. The following version of for loop works like an infi-
nite loop. (Y/N)

 for();
162. The following version of for loop works like an infi-

nite loop. (Y/N)
 for(;;);
163. Number of semicolons needed in between two paren-

thesis of for loop are:
A. 1 B. None
C. 2 D. Any number

164. Is it possible to use instructions separated by semi-
colons in between the two parenthesis of for loop?
(Y/N).

165. Value of l after executing the following code fragment.
 int i=5,j, l=0;

 for(i=1;i<=5;i++)

 for(j=0;j<i;j++)l++;

A. 25 B. 5 C. 15 D. 3
166. Value of l after executing the following code fragment.
 int i=5,j, l=0;

 for(i=1;i<=5;i++)

 for(j=0;j; j++)l++;

A. 25 B. 15 C. 0 D. None
167. Loops are meant for

A. Iterative calculations B. Reiteration
C. Recursion D. None

168. What is the most common type of bug in software?
A. The “wrong way” problem, where a two way deci-

sion is written incorrectly.
B. The “wrong operator” problem, where an arith-

metic expression does not mean what the pro-
grammer thought it did.

C. The “unititialized variable” problem, where a vari-
able is used in an expression before its contents
have been initialized.

D. The “off by one” problem, where a counting loop
executes its body one time too many or one time
too few.

169. Which is not loop in C?
A. for B. while
C. do-while D. until-repeat

170. Is it possible to use break in either of the three oper-
ands of for loop, i.e initialization, condition checking
or modifier? (Y/N)

2.74 Computer Science & Information Technology for GATE

171. What is the value of i after executing the following
code fragment?

 int i=0;

 for(;i++, ++i, i++, i<10;i++);

A. 10 B. 8
C. 11 D. 7

172. What is the value of i after executing the following
code fragment?

 int i=0;

 for(;i++, ++i, i++, i<10;i++)break;

A. 11 B. 3
C. 4 D. 2

173. What is the value of i after executing the following
code fragment?

 int i=0;

 for(;i++, ++i, i++, i<10;){

 continue;

 i++;

 }

A. 11 B. 10 C. 12 D. None
174. Is it possible to use character variables also as loop

control variables? (Y/N).
175. Only integer type variables can be used as loop con-

trol variables in for loop. (Y/N)
176. Output of the following code fragment
 char i=’A’;

 for(; i<=’Z’; i=i+13){

 printf(“%c”,i);

 }

A. AN
B. ABCD
C. None
D. Does not compile as for loop does not accept

characters as control variables.
177. Arrays are used when we use no-memory approach.

(Y/N).
178. All arrays contains a special character at the end to

indicate that no more elements are available after it.
(Y/N).

179. We can store integers in a float array without losing
their values. (Y/N).

180. The following for loop on an n-element array reverses
its elements. That is, 1st and last elements gets ex-
changed, second and last but one gets exchanged, and
vice versa. (Y/N).

 for(i=0, j=n-1; i<n; i++, j--) { int T=a[i];
a[i]=a[j]; a[j]=T; }

181. The following for loop on an n-element array reverses
its elements. That is, 1st and last elements gets ex-
changed, second and last but one gets exchanged, and
vice versa. (Y/N).

 for(i=0, j=n-1; i<j; i++, j--) { int T=a[i];
a[i]=a[j]; a[j]=T; }

182. We want to propose a for loop which is supposed to
run on an n-element array and reverses its elements.
That is, 1st and last elements gets exchanged, second
and last but one gets exchanged, and vice versa. The
following for loop is proposed with empty middle op-
erand. We can fill this with

 for(i=0, j=n-1; ______ ; i++, j--) { int

T=a[i]; a[i]=a[j]; a[j]=T; }

A. i<n B. i</n/2 C. i<j D. None
183. What is the output of the following code fragment?
 int a[]={10,20,30,40}, i=1, n=4;

 while(a[i]+=a[i-1], ++i<n);

 printf(“%d\n”, a[3]);

A. Compile-error B. Run-time error
C. 100 D. 40

184. What is true about the following code fragment?
 int a[]={10,20,30,40}, i=1, n=4;

 while(i[a]+=(i-1)[a], ++i<n);

A. Compile error
B. Run time error
C. 100 is the last element value after while loop
D. Element values becomes 10, 30, 60, 100

185. What is the output of the following code fragment?
 int a[]={10,20,30,40}, i=1, n=4;

 while(i[a]+=i-1[a], ++i<n);

 printf(“%d\n”, a[3]);

A. Compilation error B. Run time error
C. 42 D. 100

186. We want to assign 100 to first element of the following
array. Select not acceptable

 int a[]={10,20,30,40}, i=1;
A. i-1[a]=100; B. 0[a]=100;
C. (i-1)[a]=100; D. [a]0=100;

187. The following code fragment is proposed to store
3,2,1 and 0 in a 4-element integer array. Will it work?
(Y/N).

 int a[4],n=4;
 while(n--)a[3-n]=n;
188. It is proposed to store 3, 2, 1 and 0 in a 4-element ar-

ray. Select the loop which does work. Array declara-
tion is as follows.

 int a[4],n=4;

Programming, Data Structures and Algorithms 2.75

A. while(n--)a[3-n]=n; B. while(--n)a[3-n]=n;
C. while(n--)a[n-3]=n; D. None

189. It is proposed to store 3, 2, 1 and 0 in a 4-element ar-
ray. The following code is suggested. Which element
value does not satisfy our requirement?

 int a[4],n=4;
 while(--n)(3-n)[a]=n;

A. 0th element B. 3rd element
C. Compiling error D. None

190. What is the output of the following code fragment?
 int a[4]={0,0,0,0},i,j,n=4;

 for(i=1;i<=n;i++, a[i-1]=a[i-2])

 for(j=1;j<=i;j++) a[i-1]+=j;

 printf(“%d\n”, a[3]);

A. 10 B. 15
C. 20 D. None

191. What is the output of the following code fragment?
 int a[4]={0,0,0,0},i,j,n=4;

 for(i=1;i<=n;i++)

 for(j=1;j<=i;j++) a[i-1]+=i+j;

 printf(“%d\n”, a[3]);

A. 20 B. 10
C. Error D. 26

192. An integer n-element array (a) contains values be-
tween 0–99 (including). It is proposed to calculate
histogram with interval width. The following solution
is proposed such that array H contains frequencies.
Will it work? (Y/N).

 int a[100], i, n, H[10]={0,0,0,0,0,0,0,0,0,0};
 for(i=0;i<n;i++) h[a[i]/10]++;
193. Is it mandatory to use array to calculate scalar prod-

uct between two arrays?
194. Any type array element indexes starts from 0. In C

language, we cannot change this behavior at all. (Y/N)
195. C language does support content addressable arrays

and a special foreach loop is available. (Y/N).
196. Number of 1s in the following programs output.

A. 11 B. 10
C. Compile error D. Run time error

197. We cannot have ragged 2-D character arrays in C lan-
guage. That is, rows with variable number of column
numbers (Y/N).

198. Find the acceptable 2-D character arrays declaration.
A. char a[10][2];
B. char a[][10]={“ram”, “ravi”};
C. char a[10][20]={“Ram”, “Ravi”};
D. All

199. Acceptable means of accessing ith row jth column ele-
ment of a 2-D character array.
A. a[j][i] B. a[i][j] C. i[j[a]] D. None

200. If a is a valid 2-D character array then 0[a] refers to
A. Invalid
B. First row of the 2-D character array
C. First row first element of the 2-D character array
D. None

201. If a is a valid 2-D character array then 0[1[a]] is
A. Invalid
B. First row of the 2-D character array
C. First row second column element of the 2-D char-

acter array
D. A Character

202. What is the output of the following code fragment?
 char a[10][20]={“Ram”, “Rao”, “Raj”};

 int i=3, j=3;

 while(i--&&j--)

 printf(“%c”, i[j[a]]);

A. jaR B. Raj C. Rao D. Ram
203. What is the output of the following code fragment?
 char a[10][20]={“Ram”, “Rao”, “Raj”};

 int i=3, j=3;

 while(i||j)

 printf(“%c”, (--i) [(--j)[a]]);

A. jaR B. Raj C. Rao D. Ram
204. Does the following code fragment gets compiled? Its

objective is to exchange two strings of the 2-D charac-
ter array. (Y/N).

 char a[10][20]={“Ram”, “Rao”};
 char s[20];

 s=a[0];

 a[0]=a[1];

 a[1]=s;

 printf(“%s %s”, a[0], a[1]);

205. The following code is proposed to print the addresses
of two rows of 2-D character array. What will be the
difference?

 char a[10][20]={“Ram”, “Rao”};

 printf(“%p %p”, a[0], a[1]);

A. Compilation error B. Run time error
C. 20 D. 16

206. What is the output of the following code fragment?
 char a[10][20]={“Ram”, “Rao”};

 int i=1;

 printf(“%s %s”, i--[a], i[a]);

2.76 Computer Science & Information Technology for GATE

A. Rao Rao B. Ram Rao
C. Rao Ram D. None

207. We have a 2-D character array (a of size 26 × 26) in
which we want to store A–Z in its diagonal elements.
The following solution is proposed. Will it work?
(Y/N).

 for(i=0;i<26;i++)i[i[a]]=’A’+i;
208. We have a 2-D character array (a of size nxn, where

n is odd) in which we want to store As in the middle
row and middle column. How many loops are needed
at least side?
A. 1 B. 2 C. 4 D. None

209. The following code fragment is proposed to store A’s
in the 26×26 sized 2-D character array. Will it work?
(Y/N).

 char a[26][26];

 int i,j;

 for(i=0,j=0;i<26; j=0,i++)while(j<26) i[j++[a]]=‘A’;

210. What is the output of the following code fragment?
A. Compile time error
B. Run time error
C. It stores all A’s in the matrix a
D. It stores A in the first row, BB in the second row,

CCC in the third row, and vice versa
211. Is it possible to use a while loop inside a for loops pa-

renthesis. (Y/N)
212. Best suitable structure to store a matrix is

A. Integers B. 1-D arrays
C. 2-D arrays D. Pointers

213. Largest possible odd sized square matrix in a 2-D ar-
ray of size mxn
A. mxm
B. nxn
C. q=min{m,n}. If q is even q=q-1. Required matrix

size is qxq
D. q=min{m,n}. Required matrix size is qxq

214. If a is 2-D array of size nxn then the following for loop
calculates its principal diagonal elements sum to the
variable s. (Y/N)

 for(i=0, s=0; i<n; i++) s+=a[i][i];
215. If a is 2-D array of size nxn then the following for loop

calculates its other diagonal elements sum to the vari-
able s. (Y/N).

 for(i=0, s=0; i<n; i++) s+=a[i][n-1-i];
216. If a is 2-D array of size nxn then the following for loop

calculates its principal diagonal elements sum to the
variable s. (Y/N)

 for(s=0; --n;) s+=a[n][n];

217. Output of the following code fragment
 int a[10][10]={{1,1,1},{2,1,2},{7,2,1}}, i,n=3, x=0,y=0;
 for(i=0; i<n; x+=i[i[a]], y+=i[(n-1-i)[a]], i++);

 printf(“%d %d\n”, x, y);

A. 3 3 b 3 9 C. Error D. None
218. Output of the following code fragment
 int a[10][10]={{1,1,1},{2,1,2},{7,2,1}}, i,n=3, x=0,y=0;
 for(i=0; i<n; x+=i[n/2[a]], y+=n/2[i[a]], i++);

 printf(“%d %d\n”, x, y);

A. 3 3 b 3 9 C. Error D. None
219. What is the effect of the following code fragment?
 int a[10][10]={{1,1,1},{2,1,2},{7,2,1}}, i,n=3, x=0,y=0;
 for(i=0; i<n; x+=i[(n/2)[a]], y+=(n/2)[i[a]], i++);

 printf(“%d %d\n”, x, y);

A. 5 4
B. It tries to calculate sum of the elements of middle

column and middle row.
C. Compilation error
D. None

220. Does the following code fragments prints the array
elements? (Y/N)

 int a[3][3]={{1,1,1},{2,1,2},{7,2,1}}, i,n=3;
 for(i=0; i<n*n; i++)

 printf(“%d\n”, a[i]);

221. The following code fragment is proposed to traverse
a square matrix in row-wise raster fashion. That is, in
0th row elements are printed to left to right. In 1st row,
elements are printed from right to left; and vice versa.
Will this solution works? (Y/N).

 int a[3][3]={{1,1,1},{2,1,7},{7,2,1}}, i,n=3,j,l,k;

 for(i=0; i<n; i++){l=0;

 k=n-1;

 for(j=0;j<n;j++)printf(“%d\n”, a[i][i%2?k--:l++]);

 }

222. The following code fragment is proposed to test
whether the square matrix is symmetric or not. Ini-
tially, it is assumed as symmetric. This is indicated
by setting flag value as 1. When it is not found to be
symmetric, the program sets the same to 0. Does the
following satisfies this specification? (Y/N).

 for(i=1; i<n; i++){

 }

223. Output of the following code fragment.
A. Compilation error B. 3 3
C. 11 9 D. None

Programming, Data Structures and Algorithms 2.77

224. The following code fragment is proposed to calculate
transpose of a square matrix and store in the same
memory. Will it work? (Y/N).

 int a[3][3]={{1,1,1},{2,1,7},{7,2,1}}, i,n=3,j,T;
 for(i=1; i<n; i++){

 for(j=0;j<i;T=i[j[a]], i[j[a]]=j[i[a]],j[i[a]]=T,j++);
 }

225. Minimum number of loops needed two test unique-
ness of a 2-D array is: (Without using pointers con-
cept)
A. 2 B. 3 C. 4 D. None

226. Output of the following code fragment.
 int a[3][3]={{1,1,1},{2,1,7},{7,2,1}}, i=3,j=3,s=0;
 while(i--&&j--) s+=a[i][j];

A. 9 B. 3 C. 4 D. None
227. Is the output of the following two fragments are same?

(Y/N).
 Fragment 1:

 int a[3][3]={{1,1,1},{2,1,7},{7,2,1}}, i=3,j=3,s=0;
 while(i--&&j--) s+=a[i][j];

 Fragment 2:

 int a[3][3]={{1,1,1},{2,1,7},{7,2,1}}, i=3,j=3,s=0;

 while(i--,j--) s+=a[i][j];

228. What is the output of the following code fragment?

 int a[3][3]={{1,1,1},{2,1,7},{7,2,1}}, i=3,j=2,s=0;

 while(i--||j--) s+=a[i][j];

A. Compilation error
B. Goes to infinite loop
C. Gives sum of elements
D. None

229. What is the output of the following code?
 int a[3][3]={{1,1,1},{2,1,7},{7,2,1}}, i=3,n=3,s=0;
 while(n--) s+=a[n][n];

A. 9 B. 4
C. 3 D. Sum of elements

230. Minimum number of loops needed to multiply two
matrices
A. 2 B. 4 C. 3 D. None

231. We wanted to multiply a vector of size 1xn, matrix of
size nxn and a vector of size nx1. Minimum number
of loops required for the same.
A. 2 B. 3 C. 4 D. None

232. Valid return type of a function.
A. Integer B. void C. struct D. real

233. A function can explicitly return any number of values.
(Y/N).

234. In a function, we have used to return statements.
Does it mean that it is returning two values? (Y/N).

235. Does return statement can take an expression also?
(Y/N).

236. Is it possible to define a function inside another func-
tion? (Y/N).

237. Function names are
A. Key words B. Built-ins
C. Pointers D. None

238. Header files contains
A. Function definitions
B. Function calls
C. Function prototypes
D. Function signatures

239. Is it possible to employ some expressions while send-
ing arguments to functions? (Y/N).

240. Two functions taking integer argument are called one
after another. The addresses variables in both the calls
are
A. Same B. Different
C. Differs by 4 bytes D. None

241. Formal arguments of a function
A. Can be of same type
B. Cannot have same name as that of other functions

formal arguments
C. Can have same name as that of other functions

formal arguments
D. Need not to follow naming conventions of vari-

ables.
242. Scratch variables

A. Formal arguments

B. Actual arguments

C. Are the ones declared inside the function defini-
tion

D. Are automatic type

243. When we send an argument in passing by value,
whatever changes takes place on the formal argument
will not reflect on the original. (Y/N)

244. Macros

A. Does not have type checking ability

B. Employs blind substitution policy

C. Are used if we wanted to do simple calculations.

D. All

245. We cannot remove curly braces of a function, if we
have a single statement. (Y/N)

2.78 Computer Science & Information Technology for GATE

246. Is it possible to define a function inside main? (Y/N)
247. Find correct one

A. If we send an integer variable to a function, really
its value is passed.

B. If we send a string to a function, the changes done
by function are visible in the caller function.

C. If we send any array to a function, the changes
done by function are visible in the caller function.

D. All
248. Stack variables

A. Formal arguments B. Actual arguments
C. Scratch variables D. None

249. Libraries containes
A. Function declarations
B. Function definitions in source language
C. Function definitions in machine/object languages
D. Function calls

250. Is it possible to call main from other functions? (Y/N)

251. There is limitation on number of arguments to a func-
tion while writing function definition. (Y/N)

252. Everything which can be realized through a loop can
be converted to a recursive function. (Y/N)

253. Recursive function demands more system resources
especially more stack memory. (Y/N)

254. The main can also be called recursively. (Y/N)

255. Tail recursion is employed to reduce stack space re-
quirements of a recursive method. (Y/N)

256. Main problem with recursive functions is that it faces
stack overflow situation. (Y/N)

257. Mathematical recurrence relationships in a problem
are the basis for realising that problem in recursive
manner. (Y/N)

258. We can implement a recursive function like a macro
also. (Y/N)

259. Recursive functions also get expanded when they are
called. (Y/N)

260. Out of the following statements the one which gives
scope for recursive implementation
A. Go on divide n with x till n is not dividable with x
B. Go an add x till n is not zero.
C. Read and add in each iteration
D. None

261. If function A calls function B and B calls A. Then it is
A. Tail recursion B. Straight recursion
C. Self recursion D. Indirect recursion
E. Mutual recursion

262. If a, b are two integers and we want to calculate a
modulus b without using % operator. Thus, we go on
subtract b from a till a is larger than b. At the end, a is
returned as modulus. Does it give a feeling of recur-
sive implementation? (Y/N).

263. For the above problem in question 262, the following
code is suggested. Will it work? (Y/N).

 int f(int a, int b){
 if(a>=b) return f(a–b, b);

 else

 return a;

 }

264. What is the output of the following recursive function
a and b values of 10 and 3?

 int f(int a, int b){
 if(a>=b) return (1+f(a-b, b));

 else

 return 0;

 }

A. Error B. Infinite loop
C. 3 D. 1

265. In 32-bit computers, pointer variables occupies __
bytes.
A. 2 B. 4 C. 6 D. No

266. Things associated with any variable
A. Its memory location B. Value in the memory
C. Both D. None

267. A variable becomes pointer type if
A. We use * before it in its declaration.
B. We use ** before it in its declaration.
C. We use *** before it in its declaration.
D. All

268. We can use any number of *’s before a variable in its
declaration. (Y/N).

269. If we declare only an integer variable and pointer vari-
able in a declaration statement on a machine (which
uses 4 byte integers and 4 byte pointer), the difference
between their addresses is
A. 2 B. 4 C. 8 D. None

270. Does the following statements get executed? (Y/N)
 int *p;
 printf(“%d\n”, *p);
271. Find in correct one

A. A variable name can be lvalue of an expression in-
volving =.

B. A pointer variable name can be lvalue of an ex-
pression involving =.

Programming, Data Structures and Algorithms 2.79

C. A dereferencing operator applied to a pointer
variable can be lvalue of an expression involving
=.

D. None
272. A properly defined pointer variable, i.e., for which al-

located memory cell number is already assigned, can
be used in the scanf statement after format string.
(Y/N).

273. Find out odd one out of the following statements as-
suming an integer variable, a, whose value is already
initialised to 10.
A. printf(“%d\n”, a);
B. printf(“%d\n”, *&a);
C. printf(“%d\n”, *&*&*&*&*&*&a);
D. printf(“%d\n”, *&*&*&&*&*&a);

274. We have an integer pointer variable for which an allo-
cated memory cell number having some meaningful
value is assigned. Then, find out odd one out of the
following
A. printf(“%d\n”, p);
B. printf(“%d\n”,*p);
C. printf(“%d\n”, *&*&*&*&*&*p);
D. printf(“%d\n”,*&*p);

275. When we assign a pointer variable, p, value to another
pointer variable, q, then whenever p values changes, q
also changes. (Y/N).

276. When we assign a pointer variable, p, value to anoth-
er pointer variable, q, then whenever value changes
in the memory pointed by p, q also see the changes.
(Y/N).

277.We cannot return address of a scratch variable from a
function. Any attempt of dereferencing of such ad-
dress leads to memory segment violation. (Y/N).

278. Life of the dynamic memory
A. In the block in which it is allocated
B. Entire life of the program
C. Till we free it
D. None

279. What is the output of the following code fragment?

 int a=10, b=12, c=20;

 int *p=&a;

 p--;

 p--;

 printf("%d\n",*p);
A. 10 B. 12
C. 20 D. None

280. What is the output of the following code fragment?
A. 10 12 20 B. 10 12 14
C. Compilation error D. None

281. Out of the following, which can print the values of a,b
and c correctly.

 int a=10, b=12, c=20, *p=&c;
A. printf("%d %d %d\n",*p, *p++, *p++);
B. printf("%d %d %d\n",*p++, *p++, *p);
C. printf("%d %d %d\n",*&*p, *p++, *p++);
D. None

282. What is the output of the following fragment?
 int a=10, b=12, c=20, *p=&c;
 printf("%d\n", *(++(p=(&(*(++p))))));

A. 10 B. 12 C. 20 D. Error
283. Dangling memory

A. Memory which is allocated using dangling func-
tion instead of malloc.

B. Memory which is allocated and freed in the same
block.

C. Memory which is allocated in a function and con-
trol returns from the function with its starting ad-
dress such that this memory is accessed outside.

D. Memory which is allocated in our account but we
don’t have freedom to use the same.

284. The function which allocates memory and initialises
also.
A. malloc B. free C. realloc D. calloc

285. Dangling pointer
A. Is the one which points to memory which is not

currently allocated to us
B. Gives rise a run time error if we try to apply deref-

erencing operator
C. Is the one which points to stack memory
D. None

286. For a pointer variable (such as int *a), a machine al-
locates 4 bytes. Then, amount of memory allocated for
int ****p;
A. 16 B. 4 C. 8 D. None

287. Memory allocated for the following two pointer vari-
ables is same on any machine? (Y/N).

 int *****p;
 char *****q;
288. The malloc function can be asked which type of array

to be created. (Y/N).
289. What is the output of the following code fragment?
 int a[]={10,12,22,21,31}, *p=a;
 printf("%d\n", *(++(p=(&(*(++p))))));

2.80 Computer Science & Information Technology for GATE

A. 10 B. 12
C. 22 D. 21

290. What is the output of the following code fragment?
 int a[]={10,12,22,21,31}, *p=a;
 ++(p=(&(*(++p))));
 printf("%d\n", *(++p));

A. 10 B. 12 C. 22 D. 21
291. Is it possible to read a value to a pointer variable

through scanf? (Y/N)
292. Language supported arrays names are constant point-

ers. (Y/N)
293. If a variable a is declared as an integer array and some

values are assigned like int a[]={10,12,22,21,31}, then
A. a++ is not valid
B. ++a is not valid
C. printf(“%d\n”, *(a+4)) is valid
D. All

294. The output of the following code fragment is
A. 12 B. 22
C. 31 D. 21
E. Error

295. If a is an integer pointer to a dynamically created
memory on a machine which uses 4 bytes for an inte-
ger. In the array, we have stored 0,1,2,3, and vice versa.
We observed that a value as 1000. Then, a+4
A. 1004 B. 4
C. 1016 D. None

296. Find the correct one
A. If a variable is sent to a function in passing by

value manner, whatever operations on its formal
argument counterpart will be really seen on the
actual one.

B. If a variable is sent to a function in passing by
value manner, whatever operations on its formal
argument counterpart will not be really seen on
the actual one.

C. Passing by address involves sending values in the
memories.

D. None
297. In passing by address, the function refers to the mem-

ory of the variables whose addresses are sent, and val-
ues in those addresses are manipulated. (Y/N)

298. When can a function call can be used on the left hand
side of an equality?
A. If it returns an integer
B. If it return float
C. If it returns void
D. If it returns address

299. Which approach can be used to create a dynamic 2-D
array of exactly required size.
A. Malloc approach
B. Pointer to pointer approach
C. Array of pointers approach
D. None

300. When can we a function has a return type of int **?

A. If it returns an integer
B. If it returns address of an integer
C. If it returns address of an integer pointer
D. If It returns the starting address of dynamically

created integer pointer array.

301. Is it possible to de-allocate memory of language sup-
ported arrays using free method? (Y/N).

302. Advantage of dynamic arrays

A. Memory management will be in the hands of pro-
grammer

B. We can create an array of required size only.
C. Programs become flexible
D. All

303. A character pointer variable (which is pointing to ‘M’)
is subjected to postfix increment operator. Its value af-
ter increment

A. Incremented by one B. ‘N’
C. N D. None

304. If p, q are two integer pointers then

A. p=p+q is legal B. p=p-q is legal
C. p=P*q is legal D. p=p/q is legal

e. All are illegal

305. If p is an integer pointer then we cannot add to p

A. A positive integer constant or variable
B. An integer/long/char constant or variable
C. An octal/hexadecimal constant
D. A float/double constant

306. If two character pointers are declared and initialized
to same string constant (like the following), then their
values (addresses) are same. That, both will be point-
ing to same memory locations. (Y/N).

 char *a="Ram", *b="Ram";

 printf("%p %p\n", a, b);

307. If two character pointers are declared and initialized
to same string constant (like the following), then their
addresses are same? (Y/N).

 char *a="Ram", *b="Ram";

 printf("%p %p\n", &a, &b);

Programming, Data Structures and Algorithms 2.81

308. We have stored same integer constants in the memo-
ries pointed by the two pointer variables soon after
their declaration (see below code). Does it runs?
(Y/N).

 int *a, *b;

 *a=12;

 *b=12;
309. See the following declaration statements. Assume we

have an integer pointer p for which variable c address
is assigned. Is it possible to access variable a value us-
ing pointer variable p? If so, how?

 int a=10, b=12, c=20;
 int *p=&c;
310. Not a user defined variable

A. int B. Bit fields
C. struct D. union

311. Padding is not seen in the unions. (Y/N)
312. Memory allocated for a structured pointer variable in

a 32-bit computer is
A. 2 B. 4
C. 6 D. 8

313. A structured variable occupies same memory irre-
spective of the processor. (Y/N)

314. Memory allocated for the members of a structured
variable is always consecutive. (Y/N)

315. Is it possible to define a structure inside the main.
(Y/N)

316. Is it possible to define a structure in any function?
(Y/N)

317. hat is the output of the following program?

 int a;
 int b;
 };
 int main(){

 }

A. 8 B. 2 C. 1 D. None
318. See the following code fragment. What will be differ-

ence in the addresses of X and Y?

 int a;
 int b;

A. 8 B. 2 C. 1 D. None

319. What is the output of the following code?

 int a;
 int b;

 int main(){

 printf("%d\n", *(p));
 }

A. 10 B. 12 C. 82 D. 121
320. A structure contains a 20-element character array,

two integers and a double. The compiler running on
this 64-bit computer uses 4 and 8 bytes for integer and
double. What will be the increment value for a struc-
tured pointer variable of this type?
A. 4 B. 36 C. 16 D. 40

321. Memory for two structured variables are allocated
through malloc function. Does the memory allocated
for both is guaranteed to be consecutive? (Y/N)

322. Two structured variables are declared. Does the mem-
ory allocated for both is guaranteed to be consecu-
tive? (Y/N)

323. Is the following structure definition acceptable?

 int a;

 } ;
324. Is it possible to include a function definition inside a

structured definition?
325. Standard output operator

A. > B. >> C. < D. None
326. Number of filenames which standard output operator

can take.
A. 1 B. 2 C. 0 D. None

327. Standard output re-direction operations will work
under Windows also. (Y/N)

328. Main function can take __ arguments.
A. 2 B. 3 C. 2 or 3 D. None

329. Third argument to main can be
A. Int **a B. Char *a[]
C. Char **a D. None

330. Program name
A. First command line argument
B. Will not be list of command line arguments
C. Availability in the list of command line arguments

depends on the HW
D. None

2.82 Computer Science & Information Technology for GATE

331. The function that can be used to manage command
line arguments
A. strtok B. main
C. getopt D. None

332. Command line arguments are stored
A. As strings
B. As integers if we enter integers
C. As float if we enter floats
D. None

333. We propose to enter a series of float numbers as com-
mand line arguments then first and second arguments
of main method are
A. float, float** B. int, float**
C. int, char** D. int, char *[]

334. Does the following style of main gets compiled and
executed? (Y/N)

 int main(int N)
335. Default streams available for any program

A. Standard input B. Standard output
C. Standard error D. All

336. File descriptors are meaningful in Unix only. (Y/N)
337. Which programs are portable, FILE * based or file de-

scriptors based?
338. The style of I/O in which a variable will occupy same

space on disk as that of its space in RAM.
A. Formatted I/O B. Unformatted I/O
C. Binary I/O D. Both

339. On 32-bit machine, value of sizeof (FILE *)
A. 2 B. 4 C. 8 D. None

340. Two file which occupies consecutive areas on the disk
are made pointed by two FILE* type variables. Then,
these pointers will be also occupying consecutive lo-
cations in RAM. (Y/N)

341. A fopen call fails
A. If the file does not exist.
B. If we do not have permissions on the file.
C. If we supply illegal filename.
D. All

342. In order to copy content of a file to another file, the
following solution is proposed. Will it work? (Y/N)

343. The function which is used to move pointer in a file
A. fseek B. ftell
C. fmove D. fskip

344. We proposed to traverse a file byte by byte. Thus, the
following is suggested where a character pointer is
used to traverse. Will it work? (Y/N)

 char *p;

 p=(char*)A;
 while(*p)printf("%c", *p++);
345. Numbers 0, 1 and 2

A. Used as third argument in fseek
B. Refers to standard input, standard output, and

standard error
C. Both
D. None

346. To use FILE *
A. We need special header files
B. We need special libraries
C. We need stdio.h and standard library
D. None

347. How many files can we open simultaneously using
fopen depends on the operating system. (Y/N)

348. Use of ferror function is
A. To correct I/O errors
B. To recover from I/O errors
C. To find I/O errors
D. No such function exists

349. Find correct one
A. Formatted I/O is used for hard copy purpose
B. Unformatted I/O is used to conserve space.
C. Both
D. None

350. Bitwise operators are also called as low level opera-
tors. (Y/N)

351. Bitwise operators are the fastest operators. (Y/N)
352. Which bit position upper case and lower case charac-

ters differs?
A. 3 B. 4
C. 5 D. None

353. To double an unsigned integer
A. Left shift by one bit B. Set MSB
C. Set LSB D. Right shift by one bit

354. The bitwise operator used for parity checking
A. OR B. AND
C. << D. XOR

355. We have two properly initialised unsigned char vari-
ables x and y. What happens if we apply the following
operators: x=x^y; y=x^y; x=x^y;

Programming, Data Structures and Algorithms 2.83

A. There is no operator ^
B. x and y values gets exchanged.
C. x and y values become 0s.
D. None

356. We wanted to check whether the given number is
even or odd using a bitwise operator. Thus, we apply
bitwise AND with 1. Will it work? (Y/N)

357. A digit is stored in a character variable. To digit value
from character value
A. Extract Four LSB bits
B. Extract Four MSB bits
C. Both
D. Mask with 15

358. The following code fragment is suggested to calculate
the binary code length of the given number. Will it
work? (Y/N)

 int n,p=0;
 scanf("%d", &n);
 while(p++,n=n/2);
 printf("%d\n", p);
359. The following code fragment is proposed to calculate

parity of an integer. Will it work? (Y/N)
 int n,p=0;
 scanf("%d", &n);
 while(p^=n%2,n=n/2);
 printf("%d\n", p);
360. Which of the following scanf statement is valid way of

reading data into an integer variable l?
A. scanf(“%d”, l)
B. scanf(“%d”,**&l);
C. scanf("%d",&*&*&l);
D. scanf(“%d”,&*&*l);

361. While reading a value to an integer variable (l)
through scanf function, second argument of scanf can
be a series of &* with one & before the variable name
(l) like &*&*&*&l. (Y/N)

362. While displaying value of an integer variable (l) using
printf statement, second argument of printf can be a
series of *& before the variable name (l) like *&*&*&l
(Y/N)

363. printf (“%d\n”, sizeof sizeof sizeof sizeof sizeof 2+7)
gives
A. 4 B. Error C. 11 D. 9

364. Assuming that the following program is syntactically
correct. What parameter passing convention would
be in force if the program prints 6?

 Program test (input, output);

 p2:=p2*2; p1:=p1+p2; p2:=p2-p1;
 End; {calc}

 End. {main}

A. pass by value B. pass by address
C. pass by reference D. None

365. In _________ parameter passing method the actual
argument has to be a variable.
A. pass by value B. pass by reference
C. pass by result D. pass by value-result

366. Consider the following Pascal program.

 End;

 Write (A);
 End
 If this program prints 12 then A,B,C should have been

declared as:
A. All are variable parameters
B. Only A, B are variable parameters
C. Only A, C are variable prarameters
D. Only B,C are variable parameters

367. In ths above XYZ if we include write(C); statement
before end and if the result is 12, 6 then
A. All are variable parameters
B. Only A, B are variable parameters
C. Only A, C are variable prarameters
D. Only B,C are variable parameters

368. In which of the following cases it is possible to ob-
tain different results for call-by-reference and call-by-
name parameter passing?
A. Passing an expression as a parameter
B. Passing an array as a parameter
C. Passing a pointer as a parameter
D. Passing an array element as a parameter

369. Late binding or lazy evaluation
A. Pass by value
B. Pass by result
C. Pass by value result

2.84 Computer Science & Information Technology for GATE

D. Pass by name
E. Pass by reference

370. Find odd man out. In terms of 0-origin indexing
A. C B. C++
C. Object C D. Ada

371. In C, a function return ______ (Find incorrect ones)
A. An integer B. A 1D array
C. Address of a function
D. Address of a strcture

372. If X is an integer variable, find out which of the fol-
lowing statement gives error
A. X= -2; B. X=- -2; C. X=--2; D. –x;

373. What is the result of the following program?
 int a[2][2][2] = { 10,2,3,4, 5,6,7,8 };
 printf("%d",***a);

A. Error B. 10
C. Address of the array D. None

374. Find invalid C statement.
A. 100; B. 100+2;
C. 0<1,2&&3; D. None

375. Is it possible to jump to a statement of a function from
another function? (Y/N)

376. Find odd man out of the following with respect to a
program’s available files by default.
A. stdin B. stdout
C. stderr D. None

377. Assuming that the integer variable i value is 5 initially.
Which of the following statements makes value as 12?
A. i=i+++i B. i=i--+i
C. i=--i+i--; D. i=i+++i++;

378. What is the value returned from the function ff() if we
send 5 as the argument?

 int ff(int a){
 return ++a,++a,a++,++a,a++;
 }

A. 6 B. 9 C. 5 D. 6
379. What will be the output of the following program?
 int main() {
 static int i=5;
 if(--i){
 printf("%d\t",i);main();
 }
 return 0;
 }

A. 0 0 0 0 B. 5 4 3 2 1
C. Stack overflow error D. 4 3 2 1

380. See the following C code fragment.
 int r, c, s;

10 000:”);

 scanf(”%d”,&r);
 c = 1;
 c = r * c;
 s = 1;
 if (c <= r) {
 s = s + c;
 c = c * 2;
 }
 printf(”the variable s is %d\n”,s);
 Which of the following statements is true?

A. The sum of all numbers from 1 to r + 1 is shown.
B. The value r + 1 is shown.
C. The value r + 1 is shown only if r >= 1.
D. The value 2r + 1 is shown.

381. What will be the output of the following program?

 int succ(int i) {

 if (i <= 2)

 return(1);

 else

 return(3*succ(i - 1)+2*succ(i - 2)-succ(i - 3));

 }

 int main() {

 printf("num=%d\n",succ(7));

 return 0;

 }

A. 554 B. 559
C. 567 D. None

382. Find invalid statements syntactically
A. switch(5/4/3) { ……}
B. #define X 0

 switch(some valid expr){ case X+1: …..; break;…..}
C. int X=0; switch(some valid expr){ case X+1: …..;

break;…..}
D. const X=0; switch(some valid expr){ case X+1:

…..; break;…..}
383. Find invalid statement

A. Case expression should be always a character con-
stant

B. Case expression should be always a integer con-
stant

Programming, Data Structures and Algorithms 2.85

C. Case expression involving a symbolic constants
only

D. Case expression should be always a symbolic con-
stant

e. None
384. Find odd man out of the following

A. stdin B. cin
C. System.in D. 1
E. None

385. Find odd man out of the following
A. stdin B. 1
C. – D. None

386. Default file descriptors available for any process
A. 0 B. 1
C. 2 D. All a, b, and c
E. 3

387. What is the value of y after the last statement?
 x = 3;
 y = 3;
 switch(x + 3) {
 case 6: y = 1;
 default: y += 1;
 }

A. 1 B. 2 C. 6
D. Syntactical error in switch

388. Find incorrect statement about malloc() function
A. It allocates contiguous memory
B. If fail it returns -1
C. If an array is created using malloc in a function, if

we return its address then other functions can use
this memory.

D. Dangling pointer value will be 0.
389. Dangling pointer

A. Give raises memory segment error
B. Appears if malloc() function fails and returns -1
C. Is same as void or generic pointer
D. None

390. In HEX: if 08 00 00 00 = 8 and 05 00 00 00 = 5 then
what does 61 02 00 00 indicates?
A. 509 B. 609
C. 690 D. None

391. In-correct way of referring an element of an array B
A. B[1] B. 1[B]
C. *(B+1) D. *&B[1]
E. None

A N S W E R K E Y

1. D 2. C 3. D 4. C

5. C 6. D 7. B 8. C

9. B 10. C 11. A 12. D

13. D 14. C 15. B 16. B

17. B 18. C 19. C 20. C

21. C 22. C 23. A 24. B

25. D 26. D 27. D 28. C

29. C 30. D 31. D 32. B

33. D 34. B 35. B 36. B

37. B 38. E 39. D 40. B

41. B 42. B,C 43. B 44. C

45. B 46. No 47. B 48. C

49. C 50. No 51. Yes 52. Yes

53. Yes. We cannot include an executable statements
in between declaration statements

54. A 55. A 56. A 57. A

58. D 59. B 60. A 61. Yes

62. Yes 63. C 64. A 65. C

66. B 67. C 68. A 69. A

70. C 71. C 72. B

73. No. as some blood groups such as O+ etc., needs
two symbols.

74. Yes 75. Yes 76. Yes 77. No

78. Yes 79. C 80. C 81. C

82. C 83. C 84. No 85. C

86. C 87. A 88. No 89. No

90. C 91. No 92. Yes 93. C

94. No 95. No 96. No 97. No

98. C 99. Yes. 100. A

101. Yes it works. However, it displays the given num-
ber also.

102. Yes. We get error on else. This is, because of; after
in if statement.

103. No. Most of the compilers gets confused after
third level nesting.

104. Yes 105. Yes 106. D 107. B

108. D 109. D 110. A 111. C

112. A 113. A 114. A 115. C

116. D 117. C 118. C 119. C

120. C

2.86 Computer Science & Information Technology for GATE

121. Scanf function returns 1 when we enter an inte-
ger. Thus, while condition becomes true. Thus,
loop runs for infinite times. Rather it will go on
take numbers. We can brake only through control
+ C.

122. D (This is only one which runs for four times).

123. B (remaining all are infinite loops)

124. C 125. Yes 126. Yes 127. Yes

128. C 129. Yes 130. C 131. A

132. D 133. No 134. Yes 135. Yes

136. C 137. B 138. No 139. Yes

140. C 141. C 142. Yes 143. B

144. No 145. B 146. D 147. B

148. B 149. D 150. D 151. A

152. C 153. C 154. Yes 155. Yes

156. B 157. Yes 158. Yes 159. Yes

160. Yes 161. No 162. Yes 163. C

164. No 165. C 166. C 167. A

168. D 169. D 170. No 171. C

172. B 173. C 174. Yes 175. No

176. A 177. No 178. No 179. Yes

180. No 181. Yes 182. B, C 183. C

184. C, D 185. C 186. D 187. Yes

188. A 189. B 190. C 191. A

192. Yes 193. No 194. Yes 195. No

196. B 197. No 198. D 199. B, c

200. B 201. C,D 202. A 203. A

204. No 205. C 206. A 207. Yes

208. A 209. Yes 210. D 211. No

212. C 213. C 214. Yes 215. Yes

216. No 217. B 218. C 219. A,B

220. No 221. Yes 222. Yes 223. C

224. Yes 225. C 226. B 227. Yes

228. C 229. C 230. C 231. A

232. B 233. No 234. No 235. Yes

236. No 237. C 238. C,D 239. Yes

240. A 241. C 242. C,D 243. Yes

244. D 245. Yes 246. Yes 247. D
248. A,B 249. C 250. Yes 251. No
252. No 253. Yes 254. Yes 255. Yes
256. Yes 257. Yes 258. No 259. No
260. A,B 261. D,E 262. Yes 263. Yes
264. C 265. B 266. C 267. D

268. Yes 269. B 270. No 271. D

272. Yes 273. D 274. A 275. No

276. Yes 277. Yes 278. B,C 279. C

280. A 281. A,C 282. A 283. D

284. 21 285. A,B 286. B 287. Yes

288. No 289. C 290. D 291. No

292. Yes 293. D 294. C 295. C

296. B 297. Yes 298. D 299. B

300. C,D 301. No 302. D 303. A

304. E 305. D 306. Yes 307. No

308. No

309. Increment p value by two times before applying
de-referencing operator.

310. A 311. Yes 312. B 313. No

314. Yes 315. Yes 316. Yes 317. C

318. A 319. C 320. B,D 321. No

322. Yes 323. No 324. Yes 325. A

326. A 327. Yes 328. C,D 329. B,C

330. A 331. C 332. A 333. C

334. Yes 335. D 336. Yes 337. file*

338. B,C 339. B 340. No 341. D

342. Yes 343. B 344. No 345. C

346. C 347. Yes 348. C 349. D

350. Yes 351. Yes 352. C 353. A

354. D 355. B 356. Yes 357. A, D

358. Yes 359. Yes 360. D 361. Yes

362. Yes 363. C 364. C 365. B,C,D

366. B 367. B 368. A 369. D

370. D 371. B,C 372. C 373. B

374. D 375. N 376. D 377. D

378. B 379. D 380. B 381. B

382. C,D 383. E

384. E(All are related to standard input stream)
385. D(All are related to standard input stream)
386. D
387. B(First, case 6 will be executed then default state-

ments also executed as break is not used)
388. B 389. D
390. D (Given examples indicates that the numbers are

given in big-endian style machines. Thus, HEX 61
02 00 00 can be visualized normally as 00 00 02 61
= 2*162 + 6*161 + 1*160 = 609).

391. E (All the given styles are acceptable)

Programming, Data Structures and Algorithms 2.87

2.4 Data Structures and Algorithms

We now come to the study of Data Structures and Algorithms. These include Analysis, asymptotic notation, notions of
space and time complexity, worst and average case analysis; asymptotic analysis (best, worst, average cases) of time and
space, upper and lower bounds, basic concepts of complexity classes P, NP, NP-hard, NP-complete, Stacks, queues, linked
lists, trees, binary search trees, binary heaps.
Design: Greedy approach, Dynamic programming, Divide-and conquer; Tree and graph traversals, Connected compo-
nents, Spanning trees, Shortest paths; Hashing, Sorting, Searching.

2.4.1 Comparing Algorithms: Complexity Theory

An algorithm may be defined in simple terms as a finite sequence of instructions that solves a problem. A computer
program is simply an implementation of an algorithm on a computer. Evidently, there can be a number of algorithms to
solve a given problem. Thus, an immediate question that arises is “which is better?” This necessitates the relative analysis
of algorithms and this area of study is called as Complexity Theory in Computer Science.

One way to compare algorithms is to compare their performance in terms of how quickly they solve the problem.
Another way of comparing algorithms is to look at the amount of space (memory) they require. Some algorithms require
large amounts of space but arrive at a solution quickly. Others require small amounts of space but arrive at a solution less
quickly. This behaviour is referred to as space/time trade-off. That is, it is observed with many algorithms that if we try
to reduce its CPU time requirements it demands more memory; if we try to reduce its memory requirements it becomes
computationally intensive.

Algorithm performance, that is time complexity of an algorithm, is the relative amount of time an algorithm takes to
solve a problem. When we speak of the time complexity we are not interested in absolute times, i.e. how many seconds
it takes to solve a particular problem. The actual absolute time taken to solve a problem depends on a number of factors:
how fast the computer is, the quality of code generated by the compiler, the number of users using the computer at that
time, etc. If you change any of these, then the absolute time changes.

Thus, absolute time is not useful as a measure of an algorithm’s performance.
One reason for computing complexity is to compare algorithms. Thus we need a measure which will allow us to com-

pare two algorithms. Each algorithm consists of a finite sequence of instructions. The more instructions in an algorithm
the longer it will take to execute. Thus one way to compare algorithms would be to count the instructions that the algo-
rithm requires to solve a problem. Rather, we compute the number of instructions as a function of the input size.

When comparing algorithms it is important to know both the average and worst case complexity.
Infeasible Algorithms
There are many algorithms whose complexity is such that for even small values of n, they cannot be feasibly used.

Algorithms with complexity O(n!) (factorial n) or O(2n) (exponential complexity) are infeasible.
One such algorithm is one for the travelling salesman problem.
A salesman has to travel to say, 50 cities. He wishes to take the cheapest (perhaps shortest) route whereby he visits each

city only once. One simple algorithm is to compute all possible routes and pick the cheapest. But how many routes are there?
There are 50! possible routes. This is a 65 digit number, and would take billions of years to compute on a computer. If

there were 300 cities then we would have a 600 digit number. (So what ! Well the number of protons in the universe is a
126 digit number).

Thus we can see that the algorithm is infeasible for even small values of n.
It is important to note that this problem occurs frequently in different guises, e.g. laying telephone cables (roads, rail

tracks) between a number of towns. A small saving in distance can result in huge financial savings. It is an example of a
routing problem.

Another example of an infeasible problem might be a process control situation in a power plant. There are 50 sensors
around the plant connected to a computer. For simplicity, we assume each sensor sends a binary signal to the computer,
indicating normal/abnormal conditions.

We are interested in testing that the computer program will behave correctly with every possible combination of inputs
from the sensors.

Well how many combinations are there? There are 50 sensors each providing yes/no responses thus there are 250 pos-
sible combinations. If we carried out 1 instruction per microsecond it would take over 35 years to compute all solutions.

2.88 Computer Science & Information Technology for GATE

If we had 60 sensors, it would take 366 centuries to compute.
This is another infeasible problem. This last example illustrates another important issue. We cannot test complex com-

puter programs to check if they will work with all possible inputs. We can only partially test programs on a very small sub-
set of the possible inputs. It is also very important to remember that testing in itself does not prove anything. Just because
a program works for some test data, in no way proves the correctness of the program. The question arises then as to how
we deal with infeasible problems. One approach is to develop algorithms that are not guaranteed to give the best answer,
but will on average give a good answer.
Computability

In the field of computability, we are interested in studying what can and cannot be computed. We have seen above some
problems that were computable but they were infeasible, i.e. it would take an impossible amount of time to compute the
results.

But there are also problems, in fact the majority of problems, which cannot be computed. The computable problems
form a very small subset of the universe of problems. The set of feasibly computable problems forms a small subset of the
computable problems as shown in the Fig. 2.5.

It is important to distinguish infeasible and non-computable problems from feasible problems, so that we do not waste
time seeking solutions that either do not exist, or if they do exist, they are useless.

T

IT

Computable

Non-computable

Universe of Problems

T : Tractable or Feasibly Computable
IT : Intractable or Infeasible

Figure 2.5

A Non-Computable Problem: Halting Problem

A common error that programmers make is to write programs that contain endless loops, i.e. they do not terminate (halt).
When such a program is executed, it must be interrupted by the user to halt it, when the user realises after a while that the
program is not going to terminate.

It would be very useful, if we could write a program or modify a compiler so that it could test if a given source program
terminates. If we had such a compiler, then we would never execute a program with an endless loop.

The sad fact is that this problem is non-computable. It is impossible to write a program, which given another program
P as input, will determine whether P terminates. This problem is known as the halting problem.

Informally, we can show that the halting problem is non-computable as follows.
Assume there exists a function Halt() which takes an arbitrary program P as a parameter. Function Halt() is defined to
return True if P halts and False if P does not halt e.g.

if Halt(P) then printout(‘P halts’)
else printout(‘P does not halt’);

Consider the following program F which takes an arbitrary program P as input and uses the function Halt() as follows:
Label1: if Halt(P) then goto Label1

else Stop ;
This program loops forever if program P does halt, i.e. Halt(P) returns True and it stops only if P does not halt.

What happens with program F if we use program F itself as input, i.e. as the parameter to Halt(). F now takes the form:
Label1: if Halt(F) then goto Label1

else Stop ;

Programming, Data Structures and Algorithms 2.89

which says that if F halts then it loops forever and if F does not halt it stops !
We thus have a contradiction which is due to our assumption that a function Halt(P) could computed. We thus con-

clude that the halting problem is non-computable.
Computability is explored in the area of Computer Science called Theory of Computation.

Correctness

Most programs in current use contain errors (bugs). Errors in computer programs have serious consequences such as
the loss of a spaceship sent to Venus. This is just one of many publicised errors. However, there are very many more un-
publicised ones. Every (honest) programmer will recount tales of silly, funny and serious errors they have made in their
programs.

It is estimated that as much as 70% of the effort and cost in constructing complex software systems is devoted to error
correcting. This may be due to poor program specifications (imprecise, vague, ambiguous problem definitions), extensive
debugging to find errors and worst of all rewriting large parts to correct bugs. The later an error is discovered, the more
costly it is to correct.

It is important to be aware that compilers and operating systems also have bugs. It is quite common that new versions of
compilers and especially operating systems are regularly released, which correct bugs in previous versions. Sadly, the new
versions frequently introduce new bugs which in turn are corrected in later versions and the cycle continues.

Thus the importance of writing correct programs cannot be overstated. Beginners, often believe that their algorithms
do precisely what they intend them to do. This has no justification. A disciplined or methodological approach to program-
ming must be adopted if errors are to be eliminated. Computer Science courses in Programming Methodology, Formal
Specifications and Programming Design and Verification, deal with the notion of developing correct programs.

Methods of producing correct programs can be grouped in two categories: testing and proving. Testing a program
consists of executing a program on test data in order to discover the output of the program for that data. The important
feature is that the outcome is only tested for that particular set of test data.

Proving a program correct means that the program is correct for all permissible input data. This is obviously a much
more desirable property. (It is important to make sure that there are no errors in the proof).

Program testing has been more widely used because it is a much easier technique to apply, requiring less thought than
proving. Informal proofs are often used to reason about a program’s behaviour. They can increase our confidence in the
correctness of a program. Informal proofs can be made more formal and detailed, but this is more difficult and tedious.
However, in some situations where the application is very crvcial, a formal proof of correctness may be required.

The method of proof by induction is primarily used in proving the correctness of a program.
What does correctness mean?

It is meaningless to speak of program correctness in isolation, it must be related to the purpose of the program. “The pro-
gram produces the right answer” is meaningless unless we can specify what is meant by “right” in any particular situation.
The purpose of a program is provided in the form of the problem specification, which defines (precisely, unambiguously
and clearly) the problem to be solved and the output to be produced.

A program is correct with respect to its specifications if it produces the results specified for those input values defined
by the specification. There are a number of facets to correctness. We speak of partial correctness, when we know that if
a program terminates it will always produce the correct result, but we do not know if it will always terminate. We speak
of total correctness if in addition to always producing the correct result, the program always terminates. Different tech-
niques can be used to prove partial and total correctness. Another facet of correctness is feasibility, which was discussed
earlier. Will the program use a reasonable amount of resources, e.g. finish is a feasible time span. In conclusion, the ability
to reason about program correctness and produce correctness proofs is likely to become increasingly important in the
future. Already, the major cost in computing systems is the development of software. The cost of software is in terms of
programming effort. Techniques which can significantly improve programmer productivity will become more important.
In addition, the requirement that software in important applications (process control in industry, life critical applications)
be formally correct is likely to become a standard requirement.
Time Complexity analysis of algorithms
We have explained the reasons for the study of algorithms in the above paragraphs. There are several factors affecting the
running time :

Computer
Compiler

2.90 Computer Science & Information Technology for GATE

Algorithm
Input to the algorithm

The content of the input affects the running time
Typically, the input size (number of items in the input) is the main consideration

E.g. sorting problem fi the number of items to be sorted.
For this course, it is generally assumed that instructions are executed one after another.

We use RAM (Random Access Model), in which each operation (e.g. +, –, x, /,=) and each memory access take one
run-time unit. Loops and functions can take multiple time units.
Problem Size: Usually computational complexities are represented in terms of problem size. For example, in the case of
sorting a set of elements, number of elements can be considered as problem size. Similalarly, while estimating the com-
plexity of matrix multiplication problem, matrix size is taken. Thus, this is very much associated with the problem.

The time complexity of an algorithm, T(n), is represented as a function of its problem size, say n.
The time required is simply a count of the primitive operations executed. Primitive operations include
1. Assign a value to a variable (independent of the size of the value; but the variable must be a scalar)
2. Method invocation, i.e., calling a function or subroutine
3. Performing a (simple) arithmetic operation (divide is OK, logarithm is not)
4. Indexing into an array (for now just one dimensional; scalar access is free)
5. Following an object reference
6. Returning from a method

Algorithm inner Product

Input: Non-negative integer n and two integer arrays A and B of size n.
Output: The inner product of the two arrays

prod ¨ 0

for i ¨ 0 to n-1 do

 prod ¨

return prod
Line 1 is one op (assigning a value).
Loop initialising is one op (assigning a value).
Line 3 is five ops per iteration (mult, add, 2 array refs, assign).
Line 3 is executed n times; total is 5n.
Loop incrementation is two ops (an addition and an assignment)
Loop incrementation is done n times; total is 2n.
Loop termination test is one op (a comparison i<n) each time.
Loop termination is done n+1 times (n successes, one failure); total is n+1.
Return is one op.

The total is thus 1 + 1 + 5n + 2n + (n + 1) + 1 = 8n + 4.

Improved inner product algorithm
Input: Non-negative integer n and two integer arrays A and B of size n.
Output: The inner product of the two arrays

prod ¨

for i ¨ 1 to n-1 do

 prod ¨

return prod

The cost is 4 + 1 + 5(n – 1) + 2(n – 1) + n + 1 = 8n – 1
Similarly consider another example of a function call along with the operations involved.

Programming, Data Structures and Algorithms 2.91

Consider another example involving nested loops. Here, each loop runs for n+1 times. Thus, the inner most k++ state-
ment executes (n + 1) * (n + 1) times.

Consider one more example where we wanted to calculate sum of the cubes of natural numbers between 1 to N.

Analysing Recursive Algorithms

We may employ recursive solutions also in practice. Thus, we do required to know how to estimate the time complexities
of recursive solutions. Consider a recursive version of innerProduct. If the arrays are of size 1, the answer is clearly A[0]
B[0]. If n>1, we recursively get the inner product of the first n-1 terms and then add in the last term.

Algorithm inner Product (Recursive)
Input: Positive integer n and two integer arrays A and B of size n.

 Output: The inner product of the two arrays
if n=1 then
 return A[0]B[0]
return innerProductRecursive(n-1,A,B) + A[n-1]B[n-1]
How many steps does the algorithm require? Let T(n) be the number of steps required.

If n=1 we do a comparison, two fetches, a product, and a return.
So T(1)=5.

2.92 Computer Science & Information Technology for GATE

If n>1, we do a comparison, a subtraction, a method call, the recursive computation, two fetches, a product, a sum
and a return.
So T(n) = 1 + 1 + 1 + T(n-1) + 2 + 1 + 1 + 1 = T(n-1)+8.
This is called a recurrence equation. In general these are quite difficult to solve in closed form, i.e. without T on
the right hand side.
For this simple recurrence, one can see that T(n)=8n-3 is the solution.

While comparing the algorithms we can use the above Time complexities. In fact, this can be carried out experimentally
also. However, it is not always possible to run the programs and evaluate; especially for large problem sizes like human
genome project. Thus, theoretical analysis is carried out widely.

n Example Consider the following algorithm. What is return value from this function? As a function of n, what is the
exact number of multiplications (“*”) performed by the algorithm?

(1) s ¨ 1
(2) for i ¨ 1 to n do

(3) if n is even then

(4) for j ¨ 1 to n do

(5) s ¨ s * 2
(6) else

(7) s ¨ s * 2
(8) return s

n Answer: For even n, the nested loops (lines 2 and 4) will execute n2-times the multiplication in line 5. For odd n, the
loop (line 2) will execute n-times the multiplication in line 7. Together this yields

f(n) =
n , if n is even

n, otherwise

2Ï
Ì
Ó

 As a function of n, the value of s returned in line 8 can be represented as:

s(n) =
2 , if is even

2 , otherwise

n^2

n

nÏ
Ì
Ô

ÓÔ

2.4.1.1 The Big-Oh Notation

Definition: Let f(n) and g(n) be real-valued functions of a single non-negative integer argument. We write f(n) is
O(g(n)) if there is a positive real number c and a positive integer n0 such that f(n) £ cg(n) for all n ≥ n0 as shown
in Fig. 2.6.
What does this mean?
For large inputs (n £ n0), f is not much bigger than g (f(n) £ cg(n)).

f n()

cg n()

n
n0

f n g n() = (())W

Figure 2.6 Big-Oh definition

Programming, Data Structures and Algorithms 2.93

To practically explain about this, consider a live problem.
Suppose a company tracks its autos that are shipped around the world on rail, truck, and water vessel. At the end of each
day, this company uses an algorithm to summarise all auto movement in some meaningful way. Let us consider that the
algorithm does its job in three steps

The algorithm takes 50,000 msecs to read the data from the database
The algorithm takes 1 msec to process each auto movement into summarised data
The algorithm takes 5,000 msecs to write the summarised data back to the database

So, processing n auto movements takes
(50,000 + 1*n + 5,000) msecs
The n term will become more important as n becomes very large
As it turns out, in the real world, n may be in the order of 100,000,000 !!

Let n be the input size (number of autos), thus T(n) becomes the time complexity of the processing method 50,000 + 1*n
+ 5,000.
Let f(n) be another function, preferably without constant factors… n, n2, log2n, etc., We can say that T(n) is Big-Oh of f(n),
or, T(n) is on the order of f(n), or, T(n) = O(f(n)) if:

T(n) £ c*f(n) for some positive constant c, starting at the point where n is ≥ some other positive constant n0
What we are saying is c*f(n) is bounding the function T(n) asymptotically
Think of c * f(n) like a ceiling for T(n); in other words, we can guarantee that our algorithm will never run in worse
time than on the order of f(n)

Given T(n)= (50,000 + 1*n + 5,000) msecs
 T(n) = n + 55,000
Choose f(n) = n to see if T(n) = O(n)
Definition of Big-Oh: T(n) £ c*f(n)
n + 55,000 £ c*n ¨ solve for c
1 + 55,000/n £ c
As n gets bigger and bigger (and approaches infinity), 55,000/n will approach zero
1 + 55,000/1 £ c Æ c ≥ 55,001 if n = 1
1 + 55,000/2 £ c Æ c ≥ 27,500 if n = 2
1 + 55,000/• £ c Æ c ≥ 1 if n =3
We need to show this holds for positive constants c and n0 where n ≥ n0

Pick n0 = 1
1 + 55,000/1 £ c , so c = 55,001
Does this c = 55,001 still work for n = 2 (because n keeps growing)?
1 + 55,000/2 £ 55,001
27,501 £ 55,001 TRUE!

So, T(n) = O(f(n)) because we can find c and n0 that hold as n grows to infinity. Thus, this algorithm’s asymptotic complex-
ity is said to be O(n).
Consider another example:
Suppose we have an algorithm that takes 3n2 steps given n inputs.
Does 3n2 = O(n2) ?
The definition of Big-Oh says :

T(n) ≤ c*f(n) for c and n0 where n ≥ n0

Given: 3n2 ≤ c n2

Choose n0 = 1 and c = 3

That works!

Does it still work as n grows? Now, let us try for n = 2

2.94 Computer Science & Information Technology for GATE

Yes, so 3n2 = O(n2)

To simplify things, we adopt the practice of throwing away leading constants and lower-order terms. We can do this be-
cause the highest order term (largest exponent) will dominate how the function grows. That way, we don’t have to get too
rigorous about finding c and n0.

n Example 30n2 + 5000n + 32,000 becomes simply n2, which is clearly O(n2)

The following theorems give us rules that make calculating big-Oh easier.

Theorem (arithmetic): Let d(n), e(n), f(n), and g(n) be non-negative real-valued functions of a non-negative integer argu-
ment and assume d(n) is O(f(n)) and e(n) is O(g(n)). Then

ad(n) is O(f(n)) for any non-negative a

d(n)+e(n) is O(f(n)+g(n))

d(n)e(n) is O(f(n)g(n))

Theorem (transitivity): Let d(n), f(n), and g(n) be non-negative real-valued functions of a non-negative integer argument
and assume d(n) is O(f(n)) and f(n) is O(g(n)). Then d(n) is O(g(n)).

Theorem (special functions): (Only n varies)

If f(n) is a polynomial of degree d, then f(n) is O(nd).

nx is O(an) for any x>0 and a>1.

log(nx) is O(log(n)) for any x>0

(log(n))x is O(ny) for any x>0 and y>0.

Relatives of the Big-Oh

Big-Omega and Big-Theta

Recall that f(n) is O(g(n)) if for large n, f is not much bigger than g. That is, g is some sort of upper bound on f. How about
a definition for the case when g is (in the same sense) a lower bound for f?

Definition: Let f(n) and g(n) be real valued functions of an integer value. Then f(n) is W(g(n)) if g(n) is O(f(n)).

Remarks:

1. We pronounce f(n) is W(g(n)) as “f(n) is big-Omega of g(n)”.

2. What the last definition says is that we say f(n) is not much smaller than g(n) if g(n) is not much bigger than f(n),
which sounds reasonable to me.

3. What if f(n) and g(n) are about equal, i.e., neither is much bigger than the other?

Definition: We write f(n) is Θ(g(n)) if both f(n) is O(g(n)) and f(n) is W(g(n)).

Remarks We pronounce f(n) is Q(g(n)) as “f(n) is big-Theta of g(n)”

Little-Oh and Little-Omega

Recall that big-Oh captures the idea that for large n, f(n) is not much bigger than g(n). Now we want to capture the idea
that, for large n, f(n) is tiny compared to g(n).

If we remember limits from calculus, what we want is that f(n)/g(n) Æ 0 as n Æ •. However, the definition we give does
not use limits (it essentially has the definition of a limit built in).

Definition: Let f(n) and g(n) be real valued functions of an integer variable. We say f(n) is o(g(n)) if for any c>0, there is
an n0 such that f(n) £ g(n) for all n>n0. This is pronounced as “f(n) is little-oh of g(n)”.

Definition: Let f(n) and g(n) be real valued functions of an integer variable. We say f(n) is w (g(n) if g(n) is o(f(n)). This
is pronounced as “f(n) is little-omega of g(n)”.

Programming, Data Structures and Algorithms 2.95

n Example log(n) is o(n) and x2 is w (nlog(n)).

What is “fast” or “efficient”?

If the asymptotic time complexity is bad, say n5, or horrendous, say 2n, then for large n, the algorithm will definitely be
slow. Indeed for exponential algorithms even modest n’s (say n = 50) are hopeless.

Algorithms that are o(n) (i.e., faster than linear, a.k.a. sub-linear), e.g. logarithmic algorithms, are very fast and quite
rare. Note that such algorithms do not even inspect most of the input data once. Binary search has this property. When
you look a name in the phone book you do not even glance at a majority of the names present.

Linear algorithms (i.e., Q(n)) are also fast. Indeed, if the time complexity is O(nlog(n)), we are normally quite happy.
Low degree polynomial (e.g., Q(n2), Q(n3), Q(n4)) are interesting. They are certainly not fast but speeding up a com-

puter system by a factor of 1000 (feasible today with parallelism) means that a Q(n3) algorithm can solve a problem 10
times larger. Many science/engineering problems fall in this range.

n Example Proove n3 – n2 + 2nlog(n) Œ W(nlog(n))

n Answer: Since n3 – n2 >= 0 for n >= 0 and 2nlog(n)>0 for n >1 we have

n3 – n2 + 2nlog(n) >= 2nlog(n) >0 for all n >1

ie n3 – n2 + 2nlog(n) Œ W(nlog(n)) with c=2 and n0=1.

n Example Proove i
i

n

=
Â

1

Œ O(n2)

nAnswer : We have i
i

n

=
Â

1

 = n(n + 1)/2 = n2/2 + n/2

Since 0 < n2/2 + n/2 <= n2/2+n2/2 = n2 for n > 0 we get

0 < i
i

n

=
Â

1

= n2/2 + n/2 <= n2 for all n > 0

ie i
i

n

=
Â

1

Œ O(n2) with c=1 and n0=0.

2.4.1.2 The Importance of Asymptotics

It really is true that if algorithm A is o(algorithm B) then for large problems A will take much less time than B.
Definition: If (the number of operations in) algorithm A is o(algorithm B), we call A asymptotically faster than B.

n Example The following sequence of functions are ordered by growth rate, i.e., each function is little-oh of the subse-
quent function. log(log(n)), log(n), (log(n))2, n1/3, n1/2, n, nlog(n), n2 (log(n)), n2, n3, 2n.

Function Name

c Constant O(1)

log n Logarithmic

log2 n Log-squared

N Linear

n log n –

n2 Quadratic

n3 Cubic

2n Exponential

2.96 Computer Science & Information Technology for GATE

2 3 4 5 6 7 8

4096

2048

1024

512

256

128

64

32

16

8

4

2

1

nn

n!

2n

n2

n nlog

n

log n

1

We do require to know about common program design paradigms.
Divide-and-conquer
Iterative
Recursive
Recurrence relation based
Incremental
Dynamic programming
Greedy algorithms
Randomized/probabilistic

We have got exposure to iterative, recurrence, and recursive solutions in the previous chapters. We will confine our-
selves to divide-and-conquer based solution in the coming chapters. Other solutions are beyond the scope of this book.

In the following example, we have included a simple example of permutations of a string using both iterative and recur-
sive means. In practice, we may need to study which is better in terms time, space, scalability, and ease of implementation.
Some Points to remember

log’s of different bases grow at the same rate
2n grows much faster than n2

n2/ln(n) grows just a little slower than n2, but much faster than n
n2 grows faster than n log(n)
sqrt(n) grows faster than log(n)

n Example We are given a sequence a1, . . . , an of numbers on input. Give an algorithm that computes the value of

F =
a ia

j j

i
a

i

j

ii

j

j

n -

+()
= =

=

Â Â
Â 1 1

1 1

Your algorithm must run in linear time. Present your algorithm in pseudo-code, and briefly explain why its running time
is linear.

n Answer:

for j = 1 to n do
2

end for

return sum

end

Programming, Data Structures and Algorithms 2.97

Since there is only one for loop in the algorithm, it is easy to see the running time is linear.
Some Points about Big O notation

For any polynomial f(x) = anxn + an-1xn-1 + … + a0, where a0, a1, …, an are real numbers,

f(x) is O(xn).

If f1(x) is O(g1(x)) and f2(x) is O(g2(x)), then (f1 + f2)(x) is O(max(g1(x), g2(x)))

If f1(x) is O(g(x)) and f2(x) is O(g(x)), then (f1 + f2)(x) is O(g(x)).

If f1(x) is O(g1(x)) and f2(x) is O(g2(x)), then (f1f2)(x) is O(g1(x) g2(x))

n Example If W(n lg(lgn)) then f1(n) must be in O(n lgn)? Why or why not?

n Answer: NO. f1(n) is in W (n lg(lgn)) only provides a lower bound on f1(n). n lgn is in W (n lg(lgn)). It is possible for
f1(n) to be larger than n lgn; for example, f1(n) = n2. In this case, f1(n) is not in O(n lgn).

n Example Show that:

i. (n +1)5 is O(n5)

ii. 2n +1 is Q(n5)

iii. n +(log2 n)2 is O n n()

Answer: By rules of limiting: L
f n

g nn
=

Æ•
lim

()
()

Rule 1: if L = 0 f(n) = O (g(n))

Rule 2: if L = • f(n) = W (g(n))

Rule 3: if L = any non-zero constant f(n) = Q (g(n))

i. (n +1)5 is O(n5)

L = lim
()

n

n

nÆ•

+1 5

5

= lim
n

n n n n n

nÆ•

+ + + + +5 4 3 2

5
5 10 10 5 1

= lim
n n n n n nÆ•

+ + + + + =1
5 10 10 5 1

12 3 4 5

By Rule 3, (n +1)5 = Q(n5). So, this also implies (n +1)5 = O(n5)
ii. 2n +1 is Q(n5)

L = lim lim
n

n

n
n

n

nÆ•

+

Æ•
=

¥
=

2
2

2 2
2

2
1

 By Rule 3, 2n +1 is Q(2n)

iii. n +(log2 n)2 is O n n()

L = lim
(log)

lim
(log)

n n

n n

n n

n

nÆ• Æ•
=

2 2

= lim
(log)

ln
n

n
n

n
Æ• -

¥ ¥2
1

2
1
2

1
2

2.98 Computer Science & Information Technology for GATE

= lim
ln

log
lim

ln
ln

n n

n

n
n

n
Æ• Æ• -

¥ = ¥
4

2
4

2

1
2

1
2

1
2

= lim
(ln)n nÆ•

¥ =
8
2

1
02

 By Rule 1, n +(log2 n)2 is = O n n()

n Example Solve the following recursive relation using the substitution method.

T (1) = 1

T (n) = T
n

n
2() +

n Answer: By expanding

T (n) = T
n

n T
n n

n
2 2 2() + = () + + =

= T
n n

ni i2 2 1() + + ++

 Let, T(n) = O(÷n), meaning T(n) £ c÷n

 Induction base:n = 1, c = 4

 T(1) = 1 £ c÷1 , c > 0

 Induction step:

 T(1) = T
n

n c
n

n n
c

c n
2 2 2

1() + £ + = +() £

(c/√2 + 1) ≤ c true for c = 4

n Example Assume we have to calculate row sums of an n X n two dimensional array in addition to over all total.
Propose code fragment and enumerate how many operations are involved.

n Answer:

 grand Total = 0;

 for (k=0; k<n; k++) {

 rows[k] = 0;

 for (j = 0; j <n; j++){

 rows[k] = rows[k] + matrix[k][j];

 grandTotal = grandTotal + matrix[k][j];

 }

 }

 It takes 2n2 addition operations

 Another solution:

 grandTotal =0;

 for (k=0; k<n; k++){

 rows[k] = 0;

 for (j = 0; j <n; j++)

Programming, Data Structures and Algorithms 2.99

 rows[k] = rows[k] + matrix[k][j];

 grandTotal = grandTotal + rows[k];

 }

 This one takes n2 + n operations

n Example What is the complexity of the following code fragment in big-oh notation?

 iSum = iSum + 1 | --- 1 x n |

 Next j / |

 iSum = iSum + 1 | |

 iSum = iSum + 1 | --- 3 x 2n |

 iSum = iSum + 1 | |

 Next k / |

 Next i /

n Answer: If we observe the above code, we find inner j loop runs for n times for each value of i. Thus, the statements
inside the j loop will be executed n2 times. Similarly, k loop contains 3 statements which will be executed 2n times for each
value iteration of i. Thus, inner k loop involves 6n2 opertaions.
Thus, number of operations: n x (1 × n + 3 × 2n) = n2 + 6n2 = 7n2

Since in Big-Oh analysis we ignore leading constants (the 7 in the equation above), this algorithm runs in O(n2) time.
Complexity: O (n2)

n Example What is the complexity of the following code fragment in terms of big-oh notation?

 iSum = iSum + 1 |---1 x n |

 Next j / |

 iSum = iSum + 1 > 1 | |

 iSum = iSum + 1 | 1 x 2n | |

 iSum = iSum + 1 / | |

 Next k / |

 Next i /

n Answer: If we observe the above code, we find inner j loop runs for n times for each value of i. Thus, the statements
inside the j loop will be executed n2 times. Similarly, inner k loops first statement which will be executed 2n times for
each value iteration of i. Thus, inner k loop involves 2n2 opertaions. The innermost m loop runs for 4n times with the step
value of 2. Thus, it runs for 2n2*2n = 4n3

2.100 Computer Science & Information Technology for GATE

Thus, total number of times executed: n (1 x n + 2n (1 + (1 x 2n)))

 = n (n + 2n (1 + 2n))

 = n (n + 2n + 4n2)

 = n2 + 2n2 + 4n3

 = 3n2 + 4n3

Since, in Big-Oh analysis we ignore leading constants (the 3 and 4 in the equation above) and lower order terms (the n2 in
the equation above), this algorithm runs in O(n3) time.

3)

n Example By using repeated substitution to find the time complexity of the function recurse. Assume only non-neg-
ative even values of n are passed in.
void recurse(int n) {

 int i, total = 0;

(1) if (n == 0) return 1;

(2) for (i = 0; i < 4; i++) {

(3) total += recurse(n-2);}

(4) return total;

}

n Answer:

When n = 0 (the base case), this function only executes line 1, doing O(1) work. We will note this constant amount
of work as a.

When n >= 2 (the recursive case), this function does O(1) work in executing lines 1, 2, and 4, which we will denote
by b, and also makes four recursive calls with parameter values n-2 in the body loop (line 3).

We use these two points to perform the recurrence relation analysis as follows:
From the base case, we have: T0 = a
From the recursive case, we have: Tn = 4Tn-2 + b
We apply repeated substitution:

Tn= 4Tn–2 + b

Tn = 4(4Tn–4 + b) + b = 42 Tn–4 + 4b + b

Tn = 42 (4Tn–6 + b) + 4b + b

= 43 Tn–6 + 42 b + 4b + b

Tn = 4i Tn–2i + 4i–1 b + 4i–2 b + … + 40 b

Note that 4k = 22k, yielding:

Tn = 22i Tn–2i + 22(i–1) b + 22(i–2) b + … + 20 b

Set i = n/2, yielding:

Tn = 2n T0 + 2n–2 b + 2n–4 b + … + 20 b

= 2n a + (2n–2 + 2n–4 + … + 20) b

So, we need to compute the closed form for (2n–2 + 2n–4 + … + 20) = (2n – 1)/3.
Here is a brief digression on how we compute this closed form formula:

Let x = (2n-2 + 2n–4 + … + 20)

So, 22 x = 4x = 22 (2n–2 + 2n–4 + … + 20)

Programming, Data Structures and Algorithms 2.101

= (2n + 2n-2 + … + 22)

22 x – x = 3x = (2n + 2n-2 + … + 22) –

 (2n–2 + 2n–4 + … + 20)

3x = 2n – 20 = 2n – 1

x = (2n – 1)/3 = (2n–2 + 2n–4 + … + 20)

Substituting this closed form for the sum back in to the equation for Tn yields:

Tn = 2n a + (2n–2 + 2n–4 + … + 20) b

Tn = 2n a + ((2n – 1)/3) b

Thus, complexity in Big-oh notation is O(2n).

n Example Solve the following.

T(a) = Q(1)

T(n) = T(n-a) + T(a) + n

Find T(n) using the iteration method.

n Answer:

T(n) = T(n–a) + T(a) + n

= [T(n–2a) + T(a) + (n–a)] + T(a) + n

= [T(n–3a) + T(a) + (n–2a)] + 2T(a) + 2n – a

= T(n–3a) + 3T(a) + 3n – 2a – a

= [T(n–4a) + T(a) + (n – 3a)] + 3T(a) + 3n – 2a – a

= T(n–4a) + 4T(a) + 4n – 3a – 2a – a

 . . .

= T(n–ia) + iT(a) + in – ka
k

i

=

-

Â
1

1

= T(n–ia) + iT(a) + in – ai(i–1)/2

After ((n/a)-1) steps, the iterations will stop, because we have reached T(a).
Assign i = (n/a)-1:

T(n) = T(n–((n/a)–1)a) + ((n/a)–1)T(a) + ((n/a)–1)n – a((n/a)–1)((n/a)–2)/2

= T(a) + (n/a)T(a) – T(a) + (n2/a) – n – (a/2)*((n2/a2) –3(n/a) + 2) =

= (n/a)T(a) + (n2/a) – n – (n2/2a) +(3n/2) – a =

= (n/a)T(a) + (n2/2a) +(n/2) – a =

= Q(n)Q(1) + Q(n2) + Q(n) = Q(n2)

T(n) = Q(n2)

n Example Compare the following iterative and recursive methods for calculating Fibnocci number.

 f[0] = 0;

 f[1] = 1;

 f[i] = f[i-1] + f[i-2];

2.102 Computer Science & Information Technology for GATE

 }

 return n

 else

 }

n Answer Time complexity of iterative version is O(n). Whereas the time complexity of recursive version can be repre-
sented a:

T(n) = T(n–1)+T(n–2)+1

By solving this, we can find its complexity by expanding as

T(n) ≤ 2n–1 + 2n–1 –1 = O(2n)

n Example Solve the following recursive relation.
T(1) = 1
T(n) = T(n–1) + 1/n

n Answer: By expanding the above equation

T n n n n i
i

n

() = + + + =- -
=
Â1 1

1
1

2
1

1

1�

 1 11

2

1

1

+ £ +
=
Â Úi
i

n

x

n

dx

 = + = +1 11ln lnn nn

Thus, T(n) = O(logn)

n Example Show that the solution of

T(n) = T(Èn/2˘) + 1 is O(lg n).

n Answer: Base case: n = 2

T(Èn/2˘) + 1 £ c lg 2

T(2/2) + 1 £ c lg 2

Let c = 2

1 + 1 £ 2 lg 2

Inductive Hypothesis:

Assume: T (Èn/2˘) + 1 £ c lg (Èn/2˘)

Inductive step:

T(n) £ c (lg n – lg 2) + 1 = c lg n – c lg 2 + 1

£ c lg n

n Example Show that the solution of T(n) = 2T(În/2˚) + n is W(n lg n). Conclude that the solution is Q(n lg n).

n Answer: By induction:

Base case: n = 2

Programming, Data Structures and Algorithms 2.103

2T(Î 2/2 ˚) + 2 ≥ c2 lg 2

2 + 2 ≥ c2 lg 2

Let c = 1

2 + 2 ≥ 2

Inductive Hypothesis:

Assume: T(Î n/2 ˚) ≥ c Î n/2 ˚ lg (Î n/2 ˚)

Inductive step:

T(n) ≥ c((n/2) – 1)(lg n – lg 2 – 1)

= c(n/2 lg n – n/2 lg 2 – n/2 – lg n + lg 2 + 1)

= c(n/2 lg n – n/2 – n/2 + 2)

= c(n/2 lg n – n + 2)

≥ c(n/2 lg n)

= c n lg n

Since T(n) = O(n lg n)

and T(n) = W(n lg n)

then T(n) = Q(n lg n)

n Example Show that the solution to T(n) = 2T(În/2˚ + 17) + n is O(n lg n).

n Answer: Assume

T(n) £ cn lg n – b, for b ≥ 0

T(n) £ (c În/2˚ lg Î n/2˚ + 17 – b) + (c Î n/2˚ lg În/2˚ + 17 – b)

£ cn 2 lg (n/2) + 34 – 2b

£ cn lg n + 34 – 2b

£ cn lg n – b

£ cn lg n = O(n lg n)

n Example Determine a good asymptotic upper bound on the recurrence

T(n) = 3T(În/2˚) + n by iteration.

n Answer:

T(n) = 3T(În/2˚) + n

= 3(Î n/2˚ + 3T(În/4˚)) + n

= 3(În/2˚ + 3T(În/4˚ + 3T(În/8˚))) + n

£ 3n/2 + 9n/4 + 27n/8 + … + 3lg3 Q(1) + n

£ (/)i3 2
0i=

•

Â + Q(nlg3)

= O(n) + O(nlg3)

= O(max(O(n), O(nlg3))

= O(nlg3)

2.104 Computer Science & Information Technology for GATE

2.4.1.3 Masters Theorem

Theorem 1 (Master Theorem): Let f be an increasing function that satisfies the recurrence relation:
f(n) = a f(n/b) + cnd

whenever n = bk, where k is a positive integer, a >= 1, b is an integer greater than 1, c is a positive real number, and d is a
non-negative real number. Then:

f(n) =

O(n) if a < b

O(n log n) if a = b

O(n) if a > b

d d

d d

logb a d

Ï

Ì
ÔÔ

ÓÓ
Ô
Ô

Here are some examples to consider:
a < bd: f(n) = 2 f(n/2) + xn2. In this example, 2 < 22, and thus f(n) = O(n2). The xn2 term is growing faster than the
2 f(n/2) and thus dominates.
a = bd: f(n) = 2 f(n/2) + xn1. In this example, 2 = 2, and thus f(n) = O(n log n). The two terms grow together.
a > bd: f(n) = 8 f(n/2) + xn2. In this example, 8 < 22, and thus f(n) = O(nlog 8) = O(n3). The 8 f(n/2) term is growing
faster than the xn2 and thus dominates.

n Example Solve the following recurrence relations using Masters theorem.
a. T(n) = 7T(n/2) + n2

 a = 7, b = 2, d=2. As a is greater than bd,
 Therefore, T(n)=O(nlog

2
7)

b. T(n) = 4T(n/2) + n2

 a = 4, b = 2, d=2. This is case 2 of Masters theorem as a is bd.
 Therefore, T(n) =O(nlog

2
4logn)=O(n2logn)

c. T(n) = 2T(n/3) + n3

 a = 2, b = 3, d=3
 As a is less than bd, this is case 1 type. Thus, T(n) = O(n3)

n Example Solve the following

T(n) = 3T(n/2) + nlogn

Use the Master-Method to find T(n).

n Answer:

a = 3, b = 2, f(n) = nlogn

We assume it is the 1-st case of a Master Theorem, so we need to show that:

nlogn = O(nlog
2

3 – e)

x = log23 = 1.585

nlogn £ cnx – e

logn £ cnx – e–1

We may operate log on both sides (log is a monotonic increasing function and thus we are allowed to do this):
log(logn) £ (x – e – 1) lon n + log c = (0.585 – e) log n + log c
Next, we need to find values of c, e, n0, such that:

log(logn) £ (0.585 – e) logn + log c

Let us choose c = 1: log(log n) £ (0.585 – e) log n

log(f(n)) is smaller then 0.5f(n) (f(n) is a monotonous increasing function), for f(n) > 4.

Thus, we may choose e = 0.585

Programming, Data Structures and Algorithms 2.105

f(n) = logn=4. Hence we set n0 = 16.

T(n) = Q(nlog
2

3)

Masters Method Revisited for asymptotic tight bounds
Bound a recurrence of the form:

T(n) = aT(n/b) + f(n) a ≥ 1 , b > 1

1. if f (n) = O(nlogba–e), ε > 0 then T(n) = Q(nlogba)
2. if f (n) = Q(nlogba) then T(n) = Q(nlogbalog n)

if f(n) = W(nlog
b

a + e), e > 0 and af(n/b) £ cf(n) for c < 1 then T(n) = Q(f(n))

n Example Find out upper bound for the following recurrence:

T(n) =
5

7
1

1 1

7T
n

n n

n

() + >

=

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

log

That is, find the smallest function f (n) that we can, such that T(n) Œ O (f(n)). You may assume that n is a power of 7.

n Answer: The Master Theorem is applicable because the ratio test yields:
f n

n

n

nb a

() log
log log= 7

57
 in which there is polyno-

mial dominance in the denominator. That is, log ()log
7

57n O nŒ ()-e for some 0 < e. Case 1 applies, so the solution is

T n n() ()logŒQ 7 5 .
We can also use a recursion tree to obtain a looser upper bound. At each level of the tree each problem gives rise to 5

subproblems. The height of the recursion tree is: log7 n. The summation corresponding to the work is given by:

5
7

5 77
0

7 7
0

7 7
i

i
i

n
i i

i

n
n

nlog log log
log log()() = -()()

= =
Â Â

5 5 57
0

7
0

7
0

7 7
i

i

n
i

i

n
i

i

n i n nlog log log
log log lo

-()() £ ()() = ()
= = =
Â Â

gg7 n

Â

The closed form solution to the summation is:

5
5 1

4
5 5 1

40

17 7 7
i

i

n n n

() =
-

=
-

=

+

Â
log log log()

5 5 1
4

5 1
4

5() ()
()

log n n
n

-
=

-
ŒQ

The work is therefore Œ O (nlgn). (Note that n n n n nlog log lg7 75 5< fi < , so this is a looser upper bound than what we

derived using the Master Theorem.)

n Example Use the master method to give tight asymptotic bounds for the following recurrences.
a. T(n) = 4T(n/2) + n.

 This of CASE 1 type
 a = 4, b = 2, f(n) = n, nlog

b
a = nlg4 = n2, Œ = 1

 \ f(n) = O(nlog
b

a–Œ) = O(nlg4-1) = O(n)
 \ T(n) = 4T(n/2) + n = Q(n2)

b. T(n) = 4T(n/2) + n2

 This of CASE 2 type
 a = 4, b = 2, f(n) = n2, nlog

b
a = nlg4 = n2

 \ f(n) = O(nlog
b

a–Œ) = O(nlg4) = O(n2)
 \ Q(nlog

b
a lg n) = Q (n2 lg n)

2.106 Computer Science & Information Technology for GATE

 \ T(n) = 4T(n/2) + n2 = Q (n2 lg n)
c. T(n) = 4T(n/3) + n3

 This of CASE 3 type:

 a = 4, b = 2, f(n) = n3, nlog
b

a = nlg4 = n2, Œ = 1

 \ f(n) = W(nlog
b

a+Œ) = W (nlg4+1) = W (n3)

 and 4(n/2)3 £ cn3, for c < 1

 \ T(n) = 4T(n/3) + n3 = Q(n3)

n Example The running time of an algorithm A is described by the recurrence T(n) = 7T(n/2) + n2. A competing algo-
rithm A¢ has a running time of T¢(n) = aT¢(n/4) + n2. What is the largest integer value for a such that A¢ is asymptotically
faster than A?

7T(n/2) + n2 aT(n/4) + n2

a = 7, b = 2 a = a, b = 4
f(n) = n2 f(n) = n2

nlog
b

a = nlg7 nlog
b

a = nlog
4

a

\ log4a = lg 7
\ The largest integer value for a is 4 lg7

n Example Give asymptotic upper and lower bounds for T(n) in each of the following recurrences. Assume that T(n) is
constant for n £ 2. Make your bounds as tight as possible, and justify your answers.

a. T(n) = 2T(n/2) + n3

 This is CASE 3 of Master Theorem
 a = 2, b = 2, f(n) = n3, nlog

b
a = nlg2 = n

 n3 = W(n1+1) = W(n2)
 2(n/2)3 £ cn3, c < 1 fi c = ¼
 T(n) = Q(n3)

b. T(n) = T(9n/10) + n

 This CASE 3 of Master Theorem
 a = 1, b = 10/9, f(n) = n, nlog

b
a = nlog

10/9
1 = n0 = 1

 n = W(n0+1) = W(n)
 9n/10 £ cn, c < 1 fi c = 9/10
 T(n) = Q(n)

c. T(n) = 16T(n/4) + n2

 CASE 2 of Master Theorem
 a = 16, b = 4, f(n) = n2, nlog

b
a = nlg

4
16 = n2

 T(n) = Q(n2 lg n)
d. T(n) = 7T(n/3) + n2

 This CASE 3 of Master Theorem
 a = 7, b = 3, f(n) = n2, nlog

b
a = nlg

3
7

 n2 = W(nlog
3

7+c)
 7(n/3)2 £ cn2, c < 1 fi c = 7/9
 T(n) = Q(n3)

e. T(n) = 7T(n/2) + n2

 This CASE 1 of Master Theorem
 a = 7, b = 2, f(n) = n2, nlog

b
a = nlg7

 n2 = O(nlg7-c)
 T(n) = Q(nlg7)

Programming, Data Structures and Algorithms 2.107

n Example Whose upperbound is more out of the following two recursive relations:

T(n) = T(n/2) + Q(1)

T(n) = T(n/2) + Q(n/2) = T(n/2) + Q(n)

n Answer:

First one: This of CASE 2 of Master’s Theorem

a = 1, b = 2, nlog
b

a = nlg1 = n0 = 1,

f(n) = Q(1)

T(n) = Q(f(n) lg n) = Q(lg n)

Upper bound = O(lg n)

Second one: This is CASE 3 of Master’s Theorem

 a = 1, b = 2, nlog
b

a = nlg1 = n0 = 1,

f(n) = Q(n/2)

af(n/b) £ cf(n) fi c(n/2)/2 = cn/4 £ cn/2

T(n) = Q(n/2) = Q(n)

Upper bound = O(n)

Thus, second one upper bound is more.
1. T(n) = 3T(n/2) + n2 fi T(n) = Q(n2) (case 3)

2. T(n) = 4T(n/2) + n2 fi T(n) = Q(n2 log n) (case 2)

3. T(n) = T(n/2) + 2n fi Q(2n) (case 3)

4. T(n) = 2n T(n/2) + 2n fi Does not apply (a is not constant)

5. T(n) = 16T(n/4) + n fi T(n) = Q(n2) (case 1)

6. T(n) = 2T(n/2) + n log n fi T(n) = n log2 n (case 2)

7. T(n) = 2T(n/2) + n log n fi Does not apply (non-polynomial difference between f(n) and nlog, a)

8. T(n) = 2T(n/4) + n0.51 fi T(n) = Q (n0.51) (case 3)

9. T(n) = 0.5T(n/2) + 1/n fi Does not apply (a < 1)

10. T(n) = 16T(n/4) + n! fi T(n) = Q (n!) (case 3)

11. T(n) = 2 2T n/() + log n fi T(n) = Q n() (case 1)

12. T(n) = 3T(n/2) + n fi T(n) = Q (nlg 3) (case 1)

13. T(n) = 3T(n/3) + n fi T(n) = Q (n) (case 1)

14. T(n) = 4T(n/2) + cn fi T(n) = Q (n2) (case 1)

15. T(n) = 3T(n/4) + n log n fi T(n) = Q (n log n) (case 3)

16. T(n) = 3T(n/3) + n/2 fi T(n) = Q (n log n) (case 2)

17. T(n) = 6T(n/3) + n2 log n fi T(n) = Q (n2 log n) (case 3)

18. T(n) = 4T(n/2) + n/log n fi T(n) = Q (n2) (case 1)

19. T(n) = 64T(n/8) + n2 log n fi Does not apply (f (n) is not positive)

20. T(n) = 7T(n/3) + n2 fi T(n) = Q (n2) (case 3)

21. T(n) = 4T(n/2) + log n fi T(n) = Q (n2) (case 1)

22. T(n) = 4(n/2) + n (2 – cos n) fi Does not apply. We are in Case 3, but the regularity condition is violated.(Consider
n = 2pk, where k is odd and arbitrarity large. For any such choice of n. you can show that c ≥ 3/2, there by violating
the regularity condition.)

2.108 Computer Science & Information Technology for GATE

n Example Solve the following recurrence relationship and represent the time complexity in Big-oh notation.
T(n) = T(÷n)+1
T(1) = 1

n Answer:
Assuming n is integer power of 2 like 2m for some integer value of m. Recurrence relation becomes:

T(2m) = T(2m/2) + 1
The same thing can be represented as:

S(m) = T(m/2)+1

Where m = log2 n

By using Masters theorem, that is comparing with
T(n) = aT(n/b)+f(n), we can write

Using the master theorem, nlog
b

a = nlog2 1 = n0 = 1

and f (n) = 1. Since 1 = Q (1),
case 2 applies and S(m) = Q(lg m). Therefore,

T (n) = Q (lg lg n).

n Example Solve the recurrence

T n T n n() () lg ,= ÍÎ ˙̊ +2

Take m = lg n, That is, n = 2m. We can rewrite the equation as become
T(2m) = 2T (2m/2) + m,

Now take S(m) = T (2m) to produce the new recurrence
S(m) = 2S(m/2) + m,
Which is very much like the previous recurrence.
Indeed, this new recurrence has the same solution.
S(m) = O(m lg m).
Changing back from S(m) to T(n), we obtain T(n) = T(2m) = S(m) = O(m lg m) = O(lg n lg lg n).

n Example Solve the following recurrence
Consider

Here, we T(n) = 9T (n/3) + n. have a = 9, b = 3, f(n) = n, and thus we have that n n nb alog log ()= =3 9 2Q . Since f n O n() ()log= -Œ3 9

where Œ = 1, we can apply case 1 of the master theorem and conclude that the solution is T(n) = Q(n2).

n Example Solve the following recurrence

T(n) = T (2n/3) + 1,

Here, a = 1, b = 3/2, f(n) = 1, and n n nb alog log /= = =3 2 1 0 1 case 2 applies, since, f(n) = Q Qn b alog ()() = 1 and thus the

solution to the recurrence is T (n) = Q(lg n).

n Example Arrive at asymptotic bound for the following recurrence relation.
T(n) = 3T (n/4) + n lg n,

We have a = 3, b = 4, f n n n() lg ,= and n nb alog log= =4 3 O(n0.793) Since f n n() log= ()+ŒW 4 3 , where Œª 0 2. , case 3 applies

if we can show that the regularity condition holds for f(n). For sufficiently large n, af(n/b) = 3(n/4) lg (n/4) £ (3/4) n lg n
= cf(n) for c = 3/4. Consequently, by case 3, the solution to the recurrence is T(n) = Q(n lg n).

n Example Arrive at asymptotic bound for the following recurrence relation.
T (n) = 2T(n /2) + nlg n,

The master method does not apply to the recurrence even though it has the proper form: a = 2, b = 2, f(n) = n lg n, and

n nb alog = . It seems that case 3 should apply, since f(n) = n lg n is asymptotically larger than n nb alog = .
The problem is that it is not polynomially larger.

Programming, Data Structures and Algorithms 2.109

The ratio f(n)/ n n n n nb alog (lg)/ lg= = is asymptotically less than nŒfor any positive constant Œ. Consequently, the recur-
rence falls into the gap between case 2 and case 3.

n Example Represent the complexity of the following code fragment in big-oh notation.
int main(){

 int i, doyouwant, A[100], n;

 i = 0;

 printf(“Enter 0 for no search 1 for search\n”);

 scanf(“%d”, &doyouwant);

 while ((A[i] != doyouwant) && (i < n)) i++;

 if (i > n) printf(“not found”\n);

 else printf(“found\n”);

return 0;

}

Analysis: This code has a comparison: (A[i] != doyouwant). We count comparisons to determine the running time. This
means the running time is essentially the number of times the while loop is executed. This depends on the input and the
value of doyouwant which we do not know. So we must consider the worst possible case. In the worst case the value of
doyouwant is not found and the while loop is executed n times. Therefore the worst-case running time is O(n).

n Example Solve the following recurrence relationship using Master theorem.

T(n) = 7T(n/4) + O(n2)

a = 7, b = 4, f (n) = n2

nlog
4
7

 = n<1, Compare it with f(n) = n2, as f(n) is greater so case III of Mastertheorem will be applied.
af(n/b) < c f(n) where < 1
7 (n/42) £ cn2 Æ (7/16)n2 £ cn2 Æ so it will be true for any 7/16 < c < 1.
So the solution is O (n2)

n Example Solve the following recurrence relation:

T(n) = 3T(n/2) + θ(n).

The solution to this recurrence is T(n) = θ(n^(log23)), which is approximately T(n) = q(n1.585)

n Example Derive tight asymptotic bounds for T(n) in each of the following recurrences. Assume that T(n) is a constant
for n = O(1).

1. T(n) = T(2n/3) + 6n Here,

 a b f n n= = =1
3
2

6, , ()

 n nb alog = =0 1

 fi = fif n n caseb a() () :logW 3

 T (n) = Q (f(n)) = Q (n)
This is 3rd case, regularity of n was shown in class and therefore T (n) = Q (n)

2. T (n) = T (5n/7) + 9
 Here,

 a b f n= = =1
7
5

9, , ()

 n nlog /7 5 1 0 1= =

2.110 Computer Science & Information Technology for GATE

 fi = fif n n caseb a() () :logQ 2

 T n n n nb a() (log) (log)log= =Q Q

 This is case 2 of Master theorem. Each level requires constant time and therefore the total running time is log (n) .
3. T n T n n() ()= +2 2

 Here, we solve the equation by substituting m = log n as it is not in the standard form.
 T (2m) = 2T (3m/2) + 22m

 let S (m) = T(2m)
 S (m) = 2 S (m/2) + 22m

 m m O casemlog () ()2 2 22 3= =
 fi S (m) = Q (22m)
 fi T (n) = Q (n2)
 to complete the solution you need to show the regularity of f(n) = n2

4. T n T n
n

n
() (/) (

log
)= +2 2

2
 If we observe, the function f(n) is not polynomial smaller than n b alog so case 1 fails. Thus, we will build a recursion

tree. The depth of the tree is log2n.

The amount paid at each level can be summed using the equation for a harmonic series.

n

n

n

n

n

n

n

n n2 2 2 2 4 2 2log log(/) log(/)
...

log(/)log()+ + + =

 = +
-

+
-

+ + =
n

n n n2
1 1

1
1

2
1
2

1(
log (log) (log)

...)

 = = + =
=
Ân

i

n
n O n n

i

n

2
1

2
1

1

ln log () (log log)
log

Q

5. T n T n T n() (/) (/)= +2 2 4

 This recurrence relation is the same as T(n)= 2T (n/2) since if you iterate a single iteration it becomes T(n)= T (n/2)
+ T(n/2) = T (n/2) + 2T (n/4) so the solution is the solution for T (n) = 2T (n/2), which by case 1 of master theorem
is T (n) = Q(n).

6. T (n) = 2T (n/2) + log (n!)

 We can not use Master theorem, this is the same as T(n) = 2T (n/2) + Q (n log n)
 So the solution is Q (n log2 n)

n Example Find the time complexity of the following functions:

2

n Answers:

 Here a = 2, b = 4, F(N) Œ Q(Nd) for d = 1
 bd = 41 = 4, so a < bd and T(N) Œ Q(N1)

2

 Here a = 9, b = 3, F(N) Œ Q(Nd) for d = 2
 bd = 32 = 9, so a = bd. T(N) Œ Q(N2 log(N))

0

Programming, Data Structures and Algorithms 2.111

 Here a = 8, b = 2, F(N) Œ Q(Nd) for d = 0 (it is a constant)
 bd = 20 = 1, so a > bd. Let P = Logb(a) = Log2(8) = 3 and T(N) Œ Q(N3)

n Example Solve the following recurrence

n Answer: If we observer the recurrence relation we may find that we can not apply the Master Theorem. We can use
multiple applications of that theorem to make a statement on the growth rate of T(N).
From the given fact that for N ≥ 10, we can find N £ £ N2.

 With bd = 21 = 2, we have a > bd, so T(N) Œ O(NP), P = Logb(a) = Log2(8) = 3.
 For this case, we conclude that T(N) Œ O(N3).

2. Here a = 8, b = 2, and d = 2.
 With bd = 22 = 4, we have a > bd, so T(N) Œ O(NP), P = Logb(a) = Log2(8) = 3.
 For this case also, we again conclude that T(N) Œ O(N3).

n Example Consider the following algorithm. Determine its time complexity.
Function xyz (A[1 .. N], N)

 If (N > 1) Then

 For J = 1 to N Do A[J]= (A[J] + [N - J]) / 2

 N2 = N / 2 // Integer division

 xyz (A[1 .. N], N2)

 xyz (A[(N2 + 1) .. N], (N - N2))

 For J = 1 to N2 Do A[J] = A[N – J] – A[J]

 End If

End Algorithm

n Answer: We count the number of loops. The top loop is executed N times; the bottom one N/2 times. It does not matter

an array of size N/2.

a = 2, b = 2, d = 1 so a = bd and T(N) Œ Q(Nd T(N) Œ Q

n Example K what is the largest value of exponent K such that T(N) Œ
O(N3)? Assume that K ≥ 0.

n Answer: K. Here a = b2, and P = log2(4) = 2.
 If K < 2, then a > bK, and T(N) Œ O(N2), hence T(N) Œ O(N3).
 If K = 2, then a = bK and T(N) Œ O(N2 Œ O(N3).
 If K = 3, then a < bK and T(N) Œ O(N3).
 If K > 3, then a < bK and T(N) Œ O(ND), for D > 3.
 Hence T(N) œ O(N3).
 Hence, we conclude that this holds for K £ 3.

n Example Arrive at upper bound for the following recurrence.

T n T
n

n() = () +8
2

3 2

 We apply the Master Theorem. That is,

 a b f n n= = =8 2 3 2; ; ()

 3 0 92 82n f n O n O nb a= = = Æ = fi- -() () () .log loge e e

 fi = =T n n n() () ()logQ Q2 8 3

2.112 Computer Science & Information Technology for GATE

n Example Solve the following recurrence.

T n T
n

n T
n

n() = () + =
Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

+
9
10 10

9
 We apply the Master theorem.

 a b f n n= = =1
10
9

; ; ()

n f n O n O n O nb a= = = = Æ =+
+

() () () () .log
log

e
e

e e
10
9

1

1 1

 af
n

b
cf n() £ ()

9
10

n
cn£

9
10

£ c

As c<1, we choose c to be
95

100
. Thus,

fi = =T n f n n() (()) ()Q Q

n Example Solve the following recurrence.

T n T
n

n() = () +2
4

By applying Masters theorem,

 a b f n n= = =2 4; ; ()

 n f n n n nb a= = = = fi() () () ()log logQ Q Q4 2

 fi = =T n n n n nb a() (log) (log)logQ Q

n Example Solve the following recurrence.

T n T n
n

() ()= - +1
1

This is not suitable for applying Masters theorem directly.

T n T n
n

T n
n n

() () () ...= - + = - +
-

+ = =1
1

2
1

1
1

 = - + + +
-

+ +
-

T n k
n n n k

(()) ...1
1 1

1
1

Let us find the depth of the recursion:
n k

n k

k n

- + =

- - =

= -

()1 1

1 1

2
Now we substitute and get:

T n T
n n

n() = () + +
-

+ +() = ()Q Q1
1 1

1
1
2

... log

n Example Solve the following recurrence and find upper and lower bounds.

T(n) 2
2

4T
n

n n() + log

This relation is not directly suitable for applying Masters theorem. First let us develop it a little:

Programming, Data Structures and Algorithms 2.113

T n T
n

n n T
n n n

n n() log (log) log= () + = () + + =2
2

2 2
2 2 2

4
2

4 4

= () + + =2
2 2

2
2

4 4T
n

n n n
n

log log ...

= () + + + ++
+2

2 2 2
1

1
4 4 4K

K KT
n

n n n
n

n
n

log log ... log

Let us find the depth of the recursion:
n
K2

11+ =

n = 2K+1

K0 = log n

Meaning we have log(n) members in the series.
Let us find an upper and lower bound.
Lower bound:
Let us take half of the biggest members and find the smallest among them:

n
n n

n
n

n n

2

1
2

1

2
log log= = =

Now we substitute
n

k
 with n and we get:

T n
n

n n
n

n n()
log

log
log

log≥ = ()2 2
1
2

4
4

= = fi
log log logn

n
n n n

2 16 32

4 5

fi = ()T n n n() logW 5

Now let us find an upper bound. We substitute
n

k
 with n and get:

T n n n n n n n() log log log£ + + + =4 4 4

= ◊ = filog log logn n n n n4 5

fi = () fiT n O n n() log5

fi = ()T n n n() logQ 5

n Example Given the following to recurrence relations for what value of a, upper bound of first one will be subset of
upper bound of second relation.

T(n) = 7T(n/2)+n2

T¢(n) = aT¢(n/4)+n2

First we compute the upper bounds for each of the given recurrence relations:

T n T
n

n() = () +7
2

2

By applying Master Theorem:
a b f n n= = =7 2 2; ; ()

2.114 Computer Science & Information Technology for GATE

n f n O n2 72 0 7= = Æ =[]fi-() () .log e e

fi = =T n n nb a() () ()log logQ Q 2 7

Now, applying Masters theorem to second recursive equation:

¢ = ¢ () +T n aT
n

n()
4

2

a = a; b = 4; f (n) = n2

n2 = f(n) = O(n log4a–e)

if a > 16 then $e > 0 such that :

n2 = O(n log4a–e) fi

fi T(n)= Q(n log4a)
So, we have:

n nalog log4 2 7>

log4 a > log2 7

log
log

log2

2
24

7
a

>

log2 a > 2 log2 7

log2 a > log2 72

a > 72

a > 49
Thus, for a value of 49, first one becomes subset of second one.

n Example Find a tight upper bound on the closed-form solution for the following recurrence:

T n T n n() ()= - +3 1

where T(n) is constant for sufficiently small n. That is, find a function g(n) such that T(n) Œ O (g(n)).

n Answer: The Master Theorem does not apply here. A recursion tree can be used. The tree has n + 1 levels if T(0)=1.
3i(n–i) work is done at the i th level, except for the bottom level, where 3n T(0) = 3n work is done The total work is:

(())3 3 3 3 3
0

1

0

1

0

1
i

i

n
n i

i

n
i

i

n
nn i n i- + =

Ê
ËÁ

ˆ
¯̃

-
Ê
ËÁ

ˆ
¯̃

+
=

-

=

-

=

-

Â Â Â

= - + =
=

-

=

-

Â Ân ii

i

n
i

i

n
n3 3 3

0

1

0

1

n n nn n n
n() () ()3 1

2
1 3 3 3

4
3

1-
-

- - +
+

+

= - - Œ
7
4

3
2

3
4

3n nn
O()

Thus, T(n) ŒO(3n)

n Example Analyse the following pseudocode and arrive at its complexity in big-oh notation.
XYZ1 (n)

if n £ 1

then return

for i ¨1 to 3

 do XYZ2 (n/4)

return

Programming, Data Structures and Algorithms 2.115

XYZ2 (n)

if n £ 1

then return

XYZ1 (n/4)
return

n Answer: In the worst case, let n be a power of 4.

T(n) = Q (1) + 3(Q(1) + T(n/16) = 3T(n/16) +Q(1). Case 1 of the Master Theorem applies, yielding T n n() ()log= Q 16 3 . So,

a tight upper bound is T n O n() ()log= 16 3 .

n Example Arrive at the complexity for the following recurrence.

T (n) = 2T (n/4) + ÷n = Q(÷n lg n).

n Answer: Applying Master theorem, a = 2, b = 4, f (n) = ÷n, and n b alog = nlog4 2 = ÷n. Since ÷n = Q () ,logn 42 case 2 of the
master theorem applies, and T(n) = Q(÷n lg n).

n Example Arrive at the complexity for the following recurrence.

T (n) = 4T (n/2) + n2 ÷n

n Answer: We have f (n) = n2÷n = n5/2 and nlogba = nlog2 4 = nlg2. Since n 5/2 = W (n lg 2+3/2), we look at the regularity condi-
tion in case 3 of the master theorem. We have

a f (n/b) = 4(n/2)2÷n/2 = n5/2/÷2 £ cn5/2 for 1/√2 £ c < 1.

Case 3 applies, and thus T (n) = Q(n2÷n).

n Example Arrive at the complexity for the following recurrence.

T (n) = T (n – 1) + n

n Answer: Using the recursion tree shown here, we get a guess of T (n) = Q(n2).

n

n-1

n-2

n-3

.

.

.

2

1

Q(n2)

First, we prove the T(n) = W(n2) part by induction. The inductive hypothesis is T(n) ≥ cn2 for some constant c > 0.

T(n) = T(n −1) + n

≥ c(n − 1)2 + n

= cn2 − 2cn + c + n

≥ cn2

if −2cn + n + c ≥ 0 or, equivalently, n(1 − 2c) + c ≥ 0. This condition holds when n ≥ 0 and 0 < c £ 1/2.

For the upper bound, T (n) = O(n2), we use the inductive hypothesis that T (n) £ cn2 for some constant c > 0. By a similar
derivation, we get that T (n) £ cn2 if −2cn + n + c £ 0 or, equivalently, n(1 − 2c) + c £ 0. This condition holds for c = 1 and
n ≥ 1.

2.116 Computer Science & Information Technology for GATE

Thus, T (n) = Ω(n2) and T (n) = O(n2), so we conclude that T (n) = Θ(n2).

n Example Solve T(n) = 3T(n/5) + lg2n

n Answer: Here, a = 3, b = 5 and d = 2. By using Case 1 of the Master Method, we have T(n) = Q nlog () .5 3()

n Example Solve the following recurrence relation and arrive asymptotic complexity.

T(n) = T n n() + ()Q lg lg

Change of variables: let m = lg n. Recurrence becomes S(m) = S (m/2) + Q(lg m). Thus, case 2 of Master’s theorem applies,
so T(n) = Q ((lg lg n)2).

n Example Solve the following recurrence relation and arrive asymptotic complexity.

T(n) = 10T(n/3) + 17n1.2

n Answer: Since log3 9 = 2, so log3 10 > 2 > 1.2. Case 1 of Master’s theorem applies, Q nlog .3 10()

n Example Solve the following recurrence relation and arrive asymptotic complexity.

T(n) = 7T(n/2) + n3

n Answer: By Case 3 of the Master Method, we have T(n) = Q(n3).

n Example: Solve the following recurrence relation and arrive asymptotic complexity.

T(n) = T n n/2 6046+() +

n Answer: By induction, T(n) is a monotonically increasing function. Thus, for large enough n, T(n/2) £ T(n/2+÷n) £
T(3n/4). At each stage, we incur constant cost ÷6046, but we decrease the problem size to atleast one half and at most
three-quarters.

Therefore T(n) = Q (lg n).

n Example Solve

T(n) = T(n – 2) + logn

n Answer: T (n) = Q(n log n), This is T(n) = lg lg
/ /

2
1

2

1

2
i i

i

n

i

n

= =Â Â≥ > (n/4) (lg n/4) = W (n lg n). For the upper bound

note that T(n) < S(n), where S(n) = S(n –1) + lg n, which is clearly O (n lg n).

n Example Solve the following recurrence relation and arrive asymptotic complexity.
T(n) = T(n/5) + T(4n/5) + Q(n)

n Answer: Master’s theorem doesn’t apply here. Draw recursion tree. At each level, do Q(n) work. Number of levels is
log5/4 n = Q(lg n) so guess T(n) = Q (n lg n) and use the substitution method to verify guess. In the f(n) = Q(n) term, let
the constants for W(n) and O(n) be n0, c0 and c1, respectively. In other words, let for all n ≥ n0, we have c0n £ f(n) £ c1n.

First, we show T(n) = O(n).

For the base case, we can choose a sufficiently large constant d1 such that T(n) < d1n lg n.
For the inductive step, assume for all k < n, that T(k) < d1n lg n. Then for k = n, we have

T(n) £ T
n

T
n

c n
5

4
5 1() + () +

£ d
n n

d
n n

c n1 1 15 5
4
5

4
5

lg lg() + () +

 £ d n n
d n d n

c n1
1 1

15
5

4
5

5
4

lg lg lg- - () +

 £ d n n n d c1 1 1
5 4 5 4

5
lg

lg lg /
-

+ ()Ê
Ë

ˆ
¯ + -Ê

Ë
ˆ
¯

Programming, Data Structures and Algorithms 2.117

The residual is negative as long as we pick d1 > 5c1/(lg 5+4 lg(5/4)). Therefore, by induction, T(n) = O(n lg n).
To show that T(n) = W(n), we can use almost the exact same math.

For the base case, we choose a sufficiently small constant d0 such that T(n) > d0n lg n.
For the inductive step, assume for all k < n, that T(k) > d0n lg n. Then, for k = n, we have

T(n) ≥ T
n

T
n

c n
5

4
5 0() + () +

≥ d
n n

d
n n

c n0 0 05 5
4
5

4
5

lg lg() + () +

≥ d n n n c d0 0 0
5 4 5 4

5
lg

lg lg /
+ -

+ ()Ê
Ë

ˆ
¯

Ê
Ë

ˆ
¯

The residual is positive as long as d0 < 5c0/(lg 5 + 4 lg(5/4)). Thus, T(n) = W (n lg n).

n Example Solve the following recurrence relation and arrive asymptotic complexity.

T(n) = nT n n() +100

n Answer: Master’s theorem does not apply here directly. Pick S(n) = T(n)/n. The recurrence becomes S(n) = S(÷n) + 100.
The solution of this recurrece is S(n) = Q (lg lg n). (You can do this by a recursion tree, or by substituting m = lg n again.)
Therefore, T(n) = Q (n lg lg n).

n Example Solve the following recurrence relation and arrive asymptotic complexity.

T(n) = 3*T(n/3) + n + log(n)

n Answer: Using Master’s Theorem: a = 3, b = 3, f(n)= n + log(n), nlog
ba=n

Master Theorem case 2 applies and thus we get: T(n)= Q(nlogn).

n Example Solve the following recurrence relation and arrive asymptotic complexity.

T(n) = 4*T(n/3) + n log (n)

n Answer: Using Master’s Theorem: a=4, b=3, f(n)= n log(n), nlog
ba=n1.2…

Since for e =.1 we get f(n) Œ O(nlog
ba–e(=n1.2…–e)), Master Theorem case 1 applies and thus we get: T(n)= Q(nlog

3
4).

n Example Solve the following recurrence relation and arrive asymptotic complexity.

T(n) = 2*T(n – 2), T(0) = T(1) = 0

n Answer: Forward iteration yields T(n)=0 for all n. Hence we have T(n) = Q(1).

n Example Answer true or false.

n Answer: Correct answers are in bold
(a) [T F] If f Œ o(g), then f(n) £ g(n) for infinitely many n.

(b) [T F] If f Œ O(g), then f(n) £ g(n) for infinitely many n. (It should be >=).

(c) [T F] x(lg y) = y(lg x).

(d) [T F] n! Œ O(nn).

(e) [T F] A MAX-Heap can be transformed into a MIN-Heap in linear time.

n Example Given the following function, select the following statements are true or false.

f(n) =

n n

n

3 , if is even

, otherwise

Ï

Ì
Ô

Ó
Ô

Answers are given in bold.

2.118 Computer Science & Information Technology for GATE

(a) [T F] f(n) = O(n3) This is the worst out of two terms n3 and n.
(b) [T F] f(n) = o(n3) It should be o(n).
(c) [T F] f(n) = Q(n3).
(d) [T F] f(n) = W(n3) It should be o(n).

n Example Consider the following recursive divide-and-conquer algorithm. How many multiplications (“*”) are per-
formed to compute DILEMMA (2, n) for n = 1, 2, 4, 8? . Write the recurrence equation for the number of multiplications
(“*”) needed to compute DILEMMA (2, n). What is the asymptotic Theta growth class of DILEMMA’s worst-case run-
ning time? (Use multiplications (“*”) as basic operation.) Justify your answer! What value does DILEMMA (a, n) return?

Function DILEMMA(a, n){

if (n == 1) return a

m = n/2

return DILEMMA(a, m) * DILEMMA (a, m)

}

n Answer: Number multiplications (“*”) that are performed to compute DILEMMA(2, n) for n = 1, 2, 4, 8 are given as:

n = 1: 0, n = 2: 1, n = 4: 3, n = 8 : 7

The recurrence equation for the number of multiplications (“*”) needed to compute DILEMMA (2, n) is given as:

T(n) =

0, if n = 1

2*T(n/2) + 1, otherwise

Ï

Ì
Ô

Ó
Ô

Using Master’s Theorem: a=2, b=2, f(n)=1, nlog
b

a =n

Since for e =.5 we get f(n) Œ O(nlog
b

a–e(= n.5)) the Master Theorem case 1 applies and thus we get: T(n)= Q(n).
This DILEMMA function returns an

n Example It is proposed to sort n elements by dividing into k sub lists of n/k elements and each of them insertion
sorting is carried out separately. These sub lists are merged using standard merge sorting approach. Discuss about the
complexity of this algorithm.

n Answer: Sorting a list of k elements using Insertion Sort takes Q(k2) worst-case time, so sorting n/k such lists takes n/
k∙ Q(k2) = Q(n/k ∙ k2) = Q(nk) worst-case time. Now, we propose to merge the lists pairwise, then merge the resulting lists
pairwise until there is only one list. the pairwise merging requires Q(n) time at each level. Thus, total running time for
merging becomes Q (n log(n/k)). Final asymptotic complexity of this method can be said as: Q (nk + n log(n/k)) . That is:
Q (n logn).

n Example Solve the following recurrence relations and arrive at their asymptotic complexity.
a. T(n) = 2T(n/2) + n4. If we choose ε = 0.01, we have nlg2 = O(n4 – e), so by the 3rd case of the Master Theorem, we get

T(n) = Q(n4).
b. T(n) = T(7n/10) + n. If we choose e = 0.01, we have nlog

10/7
1 = 1 = O(n1 – e), so by the 3rd case of the Master Theorem,

we get T(n) = Q(n).
c. T(n) = 16T(n/4) + n2. If we choose e = 0.01, we have nlog

4
16 = n2 , so by the 2nd case of the Master Theorem, we get

T(n) = Q(n2 lg n).
d. T(n) = 7T(n/3) + n2. If we choose e = 0.01, we have nlog

3
7 ª n1.75 = O(n2 – e), so by the 3rd case of the Master Theorem,

we get T(n) = Q(n2).
e. T(n) = 7T(n/2) + n2. If we choose e = 0.01, we have nlog

2
7 ª n2.8 = W(n2 + ε), so by the 1st case of the Master Theorem,

we get T(n) = Q(n log
2

7).
f. T(n) = 2T(n/4) + ÷n. If we choose e = 0.01, we have n log

4
2 = ÷n, so by the 2nd case of the Master Theorem, we get

T(n) = Q(÷n lg n).

Programming, Data Structures and Algorithms 2.119

g. T(n) = T(n – 2) + n2. We have:
 T(n – 2) = T(n – 4) + (n – 2) 2 ,
 T(n – 4) = T(n – 6) + (n – 4) 2 , and so on.
 So T(n) = n2 + (n – 2) 2 + (n – 4) 2 + … .
 If n = 2k, k integer, T(n) = Si=1

k(2i) 2 = 4Si=1
k(i 2) = 4 k(k+1)(2k+1)/6 = n(n/2+1)(n+1) / 3 = Q(n3).

 If n = 2k+1, k integer, T(n) = Si=1
k(2i+1) 2 = 4Si=1

k(i 2) + k = 4k(k+1)(2k+1)/6 + k = n(n/2+1)(n+1) / 3 + n/2 = Q(n3).
 So T(n) = Q(n3).

n Example Analysing complexity of a divide and conquer method.
Consider that we want to multiply two n-bit numbers A, B. This can be visualised as multiplication of a series of n/2 bit num-
bers. For example, an 8-bit number 11000101(197) can be represented as two 4-bit numbers as: 1100*24+0101=12*16+5=
197. In the same manner, we assume A, B are made up of n/2 bit numbers as shown here.

(2n/2X + Y) (2n/2W+Z) =2nXW + (XZ + YW) 2n/2 +YZ

That is we are converting the multiplication of two n-bit numbers into multiplication of four n/2 bit numbers, plus some
extra work involved in additions. We are recursively calling multiplication and performing some additions in every recur-
sion. If T (n) be the running time of multiplying two n-bit numbers, the same can be represented now as:

T (n) = 4T (n/2) +O (n)

Four multiplications of n/2 bit numbers
Addition is going to be between numbers that have atmost 2n bits. Thus addition can be O (n).

By applying Master’s theorem:

a = 4, b = 2

log2 4 = 2, d = 1

The running time complexity becomes O (n2).
But this is as good as our traditional multiplication algorithm. Since, we now know that multiplications dominate the

running time, if we can reduce the number of multiplications to three, which can bring down our T(n) by 25%. To calcu-
late product, we just need the following 3 multiplications separately:

1. (X+Y)(W+Z) 2 additions and one multiplication
2. XW 1 multiplication
3. YZ 1 multiplication

Then we can calculate
XZ + YW = (X + Y)(W + Z) – XW – YZ

Thus we use three multiplications at the expense of some extra additions and subtractions, which run in constant time(
each of O(n) time). Thus,

T(n) = 3T(n/2) + O(n)

Applying Master’s theorem,

A = 3, b = 2, k = 1

Thus, T(n) = O(nlog
2

3)

Since log 23 ~ 1.5,

We have reduced the total number of recursive calls in our program.

n Example Give asymptotic complexity of the following function.
Function XYZ(n : integer)

for i = 1 to 2n do

for j =1 to i + 3 do

print(“Hi”);

2.120 Computer Science & Information Technology for GATE

n Answer: How many times print is executed is given as:

= +() = + =
+()

=

+

= = ==
Â Â Â ÂÂ
j

i

i

n

i

n

i

n

i

n

i i
n n

n
1

3

1

2

1

2

1

2

1

2

3 3
2 2 1

2
3 2.

= 2n2 + 7n

2n2 + 7n = Q (n2)

n Example Order the functions below according to their order of growth (that is a function f(n) should be listed before
g(n) if f(n) = O(g(n)). Enclose functions with same complexity between square brackets.

n n

n

n n n n

n

n n

n n

n

8

3

2 2

2

2

2

3

236

2

3

1

17
3

1

+ + -

++

log log

log log

log

log log log

log

/

log log log

n

n n

n n

n

n n

n

n

n n

n2

2

2 1 2

7

2

7

3

3

1 1

4 30

3

2

+

+

+

-

+

-

nn

n Answer :

1 1

3 3

1

7

4

2

2

2

3

+

+

-

+

/

log]

log log log

log

[log

log log log

n

n n

n

n

n n

n

n n

n n n-- -1 230n

log log]

log

[log2

2 2

7

3

2

8

2

2

3

2

236

3

17

3
1

n n

n n n n

n

n n

n

n

n n

+

+ +
+

n Example Given an example problem whose complexity is O(!n).

n Answer: A good example is permutations of a string. See the following Java function which has to be invoked with a string
whose characters has to be permuted as first argument and an empty string as second argument like: rPrintPerms(“rama”,””);

private static void rPrintPerms (String charList, String soFar) {

if (N==0) {

System.out.println (soFar);

} else {

for (int i=0; i<N; i++) {

String charListMinusIthChar = charList.substring (0,i) + charList.substring(i+1,N);

rPrintPerms (charListMinusIthChar, soFar+charList.charAt(i));

}

}

This function is a recursive function with a parameter soFar which keeps track of the current state of the computation. At
each step, a for loop adds each possible next character to so Far at the same time it removes it from the original list charL-
ist. We may quickly notice that the computational complexity of rprintPerms is factorial in the length of theargument.
That is, if string charList has length N, then the running time is O(N!).
Is it possible to have two designs for the same data structure that provide the same functionality but are implemented
differently?
Yes; it is possible to have multiple implementations of the same data structure that provide the same functionality.
What is the difference between the logical representation of a data structure and the physical representation?
The logical representation is the way that we think of the data being stored in the computer. The physical representation
is the way the data is actually organised in the memory cells. For example, we might think of a list of names as being or-
ganised in a column. However, when the list is stored in the computer the names are actually strings that follow one after
another in a row.
If we have two lists of integers in the range 1..100, describe a method for determining if they are actually the same
lists or not (although possibly reordered). Do comment about its time complexity.
Allocate an array of size 100. Run through the first list and count the number of times each value occurs using this array

Programming, Data Structures and Algorithms 2.121

(thus if we find a value of 42 we increment the 42nd value in the array). Repeat with the second list, only decreasing the
values this time. Finally, run through the array we allocated and make sure everything in it is 0. If anything is non-zero,
return false. Otherwise, return true. Its time complexity is O(n).

n Example Tromino Tiling

A tromino is a figure composed of three 1 × 1 squares in the shape of an L. Given a 2n × 2n checkerboard with 1 missing
square, we can recursively tile that square with trominoes.
Here’s how we do it:

(1) Split the board into four equal sized squares.
(2) The missing square is in one of these four squares. Recursively tile this square since it is a proper recursive case.
(3) Although the three other squares are not missing squares, we can “create” these recursive cases by tiling one tronimo

in the center of the board, where appropriate:
Now, let us do the analysis. Let T(n) be the running time of tiling a nxn square, where n is a perfect power of 2. Then we
form the following recurrence relation:
T(n) = 4T(n/2) + O(1), since the extra work involves putting a tile in the middle. Using the master theorem, we have a = 4,
b= 2, d=0, and bk = 1 < A. Thus, the running time is O(n2). This makes sense since we have n2 to tile and tile at least once
each recursive call.

n Example Skyline problem
We have to design a program to assist an architect in drawing the skyline of a city given the locations of the buildings in
the city. To make the problem tractable, all buildings are rectangular in shape and they share a common bottom (the city
they are built in is very flat). The city is also viewed as two-dimensional. A building is specified by an ordered triple (Li, Hi,
Ri) where Li and Ri are left and right coordinates, respectively, of building i and Hi is the height of the building. In Fig. 2.7,
buildings are shown on the left with triples (1,11,5), (2,6,7), (3,13,9), (12,7,16), (14,3,25), (19,18,22), (23,13,29), (24,4,28)
the skyline, shown on the right, is represented by the sequence: (1, 11, 3, 13, 9, 0, 12, 7, 16, 3, 19, 18, 22, 3, 23, 13, 29, 0)

0 5 10 15 20 25 300 5 10 15 20 25 30

Figure 2.7

We need to merge two skylines—similar to the merge sort
For instance: there are two skylines,
Skyline A: a1, h11, a2, h12, a3, h13, …, an, 0

Skyline B: b1, h21, b2, h22, b3, h23, …, bm, 0
merge (list of a’s, list of b’s) form into (c1, h11, c2, h21, c3, …, cn+m, 0)

Clearly, we merge the list of a’s and b’s just like in the standard Merge algorithm. But, it addition to that, we have to
properly decide on the correct height in between each set of these boundary values. We can keep two variables, one to
store the current height in the first set of buildings and the other to keep the current height in the second set of buildings.
Basically, we simply pick the greater of the two to put in the gap.

After we are done, (or while we are processing), we have to eliminate redundant “gaps”, such as 8, 15, 9, 15, 12, where
there is the same height between the x-coordinates 8 and 9 as there is between the x-coordinates 9 and 12. (Similarly, we
will eliminate or never form gaps such as 8, 15, 8, where the x-coordinate does not change.)

Since merging two skylines of size n/2 should take O(n), letting T(n) be the running time of the skyline problem for n
buildings, we find that T(n) satisfies the following recurrence:

T(n) = 2T(n/2) + O(n)

Thus, just like Merge Sort, for the Skyline problem T(n) = O(nlgn).

2.122 Computer Science & Information Technology for GATE

n Example Write a recursive divide and conquer algorithm for finding the minimum number in an array of unsorted num-
bers. (b) Analyse the complexity of your algorithm.

(a) modify mergesort: instead of merge just choose min of the two returned scalar.
(b) T(n) = 2T(n/2) + c, (master’s theorem) 2>2^0:: T(n) = O(N^(log_2 (2)))=O(N)

Function min(array a)

If (a.size()==1) return a[0]

Else

 Int x = min(number[0..a.size()/2])

 Int y = min(number[a.size()/2+1..a. size()]

 If (x<y) return x else return y

End if

End function

n Example Analyse the worst case running time of the following program. Here, arrays A and B having integers with
more than 1 element. This program outputs the numbers of elements in B equal to the sum of prefix sums in A
 c ¨ 0

 for i ¨ 0 to n–1 do

 s ¨ 0

 for j ¨ 0 to n–1 do

 s ¨ s + A[0]

 for k ¨ 1 to j do

 s ¨ s + A[k]

 if B[i] = s then

 c ¨ c+1

 return c

n Answer: Computational complexity of each line is annoted below.
 c ¨ 0 O(1)

 for i ¨ 0 to n-1 do O(n)

 s ¨ 0 O(n)

 for j ¨ 0 to n-1 do O(n2)

 s ¨ s + A[0] O(n2)

 for k ¨ 1 to j do n*(1+2+…+n) = O(n3)

 s ¨ s + A[k] O(n3)

 if B[i] = s then O(n)

 c ¨ c+1 O(n)

return c O(1)

By observing the above analysis, the worst case running time can be said as O(n3).

n Example Suppose that each row of an n × n array A consists of 1’s and 0’s such that, in any row of A, all the 1’s come
before any 0’s in that row. That is any row contains a series of 1s followed by a series of 0’s as shown below.
11110000
11111100
11000000
11100000
Design and implement an algorithm for finding the row of A that contains the most 1’s.

Programming, Data Structures and Algorithms 2.123

n Answer: Start at the upper left corner of the matrix. Walk across the matrix until a 0 is found. Remember column index
of 0. In the case of given matrix, this is 4 (4th indexed column. Here, this four also indicates that there are four 1s in that
row). Then walk down wards to next row and traverse in that row until a 1 is found. Compare this 1s column index with
previous one save the largest one. This is repeated until the last row is encountered.

n Example Suppose you are given an n-element array A containing distinct integers that are listed in increasing order.
Given a number k, describe a recursive algorithm to find two integers in A that sum to k, if such a pair exists. What is the
running time of your algorithm?

n Answer: The following function takes an array A, integers i, j and k. Here, i and j are the two elements whose sum is
required to be k. If such a pair exists the function has to return true else false. We know that array is having elements in
ascending order. We call this function with i value as the index of first element (0) and j value as the index of the last ele-
ment (n-1). In the function, we sum ith and jth elements. If it is less than k then we have to search for another element
whose value is greater than ith element. Thus, we search for the pair between i+1 and j. If the sum is greater than k, then
we have to consider another element that is less than jth element. Thus, we search for the pair between i and j-1 recursively.
This, we repeat recursively till we find the solution.
 Algorithm FindPair(A, i, j, k)

 if i = j then

 return false

 else

 if A[i] + A[j] < k then

 return FindPair(A, i+1, j, k)

 else

 if A[i]+A[j] > k then

 return FindPair(A, i, j-1, k)

 else

 return true

 endif

 endif

 endif

For each call, the running time is O(1).
For each call, at most one recursive call is activated.
Since the input size decrease by 1 at each recursive call, we can represent the running time as:

T(n) = T(n –1) + O(1)

Obviously, T(n) = O(n).

n Example The following algorithm is proposed for calculating an for an integer value of n. Analyse its worst-case run-
ning time, and express it using Big-Oh notation. Do explain how it works by preparing a snap shot.
Algorithm power(a,n)

k =n

b =1

c =a

while k > 0 do

 if k mod 2 = 0 then

 k ¨ k/2

 c ¨ c*c

 else

 k ¨ k-1

 b ¨ b*c

return b

2.124 Computer Science & Information Technology for GATE

n Answer: The running time is O(logn) for the following reasons. The initialisation and the if statement and its contents
take constant time. So, the running time is determined by how many iterations in the while loop. Note that if k is even, it
gets halved, and if it is odd, it gets decremented, and halved in the next iteration. So at least every second iteration of the
while loop halves k. One can halve a number n at most logn times before n <= 1. So, this suggest that the while loop will
run for O(logn) iterations.

Snap shot assuming n as 19.

k c b

19 a 1

k is odd

18 a

k is even

9 a2

k is odd

8 a3

k is even

4 a4

k is even

2 a8

k is even

1 a16

k is odd

0 a19

Now result is available in b.

n Example Assume that we have two arrays A and B which contains roll numbers of the students who has registered in
two courses. The following algorithm is proposed to count the number of male students enrolled in both of 2 courses (A
and B). Assume that the class sizes of both courses are n, n > 50.
function AlgorithmA(A,B)

1 result = 0;

2 for i=1 to n

3 if A[i] is male

4 for j=1 to n

5 if A[i]=B[j]

6 result = result + 1;

7 break; //stop iterating the inner for-loop.

8 return result;

What are the best, average, and worst cases of this algorithm [Assume that the courses are equally welcomed by male and
female students, and all students enrolled in A will enroll or not enroll in B with equal possibility]?
Best case: All course A students are female

Average case: Half of course A students are male and half of these male students are found in course B’s list, evenly
distributed.
Worst case: All course A students are male and none of them study course B.

Best case: n
Worst case: n2

Average case: n2

Programming, Data Structures and Algorithms 2.125

By direct observation, state the order of growth of the running time of each of the 3 cases.
Formulate the running times with abstract coefficients to prove your observation.
Let t3a = number of male students in course A.
Let t4 = number of times line 4 is executed.
Let t5 = number of times line 5 is executed.
Let t6 = number of times line 6 is executed.
T(n)=C1+C2(n+1)+C3(n)+C4(t4)+C5(t5)+C6(t6)+C7(t6)+C8
Best case: t3a= 0, t4 = t5 = t6 = 0

fi T(n)= C1 + C2 (n +1) + C3(n) + C8 = An + B

Worst case: t3a= n, t4= n (n+1),t5 = n2, t6= 0

fi T(n)= C1+C2(n+1) + C3(n) + C4(n*(n+1)) + C5(n2) + C6(0) + C7(0) + C8 = An2 + Bn + C

Average case: t3a= n/2, t6 = n/4, t5 = n/4*(n) + n/4*n/2 = (3/8)n2 , t4 = n/4*(n + 1) + n/4*n/2 = (3/8)n2 + n/4,

T(n) = C1 + C2 (n+1) + C3(n) + C4((3/8)n2 + n/4) + C5* ((3/8)n2) + C6(n/4) + C7(n/4) + C8 = An2 + Bn + C

Describe the running times in terms of
a. Asymptotic Upper Bound,
b. Asymptotic Lower Bound, and/or
c. Asymptotic Tight Bound

Best case: (c) Q (n)
Worst case: (c) Q (n2)
Average case: (c) Q (n2)
AlgorithmA: (a) O(n2), (b) W (n)

2.4.1.4 A Note on Reducing Space Complexity

We know that space complexity of an algorithms is also an important criterion while comparing and selecting the algo-
rithms for practical problems. Also, it is vital to reduce the space requirements of algorithms. In a nutshell, we may employ
some alterantive physical storage schemas to reduce memory space requirements. However, it poses another difficulty.
That is, if we propose another schema of storage; then we also need to propose (new) mechanisms to do the operations.
For example, if we propose to store a 2D matrix in a 1-D array, then all the operations such as additions, subtractions, etc.
which we carry on 2-D matrix has to modified such that they assume matrix is in 1-D array. In the following, we propose
some examples which illuminates the reader about reducing memory space requirements of algorithms.

n Example Propose a method to map a symmetric matrix into a 1-D array along with methods to add, subtract, multi-
ply symmetric matrices which are in the 1-D array fashion.

We know that symmetric matrices will be having their upper and lower triangular portion elements as same. Thus, to
conserve memory, we propose to store only lower trainangular part of the matrix including main diagonal elements. If one
observes, we can find that ith row jth column element of the symmetric matrix is stored in location i*(i+1)/2+j of 1-D
array. For example, 2nd row 2nd column element, i.e., x5 will be available at: 2*(2+1)/2+2=3+2=5.

0 1 2 3

0 x0 x1 x3 x6

1 x1 x2 x4 x7

2 x3 x4 x5 x8

3 x6 x7 x8 x9

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9
0 1 2 3 4 5 6 7 8 9

Total number of elements in the 2-D symmtric matrix = n2

2.126 Computer Science & Information Technology for GATE

Number of elements needed in the 1-D representation= 1+2+…+n = n(n+1)/2
Thus, a saving of almost 50%.

If we want ith row jth column element of the symmetric matrix, its location in the 1-D array can be calculated as:
i*(i+1)/2+j. However, this will not work for upper triangular portion elements. Thus, if we want upper triangular portion
elements of the 2-D array, we simply exchange their row (i) and column(j) indexes and then apply the above formula to
get the required element. This became possible because of symmetry.

The following program demonstrates the storage of a symmetric matrix in a 1-D array and accessing the same. Re-
member, really 2-D array information is in 1-D fashion. However, users can still work at 2-D notation by using the above
mapping function.

#include<stdio.h>

int Element(int s[], int i, int j){

return s[i*(i+1)/2+j];

 }

int main(){

int i,j,k,s[200],n,a[10][10];

printf(“Enter Size of the matrix\n”);

scanf(“%d”, &n);

for(i=0;i<n;i++)

for(j=0;j<n;j++) scanf(“%d”, &a[i][j]);

for(i=0,k=0;i<n;i++)

for(j=0;j<=i;j++) s[k++]=a[i][j];

/* here k becomes the total elements of 1-D array */

printf(”Symmetric Matrix Data From 1-D Array\n”);

for(i=0;i<k;i++)printf(”%d\n”, s[i]);

printf(”Enter Row and Columen Element of Any element\n”);

scanf(“%d%d”, &i, &j);

if(j>i) {

 int t=i;

 i=j;

 j=t;

}

printf(”Element Value=%d\n”, Element(s,i,j));

return 0;

}

Now, let us discuss about how to add two symmetric matrices which are represented in 1-D array fashion as explained
above.
Consider First matrix A and its 1-D array representations are:

1 9 1 9

9 2 2 8

1 2 3 1

9 8 4 1

1 9 2 1 2 3 9 8 4 1

Programming, Data Structures and Algorithms 2.127

Consider Second symmetric matrix and its 1-D representations are:

1 7 1 9

7 2 7 4

1 7 3 1

9 4 4 1

1 7 2 1 7 3 9 4 4 1

Now their sum matrix and its 1-D representations are:

1+1 9+7 1+1 9+9

9+7 2+2 2+7 8+4

1+1 2+7 3+3 1+1

9+9 8+4 4+4 1+1

1+1 9+7 2+2 1+1 2+7 3+3 9+9 8+4 4+4 1+1

By observing the above workout, we can say that adding two 2-D symmetrix matrixes in this representation is same as
adding their resective 1-D representations element by element. It is true with the subtraction of two symmetric matrices.
The following function allows us to do addition of two symmetric matrices which are in their1-D representation.

We know that in nxn elements, total n*(n+1)/2 elements are stored in the 1-D array. Thus, in the function, we allocate a
dynamic array to store n*(n+1)/2 elements. The address of this array is returned as the resultant matrix in 1-D representa-
tion.

int * AddSymMat(int a[], int b[], int n){

int i, *c;

C=(int*) malloc(n*(n+1)/2*sizeof(int));

for(i=0; i< n*(n+1)/2; i++) C[i]=a[i]+b[i];

return C;

}

We can carry subtraction also in the same fashion. For multiplication, we propose the following function. Verify whether
it will give the expected results are not. Remember, we need to calculate only lower triangular portion of the product of
two symmetric matrices.

int * ProdSymMat(int a[], int b[], int n){

int i, j,k,l,*c;

C=(int*) malloc(n*(n+1)/2*sizeof(int));

l=0;

for(i=0; i<n; i++)

for(j=0;j<=i;j++){

C[l]=0;

for(k=0;k<n;k++) C[l] += Element(a, i,k) * Element(b,k,j);

l++;

}

return C;

}

2.128 Computer Science & Information Technology for GATE

n Example Now consider storing two symmetric matrices of same size (nxn) in a 2-D array to conserve space.

A

1 9 1 9

9 2 2 8

1 2 3 1

9 8 4 1

B

1 7 1 9

7 2 9 4

1 9 3 1

9 4 4 1

1 1 4 4 9

9 2 3 9 1

1 2 3 2 7

9 8 4 1 1

Resultant Matrix C

As we know that the syemmtric matrices will be having redundancy, we proposed to store two nxn symmetric matrices
lower triangular portions in a nx(n+1) matrix. Here, we may find a saving of almost 50%. That is, as such for both the
matrices A and B together we need 2n2 elements. If we store both in a 2-D array like C, we need n2+n elements. This is
2-D array to 2-D array mapping.
Probable mapping steps are:

for(i=0;i<n;i++)

for(j=0;j<=I;j++) {

 C[i][j]=A[i][j];

 C[n-1-i][n-j]=B[i][j];

}
Of course, if we want to ith row j’th column element of Matrix A, it can be accessed simply as ith row jth column element
of C as it is stored like that way. Similarly, if we want ith row jth column element of matrix B, the same can be accessed
as C[n-1-i][n-j] as it is stored like that way as shown in the above code fragment. That is, what ever way we have stored
the element, the same way we can access. However, with both the matrices A and B, if we want upper triangular portion
elements, then we can exchange their row and column elements and then access from C.

Sparse Matrices

In Engineering, we may encounter a special type of matrix known as sparse matrix. From the name itself, one can guess
what it is.

An m x n matrix (table) is said to be sparse if “many” of its elements are zero (empty). A matrix which is not sparse is
dense. The boundary between a dense and a sparse matrix is not precisely defined. Diagonal and tridiagonal n x n ma-
trices are sparse since they have O(n) nonzero terms and O(n2) zero terms.
Definition: A matrix M is diagonal iff M(i, j) = 0 for i π j.
Definition: A matrix M is tridiagonal iff M(i, j) = 0 for |i – j| > 1.
Both of these special matrices are special cases of the more general square band matrix in which the non-zero elements are on
a band which is centered about the main diagonal. The following are sample 6x6 diagonal and tri-diagonal matrices.

2 0 0 0 0 0 4 2 0 0 0 0

0 1 0 0 0 0 1 3 1 0 0 0

0 0 4 0 0 0 0 4 5 2 0 0

0 0 0 6 0 0 0 0 2 9 4 0

0 0 0 0 5 0 0 0 0 6 3 3

0 0 0 0 0 3 0 0 0 0 1 2

Diagonal Matrix Tridiagonal Matrix

Programming, Data Structures and Algorithms 2.129

n Example Propose means of reducing memory requirements of a diagonal matrix. Also, mention about accessing
matrix elements.

n Answer: We propose to store only diagonal elements in a 1-D array. For example, the above diagonal matrix is stored in
a 1-D array with 6 elements as shown below:

2 1 4 6 5 3

Thus, we can save lot of space. That is, to store a nxn diagonal matrix we need n2 locations, whereas in this representation
we need a 1-D array with n elements only.

Accesing the elements is also easy. Say, we want ith row jth column element of diagonal matrix A, then first we compare
row and column indexes i and j. If they are same then simply we print ith element from the 1-D array else we print element
value as 0. Thus, we have converted a 2-D system into 1-D storage organisation to save memory space.
n Example Discuss what happens if we propose to store a diagonal matrix with its off diagonal elements only as non-
zero elements in a 1-D array as shown below. This type of matrices are called as antidiagonal matrices.

0 0 0 x0

0 0 x1 0

0 x2 0 0

x3 0 0 0

1-D representation:

x0 x1 x2 X3

Here also accesing the elements is easy. Say, we want ith row jth column element of diagonal matrix, then first we compare
row and column indexes i and j. If j is n-1-i, where n is the size of the matrix then simply we print ith element from the
1-D array else we print required element value as 0.

n Example Let we have proposed to store tridiagonal elements in a 1-D array. Propose a code fragment which does it.
Assume A is the tridiagonal matrix of size nxn and X is a 1-D array in which A’s non-zero elements are proposed to be
stored as shown below. Analyse memory saving. Also, explain how to access ith row jth column element of A from the
1-D array X.

4 2 1 3 1 4 5 2 2 9 4 6 3 3 1 2

n Answer: If we observe the tridiagonal matrix, we may find that except top and bottom rows all the remaining elements
will be having 3 non-zero elements. Thus, total number of non-zero elements which we need to store in the 1-D array are:
2+2+(n-2)*3=3n-2. Thus, instead of n2 locations of matrix A, with 3n-2 locations itself A’s details are stored in the 1-D
array.

The following code fragment does the required mapping of 2-D to 1-D.
int k=0,lower,upper,i,j;

for(i=0;i<n;i++){

lower=i-1;

if(lower<0)lower=0;

upper=i+1;

if(upper>=n)upper=n-1;

for(j=lower;j<=upper;j++)X[k++]=A[i][j];

}

Now, let us discuss about how to access ith row jth column element from the 1-D array X. If one observes the tridiagonal
matrix, we may find that only non-zero elements are along the principal diagonal. Non-zero elements in any row are:
principal diagonal element and one element of its previous column and one more element in the next column. However,
first end last rows are having only two elements.

Thus, if absolute difference of row and column indexes of an element is greater than 1 then its value is 0 and is not
available in the 1-D array X. Also, 0th row elements that A[0][0], A[0][1] are available at X[0], X[1], respectively. Thus, jth

2.130 Computer Science & Information Technology for GATE

column element of 0th row will be at jth location in the 1-D array X. Similarly, the following pseudo code illustrates how
to access ith row jth column of matrix A from 1-D array X.

if(abs(i-j)>1) print(“0\n”);

else if(i==0) print(“%d\n”, X[j]);

else print(“%d\n”, X[i*3-1+(j –(i-1))]);

n Example Propose how to store a tridiagonal matrix whose non-zero elements are along the other diagonal in a 1-D
array. Also, arrive at logic to access ith row jth column element of tridiagonal matrix from 1-D array.

0 0 0 0 x0 x1

0 0 0 x2 x3 x4

0 0 x5 x6 x7 0

0 x8 x9 x10 0 0

x11 x12 x13 0 0 0

x14 x15 0 0 0 0

These non-zero elements are stored in 1-D array as shown below:

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

The following code fragment does the required mapping of 2-D to 1-D.
int k=0,lower,upper,i,j;

for(i=0;i<n;i++){

lower=n-1-i-1;

if(lower<0)lower=0;

upper=n-i;

if(upper>=n)upper=n-1;

for(j=lower;j<=upper;j++)X[k++]=A[i][j];

}

The following pseudo code illustrates how to access ith row jth column of matrix A from 1-D array X.
if(abs((n-i-1)-j)>1) print(“0\n”);

else if(i==0) print(“%d\n”, X[j-n+2]);

else if(i<n-1) print(“%d\n”, X[i*3-1+(j –(n-1-i-1))]);

else printf(“%d\n”, X[i*3-1+j]);

n Example Propose a method to store a band matrix of band width w (w is an odd number) in a 1-D array. Also, explain
how to access ith row jth column element of band matrix from the 1-D array.

X0 X1 X2 X3 0 0 0 0 0

X4 X5 X6 X7 X8 0 0 0 0

X9 X10 X11 X12 X13 X14 0 0 0

X15 X16 X17 X18 X19 X20 X21 0 0

0 X22 X23 X24 X25 X26 X27 X28 0

0 0 X29 X30 X31 X32 X33 X34 X35

0 0 0 X36 X37 X38 X39 X40 X41

0 0 0 0 X42 X43 X44 X45 X46

0 0 0 0 0 X47 X48 X49 X50

Programming, Data Structures and Algorithms 2.131

The following code fragment stores non-zero element of the above band matrix in a 1-D array X.
int k=0,lower,upper,i,j,w,d;

scanf(“%d”, &w); //w should be odd number

d=w/2;

for(i=0;i<n;i++){

lower=i-d;

if(lower<0)lower=0;

upper=i+d;

if(upper>=n)upper=n-1;

for(j=lower;j<=upper;j++)X[k++]=A[i][j];

}

 The following code fragment can be used to access ith row jth column element of the band matrix.
if(abs(i-j)>d) print(“0\n”);

else

{

if(i<d)k=i*d+i*(i+1)/2+j;

else if(i<n-d) k=d*d+d*(d+1)/2+ (i-d)*w + (j –(i-d));

else

{

 l=j-(n-d);

 k=d*d+ d*(d+1)/2+ (n-2*d)*w + w*l –l*(l+1)/2 + (j-(i-d));

}

print(“%d\n”, X[k]);

}

n Example Propose a method to store the non-zero elements of the following band matrix of band width w (w is an
odd number) in a 1-D array. Also, explain how to access ith row jth column element of band matrix from the 1-D array.

0 0 0 0 0 X0 X1 X2 X3

0 0 0 0 X4 X5 X6 X7 X8

0 0 0 X9 X10 X11 X12 X13 X14

0 0 X15 X16 X17 X18 X19 X20 X21

0 X22 X23 X24 X25 X26 X27 X28 0

X29 X30 X31 X32 X33 X34 X35 0 0

X36 X37 X38 X39 X40 X41 0 0 0

X42 X43 X44 X45 X46

X47 X48 X49 X50

The following code fragment stores non-zero element of the above band matrix in a 1-D array X.
int k=0,lower,upper,i,j,w,d;

scanf(“%d”, &w); //w should be odd number

2.132 Computer Science & Information Technology for GATE

d=w/2;

for(i=0;i<n;i++){

lower=n-1-i-d;

if(lower<0)lower=0;

upper=n-1-i+d;

if(upper>=n)upper=n-1;

for(j=lower;j<=upper;j++)X[k++]=A[i][j];

}

The following code fragment can be used to access ith row jth column element of the band matrix.
if(abs(n-1-i-j)>d) print(“0\n”);

else

{

if(i<d)k=i*d+i*(i+1)/2+(j-(n-1-i-d));

else if(i<n-d) k=d*d+d*(d+1)/2+ (i-d)*w + (j –(n-1-i-d));

else

{

 l=j-(n-d);

 k=d*d+ d*(d+1)/2+ (n-2*d)*w + w*l –l*(l+1)/2 + j;

}

print(“%d\n”, X[k]);

}

n Example Is an n x n triangular (either upper or lower) matrix sparse? A triangular matrix will have at least n(n-1)/2
zero terms and at most n(n+1)/2 nonzero terms. For the representation schemes that we are about to examine to be com-
petitive over the standard two-dimensional array representation, it will turn out that the number of nonzero terms will
need to be less than n2/3 and in some cases less than n2/5. Thus, in the context of the representation schemes we are about
to see, a triangular matrix is considered to be dense rather than sparse.

Regular Sparse Matrices

Sparse matrices which are either diagonal or tridiagonal have sufficient structure in their nonzero regions to allow fairly
simple representation schemes to be developed whose space requirements equal the size of the nonzero region. Previous
examples illustrates this.

Irregular Sparse Matrices

An irregular sparse matrix has a nonzero region in which no discernable pattern exists.
Usually irregular sparse matrix contains very less number of meaningful (non-zero) elements compared to the total

number elements in the matrix. Thus, there will be wastage of memory. In order to save memory to store the details of
irregular sparse matrix, we use two prominent approaches:

1. Array
2. Linked list

Array Based Sparse Matrix Representation

Here, we propose to store each meaningful element value along with its row and column indexes in a 2-D array. As num-
ber of meaningful elements are very less, we will be saving memory considerably. For example, consider the following
sparse Matrix:

Programming, Data Structures and Algorithms 2.133

1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 7 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 8 0 0 0 6 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 3 0 0 0

Its alternative representation:

12 10 5

0 0 1

4 5 7

5 4 8

5 8 6

11 6 3

In the first row we have stored sparse matrix size (rows, columns) and number of meaningful elements. Next rows con-
tains row and column indexes and value of each of meaningful element in the sparse matrix. We are sure that user has
observed the saving in the memory requirements in this storage schema.

n Example 5 Calculating sparse matrix representation of the transpose of a sparse matrix

n Answer: We are sure that if we transpose the sparse matrix, the resultant also sparse matrix. Also, total number of ele-
ments will not change.

We do not want to calculate first original sparse matrix given its representation, then its transpose followed by its sparse
representation. We want a direct step approach. Of course, users should remember that all in sparse matrix representa-
tion, we have stored meaningful elements of each row one after another. Thus, if we want sparse matrix representation of
original sparse matrix then we have to find first those elements which are of 0th column first, then second column, and
vice versa and store.

Assuming A is the sparse matrix representation, we know there will be A[0][2] meaningful elements. Also, transpose
matrix rows and columns gets reversed. Thus, transpose matrix B top row becomes:

B[0][0]=A[0][1];

B[0][1]=A[0][0];

B[0][2]=A[0][2];

k=1;

for(i=0; i<A[0][1]; i++) /* column by column we traverse on the source matrix*/

{

for(j=1;j<=A[0][2];j++)

if(A[j][1]== i){

 B[k][0]=i; /* column index is made as row index */

 B[k][1]=A[j][0]; /* row index is made as column index*/

 B[k][2]=A[j][2];

 k++;

}

}

2.134 Computer Science & Information Technology for GATE

n Example 6 Adding two sparse matrices and getting the sparse matrix representation of resultant sparse matrix. Of
course, here also, we can add two sparse matrices if they are of same size.

Also, if two matrices are having m and n number of meaningful elements, then the resultant matrix will be having at
most m+n elements. Why? Guess.

We assume A,B are sparse matrix representations as shown here. We want the result to be available in another matrix
C for which sufficient memory is already allocated.

A

12 10 5
0 0 1
4 5 7
5 4 8
5 8 6

11 6 3

B

12 10 4

0 0 1

4 5 9

5 0 8

5 8 6

If we observe the size of A and B, we may find they are matching. Thus, addition operation is permitted. Also, if we ob-
serve, both the matrices A and B are having elements at 4th row 5th column. If we add two sparse matrices, we really get
one element with their sum as the element value. Thus, total number of meaningful elements in the resultant matrix will
be less than their total.
C[0][0]=A[0][0];

C[0][1]=A[0][1];

K=1;

m=A[0][2]; /* Number of meaningful elements in A*/

n=B[0][2; /* Number of meaningful elements in B*/

for(i=1;i<=m;i++)

for(j=1;j<=n;j++)

{

if(A[i][0] < B[j][0]) {

 for(l=0;l<3;l++) C[k][l]=A[i][l];

 k++;

 i++;

 }

else if(A[i][0] > B[j][0]) {

for(l=0;l<3;l++) C[k][l]=B[J][l];

 k++;

 j++;

 }

else if(A[i][1] < B[j][1]) {

for(l=0;l<3;l++) C[k][l]=A[i][l];

k++;

 i++;

 }

else if(A[i][1] > B[j][1]) {

for(l=0;l<3;l++) C[k][l]=B[J][l];

k++;

 j++;

 }

else

Programming, Data Structures and Algorithms 2.135

{

for(l=0;l<3;l++) C[k][l]=A[i]l]+B[J][l];

k++;

 i++;

 j++;

}

}

C[0][2]=k /* K is the total number of element */

Linked List based Solution
Without regularity in the nonzero region it is highly unlikely that a standard representation, such as a two-dimensional
array, would provide an efficient representation of the matrix. On the other hand, if there is a high degree of regularity or
structure in the nonzero region, then an efficient representation structure of the nonzero region can typically be developed
using standard linked lists that will require space equal in size to the nonzero region. We will not examine these highly
regular sparse matrices, our concern is finding a suitable representation scheme for an irregular sparse matrix. Consider
the following irregular 4 x 8 sparse matrix shown in Table 2.3.

Table 2.3 Irregular 4 × 8 Sparse Matrix

0 0 0 2 0 0 1 0

0 6 0 0 7 0 0 3

0 0 0 9 0 8 0 0

0 4 5 0 0 0 0 0

Notice in the irregular sparse matrix shown in Table 2.3 of the 32 total elements in the matrix that fully 23 or 71.8% of
the cells have zero value. Clearly this is a sparse matrix. Further notice that there appears to be no obvious regularity to
where the nonzero elements occur.

The nonzero elements of the sparse matrix in Table 2.3 can be mapped into a linear list. If this list is organized in row-
major order we would have the following: 2, 1, 6, 7, 3, 9, 8, 4, 5. To be able to reconstruct the matrix structure, the original
row and column must be recorded for each nonzero element in the matrix. The linear list would contain nodes that look
like the one shown in Fig. 2.8.

row

column

data value

Figure 2.8 Node for representation of the sparse matrix

1
4
2

1
7
1

2
2
6

2
5
7

2
8
3

3
4
9

3
6
8

4

2

4

4

3

5

Figure 2.9 Linear list representation of sparse matrix of Table 2.3

Notice that the linked list (linear list) representation of the sparse matrix, while efficient in terms of space when compared
with a two-dimensional array will not be particularly efficient for insertion and retrieval operations (although it is better
than if a two-dimensional array is used).

2.136 Computer Science & Information Technology for GATE

Question to think about: Do you think a skip list would improve this implementation enough to warrant the additional
overhead?

The sparse matrix representation illustrated in Fig. 2.9 is a fairly common technique for representing sparse matrices
and provides fairly efficient behavior for algorithms such as matrix transpose, addition, and multiplication.

Table 2.4 Transpose of the matrix shown in Table 2.3

0 0 0 0

0 6 0 4

0 0 0 5

2 0 9 0

0 7 0 0

0 0 8 0

1 0 0 0

0 3 0 0

Notice how easy it is to transpose the sparse matrix of Table 2.3 when it is represented in the linear list format shown in
Fig. 2.9. The transposed matrix of Table 2.4 is shown in its linear list representation in Fig. 2.10. What was done to this list
to produce this result? What is the time complexity of this task?

4
1
2

7
1
1

2
2
6

5
2
7

8
2
3

4
3
9

6
3
8

2

4

4

3

4

5

Figure 2.10 Linear list representation of the transpose of the list represented in Figure 2.9

Using the linear list to represent the sparse matrix provided us a very fast way to perform the transpose of the matrix, but
at what cost to the retrieval process? Notice that the representation of the transposed sparse matrix is no longer ordered
in row-major fashion, but is now ordered in column-major fashion.

Our concern with the representation in Fig. 2.9 is that access operations into the sparse matrix are not efficient for ran-
dom access into the matrix. Any application performing predominantly access (look-up) operations into the sparse matrix
will not perform with anywhere near optimal behavior using this representation. What we need is a better representation
when considering random access into the sparse matrix as the dominant operation. To illustrate the access problem this
representation presents, consider the sparse matrix addition illustrated below:

0 0 0 0

4 0 2 0

0 1 0 0

0 0 2 0

0 0 0 4

Matrix A

0 0 0 0

4 0 0 1

0 0 3 0

0 0 2 0

0 0 0 1

Matrix B

The result of A + B is matrix C shown here, recall that matrix addition is defined only when the two operand matrices
have the same dimensions and is defined as C(i,j) = A(i,j) + B(i,j); 1 £ i £ m, 1 £ j £ n where A and B are m × n matrices:

Programming, Data Structures and Algorithms 2.137

0 0 0 0

8 0 2 1

0 1 3 0

0 0 4 0

0 0 0 5

Result matrix of A + B

Consider the representation of the matrices A and B in linear list format shown below:

2

1

4

2

3

2

3

2

1

4

3

2

5

4

4

2

1

4

2

4

1

3

3

3

4

3

2

5

4

1

2

1

8

2

3

2

3

3

3

4

3

4

5

4

5

2

4

1

3

2

1

Matrix A

Matrix B

Matrix C = A + B

Think about the operational aspects of performing the addition of matrices A and B using the linear list representation.
Since the two matrices are stored in a row-major fashion a simple iteration through each list will suffice for the addition
operation. For example, beginning in matrix A, we find the first nonzero element to be in position (2, 1), this too hap-
pens to be the first nonzero element in matrix B, so this sum is computed an stored in the first element of the list which
represents the sum. Advancing iterators in both the lists we would find that the next nonzero element in A is in position
(2,3), but there is no corresponding element in B since the iterator in B is on a node which corresponds to position (2,4).
Thus, a single pass through each list will produce the sum of the two sparse matrices. Once again, we can see that this is
a fairly efficient way in which to produce the sum of two sparse matrices. Multiplication is only slightly more difficult, try
it yourself to see.

There is some possibility that the addition (or multiplication) of two sparse matrices may produce a dense matrix, but
we won’t worry about that case here as we are only concerned with the representation of irregular sparse matrices.

It turns out that the representation we desire does not represent a major change from what we have seen above. The
representation scheme that will be the structure of choice for representing sparse matrices when random access is the
dominant operational activity is a representation using many linear lists. Notice that none of the operations of transpose,
addition, or multiplication required a truly random access to the matrix (although multiplication was getting there) and
this is why the single linear list representation was reasonably efficient. However, for truly random searches the single
linear list will not be efficient enough and a more suitable representation will be found in the multiple linear list represen-
tation. A multiple linear list implementation of the irregular sparse matrix is shown in Table 2.3.
Figure 2.11 illustrates a multiple linear list representation of the irregular sparse matrix shown in Table 2.3. The linear list
across the top of the diagram represents the columns of the matrix while the linear list farthest to the left represents the
rows of the matrix. The multiple lists in the interior of the diagram illustrate the nonzero elements of the sparse matrix.
Notice that each element participates in both a row and column list. Thus access to an element may be either through its
row or column address.

2.138 Computer Science & Information Technology for GATE

4

3

2

1 2

1 2 3 4 5 6 7 8

1

6 7 3

9 8

54

Figure 2.11 Multiple linear list representation of Irregular sparse matrix

Notice that the transpose of the matrix from Table 2.3 already exists in the representation of Figure 2.11. Simply inter-
change the row and column lists and you have the transpose matrix. This takes O(1) time.

Toeplitz Matrices

An nxn matrix X is a Toeplitz matrix if X(i,j) = X(i-1, j-1) for all i and j where i >1 and j > 1. Figure 2.12 illustrates a 4x4
Toeplitz matrix.

6 2 4 5

1 6 2 4

3 1 6 2

8 3 1 6

Figure 2.12 A 4 x 4 Toeplitz Matrix

A Toeplitz matrix can be represented by a sparse matrix. The reason for this is that the number of distinct elements in a
Toeplitz matrix is at most 2n –1. Recall that the definition given at the beginning of these notes for a sparse matrix indi-
cated that a sparse matrix contained O(n) nonzero elements. In the case of a Toeplitz matrix rather than nonzero elements
we need only to represent the distinct elements, that the Toeplitz matrix can be represented as a sparse matrix. Figure 2.13
illustrates the linear list implementation (in row major order) of the Toeplitz matrix shown in Fig. 2.12.

1
1
6

1
2
2

2
1
1

3
1
3

4
1
8

1
3
4

1
4
5

Figure 2.13 Linear list representation of the Toeplitz matrix of Figure 2.12

C-matrices

An nxn C-matrix is one in which all elements other than those in row 1, row n, and column 1 are zero. A C-matrix con-
tains at most 3n–2 nonzero elements and is thus considered to be a sparse matrix. Figure 2.14 illustrates a 6x6 C-matrix.

4 3 8 1 2 6

5 0 0 0 0 0

8 0 0 0 0 0

2 0 0 0 0 0

4 0 0 0 0 0

3 5 2 8 22 3

Figure 2.14 A 6x6 C-matrix

Programming, Data Structures and Algorithms 2.139

Notice that Figure 2.13 contains exactly 16 nonzero elements which is (3(6) – 2).
As before, this sparse matrix is easily represented using the linear list structure.

A note on Row and Column Major Order Storage

Column-major and row-major storage
When arrays are physically stored in memory, the elements have to be somehow laid out linearly as RAM is linearly ac-
cessible. There are two main ways to do this, by row major order and by column major order.

We say that a matrix(2-D array) is stored in row-major order if it is stored row by row. The entire first row is stored first,
followed by the entire second row, and so on. Consider for example the matrix

A =

8 2 2 9

9 1 4 4

3 5 4 5

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

If this matrix is stored in row-major order, then the entries are laid out in memory as follows:

8 2 2 9 9 1 4 4 3 5 4 5

On the other hand, a matrix is stored in column-major order if it is stored column by column, starting with the entire
first column, followed by the entire second column, and so on. If the above matrix is stored in column-major order, it is
laid out as follows:

8 9 3 2 1 5 2 4 4 9 4 5

FORTRAN language uses column major order of storage while C family of languages use row major order. The following
figure illustrates how a 2-D array is physically stored in RAM.

15 A[3,3]
14 A[2,3]
13 A[1,3]
12 A[0,3]
11 A[3,2]
10 A[2,2]
9 A [1,2]
8 A[0,2]
7 A [3,1]
6 A [2,1]
5 A [1,1]
4 A [0,1]
3 A [3,0]
2 A [2,0]
1 A [1,0]
0 A [0,0]

Memory

15 A[3,3]
14 A[3,2]
13 A[3,1]
12 A[3,0]
11 A[2,3]
10 A[2,2]
9 A [2,1]
8 A[2,0]
7 A [1,3]
6 A [1,2]
5 A [1,1]
4 A [1,0]
3 A [0,3]
2 A [0,2]
1 A [0,1]
0 A [0,0]

Memory

High
Address

Low
Address

Row Major Column Major

0 1 2 3

0

1

2

3

0 1 2 3

4 5 6 7

8 9 10 11

15141312

High
Address

Low
Address

While accessing elements of arrays, we need to know offset of the element with respect to first element. By adding this
offset to base address, we can calculate the address of the element such that it can be accessed.

For a 2-D arrays, to know offset of an element we can use the following formulas. Here, we are making an important
assumption that in any dimension indexes starts from 0.
Row-Major order
offset = rowIndex*NUMCOLS + columnIndex

Column-Major order
offset = rowIndex + columnIndex*NUMROWS

Similarly, for a 3-D array with given number planes where each plane contains some number of rows and columns. For
example, int a[number of planes][number of rows][number of columns] is a 3-D array in C language. Here, offset in
row major order is given as:
=(planeIndex*rows+rowIndex)*cols+columnIndex

That is, if a is an 3-D array of size N1xN2xN3 then a[i][j][k] can be calculated as:
(i*N2+j)*N3+k

2.140 Computer Science & Information Technology for GATE

=i*N2*N3+j*N3+k
Similarly, if a is an 4-D array of size N1xN2xN3xN4 then a[i][j][k][l] can be calculated as:
((i*N2+j)*N3+k)*N4+l.
Similarly, if a is an 5-D array of size N1xN2xN3xN4xN5 then a[i][j][k][l][m] can be calculated as:
(((i*N2+j)*N3+k)*N4+l)*N5+m.
We can calculate the same as:
 i*N2*N3*N4*N5
 + j*N3*N4*N5
 + k*N4*N5
 + l*N5
 + m

Generalisation to Higher Dimensions

It is possible to generalise both of these concepts to arrays with greater than two dimensions. For higher-dimensional
arrays, the ordering determines which dimensions of the array are more consecutive in memory. Any of the dimensions
could be consecutive, just as a two-dimensional array could be listed column-first or row-first. The difference in offset
between listings of that dimension would then be determined by a product of other dimensions. It is uncommon, however,
to have any variation except ordering dimensions first to last or last to first. These two variations correspond to row-major
and column-major, respectively.

More explicitly, consider a d-dimensional N1 × N2 × × Nd array with dimensions Nk (k=1...d). A given element of this
array is specified by a tuple (n1,n2,, nd) of d (zero-based indices nk Œ [0, Nk –1].

In row-major order, the last dimension is contiguous, so that the memory-offset of this element is given by:
nd + Nd . (nd –1 + Nd–1. (nd – 2 + Nd–2 . (.... + N2n1)...)) =

N n
k

d

k

d

k
= +=
’ÂÊ

ËÁ
ˆ
¯̃11

In column-major order, the first dimension is contiguous, so that the memory-offset of this element is given by:
n1 + N1 . (n2 + N2 . (n3 + N3 . (.... + Nd–1 nd)...)) =

N n
k

k

d

k
=

-

=
’ÂÊ

ËÁ
ˆ
¯̃1

1

1

Note that the difference between row-major and column-major order is simply that the order of the dimensions is re-
versed. Equivalently, in row-major order the rightmost indices vary faster as one steps through consecutive memory loca-
tions, while in column-major order the leftmost indices vary faster.

Depending on the ordering method the elements are stored in the memory, we will get different positions of an element
in the linear memory and consequently a different address for each method. To calculate the address we use the following
procedure:

Step 1: Get the offset value of the element under consideration, make sure you use the correct forumula.

Step 2: Multiply the offset with the size of the element’s datatype (Like int is of 4 bytes for 32-bit, Earlier compilers like
TurboC worked on 16-bit platform and for them size of int is 2 bytes).

Step 3: Add this to the base address to get the final address.
Thus, address if a[i][j][k] element of a 3-D array a[N1][N2][N3]= a+ (i*N2*N3 + j*N3 +k)*sz
where sz is the memory needed for any element of array a.

n Example A computer that uses 2 bytes for integer is used to store a 2-D array a. Address of a[3][2] and a[1][1] is ob-
served to be 2028 and 2010 respectively. How many elements are there in a row? Rather how many columns are available
in a? Assume language to be using row major order storage.

n Answer: Assuming r and c as the rows and columns of a, we can write
Based address of a[3][2]=
Base address of a + (3*c+2)*2=2028

Programming, Data Structures and Algorithms 2.141

Base address of a[1][1]=a+(c+1)*2=2010
By solving the above equations, we get c as 4.

n Example A computer that uses 2 bytes for integer is used to store a 2-D array a. Address of a[3][2] and a[1][1] is ob-
served to be 2028 and 2010, respectively. How many elements are there in a column? Rather how many rows are available
in a? It is reported that a program that is accessing this array sequentially is showing memory segment violation when
2040 address is accessed. Assume language to be using row major order storage. What will be the address of 4th row 3rd

column element?

n Answer: As usual, we calculate number of columns as above. That is, we get number of columns as 4. Now, we calculate
base address of a from:
Base address of a[3][2]=a+(3*c+2)*2=2028
Base address of a[1][1]=a+(1*c+1)*2=2010.
By solving the above equations we get c as 4.
Therefore,
Base address of a= 2010-(4+1)*2=2000
As, we are getting segment violation at 2040, then address of last element=2038
Therefore, total number of elements in the array= (2040-2000)/2=20 (As integer takes 2 bytes)
Therefore, number of rows=20/4=5
Address of 4th row 3rd column element = 2000+ (4*4+3)*2 = 2038

n Example We know addresses of two different elements of a 2-D array. Is it possible to find how many columns are
there in it?

n Answer: No. If they belong to same row, we cannot find number of columns otherwise, we can find.

n Example How many elements addresses are needed to calculate geometry of a 3-D array that is physically organised
in row major order?

n Answer : We know that address of ith plane, jth row and kth column element can be given as:
Base address of the array+(i*N2*N3+j*N3+k)*number of bytes for each element.

Here, N1, N2 and N3 are dimensions of the 3-D array.
If you observe the above equation, we have three unknown’s base address, N2 and N3. To find them, we need three

equations, that is we need the addresses of three elements. Of course, we may see that base address will be common for all
the three equations.

To find N3, we may need addresses of two elements that are in same plane. Because, base address, i*N2*N3 becomes
common for both equations. Similarly, to find N2 we need addresses of two elements of two different planes. We can
calculate N2 only after calculating N3. In order to calculate N1, we need address of either last element of the 3-D array or
address of any element in last plane and last row.

Also, we can find base address only after calculating N2 and N3.
Another method of calculating offset of an element
Consider, we have a 5-D integer array A[N1][N2][N3][N4][N5]; We can view this five-dimension array as a single dimen-
sion array of arrays:

type

 OneD = array [N5] of int;

 TwoD = array [N4] of OneD;

 ThreeD = array [N3] of TwoD;

 FourD = array [N2] of ThreeD;

 A : array [N1] of FourD;

The size of OneD is N5. Since TwoD contains N4 OneD arrays, its size is N4N5 bytes. Likewise, ThreeD is N3 TwoDs, so it is
N3N4N5 bytes long. Finally, FourD is N2 ThreeDs, so it is N2N3N4N5 bytes long. To compute the offset of “A [b] [c] [d]
[e] [f]”, we can use the following steps:

Compute the offset of A [b] as “ b * size”. Here size is N2N3N4N5. Use this result as the Base in the next computa-
tion.

2.142 Computer Science & Information Technology for GATE

Compute the offset of A [b] [c] by the formula “Base + c*size”, where Base is the value obtained immediately above
and size is N3N4N5. Use the result as the new Base in the next computation.
Compute the offset of A [b] [c] [d] by “Base + d*size” with Base coming from the above computation and size being
N4N5.
Compute the offset of A [b] [c] [d] [e] with the formula “Base + e*size” with Base from above and size being N5. Use
this value as the Base for the next computation.
Finally, compute the offset of A [b] [c] [d] [e] [f] using the formula “Base + f ” where Base comes from the above
computation. Use this value as the Base for the next computation.
To get the address of the desired element, base address of array + Base*number of bytes used for each element by
the computer.

Suppose we have two arrays initialised as follows
A1 = {N2*N3*N4*N5, N3*N4*N5, N4*N5, N5, 1} and A2 = {b, c, d, e, f} then the following for loop can be used to find
offset assuming base value is initially 0.

for(i=0;i<5;i++)

 base += A1[i] * A2[i];

Note that this can be easily extend to any number of dimensions by simply initializing A1 and A2 appropriately and chang-
ing the ending values of the for loop.

n Example Calculate address of the element a[3][2][1][2][3] in a 5-D array having each dimension as 4. Assume, com-
puter uses 4 byte integers and base address of the array is 2000.

n Answer: 2000 + (3*(4*4*4*4) + 2*(4*4*4) + 1*(4*4) + 2*4 + 3)* 4 = 5692

2.4.2 Searching

This problem can be stated as follows: An array of elements is given and we are required to find whether a given element
x is available in the given array or not.
Sequential Search

Here, each element from the array is taken in one after another and compared with x and if it is same then it will be
called as success. Even after traversing entire array if we can not find x then we call that element is not available in the ar-
ray. The same can be written as:
int seqsearch(int a[], int n, int x){

int I;

for(I=0; I<n;I++) if(a[I]==x) return 1;

return 0;

}

By observing the above code we can understand that if first element of the array itself is x then we will be spending one
comparison and if all the elements are not same as x then we will be spending n comparisons. Thus, best case complexity
of this algorithm can be said as 1 and worst case complexity as n. Thus, average case complexity is n/2 comparisons. The
same is represented in big-oh notation as O(n). Thus, this algorithm is also called as linear search or serial search.

Write a program in C language for linear search on a 2-D array
/* Assuming array is a of size mxn. X is the element we are looking for */
Solution 1 :

for(i=0;i<m;i++)

for(j=0;j<n;j++) if(a[i][j]==X) { printf(“Found\n”); exit(-1); }

printf(“Not found\n”);

Solution 2 :
If we carry in using based address of the array.

for(i=0;i<(m*n);i++)

if(*(a+i) == X) {printf(“Found\n”); exit(-1); }

printf(“Not found\n”);

Programming, Data Structures and Algorithms 2.143

Second one is preferable because of the following reasons:
Whenever we refer a[i][j], an implicit multiplication is used (a+i*columns+j) to locate the element.
Binary Search

Binary search is a simple and very fast way to access information in a sorted array. Binary search uses divide-and-
conquer strategy and it is most naturally written as a recursive algorithm. Evidently, first we compare x with the middle
element of the array. If it is same, then we have got the answer. Otherwise, we carry the search either in the left or right half
of the array recursively. Here is code to search the array a for x using this approach.

int bsearch(int a[], int left, int right, int x){

left and right are the integer limits of the array to search and should always satisfy left £ right.
We assume that the array is having elements ascending order

*/

if (left == right)

if (a[left] == x) val = left;

else val = ‘-1’;

else

mid = (left + right)/2;//integer division

if (a[mid] < x)

val = bsearch(a, mid + 1, right,x);

else

val = bsearch(a,left, mid,x);

}

Binary search searches for an element in the array a which matches the “x” argument. If it finds such an element, it returns
its index. If it cannot find the element, it returns ‘–1’ indicating the given element is not seen in the array. Let us look at
how it works.

First of all, left and right describe the limits of the subarray that we are searching in. If they are equal, then we are look-
ing at a subarray that consists of a single element. Either the element a[left] is the element we are looking for, or there is
no element matching the key.

In the general case where left < right, we are looking in an array with at least two elements. Binary search divides the
array approximately in two by computing a midpoint, which is mid = (left + right)/2. Then it compares the element a[mid]
with the key. Since the array is sorted, all the elements to the left of a(mid) are <= a[mid], while all the elements to the
right of a[mid] are >= a[mid]. So if x is larger than a[mid], it must be to the right of a[mid], if it is in the array at all. That
is, it must be in the subarray from a[mid+1] to a[right]. The recursive call to bsearch looks for it there. If x is <= a[mid],
then it must be in the subarray from a[left] to a[mid]. The other recursive call looks for it there.
Iterative Implementation of Binary search

int bsearch(int a[], int left, int right, int x){

/* Binary search function

left and right are the integer limits of the subarray to search and should always satisfy left £ right *

/int mid;

while (left<=right)

{

mid = (left + right)/2;

if(a[mid]==x) return mid;

else if (a[mid] < x) left=mid + 1;

else

right=mid-1;

}

2.144 Computer Science & Information Technology for GATE

return -1;

}

By observing the above code we can understand that if first time mid element of the array itself is x then we will be spend-
ing one comparison otherwise we will search in only either of the two halves. Thus, best case complexity of this algorithm
can be said as 1, and worst case complexity as log2(n). The same is represented in big-oh notation as O(log2n). The above
equation illustrates how time complexity changes with number of elements. We find for large values of n also, we will be
needing very small number of comparisions compared to serial search algorithm.

n Example Which is costilier, linear or logarithmic?

n Answer:
Look at the following table

n Linear Search (n+1)/2 Binary Search:
½ log2(n)+1

8 4.5 2.5

16 8.5 3

32 16.5 3.5

1024 512.5 6

2048 1024.5 6.5

4096 2048.5 7

65536 32168.5 9.5

When we see the average costs of linear and binary search algorithms, we may find that the binary search takes very less
number of operations for large values of n. Thus, it is efficient. Of course, a bog joke is: Is it meaningful to compare these
two algorithms at all? In binary search, we assume that the data in order; where is in linear search, we donot assume any
such thing. Thus, really it is a foolish thing to compare the both.

Fibnocci Search
The Fibonacci search technique is a method of searching a sorted array using a divide and conquer policy that narrows
down possible locations with the aid of Fibnocci numbers. Compared to binary search, Fibonacci search has the property
of examining locations whose addresses have lower dispersion. Therefore, when the elements being searched have non-
uniform access memory storage (i.e., the time needed to access a storage location varies depending on the location previ-
ously accessed), the Fibonacci search has an advantage over binary search in slightly reducing the average time needed to
access a storage location. The typical example of non-uniform access storage is that of a magentic tape, where the time to
access a particular element is proportional to its distance from the element currently under the tape’s head. Note, however,
that large arrays not fitting in cache or even in RAM can also be considered as non-uniform access examples. Fibonacci
search has a complexity of O(log(n)).
 Fibonacci search also assumed that the data is in sorted order; i.e., either in ascending order or in descending order.

Algorithm
Let k be defined as an element in F, the array of Fibonacci numbers. n = Fm is the array size. If the array size is not a Fibo-
nacci number, let Fm be the smallest number in F that is greater than n.

Let Fk represent the k-th Fibonacci number where Fk+2=Fk+1 + Fk for k>=0 and F0 = 0, F1 = 1. To test whether an item
is in a list of n = Fm ordered numbers, proceed as follows:

(a) Set k = m.
(b) If k = 0, finish – no match.
(c) Test item against entry in position Fk–1.
(d) If match, finish.
(e) If item is less than entry Fk–1, discard entries from positions Fk–1 + 1 to n.

 Set k = k – 1 and go to b).
(f) If item is greater than entry Fk–1, discard entries from positions 1 to Fk–1.

 Renumber remaining entries from 1 to Fk–2, set k = k – 2 and go to b).

Programming, Data Structures and Algorithms 2.145

If Fm>n then the original array is augmented with Fm–n numbers larger than val and the above algorithm is applied.

 int j,mid,f1,f2,t;

/* Precomputed Fibonacci numbers F0 up to F46. This implementation assumes that the size n

 * number that is less or equal to the 4-byte INT_MAX (=2147483647). This ensures correct operation

for n>F46.

 */

2584, 4181, 6765,

for(j=1; Fib[j]<n; j++);

mid=n-Fib[j-2]+1;

f1=Fib[j-2];

f2=Fib[j-3];

while(val !=arr[mid])

{

 if(mid<0||val >arr[mid])

 {

 if(f1==1) return -1;

 mid +=f2;

 f1-=f2;

 f2-=f1;

 }

 else

 {

 if(f2==0) return -1;

 mid -=f2;

 t=f1-f2;

 f1=f2;

 f2=t;

 }

}

return(mid);

}
Interpolative Search
Consider our human actions while searching for a telephone number in a telephone directory. If the total number of pages
is 500 and we are looking for the number of a person RANJIT. When we first opened the page 420, we found that it is hav-
ing names of people with V. Then, next when we have opened page 350, we have found names starting with P. Thus, next
we may open page number 387, assuming that the names are equally distributed. That is between P to V there exists 8 al-
phabets and names of this range are occupying 420-350=70 pages. Thus, names per alphabet is calculates as 9 (70/8). Thus,
the names which starts with R is estimates as: 350+ 3 * 9= 387 (Approximately). Now, we may go to page 387. Depending

2.146 Computer Science & Information Technology for GATE

on what we found there, we may fine tune our search. This type of search is called interpolative search.
If we need to find items in a sorted unbalanced array a, we can use interpolation search using the formula:

next = low +
X a [low]

a[high] a[low]
(high low + 1)

-
-

¥ -È
ÎÍ

˘
˚̇

and using “next” instead of finding the mid-point each time. This is done on average with complexity O(log log N)

2.4.3 Sorting

Given an array with elements in any order, sorting is the process of moving the elements within the array to produce a
sorted array (either in ascending or descending order) at the end. Sorting requires that the elements have an order. Order-
ing elements can make future search as easy.
Sorting algorithms are divided into two categories: internal and external sorts.
Internal Sort:
Any sort algorithm which uses main memory exclusively during the sort is referred as internal type. This assumes high-
speed random access memory.
External Sort:
Any sort algorithm which uses external memory, such as tape or disk, during the sort, is referred as external type.

Note

Algorithms may read the initial values from magnetic tape or write sorted values to disk, but this is not using external
memory during the sort. Note that even though virtual memory may mask the use of disk, sorting sets of data much larger
than main memory may be much faster using an explicit external sort.

Sort Stable
A sort algorithm is said to be “stable” if multiple items which compare as equal will stay in the same order they were in
after a sort.
Bubble Sort
The bubble sort is the oldest and simplest sort in use. The bubble sort compares each element with the element next to it,
and swaps them if required. The algorithm repeats this process until it makes a pass all the way through the array without
swapping any items (in other words, all items are in the correct order). This causes larger values to “bubble” to the end of
the array while smaller values “sink” towards the beginning of the array. Under best-case conditions (the array is already
sorted), the bubble sort can approach a constant O(n) level of complexity. General-case complexity is an O(n2). While
the insertion, selection, and shell sorts also have O(n2) complexities, they are significantly more efficient than the bubble
sort. Realistically, there isn’t a noticeable performance difference between the various sorts for 100 items or less, and the
simplicity of the bubble sort makes it attractive. The bubble sort should not be used for repetitive sorts or sorts of more
than a couple hundred items.
Pros: Simple and easy to implement.
Cons: Horribly inefficient.
Below is the basic bubble sort algorithm.

void bubbleSort(int numbers[], int array_size){

 int i, j, temp;

 for (i = (array_size - 1); i >= 0; i--) {

 for (j = 1; j <= i; j++){

 if (numbers[j-1] > numbers[j]){

 temp = numbers[j-1];

 numbers[j-1] = numbers[j];

 numbers[j] = temp;

 }

 }

 }

}

Programming, Data Structures and Algorithms 2.147

Another version:
void bubblesort(int a[], int n){

 int i, j, t;

for(i=0;i<n-1;i++){

 for(j=0; j<n-1-i; j++){

 if(a[j]<a[j+1]){

 t=a[j]; a[j]=a[j+1]; a[j+1]=t;

}

}

}

}

Analysis:
1’st time, inner loop runs for n-1 times thus n-1 comparisons are spent.
2’nd time, inner loop runs for n-2 time thus n-2 comparisons are spent.
……………………………………………………..
……………………………………………………..
Last time, inner loop runs for 1 time, thus 1 comparison is spent.
Thus, total number of comparisons are = 1+2+3+….+(n-2) + (n-1)= n(n-1)/2
Thus, time complexity of this algorithm = O(n2), i.e quadratic complexity.
Notice that if we make one complete pass through the inner loop of bubble sort without doing any swaps, then the
array is already sorted.

Insertion Sort
The insertion sort inserts each item into its proper place in the final array. To save memory, most implementations use
an in-place sort that works by moving the current item past the already sorted items and repeatedly swapping it with the
preceding item until it is in place. Like the bubble sort, the insertion sort has a complexity of O(n2). Although it has the
same complexity, the insertion sort is a little over twice as efficient as the bubble sort.
Pros: Relatively simple and easy to implement.
Cons: Inefficient for large lists.
The insertion sort is a good middle-of-the-road choice for sorting a few thousand items or less. The algorithm is signifi-
cantly simpler than the shell sort, with only a small trade-off in efficiency. At the same time, the insertion sort is over twice
as fast as the bubble sort and almost 40% faster than the selection sort. The insertion sort should not be used for sorting
arrays larger than a couple thousand items or repetitive sorting of lists larger than a couple hundred items.

Below is the basic insertion sort algorithm.
void insertionSort(int numbers[], int array_size){

 int i, j, index;

 for (i=1; i < array_size; i++){

 index = numbers[i];

 j = i;

 while ((j > 0) && (numbers[j-1] > index))

 {

 numbers[j] = numbers[j-1];

 j = j - 1;

 }

 numbers[j] = index;

 }

}
Another Version of Insertion Sort
void insertionsort (int a[], int n){
int i,j,k,m;

2.148 Computer Science & Information Technology for GATE

for(i=1; i<n; i++){
 m=a[i];
 for(j=0; j<i; j++){
 if(a[j] > m){
 for(k=i-1; k>=j; k--) a[k+1]=a[k];
 a[j]=m;
 break;
 }
}
}
}
The above algorithm requires n–1 comparisons if the array contains elements in descending order. Whereas, if the array
of elements are in ascending order the complexity becomes n(n–1)/2. Thus, the average case complexity can be also said
as second order complexity, i.e O(n2).

Selection Sort
The selection sort works by selecting the smallest unsorted item (or largest) remaining in the array, and then swapping it
with the item in the next position to be filled. The selection sort has a complexity of O(n2).

Pros: Simple and easy to implement.

Cons: Inefficient for large arrays, so similar to the more efficient insertion sort that the insertion sort should be used in
its place.

The selection sort is the unwanted stepchild of the O(n2) sorts. It yields a 60% performance improvement over the
bubble sort, but the insertion sort is over twice as fast as the bubble sort and is just as easy to implement as the selection
sort. In short, there really isn’t any reason to use the selection sort - use the insertion sort instead. If one really want to
use the selection sort for some reason, it is wiser to avoid sorting arrays of more than a 1000 items with it or repetitively
sorting arrays of more than a couple hundred items.
Below is the basic selection sort algorithm.
void selectionSort(int numbers[], int array_size){

int i, j; int min, temp;

 for (i = 0; i < array_size-1; i++){

 min = i;

for (j = i+1; j < array_size; j++)

 {

if (numbers[j] < numbers[min]) min = j;

 }

 temp = numbers[i];

 numbers[i] = numbers[min];

 numbers[min] = temp;

 }

}

If we observe the above function, we may find that inner loop runs for (n-1), (n-2)…..2,1 times. Thus, its complexity can
be said as O(n2)

n Example Analyse the following recursive selection sort algorithm
 void SelectionSort(int A[], int i, int n) {
 int j, small, temp;

(1) if (i < n) {

(2) small = i;

(3) for (j = i + 1, j <= n, j++) {

Programming, Data Structures and Algorithms 2.149

(4) if (A[j] < A[small])

 small = j; }

(6) temp = A[small];

(7) A[small] = A[i];

(8) A[i] = temp;

In this function, n indicates the size of the array, i tells us how much of the array is left to sort, specifically A[i...n]. So,
a call to SelectionSort(A,1,n) will sort the entire array through recursive calls. Do remember that we are assuming first
element index is 1.

We now develop a recurrence relation. Note that the size of the array to be sorted on each recursive call is equal to n – i
+ 1. We will denote this value as m, the size of the array during any particular recursive call. There is one base case (m =
1). In this case, only line 1 is executed, taking some constant amount of time which we will call a. Note that m = 0 is not
the base case because the recursion converges down to a list with one element; when i = n, m = 1.

The inductive case is for m > 1: this is when recursive calls are made. Lines 2, 6, 7, and 8 each take a constant amount
of time. The for loop of lines 3, 4 and 5 will execute m times (where m = n – i + 1). So a recursive call to this function
will be dominated by the time it takes to execute the for loop m times, which we shall designate O(m). The time for the
recursive call of line 9 is T(m-1). So, the inductive definition of recursive SelectionSort is:

T(1) = a

T(m) = T(m-1) + O(m)

To solve this recurrence relation, we first get rid of the big-Oh expression by substituting the definition of big-Oh: (f(n) =
O(g(n)) if f(n) <= C * g(n)), so we can substitute C*m for O(m):

T(1) = a

T(m) = T(m–1) + C*m

Now, we can either try repeated substitutions or just enumerate a few cases to look for a pattern. Let us try repeated sub-
stitution:

T(m) = T(m–1) + C*m

= T(m–2) + 2Cm – C because T(m–1) = T(m–2) + C(m–1)
= T(m–3) + 3Cm – 3C because T(m–2) = T(m–3) + C(m–2)
= T(m–4) + 4Cm – 6C because T(m–3) = T(m–4) + C(m–3)
= T(m–5) + 5Cm – 10C because T(m–4) = T(m–5) + C(m–4)

...
= T(m–j) + jCm – (j(j-1)/2)C

To get a closed form formula we let j = m – 1. We do this because our base case is T(1). If we were to continue the repeated
substitution down to the last possible substitution, we want to stop at T(1) because T(0) is really not the base case that the
recursion converges on. (Note that we have to do an inductive proof later to allow us to do this substitution, but for now):

T(m) = T(1) + (m–1)Cm – ((m – 1)(m – 2)/2)C

= a + m2C – Cm - (m2C – 3Cm + 2C)/2

= a + (2m2C – 2Cm – m2C + 3Cm – 2C)/2

= a + (m2C + Cm – 2C)/2

So, finally we have a closed form formula T(m) = a + (m2C + Cm – 2C)/2. The complexity of this formula is O(m2), which
is the same complexity as iterative selection sort, so doing it recursively did not save us any time.

Shell Sort

Invented by Donald Shell in 1959, the shell sort is the most efficient of the O(n2) class of sorting algorithms. Of course,
incidentally shell sort is also the most complex of the O(n2) algorithms. The shell sort is also referred to “diminishing
increment sort”, or “comb sort”. The algorithm makes multiple passes through the array, and each time sorts a number of

2.150 Computer Science & Information Technology for GATE

equally sized sets using the insertion sort. The size of the set to be sorted gets larger with each pass through the list, until
the set consists of the entire list. (Note that as the size of the set increases, the number of sets to be sorted decreases.) This
sets the insertion sort up for an almost-best case run each iteration with a complexity that approaches O(n).

The items contained in each set are not contiguous - rather, if there are i sets then a set is composed of every i-th ele-
ment. For example, if there are 3 sets then the first set would contain the elements located at positions 1, 4, 7 and so on.
The second set would contain the elements located at positions 2, 5, 8, and so on; while the third set would contain the
items located at positions 3, 6, 9, and so on.

The size of the sets used for each iteration has a major impact on the efficiency of the sort. Several Heroes Of Computer
Science, including Donald Knuth and Robert Sedgewick, have come up with more complicated versions of the shell sort
that improve efficiency by carefully calculating the best sized sets to use for a given array.

Pros: Efficient for medium-size lists.

Cons: Somewhat complex algorithm, not nearly as efficient as the merge, heap, and quick sorts.

The shell sort is by far the fastest of the O(n2) class of sorting algorithms. It’s more than 5 times faster than the bubble sort
and a little over twice as fast as the insertion sort, its closest competitor. The shell sort is still significantly slower than the
merge, heap and quick sorts, but its relatively simple algorithm makes it a good choice for sorting lists of less than 5000
items unless speed is hyper-critical. It’s also an excellent choice for repetitive sorting of smaller array.

Below is the basic shell sort algorithm.

void shellSort(int numbers[], int array_size){

int i, j, increment, temp;

 increment = 3;

while (increment > 0){

for (i=0; i < array_size; i++)

 {

 j = i;

 temp = numbers[i];

while((j >=increment) && (numbers[j-increment] > temp))

 {

 numbers[j] = numbers[j - increment];

 j = j - increment;

 }

 numbers[j] = temp;

 }

if (increment/2 != 0)

 increment = increment/2;

else if (increment == 1)

 increment = 0;

else

 increment = 1;

 }

}

Heap Sort
The heap sort is the slowest of the O(n log n) sorting algorithms, but unlike the merge and quick sorts it doesn’t require
massive recursion or multiple arrays to work. This makes it the most attractive option for very large data sets of millions
of items.

The heap sort works as it name suggests – it begins by building a heap out of the data set, and then removing the largest
item and placing it at the end of the sorted array. After removing the largest item, it reconstructs the heap and removes the

Programming, Data Structures and Algorithms 2.151

largest remaining item and places it in the next open position from the end of the sorted array. This is repeated until there
are no items left in the heap and the sorted array is full. Elementary implementations require two arrays – one to hold the
heap and the other to hold the sorted elements.

To do an in-place sort and save the space the second array would require, the algorithm below “cheats” by using the
same array to store both the heap and the sorted array. Whenever an item is removed from the heap, it frees up a space at
the end of the array that the removed item can be placed in.
Pros: In-place and non-recursive, making it a good choice for extremely large data sets.
Cons: Slower than the merge and quick sorts.

As mentioned above, the heap sort is slower than the merge and quick sorts but does not use multiple arrays or massive
recursion like they do. This makes it a good choice for really large sets, but most modern computers have enough memory
and processing power to handle the faster sorts unless over a million items are being sorted.

Below is the basic heap sort algorithm. The siftDown() function builds and reconstructs the heap.
void heapSort(int numbers[], int array_size){

int i, temp;

for (i = (array_size / 2)-1; i >= 0; i--)

 siftDown(numbers, i, array_size);

for (i = array_size-1; i >= 1; i--){

 temp = numbers[0];

 numbers[0] = numbers[i];

 numbers[i] = temp;

 siftDown(numbers, 0, i-1);

 }

}

void siftDown(int numbers[], int root, int bottom){

int done, maxChild, temp;

 done = 0;

 while ((root*2 <= bottom) && (!done)){

if (root*2 == bottom)

 maxChild = root * 2;

 else if (numbers[root * 2] > numbers[root * 2 + 1])

 maxChild = root * 2;

 else

 maxChild = root * 2 + 1;

 if (numbers[root] < numbers[maxChild]) {

 temp = numbers[root];

 numbers[root] = numbers[maxChild];

 numbers[maxChild] = temp;

 root = maxChild;

 }

 else

 done = 1;

 }

}

Merge Sort
The merge sort splits the array to be sorted into two equal halves, and places them in separate arrays. Each array is recur-
sively sorted, and then merged back together to form the final sorted list. Like most recursive sorts, the merge sort has an
algorithmic complexity of O(n log n).

2.152 Computer Science & Information Technology for GATE

Elementary implementations of the merge sort make use of three arrays - one for each half of the data set and one to
store the sorted list in. The below algorithm merges the arrays in-place, so only two arrays are required. There are non-
recursive versions of the merge sort, but they does not yield any significant performance enhancement over the recursive
algorithm on most machines.
Pros: Marginally faster than the heap sort for larger sets
Cons: At least twice the memory requirements of the other sorts; recursive.
The merge sort is slightly faster than the heap sort for larger sets, but it requires twice the memory of the heap sort because
of the second array. This additional memory requirement makes it unattractive for most purposes - the quick sort is a bet-
ter choice most of the time and the heap sort is a better choice for very large sets.

Like the quick sort, the merge sort is recursive which can make it a bad choice for applications that run on machines
with limited memory.

Below is the basic merge sort algorithm.

void mergeSort(int numbers[], int temp[], int array_size){

 m_sort(numbers, temp, 0, array_size - 1);

}

void m_sort(int numbers[], int temp[], int left, int right){

 int mid;

if (right > left)

 {

 mid = (right + left) / 2;

 m_sort(numbers, temp, left, mid);

 m_sort(numbers, temp, mid+1, right);

 merge(numbers, temp, left, mid+1, right);

 }

}

void merge(int numbers[], int temp[], int left, int mid, int right){

int i, left_end, num_elements, tmp_pos;

 left_end = mid - 1;

 tmp_pos = left;

 num_elements = right - left + 1;

while ((left <= left_end) && (mid <= right)){

if (numbers[left] <= numbers[mid]){

 temp[tmp_pos] = numbers[left];

 tmp_pos = tmp_pos + 1;

 left = left +1;

 }

else{

 temp[tmp_pos] = numbers[mid];

 tmp_pos = tmp_pos + 1;

 mid = mid + 1;

 }

 }

while (left <= left_end){

 temp[tmp_pos] = numbers[left];

 left = left + 1;

 tmp_pos = tmp_pos + 1;

Programming, Data Structures and Algorithms 2.153

 }

while (mid <= right){

 temp[tmp_pos] = numbers[mid];

 mid = mid + 1;

 tmp_pos = tmp_pos + 1;

 }

for (i=0; i <= num_elements; i++){

 numbers[right] = temp[right];

 right = right - 1;

 }

}

Quick Sort
The quick sort is an in-place, divide-and-conquer, massively recursive sort. As a normal person would say, it’s essentially
a faster in-place version of the merge sort. The quick sort algorithm is simple in theory, but very difficult to put into code
(computer scientists tied themselves into knots for years trying to write a practical implementation of the algorithm, and
it still has that effect on university students). The recursive algorithm consists of four steps (which closely resemble the
merge sort):

1. If there are one or less elements in the array to be sorted, return immediately.
2. Pick an element in the array to serve as a “pivot” point. (Usually the left-most element in the array is used.)
3. Split the array into two parts – one with elements larger than the pivot and the other with elements smaller than the

pivot.
4. Recursively repeat the algorithm for both halves of the original array.

The efficiency of the algorithm is majorly impacted by which element is choosen as the pivot point. The worst-case ef-
ficiency of the quick sort, O(n2), occurs when the list is sorted and the left-most element is chosen. Randomly choosing a
pivot point rather than using the left-most element is recommended if the data to be sorted isn’t random. As long as the
pivot point is chosen randomly, the quick sort has an algorithmic complexity of O(n log n).

Pros: Extremely fast.
Cons: Very complex algorithm, massively recursive.
The quick sort is by far the fastest of the common sorting algorithms. It is possible to write a special-purpose sorting algo-
rithm that can beat the quick sort for some data sets, but for general-case sorting there isn’t anything faster.

As soon as students figure this out, their immediate impulse is to use the quick sort for everything – after all, faster is
better, right? It’s important to resist this urge – the quick sort isn’t always the best choice. As mentioned earlier, it’s mas-
sively recursive (which means that for very large sorts, you can run the system out of stack space pretty easily). It’s also a
complex algorithm – a little too complex to make it practical for a one-time sort of 25 items, for example.

With that said, in most cases the quick sort is the best choice if speed is important (and it almost always is). Use it
for repetitive sorting, sorting of medium to large lists, and as a default choice when you’re not really sure which sorting
algorithm to use. Ironically, the quick sort has horrible efficiency when operating on lists that are mostly sorted in either
forward or reverse order – avoid it in those situations.

Below is the basic quick sort algorithm.
void quickSort(int numbers[], int array_size){

 q_sort(numbers, 0, array_size - 1);

}

void q_sort(int numbers[], int left, int right){

int pivot, l_hold, r_hold;

 l_hold = left;

 r_hold = right;

 pivot = numbers[left];

 while (left < right){

2.154 Computer Science & Information Technology for GATE

 while ((numbers[right] >= pivot) && (left < right))

 right--;

 if (left != right){

 numbers[left] = numbers[right];

 left++;

 }

 while ((numbers[left] <= pivot) && (left < right))

 left++;

 if (left != right){

 numbers[right] = numbers[left];

 right--;

 }

 }

 numbers[left] = pivot;

 pivot = left;

 left = l_hold;

 right = r_hold;

 if (left < pivot)

 q_sort(numbers, left, pivot-1);

 if (right > pivot)

 q_sort(numbers, pivot+1, right);

}

When quick sort shows best case behaviour and when it shows worst case behaviour?

Each time pivot element becomes median then it shows best case behavior of O(nlogn) whereas it shows worst case be-
havior (O(n2)) if pivot element is maximum of the partition.
Address calculation sort
This method is also known as sorting by address calculation or sorting by hashing. In this method a function f is applied
to each element (key) which determines into which of the several subfiles the key to be placed. This function has to have
order preserving property; i.e, if x, y are two keys where x<=y then f(x) <= f(y). Thus all the keys in a subfile will have
their values less than or equal to the keys of next subfile. Items in a subfile can be sorted using any other sorting technique.

Let the data is 24, 44, 22, 34, 56, 99, 78 and 38 and function is value of first digit then the possible subfiles are
22, 24
34, 38
44
56
78
99

If the number of elements are n, subfiles are m and n/m is 1 then time complexity of this algorithm is O(n). Where as
n/m is much larger and all the elements are uniformly distributed over all the subfiles then the time complexity of this
algorithm still O(n2).

Radix Sorting

Radix sorting is another efficient, linear time sorting algrothm. It works by sorting data in pieces called digit, one digit at
a time, starting from the least significant digit.

For example if the data are 15, 12, 49, 16, 36, 40 if we sort based on 1’st digit value then the list becomes 40, 12, 16, 36,
49. Then if we sort based on second digit the numbers becomes 12, 16, 36, 40, 49.

Programming, Data Structures and Algorithms 2.155

Here, a single loop governs the digit position on which we are currently sorting and apply shuffling of elements based
on this digit position. This is repeated till shuffling is completed and till the most significant digit position. This works
well for integers. However, the same can be applied on different data items also, by considering a group of bits of the data
items at a time.

n Example Given a set S of n elements and an index k (1 £ k £ n), we define the k-smallest element to be the k-th element
when the elements are sorted from the smallest to the largest. Suggest an O(n) expected time algorithm for finding the k-
smallest element in the mean case. For Example, if the given set of numbers: {6, 3, 2, 4, 1, 1, 2, 6,}. The 4-smallest element
is 2 since in the 2 is the 4’th element in the sorted set {1, 1, 2, 2, 3, 4, 6, 6}.

n Answer: The algorithm can be framed based on the Quick-Sort algorithm. We take a random number x and divide the
array into three sets; those less than x (call set L), equal to x (call set E) and greater than x(call set G). If k is less than or
equally to number of elements of L then we can search of kth largest in L recursively. Otherwise if k is less than or equal
to number of elements of both the sets L and E, we return x as the kth largest. Otherwise, we carry search for kth largest
in G recursively. This algorithm is given below.

Select(k, S)

 pick x in S

 partition S into:

 L < x

 E = x

 G > x

 return Select(k, L)

 return x

 else

 return Select(k - length(L) - length(E), G)

This algorithm shows worst case behavior if all the elements are larger than x (That is L is empty) and E contains only
one x. That is, we have to search for kth largest in G which contains n-1 elements. If this happens for each of the recursive
calls then this algorithm will be showing worst case behavior. In this situation it takes: n + (n–1) + (n–2) + ... + 1. Thus,
worst case complexity can be said as: O(n2).

In the mean case, similar to quick-sort, half of the elements in L are good pivots, for which the size of L and G are each less

than
3
4
n

. Therefore, time complexity can be represented as given below; also from the Masters theorem, we can find the

complexity in Big-oh notation as: O(n).

T n T
n

O n O n() () ()£ () + =
3
4

Example: Given an array of n numbers, suggest an O(n) expected time algorithm to determine whether there is a number
in A that appears more than n/2 times.

Answer: If x is a number that appears more than
n

2
 times in A, than x is the

n

2
1Í

ÎÍ
˙
˚̇

+() -smallest in A.

Therefore, the algorithm is:

 x ¨ Select (
n

2
1Í

ÎÍ
˙
˚̇

+() , A)
 NoAppearncess ¨ 0

 for i ¨ 1 to n do:

2.156 Computer Science & Information Technology for GATE

 if (A[i] = x) NoAppearances ++

 if NoAppearances > n/2

 return TRUE

 else return FALSE

In the mean case, the above Select algorithm runs in O(n), computing NoAppearances takes O(n) as well.
Total run time in the mean case: O(n)

n Example Given an array A of M+N elements, where the first N elements in A are sorted and the last M elements in
A are unsorted evaluate the run-time complexity in terms of M and N in the worst case, of fully sorting the array using
insertion sort on A?

a. For each of the following cases, which sort method (or methods combination) would you use and what would be the
run-time complexity in the worst case?

 1. M = O(1)
 2. M = O(logN)
 3. M = O(N)

n Answer: Assuming that the last M elements will be inserted to their right place using insertion sort; this requires N,
N+1, N+2,...,N+M shifts. Thus, complexity can be said as O(M(M+N)). Complexity of O(M2 + N) is possible if we apply
insertion sort to the last M elements and then merge them with first N elements.

1. Insertion-Sort in O(N)
2. Merge-Sort on the M elements in O(MlogM) and then Merge with the first N elements in O(N+M). Total: O(N)
3. Every sort method based on comparisons, when its running time is O(nlogn), such as Heap-Sort/Merge-Sort, is

suitable for this case, and it’s running time is O(NlogN). Quick-Sort is bad for this case, as its worst case analysis is
O(n2).

n Example Given the following algorithm to sort an array A of size n:
1. Sort recursively the first 2/3 of A (A[1..2n/3])
2. Sort recursively the last 2/3 of A (A[n/3+1..n])
3. Sort recursively the first 2/3 of A (A[1..2n/3])

Prove the above algorithm really sorts A and find a reccurence T(n), expressing it’s running time.

n Answer The basic assumption is that after the first 2 steps, the n/3 largest number are in their places, sorted in the last
third of A. In the last stage the algorithm sorts the left 2 thirds of A.

T(n) = 3T(2n/3) = 3(3T(4n/9))

= 3(3(3T(8n/27))) = ... = 3iT((2/3)in)

after i = log3/2n steps ... T(n) = 3log
3/2

n·T(1)

= 3(log
3

n)/(log
3

(3/2)) = (3log
3

n)1/(log
3

(3/2))

= n1/(log
3

(3/2)) = n(log
3

3)/(log
3

(3/2)) = nlog
3/2

3

T(n) = O(nlog
3/2

3) , (using the Master-Theorem)

n Example n records are stored in an array A of size n. Suggest an algorithm to sort the records in O(n) (time and space)
in each of the following cases:

1. All the keys are 0 or 1
2. All the keys are in the range [0..k], k is constant

n Answer:

1. Use the partition method (Quick-Sort) with pivot 0
2. First, partition method on A[1..n] with pivot 0, this way all the records with key 0 will be on the first x0 indexes of

the array. Second, partition method on A[x0+1..n] with pivot 1 ... After k steps A is sorted

Programming, Data Structures and Algorithms 2.157

n Example Assume that we are given as input n pairs of items, where the first item is a number and the second item is
one of three colours (red, blue, or yellow). Further, assume that the items are sorted by number. Give an O(n) algorithm
to sort the items by colour (all reds before all blues before all yellows) such that the numbers for identical colours stay
sorted. For example: (1, blue), (3, red), (4, blue), (6, yellow), (9, red) should become (3, red), (9, red), (1, blue), (4, blue),
(6, yellow).

n Answer: First scan the pairs and write those pairs with red color then scan the pairs and write pairs with blue color and
then with yellow. That is, we need three for loops to scan through all the n items. Thus, number of operations can be said
as: 3n. Thus, complexity can be said as O(n).

n Example Consider a sequence of 2n real numbers. Design an O(nln(n)) algorithm that partitions the numbers into
n pairs, with the property that the partition minimises the maximum sum of a pair. For example, say we are given the
numbers (1,3,5,9). The possible partitions are ((1,3),(5,9)), ((1,5),(3,9)), and ((1,9),(3,5)). The pair sums for these parti-
tions are (4,14), (6,12), and (10,8). Thus the third partition has 10 as its maximum sum, which is the minimum over the
three partitions.

n Answer: Sort the numbers using any O(nln(n)) algorithm
Now, consider
first pair consisting of first and last numbers
second pair consisting of second and second last numbers and so on.
Then find out the minimum of them.

n Example What is the maximum and minimum number of times that the largest element could be moved during the
execution of Quicksort? Explain your answer with an example.

Max: n –1 An example input is ascending data like [5,4,3,2,1]
Min: 0 An example input is descending data like [1,2,3,4,5]

n Example Consider a set S of n ≥ 2 distinct numbers given in unsorted order. Give an algorithm to determine two
distinct numbers x and y in the set S that satisfy a stated condition. In as few words as possible, describe your algorithm
and justify its running time.

a. In O(n) time, determine x, y in S such that |x – y| ≥ |w – z| for all w, z in S.
b. In O(nlg(n)) time, determine x, y in S such that x π y and |x – y| £ |w – z| for all w, z in S such that w π z.

n Answer:
(a) x, y are the two farthest apart. Find min, max, each in O(n) time.
(b) x, y are the two closest together. First sort with O(nlgn) algo, then scan the sorted numbers for the two adjacent

numbers with the minimum difference in O(n).

n Example The mode of a set of numbers is the number that occurs most frequently in the set. The set (4, 6, 2, 4, 3, 1)
has a mode of 4.

a. Give an efficient and correct algorithm to compute the mode of a set of n numbers.

b. Suppose we know that there is an (unknown) element that occurs n/2+1 times in the set. Give a worst-case linear-
time algorithm to find the mode.

n Answer:

(a) Sort the numbers using O(nlgn) algorithm.

 Scan the sorted array and track the most frequent occurring number.

(b) Divide recursive the set by doing În/2˚ pairwise comparisions and only keeping one representative of the pairs which
are equal.

 For exmple (1, 1, 1, 1, 2, 2) Divide the set in 3 pairs as follows:
1,1 equal take 1
1,1 equal take 1
2,2 equal take 2
Now divide (1,1,2) into the following pairs

2.158 Computer Science & Information Technology for GATE

1,1 take 1
2 discard
1 is the answer.
Consider another permutation of the above problem: (1,2,1,1,2,1)
1,2
1,1 take 1
2,1
1 is the answer.
Consider another permutation of the above problem: (1,1,2,2,1,1)
1,1 take 1
2,2 take 2
1,1 take 1
Now divide (1,2,1) into the following pairs
1,2 discard
1
1 is the answer.

n Example Write a function to determine (in logarithmic time) the range of elements in a strictly increasing sequence

a0, a1, a2, . . ., an–1 that have ai = i.

void binRange(int a[], int n){

// Binary search for some element with a[i]==i

int low, high, mid, high1, high2, mid1, mid2, low1, low2;

low=0;

high=n-1;

while (1)

{

 if (high<low)

 {

 printf(“Range is empty, bracketed by %d %d\n”,high,low); return;

 }

 mid=(low+high)/2;

 if (a[mid]==mid)

 break;

 if (a[mid]<mid)

 low=mid+1;

 else

 high=mid-1;

}

// Find beginning of range

low1=low;

high1=mid;

while (low1<=high1)

{

 mid1=(low1+high1)/2;

 if (a[mid1]==mid1)

 high1=mid1-1;

 else

 low1=mid1+1;

Programming, Data Structures and Algorithms 2.159

}

printf(“%d begins the range\n”,low1);

// Find end of range

low2=mid;

high2=high;

while (low2<=high2)

{

 mid2=(low2+high2)/2;

 if (a[mid2]==mid2)

 low2=mid2+1;

 else

 high2=mid2-1;

}

printf(“%d ends the range\n”,high2);

}

n Example Two players A and B are playing a guessing game (akin to Unix craps game) where B first thinks up an in-
teger X (positive, negative or zero, and could be of arbitrarily large magnitude) and A tries to guess it. In response to A’s
guess, B gives exactly one of the following three replies:

(a) Your guess is high
(b) Your guess is low
(c) Congrats. You won

Design an efficient algorithm that minimises A’s guesses. Rather, defind A’s strategy such that he takes minimal steps.

n Answer: First find out whether X is positive or negative by guessing if X is ZERO. Say from the response you make out
that it is positive. Then make the next guess “1”. As long as you keep getting the response of “your guess is low”, keep on
doubling your guess until you finally get the response “your guess is high” for some guess P. Now you know that the num-
ber must lie between P and P/2, so do a binary search between them. The complexity of this approach will be O(logX).

n Example In Internet protocols, MTU (Maximum Transfer Unit) defines the size of a packet that we can send to a
target via a specific path without the packet getting fragmented into smaller packets. Let us assume that we do not know
what is appropriate MTU size along a path. If our packet size is bigger than the MTU, we will get a message that our packet
would be fragmented. We propose to find the acceptable MTU size (X) along a specific path by repeatedly sending pack-
ets of increasing size until we get the fragmentation message. Suppose we have to determine X, which is the size of MTU
along some path, and X could be potentially huge. Give an efficient algorithm to determine X and give its complexity in
terms of X. (Remember, we do not know the value of X beforehand).

n Answer: First try a packet of size 1 bye. If we do not get any fragmentation message, then double our packet size and
keep doing it till we get the message that packet will be fragmented (say for a packet size of P). Now, we know that X must
lie between P and P/2 (the previous try for which we did not get any error message), so do a binary search. The overall
complexity is O(log X).

n Example An integer array a contains n students grades (distinct) in unsorted way. A student X has been told that his
rank in the class is R (R is an integer and obviously, 1 <= R <= n). We want to find out the k boys who are ranked closest
to A (k/2 students below A, and k/2 students above A). Devise an efficient algorithm to identify the scores of these k boys.

n Answer: Since X’s rank is R, the k boys’ rank must vary between R-k and R+k. First find the (R–k)th and (R+k)th ranked
element using Selection (linear time). Then do Partition twice to discard all the elements that fall out of the range ((R-k),
(R+k)). It is linear.

n Example In a social gathering, there are b boys and g girls (b > g) of different ages. We have two unsorted arrays giving
their ages (one for the boys, the other for the girls). Devise an efficient O(b log g) algorithm to find out the ages that are
common between both the boys and girls.

2.160 Computer Science & Information Technology for GATE

e.g.,
If Arrayboy = {10, 20, 17, 30, 23, 21} and Arraygirl = {12, 30, 17, 20},
Then Arraycommon = {17, 20,30}

n Answer: Sort the smaller (girls’) array, then for each element in the larger array (boys), do a binary search on the girls’
array. If found in girls array store in Arraycommon. Print Arraycommon at the end.

n Example PARTS-SWAP: The input is an array of n elements and an integer k (where 1 £ k < n).

The input array can be implicitly thought of having the following two parts:
Part A: Elements with array index 0 through k-1, and
Part B: Elements with array index k through n-1.

We need to swap these 2 parts, so that the array looks like Part B followed by Part A. Observe that the individual order of
elements inside these two parts do not change after this swap.

For example (n = 10, k=3) will convert the following array

0 1 2 3 4 5 6 7 8 9

10 3 2 5 6 1 2 4 1 3

into

0 1 2 3 4 5 6 7 8 9

5 6 1 2 4 1 3 10 3 2

(The top row in both the tables is the header row, showing the array indices)
Design an efficient algorithm for doing the PART-SWAP using at most O(1) extra space. Justify its correctness and com-
plexity. It is not required that your algorithm uses divide and conquer approach.

int main(){

 int a[10], n, i,j,k,l,t;

 scanf(“%d”, &n);

 for(i=0;i<n;i++) scanf(“%d”, &a[i]);

 printf(“Enter k value”); scanf(“%d”, &k);

 if(k<=n/2){

 for(i=0,l=n-k;i<k;i++,l++){

 t=a[l];a[l]=a[i];a[i]=t;

 }

 l=n-2*k;

 while(l--){

 t=a[n-k-1];

 for(i=n-k-2;i>=0;i--)a[i+1]=a[i];

 a[0]=t;

 }

 }

 else{

 k=n-k;

 for(i=0,l=n-k;i<k;i++,l++){

 t=a[l];a[l]=a[i];a[i]=t;

Programming, Data Structures and Algorithms 2.161

 }

 l=k;

 while(l--){

 t=a[n-1];

 for(i=n-2;i>=k;i--)a[i+1]=a[i];

 a[k]=t;

 }

 }

 for(i=0;i<n;i++)printf(“%d “, a[i]);

 system(“PAUSE”);

 return 0;

}

n Example Assume that we have two separate databases having n and m numerical values(or keys). Thus, there exists
n + m values in total and we may assume that no two values are same. Assume that both n and m are in the form 2i – 1,
where i is an integer. We would like to determine the median of this set of n + m values, which we will define here to be
the (n+m)/2 th smallest value. However, the only way we can access these values is through queries to the databases. In
a single query, we can specify a value k to one of the two databases, and the chosen database will return the kth smallest
value that it contains. Give an efficient algorithm that finds the median assuming that each query to any of the databases
requires constant time. Also, derive the asymptotic complexity of your algorithm.

n Answer: Follow the following method repetitively. Compare the individual medians of the two databases by querying
them. Whichever is greater, discard the elements greater than it from your consideration. Similarly, whichever is smaller,
discard the elements smaller than it from your consideration. Thus, at every stage we are pruning half of the current input
size. So the overall complexity is O(log (n+m)).

n Example Consider a list of size n, which has atmost log n distinct numbers, the rest being repetitions of those num-
bers. Design an algorithm to sort this list in O(n log log n) time.

n Answer: First partition the list into n log n lists of size n/log n and use a mergesort-like strategy.

n Example Assume that you were given an array of n distinct integers that was originally sorted (either ascending or
descending) but has been circularly shifted by an amount k (k is an integer and 0<= k< n). Like, some examples of the
input array for n = 5 could be:
(1,2,3,4,5) k=0 (5,4,3,2,1) k=0 (4,5,1,2,3) k=2 (1,5,4,3,2) k=1.
Give an efficient algorithm to find the value of k in linear time.

n Answer: Consider ascending data and its shifted versions.
1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
If we try to traverse the given and compare ith element is less than i+1th element, this will be failing exactly with one ele-
ment in the shifted data. At which element it is failing will be tracked down to find amount of shifting k.
Similarly, consider descending data
5 4 3 2 1
4 3 2 1 5
3 2 1 5 4
2 1 5 4 3
With this data also, if we try to traverse the array and compare ith element is greater than i+1th element, it will be failing
exactly at one element whose index can be used to find the amount of shifting k. The following code fragment does the
above tasks.

2.162 Computer Science & Information Technology for GATE

int main(){

 int x[10], n, F1=0, F2=0, I1, I2,i;

 scanf(“%d”, &n);

 for(i=0;i<n;i++) scanf(“%d”, &x[i]); // shifted data

 for(i=0;i<n-1;i++){

 if(x[i]<x[i+1]) { F1++; I1=i;}

 else

 { F2++; I2=i; }

 }

 if(F1==1)printf(“k=%d\n”, n-I1-1);

 else if(F2==1)

 printf(“k=%d \n”, n-I2-1);

 system(“PAUSE”);

 return 0;

}

n Example An array A[1 . . n] is unimodal if it consists of an increasing sequence followed by a decreasing sequence, or
more precisely, if there is an index m Œ {1, 2, . . . , n} such that

A[i] < A[i + 1] for all 1 £ i < m, and
A[i] > A[i + 1] for all m £ i < n.

In particular, A[m] is the maximum element, and it is the unique “locally maximum” element surrounded by smaller ele-
ments (A[m − 1] and A[m + 1]). Give an algorithm to compute the maximum element of a unimodal input array A[1 . .
n] in O(lg n) time. Prove the correctness of your algorithm, and prove the bound on its running time.

n Answer: Notice that by the definition of unimodal arrays, for each 1 £ i < n either A[i] < A[i + 1] or A[i] > A[i + 1]. The
main idea is to distinguish these two cases:

1. By the definition of unimodal arrays, if A[i] < A[i + 1], then the maximum element of A[1..n] occurs in A[i + 1..n].
2. In a similar way, if A[i] > A[i +1], then the maximum element of A[1..n] occurs in A[1..i].

This leads to the following divide and conquer solution (note its resemblance to binary search):
1 a, b ¨ 1, n

2 while a < b

3 do mid ¨ Î(a + b)/2˚
4 if A[mid] < A[mid + 1]

5 then a ¨ mid + 1

6 if A[mid] > A[mid + 1]

7 then b ¨ mid

8 return A[a]

The precondition is that we are given a unimodal array A[1..n]. The postcondition is that A[a] is the maximum element of
A[1..n]. For the loop we propose the invariant “The maximum element of A[1..n] is in A[a..b] and a £ b”.

When the loop completes, a ≥ b (since the loop condition failed) and a £ b (by the loop invariant). Therefore, a = b, and
by the first part of the loop invariant the maximum element of A[1..n] is equal to A[a].

We use induction to prove the correctness of the invariant. Initially, a = 1 and b = n, so, the invariant trivially holds.
Suppose that the invariant holds at the start of the loop. Then, we know that the maximum element of A[1..n] is in
A[a..b]. Notice that A[a..b] is unimodal as well. If A[mid] < A[mid + 1], then the maximum element of A[a..b] occurs

Programming, Data Structures and Algorithms 2.163

in A[mid+1..b] by case 1. Hence, after a ¨ mid+1 and b remains unchanged in line 4, the maximum element is again in
A[a..b]. The other case is symmetric.

To complete the proof, we need to show that the second part of the invariant a £ b is also true. At the start of the loop a
< b. Therefore, a £ Î(a + b)/2˚ < b. This means that a £ mid < b such that after line 4 or line 5 in which a and b get updated
a £ b holds once more.

Thus, this divide and conquer approach leads to a running time of T(n) = T (n/2) + Q(1) = Q (lg n).

n Example A polygon is convex if all of its internal angles are less than 180° (and none of the edges cross each other).
Given figure shows an example. We represent a convex polygon as an array V [1 . . n] where each element of the array
represents a vertex of the polygon in the form of a coordinate pair (x, y). We are told that V [1] is the vertex with the mini-
mum x coordinate and that the vertices V [1 . . n] are ordered counterclockwise, as in the figure. You may also assume that
the x coordinates of the vertices are all distinct, as are the y coordinates of the vertices.

v [9]

v [8]
v [7]

v [6]

v [5]

v [4]
v [3]

v [2]

v [1]

An example of a convex polygon represented by the array V [1 . . 9]. V [1] is the vertex with the minimum x-coordinate,
and V [1 . . 9] are ordered counterclockwise.

(a) Give an algorithm to find the vertex with the maximum x coordinate in O(lg n) time.

n Answer: Notice that the x-coordinates of the vertices form a unimodal array and we can use the above algorithm for
unimodal maximum to find the vertex with the maximum x-coordinate in O(lg n) time.

(b) Give an algorithm to find the vertex with the maximum y coordinate in O(lg n) time.

n Answer: After finding the vertex V [max] with the maximum x-coordinate, notice that the y-coordinates in V [max], V
[max + 1], . . . , V [n − 1], V [n], V [1] form a unimodal array and the maximum y-coordinate of V [1..n] lies in this array.
Again unimodal maximum finding algorithm can be used to find the vertex with the maximum y-coordinate. The total
running time is Q (lg n).

n Example Let X[1..n] and Y [1..n] be two arrays, each containing n numbers already in sorted order. Give an O(lg n)-
time algorithn to find the median of all 2n elements in arrays X and Y .

n Answer: The median can be obtained recursively as follows. Pick the median of the sorted array A. This just takes O(1)
time as median is the n/2th element in the sorted array. Now compare the median of A, call is a* with median of B, b*. We
have two cases.

a* < b* : In this case, the elements in B[n/2 · · · n] are also greater than a*. So the median cannot lie in either A[1 ·
· · n/2] or B[n/2 · · · n]. So we can just throw these away and recursively solve a subproblem with A[n/2 · · · n] and
B[1 · · · n/2].
a*> b* : In this case, we can still throw away B[1 · · · n/2] and also A[n/2 · · · n] and solve a smaller subproblem
recursively.

In either case, our subproblem size reduces by a factor of half and we spend only constant time to compare the medians of
A and B. So the recurrence relation would be T(n) = T(n/2) + O(1) which has a solution T(n) = O(log n).

n Example An n element array contains unique numbers between 0 to n. Find out the missing element between 1 to n
that is not seen in the array.

n Answer: The missing integer in {0, 1, …, n} in an array of n elements in {0, 1, …, n} is the sum of all elements from1 to
n (which is n(n+1)/2), minus the sum of the array elements.

2.164 Computer Science & Information Technology for GATE

We give the pseudocode for an algorithm that finds the missing integer. The algorithm runs in Q(n) time.
MissingInteger(A, n)

sum = 0; // compute the sum of the array elements

For i = 1 to n do

 sum <- sum + A[i]

return n(n + 1)/2 – sum

n Example An n–1 element array contains unique numbers between 0 to n. Find out missing two elements (out of the
numbers 0 to n) from the array.

n Answer: We assume x and y are the two missing numbers.
We know the sum of n integers 0 to n is n(n+1)/2 and we calculate sum of all the array elements. Thus, x+y=n(n+1)/2-

sum of the array elements.
Also, we know what is the sum of squares of n integers 0 to n is n(n+1)(2n+1)/6. Thus, x2+ y2=n(n+1)(2n+1)/6 - sum

of squares of the array elements.
That is we can have two equations
x+y = a where a= n(n+1)/2-sum of the array elements

x2+y2 = b where b= n(n+1)(2n+1)/6 - sum of squares of the array elements
We can calculate x-y by carrying out simple algebraic manipulations as shown here.
2b-a2 = x2 + y2-2xy = (x–y)2.
Having x+y and x-y, we can calculate the missing numbers.

n Example An n-2 element array contains unique numbers between 0 to n. Find out missing three elements (out of the
numbers 0 to n) from the array.

n Answer: We assume x,y,z are the two missing numbers.
We know the sum of n integers 0 to n is n(n+1)/2 and we calculate sum of all the array elements. Thus,

x+y+z=n(n+1)/2-sum of the array elements.
Also, we know what is the sum of squares of n integers 0 to n is n(n+1)(2n+1)/6. Thus,
x2+y2+z2=n(n+1)(2n+1)/6 - sum of squares of the array elements.
In addition, we know what is the sum of cubes of n integers 0 to n is (n(n+1) /2)2. Thus,
x3+y3+z3=n(n + 1)(2n + 1)/6 – sum of squares of the array elements.
That is we can have three equations and three unknowns. We can solve for x, y, and z.

n Example Calculate prefix averages of array elements of an array X. That is, given an X with n elements, we need to
calculate for each of the element X[i] average of X[0], X[1], …X[i]. The following two solutions are proposed. Which is
better? Explain.

Solution 1 :
for i ¨ 0 to n – 1 do
a ¨ 0
for j ¨ 0 to i do
a ¨ a + X[j]
A[i] ¨ a/(i + 1)
return array A
Solution 2:
s ¨ 0
for i ¨ 0 to n – 1 do
s ¨ s + X[i]
A[i] ¨ s/(i + 1)
return array A

n Answer: Second one is preferable as its complexity is O(n) compared to O(n2) of first one.

n Example The following is a recursive function that determines whether a given integer array is sorted or not. Is there
anything missing in this function?. Does it works?

Programming, Data Structures and Algorithms 2.165

int isSorted(int data[], int n){

if(n == 1)return 1;

else{

 int temp = isSorted(data, n-1);

 return (temp) && (data[n-2] <= data[n-1]);

}

}

n Answer: Nothing is missing. It works without any problem.

n Example Does the following is valid?

1 + 2 + 3 + + ÷n = O(n)

n Answer: Sum becomes = ÷n(÷n + 1)/2. As the resultant equation contains term with n, we can conclude that the given
equality is valid.

n Example Suppose an A is having following elements. 8 2 1 4 11 7 17

Also suppose that the function partition is called as follows: partition(A, 0, 6). What value does partition return? Draw the
array A after the execution of partition.

int partition(int data[], int left, int right){

 int i, j;

 i = left;

 for(j = left; j <= right; j++){

 if(data[j] < data[i]){

 swap(data, i, j);

 i++;

 swap(data, i, j);

 }

 }

 return i;

}

n Answer: 4

 2 1 4 7 8 11 17

n Example Suppose we are given a sequence S of n elements, each of which is coloured red or blue. Assuming S is repre-
sented by an array, describe an in-place linear time algorithm for ordering S so that all the blue elements are listed before
all the red elements.

n Answer: To obtain a linear-time algorithm for this problem, we keep track of two indices into the array, front and end
and traverse akin to quick sorting algorithm. Index front starts at the front of S and end start at the end of S. They move
toward each other until they meet at which point the algorithm terminates. While they are traversing the sequence, every
time front sees a red element and end sees a blue element, these two elements get swapped. This all the elements that front
traverses, end up with blue elements, while all the elements that end traverses end up with red elements.

Note that, as required, this algorithm is in-place, i.e., it does not use any auxiliary data structures. Also since the front
and end indices always move toward each other, each element of the sequence gets traversed by either one of them exactly
once. Each time increment front or decrement end, we perform at most one swap, which takes constant time. Therefore
the algorithm can run in O(n).
While front < rear

2.166 Computer Science & Information Technology for GATE

Do
Increment front till it finds red element
Decrement end till it finds blue element
If front < end exchange red and blue
End do

n Example Suppose we are given a sequence S of n elements, each of which is an integer in the range [O,n2 –1]. Describe
an algorithm for sorting S in O(n) time.

n Answer: Let k be an integer in the range [O,n2 –1]. If we represent it in n-ary form, it would consist of two numbers
(l,f) such that k – l × n + f where each l and f are in the range [O, n –1]. Conveniently, the lexicographical ordering of the
n-ary representation corresponds to the ordering of the numbers. Therefore, Radix-sort can be applied directly to sort the
sequence. Since radix-sort runs in O(n), we only require O(n) time to sort the sequence.

n Example Two int arrays, A and B, contain m and n ints each, respectively. Elements of the arrays are in ascending
order without duplicates (i.e. each table represents a set). The following function is to find the symmetric difference by
producing a third array C (in ascending order) with the values that appear in exactly one of A and B and sets the variable
p to the final number of elements copied to C. What is its complexity?

 int * symdifference(int A[], int m, int B[], int n){

int i=j=p=0;

while (i<m && j<n){

 if (A[i]<B[j]) C[p++]=A[i++];

 else if (A[i]>B[j]) C[p++]=B[j++];

 else{

 i++;

 j++;

 }

}

for (; i<m; i++) C[p++]=A[i];

for (; j<n; j++) C[p++]=B[j];

return c;

}

n Answer: O(m+n). It is more like merging in merge sort.

Linked Lists, Stacks and Queues

We assume the following structure for single linked list and double list problems. Nodes are assumed to be having integers.
struct lst{

int n;

struct lst *next;

}

struct dlst{

int n;

struct lst *next;

struct lst *prev;

}

n Example Assuming H is the head of a single linked list, after the following while loop to which node H points?
while(H->next)H=H->next;

Programming, Data Structures and Algorithms 2.167

n Answer: To last node.

n Example Assuming H is the head of a single linked list, after the following while loop to which node H points?
while(H->next&&H->next->next)H=H->next;

n Answer: To last but one node if the list contains more than one node, else it points to the first node itself.

n Example Assuming H is the head of a single linked list, after the following while loop to which node H points? Criti-
cally comment if the list contains only one or two nodes?
while(H->next&&H->next->next)H=H->next;

n Answer: In both the situations, H will be pointing to first node the while loop.
n Example Write a function which takes head of single linked list and returns nth node address if available, otherwise

returns 0.
struct lst * NthNode(struct lst *H, int n){

while(H&&n--)H=H->next;

return H;

}

Recursive Solution:
struct lst * NthNode(struct lst *H, int n){

if(H&&n--) return(NthNode(H->next,));

else

return H;

}

n Example Write both iterative and recursive versions to calculate sum of the values in the single linked list.
int sum(struct lst *H){

int s=0;

while(H){

s+=H->n;

H=H->next;

}

return s;

}

Recursive version:
int rsum(struct lst *H){

if(H)return(H->n +rsum(H->next));

else

return 0;

}

n Example Write both iterative and recursive versions to calculate frequency of occurrence of a value in the single
linked list.
int count(struct lst *H,int x){

int s=0;

while(H){

s+=(H->n==x);

H=H->next;

}

return s;

}

Recursive version:
int rcount(struct lst *H,int x){

if(H)return((H->n==x) +rcount(H->next,x));

2.168 Computer Science & Information Technology for GATE

else

return 0;

}

n Example Write a function to reverse a linked list. Not to reversely print the information of the linked list.
struct lst * rev(struct lst *H)

{

struct lst *B, *A;

if(H==0) return 0;

B=H->next;

H->next=0;

while(B){

A=B->next;

B->next=H;

H=B;

B=A;

}

return H;

}

n Example Write a function to reverse a double linked list. Not to reversely print the information of the double linked
list.
struct dlst * rev(struct dlst *H)

{

struct dlst *B, *A;

if(H==0) return 0;

B=H->next;

H->next=0;

while(B){

A=B->next;

B->next=H;

H->prev=B;

H=B;

B=A;

}

H->prev=0;

return H;

}

The following version also reverses the double linked list.
struct dlst * rev1(struct dlst *H)

{

struct dlst *B, *A, *C;

if(H==0) return 0;

while(H->next)H=H->next;

B=H;

while(B){

 C=B->prev;

Programming, Data Structures and Algorithms 2.169

 A=B->next;

 B->next=B->prev;

 B->prev=A;

B=C;

}

n Example Write a function that returns number of nodes in a circular linked list by taking the address of a circular
single linked list.
int count-nodes (struct lst *p) {

int count=0;

struct lst *start=p;

while (p->next != start)

{

count ++;

p = p->next;

}

return count;

}

n Example Parentheses Matching Algorithm
An array X of n tokens, each of which is either a grouping symbol (brackets), a variable, an arithmetic operator, or a
number. This function returns if all the grouping symbols in X match else returns false. What is the complexity of this
algrorithm?
Algorithm ParenMatch(X,n):
Let S be an empty stack
for i=0 to n-1 do
if X[i] is an opening grouping symbol then
S.push(X[i])
else if X[i] is a closing grouping symbol then
if S.isEmpty() then
return false {nothing to match with}
if S.pop() does not match the type of X[i] then
return false {wrong type}
if S.isEmpty() then

return true {every symbol matched}
else

return false {some symbols were never matched}

Answer: We know that we will be iterating each symbol of X. Thus complexity of this algorithm O(n) where n is the num-
ber of symbols in X.

What are the advantages and dis-advantages of using a linked list to implement a stack rather than an array?

One advantage of using a linked list to implement a stack is that a linked list does not have a fixed size. This means that
our linked list can grow to the size of the stack. We do not need to worry about setting aside a certain block of memory
for the stack.

One disadvantage of using a linked list is the increased complexity of using pointers. With pointers it is easier to make
mistakes while implementing the logic of the stack operations.

While implementing a stack using an array, what is the first thing one need to do?

The first thing we must do is reserve a group of memory cells large enough to hold all the items which we want to put in
the stack.

Which item is always the last item to leave a stack?

2.170 Computer Science & Information Technology for GATE

The last item to leave a stack is the item that is on the bottom of the stack or the first item that entered the stack.

What is the purpose of the stack pointer?

The stack pointer is used to keep track of the top of the stack. This pointer will always hold the memory location of the
last item added to the stack.

n Example How to find a cycle in a single linked list. Rather, how to check a given single linked list is circular or not.
What is its complexity.

n Answer We propose to use two pointers x and y. In the beginning of the algorithm, pointer x points to first element
of the list and pointer y points to the second element of the list. Then, in each iteration of the a loop, pointer y moves two
steps forward and pointer x moves one step forward. We continue the loop till x is not equal to y. If a loop exists in the list,
then at some points, pointer x and pointer y will point to the same element.

The worst-case time complexity of this algorithm can be O(n).

n Example Identify logical errors in the following function which is proposed to delete last node of a single linked list.
void delLast(Node *& head) {

Node *p = head ;

while(p->next->next != 0) {

p = p->next ; }

p->next = 0 ;

}

n Answer: There are at least two logic errors in the routine. List all errors you can spot:
The algorithm will dereference a null pointer in the case where the list is of length 1.
The algorithm does not delete the node from the heap. Thus it has a space leak.
To alleviate first error we can change while loop as while(p->next!=0)
To alleviate second problem, we can add an instruction or two to remove node.

2.4.4 Trees

In a nutshell, a tree is said to be having a set of nodes (G) and edges (E) which joins them. Of course, the same definition
is used for graphs also. However, main difference is that the tree is also a graph, to be specifically acyclic graph. Evidently
tree contains parent, child and grand child type hierarchical relationship.

A tree is a set of nodes which is either null or with one node designated as the root and the remaining nodes partitioned
into smaller trees, called sub-trees.

c

d

b

a

e f

g

ih

aT2: T3:

Figure 2.15 Sample Tree

n Example:
T1={} (NULL Tree. Not shown in the figure 2.15)
T2={a} a is the root, the rest is T1
T3={a, {b,{c,{d}},{e},{f,{g,{h},{i}}}}

Another application of trees is in compiler construction where expression or parse trees (see Figure 2.16) are used for
verifying the validity of expressions.

Programming, Data Structures and Algorithms 2.171

A B

–

+

*

–/

C D E F

Figure 2.16 An example parse or expression tree

Notations

Root Node: It is the top most node in the tree.
Degree of the Node: The degree of a node is the number of partitions in the subtree which has that node as the root.
Leaf Node: The one which does not have any more children. That is the nodes with degree=0 are called leaves.
Non-Leaf Node: The node which contains child’s. Non-Leaf nodes degree value will be other than zero.
Level: The level of a node is the length of the path from the root to that node. Root node is said to be at 0th level.
Level numbers increases downwards.
Height (or depth) of the Tree: Number of levels in which nodes are organised. The depth of a tree is the maximum
level of any node of any node in the tree.
Left sub-tree or Sibling: Left side portion of any non-leaf node is called as its left sub-tree or sibling.
Internal node: Not a root or a leaf.
Parent: Node with out-degree greater than 0.
Child: Node with in-degree greater than 0.
Siblings: Nodes with the same parent.
Path: Sequence of adjacent nodes.
Right sub-tree or Sibling: Right side portion of any non-leaf node is called as its right sub-tree or sibling.
Ancestor: Node in the path from the root to the node.
Descendent: Node in a path from the node to a leaf.
Sub-tree: Connected structure below the root.
Degree: The degree of a node is the number of partitions in the sub-tree which has that node as the root.
Balance of a node: Balance of a node is the difference in heights of its left and right sub-trees or siblings. For leaf
nodes, balance value will be 0.

Binary Trees and Multiway Trees: Binary trees are the ones in which any node contains at most two children. That
is maximum allowed degree of any node in a binary tree is 2. Violation of the above rule is seen in the multi-way
trees. That is the nodes may have more than two children.

A binary tree may contain up to 2n nodes at level n.

Strictly binary tree is the one whose non-leaf nodes contain exactly two children; i.e., its non-leaf nodes will be
having degree value of 2.

A complete binary tree of depth N has 2k nodes at levels k=0,…,N–1 and all leaf nodes at level N occupy leftmost
positions. Complete binary tree is the one in which all leaf nodes will be at the lowest level and every non-leaf node
will be having exactly two children. Thus, complete binary tree is evidently strictly binary tree.

Almost complete binary tree is the in which all the leaf nodes will be at lowest level or one level above it. Some
authors further divide these trees as “almost complete strictly binary tree” and “almost complete binary tree”,
where strictness is not maintained.

Balanced Binary tree or AVL tree: The tree whose nodes balance values are between –1 to 1.

If level N has 2N nodes as well, then the complete binary tree is a full tree.

If all nodes have degree = 1, the tree is a degenerate tree (or simply linked list).

2.172 Computer Science & Information Technology for GATE

If a node in a binary search tree contains two children (leaf), then its successor has no left child and its predecessor
has no right child.

The deletion operation on binary search tree is commutative. That is, first if we delete x and followed by y then the
resulting tree will be same as if we delete y first followed by x.

ED

B

A

C

ED

B

A

C

GF

Figure 2.17 Allmost complete binary tree and complete binary tree

D

B

A

C

E

F

left sub-tree right sub-tree

Figure 2.18 Shows left and right subtrees of a binary tree

A binary tree may contain up to 2n nodes at level n.
A complete binary tree of depth N has 2k nodes at levels k=0,…,N-1 and all leaf nodes at level N occupy leftmost posi-

tions.
If level N has 2N nodes as well, then the complete binary tree is a full tree.

If all nodes have degree=1, the tree is a degenerate tree (or simply linked list). For example, a degenerate tree of
depth 5 has 6 nodes.

A full tree of depth 3 will have 1 + 2 + 4 + 8 = 15 nodes.

A full tree of depth N has 2N+1–1 nodes.

A complete tree of depth N has 2N – 1<=m <=2N+1–1 nodes.

If N is the number of nodes then the depth of almost complete strictly binary tree will be less than or equal to
log2(N).

For a given height, complete binary tree will be having more number of nodes than any binary tree organisations.

For any strictly binary tree the equality “No of Leaf Nodes – No of Non-Leaf Nodes =1” will be satisfied.

Given number of keys, height of the tree becomes minimum if they are organised in complete binary tree fashion
compared to any other binary tree configurations.

If lowest level in a complete binary tree is K, then number of leaf nodes with 2K and number of non-leaf nodes will
be 2K–1. Total number of nodes will be 2K+1 –1.

If H is the height of the complete binary tree, the number of leaf nodes are 2H–1, number of non-leaf nodes are
2H–1–1 and total number of nodes are 2H–1.

Binary Search Trees From the name itself we can know that Binary search trees are used for searching applications.
Binary search is the one which some order exists among the information available in the nodes. For example, if the
nodes contains numbers, then all the nodes which are left to a node will be having their node values smaller and
right to it will be having their values larger as shown in Fig. 2.19.

12 20

18

23

35 52

44

Figure 2.19 Binary search tree

Programming, Data Structures and Algorithms 2.173

Of course, one way we can think a linked list with ascending ordered values also as a binary search tree. To be critically,
such a trees are called as skewed trees or degenerate trees.

Max Heap and Min Heap Max heap is a special type of tree in which any node value will be more than its children.
For example, see the Fig. 2.20.

7 7

1413

6

4

8

9 12

Figure 2.20 Min Heap

Min Heap is a complimentary to max heap. That is, any node value will be less than its children values. We have discussed
about max heap in heap sorting. More over, heaps are nearly complete binary trees. That is all nodes at the lowest level will
be in the left side as shown in Fig. 2.21.

A

B

D E

C

A

B

D E

C

F

A

B

D

C

Figure 2.21 Acceptable heaps

Tree Traversals

In previous chapters, we have discussed about various structures like linked lists, double linked lists, circular lists, etc., we
have always demonstrated first creation of them followed by traveling them. In the case of single linked list we have free-
dom to traverse from head node to tail node. While with double linked list, we can also traverse from tail to head node. In
the case of circular lists we can traverse cyclically. In the same fashion, trees also can be traversed in the following ways.

1. In-Order Traversal
2. Pre-Order Traversal
3. Post-Order Traversal
4. Level-Order or Breadth first traversal

While traversing the information in the node will be processed. Here, processing can be simply printing/displaying or
comparing with a search key, etc. Always, we assume traversal starts from the root node.
In-Order Traversal
At each node, A, we have to apply the following sequence of operations:

Traverse Left sub-tree of A in In-Order Fashion
Process A
Traverse Right sub-tree of A in In-Order Fashion.

For example, if we traverse the tree in Fig. 2.22 we get the sequence as: CBDAEF
Pre-Order Traversal
At each node, A, we have to apply the following sequence of operations.

Process A
Traverse Left sub-tree of A in Pre-Order Fashion
Traverse Right sub-tree of A in Pre-Order Fashion.

For example, if we traverse the tree in Fig 2.22 we get the sequence as:ABCDEF

2.174 Computer Science & Information Technology for GATE

B

C D

E

F

A

C DB A E F

Processing order

Walking order

B

C D

F

F

A

Figure 2.22 In-Order Traversal

E

FDC

B

A B C D E F

Processing order

B

DC

E

F

Walking order

A

A

Figure 2.23 Pre-Order Traversal

Post-Order Traversal
At each node, A, we have to apply the following sequence of operations

Traverse Left sub-tree of A in Post-Order Fashion
Traverse Right sub-tree of A in Post-Order Fashion.
Process A

For example, if we traverse the tree in Fig. 2.24 we get the sequence as: CDBFEA

B

C D

F

F

A

C D B AEF

Processing order

Walking order

B

C D

E

F

A

Figure 2.24 Post-Order Traversal

If we traverse an expression tree In-Order fashion, we will get its infix representation; pre-order fashion we will get its
prefix representation; post-order traversal gives postfix representation.

Similarly, if we traverse a binary search such as the one in Fig. 2.19 in In-Order fashion, we get ascending ordered se-
quence of the node values. For example, the In-Order traversal of the BST in Figure 2.19 gives: 12, 18, 20, 23, 35, 44, 52.

Level-order Traversal
This is some what different from previous traversals. Here, all the nodes at each level will be processed from left-to-right
starting from 0th level. For example, level order traversal of the Fig. 2.25 gives sequence as: ABECDF

Programming, Data Structures and Algorithms 2.175

B

C D

E

F

A

A

B E

C D F

Processing order

B

C D

E

F

A

Walking order

Figure 2.25 Level Order Traversal

Creating Binary Search Tree
Node structure of a binary search tree with integer information can be taken as:
struct Node

{

int n;

struct Node *left;

struct Node *right;

};

The above structure is assumed in the following questions:

1. What will be the result of the following function on
a binary search tree?

 strunt Node* xyz(struct Node *A)

 {

 if(A==0) return 0;

 while(A->left)A=A->left;

 return A;

 }

Answer: It returns the address of the left most node.
2. What will be returned value from the following

function?

 struct Node * XYZ (struct Node *root) {

 if (! root -> left)

 return (root)

 else return XYZ (root -> left);

 }

Answer: It returns the address of the left most node of
a BST.

3. How to return minimum value of a BST with inte-
gers as its node values? Do propose recursive solu-
tion also.

Answer: We find out left most node and return the
value available in it.

 int minValue(struct Node *A){
 if(A==0) return 0;
 while(A->left)A=A->left;
 return A;

 }
 int rminValue(struct Node *A){
 if(A==0) return 0;
 else if(A->left)return rminValue(A->left);
 else return A->n;
 }

4. What will be the result of the following function on
a binary search tree?

 struct Node* PQR(struct Node *A)
 {
 if(A==0) return 0;
 while(A->right)A=A->right;
 return A;
 }

Answer: It returns the address of the right most node.
5. How to return maximum value of a BST with inte-

gers as its node values? Do propose recursive solu-
tion also.

 int maxValue (struct Node *A)
 {
 if(A==0) return 0;
 while(A->right)A=A->right;
 return A->n;
 }
 int rmaxValue(struct Node *A){
 if(A==0) return 0;

2.176 Computer Science & Information Technology for GATE

 else if(A->right)return rmaxValue(A->right);
 else return A->n;
 }

6. What is the use of the following function?

 void insertbst(struct Node **H, struct Node *A){

 if(*H==0)*H=A;

 else if((*H)->n <A->n) insertbst(&(*H)->right, A);

 else insertbst(&(*H)->left, A);

 }

Answer: It inserts a node in a binary tree in recursive
manner.

7. Explain how to traverse a tree using a stack.

The following pseudo code gives us an idea of how
traversal can be done using stack. Let p is the point-
er to root node of the tree.

 do

 {

 while(p !=NULL){

 push(p);

 p=p->left;

 }

 if(stack if not empty)

 {

 p=pop();

 print information of node p;

 p=p->right;

 }

 }while(stack is not empty or p is not NULL);

 What does the following function do?

 int H(struct Node *A){

 if(A==0) return 0;

 else if(A->left==0 && A->right==0) return 1;

 else

 return(1+H(A->left)+ H(A->right));

 }

 Answer: It returns the total nodes in a tree whose
root node is sent as argument to the function. It uses
recursive traversal. When it encounters a leaf node it
returns 1. If it encounters a non leaf node, it recursive-
ly finds left side nodes, right side nodes and returns
their sum by adding one.

8. What does the following function does?

 int NL(struct Node *A){

 if(A==0) return 0;

 else if(A->left==0 && A->right==0) return 1;

 else

 return(NL(A->left)+ NL(A->right));
 }

 Answer: It returns number of leaf nodes in the tree
whose root node address is given as argument.

9. What does the following function does?

 int NONL(struct Node *A){

 if(A==0) return 0;

 else if(A->left==0 && A->right==0) return 0;

 else

 return(1+NONL(A->left)+ NONL(A->right));

 }

 Answer: It returns number of non-leaf nodes in the
tree whose root node address is given as argument.

10. What does the following function does?

 int HEIGHT(struct Node *A){

 int L,R;

 if(A==0) return 0;

 else if(A->left==0 && A->right==0) return 1;

 else

 {

 L=HEIGHT(A->left);

 R=HEIGHT(A->right);

 return(1+ (L<R? R:L));

 }

 }

 Answer: It returns the height of the tree.
11. What does the following function does?

 int COMPLETE(struct Node *A){

 int L,R;

 if(A==0) return 0;

 else if(A->left==0 && A->right==0) return 1;

 else{

 L=COMPLETE(A->left);

 R=COMPLETE(A->right);

 if((L==-1) || (R==-1) || (L!=R)) return -1;

 return(1+L);

 }

 }

 Answer: It takes address of the root node of a BST
and returns 0 if it is not a complete binary tree other-
wise it returns height of the tree.

12. What does the following function does?

 int BAL(struct Node *A){

 int L,R;

 if(A==0) return 0;

 else if(A->left==0 && A->right==0) return 1;

 else{

 L=BAL(A->left);

 R=BAL(A->right);

 if((L==-1) || (R==-1) || (abs(L-R)>1)) return -1;

Programming, Data Structures and Algorithms 2.177

 return(1+(L<R?R:L));

 }

 }
 Answer: It takes address of the root node of a BST

and returns - if it is not a balanced binary tree other-
wise it returns height of the tree.

13. What does the following function does?

 int STRICT(struct Node *A){

 int L,R;

 if(A==0) return 0;
 else if(A->left==0 && A->right==0) return 1;

 else{

 L=STRICT(A->left);

 R=STRICT(A->right);

 return(L*R);

 }

 }

 Answer: It takes address of the root node of a BST
and returns 0 if it is not a strictly binary tree otherwise
it returns 1. For example, see working of the above
function.

20 35 52

44
1 1

1 0

22

21

19

12

18

23

0

0

1

1

0 1

0

44

5235

23

18

2012

19 22

1 1

1

1 1

1 1

11

14. What does the following function does?

 int identicaltopology(struct Node* a, struct

Node* b) {

 if (a==NULL && b==NULL){return(1);}

 else if (a!=NULL && b!=NULL) {

 return(

 identicaltopology(a->left, b->left) &&

 identicaltopology(a->right, b->right));

 }

 else return(0);

 }

 Answer: It takes addresses of the root nodes of two
BST’s and ruturns 1 if they are topologically same else
returns 0.

15. What does the following function does?

 int identical(struct Node* a, struct Node* b) {

 if (a==NULL && b==NULL){return(true);}

 else if (a!=NULL && b!=NULL) {

 return(a->n == b->n &&

 identical(a->left, b->left) &&

 identical(a->right, b->right));

 }

 else return(0);

 }

 Answer: It takes addresses of the root nodes of two
BST’s and ruturns 1 if they are topologically same and
also their nodes values are same, else returns 0.

16. What does the following function does?

 struct Node *copy(struct Node *root){

 struct Node *temp;

 if(root==NULL)return(NULL);

temp = (struct Node *) malloc(sizeof(struct Node));

 temp->n = root->n;

 temp->left = copy(root->right);

 temp->right = copy(root->left);

 return(temp);

 }

 Answer: It creates copy of a BST.
17. What does the following function does?

 void mirror(struct Node* node) {

 struct Node *temp;

 if (node==NULL) {

 return;

 }

 else {

 mirror(node->left);

 mirror(node->right);

 // Swap the pointers of this node

 temp = node->left;

 node->left = node->right;

 node->right = temp;

 }

 }
 Answer: It creates mirror of a tree.

18. What does the following function does?

 struct Node * Find(struct Node *A, int x){

 if(A==0) return 0;

 while(A){

 if(A->n==x)return A;

 else if(A->n<x) A=A->right;

 else A=A->left;

 }

2.178 Computer Science & Information Technology for GATE

 return A;

 }

 Answer: It takes address of the root node of a tree and
a key. It returns the address of the node having the
given key, else returns 0.

19. What does the following function does?

int mirror(struct Node* a, struct Node* b) {

 if (a==NULL && b==NULL){return(1);}

 else if (a!=NULL && b!=NULL) {

 return(

 mirror(a->left, b->right) &&

 mirror(a->right, b->left));

 }

 else return(0);

 }

 Answer: It takes addresses of the root nodes

20. What does the following function does?

 struct Node * RFind(struct Node *A, int x){

 if(A==0) return 0;

 else if(A->n ==x) return A;

 else if(A->n<x) return(RFind(A->right,x));

 else return (RFind(A->left,x));

 }

 Answer: This is the recursive version of Find(). If A
is null, we return null. If A contains x then it returns
A. Otherwise, we will search for x in its left and right
sub-trees recursively with the same key value.

21. Explain how to return kth element of the ordered
list.

 Answer: Assume that our binary tree node contains
one extra data member, linkcount, which indicates
the number of nodes left of it.
struct Node

 {

 int n;

 int linkcount;

 struct Node *left;

 struct Node *right;

 };

 Assuming, some how we have created a binary search
tree with linkcount values also. The following func-
tion returns the address of kth element of the ordered
list or not.

 struct Node * kthelement(struct Node *H, int k)

 {

 if(H==0) return 0;

 while(H && (H->left || H->right))

 {

 if(H->linkcount >= k) H=H->left;

 else

 {

 k -=H->linkcount;

 H=H->right;

 }

 return H;

 }

22. How to find out in-order successor of a node with a
given value.

 In-Order successor of Node, p, can be calculated by
employing the following rules:
If p is left child to its parent and p does not have any
right sub-tree then its parent itself becomes in-order
successor of p.
If p is left child to its parent and p has right sub-tree,
then left most child of p’s right sub-tree becomes the
p’s in-order successor.
If p is right child of its parent and p has right sub-
tree, then left most child of p’s right sub-tree becomes
the p’s in-order successor.
If p is right child of its parent and p does not have
any right sub-tree, then back track using father field
till we will find a node q which is left to its parent and
then return q’s father as p’s in-order successor.
If p is right most node of a tree then its in-order suc-
cessor is NULL.
If p is root node then, left most child of its right sub-
tree is the in-order successor.

In Fig. 2.26 for nodes marked as A,B, the in-order succes-
sors are their parents as A,B do not have right sub-trees.

8

12 20

14

16

17 36

37 40

43
Y

Z

X

W

35 52

44

23

18

39 55

5

D

C

B

A U

Figure 2.26 In-Order Successor

For nodes C,D, in-order successors are the left most nodes
of its right sub-tress. In this, case they 14 and 20, respec-
tively.

Programming, Data Structures and Algorithms 2.179

For nodes Y, Z (which are right children’s for their parents
and do not have any right sub-trees), in-order successors
are 35 and NULL.
For nodes, U, X in-order successors are left most children of
their right sub-trees. That is, 16 and 40, respectively.
For root node, W, in-order successor is 35.

Note

In-Order predecessors of a node can be easily calculated
by replacing left with right and right with left in the above
statements.

What are threaded binary trees?

Threaded Binary Trees are the ones which may contain nodes
with their links pointing to their in-order successors or pre-
decessors. That is, a binary tree is threaded by making all right
child pointers that would normally be null, point to the inor-
der successor of the node. This type of trees is called as right
threaded tree. If we make left child pointers to point to in-
order predecessors, the resulting tree is called as left-threaded
tree.

Give a binary search tree and a number, inserts a new node
with the given number in the correct place in the tree. Re-
turns the new root pointer which the caller should then use.
struct Node* insert(struct Node* node, int data) {

if (node == NULL) {

return(newNode(data));// create a new node with data

as its value

}

else {

if (data <= node->n) node->left = insert(node->left, data);

else node->right = insert(node->right, data);

return(node);

}

}

23. Write a function which takes root of a tree and an
integer sum, return true if there is a path from the
root down to a leaf, such that adding up all the val-
ues along the path equals the given sum; else it re-
turns 0. Explain procedure also.

 Answer: Strategy: subtract the node value from the
sum when recurring down, and check to see if the
sum is 0 when you run out of tree.

 int hasPathSum(struct Node* node, int sum) {

 // return true if we run out of tree and sum==0

 if (node == NULL) return(sum == 0);

 else {

 // otherwise check both subtrees

 int subSum = sum - node->data;

 return(hasPathSum(node->left, subSum) ||

 hasPathSum(node->right, subSum));

 }

 }

24. What does the following function does?

 void doubleTree(struct Node* node) {

 struct Node* oldLeft;

 if (node==NULL) return;

 // do the subtrees

 doubleTree(node->left);

 doubleTree(node->right);

 // duplicate this node to its left

 oldLeft = node->left;

 node->left = newNode(node->data);// creates a
new node

 node->left->left = oldLeft;

 }
 Answer: For each node in the given binary search

tree, it creates a new duplicate node, and insert the
duplicate as the left child of the original node. The re-
sulting tree should still be a binary search tree.

25. For the key values 1...numKeys, how many struc-
turally unique binary search trees are possible that
store those keys. Explain the logic.

 Answer: Consider that each value could be the root.
Recursively find the size of the left and right subtrees.

 int countTrees(int numKeys) {

 if (numKeys <=1) {

 return(1);

 }

 else {

 // there will be one value at the root, with
whatever remains

 // on the left and right each forming their own
subtrees.

 // Iterate through all the values that could be
the root...

 int sum = 0;

 int left, right, root;

 for (root=1; root<=numKeys; root++) {

 left = countTrees(root - 1);

 right = countTrees(numKeys - root);

 // number of possible trees with this root ==
left*right

 sum += left*right;

 }

 return(sum);

 }

2.180 Computer Science & Information Technology for GATE

26. Write a function which takes root node of a BST
and returns true if a binary tree is a binary search
tree; else return false.

int isBST(struct Node* node) {

 if (node==NULL) return(true);

 // false if the min of the left is > than us

 if (node->left!=NULL && minValue(node->left) >
node->n) return(false);

 // false if the max of the right is <= than us

 if (node->right!=NULL && maxValue(node->right)
<= node->n) return(false);

 // false if, recursively, the left or right is not a BST

 if (!isBST(node->left) || !isBST(node->right))
return(false);

 // passing all that, it’s a BST

 return(true);

 }

27. Write a function which takes root of a BST, an inte-
ger x and returns true (1) if atleast one path of the
tree is having node values sum along that path as x,
otherwise returns false(0).

 int hasPathsum(struct Node *A, int x){
 int subsum;
 if(A==0) return (x==0);
 else {
 subsum=x - A->n;
 return (hasPathsum(A->left, subsum) | has Path-

sum (A->right, subsum));

 }
28. Consider a quantity trit where one trit can distin-

guish between three equally likely values. For each
trit, we can ask a ternary question (a question with
three possible answers). How many trits are needed
to distinguish among eight possible values?

 Answer: Two trits are required since log38 = 1.893.
Here is one such tree:

0 1 2

210

3 4 5

210

6 7

10

{0,1,2}, {3,4,5}, {6,7}?

0,1,2? 3,4,5? 6,7?

0 21

29. Devise a general formula for converting between
bits and trits. How many trits are needed to de-
scribe b bits of information?

 Answer:

 To convert between logaithm bases, we use the for-
mula

logb x =
log
log

.a

a

x

b

 So, for a n-bit value x,

logb x =
n

n
log2 3

ª 0.63093

 Thus, to represent an n-bit value required up to
Î0.63093n˚ trits.

30. What’s the Problem with Binary Search Trees?

 The problem with binary search trees is that they can
get thin and skewed, and to support fast insertions,
searches and deletions they must be fat and bushy.
All the operations we perform on a binary search tree
take time proportional to the height of the tree. But
the tree in the worst case can turn into a long thin
straight line, so the time complexity becomes O(n) in-
stead of O(log n). To alleviate this problem, we go for
height balancing of the tree.

 For the AVL tree shown here, perform the necessary
rotations to balance the tree assuming a new node
containing 35 is inserted into the tree. For each ro-
tation that is required identify the type of rotation,
i.e., right, left, or double. Show the balance factors
at every node before and after the rotation. Draw
the resulting AVL tree.

30

20

25

60

40 80

32 50

 Insertion of new node 35 unbalances the tree at node
60 (the grandparent of the new node) as well as at the
root (the great-grandparent of the new node).

30

20+1

25 40 80
0

50 032

35

60

+1

–1
0

–2

+2

0

 First rotation is 40 about 60 (the first unbalanced
point working from the new node backwards along
the path to the root). This is a right rotation that will
produce the following tree.

Programming, Data Structures and Algorithms 2.181

30

40

32 60

805035

20

25

+1

+1

+1

0 0 0

0

0

0

 The single right rotation has restored balance in the
tree and we are finished.

 For the AVL tree shown here, perform the neces-
sary rotations to balance the tree assuming the node
containing 60 is deleted from the tree. For each rota-
tion that is required identify the type of rotation, i.e.,
right, left, or double. Show the balance factors at ev-
ery node before and after the rotation.

50

60

40

30

10 35

3820

90

95

9992

94

 Deletion of node 60 will physically replace 60 with
node containing 50. The resulting tree is shown be-
low with the balance factor of each node shown adja-
cent to the node.

50

0

40 –2

90 –1

95 –1

92+1 99 0

0
94

30

10 35

20 38

0

0

00

+1

 An imbalance has occurred at node 40 due to the de-
letion in its right subtree. A right rotation of 30 about
40 will restore balance. This is shown in the next tree.
Tree is now balanced.

10

20

30

40

35 50 0

38 0

+1

+1

0

+1

+1

90

95

92 99

94

–1

0

0
+1

–1

31. What is the difference between height balanced and
weight balanced trees?

 The height balanced trees keep the left and right
heights from each node balanced, while the weight
balanced trees keep the number of nodes in each right
and left subtree balanced. They are similar in theory
but height balanced won favour over weight-balanced
trees.

32. What is the problem with maintaining things in an
array?

 Insertions take O(n) – because we have to shift over
elements to make room for a new leaf, like insertion
sort.

33. What is one reason that the physical representation
of a tree is much different from the logical repre-
sentation?

 One reason that the logical representation of a tree is
much different from the physical representation is the
use of pointers to map a nonlinear data structure onto
linear computer memory.

34. How to implement operations on binary trees with-
out pointers?

 The following code fragment illustrates this.

#include <stdio.h>

#include <strings.h>

#include <stdlib.h>

// Trees without pointers...

struct {

char data[16];

int left;

int right;

} list[100];

int length=0; // assume root is 0

void print_tree(int root) {

 if(root !=-1) {

 print_tree(list[root].left);

 puts(list[root].data);

 print_tree(list[root].right);

 }

}

int search(int i,char s[]) {

if(i==-1) return 0; // not found

if(strcmp(s,list[i].data)<0) return search

(list[i].left,s);

if(strcmp(s,list[i].data)>0) return search

(list[i].right,s);

2.182 Computer Science & Information Technology for GATE

return 1; // found

}

void newnode(int n, char s[], int side) {

 if(side==0) list[n].left=length;

 if(side==1) list[n].right=length;

 strcpy(list[length].data,s);

 list[length].right=-1;

 list[length].left=-1;

 length++;

}

void insert(int i,char name[]) {

 if (strcmp(name,list[i].data) < 0) {

 if(list[i].left==-1) newnode(i,name,0);

 else

 insert(list[i].left,name);

 }

 else if (strcmp(name,list[i].data) > 0){

 if(list[i].right==-1) newnode(i,name,1);

 else

 insert(list[i].right,name);

 }

}

void insert_node(char name[]) {

 if(length == 0) {

 newnode(0,name,-1);

 } else

 insert(0,name);

}

void main()

{

int t1;

 insert_node(“Rama”);

 insert_node(“Sita”);

 insert_node(“Lakshman”);

 insert_node(“Hanuman”);

 insert_node(“Siva”);

 insert_node(“Christ”);

 insert_node(“Vinayaka”);

 insert_node(“Parvathi”);

 insert_node(“Venkateswara”);

 print_tree(0);

 t1=search(0,”Sita”);

 if (!t1)

 puts(“Sita Not Found”);

 t1=search(0,”Venkat”);

 if (!t1)

 puts(“Venkat Not Found”);

}

Explain about Red-Black Trees

A Red-Black is a binary search tree where each node is col-
ored Red or Black, every Red node has only Black children,
every leaf node (nil) is Black, and all the paths from a fixed
node to any leaf contain the same number of Black nodes.
The operations on a Red-Black tree are efficient; height of
a Red-Black tree with n nodes is at most 2 lg(n + 1), hence
they are relatively bushy trees.

Insertions into a Red-Black Tree

Inserting a value into a binary search tree takes place at a
leaf. What properties of the Red-Black tree might this vio-
late. If we colour the new node Red, and make its nil chil-
dren Black, then the number of Black nodes on any path has
not changed, all nodes are still either Red or Black, all leaves
are Black, and the children of the new Red node are Black.
The only property to worry about is whether the parent of
the new leaf is also colored Red, which would violate the
rule about Red nodes having to have only Black children.

Fixing this property is not simple. We will need to reco-
lour nodes, pushing up the Red-Red clash until finally get
rid of it. In the worst case we need to recolor values all the
way up the tree. In order to do this recoloring, we require
1 or 2 rotations at the end which involve a mutation of the
search tree in addition to a recolouring.

Rotations
A rotation is a way to reshape a binary search tree that
maintains the structure of the inorder traversal. It is an im-
portant tool for managing any height-balanced trees. Left
and right rotations are inverses of one another and the basic
movements are shown in Fig. 2.27.

Rightà

c ß Left a

a
b cb

Figure 2.27

Programming, Data Structures and Algorithms 2.183

n Example Consider the set S of binary trees having 3 nodes (including the root). Now consider the set S’ of labeled
binary trees formed from S as follows: for each tree in S, each node (except the root) can be labeled either A or B. Assume
that the root always has the label A.

(a) How many labeled binary trees are in S¢?
(b) If one tree s¢ of S¢ is chosen randomly, what is the expected number of nodes in s’ that have the label A? Assume that,

for any two trees s¢1 and s¢2 in S¢, the probability of choosing s¢1 = the probability of choosing s¢2 = 1/|S¢|

Solution: (a) 20

A

A A

A

A B

A

B B

A

B A

A

A

A

A

A

B

A

B

A

A A A A A

AA

A A

B

B B

BB

B

A

A

A

A

B

A

B

A

A A A

A A

AA

A A

B B B

BBB

A

(b) The expected number of nodes labeled A = 2 =

 i i A labeled nodes
i

Pr()-
=
Â

0

3

 = - + -0 0 1 1Pr() Pr()A labeled nodes A labeled node

 + - + -2 2 3 3Pr() Pr()A labeled nodes A labeled nodes

 = + + + = + + = =0 1
5

20
2

10
20

3
5

20
5

20
20
20

15
20

40
20

2

A B

A

B A

A

B B

A

A A

A

A A

B B

BB

A A

B

B B

B

A

A

B B

B

A

B

A A

A A

A

A

B B

BA

A AA

A A

AB

A A

A A

AA

A

A

A

A

A

A

There are 5 3-node, A/B
labeled, binary trees
containing 1 A-labeled node
(assuming root is labeled A).

There are 10 3-node, A/B
labeled, binary trees
containing 2 A-labeled nodes
(assuming root is labeled A).

There are 5 3-node, A/B
labeled, binary trees
containing 3 A-labeled nodes
(assuming root is labeled A).

Important Points about the Trees

1. Tree is a non-linear structure which has child, parental type hierarchical relationship. Binary trees are the ones in
which a node can have at most two children. Multi-way trees will be having more than two children.

2.184 Computer Science & Information Technology for GATE

2. Every binary tree except for empty binary tree is in-
deed a tree.

3. Strictly binary trees are the ones in which every non-
leaf node will have exactly two children.

4. Complete binary tree is the one in which all the leaf
nodes will be at lowest level and every non-leaf node
will be having exactly two children. Thus, complete
binary tree is evidently strictly binary tree.

5. Almost complete binary is the one in which, all the
leaf nodes will be at lowest level or one level above
it; and it is evidently strictly binary tree. In some text
books these trees are called as “almost complete strict-
ly binary tree”, while defining another type as almost
complete binary where strictness is not maintained.

6. If N is number of nodes then the depth of almost
complete strict binary tree will be less than or equal
to log2N.

7. For any strictly binary tree the equality “No of Leaf
Nodes = No of Non-leaf Nodes + 1’’ satisfies.

8. For a given height, complete binary tree will be having
more number of nodes any other binary tree organ-
isations.

9. Given number of keys, height of the tree becomes
minimum if they are organised in complete tree fash-
ion compared to any other binary tree configurations.

10. If lowest level in a complete binary tree is K then no
of leaf nodes are 2K, no of non-leaf nodes are 2K–1,
total no of nodes are 2K+1 –1. Similarly, if the height of
the tree is H then total number of leaf nodes are 2H–1,
no of non-leaf nodes are 2H–1 –1, and total number of
nodes are 2H–1.

11. Binary search tree is the one in which some order ex-
ists among the information available in the nodes. For
example, if the node contains numbers then all the
nodes which are left to it will be having their node
values smaller than it and the nodes right to it will be
having their values larger than it. However, there is no
restriction on number of child nodes for them.

12. If the keys are inserted in random order balanced
trees result more often than not, so that on the average
search time becomes log(n), where n is no of keys.

13. We can find out smallest element of the set of elements
which are organised as binary tree by simply travers-
ing the from using left link till the left most node and
print the information in that node. Similarly, by tra-
versing the tree from root using right link till we find
right most and printing the info in that node we can
get maximum.

14. The dynamic set operations SEARCH, MINIMUM,
MAXIMUM, SUCCESSOR, PREDECESSOR can be
made to run in O(log n) time on a binary search tree.

15. If a node in a binary search tree contains two children
(leaf), then its successor has no left child and its pre-
decessor has no right child.

16. The deletion operation on binary search trees is com-
mutative. That is, first if we delete x and followed by
y the resulting tree will be same as if we delete y first
followed by x.

17. The number of trees which we can generate from n
distinct keys is În(factorial n= n!)˚.

18. The following numbers are to be inserted into a empty
binary search tree. Find out the odd one.

 A 50, 70, 90, 65, 30, 20, 40

 B. 50, 30, 20, 65, 90, 70, 40

 C. 50, 70, 65, 90, 30, 40, 20

 D. 50, 70, 30, 65, 40, 20, 90

 Answer: D(This does not require any rotation)

19. Suppose that we have numbers between 1 and 1000 in
a binary search tree and want to search for the num-
ber 363. Which of the following sequences could not
be the sequence of nodes examined?

 A. 2, 252, 401, 398, 330, 344, 397, 363

 B. 924, 220, 911, 244, 898, 258, 363, 363

 C. 925, 202, 911, 240, 912, 245, 363

 D. 2, 399, 387, 219, 266, 382, 381, 278, 363

 E. 935, 278, 347, 621, 299, 392, 358, 363

 Answer: C and E

20. Internal path length is the sum of the levels of all the
nodes in the tree. If we assume equal likelihood for
accessing every node in the tree then the average no
of comparisons needed equals (I+n)/n. where I is the
internal path length.

21. External path length is the sum of the levels of all the
external nodes of its extension. Then the average no
of comparisons in unsuccessful search is equals to E/
(n+1), where E is external path.

22. A binary search tree that minimizes the expected
number of comparisons for a given set of keys and
probabilities. Constructing optimal search trees is
of complexity O(n2). However, this is very much de-
pends on the keys distribution.

Programming, Data Structures and Algorithms 2.185

23. Split tree contains two keys, node key and split key. If
during searching if match occurs with node key it will
be stopped. Otherwise, using split key it is decided to
move left or right. Median split tree is a variant of the
split trees in which node key is set is most frequent
among the keys in that subtree rooted at that node
and the split key as median of the keys in that subtree.
This can be constructed using O(nlog(n)). It requires
always fewer comparisons than log2n.

24. Max heap is the tree in which value of any node will
be larger than its immediate children values. Where
as the min heap is the tree in which value of any node
will be smaller than its immediate children values.

25. Balanced or height balanced or AVL trees are the ones
in which balance value (where balance is the differ-
ence of heights of left sub-tree and right sub-tree or
vice versa) is either –1, 0, and 1. While binary trees are
created through repeated insertions, deletions height
balancing is done. This is to have uniform search cost
when it is practically used in some applications.

26. If we have a tree t, and if we have added a new leaf
node at each NULL left and right pointers in the tree
t, then the resulting tree can be called as extended bi-
nary tree which is strictly binary tree.

27. If a tree with n nodes is extended using the above ap-
proach and an extended tree is created then number
of new nodes that will be added is n+1.

28. Braided binary search trees in which a linked list is
threaded through the nodes in increasing order. The
same tree can be called as braided search tree.

29. If we want to find k’th element in an ordered list we
may need to visit k nodes. Thus, to reduce this com-
plexity lists are represented as trees as shown below
such that each leaf node is one node of the list. Non
leaf node contains count known as leftcount which
physically indicates the number of nodes of list left to
it. The node structure has to be defined appropriately.
Then by applying the following algorithm we can find
the k’th node easily (assume H is the root node).

 While(H is not leaf node)

 {

 if(H->linkcount >= k) H=H->left;

 else

 {

 k-=H->linkcount’

 H=H->right

 }
 }

1 1

2
1

2

5

2

1

 If there are N nodes and if they are organised as com-
plete binary tree similar to above, then with log2N
complexity we can find the list node of our interest.

30. Popularly, three traversals are used with trees. To
name, In-Order (left-center-right), Pre-Order (cen-
ter-left-right) and Post-Order (left-right-center). That
is, while traversing the tree the above sequence is
applied. Of course, traversing is meant for some op-
eration such as searching the node information, etc.
While doing this at every node this sequence is main-
tained. For example, In-Order means, at every node
first we traverse left tree first, then the node and then
its right tree. If we traverse a binary search tree in in-
order fashion we will get all the node values ordered
in ascending fashion.

31. Sequential representation of a tree means, storing
tree nodes information an 1-D array fashion such
that I’th node left, right children values are stored at
2*I+1, 2*I+2 elements of the array. Index of the root
node is considered as 0. Sequential representation is
employed to reduce time required to read/write tree
information from disk to RAM in some applications.
That is, if nodes are located sequentially in memory
time required to write into a file or read from a file
becomes less. Ofcourse, after reading into RAM by
spending some more extra operations we can create
tree (logical view) easily.

32. If there are N keys then if they are organised in com-
plete binary tree fashion then it will be having mini-
mum possible height.

33. If there are N keys then if they gets organised such
that one node exactly contains one child (skewed
tree) then we will have tree with worst possible height.

2.186 Computer Science & Information Technology for GATE

34. If there are N keys then if they gets organised such
that one node exactly contains two children (i.e. As a
strictly binary tree) then we will have tree with worst
possible height as (N+1)/2 and the lowest level as
N/2 (both are integer divisions). This situation arises
if tree is simultaneously skewed and strictly binary.
That is, at any level (other than lowest) only two nodes
are available; for one of them two children are avail-
able and evidently the other one is leaf node. The
number of non-leaf nodes for such a configuration is
N/2 and leaf nodes will be N/2+1.

35. We can consider a 1-D array having elements in de-
scending order as a max heap. Similarly, an a 1-D ar-
ray having elements in ascending order as a min heap.

36. In-Order successor of a node (p) can be calculated by:

a. If p is left child to its parent and it does not have
any right sub-tree then its parent itself becomes
in-order successor for p.

b. If p is left child to its parent and it does have a
right sub-tree then left most node of its right sub-
tree becomes in-order successor for p.

c. If p is right child to its parent and it does not have
any right sub-tree then back track using father
field till we find a node (q) which is left to its par-
ent or whose (q’s) parent is null. Then return q’s
parent as in-order successor to p.

d. If p is right child to its parent and it does have a
right sub-tree then left most node of its right sub-
tree becomes in-order successor for p.

e. In-order successor of right most node of a binary
tree is NULL.

37. Pre-Order successor of a node (p) can be calculated by:

a. If p is right child to its parent and it does not have
any right sub-tree then back track using father
field till we find a node (q) which is having right
tree or whose (q’s) parent is null. Then return q’s
right child as pre-order successor to p.

b. If p is left child to its parent and it does have a
right sub-tree then its right child becomes pre-
order successor for p.

c. If p is left child to its parent and it does not have
any right sub-tree then back track using father
field till we find a node (q) which is having right
tree or whose (q’s) parent is null. Then return q’s
right child as pre-order successor to p.

d. If p is right child to its parent and it does have a
right sub-tree then its right child e becomes in-
order successor for p.

e. Pre-order successor of right most node of a binary
tree is NULL.

38. Post-Order successor of a node (p) can be calculated
by:

a. If p is left child to its parent and then return its
parent as post order successor if it does not have
any right sub tree. Otherwise, i.e if its parent has
right sub tree then return find out left most node
(q) of its right sub tree. If q is not having right sub
tree then return q as post order successor to p else
repeat the same operation on its right sub tree till
we find a node which does not right child and re-
turn the same as post order successor to p.

b. If p is right child to its parent then return its par-
ent as post-order successor for p.

39. The in-order, pre-order traversals of a tree are:
“BDFAEC”, “ABDFCE”. Then the topology of the tree
is:

B

D

F

E

C

A

40. The in-order, pre-order traversals of a tree are:
“ABCDEFGHI”, “DBACIEGFH”. Then the topology
of the tree is:

D

I

E

B

A C
G

H

F

41. The height of the tree is four. (From Pre-order se-
quence, we know A is root node. By counting number
of symbols, including A in in-order sequence we can
calculate the left height and by counting symbols after
A in in-order sequence; including A right height can
be calculated. Maximum of them can be said as height
of the tree).

42. If k is the smallest integer greater than or equal to
n+log2n–2, k comparisions are necessary and suffi-
cient to find the largest and second largest elements of
a set of n distinct elements.

Programming, Data Structures and Algorithms 2.187

43. For any strictly binary the following relation holds.
 No of Leaf Nodes = No of Non Leaf Nodes +1

44. Implicit array representation of the binary tree: Here,
we assume root node information is stored in 0’th
element of the array and any node p’s left child in-
formation is stored at location 2p+1 and right child
information at 2p+2 in the array. This is called as se-
quential representation of the tree. Here, if a element
is at p then it can called as left child to its parent if
p%2 is one else it is called as right child to its par-
ent. Similarly, p/2 (integer division) gives index of its
parent node. (Please note that this discussion is appli-
cable to languages where array element indexes starts
from 0, such as C language).

45. Leftmost node at level n in an almost complete strictly
binary tree is assigned a number 2n. Assuming root
node level is 0 and its number is 1.

46. Number of array elements with null will be zero if all
the N(where N = 2q–1, for some integer value of q)
elements of tree are represented in complete binary
tree fashion.

47. If N (where N = 2q –1, for some integer value of q)
keys are organised in a binary tree fashion such that
there exists N-1 non leaf nodes and only one leaf node
(as shown in the figure) then number of empty cells
will be 2N–1–N.

A

B

C

D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

DA B C

48. If N keys (where N = 2q –1 for some integer value of q)
are organised in a binary tree fashion such that there
exists N/2 non leaf nodes and N/2+1 leaf nodes (as
shown in the figure) such that there exists two nodes
at every level (one is leaf and the other is non leaf)
and at the lowest level two leaf nodes are then, then
number of empty cells will be 2N/2+1 –1–N.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

GFA B C E. , D

A

C

E

F G

D

R

49. By employing stacks we can traverse trees without
non recursively. The following C code gives how we
can traverse tree using a stack in in-order.

 p is the pointer to root of the tree.

 do{

 /* travel down left branches as far as possible

and push nodes to stack */

 while (p!=NULL) { push(p);

 p=p->left; }

 if(stack is not empty)

 {

 p=pop();

 print information of node p.

 p=p->right;

 }

 } while(stack is not empty or p is not NULL);

50. To find whether two trees are topologically same or
not we can use the above algorithm with little modifi-
cation. That is, whenever we pop a node p, from stack
we add L, R or N symbols to an output string depend-
ing on whether p is left or right child to its parent or
whether p is root node respectively. If we apply this
modified algorithm to both the trees and the resultant
output strings are exactly same then we can say that
both the trees are topologically same.

 Similarly, if we want to find whether the second
tree is flipped version of first tree then we can calcu-
late output string of second tree and reverse the same
while replacing L’s with R’s and R’s with L’s and com-
pare with the output string of first tree traversal using
the above modified algorithm. If they are matching
then we can say they are mirrors to each other.

51. A tree is said to be right-in threaded tree if a node
contains a pointer (right pointer) to its in-order suc-
cessor. Having this link makes tree traversal easy.

52. A tree is said to be left-in threaded tree if a node con-
tains a pointer (left pointer) to its in-order predeces-
sor.

53. A tree is said to be in threaded tree is the one in which
both right-in and left-in threaded.

54. A tree is said to be pre threaded tree in which NULL
right and left pointers of nodes are replaced by their
preorder successors and predecessors, respectively.
This makes tree traversal easy using preorder.

55. A binary tree with n nodes uses 2n links, out of which
n+1 links are NULL’s, i.e unused. Threaded trees are

2.188 Computer Science & Information Technology for GATE

proposed to use these n+1 links to traverse the trees
in a better manner.

56. Huffman Trees

 These tree are used in compressing the data. For ex-
ample, normally while storing characters in a text file
every character takes 1 byte. In practice in a text file
some characters occurs more frequently compared to
other characters. Huffman coding technique is used
to design codes for the symbols such that the code de-
signed for characters which occurs more frequently
will be having less code length compared to the infre-
quently occurring ones. Thus, the total number of bits
required to store the file becomes less.

 Essentially first all symbols are sorted in accordance
with their frequency of occurrence. Then the last two
probabilities are added and again the remaining prob-
abilities and the new one are sorted. This repeated till
we get single probability. That is all the characters are
considered as one group. This picture is represented
as a binary fashion in which each node will be having
symbols which represents that probability. In order
to find out the code of any symbol traverse from the
root till we find a leaf node with that symbol. While
traversing we output 1 if we move right, 0 if we move
left. Thus, the resulting string becomes the designed
code of that symbol.

Symbol Prob

A 0.35 0.35 0.35 0.35 0.35 0.375 0.625 1

E 0.2 0.2 0.2 0.2 0.275 0.35 0.375

P 0.15 0.15 0.15 0.175 0.2 0.275

J 0.1 0.1 0.125 0.15 0.175

L 0.075 0.075 0.1 0.125

S 0.05 0.075 0.075

T 0.05 0.05

V 0.025

E

JL

LJ

EJL

0

0

0

AEPJLSTV

APSTV

1

1

P

T

V

S
0

0

PSTV

0
A

0 1

1

1

STV

TV

 In order to get log complexity in the worst case, the
Binary Heap is organized as a balanced tree (virtu-
ally), while it is implemented (in reality) as an array.

57. Left Rotation about p, which is youngest ancestor
which got unbalanced by inserting a new node. This
is applied if new node is inserted as a right child to its
parent and is also right to p.

 q=p->right

 hold=q->left

 q->left=p

 p->right=hold

A

B

C

–2

–1 A C

B

Note

We assume that the node q will come in place of p of the
original tree. This is assumed for all rotations.

58. Right Rotation about p which is youngest ancestor
which got unbalanced by inserting a new node. This
rotation is applied if new node is inserted as a left
child to its parent and is also left to p.

 q=p->left
 hold=q->rightt

 q->right=p

 p->left=hold

A

B

C

+ 2

+ 1 AC

B

59. Left-Right Rotation about p, which is youngest ances-
tor which got unbalanced by inserting a new node.
This is applied if new node is inserted as a right child
to its parent and is also left to p. Here, first left rota-
tion is applied about left child of p and then right rota-
tion about p.

A

B

C
A

C

BA

B

C

–2

+1

Programming, Data Structures and Algorithms 2.189

60. Right-Left Rotation about p, which is youngest ancestor which got unbalanced by inserting a new node. This is ap-
plied if new node is inserted as a left child to its parent and is also right to p. Here, first right rotation is applied about
left child of p and then left rotation about p.

A

B

C
A

C

B

A

B

C

+ 2

–1

Examples of AVL tree creation (61– 63)

61. Create an AVL tree by inserting the following strings: BIN, FEM, IND, NEE, LAL, PRI, JIM, AMI, HEM, DIN. As-
sume tree is initially empty. Calculate number of single rotations, double rotations used.

Now apply double rotation
and continue to insert

No. of Single Rotations = 2
No. of Double Rotations = 1

Now apply single rotation
and continue to insert Now apply single rotation about

root and continue to insert

LAL

NEE

FRI
IND

JIM

FEM

HEM
AMI DIN

BIN

FEM

BIN

IND

LAL
–1

–2

NEE

PRI

–1
NEE

LAL

IND

FEM

BIN

–2

+1

IND

FEM

BIN

62. Create an AVL tree by inserting the following numbers: 5, 2, 7, 0, 3, 4, 6, 1, 8, 9. Assume tree is initially empty. Cal-
culate number of single rotations, double rotations used.

9

8

76

4

5

20

1

3

6

4

5

7

8

9

3

1

0 2

Apply single rotation

6

4

5

7

3

2

0

1

–1

2

4

3

2

0

5

7

1

1

Apply double rotation

Apply double
rotation and
continue to insert

No of Single Rotations = 1
No of Double Rotations = 2

3

4

2

0

5
2

7

–1

–1

63. Create an AVL tree by inserting the following numbers: 3, 5, 11, 8, 4, 1, 12, 7, 2, 6, 10. Assume tree is initially empty.
Calculate number of single rotations, double rotations used.

2.190 Computer Science & Information Technology for GATE

11

5

12

10

8

7

62

1 4

3

2

–1

–1

5

11

126

7

6

2

1

3

4

Apply single rotation

11

5

3

Apply single rotations

5

3

4

2

1

11

12

10

7

6

12
10

6

7
11

5

3

4
1

2

No of Single Rotations = 2
No of Double Rotations = 1

8

8

64. Complexity of an insertion operation in an AVL tree including balance adjustments is q(log n). This is due to the
fact that it takes q(log n) time to add the new vertex, O(log n) time to retrace the path in order to find the youngest
ancestor which gets unbalanced (which is also called as pivot) in addition to q(1) time for rotation.

65. Re-balancing can be done in the case of single and double rotations with q(1) time.
66. If keys 1, 2, 3,..2k–1 are inserted in order into an empty AVL tree the resulting is perfectly balaced tree and needs

about n/2 left rotations, where n is no of nodes.
67. AVL tree can be used to sort a sequence of n elements in O(n log n).
68. The first vertex encountered during the retracing step of the AVL tree insertion algorithm whose balance is ±1 is the

only vertex that can possibly serve as the pivot.
69. Any arbitrary n-vertex binary search tree can be transformed into any other binary search tree on n vertices using

O(n) basic rotation operations.
70. In the case of deletions more than one rotation. Worst case order is q(log n).

a. If as a result of deleting a node the balance of the deleted nodes parent changes from 0 to ±1 then nothing has to
be done to tree.

b. If as a result of deleting a node the balance of the deleted nodes parent changes from ±1 to 0, then re-balancing operation
may or may not required to tree.

c. If as a result of deleting a node the balance of the deleted nodes parent changes from ±1 to ±2 then at least one
rotation has to be done to tree.

71. The weight of a tree is defined as the number of external nodes in the tree (which is equal to number of null pointers
in the tree). If the ratio of the weight of the left subtree of every node to the weight of the subtree rooted at the node
is between some fraction a and 1–a, the tree is a weight-balanced tree of ratio a.

72. Red-Black Trees
 A red-black tree is augmented binary search tree in which every vertex is coloured either red or black, and the ar-

rangement of vertices obeys the following contraints.
a. (Black Rule) Every leaf is coloured black
b. (Red Rule) If a vertex is red, then both of its children are black.
c. (Path Rule) Every path from the root to a leaf contains the same number of black vertices.

73. In a red-black tree every path from a vertex to any descendent leaf must contain the same number of black vertices,
and therefore every subtree in a red-black tree is itself a red-black tree.

74. Red rule implies that at least half of the vertices on any path from root to a leaf in red-black tree must be black. There-
fore, if an n-vertex red-black tree has a height of h, its root must have a black-height of at least h/2.

75. A red-black tree with n internal nodes has a height of at most 2 log(n+1).
76. Node structure of a red-black tree is exactly same as normal binary tree with the exception that extra one bit is

needed to encode color, i.e red or black.

Programming, Data Structures and Algorithms 2.191

77. Search time of red-black trees also Q(log n).

78. Normally insertion of a new key into red-black can be thought of as the replacement of an external black vertex with
a subtree consisting of a red root and two black children. In fact, it may cause red rule to be violated while maintain-
ing black rule. Thus, here also some rotations, re-colouring of nodes is needed. In some configurations, re-colouring
may propagate till towards root.

79. Every red-black tree of height h can be re-coloured so that there are exactly Î h / 2 ˚ black vertices on every path from
the root to a leaf, and that the root is black if and only if h is even.

80. Let us consider v is the inserted into red-black tree T, p is the parent of v, g is the grandparent of v and u is uncle of
v, i.e p’s sibling. Then the following situations arise while inserting the node and appropriate re-colouring, rotations
are required to maintain the red-black tree structure.

(a)

g

p

v

u

g

p

v

u

g

p

v

u

s

p

v
g

s u

p

v g

g

p

v

u

v

v

p

s

g

v

(b)

(c)

v

p g

s

s u

u

81. Similarly deletions from red-black trees can be summarised as follows.

p

v+

ni nr

s

p

ni

nr
p

s

ni

nr

p

v+ s

ni nr ni nr

v s

(a)

(b)

u

v+ v+

p+

2.192 Computer Science & Information Technology for GATE

p

v+ s

ni nr

vv ni

p

s

p

ss

v

p

v+

pp

v+
nis

s

nr

(c)(c)

(d)

p

v+
ni

s

nr

nr

ni

nr

ni nr

82. Worst case complexities of both deletion, insertions into red-black trees is Q(log n).

n Example Assume we have special tree say BEST in which root can have two children while every internal node is
supposed to have exactly one child. Also, key values of the nodes are having relation as BST. Comment about such a tree
with respect to BST.

a. It can be realised by adjusting pointers of BST
b. It can be searched like BST.
c. Maximum possible height of BEST with N keys is N–1.
d. Best possible height is N/2 with N keys

2.4.5 Binary Heap

A priority queue allows access to the min (or max) item
The Binary Heap is a priority queue that allows insertion of new items and the deletion of the minimum item in
logarithmic time.
The Binary Heap is implemented by an array.
To implement a priority queue we can use a linked-list with insertions on front done in constant time, and deletions
in linear time, or vice versa. We implement a Binary Heap with a simple array, which supports insert and deleteMin
in O(log N) in the worst case; it supports insert in O(c) in average case; it supports findMin in O(c) in worst case.

Virtual balanced tree structure of the Binary Heap

In order to get log complexity in the worst case, the Binary Heap is organised as a balanced tree (virtually), while it is
implemented (in reality) as an array.

A B C D E F G H I J

A

B

D E

H I J

C

GF

The correspondence between an array and a balanced tree works if:
the tree is a complete Binary Tree – all levels except the leaves must be filled there cannot be gaps in the nodes, in-
cluding the leaves – J in the example must be a left child
The height is at most [log N]

Programming, Data Structures and Algorithms 2.193

Implementation technique

In a complete Binary Tree we do not need a left child and right child reference.
This allows us to store each level in consecutive positions in an array.
If we start the root node at position 1 rather than 0, then for every node in position i will have its left child in position
2i and its right child in position 2i+1.
If either position 2i or 2i+1 extends past the number of nodes, we know that that child does not exist.
Inversely, given a node in position i, we know that its parent node will be in position [i/2].
The root node will have a virtual parent in position [1/2] = 0. Another reason to start the root at position 1. In order
to retrieve min or max, each parent node will be smaller than the children nodes.

Methods needed for Binary Heap

public class BinaryHeap implements PriorityQueue

{

 private int currentSize;

 private Comparable array [];

public BinaryHeap(Comparable negInf);

 public void insert(Comparable x); // inserts in right order

 public void toss (Comparable x); // inserts in any order

 public boolean isEmpty ()

 { return currentSize = = 0; }

 public void makeEmpty ()

 { currentSize = 0; }

 // if heap has (parent node > children nodes) after a toss

 private boolean orderOK; // set to false when toss is performed

 private void getArray (int newMaxSize);

 private void checkSize();

// To ins

 private void percolateDown (int hole);

}

in linear time.

To keep track of that, orderOK is set to false when a toss is performed.

public BinaryHeap (Comparable negInf)

{

 currentSize = 0;

 orderOK = true;

 getArray (DEFAULT_CAPACITY);

2.194 Computer Science & Information Technology for GATE

 array[0] = negInf;

}

{

 if (isEmpty ())

 if (!orderOK)

 return array[1];

}

 private void getArray (int newMaxSize)

{

 array new Comparable[newMaxSize + 1];

}

Inserting

Inserting an item into the heap implies adding a node to the tree.
To preserve the completeness of the tree, we position ourselves at the next available location. If inserting there does
not respect the parent-child order, we slide its parent to that position (hole).
If parent is not in the right order, we slide ITS parent, and so on.
Eventually all parents have slid into the right positions, leaving a hole.
The node to be inserted takes that position, called the hole.
This technique is called percolating up.
This is done in logarithmic time.

View of inserting “14”

6

1

2 1

2 31 1

6 2 3 31

13

21 16

24

60 26 32

68

6

1

12

21 12

3

6

3

1

1

1

2 21

1

6 2 3

6

3

19

2

Programming, Data Structures and Algorithms 2.195

Code for insert

private void checkSize ()

{

if (currentSize = = array.size - 1)

{

Comparable oldarray[] = array;

getArray(currentSize * 2);

for (int i=0; i < oldArray.length; i++1)

 array[i] = oldArray[i];

}

}

public void toss (Comparable x)

{

checkSize();

array[++currentSize] = x;

if (x.lessThan (array[currentSize/2]))

 orderOK = false;

}

public void insert (Comparable x)

{

if (!orderOK)

{

 toss (x);

return;

}

CheckSize ();

// percolate up

int hole = ++currentSize;

for (; x.lessThan (array[hole/2]); hole /= 2)

 array [hole] = array [hole/2];

array [hole] = x;

}

Removing

deleteMin creates the reverse problem from insert; it creates a hole and destroys the completeness of the tree. Since
the min is the root of the tree, we have to percolate down the tree, moving the hole to the last leaf on the tree. This re-
quires two methods, one to remove the smallest item at the root, the other to percolate the hole down to the last leaf.
This is done in logarithmic time.

2.196 Computer Science & Information Technology for GATE

View of deleteMin

6

1

1 1

1 21 1

6 3 32

6

1 1

1 21 1

6 3 32

6

1

1

1 21 1

6 3 32

6

1 1

21 1

6 3 32

1

6

1

1

2 21 1

6 3 3

6

1 1

21 1

6 3 3

1

1

2

Code for remove

{

array [1] = array [currentSize --];

percolateDown (1);

return minItem;

}

private void percolateDown (int hole)

{

int child;

Comparable temp = array [hole];

for (; hole * 2 <= currentSize; hole = child)

{

 child = hole * 2;

 if (child != currentSize && array [child+1].lessThan (array [child]))

 child++;

Programming, Data Structures and Algorithms 2.197

 if (array [child].lessThan (temp))

 array [hole] = array [child];

 else break;

}

array [hole] = temp;

}

FixHeap

An insertion can be done in O(log N)
N insertions can be done in O(N logN)
When N insertions must be done, it is better to toss the items into the heap and then fix the heap.
We could exchange higher parents with smaller children, going recursively down left and right, using percolate-
Down.

It is cheaper to exchange from the lowest parents up. So we use reverse level order traversal.

View of fixHeap with reverse level traversal

45

19 21

60 32 3126

16

6849

816130 71

88

Check lowest parent on right, 68, and its children, 81 & 73. Order is OK.
Check next lowest parent, 49, and its children, 61 and 30.
Exchange nodes 49 and 30 and percolateDown.
Check next lowest parent, 21, and its children, 32 and 31. Order is OK.
Check next lowest parent, 19, and its children, 60 and 26. Order is OK.
Check next lowest parent, 16, and its children, 30 and 68. Order is OK.
Check next lowest parent, 45, and its children, 19 and 21. Exchange nodes 45 and 19 then percolateDown.
Check 45 with 60 and 26. Exchange 45 and 26.
Check next lowest parent, 88, and its children, 21 and 16. percolateDown and exchange nodes 88 and 21 then
percolateDown.Exchange 88 and 21. percolateDown then exchange 88 and 45.

Code

{

for (int i = currentSize/2; i > 0 ; i --)

{ percolateDown (i); }

orderOK = true;

}

2.4.6 Graphs

A graph G consists of two types of elements, namely vertices and edges. Every edge has two endpoints in the set of vertices,
and is said to connect or join the two endpoints. An edge can thus be defined as a set of two vertices (or an ordered pair,
in the case of a directed graph).

2.198 Computer Science & Information Technology for GATE

4
5

3
2

1

6

Figure 2.28 A sample graph

A vertex (basic element) is simply drawn as a node or a dot. The vertex set of G is usually denoted by V(G), or V when
there is no danger of confusion (see Fig. 2.28). The order of a graph is the number of its vertices, i.e. |V(G)|.

An edge (a set of two elements) is drawn as a line connecting two vertices, called endvertices, or endpoints. An edge
with endvertices x and y is denoted by xy (without any symbol in between). The edge set of G is usually denoted by E(G),
or E when there is no danger of confusion.

The size of a graph is the number of its edges, i.e. |E(G)|.
A loop is an edge whose end vertices are the same vertex.
A link has two distinct end vertices. An edge is multiple if there is another edge with the same end vertices; otherwise

it is simple. The multiplicity of an edge is the number of multiple edges sharing the same end vertices; the multiplicity
of a graph, the maximum multiplicity of its edges. A graph is a simple graph if it has no multiple edges or loops, a mul-
tigraph if it has multiple edges, but no loops, and a multigraph or pseudograph if it contains both multiple edges and
loops (the literature is highly inconsistent). When stated without any qualification, a graph is almost always assumed to be
simple—one has to judge from the context.

The complement G of a graph G is a graph with the same vertex set as G but with an edge set such that xy is an edge in
G if and only if xy is not an edge in G.

An edgeless graph or empty graph is a graph with zero or more vertices, but no edges.
Also, the null graph is the graph with no vertices and no edges. Or, it is a graph with no edges and any number n of

vertices, in which case it may be called the null graph on n vertices.
A graph is infinite if it has infinitely many vertices or edges or both; otherwise the graph is finite. An infinite graph

where every vertex has finite degree is called locally finite. When stated without any qualification, a graph is usually as-
sumed to be finite.

A walk is an alternating sequence of vertices and edges, beginning and ending with a vertex, where each vertex is in-
cident to both the edge that precedes it and the edge that follows it in the sequence, and where the vertices that precede
and follow an edge are the end vertices of that edge. A walk is closed if its first and last vertices are the same, and open if
they are different.

The length l of a walk is the number of edges that it uses. For an open walk, l = n–1, where n is the number of vertices
visited (a vertex is counted each time it is visited). For a closed walk, l = n (the start/end vertex is listed twice, but is not
counted twice). In the example graph, (1, 2, 5, 1, 2, 3) is an open walk with length 5, and (4, 5, 2, 1, 5, 4) is a closed walk
of length 5.

A trail is a walk in which all the edges are distinct. A closed trail has been called a tour or circuit, but these are not
universal, and the latter is often reserved for a regular subgraph of degree two.

Traditionally, a path referred to what is now usually known as an open walk. Nowadays, when stated without any quali-
fication, a path is usually understood to be simple, meaning that no vertices (and thus no edges) are repeated. (The term
chain has also been used to refer to a walk in which all vertices and edges are distinct.) In the example graph, (5, 2, 1) is
a path of length 2. The closed equivalent to this type of walk is called a cycle. Like path, this term traditionally referred to
any closed walk, but now is usually understood to be simple by definition. In the example, graph, (1, 5, 2, 1) is a cycle of
length 3. (A cycle, unlike a path, is not allowed to have length 0.) Paths and cycles of n vertices are often denoted by Pn
and Cn, respectively.

A cycle that has odd length is an odd cycle; otherwise it is an even cycle. A graph is acyclic if it contains no cycles;
unicyclic if it contains exactly one cycle; and pancyclic if it contains cycles of every possible length (from 3 to the order
of the graph).

The girth of a graph is the length of a shortest (simple) cycle in the graph; and the circumference, the length of a lon-
gest (simple) cycle. The girth and circumference of an acyclic graph are defined to be infinity •.

Programming, Data Structures and Algorithms 2.199

A path or cycle is Hamiltonian (or spanning) if it uses all vertices exactly once. A graph that contains a Hamiltonian
path is traceable; and one that contains a Hamiltonian path for any given pair of (distinct) end vertices is a Hamiltonian
connected graph. A graph that contains a Hamiltonian cycle is a Hamiltonian graph.

A trail or circuit (or cycle) is Eulerian if it uses all edges precisely once. A graph that contains an Eulerian trail is tra-
versable. A graph that contains an Eulerian circuit is an Eulerian graph.

Two paths are internally disjoint (some people call it independent) if they do not have any vertex in common, except
the first and last ones.

The degree, or valency, dG(n) of a vertex v in a graph G is the number of edges incident to v, with loops being counted
twice. A vertex of degree 0 is an isolated vertex. A vertex of degree 1 is a leaf. In the example graph vertices 1 and 3 have
a degree of 2, vertices 2,4 and 5 have a degree of 3 and vertex 6 has a degree of 1. If E is finite, then the total sum of vertex
degrees is equal to twice the number of edges.

The total degree of a graph is equal to two times the number of edges, loops included. This means that for a graph with
3 vertices with each vertex having a degree of two (i.e. a triangle) the total degree would be six (e.g. 3 × 2 = 6). The general
formula for this is total degree = 2n where n = number of edges.

A degree sequence is a list of degrees of a graph in non-increasing order (e.g. d1 ≥ d2 ≥ … ≥ d n). A sequence of non-
increasing integers is realisable if it is a degree sequence of some graph.

Two vertices u and v are called adjacent if an edge exists between them. We denote this by u ~ v or u Ø v. In the above
graph, vertices 1 and 2 are adjacent, but vertices 2 and 4 are not. The set of neighbours of v, that is, vertices adjacent to
v not including v itself, forms an induced subgraph called the (open) neighbourhood of v and denoted NG(v). When v
is also included, it is called a closed neighbourhood and denoted by NG[v]. When stated without any qualification, a
neighbourhood is assumed to be open. The subscript G is usually dropped when there is no danger of confusion; the same
neighbourhood notation may also be used to refer to sets of adjacent vertices rather than the corresponding induced sub-
graphs. In the example graph, vertex 1 has two neighbours: vertices 2 and 5. For a simple graph, the number of neighbours
that a vertex has coincides with its degree.

A dominating set of a graph is a vertex subset whose closed neighbourhood includes all vertices of the graph. A vertex
v dominates another vertex u if there is an edge from v to u. A vertex subset V dominates another vertex subset U if every
vertex in U is adjacent to some vertex in V. The minimum size of a dominating set is the domination number g(G).

The distance dG(u, v) between two (not necessary distinct) vertices u and v in a graph G is the length of a shortest path
between them. The subscript G is usually dropped when there is no danger of confusion. When u and v are identical, their
distance is 0. When u and v are unreachable from each other, their distance is defined to be infinity •.

A graph is connected if there exists a path (of any length) from every node to every other node. The longest possible
path between any two points in a connected graph is n–1, where n is the number of nodes in the graph.
A node is reachable from another node if there exists a path of any length from one to the other.

A connected component is a maximal subgraph in which all nodes are reachable from every other. Maximal means that
it is the largest possible subgraph: you could not find another node anywhere in the graph such that it could be added to
the subgraph and all the nodes in the subgraph would still be connected.

For directed graphs, there exist strong components and weak components. A strong component is a maximal subgraph
in which there is a path from every point to every point following all the arcs in the direction they are pointing. A weak
component is a maximal subgraph which would be connected if we ignored the direction of the arcs.

A cutpoint is a vertex whose removal from the graph increases the number of components. That is, it makes some
points unreachable from some others. It disconnects the graph.

A cutset is a collection of points whose removal increases the number of components in a graph. A minimum weight
cutset consists of the smallest set of points that must be removed to disconnect a graph. The number of points in a mini-
mum weight cutset is called the point connectivity of a graph. If a graph has a cutpoint, the connectivity of the graph is 1.
The minimum number of points separating two nonadjacent points, s and t is also the maximum number of point-disjoint
paths between s and t.

A bridge is an edge whose removal from a graph increases the number of components (disconnects the graph). An edge
cutset is a collection of edges whose removal disconnects a graph. A local bridge of degree k is an edge whose removal
causes the distance between the endpoints of the edge to be at least k. The edge-connectivity of a graph is the minimum
number of lines whose removal would disconnect the graph. The minimum number of edges separating two nonadjacent
points, s and t is also the maximum number of edge-disjoint paths between s and t.

2.200 Computer Science & Information Technology for GATE

A graph is said to be weighted if its edges are having some numbers associated with them. The weights can be distances,
time delays, or any thing. For example, see Fig. 2.29.

B

C D

E

F

3

73 4

1

5

A

2

Figure 2.29 A sample weighted graph

List structures

Incidence list : The edges are represented by an array containing pairs (ordered if directed) of vertices (that the edge
connects) and eventually weight and other data.
Adjacency list : Much like the incidence list, each vertex has a list of which vertices it is adjacent to. This causes
redundancy in an undirected graph: for example, if vertices A and B are adjacent, A’s adjacency list contains B, while
B’s list contains A. Adjacency queries are faster, at the cost of extra storage space.

Matrix structures

Incidence matrix : The graph is represented by a matrix of E (edges) by V (vertices), where [edge, vertex] contains
the edge’s data (simplest case: 1 - connected, 0 – not connected).
Adjacency matrix : there is an N by N matrix, where N is the number of vertices in the graph. If there is an edge
from some vertex x to some vertex y, then the element M[x][y] is 1, otherwise it is 0. This makes it easier to find
subgraphs, and to reverse graphs if needed.
Laplacian matrix or Kirchhoff matrix or Admittance matrix : is defined as degree matrix minus adjacency matrix
and thus contains adjacency information and degree information about the vertices
Distance matrix : A symmetric N by N matrix an element M[x][y] of which is the length of shortest path between
x and y; if there is no such path M[x][y] = infinity. It can be derived from powers of the Adjacency matrix.

Path matrix or Accessibility or Reachability Matrix: An NxN binary matrix which indicates the reachability of
(existence of route) from one node to another node. It does not contains any information about number of jumps (
or hops) or distance between the stations. It only indicates the whether there is a route or not between two nodes.

Graph Representations
Graphs are represented graphically by drawing a dot for every vertex (or a un-filled circle), and drawing an arc between
two vertices if they are connected by an edge. If the graph is directed, the direction is indicated by drawing an arrow.
In order to analyse graph information, we need to represent the same in a manner suitable for manipulation and storage.
There are different ways to store graphs in a computer system. Evidently, two approaches, adjacency matrix approach and
adjacency list approach, are in wide use. Theoretically one can distinguish between list and matrix structures but in con-
crete applications the best structure is often a combination of both. List structures are often preferred for sparse graphs as
they have smaller memory requirements. Matrix structures on the other hand provide faster access but can consume huge
amounts of memory if the graph is very large.

Adjacency Matrix Representation of the Graph
Here, graph topology information is stored in an matrix known as adjacency matrix which is an NxN matrix with its

elements representing the number of edges between one station to another station (or between the nodes). None of its
elements will be negative. If there is no route or edge between two stations, then the respective entry in this matrix will be
zero. Also, if there exists more than n edges between two stations then the respective entry of this matrix is n. This matrix
retains all the topological information of the graph. We can draw the graph easily if this matrix is known to us.

Figure 2.30 contains a sample graph and its adjacency matrix. Observe the principal diagonal elements values. All are
zeros. This indicates that the stations are not having self cycles. For example, if we consider the graph shown is a road net-

Programming, Data Structures and Algorithms 2.201

work, the nodes are places, and edges are roads connecting the places then by chance a place (such as big city Hyderabad)
is having a ring road then the respective diagonal element will become 1.

B

C D

E

F

A A

B

C

D

E

F

Vertex vector

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

1

0

0

1

0

0

0

0

0

1

1

0

0

0

0

0

0

0

1

0

A B DC E F

A

B

C

D

E

F

Adjacency matrix

Figure 2.30 A sample graph with its adjacency matrix

If we observe the last row of the adjacency matrix, we may find all 0’s indicating that station is sink. Which means, there
are no edges emanating from that station.

If the above graph is undirected graph, the adjacency matrix will be created by considering each undirected edge as two
directed edges, one forward and one backward. The resultant adjacency matrix will be given in Fig. 2.31. However, for a
weighted graph, the adjacency matrix will be having weight values of the edges.

B

C D

E

F

A A

B

C

D

E

F

Vertex vector

0

0

0

0

0

0

1

0

1

0

1

0

0

0

1

0

1

0

0

1

0

1

1

0

0

1

1

1

0

1

0

0

0

0

1

0

A B DC E F

A

B

C

D

E

F

Adjacency matrix

Figure 2.31 Adjacency matrix for an un-directed graph

If we observe the adjacency matrix of undirected graph, we may find it as symmetric matrix. Of course, one has to
remember that a graph is called as directed graph (or di-graph) even if a single edge is directed. On the contrary, to call
as an un-directed graph, all the edges should be un-directed. Of course, there are some algorithms which works only on
directed graphs. In order to apply those algorithms on undirected graphs, we can replace each un-directed edge with two
directed edges, one forward and one backward as shown in Fig. 2.32.

B

C D

E

F

A

B

C D

E

F

A

Figure 2.32 Converting an un-directed graph to directed graph

As mentioned in the above paragraph that the adjacency matrix of an un-directed graph is symmetric about its prin-
cipal (or main) diagonal. In un-directed graphs, self loops are not allowed. Thus, the adjacency matrix contains its main
diagonal elements as zeros.

Sum of the elements of an adjacency matrix of an un-directed graph will be even. That is, the sum of the degrees of all
the vertices of an un-directed graph G is equal to twice the number of edges in G.

2.202 Computer Science & Information Technology for GATE

If an adjacency matrix of a graph (with N vertices) contains only 1’s in main diagonal and all remaining elements are
0s, then we can say that the graph contains N connected components are N isolated points with self cycles.

B

C D

E

F

A 1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

A B DC E F

A

B

C

D

E

F

Adjacency matrixGraph

If an adjacency matrix of a graph (with N vertices) contains all 0s, then we can say that the graph contains N connected
components are N isolated points as shown in Fig. 2.33.

B

C D

E

F

A 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

A B DC E F

A

B

C

D

E

F

Adjacency matrixGraph

Figure 2.33 Graph and Adjacency matrix

An Adjacency matrix of a graph with N nodes contains all 1’s in ith row (except ith element) and all 0’s in the ith col-
umn, then ith station can be said as source. Similarly, An Adjacency matrix of a graph with N nodes contains all 0’s in ith
row (except ith element) and all 1’s in the ith column, then ith station can be said as sink.

An Adjacency matrix of a graph with N nodes contains all 1’s in ith row (except ith element) and all 0’s in the remaining
portion of the matrix, then the graph can be said as star shaped with ith station as center and directed edges for all other
stations as shown here.

A

D

C

B

E

An Adjacency matrix of a graph with N nodes contains all 1’s in ith row (except ith element), all 1’s in ith column
(except ith element), and all 0’s in the remaining portion of the matrix, then the graph can be said as star shaped with ith
station as center and un-directed edges for all other stations as shown here.

A

D

C

B

E

If all the stations are connected with exactly one directed edge and all are in a cycle as shown in Fig. 2.34 then the re-
lated adjacency matrix looks as shown in Fig. 2.34.

Programming, Data Structures and Algorithms 2.203

Adjacency

matrix

Graph

A

B

C D
E

F

A B C D E F

A

B

C

D

E

F

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

Figure 2.34 Adjacency matrix of circular graph

If the directed edges of the above graph are replaced with un-directed edges, then the adjacency matrix looks like
(Fig. 2.35)

Adjacency

matrix

Graph

A

B

C D
E

F

A B C D E F

A

B

C

D

E

F

0 1 0 0 0 1

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1

1 0 0 0 1 0

Figure 2.35 Adjacency matrix of a graph with single cycle and un-directed edges

What will be the nature of stations if the adjacency matrix looks like a band matrix of width 3 as shown is figure. All the
stations will be having self loops and all are connected through un-directed edges except last two stations (see Fig. 2.36)

A B C D E F

A

B

C

D

E

F

1 1 0 0 0 0

1 1 1 0 0 0

0 1 1 1 0 0

0 0 1 1 1 0

0 0 0 1 1 1

0 0 0 0 1 1

Adjacency

matrix

Graph

A

B

C D E
F

Figure 2.36 Adjacency matrix of a graph in which all the nodes are in a circular chain with self cycles

Adjacency matrix of a weighted graph is shown in Figure Fig. 2.37.

A

B

C

D

E

F

E

D

F

B

A

C

2

3
5

473

1

A

B

C

D

E

F

A B C D E F

0 2 0 0 0 0

2 0 3 0 3 0

0 3 0 1 7 0

0 0 1 0 4 0

0 3 7 4 0 5

0 0 0 0 5 0

Adjacency

matrix

Vertex

vector

Figure 2.37 Adjacency matrix of a weighted graph

2.204 Computer Science & Information Technology for GATE

Adjacency List Representation

Graph information is maintained in another format known as adjacency list representation. Here, for each node, its neigh-
bour’s information is maintained in a linked list fashion as shown in Fig. 2.38.

A B

B A

C B

D C

A B

F E

C E

D E

E

C D F

Adjacency listVertex vector

E

D

F

B

A

C

Figure 2.38 Adjacency list representation of the graph

Obviously, people may be getting doubt about which representation is better. The answer is, in practical applications com-
bination of both is used. Thus, we really do not want to enter in to the debate of which is better. However, for the sake of
comparison, we shall discuss about their relative merits and demerits in the following table.

Theme Adjacency list Adjacency Matrix

Memory requirement
O(|V|+|E|), where V, E are number of
vertices and edges.

O(V2), V is number of vertices.

Insertions/deletions Easy Difficult

Is memory requirement constant as-
suming vertices are fixed?

No. Varies if extra edges are added. Yes.

When it is preferred? If the graph is sparse. If the graph is dense.

Programmability? Difficult. Ease as matrix operations can be used.

Figure 2.38 displays the adjacency matrix and adjacency list of a sample weighted graph.

548

320

245360200

555

467

623

345 E

D

F

B

A

C

0 623 345 0 0 0

000 200 548623

345 200 0 0360 467

245 3203605480 0

0 0

A B C D E F

0 0

0

0

245467 555

555320

A

B

C

D

E

F 0

Adjacency matrix

Programming, Data Structures and Algorithms 2.205

Adjacency List

Vertex vector Adjacency list

A B 623

B A 623

C A 345

D B 548

E C 467

F D 320

C 200

B 200

C 360

D 245

E 555

D 548

D 360

E 245

F 555

F 320

E 467

Figure 2.39 Adjacency Matrix and Adjacency List of a weighted matrix

Transitive Closure and Path Matrix
We have already understood that the adjacency matrix of the graph G is defined as A[J, K] = 1 if and only if J is adjacent
to K; otherwise 0. The transitive closure of the graph G is defined as T[J, K] = 1 if and only if there is a nontrivial directed
path from J to K; otherwise 0. That is, we are not interested in the number of edges in the path, but only in the existence of
the path. The transitive closure of a graph is built on the set of vertices with the binary relation being adjacency.

Consider the following sample undirected graph.

5

4

1

2

3

The adjacency matrix A is:

0 1 1 0 0
1 0 1 1 1
1 1 0 0 1
0 1 0 0 1
0 1 1 1 0

Now, A2 can be given as:

2 1 1 1 2

1 4 2 1 2

1 2 3 2 1

1 1 2 2 1

2 2 1 1 3

What is the physical significance of the above matrix? For example, station 1-5, the value is given as 2. This indicates
the existence of two routes between 1 to 5 with 2 hops or jumps. We can verify the same as: 1-2-5 and 1-3-5. Similarly, we
have 2-2 as 4. The possible routes are: 2-1-2, 2-3-2, 2-4-2, and 2-5-2 with two jumps. Like this, this matrix indicates the

2.206 Computer Science & Information Technology for GATE

number of paths with two jumps. Similarly, A3 will indicate the possible routes from one station to another station with
3 jumps or hops. If we add A, A2 and A3 then the resultant matrix indicates the existence of routes between stations with
at most 3 jumps.

We know that any path length can not be more than N edges in a graph with N nodes. Thus, we can calculate the path
matrix or transitive closure by binarising the summation matrix of A + A2 + A3 + ... + AN.
That is,
X= A+A2+A3+..+AN

P[i][j] =
1 if X[i][j] >0

0 otherwise
Ï
Ì
Ó

This approach of calculating, A,A2, A3,..,AN is computationally demanding. We know that matrix multiplication algo-
rithm has time complexity of O(N3). Thus, this method of finding transitive closure will be having order of complexity as
O(N4).

n Exercise Assuming A as adjacency matrix of a star shaped directed graph with N vertices (with one center vertex),
what will be the matrices A2, A3,..,AN ?.

n Exercise Assuming A as adjacency matrix of a star shaped un-directed graph with N vertices (with one center vertex),
what will be the path matrix?.

Warshall’s Algorithm

The basis of this algorithm is a very simple theme. Let, we have three stations x,y and z. There exists a path between x to
y and y to z. Which means, we have the path for x to z also. Thus, in this algorithm, we try to explore the existence path
between stations by explore existing paths of the stations. If we do not have path currently from station I to J. Then, we
search whether there is a path between I to K and K to J, If exists, we consider that there is path between I to J. We will vary
K such that all the stations are verified by assuming them as intermediate stations between I and J. However, in order to
alleviate unnecessary computations, if already there exist a path between I and J, we don’t explore further with intermedi-
ate stations.

Pseudo-Code of Warshalls Algorithm

Input: A – the N-by-N adjacency matrix of the graph.

Output: R – the N-by-N transitive closure of the graph.

For I = 1 to N Do

 For J = 1 to N Do

 R[I, J] = A[I, J]

 End Do

End Do

For K = 1 to N Do

 For I = 1 to N Do

 For J = 1 to N Do

 If (R[I,J]==0) Then R[I,J] = R[I,K] Ÿ R[K,J]

 End Do

 End Do

End Do

Return R

This is algorithm is computationally less intensive. Its order of complexity is O(N3). Moreover, the operations involved
here are simple AND operators.

Graph Traversals
Like tree traversals discussed in the previous chapters, we do have some methods to traverse the graphs. They are:

Programming, Data Structures and Algorithms 2.207

Depth First Traversal
Breadth First Traversal

The basic object of the traversal is to visit each node at least once. However, the algorithm will actually give us much more
than that.

The DFT algorithm is quite famous and can be used to solve a variety of graph problems. We employ stacks to traverse
the graph in DF manner. As the algorithm proceeds, nodes status will be changed. Initially, we assume all the nodes will
be in un-processed state. When they are in stack, we assume they are in the ready state. When they leave the stack, we
consider them that they are processed.

Phase Condition of Node Status

1 Undiscovered Un-Processed

2 Discovered and being processed Ready

3 Finished Processed

DFT Algorithm

1. Select any node of the graph and push into stack while making its status as Ready.
2. Repeat step 3 till stack becomes empty.
3. Pop a node (A) from the stack and make its status as processed. Push all the un-processed nodes of A into stack while

making their status values as ready.

n Example We apply the above algorithm for the graph shown in figure given below and show the stack changes.
1. We assume here that we will be traversing from node A. We will push the same into stack.
2. When we pop, we will get A as output. The same will be displayed in the output string. Its unprocessed neighbour,

X, is pushed into stack.

A

H

E

M JPG

X

Output String A X H P E Y M J G

A X
H
G

P
E
G

E
G

Y
M
G

M
G

J
G G

Stack Charges

Y

Figure 2.40 Depth First Traversal snap shot on a selected graph

3. Now, when we pop, we will get X. The same will be printed and its unprocessed neighbours, G and H are pushed into
stack.

4. Now, when we pop, we will get H. The same will be printed and its unprocessed neighbour, E,P are pushed into stack.
5. When we pop, we will get P as output. The same will be printed. As it does not have any unprocessed neighbours,

nothing is pushed into stack.
6. This time, when we pop, we will get E. The same will be printed and its unprocessed neighbours, M,Y are pushed into

stack.
7. Now, when we pop, we will get Y. The same will be printed. Though it has a neighbour M, as M is already in the stack

(i.e. its status is ready), nothing will be pushed into stack.
8. Next when we pop, we will get M as output. The same will be printed. Its unprocessed neighbour is pushed into stack.
9. Next, when we pop, we will get J as output. The same will be printed. As it does not have any neighbours, nothing

will be pushed into stack.

2.208 Computer Science & Information Technology for GATE

10. Next when we pop, we will get G as output and the same will be printed. As G does not have unprocessed neighbours,
nothing will be pushed into stack. Remember, though G as neighbours, all of them are in processed state (i.e. they
went to stack and came out. That is, they are processed).

11. Now, stack empty. Thus, it terminates.
 One useful aspect of the DFS algorithm is that it traverses connected components one at a time, and thus it can be

used to identify the connected components in a given graph.

1. A

B C D

E F G H

I
1

2. A

B C D

E F G H

I
1

3. A

B C D

E F G H

I
1

2 2

4. A

B C D

E F G H

I
1

5. A

B C D

E F G H

I
1

6. A

B C D

E F G H

I
1

2

7. A

B C D

E F G H

I
1

8. A

B C D

E F G H

I
1

9. A

B C D

E F G H

I
1

2 2

4

3 5 6

2

4

3 5 6

8 7 2 8 79

5 63

4

4

3 5 6

2 8 9 7 10 8 9 7 10 11

3 5 6

4

3 5 6
13

14
16

4 15

8 9 7 10 11 12

18

Figure 2.41 Depth First Traversal on a selected graph

n Example Consider the above figure 2.41. Here, white nodes are unprocessed, gray nodes are ready and black nodes are
processed. Algorithm started from node 1.

BFT Algorithm

In the case of BFT algorithm, we employ the queue. Other notations are same as above.
1. Select any node of the graph and insert into queue while making its status as Ready.
2. Repeat step 3 till queue becomes empty.
3. Remove a node (A) from the queue and make its status as processed. Insert all un-processed nodes of A into queue

while making their status values as as ready.

Programming, Data Structures and Algorithms 2.209

n Example Explain the BST traversal algorithm on the graph given in following figure 2.42.
1. We assume that traversal starts from node A. Thus, we insert the same into queue while making its status as ready.
2. We will remove a node from queue. Obviously, it is A itself. We will mark the same as processed and insert its unpro-

cessed neighbours, into queue while making their status as ready.

A

E

M JPG

X

Output String A X G H P E M Y J

A X GH HP PE E MY YJ J

Queue Charges

YH

Figure 2.42 BFT traversal of a graph

3. Next, when we remove a node, we will get X. The same will be printed. Its neighbours G, H are inserted into queue.
4. Next, when we remove a node, we will get G. The same will be printed. Its unprocessed neighbour is inserted into

queue while making its status as ready (Of course, though H is also G’s neighbour it is not inserted as it is already in
the queue).

5. Next, when we remove a node from queue, we will get H. The same will be printed. Its unprocessed neighbour, E, is
inserted into queue.

6. When we remove a node from queue, we will get P. It does not have any neighbours to be inserted into queue.
7. Next, we remove a node, we will get E. The same will be printed. Its unprocessed neighbours, M.Y are inserted into

queue while making their status as ready.
8. Next, when we remove, we will get M as output. Its unprocessed neighbour is inserted into queue.
9. Next, when we remove, we will get Y as output. As it does not have any unprocessed neighbours. Nothing will be

inserted into queue.
10. Next, when we remove a node from queue, we will get J. The same will be printed. As it does not have any neigh-

bours, nothing will be inserted into queue.
11. Now, queue is empty. Thus, algorithm terminates.

Minimum Distance Problems
There are plethora of problems in which we need to find out minimum distance between two nodes of a graph. For ex-
ample, while planning our holiday trip, we need to find minimum distances between the places which we have identified.
Similarly, in computer networks (i.e., in Internet), we need to find our best route to rout the packet. Here, we may consider
many parameters such as minimum delay or minimum cost, minimum jotter, etc. In some other applications, we may
have to find minimum cost routes.

In all the above problems, we will be given a weighted graph and we need to find out minimum distance route between
any given two stations. In the literature, we may find many solutions to solve this problem. However, Dijkstra’s algorithm
is popular out of all.

Dijkstra’s Algorithm
Here also, we assume same notations as in graph traversals algorithm. Initially, all the stations are at infinite distance from
the source station. That is their state is considered as unprocessed. When we find a route (may not be best route) for a sta-
tion from source, those stations are said to be in ready state. If we have found best possible route to a station, we mark its
status as processed. The algorithm is given as follows:

1. Select the source node and mark it as processed.
2. Select all the neighbours of source station and mark them as ready and update their minimum distances as the dis-

tances from source.

2.210 Computer Science & Information Technology for GATE

3. Repeat step 4 till destination station status becomes processed.
4. Select the station (B) which is having minimum distance out of the stations which are in the ready status. Make

status of B as processed and update all of its unprocessed, ready state nodes minimum distance (by adding distance
from B to this station to distance of B from source) while making their status as ready.

The Minimal Spanning Tree Problem
Minimal spanning tree of a graph is the tree (no cycles) which joins all the nodes and the sum of the weights of the edges
which joins all the nodes is minimum. Consider Fig. 2.43.

a

b

e

d

cf

Figure 2.43 A set of planar points

In Fig. 2.44, we show three spanning trees of the set of points in Fig. 2.43.

c

a

b

e

d

cf
(a)

a
e

d

cf

a

b

b
d

e

cf

(b)

(c)

Figure 2.44 Three spanning trees of the set of points in Fig. 2.43

Among the three spanning trees, the tree in Fig. 2.44(a) is the shortestand this is what we are interested. Thus the minimal
spanning tree problem is defined as follows: We are given a set of points and we are asked to find a spanning tree with the
shortest total length.

How can we find a minimal spanning tree? A very straightforward algorithm is to enumerate all possible spanning trees
and one of them must be what we are looking for. Fig. 2.45 shows all of the possible spanning trees for three points. As can
be seen, there are only three of them.

Figure 2.45 All possible spanning trees for three points

For four points, as shown in Fig. 2.46, there are sixteen 16 possible spanning trees. In general, it can be shown that given
n points, there are nn–2 possible spanning trees for them. Thus if we have 5 points, there are already 53 = 125 possible span-
ning trees. If n = 100, there will be 10098 possible spanning trees. Even if we have an algorithm to generate all spanning
trees, time will not allow us to do so. No computer can finish this enumeration within any reasonable time.

Programming, Data Structures and Algorithms 2.211

Figure 2.46 All possible spanning trees for four points

Prim’s Algorithm
Consider the points in Fig. 2.43 again. Suppose we start with any point, say point b. he nearest neighbour of point b is
point a. We now connect point a with point b , as shown in Fig. 2.47(a). Let us denote the set {a, b} as X and the set of the
rest of points as Y. We now find the shortest distance between points in X and Y which is that between between b and e,
We add e to the minimal spanning tree by connecting b with e, as shown in Fig. 2.47(b). Now X = {a, b, e} and Y = {c, d, f}.
During the whole process, we continuously create two sets, namely X and Y. X consists of all of the points in the partially
created minimal spanning tree and Y consists of all of the remaining points. In each step of Prim’s algorithm, we find a
shortest distance between X and Y and add a new point to the tree until Y is empty. For the points in Fig. 2.43, the process
of constructing a minimal spanning tree through this method is shown in Fig. 2.47.

a

b

e

d

cf

a
e

b

d

c
(b)

f

a

b

e

d

cff

a

b

e

d

c
(c)

(a)

f

d

c

e
a

b

(e)

(d)

Figure 2.47 The process of constructing a minimal spanning three based upon prim’s algorithm

2.212 Computer Science & Information Technology for GATE

In the above figure, we assumed that the input is a set of planar points. We can generalise it so that the input is a
connected graph where each edge is associated with a positive weight. It can be easily seen that a set of planar points
corresponds to a graph where there is an edge between every two vertices and the weight associated with each edge is
simply the Euclidean distance between the two points. If there is an edge between every pair of vertices, we shall call this
kind of graph a complete graph. Thus a set of planar points correspond to a complete graph. Note that in a general graph,
it is possible that there is no edge between two vertices. A typical graph is now shown in Fig. 2.48.

Figure 2.48 A General Graph

We now present Prim’s algorithm as follows:
Algorithm 2.1 Prim’s Algorithm to Construct a Minimal Spanning Tree
Input: A weighted, connected and undirected graph G = (V,E).
Output: A minimal spanning tree of G.
Step 1: Let x be any vertex in V. Let X = {x} and Y = V \ {x}
Step 2: Select an edge (u,v) from E such that u XŒ , v YŒ and (u,v) has the smallest weight among edges between X and Y.

Step 3: Connect u to v. Let X X v= »{ } and Y Y v= { }\ .
Step 4: If Y is empty, terminate and the resulting tree is a minimal spanning tree. Otherwise, go to Step 2.

Let us consider the graph in Fig. 2.49. the process of applying Prim’s algorithm to this graph is now illustrated in Fig. 2.50.

b

d

a

e

3c18

5

9

7

15

110

Figure 2.49 A General Graph

(1)

= { },

= { , , , },

(,) the shortest.

X b

Y a c e d

b d

b

d

1

b

d

3
c

1

b

d

3

c

7

1

e

b

d

a

c

3

c
10 1

7

(2)

= { , },

= { , , },

(,) the shortest.

X b d

Y a c e

b c

(3)

= { , , },

= { , },

(,) the shortest.

X b d c

Y a e

c e

(4)

= { , , , }

= { },

(,) the shortest.

X b d c e

Y

e a

a

(5)

= { , , , , },

=

X b d c e a

Y f

Figure 2.50 The process of applying Prim’s Algorithm to the graph in figure 2.49.

Programming, Data Structures and Algorithms 2.213

Kruskal’s Algorithm

Kruskal’s algorithm to construct a minimal spanning tree is quite similar to Prim’s algorithm. It would first sort all of the
edges in the graph into an ascending sequence. Then edges are added into a partially constructed minimal spanning tree
one by one. Each time an edge is added, we check whether a cycle is formed. If a cycle is formed, we discard this edge. The
algorithm is terminated if the tree contains n-1 edges.
Algorithm 2.2 Kruskal’s Algorithm to Construct a Minimal Spanning Tree
Input: A weighted, connected and undirected graph G = (V, E).
Output: A minimal spanning tree of G.
Step 1: T = f.
Step 2: while T contains less than n–1 edges do
Choose an edge (v,w) from E of the smallest weight.
Delete (v,w) from E.
If the adding of (v,w)does not create cycle in T then
Add (v,w) to T.
Else Discard (v,w).
end while
Let us consider the graph in Fig. 2.50. The process of applying Kruskal’s algorithm to this graph is illustrated in Fig.2.51.
Both algorithms presented above are efficient.

(,) is selected
and added.
b d () is selected

and added.
b, c

(,) is selected
and added.
a e

b

d

1

b

d

b

d

a

e

3

c
1

3

c
10 1

7

() is selected
and discarded.
c, d

b

d

1

3

c

b

d

3

c

7

1

e

() is selected
and added.
c, e

Figure 2.51 The process of applying Kruskal’s Algorithm to the graph in Fig. 2.49

2.4.6.1 Graph Theory Important Points

In-degree of a node is number of edges coming into the node.
Out-degree of a node is number of edges going out of the node.
Degree of a node is sum of in and out degrees.
Self Loops are the ones in which there exists an edge for a node from itself. If u is a node and (u,u) is element of edge set
E. A self-loop is a cycle of length 1.
If (u,v) is an edge then it is said to be incident from or leaves vertex u and is incident to or enters vertex v.
A path is simple if it contains distinct nodes.

2.214 Computer Science & Information Technology for GATE

Two paths (v0, v1, v2,…, vk–1, vo), and (v0
1,v1

1,…, v k–1
1,v0

1) form the same cycle if there exists an integer j such that vi
1 = v

i+j mod k for k = 0, 1,…k–1.

An undirected graph is connected if every pair of vertices is connected by a path.
Connected components of a graph are vertices under “is reachable from” relation.

A directed graph is strongly connected if every two vertices are reachable from others.
A directed graph is strongly connected then it will have only one strongly connected component.
Two graphs are isomorphic if there exists bijection f: V Æ V1 such that a edge in G also in G1 only labels may change.

If two graphs are isomorphic then their degrees are same.
n Example How do you make an undirected graph as a directed graph using (1) adjacency list (2) adjacency matrix.

n Answer:
Adjacency Matrix: If A is adjacency matrix traverse A and if A(i, j) is 1 set A(j, i) as 1.
Adjacency List: Traverse adjacency list node by node if a node Vj is in adjacency list of Vi and then keep Vi in adjacency
list of Vj.
A complete graph is an undirected graph in which every pair of vertices is adjacent.
In a complete graph max path (possible) length is 1.
Forest is acyclic, undirected graph.
 Tree is an acyclic, connected, undirected graph.
Multigraph is an undirected graph with multiple edges between vertices and with self-loops.
Hypergraph is undirected with hyperedges connecting subset of vertices.

n Problem :
In a party every member gave shake hand to every other. Find out in total how many shake hands took place.

Assuming each member as a node and shaking with other one as an edge, then number of shake hands which took
place given as

Sum of degree values of all nodes. That is 2 times of |E| where E is edge set.
Proove that in an undirected graph the length of a cycle must be at least 3.
In a directed graph if there is a cycle then it contains simple cycle.
In any connected undirected graph G(V, E) |E| > =|V|–1 is valid.
In a complete graph with N nodes there will be N (N–1)/2 edges.

A graph is weekly connected if we suppress direction and resulting undirected graph is connected.
A graph is regular if every vertex has valence (order) that it is adjacent to same no of other vertices.
The diameter of a graph is largest of all shortest path distances in the tree.

n Exercise :

1. The minimum number of edges in a connected acyclic graph on n vertices is ____
2. The number of edges in a regular graph with degree d and n vertices is _____
3. Proove that the number of vertices of odd degree is always even.
4. Prove that if a connected undirected graph with n vertices has a min-cut of cardinality k, then G has at least nk/2

edges.
5. Prove that if D is a digraph then sum of in degrees and sum of out degrees are equal.
6. Prove that if T is a tree with n vertices then it will have n–1 edges.
7. Prove that only if all vertices of a Graph are even degree Euler tour is possible.

How to Find a Cycle in an Undirected Graph
We use a stack in our DFS algorithm to keep track of the vertices in the order that they are visited. One has to be careful
to distinguish between a back edge, and a tree edge in the reverse direction. The algorithm below can be used to find and
print a cycle in an undirected graph. Works very much like DFS, except that when it encounters a node it has already
searched (which only happens when a cycle is present), it prints out the cycle.

FindCycle(G)
1. for each vertex u in V[G]
2. do color[u] < – white

Programming, Data Structures and Algorithms 2.215

3. parent[u] < – nil
3. depth <– 0
4. for each vertex u in V[G]
5. do if color[u] = white
6. then FC-Visit(u)

FC-Visit(u)
1. color[u] = gray
2. for each v in Adj[u]
3. do if color[v] = gray and v != parent[u]
4. then parent[v] = u
5. FC-PrintOut(v)
6. if color[v] = white
7. then parent[v] = u
8. FC-Visit(v)
9. color[u] = black

FC-PrintOut(v)
1. w <- v
2. do w <- parent[w]
3. print w
3. while w != v
4. end

How graphs are different from trees?
Graphs are similar to trees in that both data structures are represented with nodes and edges. Graphs are different from
trees in that graphs do not have restrictions on the relationships between nodes. For example, tree nodes can only have
one parent node. Graphs do not have the concept of parent and child nodes.

Consider the following pseudocode

 for (k=0; k<n; k++) {

 for (each vertex w adjacent to vertex vk) {

 process the edge (vk, w);

 }

 }

processes every edge in a directed graph with n vertices.
a. Suppose that the graph is represented as an array of adjacency lists. In “big-Oh” terms involving n and e, the number

of edges in the graph, give the best estimate for the running time of the algorithm just given.
b. Suppose that the graph is represented as an adjacency matrix. Give the best estimate for the running time of the

algorithm.

n Answer: Using adjacency lists, the body of the inner loop gets executed exactly e times, and the outer loop is executed n
times. Thus the total execution time is O(n+e). In particular, O(n2) is incorrect for a graph with a relatively small number
of edges.

With an adjacency matrix, determining what vertices are adjacent to a given vertex takes O(n) steps, and this is done
for each vertex. Thus the total running time is O(n2).

n Example Below you are given two spanning trees (marked with thick edges) of a directed graph. Determine which
of those trees are DFS trees. (More specifically, whether there are some orderings of adjacency lists for which DFS will
produce these trees.) If so, show the DFS numbering (order in which the vertices are visited) corresponding to this DFS
traversal. If not, explain why?

2.216 Computer Science & Information Technology for GATE

n Answer: First figure does not represent a DFS tree. If the first edge of A is (A;B) then K should be descendant of B (not
of A). If (A;K) is the first edge of A then E should be descendant of K (not of F). Finally, if (A; F) is the first edge of A then
L should be a descendant of F (not of K). However, second figure represents a DFS tree. One possible DFS numbering is:

A B C D E F K L

1 8 6 7 3 2 5 4

A

B
C

D

L

E

F

s

K

B
C

D

L

E

F

K

s A

n Example An undirected graph without cycles is called a forest. In other words, a forest is a collection of disjoint trees.
Suppose that G is a forest with n vertices and m edges, that consists of k trees. Prove that m = n–k.

n Answer: We will prove this using induction on the number of edges, with n fixed.
Base Case: m = 0. Since G has no edges, the number of trees is equal to the number of vertices, that is n = k, and the

formula is true.
Inductive Step: m >=1. For the inductive assumption, assume that the formula holds for forests with m’ = m-1 edges.

Now pick any forest G with n vertices, m edges, and k trees, and remove one of its edges e = (u, v), to produce a new for-
est G’ with m – 1 edges. G’ has k + 1 trees, because the tree that contained e is now split into two trees. By the inductive
assumption, m – 1 = n – (k + 1), which implies m = n – k.

n Example We have a weighted graph G. Assuming W is the largest edge weight in G, we have created another graph G’
by subtracting each of the edge weights of G from W. Explain what happens if we apply Kruskals algorithm on G’.

n Answer: We get maximum spanning tree.

2.4.7 Hashing

Hashing is a technique used for storing (or organising) items so that they can be found efficiently when needed. Searching
methods such as BST, etc., discussed so far vary in the efficiency with which they can find the appropriate key. Obviously,
the ideal one is to have searching with constant time, O(1). Hashing is a method which has time complexity of O(1) rather
than being dependent on the number of data elements. Hash tables are a way of finding a record using keys which are a
part of the record and which also can be found by using specific algorithms which operate on the key to determine the
location of the information. The information (records for example) can be stored in the hash table and the process of
determining the location of the information in the hash table uses a hash function. The process of building or finding
information in the hash table is called hashing.
In essence, hashing involves

1. Items (or records) are stored in a hash table (We can conceive hash table is a linear array. In the literature, hash table
is also referred to collection of buckets)

2. A number called a hash code (or hash value) is calculated from the target value (key value) using a hash method (or
hash function).

3. The hash code is then scaled to the size of the hash table, often by using the remainder (%) operator.
4. The result, the hash index, designates the position of the target value (item or record) in the hash table.
That is, while storing records we find hash index of a record from its key value and store the record in the location

pointed by hash index. While searching, we repeat the same; that is given key value we access the record by calculating
hash index.

Programming, Data Structures and Algorithms 2.217

Hashing is the antithesis to sorting. We all know that sorting arranges the records in some pattern or in some order
like ascending or descending. However, hashing scatters the records throughout the hash table in a completely random
fashion. Therefore, hashing is appropriate for implementing a specified relationship among elements but it does not lend
itself to operations which attempt to make use of any other relationships among the data. In implementing the hash table,
other relationships may be destroyed. For example, an ordered list can be put into a hash table but since hashing is the
antithesis of sorting, the sorted nature of the data is lost. It is therefore difficult to determine the nth item in the ordered
sequence. The price we pay for efficient searching is the loss of relationships which was previously existed in the data.

Hash Functions
We know that the hash array must be at least equal in size to the number of pieces of data (records or items) that has to be
maintained in the hash table. Actually, we will choose an array which has a prime number of elements. Hash function is
used to find the index of the hash table where the given record with a given key value has to be maintained (or searched).
A good hash function should be:

Uniform (all indexes are equally likely for a given key)
Random (not predictable)

For example, suppose we wanted to hash a number of six digit telephone numbers of people living in a building (<1000
residents in all). Using the first three digits of the phone number is probably a bad idea (phone numbers in the same
general area often have the same numbers, so all numbers may fall into same bucket or location in the hash table which
is called as clustering). Instead, using the last three digits of the phone number would be a better idea as it distributes the
telephone numbers uniformly. This approach is called as truncation. That is, here some parts of the key are ignored and
the remaining portion is used to find the index. We do have another method known as folding to avoid clustering. Fold-
ing process breaks the key into several parts and recombines the parts to form an index. The parts may be recombined by
addition, subtraction, multiplication, etc and may be truncated as well. Such a process is usually better than truncation by
itself since it produces a better distribution of records (or items) because all of the numbers in the key contribute to the
hash function.

Modular Arithmetic is widely used in hashing, i.e., index calculation. This ensures that the index produced falls within
a specified range of the hash table. Here, the key is converted to an integer which is divided by the range of the index with
the resulting function being the value of the remainder. In its simplest form the key is an integer and the modulus of the
key is found directly. If the value of the modulus is a prime number, the distribution of indices obtained is quite uniform,
in fact, hash tables almost always have a size which is a prime number. A table whose size is some number which has
many prime factors provides the possibilty of many indices which are the same. One should not choose a hashsize which
is a multiple of 2, for example. Therefore, if a hash table is to be constructed for about 1000 records, the best bet would be
to have a table which can hold at least 1009 records.

Sometimes, the hash function is suggested by the structure of the key. In other cases, the best hash function can only
be determined by experimentation. Perfect minimal hash functions do exist. These are hash functions which will place
every item uniquely in the smallest possible hashsize (ideally equal to the number of items). Generally these hash func-
tions are produced when all of the keys are known in advance. It is extremely rare to find a perfect hash for an arbitrary
number of keys.

Collision
It is obvious that no matter what function is used, the possibility exists that the use of the function will produce an index
which is a duplicate of an index which already exists. This is termed a collision. Therefore, choosing a hash function which
is efficiently calculated and which yields a good distribution is only solving part of the problems in hashing. The resolution
of collisions must also be addressed.

Load Factor
When looking at the efficiency of a hash table, the number of items already stored in the hash table will have an effect
on the performance of the hash table. The measurement of fullness is called the Load Factor. In textbooks it is often rep-
resented by the symbol l (pronounced lamda). l = number of items in list/size of list. Put another way,. l is simply the
percentage of occupied spots in the table. Therefore: if l = 0.5 it would mean that 50% of the table is full. l = 0.1 means it
is 10% full.

2.218 Computer Science & Information Technology for GATE

Note

Depending on collision resolution method (described in next section) it is possible that l > 1.

Collision Resolution
The process of using a hash function to find the location in a hash table is often referred to as open hashing. If the position
obtained is already occupied, then another open position must be found since there is a collision. Collisions are resolved
by a process of rehashing (also called closed hashing). As an example, we will use the following list of keys in order to
show what happens. We will also use

hash code or index = key mod hashsize
to determine the position in the hash table of size 11.

Key 23 18 28 13 16 42 17

Position 1 7 7 6 6 2 5 6

There are two major ways of resolving the collisions.
1. Open Addressing By taking the next open space or location as determined by rehashing the key according to

some algorithm. Since the hash table has enough space to hold all of the records some space must be always open;
thus the term ‘open addressing’. Some open addressing procedures are:

Linear Probing Here, we start from the position at which the collision occurred and does a sequential search for the
next open position. That is,

new position = (current position + 1) MOD hashsize
The results of using linear probing are shown below for the above data.

0 1 2 3 4 5 6 7 8 9 10

23 13 16 28 18 29 39 4217

23 18 29 28 39 13 16 42 17

1 7 7 6 6 2 5 9 6

Major drawback with this approach is that once the table becomes allmost full, the length of the search for an open space
increases. Also, we may find Clustering to occur in this method; that is, the used spaces tend to appear in groups which
tend to grow and thus increase the search time to reach an open space. Of course, it eventually finds an open space.

This method only works well if the size of the array is larger than the maximum number of expected values. In other
words you would expect lots of open spaces. In general you will need to keep no less than around 30% to 35% of the table
empty.

The problem is that you must estimate the maximum size of the table which can be hard. Another problem is that
whenever you have a collision, the item you are trying to add will have to be placed into the table in another spot. This of
course could mean that it is taking up a spot that was meant for anther item that would have hashed directly into it. That
item would in turn have to be placed at another place. The problem that this creates is that the items in hash tables tend
to create clusters. Any attempt to hash a value into the cluster would cause the item to be placed in an alternate spot and
increase the size of the cluster.

Average number of probes in an unsuccessful search using linear probing is around:

1
1

1
2

2+
-()l

Average number of probes for a successful search using linear probing is around:

1
1

1
2

+
-()l

Note that the actual cost of finding an item depends on l at time that item was inserted. For example, if table was empty

Programming, Data Structures and Algorithms 2.219

when item was inserted, then any future searches for the items would always find the item where the hash function said
it should be.
Incremental Functions
In order to try to avoid clustering, a method which does not look for the first open space must be used. Two common
methods are used.
Quadratic Probing
If there is a collision at hash address ‘h’, then the probing begins by adding 1 to the address, then 4, then 9, etc. In general
form this can be expressed as:

new position= (first collision position + j2) MOD hashsize

where j is the number of the probe and hashsize is the size of the hash table. The results of using a quadratic probe are
shown below.

0 1 2 3 4 5 6 7 8 9 10

23 13 16 28 18 29 394217

23 18 29 28 39 13 16 42 17

1 7 7 6 6 2 5 9 6

Once again, the best results are obtained when the size of the hash table is a prime number since numbers which have
several divisors would yield a fair number of duplicate values when the mod function is used. When a prime is used for
hashsize, the number of distinct probes which will be made is (hashsize + 1) DIV 2. Therefore, not all positions are probed
but the results are generally satisfactory. If the collision cannot be resolved, then overflow is said to be occured.

Key-dependent Increments

An obvious difficulty in the quadratic probe is that overflow may occur when there is still space in the hash table. While
this can be partly rectified by making a table slightly larger than would be required when all elements are in the table,
this is wasteful, especially for large hash tables. To counteract this, key-dependent increments are used. These increments
vary according to the key used for the hash function. If the original hash function results in a good distribution, then key-
dependent functions work quite well for rehashing and all locations in the table will eventually be probed for a place to
put the element.

Key-dependent increments are determined by using the key to calculate a new value and then using this as an incre-
ment to determine successive probes. Some checks should also be done before the increment obtained is used to search for
new positions. For example, since the original hash function was key MOD 11, we might choose a function of key MOD
7 to find the increment. Thus the closed hash function becomes

newposition= (currentposition + (key DIV 11)) MOD 11

The results of using this key dependent increment method is shown below.

0 1 2 3 4 5 6 7 8 9 10

23 13 16 28 18 1739 29

23 18 29 28 39 13 16 42 17

1 7 7 6 6 2 5 9 6

42

2 1 2 2 3 1 1 3 1

For instance, hash code for 23 is 23%11, i.e., 1. Thus, 23 is stored in location 1. Similarly, 18%11 is 7. Thus, 18 is stored
at location 7. In the same way, 29%11 is 7. Now, collision is occurred. We calculate increment value as 29/11, i.e, 2(integer
division). Thus, new location becomes (7+2)%11, i.e., 9. Thus, 29 is stored at location 9. Similarly, 28%11 is 6. As no ele-
ment is stored at location 6, we store 28 there. Now, take 39 for hashing. We calculate 39%11, i.e., 6. We know allready 28
stored there; thus collision is occurred. Thus, we calculate increment value, which become 39/11=3. Now, new location
is (6+3)mod 11, where we have 29. Thus, we try (6+2*3)%11=1. We know 23 is available at this location. Thus, we try
(6+3*3)%11=4. We don’t have any element at location 4. Thus, we store 39 at location 4.

This closed hash function works for the data in the example because there are no keys with a value of less than 11. In all
of the closed hash functions it is important to ensure that an increment of 0 does not arise. If the increment is equal
to hashsize the same position will be probed each time so this value cannot be used.

2.220 Computer Science & Information Technology for GATE

The increment is now dependent on the key and different increments exist. Generally, a different number is used to
find the modulus and while the open hash function could be used to find an increment for the closed hash function, this
should be avoided if possible. Another problem exists if the size of the hash table is not a prime. For a number of the incre-
ment values only some of the positions will be probed regardless of the number of increments.

If we ensure that the hashsize is prime and the divisors for the open and closed hash are prime, the rehash function
does not produce a 0 increment, then this method will usually access all positions as does the linear probe. Using a key-
dependent method usually result reduces clustering and therefore searches for an empty position should not be as long as
for the linear method.

Collisions increase the search length to find any key since the search follows the same procedure as doing the original
insertion. To reduce this effect, coalesced hash table is used. It adds some steps to the process of building the table and it
also requires a second vector rather than a single one-dimensional array. The first column/row in the table is the hash table
of keys. The second row or column is an indicator of which element to look in if a collision occurs. Table 2.5 was built using
the simplest collision resolution technique, that of a linear probe.

Table 2.5

1 2 3 4 5 6 7 8 9 10

23 13 16 28 18 29 39

23 18 29 28 39 13 16 42 17

1 7 7 6 6 2 5 9 6

4217

3 9 8 10 0

For instance, 23 and 18 will be hashed into empty positions 1 and 7, respectively. When we try to insert 29, it collides
with 18. In the reference vector, an 8 indicates that a collision at position 7 was initially resolved by going to position 8.
Thus, 29 will be will be placed at location 8. Then, 28 hashes to position 6 and is placed there. When we try to insert 39, it
also hashes to position 6, but there is no previous collision there so we just use the rehash and move one more to position
7. At this point, we see that there was already a collision there and it was necessary to go to position 8, so we move to 8.
There have been no previous collisions there so we use the rehash to get to position 9 where 39 can be placed. It is then
necessary to go back to position 6 and indicate that the resolution is in location 9. The number of probes that we went
through to place 39 is now reduced to only 2. If we put a 9 in the reference vector in position 6, then a search for 39 would
go to position 6, and then to position 9, eliminating some of the probes. The next collision occurs when an attempt is made
to place 42 which should go in position 9. There is no link to another place so we use the rehash to put 42 in position 10
and set the indicator in 9 to 10. Similarly, 17 eventually ends up in position 0 by starting at 6 and going to 9 and 10, and
finally 0. The indicator in 10 is set to 0. Resolving collisions by coalescing the table can reduce the average probes to find a
key. It is also slightly easier to just follow the indicator to a new array element than to rehash and then go to the element.

Effect of Deletions
Deletions from a hash table pose considerable difficulties. Memory space which becomes free because of a deletion of a
key has to be re-used. If there were no (previous) collisions at that location, then the deletion would pose no problem; oth-
erwise it poses difficulties. That is, if after inserting the first element into the location, subsequent hashing has resulted in
the same location and rehashing has been used to place the element in another position, taking out the first element causes
problems. When searching for an element in a hash table, it is important to note that the searching algorithm is really the
same as the insertion algorithm. Therefore, if there is a collision some mechanism is available to resolve the problem and
place the element. The probe continues until an open space is found. Removing any element breaks the search because an
open element indicates that an element can be placed, or conversely, indicates that no more elements hash to that location
given the initial key. In order to cope up with this, any deletion must set a key in the hash table (often called a tombstone)
to indicate that the space is now open for the insertion of a new element if insertion is taking place but that if the hash
table is being searched, there are other elements which follow and the collision resolution procedures should be used to
continue searching the table. We can also move the elements as explained below.

Let us suppose that after doing a number of hashes we have the following array. Arrow indicates their proper location
in the array (no arrow means item is already in proper place):

Programming, Data Structures and Algorithms 2.221

11 99

0 1 2 3 4 5 6 7 8 9 10

64 76 87 8554

Using linear probing we must be very careful about leaving empty spaces. This is because when we search we look for
empty spaces as indication that the search is done. We must not leave an empty space between where an item should be
and where an item actually is. Suppose now we delete 54:

11 99

0 1 2 3 4 5 6 7 8 9 10

64 76 87 85

We can not just leave the array like this because if we try to look for 64 now, we will not find it since the space where it
should have been is empty. We will need to move 64 over

11 99

0 1 2 3 4 5 6 7 8 9 10

64 76 87 85

Problem now of course is that 85 will not be found. We will need to move 85 over too.

11 99

0 1 2 3 4 5 6 7 8 9 10

64 76 8785

2. Collision Resolution by Chaining
External Chaining
Array as hash table is reasonable as it extends random access to any element. Thus access can be reduced to O(1), or if
collisions occur some multiple depending on the number of rehashes required before the collision is resolved. However,
arrays can use substantial amounts of memory and in order to make collision resolution effective it is often necessary to
employ arrays which are larger than number of elements (to avoid overflow condition). To alleviate this problem, we
make the hash table as an array of pointers to linked lists. Thus, when a key is hashed, the position in the table is accessed
which refers to a linked list. Resolution of collisions is simple ; it requires only that a node be added to a linked list. This
insertion is usually as the first item in the list which is the easiest to accomplish since it does not require a traversal of the
list. Deletions also ose no special problems. The oringinal data is shown below in Table 2.6 where collisions are resolved
by chaining.

Table 2.6

2

3

4

5

6

7

8

9

0

1

1 7 7 6 6 2 5 9 6

23 18 29 28 39 13 16 42 17

23

13

16

42

3917 28

29 18

10

2.222 Computer Science & Information Technology for GATE

We know that creation of linked lists involves use of dynamic memory. If the hash function produces a reasonable dis-
tribution of keys, none of the linked lists will become very long. However, there may be elements in the hash table which
remain unused, the savings in using dynamic storage for the information should make up for the few un-used elements.

Obviously, chaining consistently requires fewer probes than open addressing. However, traversal of the linked list is
slow and if the records are small it may be just as well to use open addressing. Chaining is best under two conditions; when
the number of unsuccessful searches is large or when the records are large. Open addressing would likely be a reasonable
choice when most searches are likely to be successful, the load factor is moderate, and the records are relatively small.

For chaining, the runtimes depends on l. The average length of each chain is l. l is the number of expected probes
needed for either an insertion or an unsuccessful search. For a successful search it is 1 + l/2 probes.

In comparison to other methods of search it is important to note that the number of probes is dependent only on the
load factor on the hash table and not on the absolute number of items in the table.

Double Hashing
Double Hashing is works on a similar idea to linear and quadratic probing. Use a big table and hash into it. Whenever a
collision occurs, choose another spot in table to put the value. The difference here is that instead of choosing next open-
ing, a second hash function is used to determine the location of the next spot. For example, given hash function H1 and
H2 and key, do the following:

Check location H1(key). If it is empty, put record in it.
If it is not empty calculate H2(key).
check if H1(key)+H2(key) is open, if it is, put it in
repeat with H1(key)+2*H2(key), H1(key)+3* H2 (key) and so on, until an opening is found.

Like quadratic probing, one must take care in choosing H2. H2 CANNOT return 0. H2 must be done so that all cells will
be probed eventually.

n Example Suppose we want to store names, or words, consisting of lower case letters only. We will consider three hash
functions, all hashing to a hashtable with 26 entries:

unsigned int hash1(char *s) {

return s[0] - ’a’ ;

}

unsigned int hash2(char *s) {

int h = 0, i ;

for(i=0 ; s[i] != ’\0’ ; i++) {

h = h + s[i] ;

}

return h % 26 ;

}

unsigned int hash2(char *s) {

int h = 0, i ;

for(i=0 ; s[i] != ’\0’ ; i++) {

h = h * 3 + s[i] ;

}

return h % 26 ;

}

Suppose we wish to store the following words: break , brake, dear, dare, bristol, bristle, not and ton

(a) How many collision will we have when using hash1?

n Answer: 4 (brake, bristol and bristle collide with break, and dear with dare)
(b) How many collision will we have when using hash2?

n Answer: 3 (brake with break, hear with hare, and ton with not)
(c) How many collision will we have when using hash3 (guess, don’t compute the answer)?

Programming, Data Structures and Algorithms 2.223

n Answer: 0, there is a good chance that there is a collision already, birthday paradox.
(d) What is the strength of hash1?

n Answer: simple and fast!
(e) What is the strength of hash3?

n Answer: few collisions
(f) assume that we use hash function 1 and we use open addressing to resolve this. Sketch the contents of the hash table.

n Answer:
 slot 0 is empty;
 slot 1 contains break;
 slot 2 contains brake;
 slot 3 contains dear;
 slot 4 contains dare;
 slot 5 contains bristol;
 slot 6 contains bristle;
 slot 7-12 are empty;
 slot 13 contains not;
 slot 14-18 are empty;
 slot 19 contains ton;
 slot 20-25 are empty;

(g) We will need a string comparison to compare the contents of a hash cell with a word when we are looking a word
up. how many string comparisons are required to check Whether the following words are in the hashtable: aardvark,
chicken, bristol, peanuts, gorilla?

n Answer: aardvark: 0 (slot 0 is empty), chicken: 5 (comparewith all values from slots 2-6 inclusive), bristol: 5 (compare
with all values from slots 1-5 inclusive), peanuts: 0 (slot 16 is empty), gorilla: 0 (slot 7 is empty)

(h) Repeat the previous questions, assuming that we use direct chaining.
n Answer: slot 0 is empty;
 slot 1 contains bristle, bristol, brake, break.
 slot 2 is empty
 slot 3 contains dare, dear.
 slot 4-12 are empty;
 slot 13 contains not;
 slot 14-18 are empty;
 slot 19 contains ton;
 slot 20-25 are empty;
 0, 0, 2, 0, 0

n Example Assume we have an array storing the values 3, 9, 12, 13, 24, 25, 26, 200, 202, 208, 215, 300, 314, 31415, 80000.
The lowest value is stored at index 0, the highest at index 14.

(a) Suppose we want to check whether 14 is in the array or not. Which values does a binary chop ened to compare with?

n Answer: 200, 13, 25, 24
(b) How many comparisons would you need if you did a linear search?

n Answer: Five: 3, 9, 12, 13, 24
(c) What are the minimum and the maximum number of comparisons for the binary chop on this array?

n Answer: One and Four
(d) What are the minimum and the maximum number of comparisons for a linear search on this array?

n Answer: One and Fifteen

2.224 Computer Science & Information Technology for GATE

(e) Could you store this in a hash-table with, say, 17 elements? What would a suitable hash function be?

n Answer: Yes. Modulo 17 is the simplest hash-function.

n Example Give the keys 4, 0, 18, 24, 16, 20, 30, 31, 19, 8, 14 and 13, insert keys (according to the given order) into
an initially empty 13-item hash table using hash function (h (k) = k mod 13) where k represents a key. Show the
content of hash table after insertion, assuming collisions are handled by

i. Linear probing
ii. Double hashing where the secondary hash function is h¢ (k) = 1 + (k mod 11).

(a) Given n equal keys, totally how many probes are required when linear probing is used for collision handling? Express
the number of probes in term of Big-Oh notation. Explain your answer.

(b) Given n equal keys, can double hashing better than linear probing in term of the number of probes involved? Explain
your answer.

Answer: The following table illustrates the hashing with all the given keys.

Keys h (k) = k
mod 13

(h¢ (k) = 1 +
 (k mod 11)

(h (k) + jh¢
(k)) mod 13

4 4

0 0

18 5

24 11

16 3

20 7

30 4 9 0, 9

31 5 10 2

19 6

8 8

14 1

13 0 3 3,6,9,12

Results of Linear probing

0 1 2 3 4 5 6 7 8 9 10 11 12

0 14 13 16 4 18 30 20 31 19 8 24

Results of double hashing where the secondary hash function is h¢ (k) = 1 + (k mod 11).

0 1 2 3 4 5 6 7 8 9 10 11 12

0 14 31 16 4 18 19 20 8 30 24 13

Answer for (a)
For ith (i ≥ 2) insertion, we need i – 1 probes. So in total we need

1 + 2 + + n – 1 = O (n2)

Answer for (b)

Double hashing hashes key k according to the index H(k, j) = (h (k) + jh¢ (k)) mod N where j = 1, 2 Let’s see what kind of
j would make H(k, j1) = H (k, j2), i.e.,

(h(k) + j1h¢ (k)) mod N = (h(k) + j2h¢ (k)) mod N fi (j1 – j2)h¢ (k)) mod N = 0
This means that either h¢ (k) = 0 or j1 – j2 = 0 . The former is impossible based on the property of hash function. So, j1

– j2 is the only option. Therefore, double hashing to the same key will require at least N probes before it hashes a key into
the same index as before. In this case, double hashing is better than linear probing.

Programming, Data Structures and Algorithms 2.225

What are the properties of a good hash function?

n Answer: It should distribute values nicely. It is not expensive to compute.
What is bucket hashing (chaining)? Briefly explain.

n Answer: Approach where the hash table contains list of objects.
In the context of hashing, what is the load factor? Briefly explain.

n Answer: Number of entries that are mainatained in hash table/hash table size.
Suppose that 31 distinct integers are arranged in ascending order in an array named values. Suppose also that the
following code is used in a method to locate an integer named key in the array.

int leftIndex = 0;

int rightIndex = values.length() - 1;

while (leftIndex <= rightIndex) {

 int middleIndex = (leftIndex + rightIndex)/2;

 if (values[middleIndex] == key) {

 return true;

 } else if (values[middleIndex] < key) {

 leftIndex = middleIndex+1;

 } else {

 rightIndex = middleIndex-1;

}

}

return false;

Compute the total number of comparisons necessary to locate all 31 values in the array using the above loop. A compari-
son occurs in one of the lines

if (values[middleIndex] == key) { ...

} else if (values[middleIndex] < key) { ...

Now suppose that the 31 integers are stored in a chained hash table with k chains, in which the hash function distributes
the integers to chains as evenly as possible. What is the smallest value of k for which the total number of comparisons to
find all 31 values in the hash table is less than the answer you computed for part a?

Answer: Search for values[15], the middle element, requires one comparison; search for values[7] or values[23], the
middle elements of the first 15 and last 15 elements respectively, requires three comparisons; four keys require five com-
parisons; and so on. Total comparisons to find all 31 keys is
1*1 + 2*3 + 4*5 + 8*7 + 16*9 = 1 + 6 + 20 + 56 + 144 = 227.
Now, we will try from small values of the hash table size. If we assume there are two chains of evenly distribute, then there
can be 15 keys in one chain and 16 in the other. The total number of comparisons to access the keys in the 15-key chain
is 1+2+...+15 = 16*15/2 = 8*15 = 120. The corresponding figure for the 16-key chain is 17*16/2 = 17*8 = 136. The total is
256. If there are three chains, there are 10 keys in two chains and 11 in the other. Total comparisons is then 5*11 + 5*11 +
11*6 = 176. The desired value for k is thus 3.

2.4.8 Dynamic Programming

The dynamic programming strategy can be explained by considering the graph in Fig. 2.52. Our problem is to find a short-
est route from vertex S to vertex T. As can be seen, there are three branches from S. Thus we have at least three routes,
namely going through A, going through B and going through C. We have no idea which one is the shortest. But we have
the following principle: If we go through a vertex X, we should find a shortest route from X to T

2.226 Computer Science & Information Technology for GATE

41

11
A

D

T

27

16C

3

S

15

18 B

9

10

21

3

212

1

E

F

G

H

14

Figure 2.52 A Graph

Let d(x,y) denote the shortest distance between vertices x and y. We have the following equation:

 d S T

d S A d A T

d S B d B T

d S C d C T

(,) min

(,) (,)

(,) (,)

(,) (,)

=

+

+

+

Ï

Ì
Ô

Ó
Ô

The question is: How do we find the shortest route from, say vertex A, to vertex T? Note that we can use the same principle
to find a shortest route from A to T. That is, the problem to find a shortest route from A to T is the same as the problem
finding a shortest route from S to T except the size of the problem is now smaller.

The shortest route finding problem can now be solved systematically as follows:

 d S T

d S A d A T

d S B d B T

d S C d C T

(,) min

(,) (,)

(,) (,)

(,) (,)

=

+

+

+

Ï

Ì
Ô

Ó
Ô

 =

+

+

+

Ï

Ì
Ô

Ó
Ô

min

(,)

(,)

(,)

15

18

3

d A T

d B T

d C T

(2.1)

 d A T
d A D d D T

d A E d E T
(,) min

(,) (,)

(,) (,)
=

+

+
Ï
Ì
Ó

 =
+

+
Ï
Ì
Ó

min
(,)

(,)

11

10

d D T

d E T
(2.2)

 =
+
+

Ï
Ì
Ó

min
11 41

10 21
 = 31

 d S T

d B E d E T

d B F d F T

d B G d G T

(,) min

(,) (,)

(,) (,)

(,) (,)

=

+

+

+

Ï

Ì
Ô

Ó
Ô

 =

+

+

+

Ï

Ì
Ô

Ó
Ô

min

(,)

(,)

(,)

9

1

2

d E T

d F T

d G T

=
+
+
+

Ï

Ì
Ô

Ó
Ô

min

9 21

1 3

2 21

 = 4 (2.3)

 d S T
d C G d G T

d C H d H T
(,) min

(,) (,)

(,) (,)
=

+

+
Ï
Ì
Ó

 =
+
+

Ï
Ì
Ó

min
14 21

16 27
= 35 (2.4)

Programming, Data Structures and Algorithms 2.227

Substituting 2.2, 2.3 and 2.4 into 2.1, we obtain that d (S, T) = min {15 + 31, 18 + 4, 3 + 35} = 22, which implies that the
shortest route from S to T is S Æ B Æ F Æ T. As shown above, the basic idea of dynamic programming strategy is to
decompose a large problem into several sub-problems. Each sub-problem is identical to the original problem except the
size is smaller. Thus the dynamic programming strategy always solves a problem recursively.

In the next section, we go back to the longest common subsequence problem and show how the dynamic program-
ming strategy can be applied to solve the problem.

All Pairs Shortest Paths (Floyd-Warshall)

A dynamic programming algorithm.
FOR k=1TOn

 FOR i=1 TO n

 FOR j=1TO n

 c(i,j,k) = min(c(i,j,k-1),

 c(i,k,k-1)+c(k,j,k-1)

)

1 7

7
5

3
1

2

4

a b c

8
d fe

k = Ø a b c d e f a 1 • 7 5 • b 7 • 3 • c • 1 2 d 8 • e 4 f

k = {a}
a b c d e f a 1 • 7 5 • b 7, b–a–c •, b–a–d 3, b–a–e •, b–a–f c •,
c–a–d 1, c–a–e 2, c–a–f d 8, d–a–e •, d–a–f e 4, e–a–f f

k = {a, b}

k = {a, b, c}

k = {a, b, c, d}

k = {a, b, c, d, e}

k = {a, b, c, d, e, f}

Application of the Dynamic Programming Strategy to Solve the Longest Common Subsequence Problem

The Longest Common Subsequence Problem

In this section, we will introduce another seemingly difficult problem and again show an efficient algorithm to solve this
problem.
Consider the following sequence:
S: ABDDRGTY.
The following sequences are all subsequences of S
ABDDRGT, DGTY, DDRGT, BDR, ABDTY, DDRT, GY, ADRG ABTY, TY, ABG, DDY, AR, BTY, TY, Y
Suppose that we are given two sequences as follows:
S1: ABDDRGTY
S2: CDEDGRRT
Then we can see that the following sequences are subsequences of both S1 and S2

DRT
DRGT
DDRGT

All of the above sequences are called common subsequences of S1 and S2. The longest common subsequence problem is

2.228 Computer Science & Information Technology for GATE

defined as follows: Given two sequences, find a longest common subsequence of them. If one is not familiar with algo-
rithm design, one may be totally lost with this problem. Algorithm 2.3 is a naive algorithm to solve this problem.
Algorithm A Naive Algorithm for the Longest Common Subsequence Problem
Step 1: Generate all of the subsequences of, say S1

Step 2: Starting with the longest one, check whether it is a subsequence of S2

Step 3: If it is not, delete this subsequence and, return to Step 2
Step 4: Otherwise, return this subsequence as a longest common subsequence of S1 and S2.

The trouble is that it is exceedingly time-consuming to generate all of the subsequences of a sequence. A much better
and much more efficient algorithm employs a strategy called the dynamic programming strategy. Since this strategy is
used very often to solve problems in molecular biology, we shall describe it in the next section.

The longest common subsequence problem presented above. It was also pointed out that we can not solve the problem
in any naïve and unsophisticated way. In this section, we shall show that this problem can be solved elegantly by using the
dynamic programming strategy.

We are given two sequences: S1 = a1 a2 am and S2 = a1 a2 bn. Consider am and bn. There are two cases:
Case 1: am = bn. In this case, am, which is equivalent to bn, must be included in the longest common subsequence. The longest
common subsequence of S1 and S2 is the longest common subsequence of a1 a2 am–1 and b1 b2 bn–1 plus am.

Case 2: am π bn. Then we find two longest common subsequences, that of a1 a2 am and b1 b2 bn–1 and that of a1 a2
am–1 and b1 b2 bn. Among these two, we choose the longer one and the longest common subsequence of S1 and S2 must
be this longer one.

To summarize, the dynamic programming strategy decomposes the longest common subsequence problem into three
identical sub-problems and each of them is of smaller size. Each sub-problem can now be solved recursively.

In the following, to simplify the discussion, let us concentrate our mind to finding the length of a longest common
subsequence. It will be obvious that our algorithm can be easily extended to find a longest common subsequence.
Let LCS (i, j) denote the length of a longest common subsequence of a1 a2 ai and b1 b2 bj. LCS (i, j) can be found by
the following formula:

LCS i j
LCS i j if a b

LCS i j LCS i j if
i j

(,)
(,)

max{ (,), (,)}
=

- - + π
- -

1 1 1

1 1 aa bi j=
Ï
Ì
Ó

LCS (0, 0) = LCS (1, 0) = LCS (0, 1) = 0
The following is an algorithm to find the length of a longest common subsequence based upon the dynamic programming
strategy:

Algorithm An Algorithm to find the length of a Longest Common Subsequence based upon the Dynamic Program-
ming Strategy
Input: a1 a2 am and b1 b2 bn

Output: The length of a longest common subsequence of A and B, denoted as LCS (m, n)
Step 1: L (0, 0) = L (1, 0) = L (0, 1) = 0
Step 2: for i = 1 to m do

for j = 1 to n do

if ai = bj then LCS (i, j) = {LCS (i – 1, j – 1) + 1
else {LCS (i, j) = {max {LCS (i – 1, j) – 1) LCS (i, j – 1)
end for

end for

Let us consider an example.
A = AGCT and B = CGT
The entire process of finding the length of a longest common subsequence of A and B is now illustrated in the following
Table 2.7. By tracing back, we can find two longest subsequences CT and GT.

Let us consider another example: A = aabcdec and B = badea. Table 2.7 illustrates the process.
Again, it can be seen that we have two longest common subsequences, namely bde and ade.

Programming, Data Structures and Algorithms 2.229

Table 2.7 The process of finding the length of Longest Common Subsequence of AGCT and CGT

0 0 0 0 0 0 0

2 G 0 0 1 1 1

3 T 0 0 0 0 0

1 C 0 0 0 1 1

0 1 2 3 4

A G C T

i

j

Table 2.8 The process of finding the length of a Longest Common Subsequence of A = aabcdec and B = badea

0 0 0 0 0 0 0 0 0 0

2 a 0 1 1 1 1 1 1 1

3 d 0 1 1 1 1 2 2 2

4 e 0 1 1 1 1 1 3 3

5 a 0 1 2 2 2 2 3 3

1 b 0 0 0 1 1 1 1 1

0 1 2 3 4 5 6 7

a a b c d e c

i

j

The Dynamic Programming Approach to Find a Longest Common Subsequence

Best Case: O (n2)
Average Case: O (n2)
Worst Case: O (n2)
In Table 2.9, we list different time-complexity functions in terms of the input sizes.

Table 2.9 Time-complexity functions

Problem Size : n

Time-Complexity
Functions

10 102 103 104

log n 3.3 6.6 10 13.3

n 10 102 103 104

n log n 0.33 × 102 0.7 × 103 104 1.3 × 105

n2 102 104 106 108

2n 1024 1.3 × 1030 >10100 >10100

n1 3 × 106 >10100 >10100 >10100

As can be seen in this table, it is quite important to be able to design algorithms with low time-complexities. For instance,
suppose that one algorithm has O (n) time-complexity and another one has O (log n) time-complexity. When n = 10000,
the algorithm with O (log n) takes much less number of steps than the algorithm with O (n) time-complexity.

n Example Largest subsequence with O(1). That is, we were given an array with some values are positive while others
are negative (If all are positive, then total of the whole array itself becomes largest. So, no fun). We have to find out subse-
quence with largest total.

2.230 Computer Science & Information Technology for GATE

Here, we are taking a 2-D array aux in which first column is used to maintain the index while the second column is for
running total.

int main(){

int i,a[100],aux[100][2],j,max,n,index;

printf(“Enter Number of elements\n”);

scanf(“%d”,&n);

 printf(“Enter values\n”);

 for(i=0;i<n;i++)scanf(“%d”, &a[i]);

 aux[0][0]=0;

 aux[0][1]=a[0];

 for(i=1;i<n;i++){

if(a[i]+aux[i-1][1]>a[i]){

aux[i][0]=aux[i-1][0];

aux[i][1]=a[i]+aux[i-1][1];

 }

 else{

aux[i][0]=i;

aux[i][1]=a[i];

}

}

max=aux[0][1];

index=0;

for(i=1;i<n;i++){

 if(aux[i][1]>max){

 max=aux[i][1];

 index=i;

 }

}

printf(“Sum %d from %d to %d\n”, max,aux[index][0], index);

return 0;

}

n Example Given two sequences S and T each consisting of some letters of a certain alphabet, for example, assume that
S = (aabcdacbacdfghello) and T = (dqrworldxxx), the edit distance, d(S; T) is defined as the minimal number of deletions,
insertions and substitutions needed to perform on S so that it would become identical to T. The input for the problem is
two sequences S and T, and a positive integer parameter k. Develop an algorithm whose running time is O(nk), and deter-
mines if d(S; T) <= k. Note that the algorithm does not need to find the exact distance.
n Answer: Assume |S| = n, |T| = m. We can construct an (m+1)*(n+1) matrix. From the left-top position (1, 1), we can use
dynamic programming to fill the edit distance for each position (i, j).

S(i, j) = MIN(S(i −1, j) +1, S(i, j −1) +1, S(i −1, j −1) + mismatch(A[i], B[j]) where mismatch(c1, c2) = 0 if c1=c2, oth-
erwise mismatch(c1, c2) = 1. This is to computer the exact edit distance.

n Example Let A = {A1, . . .,An} be a set of distinct coin types, where A1 < A2 < . . . < An. The coin-changing problem
is defined as follows. Given an integer C, find the smallest number of coins from A, that add up to C, given that unlimited
number of coins of each type is available. Design an efficient dynamic programming algorithm that on inputs A and C,

Programming, Data Structures and Algorithms 2.231

outputs the minimum number of coins needed to solve the coin-changing problem. State and prove time complexity of
your algorithm.
n Answer: Let N(i) be an optimal number of coins needed to solve coin-changing problem. Then N(i) = 1+minj{N(i−Aj)}.
Hence computation of every N(i) requires O(n) time. We need to compute C such values, hence overall time is O(nC).

2.4.9 Genrating Permutations

A permutation can be obtained by selecting an element in the given set and recursively permuting the remaining elements.

P a a
a P a a a a N

a NN
i i N

N
1

1 1 1 1,.....,
, ,, , ,,

() =
()- + if >1

if ==1
Ï
Ì
Ó

a b c d

a b cb c d a c d a b d

a b c d

At each stage of the permutation process, the given set of elements consists of two parts: a subset of values that already
have been processed, and a subset that still needs to be processed. This logical seperation can be physically realised by
exchanging, in the i’th step, the i’th value with the value being chosen at that stage. That approaches leaves the first subset
in the first i locations of the outcome.

a b c d

a b c d b a c d c b a d d b c a

b d c ab c a d

b c a d

b c ad

b c d a

b a c d

permute(i)
 if i == N output A[N]
 else
 for j = i to N do
 swap(A[i], A[j])
 permute(i+1)
 swap(A[i], A[j])

n Example We were given some coins of various denominations and we are asked to make some amount minimal
number of coins.

The solution lies in keeping the optimal solution, so far, of sub-problems in minCoins.
We iterate through each denomination, kept in array coins[j], skipping denominations that are larger than the
amount of money we are changing.
Otherwise, we test whether the number.of coins used, coinsUsed[], for the next combination lowers the minCoins
obtained so far.
LastCoin[] keeps track of the coins used for solution

The following function does the required action:
void makeChange(int coins[],int differentCoins, int maxChange, int coinsUsed[], int lastCoin[])

{ coinsUsed[0] = 0; lastCoin[0] = 1;

 for (int cents = 1; cents <= maxChange; cents++)

2.232 Computer Science & Information Technology for GATE

 {

int minCoins = cents; int newCoin =1;

for(int j = 0; j < differentCoins; j++)

{

 if (coins[j] > cents) //denominations larger than amt continue;

 if (coinsUsed[cents-coins[j]] +1 < minCoins)

 { minCoins = coinsUsed[cents-coins[j]] + 1;

 newCoin = coins[j]; }

}

coinsUsed[cents] = minCoins;

lastCoin[cents] = newCoin; } }

n Example Consider an n by n array of positive integers (aij), 1 £ i, j £ n, rolled into a cylinder, so that the top and bot-
tom rows are glued together. A path is to be threaded from the entry side of the cylinder to the exit side, subject to the
restriction that from the given square (i,j) it is possible to move to (i + 1, j), (i+1, j–1) or (i+1, j+1). The path may begin at
any position on the entry side and end at any position on the exit side. The cost of such a path is the sum of the integers in
the squares through which it passes. We have to find out the minimum cost path.

a. Write a recursive solution to this problem and analyse its complexity.
b. Write a dynamic programming solution and show its complexity to be q(n2)

n Answer:

a. Recursive solution

 int recursivesearch(int A[][], int n, int i, int j)

 {int a,b,c;

 if(i>n) return 0;

 else{

 a=recursivesearch(i+1,j);

 b=recursivesearch(i+1,j-1);

 c=recursivesearch(i+1,j+1);

 return A[i][j]+min(a,b,c);

 }

 }

 int Bestpath()

 {

 int best=32767;

 for(row=0;row<n;row++){

 best=min(best, resursivesearch(0,row);

 }

 return best;

 }

 The above recursive function makes three recursive calls. Also, bestpath method runs for n times. Thus, complexity
can be said as O(n3n).

b. Dynamic programming approach
 The following is the dynamic programming solution

 dynamicsearch(int A[][],int n)

Programming, Data Structures and Algorithms 2.233

 {

 for(j=0;j<n;j++)

 cost[n-1][j]=A[i][j];

 for(i=n-2;i>=0;i--)

 for(j=0;j<n;j++)

 cost[i][j]=A[i][j]+min(cost[i+1][j], cost[i+1][j+1%n],cost[i+1][j+n-1%n]);

 }

 If you observe the above code, we may find its complexity as O(n2).

n Example A University offers a series of courses in various levels of difficulties. A student ‘graduates’ from a program
by finishing a Compulsory Discipline Course (CDC) eg., CDC0005. But before he takes CDC0005, he needs to finish ei-
ther CM0022 or CM0017 first. CM0022 is elementary and has no prerequisite. However, CM0017 would need the student
to take either CM0009 or CM0020 first.

Let S = s1, s2, s3, ... sn be the courses provided. And k1, k2,..kn are the durations of the courses in number of weeks. Each
course si may have two prerequisites: sp(i) and sq(i) or otherwise it has no prerequisites: p(i) = q(i) = 0. Formulate a recursive
function to compute the shortest time that a new student can graduate from a program. (Assume that the courses can be
started anytime whenever there is a request, and each student cannot take more than one course at the same time.)

n Answer:

Let d(si) be the shortest time that a new student can finish a course:

d(si) = ki if p(i)=q(i)=0

= min (ki+d(sp(i)), ki+d(sq(i))) otherwise

Dynamic programming solution

DYNAMIC_SHORTEST_GRAD(program_compulsory_course)
Sort the courses according to increasing difficulties.

For each course si taken according to this order
 if (pi=qi=0)
di=ki

 else di = min (ki + dPi, ki+dqi)
 if si = program_compulsory_course
 return di

return “input_error”

Memorization solution

MEMORIZATION_SHORTEST_GRAD(program_compulsory_course_id)
1 For i=1 to n
2 di=•

3 return LOOKUP_SHORTEST_FINISH_COURSE (program_compulsory_course_id)
LOOKUP_SHORTEST_FINISH_COURSE(course_id)

1 if dcourse_id< •

2 return dcourse_id
3 if (pcourse_id = qcourse_id = 0)
4 dcourse_id = ki

5 else
6 dcourse_id = min (kcourse_id + dPcourse_id, kcourse_id + dqcourse_id)
7 return dcourse_id

2.234 Computer Science & Information Technology for GATE

Memorization solution is more efficient since it needs not solve for those courses that won’t be involved. Also, no sorting
is needed. These should be good reason to use Memorization although it has some minor overhead on table maintenance
and recursion.

n Example A ski rental agency has m pairs of skis, where the height of the ith pair of skis is si. There are n skiers who wish
to rent skis, where the height of the ith skier is hi. Ideally, each skier should obtain a pair of skis whose height matches his
own height as closely as possible. Now, we want to assign skis to skiers so that the sum of the absolute differences of the
heights of each skier and his skis is minimised. Formulate a recursive function to solve this problem.

n Answer I:
Suppose the skis and the skiers are shorted according to their heights, so that h1 £ h2 £ … hn and s1 £ s2 £ … sm
There is no advantage to do “cross matching”.
Let Ai,j be the minimum sum of differences to match the first i skiers with the firs j pairs of skis.
Then

Ai,j =

0 if i=0

min(A , A + |h s |) if 1 i j

if i>j

i,j 1 i 1,j 1 i j- - - - £ £

•

Ï

Ì
Ô

Ó
Ô

An,m is our solution.

n Answer II:
Suppose the skis and the skiers are shorted according to their heights, so that h1 £ h2 £ … hn and s1 £ s2 £ … sm
There is no advantage to do “cross matching”.

Define was the 2-D matrix of differences in heights such that wi,j is the difference of the heights of ith skier and the jth

pair of skies.

wi,j

jth pair of skies

0 1 2 3 4 5 .. m–1

ith skier

0 ? ? ? ? ? ? ? ?

1 ? ? ? ? ? ? ? ?

.. ? ? ? ? ? ? ? ?

n-1 ? ? ? ? ? ? ? ?

For the matching we may consider:

wi,j

jth pair of skies

0 1 2 3 4 5 .. m-1

ith skier

0 ? ? ? ? ? ? ? ?

1 ? ? ? ? ? ? ? ?

.. ? ? ? ? ? ? ? ?

n–1 ? ? ? ? ? ? ? ?

For the matching we may also consider:

Programming, Data Structures and Algorithms 2.235

wi,j

jth pair of skies

0 1 2 3 4 5 .. m–1

ith skier

0 ? ? ? ? ? ? ? ?

1 ? ? ? ? ? ? ? ?

.. ? ? ? ? ? ? ? ?

n-1 ? ? ? ? ? ? ? ?

For the matching we may even consider:

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

0 1 2 3 4 5 .. m-1

j Pair of skiesth

Wij

i Skierth

0

1

..

n-1

Denote Dp,a,q,b as the minimum sum of differences to match a skiers starting from pth one: (pth, (p+1)th, (p+2)th, ..

(p + a –1) th skiers) to b pairs of skies starting from the qth one: (qth, (q+1)th, (q+2)th, .. (q+b-1)th skiers)

Such that all p,q,a,b are non negative integers and p+a<n, q+b<m.

if a=0, then Dp,a,q,b = 0

if a>b, then Dp,a,q,b = •

For any p,q,a:

We have Dp,a,q,a = w(p,q) + w(p+1,q+1) + w(p+2,q+2) + .. + w(p+a-1,q+a-1) [Easy to calculate]

p p+1 p+2 p+a-1

q q+1 q+2 q+a-1

Consider Dp,a,q,a+1 = min t=0 to a (Dp,t,q,t+Dp+t,a-t,q+t+1,a-t)

2.236 Computer Science & Information Technology for GATE

p p+1 p+2 .. p+t -1 p+t ..

q q+1 q+2 .. q+t -1 q+t q+t+1 ..

.. p+a-1

.. q+a

t

a

a+1

Consider Dp,a,q,a+2 = min t=0 to a (Dp,t,q,t+Dp+t,a-t,q+t+1,a+1-t)

p p+1 p+2 .. p+t-1 p+t ..

q q+1 q+2 .. q+t -1 q+t q+t+1 ..

.. p+a-1

.. q+a+1

t

a

a+2

q+a

Similarly: Consider Dp,a,q,a+3 = min t=0 to a (Dp,t,q,t+Dp+t,a-t,q+t+1,a+2-t)
Hence we can see that
Dp,a,q,b = min t=0 to a (Dp,t,q,t+Dp+t,a-t,q+t+1,b-1-t)

p p+1 p+2 .. p+t-1 p+t ..

q q+1 q+2 .. q+t -1 q+t q+t+1 ..

.. p+a-1

.. .. q+b -1

t

a

b

And D0,n,0,m is our solution.

n Example:
A bus company operates k bus routes serving n different bus stops. The i-th route, Pi, passes through mi stops and can be
represented as a sequence of stops, (vi,1 fi vi,2 fi vi,3 fi… fi vi,Mi), where vi,1 and vi,Mi are the first and last stops, respec-
tively. The return route (vi,Mi fi vi,Mi-1 … vi,1) is considered a different route. The bus fare is ci dollars regardless of where
you get on and off along the i-th route. Given 2 bus stops, s and t, we want to find the cheapest cost to travel from s to t.
The problem can be specified as follows:

Input:
integer k > 0 specifying the number of routes,

Programming, Data Structures and Algorithms 2.237

integer n > 0 specifying the number of different bus stops,
array C[1..k] storing the cost of each route,
array R[1..k] of pointers where R[i] points to a linked list containing the sequence of stops for the i-th route,
integers s and t, specifying the start and destination stops.

Output
The cheapest cost to travel from stop s to t.
Design an efficient algorithm to solve the above problem. Present your algorithm in pseudocode. Analyse the running
time of your algorithm in terms of n and k. (Hint: Construct a weighted directed graph with n vertices.)

n Answer:
Build a weighted directed graph with n vertices to represent n bus stops. For each pair of vertices, there can be some route
that passes through both the source vertices and the target vertices, and that this route pass the source first before reaching
the target vertex. If there is such a route or more than one such routes, join that pair of vertices with directed edge, and
mark the edge weight as the cheaper route’s cost.

Use Bellman-Ford or Dijkstra’s algorithm to find shortest path from the source vertex to the target vertex.
CHEAPEST_ROUTING(k,n,C,R,,s,t)

1 Build a graph G with n vertices representing the bus stops.

2 for i=1 to k

4. while p <> NULL

5 q = p.next

6 while q <> NULL

7 if there is no edge from p.Vertex to q.Vertex

8 add the edge from p.Vertex to q.Vertex, with weight = C[i]

10 if weightp,q > C[i]

11 change the weight of the edge from p.Vertex to q.Vertex

12 q = q.next

13 p = p.next

Line 1: O(n)

Line 2-13: O(kn2)

Line 14: O(n3) or O(n2 lg n) since there are n vertices and O(n2) edges.

n Example Given an array A of n integers: a1,a2,..an, the algorithm Longest(A) is designed to determine the length of the lon-
gest non-decreasing consecutive subsequence of integers starting with a1 (LN1 of A). For example, one such subsequence (LN1
of A) for A=<34,57,53,54,78>, is <34,57>. Hence Longest(A) should return 2. Prove the correctness of this algorithm by using a
loop invariant. What are the worst and best cases of the algorithm? Describe the running time of the algorithm in terms of
asymptotic tight, upper, and lower bounds
Longest(A)
j=1
while j<n and A[j+1]>=A[j]
 j=j+1
return j

n Answer: Loop Invariant: At the start of each iteration of the while loop, a1, a2, a3, .. aj are non-decreasing consecutive
subsequence of A starting with a1.

Initialisation: Before the first iteration, j=1, then there is only one integer a1, in a1, a2, a3, .. aj, which is non-decreasing
consecutive subsequence.

2.238 Computer Science & Information Technology for GATE

Maintenance: In each iteration, the cycle is executed only if aj+1>=aj, then j is incremented by one. So aj-1, aj is non-decreas-
ing. Hence, if the loop invariant is true before an iteration, it remains true before next iteration.
Termination: The while loop continues whenever aj+1>=aj and j<n. It ends with j=n, or aj+1<aj. In former case a1, a2, a3, .. aj,
is the longest possible LN1 of A. In latter case, aj+1 is not involved in LN1 of A. Then a1, a2, a3, .. aj is LN1 of A.
Best case: LN1 of A only has one element. q(1)
Worse case: LN1 of A only has n element. q(n)
Algorithm: O(n), W(1)

2.4.10 B –Trees

A B-tree of order m has the following properties:
The root has between 2 and m children.
All other internal nodes have between Èm/2˘ and m children.
All leaves are at the same depth.

WHEN TO USE B-TREES?

Used for databases which are large, therefore stored on disc (slow access) rather than main memory (fast access).
Suppose we want to search for a record. While it is slow to go to the disc to find a leaf, it is relatively fast to do the
comparisons to determine which branch to follow.
So we want short branches; thus a record can thus be found in relatively few disc accesses.
Therefore m must usually be quite large, typically 32 – 256.
Storing only the keys in the nodes (and not the records) means that we can even store the first level or two of the
tree in main memory.

In a B-tree, all data is stored in the leaves. We require that each leaf node contains between Èm/2˘ and m keys (these are the
actual records) and they are arranged in order.

Do remember that the numbers in the internal nodes are only the keys for the children of those nodes – they are not
the records.

To help remember this, draw an internal node as an ellipse, and a leaf as a rectangle.
As with any data storage procedure, we must be able to (among other things):
1. Locate any record.
2. Insert a new record.
3. Delete any record.
4. Sort the records.

These can be complicated for the B-tree, because there can be many children of any given node. Because all the leaves are
on the same level, we don’t have to do rotations to shorten branches, as we did for BSTs. In each internal node of the B-tree
we store a sequence of numbers to indicate the keys stored in each of the subtrees of that node.

If a node has 3 subtrees T1, T2, T3 then all the keys in T1 must be less than all the keys in T2, and all the keys in T2 must
be less than all the keys in T3.

n Example: In an order 3 B-tree, if a node contains [10; 20]
 then subtree T1 contains keys less than 10,

 subtree T2 contains keys ≥ 10 and < 20,

 and subtree T3 contains keys ≥ 20.
 If a node contains [10; --]
 then there are only 2 subtrees and the left subtree contains only keys less than 10 and the right subtree contains keys

≥ 10.
How do we locate a record in a B-tree.

n Answer: Virtually the same way as for a BST. The only difference is that at each node, you usually have more than 2
choices for which child to go to. Note that the keys in any node are always listed in increasing order, including the records
in the leaves.

Programming, Data Structures and Algorithms 2.239

How do we insert a new record in a B-tree?

n Answer: It can be harder, because the new record must go into a leaf on the same level as all others.

INSERTING a number X

proceed as if to locate X.
If there is room in the leaf node where X would have been located, insert X there.
If there is not room, split the leaf node into 2 nodes and divide the records between the 2 nodes.
Adjust the keys in the parent node to show the new nodes.
If there are already m leaf nodes, first split the parent node into 2 nodes. (adjusting the keys in its parent node)
Repeat this last step if necessary.

How do we delete a record from a B-tree?

n Answer: Locate it first, then delete it. The only problem might be that there are too few records in the leaf.
DELETING a number X:

Locate X.
Delete the record X.
If too few records in the leaf, combine the leaf with a sibling, if there is room.
If there is not room, borrow a record from the sibling.
If combining the leaf with its sibling made too few leaves repeat this procedure on the parent node.

 (i.e. merge parent with its sibling or borrow a child from its sibling)

2.4.11 A Note on String or Pattern Matching

Sub-string Searching
The problem is to search for a pattern string, P[0..m-1], in a text string T[0..n-1]. Usually n>>m, and T might be very long
indeed, although this is not necessarily so. This problem occurs in text-editors and many other computer applications.
Naive Search
The naive string searching algorithm is to examine each position, i>=0, in T, trying for equality of P[0..m-1] with T[i..
i+m-1]. If, there is mismatch, position i+1 is tried, and so on.

The worst-case time-complexity of the naive algorithm is seen to be O(m*n), e.g. P=am–1b and T=an–1b (i.e., P = aaaab
and T = aaaaaaaaaaaab).

n Example Naïve pattern (string) matching program.
int main(){

char P[80],T[80];

int i,j,k, m,n;

printf(“Enter Pattern and String\n”);

scanf(“%s%s”, P, T);

n=strlen(T);

m=strlen(P);

k=n-m+1;

for(i=0;i<k;i++){

 for(j=0;j<m; j++) if(T[i+j] !=P[j]) break;

 if(j==m) break;

}

(j==m)? printf(“Found at %d\n”, i): printf(“Not Found\n”);

return 0;

}

2.240 Computer Science & Information Technology for GATE

 T 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1

0 0 0 0 1

 ^mismatch

1 0 0 0 1

 ^match

2 0 0 0 1

 ^mismatch

3 0 0 0 1

 ^mismatch

4 0 0 0 1

 ^mismatch

5 0 0 0 1

 ^match

Rabin Karp Algorithm
Here, the key idea is to think of the pattern P[0..m-1] as a key, transform it into an equivalent integer p. Similarly, we
transform substrings in the text string T[] into integers. For s=0,1,…,n-m, transform T[s..s+m-1] to an equivalent integer
ts. The pattern occurs at position s if and only if p=ts. If we compute p and ts quickly, then the pattern matching problem
is reduced to comparing p with n-m+1 intgers.

Now, the question is “how to calculate integer p given search pattern P?” We can consider the string P as an integer
considering like the following:

p = 2m–1 P[0] + 2m–2 P[1] + … + 21 P[m–2] + 20P[m–1]
Remember, P[0], P[1], etc., are elements of the search array and for alphabetic strings we consider their ASCII codes.
However, the calculation of p needs many multiplications. We can use Horner’s rule to make its calculation as simple such
as:
p = P [m –1] + 2 * (P [m – 2] + 2* (P [m – 3] + ... 2* (P [1] + 2* (P [1] + 2*P[0] ...).
This takes O(m) time, assuming each arithmetic operation can be done in O(1) time.

Similarly, to compute the (n-m+1) integers ts from the text string, T. Here, also we need O(m) operations to calculate
each number. Thus, we need total computations in the order of O((n-m+1)m). This is little costly.

for (s = 0; s <=n – m; s++){

t[s] = 0;

for (i = 0; i < m; i++)

 t[s] = 2*t[s] + T [s+i];

}

A better method to compute the integers incrementally using previous result:
t[0] = 0;

offset = 1;

for (i = 0; i < m; i++)

 offset = 2*offset;

for (i = 0; i < m; i++)

 t[0] = 2*t[0] + T [i]

for (s = 1; s < n – m; s++)

 t[s] = 2*t[s–1] – offset *T [s–1]) + T [s+m –1];

This takes O(n+m) time, assuming that each arithmetic operation can be done in O(1) time.
The problem with the previous strategy is that when m is large, it is unreasonable to assume that each arithmetic opera-

tion can be done in O(1) time. In fact, given a very long integer, we may not even be able to use the default integer type to
represent it. Therefore, modulo arithmetic is used. Let q be a prime number so that 2q can be stored in one computer word.
This makes sure that all computations can be done using single-precision arithmetic. Once we use the modulo arithmetic,
when p=ts for some s, we can no longer be sure that P[0 .. m-1] is equal to T[s .. s+ m -1]. Therefore, after the equality test

Programming, Data Structures and Algorithms 2.241

p = ts, we should compare P[0..m-1] with T[s..s+m-1] character by character to ensure that we really have a match. So the
worst-case running time becomes O(nm), but it avoids a lot of unnecessary string matching’s in practice.

p = 0;

for (i = 0; i < m; i++)

p = (2*p + P[i]) % q;

t[0] = 0;

offset = 1;

for (i = 0; i < m; i++)

offset = 2*offset = % q;

for (i = 0; i < m; i++)

t[0] = (2*t[0] + T[i])% q;

for (s = 1; s <= n – m; s++)

t[s] = 2*(t[s–1] – offset *T[s–1] + T[s + m – 1]) %q;

Knuth-Morris-Pratt Algorithm

The Knuth-Morris-Pratt or the Morris-Pratt algorithms are extensions of the basic Brute Force algorithm. They use pre-
computed data to skip forward not by 1 character, but by as many as possible for the search to succeed.

To illustrate the logic behind algorithm’s, we work through a (relatively artificial) run of the algorithm. At any given
time, the algorithm is in a state determined by two integers, i and j, which denote respectively the position within T which
is the beginning of a prospective match for P, and the index in P denoting the character currently under consideration. This
is depicted, at the start of the run, like
i: 01234567890123456789012
T: ABC ABCDAB ABCDABCDABDE
P: ABCDABD
j: 0123456

We proceed by comparing successive characters of P to “parallel” characters of T, moving from one to the next if they
match. However, in the fourth step, we get T[3] is a space and P[3] = ‘D’, a mismatch. Rather than beginning to search
again from T[1], we note that no ‘A’ occurs between positions 0 and 3 in T except at 0; hence, having checked all those
characters previously, we know there is no chance of finding the beginning of a match if we check them again. Therefore,
we move on to the next character, setting i = 4 and j = 0.
i: 01234567890123456789012
T: ABC ABCDAB ABCDABCDABDE
P: ABCDABD
j: 0123456

We quickly obtain a nearly complete match “ABCDAB” when, at P[6] (T[10]), we again have a discrepancy. However, just
prior to the end of the current partial match, we passed an “AB” which could be the beginning of a new match, so we must
take this into consideration. As we already know that these characters match the two characters prior to the current posi-
tion, we need not check them again; we simply reset i = 8, j = 2 and continue matching the current character. Thus, not
only do we omit previously matched characters of T, but also previously matched characters of P.

To give little more emphasis about the logic behind this algorithm, consider the prefixes and suffixes of the matched
part.

Proper Prefixes of ABCDAB Proper Suffixes of ABCDAB

A B

AB AB

ABC DAB

ABCD CDAB

ABCDA BCDAB

2.242 Computer Science & Information Technology for GATE

We may find that “AB” is the largest suffix which is having equivalent prefix. With respect to current position, what is larg-
est suffix of string T which is prefix of P. In this case, it is AB. Ofcourse, this can be calculated with P alone as when match
occurs both the contents of T and P will be same till that location. That is, when a mismatch occures at the 6th location of
the string P then we need to required to check afresh again.
Now continue our search again:
i: 01234567890123456789012
T: ABC ABCDAB ABCDABCDABDE
P: ABCDABD
j: 0123456
This search fails immediately, however, as the pattern still does not contain a space, so as in the first trial, we return to the
beginning of P and begin searching at the next character of T: i = 11, reset j = 0.
i: 01234567890123456789012
T: ABC ABCDAB ABCDABCDABDE
P: ABCDABD
j: 0123456
Once again we immediately hit upon a match “ABCDAB” but the next character, ‘C’, does not match the final character ‘D’
of the word P. Reasoning as before, we set i = 15, to start at the two-character string “AB” leading up to the current position,
set j = 2, and continue matching from the current position.
i: 01234567890123456789012
T: ABC ABCDAB ABCDABCDABDE
P: ABCDABD
j: 0123456
Now, we have achieved matching.

The above example contains all the elements of the algorithm. For the moment, we assume that the existence of a “par-
tial match” table Next, described below, which indicates where we need to look for the start of a new match in the event
that the current one ends in a mismatch. The entries of Next are constructed so that if we have a match starting at T[i] that
fails when comparing T[i + j] to P[j], then the next possible match will start at index i + j – Next[j] in T (that is, Next[j]
is the amount of “backtracking” we need to do after a mismatch). This has two implications: first, Next[0] = –1, which
indicates that if P[0] is a mismatch, we cannot backtrack and must simply check the next character; and second, although
the next possible match will begin at index i + j – Next[j], as in the example above, we need not actually check any of the
Next[j] characters after that, so that we continue searching from P[Next[j]].

Calculation of Next table needs only search string P. Let us consider our example of P = “ABCDABD” and see how Next
creation proceeds. We set Next[0] = –1. To find Next[1], we must discover a proper suffix of “A” which is also a prefix of P.
But there are no proper suffixes of “A”, so we set Next[1] = 0. Likewise, Next[2] = 0.

Continuing to Next[3], we note that there is a shortcut to checking all suffixes: let us say that we discovered a proper
prefix ending at P[2] with length 2 (the maximum possible); then its first character is a proper prefix of a proper prefix of
P, hence a proper prefix itself, and it ends at P[1], which we already determined cannot occur. Therefore we need not even
concern ourselves with substrings having length 2, and as in the previous case the sole one with length 1 fails, so Next[3]
= 0.

We pass to the subsequent P[4], ‘A’. The same logic shows that the longest substring we need consider has length 1,
and although in this case ‘A’ does work, recall that we are looking for segments ending before the current character; hence
Next[4] = 0 as well.

Considering now the next character, P[5], which is ‘B’, we exercise the following logic: if we were to find a sub-pattern
beginning before the previous character P[4], yet continuing to the current one P[5], then in particular it would itself
have a proper initial segment ending at P[4] yet beginning before it, which contradicts the fact that we already found that
‘A’ itself is the earliest occurrence of a proper segment ending at P[4]. Therefore, we need not look before P[4] to find a
terminal string for P[5]. Therefore Next[5] = 1.

Finally, we see that the next character in the ongoing segment starting at P[4] = ‘A’ would be ‘B’, and indeed this is also
P[5]. Furthermore, the same argument as above shows that we need not look before P[4] to find a segment for P[6], so
that this is it, and we take Next[6] = 2.
Therefore we compile the following table:

Programming, Data Structures and Algorithms 2.243

i 0 1 2 3 4 5 6

W[i] A B C D A B D

T[i] –1 0 0 0 0 1 2

n Example KMP Algorithm implementation.
void preComputeData(char *x, int m, int Next[]) {

int i, j;

i = 0;

j = Next[0] = -1;

while (i < m)

{

while (j > -1 && x[i] != x[j]) j = Next[j];

Next[++i] = ++j;

}

}

void MorrisPrat(char *x, int m, char *y, int n) {

int i, j, Next[1000];

/* Preprocessing */

preComputeData(x, m, Next);

/* Searching */

i = j = 0;

while (j < n) {

while (i > -1 && x[i] != y[j])i = Next[i];

i++;

j++;

if (i >= m) {

printf(“\nMatch found at : [%d]\n”,j - i);

i = Next[i];

}

}

}

int main(){

char T[80], P[30];

printf(“Enter Two strings\n”);

scanf(“%s%s”,T, P);

MorrisPrat(P,strlen(P),T,strlen(T));

printf(“\n\n”);

return(0);

}

This is how the comparison happens visually assuming T=”herepheroero” and P=”hero”.
hereroheroero
!
hero
hereroheroero
!
hero

2.244 Computer Science & Information Technology for GATE

hereroheroero
!
hero
hereroheroero
!
hero
hereroheroero
|||| -----> Match found!
hero

hereroheroero
!
hero

Boyer-Moore Algorithm

The first key idea, and it is a good one, is that if the mth character ch=T[m] (numbered from `1’ upwards) does not occur
in pat at all then any instance of P in T must start at position m+1 or later.

For example, if searching for P=`freddy’, in T = `I floated lonely as a cloud’, the 6th character of T is `a’ which is not in
{d, e, f, r, y} and there is no need to consider positions 1 to 6 of T any more! In this way, we can move along T in steps of
m positions, i.e. k = m, 2m, 3m, ..., provided we are lucky.

The second idea is that if the last occurrence of the character T[k] in pat is delta1[ch] positions from the right hand end
of P, then pat can be slid that many positions to the right before we might get a match in T. If ch=T[k] does not occur in
P, set delta1[ch] equal to m.

e.g., delta1[‘e’]=3, delta1[‘f ’]=5, delta1[‘d’]=1, delta1[‘r’]=4, delta1[‘y’]=0.
In general if the last j characters match, i.e. T[k-j..k]=P[m-j..m], but T[k-j-1]~=P[m-j-1], then pat can be “slid” a

certain distance along T depending on where, if at all, there is an earlier instance of P[m-j..m] within pat; e.g. consider
P=abracadabra, or e.g. P=fababab. An array, delta2[1..m], is used to hold these pre-computed distances.

The Boyer Moore algorithm is the fastest string searching algorithm. Most editors use this algorithm.
It compares the pattern with the actual string from right to left. Most other algorithms compare from left to right. If the

character that is compared with the rightmost pattern symbol does not occur in the pattern at all, then the pattern can be
shifted by m positions behind this text symbol.

The Boyer Moore algorithm is always fast having worst-case time-complexity O(m+n), but on natural-language text it
actually gets faster as m increases to a certain extent, e.g. Boyer and Moore suggesting O(n/4)-time on average for m=5.
The following example illustrates this situation.

n Example:
0 1 2 3 4 5 6 7 8 9 ...
a b b a d a b a c b a
| |
b a b a c |
<------ |
|
b a b a c

The comparison of “d” with “c” at position 4 does not match. “d” does not occur in the pattern. Therefore, the pattern
cannot match at any of the positions 0,1,2,3,4, since all corresponding windows contain a “d”. The pattern can be shifted
to position 5. The best case for the Boyer-Moore algorithm happens if, at each search attempt the first compared character
does not occur in the pattern.

Bad character heuristics

This method is called bad character heuristics. It can also be applied if the bad character (the character that causes a mis-
match), occurs somewhere else in the pattern. Then the pattern can be shifted so that it is aligned to this text symbol. The
next example illustrates this situation.

Programming, Data Structures and Algorithms 2.245

n Example:

0 1 2 3 4 5 6 7 8 9 ...
a b b a b a b a c b a
|
b a b a c
<----
|
b a b a c

Comparison between “b” and “c” causes a mismatch. The character “b” occurs in the pattern at positions 0 and 2. The
pattern can be shifted so that the rightmost “b” in the pattern is aligned to “b”.
Good suffix heuristics
Sometimes the bad character heuristics fails. In the following situation the comparison between “a” and “b” causes a mis-
match. An alignment of the rightmost occurence of the pattern symbol a with the text symbol a would produce a negative
shift. Instead, a shift by 1 would be possible. However, in this case it is better to derive the maximum possible shift distance
from the structure of the pattern. This method is called good suffix heuristics.

n Example:
0 1 2 3 4 5 6 7 8 9 ...
a b a a b a b a c b a
| | |
c a b a b
<----
| | |
c a b a b

The suffix “ab” has matched. The pattern can be shifted until the next occurence of ab in the pattern is aligned to the
text symbols ab, i.e. to position 2.

In the following situation the suffix “ab” has matched. There is no other occurence of “ab” in the pattern.Therefore, the
pattern can be shifted behind “ab”, i.e. to position 5.

n Example:

0 1 2 3 4 5 6 7 8 9 ...
a b c a b a b a c b a
| | |
c b a a b
c b a a b

In the following situation the suffix “bab” has matched. There is no other occurence of “bab” in the pattern. But in this
case the pattern cannot be shifted to position 5 as before, but only to position 3, since a prefix of the pattern “ab” matches
the end of “bab”. We refer to this situation as case 2 of the good suffix heuristics.

n Example:
0 1 2 3 4 5 6 7 8 9 ...
a a b a b a b a c b a
| | | |
a b b a b
a b b a b

The pattern is shifted by the longest of the two distances that are given by the bad character and the good suffix heu-
ristics.

The Boyer-Moore algorithm uses two different heuristics for determining the maximum possible shift distance in case
of a mismatch: the “bad character” and the “good suffix” heuristics. Both heuristics can lead to a shift distance of m. For
the bad character heuristics this is the case, if the first comparison causes a mismatch and the corresponding text symbol
does not occur in the pattern at all. For the good suffix heuristics this is the case, if only the first comparison was a match,
but that symbol does not occur elsewhere in the pattern.

2.246 Computer Science & Information Technology for GATE

Time Complexity
The worst-case time-complexity of the Boyer-Moore algorithm is O(m+n).

The algorithm often runs in O(n/m)-time on natural-language text for small values of m. Note that if T is in slow,
block-access, backing store, it is generally not possible to bring just every mth character into main memory, so the time-
complexity is then O(n).

Space Complexity
The space-complexity is O(m + |alphabet|), for the arrays delta1[] and delta2[].

Preprocessing T.

It is intuitively obvious that the worst-case for searching for an arbitrary pattern, P, in a text, T, must take at least O(n)-
time, where n=|T|. However, if some time is spent pre-processing T, then individual searches can be made more quickly,
e.g. in O(m)-time using a suffix-tree, where m=|P|. It takes O(n)-time to build a suffix tree for T.

2.4.12 Convex Hull problem

Convex hull of a set of points is a convex polygon which embodies all the points. Graham’s algorthim is O(nlogn) algo-
rithm to find convex hull. Consider the points as shown in Fig. 2.53 (A, 0, 0) (B, –5, –2) (C, –2, –1) (D, –6, 0) (E, –3.5, 1)
(F, – 4.5, 1.5) (G, –2.5, –5) (H, 1, –2.5) (I, 2.5, 2.5) (J, –2.2, 2.2)

Graham Scan, as it is called, works by picking the lowest point p, i.e. the one with the minimum p.y value (note this
must be on the convex hull), and then scanning the rest of the points in counterclockwise order with respect to p. As this
scanning is done, the points that should remain on the convex hull, are kept, and the rest are discarded leaving only the
points in the convex hull at the end. To see how this is done, imagine first that, by luck, all the points scanned are actually
on the convex hull. In that case, every time we move to a new point we make a left turn with respect to the line determined
by the last two points on the hull. Therefore, what Graham Scan does, is to check if the next point is really a left turn. If it
is NOT a left turn, then it backtracks to the pair of points from which the turn would be a left turn, and discards all the
points that it backs up over. Because of the backtracking, we implement the algorithm with a stack of points.

9

6

0
8

7

2
1

3

4

5

Figure 2.53

The array of input points is shown above labeled by index in the array (rather than their char label). The point labeled A is
in index 0, B is in index 1, etc. The lowest point is computed and swapped with the point in index 0 of the array, as shown
in Fig. 2.54.

9

0

6
8

7

2
1

3

4

5

Figure 2.54

The points are then sorted by their polar angles with respect to the lowest point .

Programming, Data Structures and Algorithms 2.247

5

3

2
4

1

6

7

8

9

0

Figure 2.55

The points are sorted and rearranged in the array as shown in Fig. 2.55. The turn from line 0-1 to point 2 is left, from 1-2
to 3 is left, from 2-3 to 4 is left. Now the stack contains the points 01234. This represents the partial hull in Fig. 2.56.

Figure 2.56

The turn from line 3-4 to point 5 is right, so we pop the stack. The turn from 2-3 to 5 is right, so we pop again. The turn
from 1-2 to 5 is left, so we push 5 on the stack. The stack now has 0125, and the picture looks as shown in Fig. 2.57.

Figure 2.57

The turn from line 2-5 to 6 is left so 6 is pushed on the stack. Then the turn from 5-6 to 7 is right, so 6 is popped and 7 is
pushed because the turn from line 2-5 to 7 is left. The rest of the turns are left, so 8 and 9 are pushed on the stack. The final
stack is 0125789, and the convex hull is shown in Fig. 2.58.

Figure 2.58

2.248 Computer Science & Information Technology for GATE

Graham Scan Pseudo-code: The algorithm takes an array of points and returns an array of points representing the convex
hull.

1. Find the lowest point p, (the point with the minimum y coordinate). If there is more than one point with the mini-
mum y coordinate, then use the leftmost one.

2. Sort the remaining points in counterclockwise order around p. If any points have the same angle with respect to p,
then sort them by increasing distance from p.

3. Push the first 3 points on the stack.
4. For each remaining point c in sorted order, do the following:

 b = the point on top of the stack.
 a = the point below that on the stack.
 While a left turn is NOT made while moving from a to b to c do pop the stack.
 b = the point on top of the stack.
 a = the point below that on the stack.
 Push c on the stack.

5. Return the contents of the stack.
The complexity of Graham Scan is O(n log n). It means that the number of steps in the algorithm is bounded asymptoti-
cally by a constant times n log n where n is the number of points in the input set. It is true because the most costly step is
the sorting in step 2. This is O(n log n). Step 1 takes time O(n). Step 3 takes O(1). Step 4 is trickier to analyze. It is impor-
tant to notice that although each of the O(n) points are processed, and each might in the worst case have to pop the stack
O(n) times, overall this does NOT result in O(n2). This is because overall, every point is added to the stack exactly once
and is removed at most once. So the sum of all the stack operations is O(n).

There are many O(n log n) and O(n2) algorithms for the convex hull problem, just as there are both for sorting. For the
convex hull there is also an algorithm (Jarvis Algorithm) that runs in O(nh), where n is the number of points in the set,
and h is the number of points in the convex hull. For small convex hulls (smaller than log n) this algorithm is faster than
n log n, and for large convex hulls it is slower.

2.4.13 A Brief Discussion for NP-complete Problem

Deterministic algorithms are where no step is random. If the program/algorithm chooses a step non-deterministically
(by some extraneous influence to the algorithm!) such that it is always the right choice, then such an algorithm is called
non-deterministic algorithm.
Decision problem: A problem whose solution is simply “yes” or “no”.
Optimisation problem: A problem that searches for a solution with maximum or minimum value

n Examples:
Traveling salesperson problem
Knapsack problem
Bin Packing problem
Clique problem
Vortex cover problem

In general, optimisation problems are more difficult to solve than their corresponding decision problems.

Polynomial vs. Exponential Growth
An algorithm is said to be polynomial complexity if its complexity order is of form O(nk), for some k value greater than
0. Examples of polynomial problems:

Sorting: O(n log n) = O(n2)
All-pairs shortest path: O(n3)
Minimum spanning tree: O(E log E) = O(E2)

To understand the significance of polynomially bounded algorithms as a class, let us consider the remaining algorithms,
those that violate all polynomial bounds. We usually refer to these as exponential algorithms, because 2n is the paradigm
of nonpolynomial rates of growth. Other examples of exponential rates of growth are kn (any fixed k > 1), n!, 2n

2, nn and
nlog n. It is obvious that, when the size of the input grows, any polynomial algorithm will eventually become more efficient
than any exponential one (see Table 2.10).

Programming, Data Structures and Algorithms 2.249

Table 2.10 Growth of polynomial and exponential functions

Function Corresponding Values

n 10 100 1000
n log n 33 664 9966

n3 1000 1,000,000 109

106n8 1014 1022 1030

2n 1024 1.27 × 1030 1.05 × 10301

nlog n 2099 1.93 × 1013 7.89 × 1029

n! 3,628,800 10158 4 × 102567

Another important feature of polynomial algorithms is that, in a sense, they take better advantage of technological ad-
vances. For example, each time a technological breakthrough increases the speed of computers tenfold, the size of the
largest instance a polynomial algorithm can solve in a fixed amount of time will be multiplied by a constant between 1 and
10. In contrast, an exponential algorithm will experience only an additive increase in the size of the instance it can solve in
a fixed amount of time (Table 2.11). Finally, it should be noted that polynomial algorithms have nice “closure” properties:
(1) they may be combined to solve special cases of the same problem; (2) they may invoke another polynomial algorithm
as a “subroutine” with the resulting algorithm still being polynomial.

Table 2.11 Polynomial-time algorithms take better advantage of technology

Function
Size of instance

solved in one day
Size of instance solved in one day in

a computer 10 times faster
n 1012 1013

n log n 0.948 × 1011 0.87 × 1012

n2 106 3.16 × 106

n3 104 2.15 × 104

108n4 10 18
2n 40 43

10n 12 13
nlog n 79 95

n! 14 15

P Problems (Tractable Problems)
In computational complexity theory, P, also known as PTIME or DTIME, is one of the most fundamental complexity
classes. It contains all decision problems which can be solved by a deterministic Turing machine using a polynomial
amount of computation time, or polynomial time.

P is known to contain many natural problems, including the decision versions of linear programming, calculating the
greatest common divisor, and finding a maximum matching.
Unsolveable problems for which no algorithm can be given guaranteed to solve all instances of the problem. These prob-
lems are also known as Undecideable. Example: the halting problem (given a description of a program and arbitrary input,
decide whether the program will halt on that input), demonstrated by Alan Turing.

NP problems (Intractable Problems)
In computational complexity theory, NP is one of the most fundamental complexity classes. The abbreviation NP refers
to “nondeterministic polynomial time”. This is the class of decision problems which can be solved by a non-deterministic
polynomial algorithm. Intuitively, NP is the set of all decision problems for which the ‘yes’-answers have simple proofs of
the fact that the answer is indeed ‘yes’.

More precisely, these proofs have to be verifiable in polynomial time by a deterministic Turing machine. In an equivalent
formal definition, NP is the set of decision problems solvable in polynomial time by a non-deterministic Turing machine.

The complexity class P is contained in NP, but NP contains many important problems, the hardest of which are called
NP-complete problems, for which no polynomial-time algorithms are known. The most important open question in com-
plexity theory, the P = NP problem, asks whether such algorithms actually exist for NP-complete, and by corollary, all NP
problems (Fig. 2.59). It is widely believed that this is not the case.

2.250 Computer Science & Information Technology for GATE

NP

P NPC

NP-hard

Figure 2.59

NP Complete
In computational complexity theory, the complexity class NP-complete (abbreviated NP-C or NPC), is a class of problems
having two properties:

1. Any given solution to the problem can be verified quickly (in polynomial time); the set of problems with this prop-
erty is called NP (nondeterministic polynomial time).

2. If the problem can be solved quickly (in polynomial time), then so can every problem in NP.
Although any given solution to such a problem can be verified quickly, there is no known efficient way to locate a solu-
tion in the first place; indeed, the most notable characteristic of NP-complete problems is that no fast solution to them is
known. That is, the time required to solve the problem using any currently known algorithm increases very quickly as the
size of the problem grows. As a result, the time required to solve even moderately large versions of many of these problems
easily reaches into the billions or trillions of years, using any amount of computing power available today. NP-complete
problems are often addressed by using approximation algorithms.

NP-complete is a subset of NP, the set of all decision problems whose solutions can be verified in polynomial time; NP
may be equivalently defined as the set of decision problems that can be solved in polynomial time on a nondeterministic
Turing machine. A problem p in NP is also in NPC if and only if every other problem in NP can be transformed into p
in polynomial time. NP-complete can also be used as an adjective: problems in the class NP-complete are known as NP-
complete problems.

A decision problem C is NP-complete if:
C is in NP, and every problem in NP is reducible to C in polynomial time.

The list below contains some well-known problems that are NP-complete when expressed as decision problems.
Boolean satisfiability problem (Sat.)

N-puzzle

Knapsack problem

Hamiltonian path problem

Travelling salesman problem

Subgraph isomorphism problem

Subset sum problem

Clique problem

Vertex cover problem

Independent set problem

Dominating set problem

Graph coloring problem

The following techniques can be applied to solve computational problems in general, and they often give rise to sub-
stantially faster algorithms:

Approximation: Instead of searching for an optimal solution, search for an “almost” optimal one.
Randomisation: Use randomness to get a faster average running time, and allow the algorithm to fail with some small

probability.
Restriction: By restricting the structure of the input (e.g., to planar graphs), faster algorithms are usually possible.

Parameterisation: Often there are fast algorithms if certain parameters of the input are fixed.
Heuristic: An algorithm that works “reasonably well” in many cases, but for which there is no proof that it is both always
fast and always produces a good result. Metaheuristic approaches are often used.

Programming, Data Structures and Algorithms 2.251

NP Hard
NP-hard (non-deterministic polynomial-time hard), in computational complexity theory, is a class of problems that are,
informally, “at least as hard as the hardest problems in NP”. A problem H is NP-hard if and only if there is an NP-complete
problem L that is polynomial time Turing-reducible to H. It is super set of NP complete.

NP-hard problems may be of any type–decision problems, search problems, or optimization problems
NP-complete means problems that are complete in NP (i.e., any problem reduces to any other problem in polynomial

time)
NP-hard–stands for at least as hard as NP (but not necessarily in NP)
NP-easy–stands for at most as hard as NP (but not necessarily in NP)
NP-equivalent–means equally difficult as NP, (but not necessarily in NP)
Reductions vs. Transformations
“P1 polynomially reduces to P2” if P1 can be solved in polynomial time using an algorithm for P2 as a subroutine (each
call to the subroutine being counted as 1, so the number of such calls has to be polynomial). This is the Turing reduction
concept.

“P1 polynomially transforms to P2” if we can do the same as above but with the limit of only one call to the subroutine.
Definition 1 of NP: A problem is said to be Non-deterministically Polynomial (NP) if we can find a non-deterministic
Turing machine that can solve the problem in a polynomial number of non-deterministic moves.

For those who are not familiar with Turing machines, two alternative definitions of NP are commonly used.
Definition 2 of NP: A problem is said to be NP if

1. its solution comes from a finite set of possibilities, and
2. it takes polynomial time to verify the correctness of a candidate solution

Definition 3 of NP: A problem is said to be NP if there exists an NP algorithm for it.

The Travelling Salesman Problem (TSP)
(TSP) is a problem in combinatorial optimisation studied in operations research and theoretical computer science. Given
a list of cities and their pair-wise distances, the task is to find a shortest possible tour that visits each city exactly once. The
TSP has several applications even in its purest formulation, such as planning, logistics, and the manufacture of micro-
chips. Slightly modified, it appears as a sub-problem in many areas, such as DNA sequencing. In these applications, the
concept city represents, for example, customers, soldering points, or DNA fragments, and the concept distance represents
travelling times or cost, or a similarity measure between DNA fragments. In many applications, additional constraints
such as limited resources or time windows make the problem considerably harder.

A B

DC

20

12

3442

3530

Hamiltonian Cycle Problem
A Hamiltonian cycle is a round trip path along n edges of G which visits every vertex once and returns to its starting ver-
tex. Consider the example shown in Fig. 2.60.

1 2 3 4

5678

Figure 2.60

Hamiltonian cycle : 1, 2, 8, 7, 6, 5, 4, 3, 1.
In the mathematical field of graph theory the Hamiltonian path problem and the Hamiltonian cycle problem are prob-
lems of determining whether a Hamiltonian path or a Hamiltonian cycle exists in a given graph (whether directed or
undirected). Both problems are NP-complete. There is a simple relation between the two problems. The Hamiltonian path

2.252 Computer Science & Information Technology for GATE

problem for graph G is equivalent to the Hamiltonian cycle problem in a graph H obtained from G by adding a new vertex
and connecting it to all vertices of G. The Hamiltonian cycle problem is a special case of the traveling salesman problem,
obtained by setting the distance between two cities to a finite constant if they are adjacent and infinity otherwise.

Vertex Cover Problem
In the mathematical discipline of graph theory, a vertex cover of a graph is a set of vertices such that each edge of the
graph is incident to at least one vertex of the set. The problem of finding a minimum vertex cover is a classical optimisa-
tion problem in computer science and is a typical example of an NP-hard optimisation problem that has an approximation
algorithm. Its decision version, the vertex cover problem was one of Karp’s 21 NP-complete problems and is therefore
a classical NP-complete problem in computational complexity theory. Furthermore, the vertex cover problem is fixed-
parameter tractable and a central problem in parameterised complexity theory.

Formally, a vertex cover of a graph G is a set of vertices C such that each edge of G is incident to at least one vertex in
C. The set C is said to cover the edges of G. Fig. 2.61 shows examples of vertex covers in two graphs (the set C is marked
with different shade).

Figure 2.61

A minimum vertex cover is a vertex cover of smallest possible size. The vertex cover number τ is the size of a minimum
vertex cover. Fig. 2.62 shows examples of minimum vertex covers in two graphs.

Figure 2.62

Satisfy Ability Problem
Satisfiability is the problem of determining if the variables of a given Boolean formula can be assigned in such a way as to
make the formula evaluate to TRUE. Equally important is to determine whether no such assignments exist, which would
imply that the function expressed by the formula is identically FALSE for all possible variable assignments.

In this latter case, we would say that the function is unsatisfiable; otherwise it is satisfiable. To emphasize the binary
nature of this problem, it is frequently referred to as Boolean or propositional satisfiability. The shorthand “SAT” is also
commonly used to denote it, with the implicit understanding that the function and its variables are all binary-valued. In
complexity theory, the Boolean satisfiability problem (SAT) is a decision problem, whose instance is a Boolean expression
written using only AND, OR, NOT, variables, and parentheses. The question is: given the expression, is there some assign-
ment of TRUE and FALSE values to the variables that will make the entire expression true? A formula of propositional
logic is said to be satisfiable if logical values can be assigned to its variables in a way that makes the formula true. The
Boolean satisfiability problem is NP-complete. The propositional satisfiability problem (PSAT), which decides whether a
given propositional formula is satisfiable, is of central importance in various areas of computer science, including theoreti-
cal computer science, algorithmics, artificial intelligence, hardware design, electronic design automation, and verification.

Partition Problem

In computer science, the partition problem is an NP-complete problem. The problem is to decide whether a given multiset
of integers can be partitioned into two “halves” that have the same sum. More precisely, given a multiset S of integers, is
there a way to partition S into two subsets S1 and S2 such that the sum of the numbers in S1 equals the sum of the numbers
in S2? The subsets S1 and S2 must form a partition in the sense that they are disjoint and they cover S. The optimisation
version asks for the “best” partition, and can be stated as: Find a partition into two subsets S1, S2 such that max (sum (S1),
sum (S2)) is minimised (sometimes with the additional constraint that the sizes of the two sets in the partition must be

Programming, Data Structures and Algorithms 2.253

equal, or differ by at most 1).
The partition problem is equivalent to the following special case of the subset sum problem: given a set S of integers,

is there a subset S1 of S that sums to exactly t /2 where t is the sum of all elements of S? (The equivalence can be seen by
defining S2 to be the difference S − S1.) Therefore, the pseudo-polynomial time dynamic programming solution to subset
sum applies to the partition problem as well.

A variation of the partition problem is the 3-partition problem, in which the set S must be partitioned into |S|/3 triples
each with the same sum. In contrast to partition, 3-partition has no pseudo-polynomial time algorithm unless P = NP:
3-partition remains NP-complete even when using unary coding.

n Example Does SHORTEST-PATH finding of a graph is NP-complete.

n Answer: No. SHORTEST-PATH is an optimization problem and not a decision problem; the definitions of NP-com-
pleteness apply only to decision problems, hence SHORTEST-PATH is not NP-complete.

n Example Suppose there is a polynomial time algorithm FOO (G, u, v, k, proposed_path) which returns TRUE exactly
whenever G is a graph, u and v are edges in that graph, k is an integer, and proposed_path is a path from u to v in G con-
sisting of at most k edges. Does this mean PATH finding is NP-complete?

n Answer: No. FOO is a verification algorithm for PATH that runs in polynomial time. For PATH to be NP-complete,
we need to prove (i) that there is a polynomial time verification algorithm for PATH and (ii) every problem that is in NP
can be reduced in polynomial time to PATH (i.e., PATH is NP-hard.) The existence of FOO proves (i), but not (ii), hence
existence of FOO is not enough to prove that PATH is NP-complete.

n Example Consider a reduction of problem A to problem B. What is the most precise claim you can make about prob-
lem B for each of the following situations?

(a) A is NP-complete and the reduction is in polynomial time.
 NP-hard. (At least as hard as NP-complete problem.)

(b) A is in polynomial time and the reduction is also in polynomial time.
 B could be anything.

(c) A is NP-complete and the reduction is in Pspace.
 B could be anything.

(d) A is in nondeterministic polynomial time and the reduction is in polynomial time.
 B is at least as hard as A, but nothing more can be said.

(e) A requires exponential time and the reduction is in polynomial time.
 B must requires polynomial time for deciding.

(f) A is Pspace complete and the reduction is in Pspace.
 B could be anything.
Suppose you could reduce an NP complete problem to a polynomial time problem in polynomial time. What would be
the consequence?
What if the reduction required exponential time?
If we could reduce an NP-complete problem to a problem in P, then NP will be equal to P. If the reduction required ex-
ponential time, then there is not special consequence. (In fact any NP-complete problem can be reduced to a polynomial
time solvable problem using exponential time reduction.)
n Question 1: KNAPSACK (Karp’s definition of Knapsack is closer to ________)
Dynamic programmingApproximation algorithmNP-completeSubset sum problem
n Question 2: For example, KNAPSACK was shown to be NP-complete by reducing ________ to KNAPSACK.
Exact coverBinary relation3-dimensional matchingVertex cover
n Question 3: CLIQUE (see also ________)
Independent set (graph theory)Graph coloringMatching (graph theory)Vertex cover
n Question 4: One of the most important results in computational complexity theory was Stephen Cook’s 1971 demon-
stration of the first (practically relevant) ______ problem, the Boolean satisfiability problem.
NP-hardNP -completeP versus NP problemNP (complexity)

2.254 Computer Science & Information Technology for GATE

2.5 Questions on Algorithms

1. What is the complexity of the following algorithm?
 For i = 1, 2, ..., n-1 do: Compare the numbers in ele-

ments xi and xi+1 and place the larger of the two num-
bers in xi+1 and the smaller in xi. At the end, print xn.

 Answer: O(n). It needs n-1 comparisons. Thus, the
order is linear order.

2. Consider the following algorithm for finding maxi-
mum and minimum of elements of an array x. How
many comparisons are needed in total?

1. For i = 1, 2, ..., n/2, compare the two numbers in
xi and xi+(n/2), and place the smaller number in
xi and the largest in xi+(n/2).

2. Find largest of the n/2 numbers x(n/2)+1,
x(n/2)+2, …, xn. This is the largest of the n given
numbers.

3. Find smallest of the n/2 numbers x1, x2,…, xn/2.
This is the smallest of the n given numbers.

 Answer: n/2 + (n/2-1) + (n/2-1) = 3n/2 - 2
3. A circus is designing an act consisting of a tower of

people standing atop one another’s shoulders. For
practical and aesthetic reasons, each person must be
both shorter and lighter than the person below her.
Given the heights and weights of each person in the
circus, what is the largest possible number of people
in such a tower? Explain algorithmically and give
complexity of the same.

Answer:

(a) Add a node to the graph for each performer.
(b) Examine each pair of nodes and add a directed

edge from A to B if A can stand of B’s shoulders.
(c) Add a “start” node with a directed edge to every

other node in the graph.
(d) Find the longest path starting at the start node.

(This can be accomplished by assign each edge a
weight of -1 and finding the shortest path, since
we are guaranteed not to get a negative cycle.)

(e) Find the farthest node and rebuild the path by fol-
lowing the appropriate edges backwards.

 Complexity of the above algorithm is: O(V+E) where
V is the number of nodes (here people) and edges of
step (b).

4. Consider an array (a) with a series of positive ele-
ments and a series of zeros at the end. Propose an al-
gorithm to find number of positive elements in the
given array.

 Answer: We find out an integer i such that a[2i-1] is
positive and a[2i] is zero. This indicates that the num-

ber of positive elements of the array may be between
2i-1+1 (L+1) to 2i -1 (U-1). Now, we can apply same
logic to find out first zero valued element in between
L+1 and U-1.

Element Values Element indexes

9 1

10 2

22 3

312 4

22 5

90 6

50 7

988 8

88 9

89 10

22 11

0 12

0 13

0 14

0 15

0 16

0 17

 20th= 1st element is 9
 21th= 2nd element is 10
 22nd=4th element is 312
 23rd=8th element is 988
 24th=16th element is 0
 Thus, L is 8 and U is 16. We can repeat the above steps

on the array between 9 and 15. That is,
 1st element from 9th element is 88
 2nd element from 9th element is 22
 4th element from 9th element is 0
 Thus, now L and U becomes 11 and 13. When we re-

peat the same on 12 and 12, we can understand that
12th element is the first zeroth valued element. Thus,
array contains 11 elements.

 Complexity of this problem can be said as log(n). as
it is akin to binary searching.

5. How can we find out the existence of a value x in a
sorted array whose size is unknown. Assume it con-
tains a series of positive elements followed by zeros.
Assume x value is other than zero.

 Answer: First find out array size using the above
technique explained in question 4. Then, apply binary
searching. Complexity of this problem also can be
said as O(log n).

Programming, Data Structures and Algorithms 2.255

6. In insertion sort, we scan back through the sorted
portion of the list to determine where the new value
should be inserted. We shift all the scanned values
downward, and insert the new value in the open lo-
cation. Explain how to use binary search to find the
appropriate insertion spot rather than a linear scan.
Explain why this does not help the overall time com-
plexity of the algorithm.
Answer: On the i-th pass, the first i elements, A[1..i]
of the array will be sorted. We can then use a binary
search on these i elements to find out where the i+1 th
element should be placed. While this does cut down
the search part from worst case O(i), to worst case
O(log i), the insertion part will still be worst case O(i),
since we have to shift part or all of A[1,..,i] over by one
to make room for A[i+1], so the binary search does
not improve the time complexity of the algorithm.

7. Quicksort has worst-case time complexity O(n2) and
average-case O(nlogn). Explain how to redesign the
algorithm to guarantee a worst case O(nlogn).

 Answer: We can guarantee O(n log n) is the worst
case behavior by making the pivot be the median of
the list, rather than the first element of the list. It takes
O(k) time to find the median of a list of length k, and
O(k) to partition it, so we can do both in O(k) time.
By making the pivot be the median, each recursive
call to quicksort will be on a list of length half as long,
so the depth of the recursion tree will be at most lg n,
with a recursion T(n) = T(n/2) + q(n). The worst case
running time for this algorithm is O(n lg n). Ran-
domized quicksort is a few times faster than average,
so for most applications this isn’t a good algorithm.

8. Solve T(n)=T(n–1) + log(n).
 Answer: By repeated substitution
 T(n) = log n + log(n – 1) + ... + log(2) + log(1)
 = O(n lg(n))

9. It is proposed to use heap to find kth largest. Indicate
the complexity of the approach you employ.

 Answer: First, we build the heap with O(n) time. De-
leting an item (root) from heap takes O(lg n) time. As
we want kth largest, we can delet k items with O(k lg
n) time. Thus, finding the k-th largest takes O(n + k lg
n) time overall.

10. Finding kth largest with time complexity O(n+k log
k).

 Answer:

a. First, n elements will be kept in heap form with
O(n).

b. We use an extra (second) heap to keep track of
the possible candidates for next largest element.

At the start the only thing on the new heap is the
root of the first heap. At each stage the root of the
new heap is the next largest element. We delete
this root from the new heap and insert its children
from the old heap to the new heap. This adds a net
of one more item to the new heap. After finding
the kth largest element, there will be k items on
the new heap. The time complexity builiding the
new heap is k lg k, since it must be built using a
top-down method. So the total time complexity of
finding the k-th largest will be O(n + k lg k).

11. What is the worst case behavior of the following code
fragment that is used for finding greatest common di-
visor (GCD) of two integers?
int GCD(int a, int b){

int Min = a<b?a:b;

while (1){

if((a%Min==0) && (b%Min==0)) return Min;

Min --;

}

}

 Answer: In the worst case, the while loop will execute
minimum of a and b times. Thus, worst case complex-
ity can be said as: O(min(a,b))

12. The following two versions are proposed to find out
GCD of two integers. Which is better? Mention about
the worst case complexity of each.
int GCD1(int a, int b){

if (a = = 0) return b;

else if (b = = 0) return a;

else if (a = = b) return a;

else if (a<b)

 return GCD1(a, b-a);

else

 return GCD1(a-b, b);

}

int GCD2(int a, int b){

if (a = = 0) return b;

else if (b = = 0) return a;

else if (a = = b) return a;

else if (a<b)

 return GCD2(a, b%a);

else

 return GCD2(a%b, b);

}

2.256 Computer Science & Information Technology for GATE

 Answer: First one time complexity is O(max(a,b))
while second one’s time complexity is O(log(max(a,b)).
Thus, second one is better.

13. What is the time complexity of the following?
 T(n) = 2T(n–1) +1; T(1)=1
 Answer:

 T(n)=2T(n–1) +1
 =2(2T(n–2)+1)+1
 =4T(n–2)+2+1
 =4(2T(n–3)+1) + 2+ 1
 =8T(n–3)+ 4 + 2 +1
 =8(2T(n–4)+1) + 4 + 2 + 1
 =16T(n–4) + 8 + 4 + 2 + 1
 =24T(n–4)+ 23+ 22+ 21 + 20

 Like this if we expand, it becomes
 =2n–1T(1)+……+24T(n–4)+ 23+ 22+ 21 + 20

 =2n–1+……+24T(n–4)+ 23+ 22+ 21 + 20

 =2n–1= O(2n–1)
14. Let A[1::n] be a strictly sorted vector of integers. Find

any k such that A[k] = k in O(log n) time. For ex-
ample: see the following figure where 3 is having the
required property.

-3 1 3 6 7 10 12

1 2 3 4 5 6 7

 Answer: We can employ binary searching algorithm
with little modification. We calculated mid as aver-
age of low and high indexes of the array then com-
pare with the search element or key x. Now, we take
search element value as mid itself. Whenever A[mid]
is same as mid we return mid value. Thus, this ap-
proach search complexity can be said as: O(logn).

15. Let A[1::n][1::n] be a two-dimensional array of real
numbers that is sorted both row-wise (A[x][y] < A[x]
[y + 1] for all x and y) and column-wise (A[x][y] <
A[x + 1][y] for all x and y). How can you find a given
number k in this array in O(n log n) time? How can
you do it in O(n) time? For example (k = 5):

0 1 2 6

2 4 5 7

3 6 7 8

6 7 8 9

1

2

3

4

1 2 3 4

 Answer: For each row, check whether given k (search
element) is between its first and last column element

values or not. If k is in between then apply binary
searching on that row and find k’s location. Thus,
computational complexity becomes O(nlogn).

16. Given a vector A[1::n] of integers find in O(n) time
two indices i and j such that A[i] – A[j] is the greatest
possible.

i j

5 7 9 4 2 6 3 8 3 1 4

1 2 3 4 6 7 8 9 10 115

 Answer: Find largest and smallest values along with
their indices. Maximum A[i]-A[j] is same as the dif-
ference of largest and smallest values of the array.
Thus, complexity of this becomes O(n) as calculation
of largest and smallest is O(n).
procedure max_diff(a1, a2, …, an: integers)
min := a1
max := a1
for i := 2 to n

if ai < min then min := ai

else if ai > max then max := ai

m := max - min
Comparisons: 2n - 2
Time complexity is O(n).
Anoher solution:
procedure max_diff2(a1, a2, …, an: integers)
m := 0
for i := 1 to n-1

for j := i + 1 to n
if |ai – aj| > m then m := |ai – aj|

 {m is the maximum difference between any two num-
bers in the input sequence}

 Comparisons: n-1 + n-2 + n-3 + … + 1
 = (n – 1)n/2 = 0.5n2 – 0.5n
 Thus, time complexity is O(n2).

17. Given a vector A[1::n] of integers find in O(n) time
two indices i and j such that A[i] – A[j] is the greatest
possible and i > j.

ij

5 7 9 4 2 6 3 8 3 1 4

 Answer: Find largest second half of the array and
smallest of the first half of the array along with their
indices. Maximum A[i]-A[j] is same as the difference
of largest and smallest values of the array. Thus, com-
plexity of this becomes O(n) as calculation of largest
and smallest is O(n).

Programming, Data Structures and Algorithms 2.257

18. Let A[1::n] be a vector of real numbers. Explain how
to implement a function Sum(i; j) that computes the
sum A[i] + A[i + 1] + ….. + A[j] in constant time.

 Answer: Assume that you can do some preprocessing
of A, i.e., before the first invocation of Sum, you can
create an auxiliary vector B and use it inside Sum. As-
sume i<=j.

 Int Sum(int A[], int i, int j, int n)

 {

 int k;

 int B[n]; // is the auxialary array

 for(k=2, B[1]=A[1]; i<=n;k++)B[k]=A[k]+B[k-1];

 // Now array B contains Cumulative sum

 // This B can be assumed as a global array also

 // We can also assume that precomputed B is sent
as another argument to the function

 return(B[j]-B[i]+A[i]); //This is constant time
function.

 }

19. Let A be an array of N integers not necessarily sorted.
An element x of A is said to be a majority element if
the number of elements of A that are equal to X is
atleast (n+1)/2. Design and implement an algorithm
that determines whether A has a majority element or
not, and outputs such an element when A does have
a majority element. The worst-case running time of
your algorithm must be O(n).

 Answer:

 Assume max as A[1] and count as 1.
for(i=2;i<=n;i++)

{

 if(a[i]>max){ max=a[i]; count=1;}

else if(a[i]==max)count++;

}

if(count is>=(n+1)/2) print max as majority

element

 else print there is no majority element.

 You may find the order of the above algorithm as
O(n).

20. A department has n research students. An array A
contains when a student starts and stops on a day.
That is, the i-th student starts working at time A[i][1]
and stops working at time A[i][2]. Propose algorithm
to determine the greatest number of students that are
working simultaneously. In the example below, the
answer is 7. All values of the array refers to hours over
0 to 24 scale.

2

1

5

2

3

1

3

2

2

6

9

8

3

7

4

6

4

8

5

8

9

10

1

2

3

4

5

6

7

8

9

10

11

1 2

 Answer: Do find out smallest value (min) over start-
ing hours (first column of A) and largest value (max)
over ending hours (second column of A). Take anoth-
er array B of size max elements and initialize its val-
ues to zeros. Now, take each student’s starting (k) and
ending (l) hours and increment values of elements of
B between k to l by one. Now, maximum of the ele-
ments of array B gives the required answer.

21. Show that f(x) = x2 + 2x + 1 is O(x2).
 Answer:

 For x > 1 we have:
 x2 + 2x + 1 £ x2 + 2x2 + x2

 fi x2 + 2x + 1 £ 4x2

 Therefore, for C = 4 and k = 1:
 f(x) £ Cx2 whenever x > k.
 fi f(x) is O(x2).

22. Represent number of strings of length k bits that does
not contain 11 in a recursive manner and also calcu-
late number of such strings if k value is 10.

 Answer: We can represent the number of strings of
length k bits that does not contain pattern 11 as:

The number of
strings of length
k that do not con-
tain 11

=
The number of
strings of length
k–1 that do not
contain 11

+

The number of
strings of length
k–2 that don’t
contain 11

 Or, in other words (as a recurrence relation):
 (1) s0 = 1 s

1
 = 2

 (2) sk = sk–1 + sk–2
 If we calculate this recurrence for k value of 10, we

get 144.
23. Let P(n) denote the following:

 if a1, a2, a3, ..., an is the sequence defined by:
1. a0 = 1
2. ak = ak–1 + 2

2.258 Computer Science & Information Technology for GATE

 Prove an = 1 + 2n for all n >= 1
 Answer :

 Base Case: prove that P(1) is true.
 Using the definition of the recurrence relation, we

have: a1 = a0 + 2 = 1 + 2 = 3.
 Now, we show that we get the same answer using the

formula: an = 1 + 2n for n = 1.
 an = 1 + 2n = 1 + 2 = 3. Therefore, the base case holds.
 Inductive Case:

 The induction hypothesis is to assume P(k): ak = 1 +
2k. We then need to show that P(k+1) = ak+1 = 1 + 2
(k + 1).

 ak+1 = a((k+1)–1) + 2 from the recurrence relation
(this is a “given”)

 ak+1 = ak + 2 algebra
 ak+1 = 1 + 2k + 2 substitution from inductive hy-

pothesis (ak = 1 + 2k)
 ak+1 = 1 + 2(k + 1) algebra
 Thus, we have shown the desired result. Since P(k+1)

is true when P(k) is true, and we have shown P(1)
holds, we have shown inductively that P(n) is true for
all n >= 1.

24. Prove that n2=O(n3)
 Answer:

 To prove that n2= O(n3), we need to find out positive
c,n0 such that n2 £ c*n3, for all n >= n0.

 Dividing by n2 yields 1 £ c*n.
 (1 £ c*n) is true when c =1 and n> =1.
 Hence, “n2 £ c*n3, for all n >=n0” is true given n0=1

and c=1.
 ie., we can find out positive c,n0 such that n2 £ c*n3,

for all n >= n0.
 ie. n2= O(n3) is true.

25. Prove that 2n2 – 5n=Q(n2)
 Answer:

 To prove 2n2–5n = Q(n2), we need to find out positive
c1,c2,n0 such that c1*n2 £ 2n2–5n £ c2*n2, for all n >=
n0.

 Dividing by n2 yields: c1 £ 2–5/n £ c2

 Take c1 = 0.1, c2=100, n0 = 30
 For 2-5/n £ c2

 Consider that 5/n is positive whenever n>=1.
 fi 2–5/n £ 2 for all n ≥ 1
 fi 2-5/n £ c2 for all n ≥ n0

 fi 2n2–5n £ c2*n2 for all n ≥ n0

 For c1 £ 2–5/n
 Consider that (2–5/n) is an increasing function, and

(2–5/n0) = 1.833

 fi 2 – 5/n ≥ 1.833 for all n ≥ n0

 fi 2 – 5/n ≥ c1 for all n ≥ n0

 fi 2n2 – 5n ≥ c1*n2 for all n ≥ n0

 fi c1*n2 £ 2n2 – 5n for all n ≥ n0

 Conclusion, “c1*n2 £ 2n2–5n £ c2*n2, for all n ≥ n0” is
true given c1= 0.1, c2=100, n0 = 30. (Indeed, it is also
true for any c1, c2 and n0 such that they are £ 1/3, ≥
2, and ≥ 3 respectively.). ie., we can find out positive
c1,c2,n0 such that c1*n2 £ 2n2–5n £ c2*n2, for all n ≥ n0.
Therefore, 2n2–5n = Q(n2).

26. Given an array A of n integers: a1,a2,..an, the algorithm
Longest(A) is designed to determine the length of the
longest non-decreasing consecutive subsequence of
integers starting with a1 (LN1 of A). For example, one
such subsequence (LN1 of A) for A=<34,57,53,54,78>,
is <34,57>. Hence Longest(A) should return 2. Prove
the correctness of this algorithm by using a loop in-
variant. What are the worst and best cases of the algo-
rithm? Describe the running time of the algorithm in
terms of asymptotic tight, upper, and lower bounds.

 int Longest(int A[])
 {
 int j=1;
 while (j<n &&A[j+1]>=A[j])
 j=j+1;
 return j;
 }
 Answer:

 Loop Invariant: At the start of each iteration of the
while loop, a1, a2, a3, .. aj are non-decreasing consecu-
tive subsequence of A starting with a1.

 Initialisation: Before the first iteration, j=1, then there
is only one integer a1, in a1, a2, a3, .. aj, which is non-
decreasing consecutive subsequence.

 Maintenance: In each iteration, the cycle is executed
only if aj+1>=aj, then j is incremented by one. So aj-1, aj
is non-decreasing. Hence, if the loop invariant is true
before an iteration, it remains true before next itera-
tion.

 Termination: The while loop continues whenever
aj+1>=aj and j<n. It ends with j=n, or aj+1<aj. In former
case a1, a2, a3, .. aj, is the longest possible LN1 of A. In
latter case, aj+1 is not involved in LN1 of A. Then a1, a2,
a3, .. aj is LN1 of A.

 Best case: LN1 of A only has one element. q(1)
 Worse case: LN1 of A only has n element. q(n)
 Algorithm: O(n), W(1)

27. Propose a recursive numbers procedure to calculate
sum of squares of natural between m and n.

Programming, Data Structures and Algorithms 2.259

 Answer: The following is a divide-and-conquer
method for computing the sum of squares of all inte-
gers between m and n, i.e.,

i
i m

n
2

=
Â

 int ssq(int m, int n) {
 if(m > n) return 1; // error condition
 else if (m == n) return m*m;
 else {
 int middle = (m+n)/2;
 return ssq(m,middle) + ssq(middle + 1,n);
 }

 }
 The following diagram explains the call trace.

The two numbers inside the nodes are m and n.
The number above a node is its return value.

636

190

77

446

9.12

11.12

12.1211.11.10.109.98.87.76.64.5

4.6 7.8 9.10

4.12

113

4.8

265

14412110081644936

5.54.4

181

41

16 25

28. An integer number x with initial value 1 is doubled
repeatedly till x >=N, where N is another integer
number. How many times should it be doubled before
x ≥ N? Do comment on the time complexity of this
operation.

 Answer: After k doubling we have 2k. So we find the
smallest k such that 2k ≥ N.

 Therefore, k ≥ log2 N
 It is logarithmic complexity – O(log N)

29. An integer number x with initial value N is halved re-
peatedly till x £1, where N is another integer number.
How many times should it be halved before x £ 1?

 Answer: After k halving we have N*(½)k. So we find
the smallest k such that N*(½)k ≥ 1.

 Therefore k ≥ log.5 N
 It is logarithmic complexity – O(log N)

30. Here are two methods for finding the maximum value
in an array of integers. Each is correct. Which one is
faster? By how much? Explain.

int max1(int[] nums, int last) {
 if (last == 0) return nums[0];
 else {
 if (nums[last] > max1(nums,
last - 1)) {
 return nums[last];
 } else {
 return max1(nums, last - 1);

}
}

}

int max2(int[] nums, int last) {
 if (last == 0) return nums[0];
 else {
 int temp = max2(nums, last - 1);
 if (nums[last] > temp) {
 return nums[last];
 } else {

return temp;
}
}

}

 Answer: The second one is much faster. The first takes
exponential time, O(nums.length), because every call
may result in two recursive calls. The second makes
one call for each element of the array, so is only linear
time, O(nums.length).

31. Does the following code counts the number of digits
in a positive integer variable number:

 int n = number;
 int count = 0;
 while (n > 0) {
 n = n / 10;
 count++;
 }
 How long (in Big-O terms) does this method take?

Why?
 Answer: Yes. It complexity is O(log n) time, because

the number of digits in a number is the log10 of the
number.

32. What is golden ratio?
 Golden ratio F is defined as

 1
1

1
1

1
1

1

+
+

+
+ ...

 Approximated value for the above =(1+sqrt(5))/2
 Golden ratio Fn after truncating n terms can be given

as fn/fn–1, where fn, fn–1 are the fibnocci numbers. As-
suming F value as 1.61803398874989, we can calcu-
late fibnocci series using the following relationship
also.

fn =
1

2 1
11 1

f
f f

-
- -()()+ +n n

 The following is called as fibnocci power series, where
fn is the fibnocci number.

F(x) = f xn
n

n=

•

Â
1

= x + 2x2 + 3x3 + 5x4 + 8x4 + 13x6 + ...
 An efficient recursive approach for computing fibn-

occi power series terms is

2.260 Computer Science & Information Technology for GATE

pk = fk xk

 Then, since

fk+1 xk+1 = fk xk + fk–1 xk–1

 the terms pk satisfy

pk+1 = pkx + px–1x2

= x (px+ xpk–1)

 We can prove for infinite fibnocci power series F(x)
can be given as:

F(x) =
x x

x x

+
- -

2

21

 An application:

 A businessman opened a retirement account by de-
positing a certain amount of money (some dollars, no
cents) just before the end of a year. He made another
deposit (again, some dollars, no cents) one year later.
From that time, towards the end of each year he de-
posited some amount of money. His deposits followed
a pattern: From the third year onwards, the amount
of each deposit was equal to the total of two previous
deposits (from two previous years). His 20th deposit
was $1,000,000 exactly. What was his initial deposit?

 Answer: If you observe, it follows Fibnocci series.
1st year: x
2nd year: y
3rd year: x + y

4th year: x + 2y

5th year: 2x + 3y

6th year: 3x + 5y

7th year: 5x + 8y

8th year: 8x + 13y

9th year: 13x + 21y

10th year: 21x + 34y

11th year: 34x + 55y

 12th year: 55x + 89y

 13th year: 89x + 144y

 14th year: 144x + 233y

 15th year: 233x + 377y

 16th year: 377x + 610y

 17th year: 610x + 987y

 18th year: 987x + 1,597y

 19th year: 1,597x + 2,584y

 20th year: 2,584x + 4,181y

 That is, 2584x + 4181y = 1,000,000
 Using golden ratio, 19th year total can be found as:

1000000/1.618034 = 618034

 That is,
 2,584x + 4,181y = 1,000,000
 1,597x + 2,584y = 618,034
 Thus, initial year amounts are:
 x = 154
 y = 144

33. What is the complexity of the following algorithm to
find product of two n-bit integer numbers?

 int prod(int x, int y){
 int z=0;
 while(y){
 if(y%2)z+=x;
 x=x+x;
 y/=2;
 }
 return z;
 }
 Answer: While loop runs for n times at most. Thus,

complexity can be said as O(n).
34. What is the complexity of the following algorithm to

find product of two n-bit integer numbers?. First, rep-
resent the time complexity and then find the same in
big-oh notation.

 int rprod(int x, int y){
 if(y==0)return 0;
 else if(y%2) return (x+rprod(2*x,y/2));
 else return rprod(2*x,y/2);
 }
 Answer: If y value is 0, it ruturns 0. For this situation

we need a constant time c. Similarly, Time complexity
relation can be represented as:

 T(n)=T(n-1)+d for n>1
 = c otherwise.
 Here, d is the operations needed if y value is not 0.
 If we solve the above equation recursively, we get
 T(n)=T(n-1)+d
 =T(n-2)+d+d
 =T(n-3)+d+d+d
 =T(1)+d+d+…n times
 =c+nd=O(n)

35. General theorem for solving recurrence relationship
of time complexity equations. If n is power of c and
the recurrence relation is of the form:

 T(n)=d if n<=1
 =aT(n/c)+bn otherwise
 Then, solution for the recurrence relation is:

Programming, Data Structures and Algorithms 2.261

 T(n)=O(n) if a<c
 =O(nlogn) if a=c
 =O(nlog

c
a) if a>c

36. Now consider again the problem of multiplying two
n-bit numbers. Let us assume n is an integer power of
2. We can represent n-bit number x and y as two n/2
bit numbers as shown below:

 x=a2n/2+b, where is a and b are most significant and
least significant n/2 bits of x.

 y=c2n/2+d, where is c and d are most significant and
least significant n/2 bits of y.

 Therefore,
 xy=(a2n/2+b)*(c2n/2+d)=ac2n+(ad+bc)2n/2+bd
 Answer:

 If we observe the above equation, we may find that we
need three n/2 bit number multiplications and some
shifting operations. Thus, time complexity of this ap-
proach can be represented as:

 T(n)=c if n=1
 =3T(n/2)+dn otherwise
 Here, c, d are some constants.
 Time complexity in big-oh notation can be represent-

ed as:O(nlog3)=O(n1.59)
37. Strassen matrix multiplication time complexity is

given below. Arrive at its time complexity in big-oh
notation.

T(n) =
c if n

T n dn otherwise

=

() +
Ï
Ì
ÓÔ

1

7 2 3/

 where c, d are constants.

T(n) = 7T (n/2) + dn2

= 7(7T(n/4) +d (n/2)2) + dn2

= 72T (n/4) + 7dn2/4 + dn2

= 72T (n/8) + 72dn2/42 + 7dn2/4 + dn2

= 7iT (n/2i) + dn2 7 4
0

1

/()
=

-

Â j

j

i

= 7logn T (1) + dn2 7 4
0

1

/
log

()
=

-

Â j

j

n

= cnlog 7 + dn2 7 4 1
7 4 1
/

/

log() -
-

n

= cnlog 7 +
4
3

12
7

2dn
n

n

log

-
Ê
ËÁ

ˆ
¯̃

= O(nlog 7)

ª O(n2.8)

38. Represent time complexity of binary search algorithm
and arrive at its big-oh equivalent.

 Time complexity of binary search can be given as:
 T(n)=0 if n=1
 =T(n/2)+1 Otherwise
 T(n)=T(n/2)+1
 =(T(n/4)+1)+1
 =((T(n/8)+1)+1)=1
 =T(1)+1+1+1+…+1
 =O(logn)

39. Represent the time complexity of towers of honoi
problem and arrive at its big-oh notation.

 The T(n) number of moves needed to move n disks
from peg j to peg k as:

 T(n)=1 if n=1
 =2T(n-1)+1 Otherwise
 To arrive at its big-oh equivalent, we solve the recur-

rence relationship as shown below.
 T(n)=2T(n-1)+1
 =2(2T(n-2)+1) +1
 = 4T(n-2)+2+1
 =4(2T(n-3)+1)+2+1
 =8T(n-3)+4+2+1
 ……
 ……
 =2n-1T(1)+…+4+2+1
 =2n-1=O(2n)

40. When an adjacency list is preferred over adjacency
matrix?

41. What will be the sum of lengths adjacency list of a
directed graph with E edges?. What happens if graph
is undirected?

42. If A is adjacency matrix and A=AT then what can you
comment about graph?

43. To find whether an edge is present or not which rep-
resentation adjacency list or matrix is preferred?

44. Given an adjacency-list of a directed graph how long
it takes to compute out-degree of every vertex ? How
long does it takes to compute the in-degree?

45. What will be the size of every nodes adjacency list size
if a complete binary tree is represented in adjacency
list form?. What happens if we assume if every node
eve contains father field ?

46. If G =(V,E) is a graph then find out a procedure to find
out adjacency matrix of a graph GT which is created
by reversing all the edges of G, given adjacency matrix
of G. Analyse its time complexity.

2.262 Computer Science & Information Technology for GATE

47. Repeat 46 assuming adjacency list of G is given.
48. If G is a graph and A is its adjacency matrix then ex-

plain what A2 will explain?. Also describe efficient
procedures to calculate A2.

49. Show that finding whether a graph contains a sink (a
vertex with in-degree of V-1 and out-degree as zero)
is O(V), where V is number of vertexes. Prove this
both for adjacency matrix and list representations of
graph.

50. What is incidence matrix? If B is an incidence matrix
what BBT represents?

51. Average running time of an algorithm is given as:
T(n)=8T(n/2) + qn if n >1

 = p if n =1
 Where p, q are constants then find out the order of the

algorithm.
52. Average running time of an algorithm is given as:

T(n)=T(n-1) + q if n >1
 = p if n <=1
 Where p, q are constants then find out the order of the

algorithm.
53. Average running time of an algorithm is given as:

T(n)=T(n-1) + 1/n if n >1
 = 1 otherwise
 then, find out the order of the algorithm.

54. Running time of an algorithm is given as:

 T(n)=T(n-1)+T(n-2)+T(n-3) if n>3
 = n otherwise
 then, find out the order of the algorithm.

55. Describe a simple strategy for removing an element
from a max-heap.

 Swap with the last element in the heap, recursively
swap that element with the max of its children until it
is in a position where both children are smaller.

56. What is the running time for a method that returns
the size of a heap and why?

 O(1) because we need to know where to insert the
next value anyway, and heaps are implemented in an
array. The index of that spot is the size.

57. Describe in detail why recursion is so important in
data structures and algorithms.

 Answer:

(i) Recursion is a very succinct (shorthand) way of
defining an entity or writing programming lan-
guage code

(ii) Non-recursive code solutions tend in certain cas-
es to be longer and more complicated than recur-
sive solutions

(iii) Recursion changes your mindset i.e. your way
of thinking about programming constructs and
writing code

(iv) Recursion is also useful in defining data struc-
tures (eg a sequence or a tree)

58. How do you calculate ”big-O” for an if-then-else
statement?

 Answer:

 If E then S1 else S2 – cost = cost (E) + max(cost(S1),
cost(S2))

59. How to print permutations of a string?
 Answer:

 #include < stdio.h >

 int main(char *argv[],int argc)

 {

char list[3]={‘a’,’b’,’c’};

int i,j,k;

for(i=0;i < SIZE;i++)

 for(j=0;j < SIZE;j++)

for(k=0;k < SIZE;k++)

if(i!=j && j!=k && i!=k)

printf(“%c%c%c\n”,list[i],list[j],list[k]);

 return(0);

 }

 Recursive permutations

 #include < stdio.h >

 int main(char *argv[],int argc)

 {

 char list[5]={’a’,’b’,’c’,’d’,’e’};

 permute(list,0,N);

 return(0);

 }

 void permute(char list[],int k, int m)

 {

 int i;

 char temp;

 if(k==m)

 {

 /* PRINT A FROM k to m! */

for(i=0;i < N;i++){printf(“%c”,list[i]);}

printf(“\n”);

}

else

{

Programming, Data Structures and Algorithms 2.263

for(i=k;i < m;i++)

{

/* swap(a[i],a[m-1]); */

temp=list[i];

list[i]=list[m-1];

list[m-1]=temp;

permute(list,k,m-1);

/* swap(a[m-1],a[i]); */

temp=list[m-1];

list[m-1]=list[i];

 list[i]=temp;

 }

 }

 }

 If we observe, the recursive version has better scal-
ability.

60. What is the complexity of the following function of
calculating an integer power of X?

 if (N == 1) return X ;

 else if (N%2==0) return Power(X,N/2)*Power(X,N/2);

 else return Power(X,N/2)*Power(X,N/2+1);

 }

 Answer: If we observe the above code fragment, we
can represent its time complexity as:

 T(n)=2T(n/2)+1
 =2(2T(n/4)+1)+1
 =4T(n/4)+2+1
 =4(2T(n/8)+1)+2+1
 =8T(n/8)+4+2+1
 Thus, complexity becomes O(n)

61. Identify the complexity of the following algorithm to
find out F from an array of values a.

F =
a ia

j j

i
a

ii

j

i

j

j

n -

+
==

=

ÂÂÂ 11

1 1()

Solution :

 Algorithm F (n : integer)
 sum ¨ 0, perfix-sum ¨ 0
 for j ¨ 1, to n do
 perfix-sum ¨ perfix-sum + (a j

2 – j . aj)
 sum ¨ sum + perfix-sum/ (j . (j +1))
 return sum
 Answer: If we observe the algorithm, we find that it

runs for n times. Thus, itc complexity can be said as:
O(n).

62. Suppose we are given an acyclic directed graph G with
vertices v1, v2, ..., vn. All edges are forward, that is, if
(vi, vj) is an edge of G then i < j. Give an efficient algo-
rithm that will compute the number of paths from v1
to vn in G. What is the running time?

 Answer:

 Algorithm

 {Input: DAG G = (V,E); V = {v1, ..., vn}; all
edges are of the form (vi, vj) for i < j}

 {Output: the number of paths from v1 to vn}

 numOfPaths[1]=1

 for(j=2;j<n;j++){

 numOfPaths[j] =0

 numOfPaths[j] =numOfPaths[j] + numOfPaths[i]

 end for

 }

 return numOfPaths[n]

 Running Time: Let m = |E|. Assume G is represented
by adjacency list. The external loop has O(n) itera-
tions, while the internal loop considers each edge only
once, so the running time is O(m + n).

63. Assume that we have 81 coins and a balance. Only one
coins weighs less than the others. Give an algorithm
(in pseudocode) to identify the light coin which uses
the balance only 4 times in the worst case.

 Answer:

 for k = 1 to 4

 put 81/3k (=27 if k=1) coins on one pan and 81/3k

(=27 if k=1) coins on the other pan

 if the two pans weigh the same then throw away the
coins in both the pans of the balance else if the left
pan weighs less than the right pan then throw away
the coins not in the balance and on the right pan else
throw away the coins not in the balance and on the
left pan

64. If a problem P has best-case time complexity W(n log
n) and worst-case time complexity O(n2) and algo-
rithm A solves problem P, which of the following is
possible?

 (a) A has best-case time complexity Q(n).
 (b) A has worst-case time complexity Q(n√n).
 (c) A has average-case time complexity Q(n3).
 (d) A has worst-case time complexity Q(n).

 Answer: (a) possible, (b) possible, (c) possible, (d)
impossible (violation of worst-case time complexity
W(n log n).

2.264 Computer Science & Information Technology for GATE

65. Suppose that the votes of n people for different candi-
dates (where there can be more than two candidates)
for a particular office are the elements of a sequence.
If we assume two candidates in the election whose la-
bels are A and B. Then, we assume there is only one
candidate in the voting then possible sequences are
A or B. If we assume there exists two candidates who
voted then possible sequences will be AA, AB, BA
and BB. For the sake of simplicity, we assume num-
ber of voters are many. A person wins the election if
this person receives a majority (more than half) of the
votes. Describe a divide-and-conquer algorithm that
determines whether a candidate received a majority
and, if so, determine who this candidate is. By apply-
ing the Master Theorem to estimate asymptotic com-
plexity of the algorithm you have employed.

 Answer: If the sequence has just one element, then the
one person on the list is the winner. Otherwise divide
the list into two parts, the first half and the second
half, as equally as possible. (No one could have gotten
a majority of the votes on this list without having a
majority in one half or the other, since if a candidate
got less than or equal to half the votes in each half,
then he got less than or equal to half the votes in all.)
Thus apply the algorithm recursively to each half to
come up with at most two names. Then run through
the entire list to count the number of occurrences of
each of these names to decide which, if either, is the
winner. This requires at most 2n additional compari-
sons for a list of length n, thus for the total number of
comparisons we get the following recursion:

 T(n) = 2T(n/2) + 2n; T(1) = 1:
 Here, a=2, b=2 and d=1. Thus, it is the second case of

Masters theorem. Thus, complexity of this algorithm
will be O(nlogn).

66. Assume that our sample space is the set of permuta-
tions of the first n positive integers (1..n), and assume
that each permutation is equally likely (we have a uni-
form random permutation). What is the probability
that a random permutation has (a) n(n - 1)/2 inver-
sions? (b) 0 inversions? (c) exactly 1 inversion?

 Answer:

 (a) The random permutation has n(n–1)/2 inversions
exactly when it is sorted in decreasing order. Since
exactly one of the n! permutations is sorted in de-
creasing order, its probability is 1/n!.

(b) The random permutation has 0 inversions exactly
when it is sorted in increasing order, its probabil-
ity is again 1/n!.

(c) The random permutation has exactly 1 inversion
in the following (n – 1) permutations: (2, 1, 3,
4,….. n), (1,3, 2, 4,…. n),..., (1, 2, 3, n–1, n). The
probability of drawing one of these permutations
is (n–1)/n!.

67. Describe an O(n log k)-time algorithm to merge k
sorted lists into one sorted list, where n is the total
number of elements in all the input lists. Use a min-
heap.

 Answer: First we remove the smallest element from
each sorted list and we build a min-priority queue
(using a min-heap) out of these elements in O(k)
time. Then we repeat the following steps: we extract
the minimum from the min-priority queue (in O(log
k) time) and this will be the next element in the sorted
order.
(a) From the original sorted list where this element

came from we remove the next smallest element
(if it exists) and insert it to the minimum-priority
queue (in O(log k) time).

(b) We are done when the queue becomes empty and
at this point we have all the numbers in our sorted
list.

(c) The total running time is O(k + n log k) = O(n log
k).

68. Show that the second largest element can be found
with n+log n–2 comparisons in the worst case.

 Answer: First we get maximum of two adjacent num-
bers for each of the pairs of the n numbers. If n is odd
then last number will be used in the next level. In the
next level we find maximum of the maximum of previ-
ous level. This we repeat till we get largest. Thus, We
have total logn levels for finding maximum. This needs
n-1 comparisons. Now, we take those numbers which
are involved in comparing with maximum and we find
maximum of them which becomes the second maxi-
mum. As we have logn levels, we will be having logn
such numbers. To find maximum of them we need
logn-1 comparisions. Thus, in total we will be using
n+logn-2 comparisions. Thus, the complexity of find-
ing second maximum with the approach is O(n+logn).

 See the following numerical example.

1 2 5 4 9 7 8 7 5 4 1 0 1 4 2 3

2 5 9 8 5 1 4 3

5 9 5 4

9 5

9

Programming, Data Structures and Algorithms 2.265

 At each step we are comparing adjacent numbers and
taking the larger of the two. It takes n-1 comparisons
to get down to the largest number, 9. Then, if we look
at every number that 9 was compared against (5, 5, 8,
7), we see that the largest one is 8, which is the second
largest in the array.

69. Describe a O(n) worst-case time algorithm that, given
a set S of n distinct numbers and a positive integer k
<= n, determines the k numbers in S that are closest to
the median of S in the sorted order of S (for simplicity
we assume that both n and k are odd, so there is one
median).

 Answer: Let m=(n + 1)/2 (the rank of the median).
Using the worst-case linear time selection algorithm
twice, we find the two elements x1, x2 with ranks
m-(k–1)/2 and m+(k–1)/2. Then we go through S and
find all elements x for which x1 <=x <= x2, these are
the solutions. The total worst-case running time is
O(n).

70. We have two input arrays, an array A with m elements
and an array B with n elements, where m <= n. There
may be duplicate elements. We want to decide if every
element of B is an element of A. Describe an algorithm
to solve this problem in O(n logm) worst-case time.

 Answer: Let us first sort A by using MERGESORT (in
O(mlogm) time). Then for each element of B we do
a binary search in the sorted list of A (in O(n logm)
time). The total worst-case running time is O((m + n)
logm) = O(n logm).

71. We have a set A having n elements where n>=2. De-
scribe a O(n) worst-case time algorithm to find two
elements

 x, y є A such that |x – y| >= |u – v| for all u, v є A.

 Answer: Find the minimum and the maximum si-
multaneously which we can do in 3n/2 comparisions.
This, O(n) time.

72. We have a set A having n elements where n>=2. De-
scribe a O(n) worst-case time algorithm to find two
elements

 x, y є A such that |x – y| <= |u – v| for all u, v є A.

 Answer: For this we sort the numbers first, then x and
y must be consecutive elements in the sorted order.
We go through the sorted list and we find the smallest
difference between two neighbouring elements.

73. An array A containing n elements is said to be up-to-
k-sorted (where (n-1)>=k>=0) if every element of A
is at most k positions from its final position when A

is sorted. For instance if A is up-to-0-sorted, then it is
sorted, and (2, 1, 4, 3, 5, 9, 6, 7, 8) is up-to-3-sorted but
it is not up-to-1 sorted, since element 9 is three posi-
tions from its final position when A is sorted.

(a) What is the average-case running time of MERGE-
SORT on an array which is up-to-48-sorted?

(b) What is the worst-case running time of INSER-
TION-SORT on an array which is up-to-48-sort-
ed?

 Answer: (a) MERGE-SORT’s running time is always
O(n log n). Thus, in this case also complexity is same.
(b) INSERTION-SORT uses time O(n) to iterate

through A, and then time O(m) to swap elements,
where m is the number of inversions. Since each
element of A is involved in at most 48 inversions,
m <= 42n, and the algorithm’s worst-case running
time is O(n).

74. Show that in a set of n distinct elements the 13-th
largest element can be found with at most n + 12 ceil
(log n) comparisons in the worst case.

 Answer: We propose to use the tournament method
and sort n elements (using n – 1comparisons). We re-
move the largest element and we replace it with –∞
in the tournament. We find the winner again using at
most ceil(log n) comparisons (only one path has to be
recomputed). We remove this element again and re-
place it with –•, etc. we repeat this 12 times. The total
number of comparisons is at most n + 12ceil(log n)

75. How can we limit the size of the queue array?

 Answer: One way to limit the size of the queue array
is to make the head and tail pointers wrap to the be-
ginning of the array whenever they reach the end of
the array. This causes the queue to “recycle” the same
array memory cells.

76. Why do we need to limit the size of the queue array?

 Answer: If we do not limit the size of the queue ar-
ray, then the queue will eventually traverse the entire
memory of the computer as items are added and re-
moved from the queue.

77. Compare the stack with queue.

 Answer: A stack is similar to a list in that the arrange-
ment of the data items is linear. The stack resembles a
list that is restricted. With a typical list, we can insert
and remove items at various places in the list. With a
stack, however, we can only insert and remove items
from the top of the stack.

78. What is the difference between peek and pop opera-
tions on the stack?

2.266 Computer Science & Information Technology for GATE

 Answer: Pop removes and returns the item on the top
of the stack. While peek returns only, will not remove
the top item.

79. Let us assume a stack contains items AABC with TOS
pointing to C. When we apply peek, peek, pop, peek,
peek then what is the output string?

 Answer: CCCBB
80. Why we don’t worry about stackfull() in linked list

based stack realisations?
 Answer: It can grow to very large extent. That is, till

system’s virtual memory is exhausted.
81. In your browser, we have freedom to move to previous

page and next page using left and right arrow icons in
your browser menu bar. Which data structure is used
there?

 Answer: Stack.
82. What are the advantages of linked list based stack

over array based stack?
 Answer: One advantage of using a linked list to im-

plement a stack is that a linked list does not have a
fixed size. This means that our linked list can grow to
the size of the stack. We do not need to worry about
setting aside a certain block of memory for the stack.
One disadvantage of using a linked list is the increased
complexity of using pointers. With pointers it is easier
to make mistakes while implementing the logic of the
stack operations.

83. How many pointers are found in any node of a binary
tree?

 Answer: Usually two. However, in some realisations
which refers to parents nodes also. Thus, there 3
pointers are found in a node.

84. When we have traveled a max heap in in-ordered
fashion, we have got elements in ascending order?
What is the comment on the data in the tree.

 Answer: Already, elements are in ascending order.
85. When we traverse a max heap, do we always get as-

cending ordered data?
 Answer: No.

86. A finite set of elements that is either empty or is parti-
tioned into three disjoined subsets is called ______.

 Answer: Tree
87. What is the complexity of Dijkstras algorithm?

 Answer: O((E+V)logV)
88. A graph contains ith row and column is zero’s. Then

number of isolated points are ____.
 Answer: One

89. In which graph traversal method, all the successors of
a visited node will be visited before visiting their suc-
cessors (successor’s of successor’s)?

 Answer: Breadth First Traversal
90. From the root node of a tree, if we execute the follow-

ing while loop, which node tree will be pointing?
 while(tree&&tree->left) tree=tree->left.
 Answer: Left most node.

91. What are minimum number of queues needed to im-
plement the priority queue?

 Answer: Two. One queue is used for actual storing of
data and another for storing priorities.

92. What is the data structure used to perform recursion?
 Answer: Stack. Because of its LIFO (Last In First Out)

property it remembers its ‘caller’ so knows whom to
return when the function has to return. Recursion
makes use of system stack for storing the return ad-
dresses of the function calls.

 Every recursive function has its equivalent iterative
(non-recursive) function. Even when such equivalent
iterative procedures are written, explicit stack is to be
used.

93. What are the notations used in Evaluation of Arith-
metic Expressions using prefix and postfix forms?

 Answer: Polish and Reverse Polish notations.
94. We have n nodes where n is odd number greater than

0. What is the worst possible height of the tree with
this n nodes?

 Answer: n.
95. We have n nodes where n is odd number greater than

0. What is the worst possible height of the tree with
this n nodes if they are organised as strictly binary
tree?

 Answer: n/2+1
96. We have n nodes where n is odd number greater than

0. What is ther worst possible number of leaf nodes if
n nodes are organised as strictly binary tree?

 Answer: n/2+1.
97. We have n nodes where n is odd number greater than

0. What is the worst possible number of non-leaf
nodes if n nodes are organised as strictly binary tree?

 Answer: n/2.
98. We have n nodes which are organised as binary tree.

What is the worst possible number of leaf nodes if n
nodes are organised as deepest binary tree?

 Answer: 1.
99. We have n nodes which are organised as binary tree.

What is the worst possible number of non-leaf nodes
if n nodes are organised as deepest binary tree?.

 Answer: n–1.
100. We have n (where n=2k–1, for integer value of k)

nodes which are organised as binary tree. What is the

Programming, Data Structures and Algorithms 2.267

possible number of leaf nodes if n nodes are organised
as least height binary tree?.

 Answer: 2k–1.
101. We have n (where n=2k–1, for integer value of k)

nodes which are organised as binary tree. What is the
possible number of non-leaf nodes if n nodes are or-
ganised as least height binary tree?.

 Answer: 2k–1 –1.
102. Which tree all the nodes will be having their balance

values as 0?.
 Answer: Complete binary tree.
103. We have n (where n = 2k – 1, for integer value of k)

nodes which are organised as binary tree. What is the
possible balance values of nodes if n nodes are organ-
ised as least height binary tree?

 Answer: 0.
104. A queue is maintained in an array, and F and R are the

front location and rear location of the queue respec-
tively. Obtain Formula for N, the number of elements
in the queue in terms of F and R.

 Answer: Number of Elements = R – F + 1
105. Explain the difference between general queue and

circular queue.
 Answer: There is no “first” or “last” concept in circu-

lar queues in general. However, we can maintain them
if needed externally. Main advantage of circular queue
is addition and removal can be carried out either at
front or rear easily.

106. The following code fragment is proposed to a new
node into a binary search tree. Will it work?

 struct node {

 int info;

 struct node *left;

 struct node *right;

 };

 struct node *Insert(struct node *newNode, struct

node *Root){

 if(Root == NULL) return newNode;

 if(newNode->info > Root->info)

 Root->right = Insert(newNode, Root->right);

 else

 Root->left = Insert(newNode, Root->left);

 return (Root);

 }

Answer: Yes.
107. Assume that we have inserted numbers 1,2,7,9, and 10

into a empty binary search tree. How many times, we
have to apply rotations to get the balanced tree. What
type of rotations are needed?

 Answer: Two rotations of left type.
108. Five descending ordered elements are inserted into

a binary search tree?. How many rotations and what
type of rotations are needed to get AVL tree?

 Answer: Two rotations of right type.
109. We have inserted 7 elements into an empty binary

search tree. It is observed that all the rotations which
took place during the AVL tree formation are right
rotations. What is the nature of data entered?

 Answer: All the seven elements are ascending or-
dered elements.

110. How many different trees are possible with n nodes?
 Answer: 2n – n
111. What are the different trees with three nodes?
 Answer:

i ii iii iv v

112. In order and pre-order traversals of a tree is given as:
 Inorder : D H B E A F C I G J
 Preorder: A B D H E C F G I J
 Find out the topology of the tree.
 Answer:

I

B

E
G

H

D

A

J

C

F

113. Let G be a graph whose vertices are the integers 1
through 8, and let the adjacent vertices of each vertex
be given by the table below:

Vertex Adjacent Vertices

1 2, 3, 4
2 1, 3, 4
3 1, 2, 4
4 1, 2, 3, 6
5 6, 7, 8
6 4, 5, 7
7 5, 6, 8
8 5, 7

 Assume that, in a traversal of G, the adjacent vertices

2.268 Computer Science & Information Technology for GATE

of a given vertex are returned in the same order as
they are listed in the above table.
(a) Draw G.
(b) Order the vertices as they are visited in a DFS tra-

versal starting at vertex 1.
(c) Order the vertices as they are visited in a BFS tra-

versal starting at vertex 1.
 Answer:

 (a)
1 3 8 7

2 4 6 5

 (b)1-2-3-4-6-5-7-8
 (c) 1-2-3-4-6-5-7-8
114. What is the difference between a path and a cycle?
 Answer: A path is a sequence of alternating vertices

and edges that begins with a source vertex and ends
with a destination vertex. Each edge is preceded and
followed by its endpoints. A cycle is circular sequence
of alternating vertices and edges that starts and ends
at the same vertex. Each edge is preceded and fol-
lowed by its endpoints.

115. Suppose a graph with 5 vertices with no self-loops.
(a) What is the maximum number of edges if graph is

undirected?
(b) What is the maximum number of edges if graph is

directed?
(c) Are the results of (a) and (b) different? Why or

why not?
 Answer:

(a) (5*4) / 2 = 10
(b) 5*4 = 20
(c) They are different because two adjacent vertices

can have at most 1 undirected edge while they can
have 2 directed edges.

116. Suppose last points to the last node in a singly linked
list list1 whose front is head1. Suppose head2 points to
the first node in another singly linked list list2. Which
statement will append list2 to the end of list1 (ie. make
both lists into one linked list with list1’s elements be-
fore list2)?
A. last = head2.next;
B. head2 = last;
C. last = head2;
D. head2.next = last;
E. last.next = head2;

 Answer: E
 A, B, C do not modify the lists in any way, they only

modify the last and head2 pointers. B is fatal and will
lose list2. C loses track of the end of list1. D kills list2
by dropping all nodes after the first node and pointing
the first node to the last node of list1.

117. Which of the following shows the correct relationship
among some of the more common computing times
for algorithms? (lg n = log2n)
A. O(lg n) < O(n) < O(n lg n) < O(2n) < O(n2)
B. O(n) < O(lg n) < O(n lg n) < O(2n) < O(n2)
C. O(n) < O(lg n) < O(n lg n) < O(n2) < O(2n)
D. O(lg n) < O(n) < O(n lg n) < O(n2) < O(2n)
E. O(lg n) < O(n lg n) < O(n) < O(n2) < O(2n)

 Answer: D
118. Consider performing sequential search for an element

in the array A[1...n]. The average number of elements
that need to be checked to perform a successful search
is
A. (n + 1) / 2
B. n(n + 1) / 2
C. lg n
D. n2

E. n(n + 1)(2n + 1) / 6
 Answer: A
 The element can be found in either one of the n loca-

tions A[1], A[2], A[3], ..., A[n], and the number of
respective checks required are 1, 2, 3, ..., n. The total
number of checks is therefore 1+2+3+...+n = n(n+1) /
2. However, above are n possible cases, so the average
is obtained by dividing the total by n, giving (n+1) / 2.

119. What is indirection? Explain, indirection, double in-
direction, triple indirection.

 Answer: Indirection is the process of accessing data
through a pointer rather than accessing it directly.
Double indirection occurs when you have a chain of
two pointers pointing to a data cell such that pointer
1 refers to pointer 2, and pointer 2 refers to the data.
This is called double indirection because you must
follow two links to access the data. For triple indi-
rection, you must follow three pointers to reach the
stored data. The diagram below illustrates triple indi-
rection.

20052004 2007 S

2007200520042003 2006

......

Programming, Data Structures and Algorithms 2.269

120. What are sequential lists?
 Answer: List structures that are implemented with

arrays are known as sequential lists. These lists have
two disadvantages. First, the list cannot contain gaps
so we are often forced to shift many of the list items
when we want to insert a new item. Second, the list
cannot grow in size because it uses a fixed size array.

121. What happens when a stack realised using arrays be-
comes full?

 Answer: We can not insert any more items till some
items are popped. Usually, any attempt of pushing is
raised as an error and program will be terminated.

122. Compare and contrast graphs with trees.
 Answer: Graphs are similar to trees such that both the

data structures are represented with nodes and edges.
Graphs are different from trees such that graphs do
not have restrictions on the relationships between
nodes. For example, tree nodes can only have one par-
ent node. Graphs do not have the concept of parent
and child nodes.

123. In terms of space, why is heap sort attractive?
 Answer: We can do both heapifying and reheaping in

the same array. It is in-core method.
124. What is the maximum depth of a heap with n ele-

ments?
 Answer: n.
125. A binary tree in which the heigths of the two subtrees

of every node never differ by more than 1 is called
as___.

 Answer: Balanaced Tree
126. A complete binary tree in which the key value in each

node is no smaller than the key values in its children.
Is this definition correct?

 Answer: No.
127. A matrix i.e, a two dimentional array which has many

zeroes as its element is called as ___.
 Answer: Sparse matrix
128. A two dimensional nxn array, say A, with the prop-

erty that A[i][j] = 1 if the edge (i,j) (for a directed
graph) is in E(G). Then A is called as __.

 Answer: Adjacency matrix
129. An array of elements is sorted by choosing a pivot ele-

ment and by partition.The sorting process is called as
___.

 Answer: quick sorting
130. Binary searching requires data to be in what order?
 Answer: Ascending order or descending
131. For implementation of recursion tree we use ___.
 Answer: stacks

132. If a complete binary tree with n nodes is represented
sequentially, then for any nodes with index i, the chil-
dren are at

 Answer: 2*i+1 and 2*i+2
133. If a complete binary tree is stored sequentially, then

the number of empty elements before last element
are___.

 Answer: Zero
134. If an almost complete binary tree is stored sequen-

tially, then the number of empty elements before last
element are___.

 Answer: Zero
135. If the records that it’s sorting are in main memory

then the sort is called as ___.
 Answer: Internal sorting
136. In a binary tree that has all of its leaf nodes at the low-

est level the tree is said to be ____.
 Answer: Either complete binary tree or almost com-

plete binary tree
137. In undirected graph in which every node is reachable

from each other is termed as ____.
 Answer: Source
138. In which of the data structure we can both add/re-

move at both ends but not in the middle?
 Answer: De-Queue
139. The computing time of the recursive merge sort is __.
 Answer: nlogn
140. The height of a complete binary tree with n nodes is

___.
 Answer: log(n+1)
141. The matrix with meaningful elements along the di-

agonal is ___.
 Answer: Band matrix. Diagonal matrix is a subcase of

it.
142. The maximum number of nodes on level i of a binary

tree is i=>1
 Answer: 2i

143. The maximum number of nodes in a binary tree of
depth k is k=>1

 Answer: 2k – 1
144. What is the best case running time of bubble sort?
 Answer: O(n2)
145. What is the complexity of re-heaping?
 Answer: O(nlogn)
146. What kind of data structure would make insertion

sort particular in-efficient?
 Answer: linked list

2.270 Computer Science & Information Technology for GATE

147. For implementation of recursion tree we use___.
 Answer : stack
148. In the addition of long positive integers using circular

lists we use the____.
 Answer : circular list or double linked list
149. We perform the folowing operation to traverse a non

empty binary tree in an order
 1. Traverse the left subtree in that so called order
 2. Visit the root.
 3. Traverse the right subtree in that so called order
 Answer. inorder
150. If the records that it’s sorting are in main memory

then the sort is called as____.
 Answer : internal
151. Given two functions f(n) & g(n),we say that f(n) is on

the order of g(n) if there exist positive integers a & b
such that f(n)<=a*g(n) for all n=>b. is called f(n)___.

 Answer : O(g(n))
152. The efficiency of the buble sort is ___.
 Answer : O(log n)
153. An array of elements is sorted by choosing a pivot ele-

ment & by partition.The sorting process is called ___.
 Answer : Partition Exchange Sort or Quicksort
154. The efficiency of the quicksort is ___.
 Answer : O(nlogn)
155. The efficiency of the Heapsort is ___.
 Answer : O(nlogn)
156. Is it possible to define an heap as an complete binary

tree such that the content of each node is greater than
or equal to the content of its father?

 Answer : Yes, ascending heap or min heap
157. An acyclic graph in which every node has one or no

predecessors may be defined as ___.
 Answer : forest
158. The space requirements for the quicksort depend on

the
 Answer : number of nested recursive calls & size of

the stack
159. The efficiency of Straight Selection Sort is ___.
 Answer : O(n2)
160. The average sorting time for binary tree sort is ___.
 Answer : O(nlogn)
161. To denote the empty stack the top is set to ___.
 Answer : -1
162. The expression AB/C-DE*+AC*- is in ___.
 Answer : postfix

163. The computing time of the recursive merge sort is__.
 Answer : O(nlogn)
164. The maximum number of nodes in a binary tree of

depth k is k=>1
 Answer : (2*2*2*.....to k)-1
165. If a complete binary tree with n nodes is represented

sequentially, then for any nodes with index i,1<= i
<=n,we have LeftChild(i) is at if it is < or = n

 Answer : 2i
166. A complete binary tree in which the key value in each

node is no larger than the key values in its children
 Answer : min heap
167. A two dimentional nxn array, say A, with the property

that A[i][j] = 1 if the edge (i,j) (for a directed graph)
is in E(G)

 Ans : Adjacency matrix

OBJECTIVE TYPE QUESTIONS

1. We have a chocolate of rectangular size with mxn
rectangular pieces. We need to divide into pieces
along the grooves. You are not allowed to split two
or more stacked pieces at a time. The approach which
divides into individual pieces has
A. Best case complexity
B. Worse case complexity
C. Average complexity
D. Any trail needs same number of splits.

2. What is the complexity of third step in the following
algorithm to find whether the graph is connected or
not.

1. Let n is the number of nodes (vertexes) in the giv-
en graph G.

2. Take first node (vertex) in the set of nodes or ver-
texes (V(G)) and mark it as visited.

3. While there is an edge (i,j) that is member of set
of edges (E(G)) with vertex i marked and j un-
marked, mark j as visited.

4. If all the vertexes are marked, then graph G is de-
clared as connected otherwise not.

A. O(1) B. O(2)
C. O(n2) D. O(n)
E. O(logn)

3. Number of possible spanning trees with n vertexes
A. !n B. 2n

C. nn–2 D. n2

Programming, Data Structures and Algorithms 2.271

4. Possible number of spanning trees with 4 vertexes
A. 4 B. 1
C. 16 D. None

5. Assuming that bubble sort is applied on the data: 12
10 3 37 57 2 23 9 . After first pass, largest element goes
to last location, after second pass of the bubble sort
algorithm second largest element goes to last but one
place, and vice vers a. Where will be 3 after the com-
pletion of 3rd pass of the algorithm. Assume initially
12 is at 0th location, 10 at 1st location, and vice versa.
A. 0 B. 1
C. 2 D. 3

 Answer:

Initially

Pass 1 Pass 3

Pass 4

Pass 2
Pass 5

6. Assuming that insertion sort is applied on the data: 12
10 3 37 57 2 23 9 . Where will be 37 after the comple-
tion of 3rd pass of the algorithm. Assume initially 12 is
at 0th location, 10 at 1st location, and vice versa.
A. 0 B. 1
C. 2 D. 3

 Answer:

Initially Pass 5, (next = 2)

Pass 1, (next = 10)

Pass 2, (next = 3) Pass 6, (next = 23)

Pass 3, (next = 37) 2 3 10 12 23 37 57 57
2 3 10 12 23 37 37 57
2 3 10 12 23 23 37 57
2 3 10 12 12 23 37 57

Pass 4, (next = 57) 2 3 10 10 12 23 37 57

7. Assuming that insertion sort is applied on the data: 12
10 3 37 57 2 23 9 . How many elements will be moving
when 37 is inserted at its appropriate place? Assume
initially 12 is at 0th location, 10 at 1st location, and vice
versa.
A. 0 B. 1
C. 2 D. 3

8. Worst case complexity of quick sort
A. O(nlogn) B. O(logn)
C. O(n2) D. O(n2 logn)

9. Quick sort gives best behavior when pivot element is
A. Always first element B. Always median
C. Any element D. None

10. One way to build a heap is to start at the end of the
array (the leaves) and push each new value up to the
root. The respective recurrence relation for its time
complexity
A. T(n)=T(n-1)+O(n)
B. T(n)=T(n-1)+O(1)
C. T(n)=T(n-1)+log(n)
D. None

11. One way to build a heap is to start at the end of the
array (the leaves) and push each new value up to the
root. Its time complexity is
A. O(n) B. O(nlogn)
C. O(n2logn) D. None

12. T(n)=2T(n/2)+logn is
A. O(n) B. O(nlogn)
C. O(n2logn) D. None

13. Let A[1::n][1::n] be a two-dimensional array of real
numbers that is sorted both row-wise (A[x][y] < A[x]
[y + 1] for all x and y) and column-wise (A[x][y] <
A[x + 1][y] for all x and y). Pick up the correct state-
ment.
A. If we represent all the elements of 1st row, 2nd row,

and vice versa, all elements will be in descending
order.

B. If we represent all the elements of 1st row, 2nd row,
and vice versa, all elements will be in ascending
order.

C. If we represent all the elements of 1st row, 2nd row,
and vice versa, all elements will be in descending
order if all the elements are unique elements.

D. None
14. We have a complete graph with n vertexes. If we pro-

pose to add another vertex to it and resulting graph
should also be complete graph, then the number of
new edges that are to be added are

2.272 Computer Science & Information Technology for GATE

A. n–1 B. n
C. 2n D. None

15. A complete graph with n vertexes will be having ____
edges
A. n B. 2n
C. n(n–1)/2 D. n2

16. Number of moves needed for n disks in Towers of
Honoi problem to transfer n disks from one peg to
another peg with an auxialary peg are
A. 2n B. 2n–1
C. 2n–1 D. NP complete problem

17. The recurrence relation: a0 = 5
 an = nan–1

 is equivalent to
A. an=2n! B. an=5n!
C. an=2n D. an=2n!
E. None

18. Big-oh complexity of an algorithm whose time com-
plexity is

 T(1) = a, and T(n) = b + T(n–1) for n > 1
A. O(2n) B. O(n)
C. O(n!) D. O(n2)

19. What is the order of growth of the running time of an
algorithm if its running time is:

 T(n) = [n(n log n + n2 + 3) + log(0.5n)] / n2 + 3.14
A. 3.14n B. 3.14n

C. n D. None
20. What is the order of growth of the running time of an

algorithm if its running time is:
 T(n) = 3.14n + cos(n*60)

A. 3.14n B. 3.14n

C. none D. None
21. _____ data structure is preferred to access element

through its index.
A. Linked list B. Tree
C. B-Tree D. Array

22. If one wants to add and delete elements quickly with-
out reshuffling the rest
A. Linked list B. Tree
C. B-Tree D. Array

23. To access first element quickly
A. Linked list B. Queue
C. B-Tree D. Stack

24. To access last element quickly
A. Linked list B. Queue
C. B-Tree D. Stack

25. If the recursive call keeps calculating the same things
over and over again, we can use ___ which stores par-
tial results already calculated and to be used again.
A. Divide and conquer algorithm
B. Recursive
C. Dynamic programming
D. None

26. The tree that is used for Huffman coding of symbols is
A. Binary B. Balanced
C. AVL D. B-Tree

27. A Binany Search Tree search complexity is log2N,
where N is the number of elements that are main-
tained as Binany Search Tree. If, we change number of
childs of the nodes to c instead of 2 in Binany Search
Tree then search complexity becomes
A. (log2N)/c B. log2(N/c)
C. logcN D. None

28. The Binary Heap is a priority queue that allows inser-
tion of new items and the removal of the minimum
item in
A. Constant time B. Linear time
C. Logarithmic time D. None

29. Four cities are connected by a road network as shown
in the figure. In how many ways can you start from
any city and come back to it without travelling on the
same road more than once ?

A. 8 B. 10
C. 12 D. None

30. Worst case time complexity of insertion sorting is
A. O(n) B. O(nlogn)
C. O(n2) D. O(n3)

31. An isolated vertex degree
A. 0 B. 1
C. 2 D. None

32. A tree with n vertexes or nodes will be having ___
edges
A. n B. n–1
C. n+1 D. n2

33. _______ is a technique that determines the solution
by systematically searching the solution space for the
given problem
A. Dynamic B. Backtracking
C. Greedy D. None

Programming, Data Structures and Algorithms 2.273

34. What is the big-oh complexity for the following code
fragment?

 for (int i = 0; i < 1000; i++) a[i] = i * i;
A. O(1000) B. O(1)
C. O(n) D. None

35. Heap
A. A heap is an area of memory from which the pro-

grammer can allocate storage.
B. A heap is a binary tree in which every node has

the heap property. A node has the heap property if
the value in the node is at least as large as the value
in any child of that node.

C. Both are valid
D. None

36. An algorithm which “remembers” previous results
and uses them when computing new results.
A. Devide and conquer
B. Dynamic programming
C. Travelling salesman problem
D. Recursive mehods

37. The following code counts the number of digits in a
positive integer variable number:
int n = number;

 int count = 0;
 while (n > 0) {
 n = n / 10;
 count++;
 }
 How long (in Big-O terms) does this method take?

A. O(1)
B. O(log(n))
C. O(32767) in the case of 16 bit computer
D. n in the case of n-bit computer
E. O(n)

38. Number of connected components in a Binary Search
Tree with N nodes
A. 0 B. 1
C. N D. N–1

39. By adding a new node to a Binary Search Tree with
N nodes, the number connected components in it
changes to
A. 0 B. N+1
C. N–1 D. No change

40. A graph without self-loops or parallel edges is called
A. Simple graph B. General graph
C. Acyclic graph D. None

41. The algorithm which requires fixed amount of storage
is
A. Heap sort B. Quick sort
C. Linked list D. None

42. The data structure in which part of the data resides in
main memory and part in secondary memory
A. Binary Search Tree B. Linked list
C. B-Tree D. Red-block trees

43. Internal hashing complexity
A. O(1)
B. O(n), where n is number of records
C. O(b), where b is number of buckets
D. None

44. A set of values (23, 18, 29, 28, 39, 13, 16, 42, 17) are
stored in an array having 11 locations (array indexes
starts from 0) using linear probing and hashing func-
tion of key modulus number of locations. Possible lo-
cations of 17 and 29 are:
A. 1,8 B. 0,8
C. 2,8 D. 3,9

45. A set of values (23, 18, 29, 28, 39, 13, 16, 42, 17) are
stored in an array having 11 locations (array indexes
starts from 0) using quadratic probing and primary
hashing function of key modulus number of locations
is used. Possible locations of 17 and 29 are:
A. 1,8 B. 4,8
C. 2,8 D. 3,9

46. Finding minimum or maximum out of the numbers
that are stored using hashing is
A. O(1) B. O(n)
C. O(n2) D. None

47. Find invalid statement
A. In hashing, complexity of insertion, deletion,

search operations is O(1)
B. In Binary Search Tree complexity of insertion, de-

letion, search operations is O(nlogn)
C. In sorted array, complexity of insertion, deletion,

search operations is O(n)
D. None

48. Proven lower bound for comparision based sorting
A. O(n) B. O(nlogn)
C. O(n2) D. O(n1.67logn)

49. Find odd man out of the following
A. Bucket sorting B. Counting sorting
C. Bubble sorting D. Radix sorting

50. Linear sorting method
A. Radix sorting B. Bubble sorting
C. Heap sorting D. Quick sorting

2.274 Computer Science & Information Technology for GATE

51. Worst and average case complexity of merge sorting
A. O(n2) B. O(n)
C. O(nlogn) D. None

52. Worst and average case complexity of heap sorting
A. O(n2) B. O(n)
C. O(nlogn) D. None

53. The array operation that has an asymptotic complex-
ity of O(1)
A. Inserting an element
B. Deleting an element and moving others towards

0th element
C. Accessing an element
D. None

54. What is the complexity of the following code frag-
ment in big-oh notation?

 for (int i=0; i<=n/2; i += n/2) {
 for (int k=0; k<n/2; k++) {
 print (i + k);
 }
 }

A. O(n/2) B. O(3n)
C. O(nlogn) D. O(n)

55. What is the complexity of the following code frag-
ment in big-oh notation?

 for (int k=0; k<n-1; k++) {
 for (int m=1; m<n; m*=2)
 print(k*m);
 }

A. O(n/2) B. O(3n)
C. O(nlogn) D. O(n)

56. In hashing, number of buckets, N Should be chosen
such that
A. It is even
B. It is odd
C. It is the largest prime which is less than or equal to

number items to be stored
D. It is should be factor to number items to be stored

57. In hashing, if loading factor is greater than 1 then
A. No collisions
B. Probability of collision is 0.01
C. Probability of collision is 1
D. None

58. 1 2/ i

i

nÂ
A. 0 B. 1
C. <1 D. None

59. Any set of regions defined by n lines in the plane can
be coloured with minimum of ___ colours such that
no two regions that share an edge will be having same
colour.
A. 2
B. 3
C. 4
D. More than 2

60. T(n) = 2T(n/3) + dn
A. O(n2) B. O(2n)
C. O(n) D. None

61. T(n)=2T(n/2)+dn
A. O(n2) B. O(nlogn)
C. O(n) D. None

62. T(n)=4T(n/2)+dn
A. O(n2) B. O(nlogn)
C. O(n) D. None

63. What is the average case big-oh cost of adding a new
item to a set of n items that are maintained in hash-
table using linear probing and table is less than half
full
A. O(n) B. O(0)
C. O(1) D. None

64. If we are trying to add an item to a hash table that
uses open addressing and if first cell which we look
is already contains an item where will we put the new
item
A. In the same cell
B. In the last cell
C. In the next free cell that is right to the first cell
D. None

65. When hash table that uses linear probing will be
showing worst performance?
A. When the table is almost full
B. When the table is half full
C. While inserting first item
D. While inserting last item even if the table has 50%

empty cells
66. If 15 elements are maintained in Binary Search Tree

fashion then minimum and maximum possible
heights
A. 3,4 B. 4,15
C. 4,8 D. None

67. The worst case big-oh (asymptotic) cost of searching
an element in a Binany Search Tree of depth d
A. O(logn) B. O(d)
C. O(2d) D. None

Programming, Data Structures and Algorithms 2.275

68. What property must be true of a Binany Search Tree
for insertion/access/deletion to have O(log(n)) com-
plexity in all cases?
A. It should be skewed
B. It should be balanced such that all of its leaf nodes

will be at lowest level or one level above the lowest
level

C. It should be strictly binary
D. None

69. Run-time analysis of a program involves
A. Counting the number of arithmetic and other op-

erations required for the program to run
B. Accounting the number of megabytes required

for the program to run
C. Accounting the number of seconds required for

the program to run
D. Accounting both the number of seconds plus the

memory needed for the program
E. Accounting the number of seconds times the

number of megabytes needed for the program
70. What is the worst-case time complexity of the follow-

ing loop that uses an integer variable n?
 while (n > 0){
 n/=10;
 }

A. O(1) B. O(log n)
C. O(n) D. O(n2)

71. Tree algorithms typically run in time O(d). What is d?
A. The depth of the tree.
B. The number of divisions at each level.
C. The number of entries in each node.
D. The number of nodes in the tree.
E. The total number of entries in all the nodes of the

tree.
72. Consider the following binary tree which is traversed

in inorder manner using the following recursive ap-
proach. Assuming that currently most recent recur-
sive call is made with the node value 11, how many
activation records are seen on the stack including the
most recent one.

14

11

30

407

3 101

2

 int inord(struct Node *H){
 if(H){

 inord(H->left);
 printf(“%d\n”, H->n);
 inord(H->right);
 }
 }

A. 1 B. 2
C. 3 D. 4

73. Consider the following binary tree which is traversed
in inorder manner using the following recursive ap-
proach. Maximum how many activation records are
seen simultaneously in the stack during the execution
of the function.

14

11

30

407

3 101

2

 int inord(struct Node *H){
 if(H){
 inord(H->left);
 printf(“%d\n”, H->n);
 inord(H->right);

}
}

A. 1 B. 2
C. 3 D. 5

74. A language supports array indexes starting from zero.
Let A is its base address and employs row major or-
der of storage and the array is 2D array; then find the
valid one
A. If address of first element of any row is given then

we can find out 2D array dimensions
B. If addresses of two elements (along with their row

& column indexes)of any row is given then we can
find out 2D array dimensions

C. If addresses of any two elements (along with their
row & column indexes)of any row is given then
we can find out 2D array column size

D. Addresses of any two elements along with their
row & column indexes are adequate to find any
dimensional array sizes.

75. If the array A(b1:e1, b2:e2, ……, bn:en) is stored in
row major order, in the language, array name A itself
pointer to the array, then A(i1,i2,…in) can be located
at:
A. A+ i1*(e1–b1) + i2 *(e2–b2) + …… + in*(en–bn)

B. A+ (i1–b1)* (e1–b1) + (i2–b2)*(e2–b2) + …… +
(in–bn*)(en–bn)

2.276 Computer Science & Information Technology for GATE

C. A + S i
n

=1 (ij–bj)aj where

 aj= Pk = j + 1
n (ek–bk+1), 1 <= j <n and an=1

D. A + Si
n

=1 (ij – bj –1)aj where

 aj= Pk = j + 1
n(ek–bk+1), 1 <= j <n and an=1

76. Running time of an algorithm is independent of
A. OS B. Input size
C. HW D. None

77. Big O complexity of the following code fragment
 for(i=4;i<n;i++){
 x=x*f;
 while(i<4)i++;

}

A. O(n) B. O(n2)
C. O(4n) D. None

78. What is the time complexity of the following code
fragment?
int fact(unsigned n){

 if(n)return 1;

 else

 return n*fact(n-1);

 }

A. O(n) B. O(log(n))
C. O(1) D. O(n2)

79. What is the time complexity of the following code
fragment?

 int Fib(unsigned n){

 if(n<=1)return 1;

 else

 return Fib(n-1)+Fib(n-2);

 }

A. Linear B. Cubic
C. exponential D. O(n!)

80. ______ complexity is exponential time complexity
A. Linear search algorithm
B. Brute force
C. Nested loops
D. Recursive calls

81. Binary searching can not be applied on a single linked
list as
A. We can not index nodes of a linked list
B. We can index nodes of a linked list
C. We can not move up-wards in a single linked list
D. None

82. Time complexity of finding middle node of a single
linked list

A. O(1) B. O(log(n))
C. O(n) D. O(n/2)

83. Time complexity of the following code fragment
 for(i=1;i<n;i*=3)
 for(j=1;j<n;j*=5)
 for(k=1;<n;k++) { s++;}

A. O(n) B. O(nlogn)
C. O(nlog2n) D. O(n2)

84. Minimum possible hight of a binary tree that is
formed by adding 13 keys
A. 4 B. 3 C. 4.5 D. 5

85. What is the benefit of using a linked-list over an ar-
ray-based list?
A. No preset size limit
B. No “shifting” to move data around on insertion or

removal, which is good when copying is expen-
sive

C. Both a and b
D. None of the above

86. Removing an item from an arbitrary position in an
array-based list takes worst-case
A. O(1) B. O(lgn)
C. O(n) D. O(nlgn)

87. Removing last item from an array-based list takes
worst-case
A. O(1) B. O(lgn)
C. O(n) D. O(nlgn)

88. Assuming a binary tree creation does not explicitly
keep track of its depth, what is the best Big-O run-
ning time of the function that calculates the depth of
the tree?
A. O(1) B. O(lgn) C. O(n) D. O(nlgn)

89. A 2-3 Tree is a type of
A. Binary search tree B. Search tree
C. Binary tree D. AVL tree

90. Number of data items in a leaf node of a 2-3 tree
A. 1 B. 1 or 2
C. 2 D. 2 or 3

91. A 2-3 Tree storing n items will generally have a small-
er depth than a binary search tree storing n items, but
will require about the same number of comparisons
to traverse from root to leaf.
A. True
B. False, it will require fewer comparisons
C. False, it will require more comparisons
D. There is no way to compare the two structures

92. The partition step of Quick-sort can be done without
allocating additional storage in O(lgn) steps

Programming, Data Structures and Algorithms 2.277

A. True
B. False, it requires O(n) steps
C. False, it cannot be done in place but does take

O(lgn) steps
D. False, it cannot be done in place and requires O(n)

steps
93. What happens if delete p; statement is executed?

A. p is deleted from the heap.
B. p is deleted from the stack.
C. The variable which p points to is deleted but p’s

value remains the same
D. All variables that point to p are deleted, p remains

unaffected.
94. All recursive algorithms must have a base case

A. True B. False
95. Which of the following data structures would be most

appropriate for representing path of a traveller who
will take the reverse path on the return trip?
A. A linked list B. A stack
C. A queue D. A tree

96. Find the correct statement
A. n3 grows faster than n2log42n
B. n grows faster than nlogm where logm is a con-

stant
C. 22n grows faster than 3n

97. For a binary search tree, which of the following can be
implemented in O(1)
A. Size B. Insert
C. Max D. isEmpty

98. For a binary search tree, which of the following would
be easiest to implement without Recursion.
A. Size B. Depth
C. Max D. None of the above

99. An adjacency matrix for a graph with n nodes
A. Uses O(n2) space and gives O(1) lookup to find

edges
B. Uses O(n) space and gives O(1) lookup to find

edges
C. Uses O(n2) space and takes O(n) lookup to find

edges
D. Uses O(n) space and takes O(n) lookup to find

edges
100. Which of the following is the run-time for the de-

queue operation on a linked-list-based queue?
A. O(1) B. O(log n)
C. O(n) D. O(n log n)
E. O(n2)

101. Which of the following is the average-case run-time
for the insert operation on a Binany Search Tree?
A. O(1) B. O(log n)
C. O(n) D. O(n log n)
E. O(n2)

102. Which of the following is the run-time for QuickSort
if the largest value in the list is always chosen as the
pivot?
A. O(1) B. O(log n)
C. O(n) D. O(n log n)
E. O(n2)

103. Two important efficiency measures of an algorithm
A. Processor and memory
B. Complexity and capacity
C. Time and space
D. Data and space

104. The time factor when determining the efficiency of
algorithm is measured by
A. Counting nano seconds involved
B. Counting the number of key operations
C. Counting the number of kilos of statements
D. Counting the kilobytes of algorithm

105. The space requirements of an algorithm is represent-
ed by
A. Counting the maximum memory needed by the

algorithm
B. Counting the minimum memory needed by the

algorithm
C. Counting the average memory needed by the al-

gorithm
D. Counting the maximum disk space needed by the

algorithm
106. Which of the following case does not exist in com-

plexity theory?
A. Best case B. Worst case
C. Average case D. Null case

107. The Worst case behavior of linear search algorithm is
seen when
A. Item is somewhere in the middle of the array
B. Item is not in the array at all
C. Item is the last element in the array
D. Item is the last element in the array or is not there

at all
108. The average case occur in linear search algorithm

A. When item is somewhere in the middle of the ar-
ray

B. When the given item is not in the array.

2.278 Computer Science & Information Technology for GATE

C. When item is the last element in the array
D. When item is the last element in the array or is not

there at all
109. The complexity of the average case of an algorithm is

A. Much more complicated to analyze than that of
worst case

B. Much more simpler to analyze than that of worst
case

C. Sometimes more complicated and some other
times simpler than that of worst case

D. None of the above

110. The indirect change of the values of a variable in one
module by another module is called
A. Internal change
B. Inter-module change
C. Side effect
D. Side-module update

111. The operation of processing each element in the list is
known as
A. Sorting B. Merging
C. Inserting D. Traversal

112. Finding the location of the element with a given key
value is:
A. Traversal B. Search
C. Sort D. None of above

113. Arrays are best data structures
A. For relatively permanent collections of data
B. For the size of the structure and the data in the

structure are constantly changing
C. For both of the above situation
D. For none of the above situation

114. Linked lists are best suited
A. For relatively permanent collections of data
B. For the size of the structure and the data in the

structure are constantly changing
C. For both of above situation
D. For none of above situation

115. The elements of an array are stored successively in
memory cells because
A. By this way computer can keep track only the

address of the first element and the addresses of
other elements can be calculated

B. The architecture of computer memory does not
allow arrays to store other than serially

C. Both of above
D. None of above

116. Which of the following data structures are indexed
structures?
A. Linear arrays B. Linked lists
C. Both of above D. None of above

117. Which of the following is not the required condition
for binary search algorithm?
A. The list must be sorted
B. There should be the direct access to the middle

element in any sub-list
C. There must be mechanism to delete and/or insert

elements in list
D. None of above

118. Which of the following is not a limitation of binary
search algorithm?
A. Must use a sorted array
B. Requirement of sorted array is expensive when a

lot of insertion and deletions are needed
C. There must be a mechanism to access middle ele-

ment directly
D. Binary search algorithm is not efficient when the

data elements are more than 1000.
119. Which of the following data structure can’t store the

non-homogeneous data elements?
A. Arrays B. Records
C. Pointers D. None

120. Which of the following data structure store the homo-
geneous data elements?
A. Arrays B. Records
C. Pointers D. None

121. Which of the following statement is false?
A. Arrays are dense lists and static data structure
B. Data elements in linked list need not be stored in

adjecent space in memory
C. Pointers store the next data element of a list
D. Linked lists are collection of the nodes that con-

tain information part and next pointer
122. Binary search algorithm can not be applied to

A. Sorted linked list
B. Sorted binary trees
C. Sorted linear array
D. Pointer array

123. When new data are to be inserted into a data struc-
ture, but there is no available space; this situation is
usually called
A. Underflow B. Overflow
C. Housefull D. Saturated

Programming, Data Structures and Algorithms 2.279

124. Which of the following is two way list?
A. Grounded header list
B. Circular header list
C. Linked list with header and trailer nodes
D. None of above

125. When in-order traversing a tree resulted E A C K F H
D B G; the preorder traversal would return
A. FAEKCDBHG B. FAEKCDHGB
C. EAFKHDCBG D. FEAKDCHBG

126. To represent hierarchical relationship between ele-
ments, which data structure is suitable?
A. Deque B. Priority
C. Tree D. All of above

127. In a binary tree, certain null entries are replaced by
special pointers which point to nodes higher in the
tree for efficiency. These special pointers are called
A. Leaf B. Branch
C. Path D. Thread

128. The inorder traversal of tree will yield a sorted listing
of elements of tree in
A. Binary trees B. Binary search trees
C. Heaps D. None of above

129. A ________ tree is a tree where for each parent node,
there is only one associated child node.
A. AVL tree
B. Rooted complete binary tree
C. Complete binary tree
D. Degenerate tree

130. In a heap, element with the greatest key is always in
the ___________ node.
A. Leaf
B. Root
C. First node of left sub tree
D. First node of right sub tree

131. In _____________tree, the heights of the two child
subtrees of any node differ by at most one.
A. Binary tree B. Red block tree
C. Splay tree D. AVL tree

132. It is observed that an algorithm with problem size of
10 to be taking 1ns and if we increase the problem size
by ten fold, algorithm is observed to be taking 2 ns,
then probable order of the algorithm
A. Linear B. Quadratic
C. Logarithmic D. Exponential

133. It is observed that a quadratic complexity algorithm
with problem size of 10 to be taking 10ns and if we

increase the problem size by ten fold then probable
time it takes is:
A. 100ns B. 1000ns
C. 10000ns D. 500ns

134. If non lead nodes of a binary tree contains exactly two
children then it is
A. Totally balanced tree
B. Complete binary tree
C. Both
D. None

135. Find in correct one
A. A degenerate tree is like a single linked list.
B. A degenerate tree will be having its non-lead

nodes with 2 childs.
C. A degenerate tree is also called as totally unbal-

anced tree
D. If n keys are organized in a degenate tree fashion,

we get worst case height
136. From x = 1, how many times should it be doubled be-

fore x £ N?
A. N/2 B. N2

C. log2(N) D. None
137. From x = N, how many times should it be halved be-

fore x £ 1?
A. N/2 B. N2

C. log2(N) D. log0.5(N)
138. Worst case complexity of interpolation search is

A. O(N) B. log(N)
C. O(log logN) D. None

139. Assume we have coins of denomination 1, 5, 10, 21
and 25 paisa then minimum and maximum number
of coins needed to make 63 paisa is
A. 5,3 B. 7,3
C. 6,3 D. Can not say

140. If u and n are leaves (with a minimum degree of 2)
of a depth first traversal tree of an undirected graph
G with, then which one of the following statements is
true?
A. There must be a vertex w adjacent to both u and n

in G
B. There must be a vertex w whose removal discon-

nects u and n in G
C. There must be a cycle in G containing u and n
D. There must be a cycle in G containing u and all its

neighbours in G.
141. Partition is useful in solving all of the following prob-

lems, except

2.280 Computer Science & Information Technology for GATE

A. Finding the k smallest elements
B. Quicksort
C. Selection
D. Splitting an array for Mergesort

142. Which of the following sorts is not based on key com-
parisons?
A. Insertion-Sort B. LSD Radix-Sort
C. Mergesort D. Quicksort

143. If the list contains same elements then complexity of
max heap creation will be
A. Q(1) B. Q (n)
C. Q (n lg n) D. Q (n2)

144. The worst-case time complexity for finding maximum
key in an ascending ordered circular doubly-linked
list with n nodes is
A. Q(1) B. Q(log n)
C. Q(n log n) D. Q(n)

145. A variant of quick sorting spends an algorithm of
O(n) to select pivot element and then applies normal
quick sorting method. Then its complexity of quick
sort variant can be said as
A. O(nlogn) B. O(n2)
C. O(n3) D. O(n2logn)

146. Given two arrays of numbers a1,..........., an and
b1,............, bn where each number is 0 or 1, the fastest
algorithm to find the largest span (i, j) such that ai +
ai+1 ++ aj = bi + bi + 1 +...........+ bj

A. O(n2) B. O(n3)
C. O(nlogn) D. O(2n)

147. In a binary tree, an edge is the one which joins two
nodes of two adjacent levels. Maximum possible edg-
es of a tree with height h is
A. h–1 B. h
C. 2h D. None

148. Maximum possible binary trees with three unlabelled
nodes is
A. 1 B. 2
C. 3 D. 5

149. Sorting algorithm with lowest worst case complexity
A. merge sort B. bubble sort
C. quick sort D. heap sort

150. An n-way tree with three levels is having its nodes
such that they have either n children or no children.
Number of leaf nodes are 41 and internal nodes with
n children are 10. What is the value of n?
A. 2 B. 3
C. 4 D. 5

151. The least integer k such that f(n) = (n4+n2+1)/(n4+1)
is O(nk)
A. 1 B. 0
C. 4 D. None

152. The least integer k such that f(n) = (n3+5logn)/(n4+1)
is O(nk)
A. 1 B. 0
C. –1 D. 3

153. Best case complexity of find second maximum of a set
of numbers is
A. O(n) B. O(logn)
C. O(n+logn) D. None

154. _____ comparisons are necessary in the worst case to
merge two sorted lists containing n elements each.
A. n–1 B. n2

C. 2n–1 D. n–1
155. A tree contains its internals nodes such that they con-

tain exactly 3 children. Assuming Ni is the number
of nodes and NL leaf nodes then acceptable relation
among Ni and NL is
A. Ni = NL + 1 B. Ni = 2NL + 1
C. NL = 2Ni + 1 D. None

156. Find the correct statement
A. In an undirected graph with positive edge

weights, the shortest edge in the graph always be-
longs to any tree of shortest paths, provided the
edge weights are distinct.

B. To find the longest path between 2 given vertices
in a graph G with positive weights, we can change
the weight of every edge e from w(e) to k – w(e),
where k is a value larger than any edge weight in
G, and then find the shortest path in the resultant
graph.

C. If T is a tree of shortest paths from vertex s in a
graph G, then T is also a tree of shortest paths
from vertex s in a graph G’ obtained by increasing
the weight of every edge by same value C.

D. None
157. Define two operations
 T1: complement any two bits
 T2 exchange any two bits
 starting with 000000 which of the following cannot be

generated using sequence T1 and T2?
A. 110 000 B. 001 001
C. 100 001 D. 000 010
E. 001 100

158. Queue with permitted operations
(i) insertion at tail of queue

Programming, Data Structures and Algorithms 2.281

(ii) output the head of queue
(iii) place the head at the tail

 For an input string of 1 2 3 4 5 6 which of the follow-
ing outputs are possible?
(I) 3 4 1 2 6 5

(II) 5 2 1 3 4 6
(III) 5 6 1 2 3 4

A. I only B. II only
C. III only D. I & III
E. I, II & III

159. Sometimes the object module produced by a compiler
includes information (from the symbol table) map-
ping all source program names to their address. The
most likely purpose of this information is
A. For use as input to a debugging aid.
B. To increase the run time efficiency of the pro-

gram.
C. For the reduction of the symbol table space need-

ed by the compiler.
D. To tell the loader where each variable belongs.
E. To tell the OS what to call the variables.

160. If a, b, c occur with equal probability, which of the fol-
lowing is a valid Huffman coding of these symbols
A. a = 1, b = 0, c = 11
B. a = 0, b = 111, c = 000
C. a = 0, b = 10, c = 11
D. None of the above

161. In an AVL tree with 1000 nodes, path length is the
length of a path from root to a leaf node.
A. At least one path has path length >100.
B. All paths have path length >100.
C. No path has path length >100.
D. Cannot be determined from the above info.

162. If n is a power of 2, then the minimum number of
multiplications needed to compute an.
A. lg n B. sqrt(n)
C. n–1 A. n

163. Adjacency matrix of a graph is having 1’s in off diago-
nal while remaining all elements are same. Then the
graph
A. Contains all isolated nodes
B. V/2 connected components
C. If odd no of nodes are there then V/2+1 connect-

ed components
D. If odd no of nodes are there then one isolated

node will be available
E. B & C & D

164. If T is a full binary tree with r internal nodes then
A. It will have r+1 terminals
B. 2r+1 total vertices
C. A & B
D. None

165. A graph is connected if it contains
A. One connected component
B. More than one connected component
C. If it has a spanning tree
D. A & C

166. If n is even, and assuming that all A[i] are distinct,
what does the execution of the code below result in :

 for (i = 0; i < n; i++)
 A[i] = A[n+1-i];

A. It results in 2 copies of each value data
B. The values remain unchanged.
C. The array reverses.
D. None of the above

167. int a[10]; Here a is __ pointer
A. Wild B. Constant
C. Dangling D. None

168. A graph is having adjacency matrix of all 1’s then
A. It is fully connected
B. Its path matrix is same is adjacency matrix
C. Contains cycles
D. All

169. Complexity of generating all possible subsets of a set
of data
A. O(n) B. O(n2)
C. O(2n) D. O(n!)

170. Complexity of splitting a set of data in half repeatedly
and traversing each half
A. O(lg n) B. O(n lg n)
C. O(n2 lg n) D. None

171. Which is having highest complexity O(n2), O(n2 lg n),
O(n!), O(2n)?
A. O(2n) B. O(n2)
C. O(n2 lg n) D. O(n!)

172. T1(n) = 3n lg n + lg n, T2(n) = 2n+ n3 + 25, T3(n,k) = k

+ n, k<= n. The highest ordered one is
A. T1

B. T2

C. T3

D. All are same order

2.282 Computer Science & Information Technology for GATE

173. A graph’s adjacency matrix is as follows. Then the
graph

 0100
 0010
 0001
 1000

A. Directed
B. All nodes are a cycle
C. One connected component
D. All

174. Given a machine with only a stack whose top can be
output and on which POP and PUSH are allowed.
which of the following strings can be sorted in as-
cending order
A. 4312 B. 3421
C. 2134 D. 1243
E. 3142

175. Time complexity in big-oh notation of the following
recursive relation is :

 T(n)= 2T(n/2) + n n>1
 = 1 n=1

A. nlogn + n g B. n2

C. nlogn –n +2 D. nlogn
176. The number of distinct strings of length 3 that can be

obtained using a, a, b, b, c is
A. 7 B. 6
C. 12 D. 15
E. 18

177. In connection of n processors find the minimum.
number of connections needed to provide two dis-
tinct paths between any two processors.
A. 2n B. n
C. n+1 D. n(n+1)/2
E. n–1

178. The number of stack locations needed for evaluating
(((a+b)*e)–d) using a stack is
A. Four B. Five
C. Six D. Three
E. Seven

 Answer: While converting the same into postfix, we
may be using at most 4 locations of the stack. While
evaluating the postfix expression, the stack will be us-
ing at most 2 locations only. Thus, answer is four.

179. We have the recurrence relation
 T(n) = 2T(n-1) - 1
 What is the order of T(n)?

A. Linearly

B. Quadratic
C. Cubic
D. Exponential
E. Logarithmic

 Answer: See the notes. If we expand we get assuming
n as 5 we get the above relation as 16T(n–5)-8-4-2-1.
Is sum will be –25. Thus, we can say order as O(2n).

A N S W E R K E Y

1. D 2. C 3. C 4. C
5. A 6. D 7. A 8. C
9. B 10. C 11. B 12. A

13. D 14. B 15. C 16. C
17. B 18. B 19. C 20. B
21. D 22. A 23. B 24. D
25. C 26. A 27. C 28. C
29. C

 Consider the top city, the following are the 3 routes
possible, starting from the leftmost edge. Since there-
are 3 edges emanating from each city and the figure
is perfectly symmetrical, these 3 routes are possible
from each edge, hence for any given city, the total
number of routes = 4 * 3 = 12.

30. C 31. A 32. B 33. B
34. B

 O(1), since the number of iterations is fixed, and each
pass through the loop does only constant-time opera-
tions.
35. C 36. B 37. B 38. B
39. D 40. A 41. A 42. C
43. A 44. B 45. B 46. B
47. C 48. B 49. C 50. A
51. C 52. C 53. C 54. D
55. C 56. C 57. C 58. C
59. A 60. C 61. B 62. A
63. C 64. C 65. A 66. B
67. C 68. B 69. D 70. B
71. A 72. B 73. D 74. C
75. C 76. D 77. A 78. C
79. C 80. B 81. A 82. C
83. C 84. B 85. C 86. C

Programming, Data Structures and Algorithms 2.283

87. A 88. C 89. B 90. B
91. A 92. A 93. C 94. A
95. B 96. A 97. D 98. C
99. A 100. A 101. B 102. C

103. C 104. B 105. A 106. D
107. D 108. A 109. A 110. C
111. D 112. B 113. A 114. B
115. A 116. A 117. C 118. D
119. B 120. A 121. A 122. C
123. B 124. D 125. B 126. C
127. D 128. B 129. D 130. B
131. D 132. C 133. C 134. C
135. B 136. C 137. C 138. A
139. ? 140. A 141. D 142. B
143. C 144. A 145. D 146. B
147. A 148. D 149. A 150. D
151. A 152. C 153. C 154. C
155. C 156. D 157. D 158. E
159. A 160. C 161. C 162. A
163. E 164. B 165. D 166. C
167. B 168. D 169. C 170. B
171. A 172. B 173. B 174. A,C,D
175. D 176. B 177. E 178. A
179. D

Previous Years’ GATE Questions

1. Consider the polynomial
 p(x)=a0+a1x+a2x2+a3x3, where ai ≠0 for all i. The min-

imum number of multiplications needed to evaluate p
on an input x is (GATE 2006)

A. 3 B. 4
C. 6 D. 9

 Explanation: A. We can write p(x) = a0 + x(a1 + x (a2x2

+ a3x)). If one observes, we need three multiplications
only. This is, called as Horners method.

2. In a binary max heap containing n numbers, the
smallest element can be found in time (GATE 2006)

A. O(n) B. O(logn)
C. O(log logn) D. O(1)

 Explanation: A. We know that in maximum heap, ev-
ery node will be having its values more than its chil-
dren. Thus, root node will be the largest among all.
If we assume the elements are stored in array, then
0th element becomes maximum. That is, to find maxi-

mum we need constant time, O(1). However, to find
minimum we need to search all elements. Thus, the
complexity becomes O(n).

3. Consider a weighted complete graph G on the vertex
set [v1, v2, ….vn] such that the weight of the edge (vi,
vj) is 2|i-j|. The weight of a minimum spanning tree of
G is (GATE 2006)

A. n-1 B. 2n–2
C. n/2 D. n2

 Explanation: B. We know minimum spanning tree
(MST) will be having n-1 minimum edges joining n
vertexes. Evidently, MST in this case will be having
edges (v1,v2), (v2,v3),…..(vn-1, vn). According to the
given statement, weight of the each of the edges is 2.
Thus, weight of the MST becomes n-1 times 2. That is,
2n–2.

4. To implement Dijkstra’s shortest path algorithm on
unweighted graphs so that it runs in linear time, then
the data structure to be used is
A. Queue B. Stack
C. Heap D. B-Tree

5. A scheme for storing binary tree in an array X is as
follows. Indexing of X starts at 1 instead of 0. The
roots is stored at X[1]. For a node stored at X[i], the
left child, if any, is stored in X[2i] and right child if
any in X[2i+1]. To be able to store any binary tree on
n vertices the minimum size of X should be
A. log2n B. n
C. 2n+1 D. 2n–1

 Explanation: D. We know that height of the tree
is minimal when n keys are organised in a com-
plete binary tree fashion and if they are organised
in a skewed tree then the height will be worst case
height which is same as n. That is, the tree can be
left skewed or right skewed. In these trees, every
node contains exactly one child. Rather, all the
nodes are in single linked list fashion with either
left or right links only defined. As the given or-
ganisation uses array to store nodes, we find many
nodes will not be defined if the values are main-
tained in skewed tree fashion. So, many locations
in the array are empty. As worst case height is n,
total elements of the array becomes 2n-1. Number
of un-used elements of the array:2n–1–n. Ratio of
occupancy of the array: (n)/(2n–1). Ratio of wast-
age: (2n–1–n)/(2n–1).

6. Which one of the following in place sorting algo-
rithms needs the minimum number of swaps?
A. Quick sort B. Insertion sort
C. Selection sort D. Heap sort

2.284 Computer Science & Information Technology for GATE

7. Consider the following C program fragment in which
i,j, and n are integer variables.

 for(i=n,j=0;i>0;i/=2,j+=i);

 Let val(j)= denote the value stored in the variable j
after termination of the for loop. Which one of the
following is true?

A. val(j)=0=Q(log n)

B. val(j)=0=Q(÷n)

C. val(j)=0=Q(n)

D. val(j)=0=Q(nlog n)

 Explanation: C. If we observe, we find that the calcu-
lation of j involves n/2+n/4+n/8+…1=2(n–1)=Q(n)

8. An element in an array X is called a leader if it is great-
er than all elements to the right of it in X. The best
algorithm to find all leaders in an array

A. Solves it in linear time using a left to right pass of
the array

B. Solves in linear time using a right to left pass of
the array

C. Solves using divide and conquer in time Q(nlogn)

D. Solves it in time Q(n2)

 Explanation: C. Recall insertion sorting. We place
each element such that it is more than all elements left
(or right to it). In order to find all leaders, if we sort
the array it is adequate. Thus, best sorting algorithms
such as quick sort, heap sort, merge sort can be used
whose time complexity is Q(nlogn). Thus, option c is
valid.

9. Consider the following graph.

1

3

4

2

6 4

3

1

5

f

7

a

b d

c

2

e

 Which one of the following cannot be the sequence
of edges added, in that order to a minimum spanning
tree using Krushkal’s algorithm?

A. (a-b), (d-f), (b-f), (d-c), (d-e)

B. (a-b), (d-f), (d-c), (b-f) (d-e)

C. (d-f), (a-b), (d-c), (b-f), (d-e)

D. (d-f), (a-b), (b-f), (d-e), (d-c)

 Explanation: We know that in Krushkal’s algorithm
edges are added in accordance with their increasing
cost till all the n vertexes are connected through n-1
edges and MST is formed. In the given graph, edges
and their weights:

Edges Weights

(a-b) 1
(d-f) 1
(b-f) 2
(d-c) 2
(b-c) 3
(d-e) 3
(b-d) 4
(c-e) 4
(e-f) 5
(a-c) 6
(c-f) 7

 As we have 6 vertexes, we may have to select only 5
smallest edges. Thus, option d is valid.

10. Let T be a depth first search tree in a undirected graph
G. Vertices u and v are leaves of this tree T. The degree
of both u and v in G are atleast 2. Which one of the
following statements is true?
A. There must exist a vertex w adjacent to both v and

u in G
B. There must exist a vertex w whose removal dis-

connects v and u in G
C. There must be a cycle in G containing u and v
D. There must exist a cycle in G containing u and all

its neighbours in G
11. A set X can be represented by an array x[n] as follows:

 x[i]=1 if i є X
 x[i]=0 otherwise
 Consider the following algorithm in which x, y and z

are Boolean arrays of size n
 Algorithm zzz(x[], y[], z[]){
 Int I;
 For(i=0;i<n; ++i)
 z[i]=(x[i]^ ~y[i]) v (~x[i]^y[i])
 }
 The set z computed by the algorithm is

A. (X Y) B. (X Y)
C. (X-Y) (Y-X) D. (X-Y) (Y-X)

12. Consider the following recurrence
 T(n)=2T(|÷n|) +1
 T(1)=1
 Which of the following is true?

Programming, Data Structures and Algorithms 2.285

A. T(n)=Q(log logn) B. T(n)=Q(logn)
C. T(n)=Q(÷n) D. T(n)=Q(n)

13. Given two arrays of numbers a1, … an and b1,…bn
where each number is 0 or 1, the fastest algorithm to
find the largest span(i,j) such that ai +ai+1+…. = aj =
bi + bi + 1 +…. + bj, or report there is no such span
A. Takes Q(3n) and W(n2.5) time if hashing is permit-

ted
B. Takes Q(n2) and W(n2.5) time in the key compari-

son model
C. Takes Q(n) time and space
D. Takes Q(÷n) time only if the sum of the 2n ele-

ments is an even number
14. The most efficient algorithm for finding the number

of connected components in an undirected graph on
n vertices and m edges has time complexity

(GATE CS 2008)

A. Q(n) B. Q(m) C. Q(m+n) D. Q(mn)
15. The Breadth First Search algorithm has been imple-

mented using the queue data structure. One possible
order of visiting the nodes of the following graph is

M N

R Q P

O

A. MNOPQR B. NQMPOR
C. QMNPRO D. QMNPOR

16. Consider the following functions
 f(n)=2n

 g(n)=n!
 h(n)=nlogn

 Which of the following statements about the asymp-
totic behaviour of f(n), g(n), and h(n) is true?
A. f(n) = O(g(n)); g(n) = O(h(n))
B. f(n) = W(g(n)); g(n) = O(h(n))
C. g(n) = O(f(n)); h(n) = O(f(n))
D. h(n) = O(f(n)); g(n) = W(f(n))

17. The minimum number of comparisions required to
determine if an integer appears more than n/2 times
in a sorted array of n integers is
A. Q(n) B. Q(logn)
C. Q(log*n) D. Q(1)

 Explanation: A. We need atleast n/2 elements to be
compared. Thus, minimum number of comparisons
will be of order Q(n).

18. A B-tree of order 4 is built from scratch by 10 suces-
sive insertions. What is the maximum number of
node splitting operations that may take place?
A. 3 B. 4
C. 5 D. 6

19. G is a graph on n vertices and 2n-2 edges. The edges of
G can be partitioned into two edge-disjoint spanning
trees. Which of the following is not true for G?
A. For every subset of k vertices, the induced sub-

graph has at most 2k–2 edges
B. The minimum cut in G has at least two edges
C. There are two edge-disjoint paths between every

pair of vertices
D. There are two vertex-disjoint paths between every

pair of vertices
20. The recurrence relation capturing the optimal time of

the Tower of Hanoi problem with n discs is
(GATE 2012)

A. T(n) = 2T(n – 2) + 2
B. T(n) = 2T(n – 1) + n
C. T(n) = 2T(n/2) + 1
D. T(n) = 2T(n – 1) + 1

21. Suppose a circular queue of capacity (n – 1) elements
is implemented with an array of n elements. Assume
that the insertion and deletion operation are carried
out using REAR and FRONT as array index variables,
respectively. Initially, REAR = FRONT = 0. The con-
ditions to detect queue full and queue empty are

(GATE 2012)

A. Full: (REAR+1) mod n == FRONT, empty: REAR
== FRONT

B. Full: (REAR + 1) mod n == FRONT, empty:
(FRONT+1) mod n == REAR

C. Full: REAR == FRONT, empty: (REAR+1) mod n
== FRONT

D. Full: (FRONT+1) mod n == REAR, empty: REAR
== FRONT

22. Four matricies M1, M2, M3 and M4 of dimensions
pxq, qxr, rxs and sxt respectively can be multipied
is several ways with different number of total scalar
multiplications. For example, when multipied as ((M1
X M2) X (M3 X M4)), the total number of multiplica-
tions is pqr + rst + prt. When multipied as (((M1 X
M2) X M3) X M4), the total number of scalar multi-
plications is pqr + prs + pst. If p = 10, q = 100, r = 20,
s = 5 and t = 80, then the number of scalar multiplica-
tions needed is (GATE 2011)

A. 248000 B. 44000
C. 19000 D. 25000

2.286 Computer Science & Information Technology for GATE

23. Which of the given options provides the increasing
order of asymptotic complexity of functions f1, f2, f3
and f4 ? (GATE 2011)

 f1(n) = 2n

 f2(n) = n3/2

 f3(n) = nlog2n
 f4(n) = nlog

2 n
A. f3, f2, f4, f1 B. f3, f2, f1, f4
C. f2, f3, f1, f4 D. f2, f3, f4, f1

24. We are given a set of n distinct elements and an un-
labeled binary tree with n nodes. In how many ways
can we populate the tree with the given set so that it
becomes a binary search tree? (GATE 2011)

A. 0 B. 1
C. !n D. (1/(n+1)).2nCn

25. An algorithm to find the length of the longest mono-
tonically increasing sequence of numbers in an array
A[0:n-1] is given below. Let Li denote the length of the
longest monotonically increasing sequence starting at
index i in the array.

 Initialise Ln–1=1
 for all i such that 0<=i<=n–2
 Li=1+Li+1 if A[i]<A[i+1]
 =1 otherwise,
 Finally the length of the longest monotonically in-

creasing sequence is Max (L0 ,L1 ,...,). Which of the
following statements is TRUE?
A. The algorithm uses dynamic programming para-

digm
B. The algorithm has a linear complexity and uses

branch and bound paradigm
C. The algorithm has a non-linear polynomial com-

plexity and uses branch and bound paradigm
D. The algorithm uses divide and conquer paradigm.

 Explanation: As it is using table Li.
26. A max-heap is a heap where the value of each parent

is greater than or equal to the value of its children.
Which of the following is a max-heap?

4

8

10

6

25

1

4

8

10

6

25 1

1

2

5

8

104 64 8

10

6

2

5

1

(a) (b)

(d)(c)

 Explanation: B. Heap is a complete binary. That is,
if nodes are assumed to be stored sequentially, all of
them are supposed to occupy consecutive location.
Rather, if we give 0 as the index of root and for all
other nodes we assign 2*i+1 and 2*i+2 where is the
index of their parent then all the numbers should be
in sequence. This is violating for option A. Also, for
max heap parent node value is supposed to be larger
than its children. C and D are violating this rule. Thus,
option B is the correct option.

 Consider the following recursive C function that
takes two arguments

 unsigned int foo (unsigned int n, unsigned int

r) {

 if (n >0)return (n%r) foo (n / r, r));

 else return 0;

 }

27. What is the return value of the function foo when it is
called as foo (513, 2)?
A. 9 B. 8
C. 5 D. 2

 Explanation: D

1st call 2nd call 3rd call 4th call 5th call 6th call 7th call 8th call 9th call 10th call

513,2
1+foo

(256,2)

256,2
return 0+

foo (128,2)

128,2
return 0+
foo (64,2)

64,2
return 0+
foo (32,2)

32,2
return 0+
foo (16,2)

16,2
return 0+
foo (8,2)

8,2
return 0+
foo (4,2)

4,2
return 0+
foo (2,2)

2,2
return 0+
foo (1,2)

1,2
return 1+
foo (0,2)

returns 2 returns 1 returns 1 returns 1 returns 1 returns 1 returns 1 returns 1 returns 1

Programming, Data Structures and Algorithms 2.287

28. What is the return value of the function foo when it is
called as foo (513, 2)?
A. 345 B. 12
C. 5 D. 3

 Explanation: The following table illustrates how the
function call works.

1st call

345,10
return

5+foo(34,10)

34,10
return

4+foo(3,10)

3,10
return

3+foo(0,10)

0,10
return 0

returns 12 returns 7 returns 3

29. An undirected graph G(V,E) contains n (n >2) nodes
named v1 , v2 ,....vn . Two nodes vi , vj are connected
if and only if 0 < = |i – j| <= 2. Each edge (vi ,vj) is
assigned a weight i + j. A sample graph with n = 4 is
shown below

V3 V4

V2V1

4 5 6

7

3

 What will be the cost of minimum spanning tree
(MST) of such a graph with n nodes?
A. 1/12(11n2–5n) B. n2–n+1
C. 6n–11 D. 2n+1

 Explanation: We know that MST of n nodes is formed
by n-1 smallest edges. Also, MST doesn’t contain any
cycles. For instance, for the above example MST, edg-
es that makes MST are: 1 + 2, 1 + 3, 2 + 4. If organise
them, we can say (1 + 2 + 3 + 4) + (1 + 2). Similarly, if
we consider a tree with 5 nodes then MST edges will
be 1 + 2, 1 + 3, 2 + 4, 3 + 5. If organise them, we can
say (1 + 2 + 3 + 4 + 5) + (1 + 2 + 3). That is, (1 + 2
+….+ n) + (1 + 2 +…n-2) = n2–n+1

30. The length of the path from v5 to v6 in the MST of
previous question with n = 10 is
A. 11 B. 25
C. 31 D. 41

 Explanation: Possible edges which can be selected in
the MST till v6 can be given as 1+2, 1+3, 2+4, 3+5,
and 4+6 . If we draw a graph, we may find all these
edges are in the path of v5 to v6. Their edge total is 31.

31. The degree sequence of a simple graph is the sequence
of the degrees of the nodes in the graph in decreasing
order. Which of the following sequences can not be
the degree sequence of any graph? (GATE 2010)

I. 7, 6, 5, 4, 4, 3, 2, 1
II. 6, 6, 6, 6, 3, 3, 2, 2

III. 7, 6, 6, 4, 4, 3, 2, 2
IV. 8, 7, 7, 6, 4, 2, 1, 1
A. I and II B. III and IV
C. IV only D. II and IV

32. Consider a B+-tree in which the maximum number
of keys in a node is 5. What is the minimum number
of keys in any non-root node? (GATE 2010)

A. 1 B. 2
C. 3 D. 4

33. Let X be a problem that belongs to the class NP. Then
which one of the following is true? (GATE 2009)

A. There is no polynomial time algorithm for X.
B. If X can be solved deterministically in polynomial

time, then P = NP.
C. If X is NP-hard, then it is NP-complete.
D. X may be undecidable.

34. What is the number of swaps required to sort n ele-
ments using selection sort, in the worst case?

(GATE 2009)

 A. Q(n) B. Q(n log n)
C. Q(n2) D. Q(n2 log n)

35. Consider the polynomial p(x) = a0 + a1x + a2x2 +
a3x3, where ai != 0, for all i. The minimum number of
multiplications needed to evaluate p on an input x is:

(GATE 2006)

A. 3 B. 4
C. 6 D. 9

 Explanation: a. We need three only. Remember about
Horners procedure. If we write the equation a0 + x(a1
+ x(a2 +a3x))), we need three multiplications only.

36. To implement Dijkstra’s shortest path algorithm on
unweighted graphs so that it runs in linear time, the
data structure to be used is: (GATE 2006)

A. Queue B. Stack
C. Heap D. B-Tree

37. A 3-ary max heap is like a binary max heap, but in-
stead of 2 children, nodes have 3 children. A 3-ary
heap can be represented by an array as follows: The
root is stored in the first location, a[0], nodes in the
next level, from left to right, is stored from a[1] to
a[3]. The nodes from the second level of the tree from
left to right are stored from a[4] location onward. An
item x can be inserted into a 3-ary heap containing n
items by placing x in the location a[n] and pushing it
up the tree to satisfy the heap property. Which of the
following is a valid sequence of elements in an array
representing 3-ary max heap? (GATE 2006)

2.288 Computer Science & Information Technology for GATE

A. 1, 3, 5, 6, 8, 9
B. 9, 6, 3, 1, 8, 5
C. 9, 3, 6, 8, 5, 1
D. 9, 5, 6, 8, 3, 1

 Explanation: D. Option a is not valid as the root node
1 is smaller than its children 3,5 and 6. Similarly, op-
tion is not valid as 8 is denoted as child of 6 where
max heap property is missing. Similarly, option c is
not valid as 5 is denoted as child of 3 where max heap
property is missing.

38. Suppose the elements 7, 2, 10 and 4 are inserted, in
that order, into the valid 3-ary max heap found in the
above question, Which one of the following is the se-
quence of items in the array representing the resultant
heap?

A. 10, 7, 9, 8, 3, 1, 5, 2, 6, 4

B. 10, 9, 8, 7, 6, 5, 4, 3, 2, 1

C. 10, 9, 4, 5, 7, 6, 8, 2, 1, 3

D. 10, 8, 6, 9, 7, 2, 3, 4, 1, 5

39. The subset-sum problem is defined as follows. Given
a set of n positive integers, S = {a1 ,a2 ,a3 ,…,an} and
positive integer W, is there a subset of S whose ele-
ments sum to W? A dynamic program for solving this
problem uses a 2-dimensional Boolean array X, with
n rows and W+1 columns. X[i, j],1 <= i <= n, 0 <= j
<= W, is true if and only if there is a subset of {a1 ,a2
,...,ai} whose elements sum to j. Which of the follow-
ing is valid for 2 <= i <= n and ai <= j <= W?

(GATE 2008)

A. X[i, j] = X[i - 1, j] ν X[i, j –ai]
B. X[i, j] = X[i - 1, j] ν X[i - 1, j – ai]
C. X[i, j] = X[i - 1, j] ν X[i, j – ai]
D. X[i, j] = X[i - 1, j] ν X[i -1, j – ai]

40. Consider the process of inserting an element into a
Max Heap, where the Max Heap is represented by
an array. Suppose we perform a binary search on the
path from the new leaf to the root to find the position
for the newly inserted element, the number of com-
parisons performed is: (GATE 2007)

A. Q(logn)
B. Q(loglogn)
C. Q(n)
D. Q(nlogn)

41. Let w be the minimum weight among all edge weights
in an undirected connected graph. Let e be a specific
edge of weight w . Which of the following is false?

(GATE 2007)

A. There is a minimum spanning tree containing e.
B. If e is not in a minimum spanning tree T, then in

the cycle formed by adding e to T, all edges have
the same weight.

C. Every minimum spanning tree has an edge of
weight w .

D. e is present in every minimum spanning tree.
42. In an unweighted, undirected connected graph, the

shortest path from a node S to every other node is
computed most efficiently, in terms of time complex-
ity by (GATE 2007)

A. Dijkstra’s algorithm starting from S.
B. Warshall’s algorithm
C. Performing a DFS starting from S.
D. Performing a BFS starting from S.

43. In the following C function, let n >= m.
 int gcd(n,m)

 {

 if (n%m ==0) return m;

 n = n%m;

 return gcd(m,n);

 }

 How many recursive calls are made by this function?
(GATE 2007)

A. Q (logn)
B. W (n)
C. Q (loglogn)
D. Q (sqrt(n))

44. In a binary max heap containing n numbers, the
smallest element can be found in time (GATE 2006)

A. O(n) B. O(logn)
C. O(loglogn) D. O(1)

45. Which one of the following in place sorting algo-
rithms needs the minimum number of swaps?

(GATE CS 2006)

A. Quick sort
B. Insertion sort
C. Selection sort
D. Heap sort

46. Consider the directed graph shown in the figure be-
low. There are multiple shortest paths between verti-
ces S and T. Which one will be reported by Dijkstra’s
shortest path algorithm? Assume that, in any itera-
tion, the shortest path to a vertex v is updated only
when a strictly shorter path to v is discovered.

Programming, Data Structures and Algorithms 2.289

B

C

D

2

1

3

4

5

7

A

S
5

E

1

3

1

4
3

2
G

34

3

F

T

A. SDT B. SBDT
C. SACDT D. SACET

47. The height of a tree is defined as the number of edges
on the longest path in the tree. The function shown in
the pseudocode below is invoked as height (root) to
compute the height of a binary tree rooted at the tree
pointer root.The appropriate expression for the two
boxes B1 and B2 are (GATE 2012)

 int height (treeptr n)

 {if (n == NULL) return -1;

 if (n —> left == NULL)

 if (n —> right == NULL) return 0;

 else return B1 ; //Box 1

 else (h1 = height (n __left);

 if (n ___ right == NULL) return (1 – h1)

 else h2 = height (n = right);

 return B2 ; //Box 2

 }

 }

 }

A. B1 : (1 + height(n->right)), B2 : (1 + max(h1,h2))
B. B1 : (height(n->right)), B2 : (1 + max(h1,h2))
C. B1 : height(n->right), B2 : max(h1,h2)
D. B1 : (1 + height(n->right)), B2 : max(h1,h2)

48. Consider a complete undirected graph with vertex set
{0, 1, 2, 3, 4}. Entry Wij in the matrix W below is the
weight of the edge {i, j}. What is the minimum pos-
sible weight of a spanning tree T in this graph such
that vertex 0 is a leaf node in the tree T? (GATE 2010)

W =

0 1 8 1 4

1 0 12 4 9

8 12 0 7 3

1 4 7 0 2

4 9 3 2 0

Ê

Ë

Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜

A. 7 B. 8
C. 9 D. 10

 Explanation: D. If we observe, minimum spanning
tree is in figure a as shown below with weight of 7.
However, in it 0 is not end node. Thus, the tree which
is shown in the figure b is the minimum spanning tree
with 0 as the end node and its weight is 10.

V0
1

V1

1

3 V2V4

2

V3

(a)

V0
1

V1

3

4

V4

2

V3

(b)

V2

49. In the graph given in previous question , what is the
minimum possible weight of a path P from vertex 1 to
vertex 2 in this graph such that P contains at most 3
edges? (GATE 2010)

A. 7 B. 8
C. 9 D. 10

50. A hash table of length 10 uses open addressing with
hash function h(k)=k mod 10, and linear probing.
After inserting 6 values into an empty hash table, the
table is as shown below.Which one of the following
choices gives a possible order in which the key values
could have been inserted in the table? (GATE 2010)

0
1
2 42
3 23
4 34
5 52
6 46
7 33
8
9

A. 46, 42, 34, 52, 23, 33
B. 34, 42, 23, 52, 33, 46
C. 46, 34, 42, 23, 52, 33
D. 42, 46, 33, 23, 34, 52

51. The running time of an algorithm is represented by
the following recurrence relation: if n <= 3 then T(n)
= n else T(n) = T(n/3) + cn. Which one of the follow-
ing represents the time complexity of the algorithm?

(GATE 2009)

2.290 Computer Science & Information Technology for GATE

A. Q(n) B. Q(n log n)
C. Q(n2) D. Q (n2log n)

 Explanation: Applying masters theorem, we find the
complexity is Q(n)

52. The keys 12, 18, 13, 2, 3, 23, 5 and 15 are inserted into
an initially empty hash table of length 10 using open
addressing with hash function h(k) = k mod 10 and
linear probing. What is the resultant hash table?

(GATE 2009)

0
1
2 2
3 23
4
5 15
6
7
8 18
9

0
1
2 12
3 13
4
5 5
6
7
8 18
9

0
1
2 12
3 13
4 2
5 3
6 23
7 5
8 18
9 15

0
1
2 12.2
3 13,3,23
4
5 5,15
6
7
8 18
9

(A) (B) (C) (D)

A. A B. B
C. C D. D

53. Consider the following C program that attempts to lo-
cate an element x in an array Y[] using binary search.
The program is erroneous.

1. f(int Y[10], int x) {
2. int i, j, k;
3. i = 0; j = 9;
4. do {
5. k = (i + j) /2;
6. if(Y[k] < x) i = k; else j = k;
7. } while(Y[k] != x && i < j);
8. if(Y[k] == x) printf (“x is in the array ”) ;
9. else printf (“ x is not in the array ”) ;

10. }
 On which of the following contents of Y and x does

the program fail? (GATE 2008)

A. Y is [1 2 3 4 5 6 7 8 9 10] and x < 10
B. Y is [1 3 5 7 9 11 13 15 17 19] and x < 1
C. Y is [2 2 2 2 2 2 2 2 2 2] and x > 2
D. Y is [2 4 6 8 10 12 14 16 18 20] and 2 < x < 20 and

x is even

 Explanation: C. Program enters into infinite loop
54. Consider the following C program segment where

CellNode represents a node in a binary tree:
 struct CellNode

 {

 struct CellNOde *leftChild;

 int element;

 struct CellNode *rightChild;

 };

 int GetValue(struct CellNode *ptr)

 {

 int value = 0;

 if (ptr != NULL)

 {

 if ((ptr->leftChild == NULL) &&

 (ptr->rightChild == NULL))

 value = 1;

 else

 value = value + GetValue(ptr->leftChild) + Get-

value (ptr->rightChild);

 }

 return value;

 }

 The value returned by GetValue when a pointer to the
root of a binary tree is passed as its argument is:

(GATE 2007)

A. the number of nodes in the tree
B. the number of internal nodes in the tree
C. the number of leaf nodes in the tree
D. the height of the tree

55. An array of n numbers is given, where n is an even
number. The maximum as well as the minimum of
these n numbers needs to be determined. Which of
the following is true about the number of compari-
sons needed? (GATE 2007)

A. At least 2n – c comparisons, for some constant c,
are needed.

B. At most 1.5n – 2 comparisons are needed.
C. At least nLog2n comparisons are needed.
D. None of the above.

56. Consider a hash table of size seven, with starting in-
dex zero, and a hash function (3x + 4)mod7. Assum-
ing the hash table is initially empty, which of the fol-
lowing is the contents of the table when the sequence
1, 3, 8, 10 is inserted into the table using closed hash-
ing? Note that ‘_’ denotes an empty location in the
table. (GATE 2007)

A. 8, _, _, _, _, _, 10
B. 1, 8, 10, _, _, _, 3
C. 1, _, _, _, _, _,3
D. 1, 10, 8, _, _, _, 3

Programming, Data Structures and Algorithms 2.291

57. A complete n-ary tree is a tree in which each node
has n children or no children. Let I be the number
of internal nodes and L be the number of leaves in a
complete n-ary tree. If L = 41, and I = 10, what is the
value of n? (GATE 2007)

A. 3 B. 4
C. 5 D. 6

58. What is the time complexity of the following recursive
function: (GATE 2007)

 int DoSomething (int n)
 {
 if (n <= 2)
 return 1;
 else
 return (DoSomething (floor(sqrt(n))) + n);
 }

A. Q(n) B. Q(nlogn)
C. Q(logn) D. Q(loglogn)

59. A scheme for storing binary trees in an array X is as
follows. Indexing of X starts at 1 instead of 0. the root
is stored at X[1]. For a node stored at X[i], the left
child, if any, is stored in X[2i] and the right child, if
any, in X[2i+1]. To be able to store any binary tree on
n vertices the minimum size of X should be.

(GATE CS 2006)

A. log2n B. n
C. 2n + 1 D. 2n –1

60. An element in an array X is called a leader if it is great-
er than all elements to the right of it in X. The best
algorithm to find all leaders in an array

(GATE CS 2006)

A. Solves it in linear time using a left to right pass of
the array

B. Solves it in linear time using a right to left pass of
the array

C. Solves it using divide and conquer in time
Q(nlogn)

D. Solves it in time Q(n2)
61. Consider the following C function

 int f1(int n)
 {
 if(n == 0 || n == 1)
 return n;
 else
 return (2*f1(n-1) + 3*f1(n-2));
 }
 int f2(int n)

 {
 int i;
 int X[N], Y[N], Z[N] ;
 X[0] = Y[0] = Z[0] = 0;
 X[1] = 1; Y[1] = 2; Z[1] = 3;
 for(i = 2; i <= n; i++)
 {
 X[i] = Y[i-1] + Z[i-2];
 Y[i] = 2*X[i];
 Z[i] = 3*X[i];
 }
 return X[n] ;
 }
 The running time of f1(n) and f2(n) (GATE 2008)

A. theta(n) and theta (n)
B. theta(2n) and theta(n)
C. theta(n) and theta(2n)
D. theta(2n) and theta(2n)

62. Consider the following C program segment:
 char p[20];
 char *s = “string”;
 int length = strlen(s);
 int i;
 for (i = 0; i < length; i++)
 p[i] = s[length-i];
 printf(“%s”,p);
 The output of the program is (GATE CS 2004)

A. gnirts
B. gnirt
C. string
D. No output is printed

63. Choose the correct option to fill ?1 and ?2 so that the
program below prints an input string in reverse order.
Assume that the input string is terminated by a new-
line character. (GATE 2008)

 void reverse(void)
 {
 int c;
 if (?1) reverse() ;
 ?2
 }
 main()
 {
 printf (“Enter Text”) ;
 printf (“\n”) ;

2.292 Computer Science & Information Technology for GATE

 reverse();
 printf(“\n”) ;
 }

A. ?1 is (getchar() != ‘\n’) ?2 is getchar(c);
B. ?1 is (c = getchar()) != ’\n’) ?2 is getchar(c);
C. ?1 is (c != ’\n’) ?2 is putchar(c);
D. ?1 is ((c = getchar()) != ’\n’) ?2 is putchar(c);

64. In the C language (GATE CS 2002)

A. At most one activation record exists between the
current activation record and the activation re-
cord for the main

B. The number of activation records between the
current activation record and the activation re-
cord for the main depends on the actual function
calling sequence.

C. The visibility of global variables depends on the
actual function calling sequence.

D. Recursion requires the activation record for the
recursive function to be saved on a different stack
before the recursive function can be called.

65. What does the following program print?
(GATE 2011)

 #include
 void f(int *p, int *q)
 {
 p = q;
 *p = 2;
 }
 int i = 0, j = 1;
 int main()
 {
 f(&i, &j);
 printf(“%d %d \n”, i, j);
 getchar();
 return 0;
 }

A. 2 2 B. 2 1
C. 0 1 D. 0 2

66. What is the value printed by the following C program?
(GATE 2010)

 #include
 int f(int *a, int n)
 {

 if(n <= 0) return 0;
 else if(*a % 2 == 0) return *a + f(a+1, n–1);
 else return *a – f(a+1, n–1);

}

 int main()
 {
 int a[] = {12, 7, 13, 4, 11, 6};
 printf(“%d”, f(a, 6));
 getchar();
 return 0;
 }

A. –9 B. 5
C. 15 D. 19

 Explanation: See the following snapshop of the above
program. Assume array a’s address is 2000. Also, as-
suming integer takes 2 bytes on our machine.

As first
element is
7 (odd) it

Calls
7-f (2004,

4)

As first
element is
odd (13)

it calls 13-
f(2006,3)

As first
element is
even (4) it

calls
4+f

2008,2)

As first
element is
odd(11) it

calls
11-f

(2010,1)

As first
element is
even (6) it
calls 6+f
(2012,0)

Return 0

Return
7-3

Return
13-9

Returns
4+9

Returns
11-6

Returns
6+0

67. Consider the following program fragment for revers-
ing the digits in a given integer to obtain a new inte-
ger. Let n = D1D2…Dm

 int n, rev;

Programming, Data Structures and Algorithms 2.293

 rev = 0;

 while (n > 0)

 {

 rev = rev*10 + n%10;

 n = n/10;

 }

 The loop invariant condition at the end of the ith it-
eration is: (GATE CS 2004)

A. n = D1D2….Dm-i and rev = DmDm-1…Dm-i+1
B. n = Dm-i+1…Dm-1Dm and rev = Dm-1….D2D1
C. n =! rev
D. n = D1D2….Dm and rev = DmDm-1…D2D1

68. Consider the following C program int a, b, c = 0;
 void prtFun (void);
 int main ()
 {
 static int a = 1; /* line 1 */
 prtFun();
 a += 1;
 prtFun();
 printf (“\n %d %d ”, a, b) ;
 }
 void prtFun (void)
 {
 static int a = 2; /* line 2 */
 int b = 1;
 a += ++b;
 printf (“\n%d %d”, a, b);
 }

A. 3 1 4 1 4 2 B. 4 2 6 1 6 1
C. 4 2 6 2 2 0 D. 3 1 5 2 5 2

 Answer: C. A local variable (even if it is static) will
mask the scope of a global variable with the same
name. Thus, in the function prtFun a refers to the a
of that function only. Because of the same reason, b in
the function prtFun refers to the one it itself, not the
global b.

69. Consider the C program shown below.
 # include <stdio.>

 int x;
 void Q(int z)
 {
 z += x;
 print(z);
 }
 void P(int *y)

 {
 int x = *y+2;
 Q(x);
 *y = x-1;
 print(x);
 }
 main(void)
 { x=5;
 P(&x);
 print(x);
 getchar();
 }
 The output of this program is (GATE CS 2003)

A. 1276 B. 22 12 11
C. 14 6 6 D. 766

 Explanation: See the trace of the program execution

Global=x

Of Function P
y = address of

global x
x= is loacl

Of function Q

x=5
Global x be-

comes 5

P(&x)
Y becomes
address of
global x

Int x
=*y+2

Local x be-
comes 7

Q(x) z becomes 7

z+=x;

Adds global vari-
able x value to z.
That z becomes
12. Next statement
prints 12 and the
function call re-
turns to function P

*y=x-1
Global variable

becomes 6

Print(x)
Local x value 7
will be printed

Print (x)

Prints global
variable x value.
Thus, finally we
get 1276

70. Consider this C code to swap two integers and these
five statements: the code

 void swap(int *px, int *py)
 {
 *px = *px - *py;
 *py = *px + *py;

2.294 Computer Science & Information Technology for GATE

 *px = *py - *px;
 }

S1: will generate a compilation error
S2: may generate a segmentation fault at runtime de-

pending on the arguments passed
S3: correctly implements the swap procedure for

all input pointers referring to integers stored in
memory locations accessible to the process

S4: implements the swap procedure correctly for
some but not all valid input pointers.

S5: may add or subtract integers and pointers
(GATE 2006)

A. S1 B. S2 and S3
C. S2 and S4 D. S2 and S5

71. Consider the following three C functions :,
 [PI] int * g (void)
 {
 int x = 10;
 return (&x);
 }
 [P2] int * g (void)
 {
 int * px;
 *px = 10;
 return px;
 }
 [P3] int *g (void)
 {
 int *px;
 px = (int *) malloc (sizeof(int));
 *px = 10;
 return px;
 }
 Which of the above three functions are likely to cause

problems with pointers? (GATE 2001)

A. Only P3
B. Only P1 and P3
C. Only P1 and P2
D. P1, P2 and P3

 Explanation: P1 is returning the address of stack (or
scratch) variable x. Where as P2 is trying to store 10 in
some location which is not yet allocated.

72. Consider the following C-program fragment in which
i, j and n are integer variables.

 for (i = n, j = 0; i >0; i /= 2, j += i);
 Let val(j) denote the value stored in the variable j after

termination of the for loop. Which one of the follow-
ing is true? (GATE 2006)

A. val(j) = theta(logn)
B. vaI(j) = theta (sqrt(n))
C. val(j) = theta(n)
D. val(j) = theta(nlogn)

73. What is printed by the following C program?
 int f(int x, int *py, int **ppz)
 {

 int y, z;

 **ppz += 1;

 z = **ppz;

 *py += 2;

 y = *py;

 x += 3;

 return x + y + z;

 }

 void main()

 {

 int c, *b, **a;

 c = 4;

 b = &c;

 a = &b;

 printf(“%d’’, f(c, b, a));

 getchar();

 }

 08 (GATE 2008)

A. 18 B. 19
C. 21 D. 22

74. Consider the following C-function in which a[n] and
b[m] are two sorted integer arrays and c[n + m] be
another integer array.

 void xyz(int a[], int b [], int c[])
 {
 int i, j, k;
 i = j = k = O;
 while ((i<n)&& (j<m))
 if (a[i] < b[j]) c[k++] = a[i++];

 else c[k++] = b[j++];
 }
 Which of the following condition(s) hold(s) after the

termination of the while loop?
(i) j < m, k = n+j-1, and a[n-1] < b[j] if i = n

(ii) i < n, k = m+i-1, and b[m-1]<=a[i] if j=m
(GATE 2008)

A. only (i)
B. only (ii)
C. either (i) or (ii) but not both
D. neither (i) nor (ii)

Programming, Data Structures and Algorithms 2.295

75. Assume the following C variable declaration
 int *A [10], B[10][10];
 Of the following expressions
 I A[2]
 II A[2][3]
 III B[1]
 IV B[2][3]
 which will not give compile-time errors if used as left

hand sides of assignment statements in a C program?
(GATE CS 2003)

A. I, II, and IV only B. II, III, and IV only
C. II and IV only D. IV only

76. The value of j at the end of the execution of the follow-
ing C program. (GATE CS 2000)

 int incr (int i)
 {

 static int count = 0;

 count = count + i;

 return (count);

 }

 main ()

 {

 int i,j;

 for (i = 0; i <=4; i++)

 j = incr(i);

 }

A. 10 B. 4
C. 6 D. 7

77. Consider the following C function:
 int f(int n)
 {

 static int i = 1;

 if (n >= 5)

 return n;

 n = n+i;

 i++;

 return f(n);

 }

 The value returned by f(1) is (GATE CS 2004)

A. 5 B. 6
C. 7 D. 8

 Explanation: 7. Static variable value is shared by re-
cursive function calls also.

78. What does the following fragment of C-program
print?

 char c[] = “GATE2011”;

 char *p =c;
 printf(“%s”, p + p[3] - p[1]) ; (GATE2011)

A. GATE2011 B. E2011
C. 2011 D. 011

79. Consider the following C function
 void swap (int a, int b)
 { int temp;
 temp = a;
 a = b;
 b = temp;
 }
 In order to exchange the values of two variables x and

y. (GATE CS 2004)

A. call swap (x, y)
B. call swap (&x, &y)
C. swap (x,y) cannot be used as it does not return

any value
D. swap (x,y) cannot be used as the parameters are

passed by value
80. Consider the following declaration of a ‘two-dimen-

sional array in C: char a[100][100]; Assuming that the
main memory is byte-addressable and that the array
is stored starting from memory address 0, the address
of a[40][50] is (GATE CS 2002)

a. 4040 B. 4050
C. 5040 D. 5050

81. Consider the following C program
 main()
 {

 int x, y, m, n;

 scanf (“%d %d”, &x, &y);

 /* x > 0 and y > 0 */

 m = x; n = y;

 while (m != n)

 {

 if(m>n)

 m = m – n;

 else

 n = n – m;

 }

 printf(“%d”, n);

 }

 The program computes (GATE CS 2004)

A. x + y using repeated subtraction
B. x mod y using repeated subtraction
C. the greatest common divisor of x and y
D. the least common multiple of x and y

2.296 Computer Science & Information Technology for GATE

82. Consider the following recursive C function that
takes two arguments unsigned int foo(unsigned int n,
unsigned int r) { if (n > 0) return (n%r + foo (n/r, r));
else return 0; } GATE 2011

A. 9 B. 8
C. 5 D. 2

83. Consider the following C declaration struct { short s
[5] union { float y; long z; }u; } t; Assume that objects
of the type short, float and long occupy 2 bytes, 4 bytes
and 8 bytes, respectively. The memory requirement
for variable t, ignoring alignment considerations, is

(GATE CS 2000)

A. 22 bytes B. 14 bytes
C. 18 bytes D. 10 bytes

84. What will be the output of the following C program
segment?

 char inchar = ‘A’;
 switch (inchar)

 {

 case ‘A’ :

 printf (“choice A\n”) ;

 case ‘B’ :

 printf (“choice B “) ;

 case ‘C’ :

 case ‘D’ :

 case ‘E’ :

 default:

 printf (“No Choice”) ; }

A. No choice
B. Choice A
C. Choice A Choice B No choice
D. Program gives no output as it is erroneous

85. Which one of the following is the tightest upper
bound that represents the number of swaps required
to swap n numbers using selection sorting?

(GATE 2013)

A. O(logn) B. O(n)
C. O(nlogn) D. O(n2)

 Explanation: B. Each time we find index of the larg-
est element and swap it with first or last element. As
we have n elements, we need to do this for n-1 times.
Thus, number of swaps will be O(n).

86. Which one of the following is the tightest upper
bound that represents time complexity of inserting an
object into a binary search tree of n nodes?

(GATE 2013)

A. O(logn) b. O(n)
c. O(n) D. O(nlogn)

 Explanation: C. Binary search will be having worst
case height of n if it is in degenerate form. In this situ-
ation, we need n nodes to be visited in the worst case
for inserting a new node. Thus, time complexity of in-
sertion become O(n).

87. Which of the following statements are TRUE?
 (GATE 2013)

1. The problem of determining whether there exists
a cycle in undirected graph is P

2. The problem of determining whether there exists
a cycle in undirected graph is NP

3. If a problem A is NP-complete, there exists a non-
deterministic polynomial time algorithm to solve
A

A. 1,2 and 3 B. 1 and 2 only
C. 2 and 3 only D. 1 and 3 only

88. What is the time complexity of Bellman Ford single
source shortest path algorithm on a complete graph
with n vertices? (GATE 2013)

A. Q(n2) B. Q(n2logn)
C. Q(n3) D. Q(n3logn)

89. Consider an undirected random graph of eight ver-
tices. The probability that there is an edge between a
pair of vertices is ½. What is the expected number of
unordered cycles or length three? (GATE 2013)

A. 1/8 B. 1
C. 7 D. 8

90. Which of the following statements is/are true for un-
directed graphs? (GATE 2013)

 P:Number odd degree vertices is even
 Q:Sum of degrees of all vertices is even

A. P only B. Q only
C. Both P and Q D. Neither P nor Q

91. The line graph L(G) of a simple graph G is defined as
follows:

 There is exactly one vertex v(e) in L(G) for each edge
e in G

 For any two edges e and e’ in G, L(G) has an edge be-
tween v(e) and v(e¢) if and only if e and e¢ are incident
with the same vertex in G

 Which of the following statements is/are true?
(GATE 2013)

(P) The line graph is a cycle
(Q) The line graph of a clique is clique
(R) The line graph of a planar graph is planar
(S) The line graph of a tree is a tree
A. P only B. P and R only
C. R only D. P, Q and S only

Programming, Data Structures and Algorithms 2.297

92. The number of elements that can be sorted in Q(logn)
time using heap sort is (GATE 2013)

A. Q(1) B. Q(÷logn)
C. Q(logn/loglogn) D. Q(logn)

93. Consider the following function
 int unknown(int n)

 {

 int i,j,k=0;

 for(i=n/2;i<=n;i++)

 for(j=2;j<=n;j=j*2)

 k=k+n/2;

 return (k);

 }

 The return value of the function is (GATE 2013)

A. Q(n2) B. Q(n2logn)
C. Q(n3) D. Q(n3logn)

94. Preorder traversal sequence of a binary tree is 30 20
10 15 25 39 35 42. Which one of the following is the
postorder traversal sequence of the same tree?

(GATE 2013)

A. 10 20 15 23 25 35 42 39 30
B. 15 10 25 23 20 42 35 39 30
C. 15 20 10 23 25 42 35 39 30
D. 15 10 23 25 20 35 42 39 30

95. What is worst case time complexity of a sequence of n
queue operations on an initially empty queue?

(GATE 2013)

A. Q(n) B. Q(n+k)
C. Q(nk) D. Q(n2)

96. What is the return value if f(p, p), if the p value is ini-
tialized to 5 before the call? Note that the first param-
eter is passed by reference whereas second parameter
is passed by value.

 int f(int &x, int c){
 c=c-1;

 if(c==0) return 1;

 x=x+1;

 return f(x,c)*x;

 }

A. 3024 B. 6561
C. 55440 D. 161051

 Explanation: Function call trace.

1st call 2nd call 3rd call 4th call 5th call
f(5,5)
Initially x is 5 and c is 5

c becomes 4 while

x becomes 6

returns f(6,4)*6

x=6

c=4

Changes to

x=7

c=3

returns f(7,3)*7

x=7

c=3

changes to

x=8

c=2

returns f(8,2)*8

x=8

c=2

changes to

x=9

c=1

returns f(9,1)*9

x=9

c=1

changes

x=10

c=0

As c is 0 it returns 1
Returns 6*7*8*9 Returns 7*8*9 returns 8*9 returns 9

A N S W E R K E Y

1. A 2. A 3. B 4. C
5. D 6. C 7. C 8. C
9. D 10. D 11. D 12. A

13. C 14. C 15. C 16. D
17. A 18. A 19. D 20. D
21. A 22. C 23. B 24. D
25. A 26. B 27. D 28. B
29. B 30. C 31. D 32. C
33. C 34. A 35. A 36. C
37. D 38. A 39. B 40. A
41. D 42. D 43. A 44. A

45. C 46. D 47. A 48. D
49. B 50. B 51. A 52. C
53. C 54. C 55. D 56. B
57. C 58. D 59. D 60. C
61. B 62. D 63. D 64. B
65. D 66. C 67. A 68. C
69. A 70. B 71. C 72. C
73. B 74. B 75. A 76. D
77. C 78. C 79. D 80. C
81. C 82. D 83. C 84. C
85. B 86. C 87. A 88. C
89. D 90. C 91. B 92. A
93. B 94. D 95. A 96. B

3C H A P T E R T H R E E

Theory of Computation

3.1 Introduction to Theory of Computation

Theory of Computation is a course of abstractions about what we can compute with the help of Turing Machine, the
abstract model of our modern computer, invented by Alan Turing. An important abstract model, Finite state machine is
used in string searching algorithms, compiler design, control unit design in computer architecture, and many other mod-
eling applications. Context free grammars and their restricted forms are the basis of compilers and parsing. NP-Complete
theory helps us distinguish the tractable from the intractable.

3.1.1 Strings, Languages

A language L is a set of strings over a finite alphabet A (also represented as S in some books).

n Example Given the alphabet A = {a, b, c}, the following sets of strings are some of the languages over A: {aa, bb, aaaa},
{bb}, {a, b, c}. The following sets of strings are not in a language over A: {aaabf}, {0001, 1010}, {a5b, asas}.

Definition

The special string of length 0 is called l. Some languages contain l and some do not.

A language L is infinite if it contains an infinite number of strings; a language is finite if it contains a finite number
of strings.

A* is the language of all strings over the alphabet A.

Note

Four simple examples of languages over an alphabet A are the sets Δ, {L}, A, and A*. For example, if A={a} then
these four simple languages over A are Δ, {L}, {a}, and {L, a, aa, aaa, …}.

A string in a language is often called a well-formed formula or wff for short because the definition of the language
usually allows only certain well-formed strings.

A* is the biggest possible language over A, and every other language over A is a subset of A*.

The difference between A (an alphabet), and A*, a language. The first is a set of symbols that we can use to make
strings. The second is a set of strings over that set of symbols. Like any set, A can be empty. If A is not empty, A* is
infinite.

3.2 Computer Science & Information Technology for GATE

The process of combining two strings is called concatenation. The string x = acc can be concatenated with the string y =
cc to form the string acccc. A shorthand way of indicating this concatenation is cat(acc, cc) or cat(x,y). Note that the con-
catenation operation is ordered such that cat(x,y) π cat(y,x). The latter forms the string, ccacc.

Definition: cat(x, l) = x.

Note

The length of any string x concatenated with l is same as the length of the string x.

Languages say, L and M are collection of strings; by combining strings of L and M (L.M) we can form new language that
π

n Example 1.

n Example 2.

n Example 3. Let L = {l
{l l}. However, from a definition above, laa = aa =aal

in this atypical case.
finite.

write as L1 = L, L2 3

Definition

L0 = {l}.

Ln n–1, for n > 0.

The closure of L is L* = {L0 U L1 U L2 U …}. Note that typically L* is a new language, and that typically L* is infinite.

The positive closure of L is L+ = {L1 U L2 U …}. Note that typically L+ is a new language, and that typically L+ is in-
finite.

Note: L* = L+ U {l}.

Consider the difference between L*, L+ when L is not empty and l is not in L. Then, both L* and L+ are infinite and
L+ = L* – {l}.

However, when L is not empty but l is in L, then, while L* and L+ are still infinite, it is not the case that L+ = L* – {l}.
This is because, in this case, l is in L1, and so by definition must be in L+. Note that in this case, L+ = L*.

Definition: The properties of closure are

{l}* = Δ* = {l}

 l is in L if and only if L+ = L*

Kleene’s Closure: The union of all powers of a set is called the Kleene closure.

n Example 1. Show three strings in the set X = {a, b}{a, b}* {ab}

n Answer: aaab, aabababab, and abbbbbab

n Example 2. Show three strings not in the set X={a, b}{a, b}* {ab}

n Answer: abb, babb, and aababa

Theory of Computation 3.3

3.1.2 Grammars

A language is described by a grammar. Rather, we can say that a grammar generates the strings of a language.

Definition

A grammar G consists of the 4-tuple, G = <N, T, S, P>, where N is a finite set of non-terminals, T is a finite set of
Terminals (N∩T = Δ), S (an element of N) is the unique Start symbol, and P is a finite set of productions (or re-write
rules). Terminal symbols are the ones from which no further generations (productions) takes place; whereas from
non-terminals productions are possible.

The elements of P are of the form a Æ b (read: “alpha can be re-written as beta”), and where a, b are strings over A
= N U T, and a π l.

Note

By convention used here, unless otherwise stated, the elements of N will be represented by uppercase symbols, and no up-
percase symbols will be elements of T. Also, by convention, we list the strings in a language L in order of increasing length.

Each string in L(G) is the result of sequential application of the production rules in P. The particular sequential application
of production rules in P that results in some string s in L(G) is called the derivation of s. Each step in a derivation is indi-
cated by the “double arrow” symbol, fi, such that Xa fi Cza means that the non terminal X in the string Xa (a string over
the alphabet A) has been re-written as the string Cz , resulting in the string Cza. Do not confuse the single arrow symbol
used to denote a production, with the double arrow symbol used to denote a derivation.

The notation S fi3aaa indicates that the string aaa can be derived through three applications of some productions from
the start symbol S. The notation S fi*aaa indicates that the string aaa can be derived through 0 or more applications of
some productions from the start symbol S. The notation S fi+ aaa indicates that the string aaa can be derived through 1 or
more applications of some productions from the start symbol S.

Note

A string made up of terminals and/or nonterminals is called a sentential form. Now we can formalise the idea of a deriva-
tion. If x and y are sentential forms and a Æ b is a production, then the replacement of a by b in xay is called a derivation,
and we denote it by writing xay fi x b y.

Definition: For the strings s, L(G) = {s| s is in T* and S fi+s}

n Example G = <(N = {S, A, B}, (T = {a,b}), S, (P = {SÆaA, AÆa})>. Note that not all the elements of N or T are used
in P. The language described by this grammar is very simple: L(G) = {aa}. The derivation of this string is: S fiaAfiaa. It
would be appropriate to write: S fi2 aa. With a little thought, we can see that the following are also true: S fi*aaa, and S
fi+ aaa. By way of contrast, this is not true: S fi4 aa as we do not need to use productions for four times to generate aa.

Note

If the language is finite, then a grammar can consist of all productions of the form S Æ w for each string w in the lan-
guage. For example, the language {a, ab} can be described by the grammar S Æ a | ab. If the language is infinite, then
some production or sequence of productions must be used repeatedly to construct the derivations. That is, there is
no bound on the length of strings in an infinite language. That is, there are no bounds on the number of derivation
steps used to derive the strings.

If the grammar has n productions, then any derivation consisting of n + 1 steps must use some production twice.

n Example For the grammar G, P = {S Æ aaB, B Æ b| SB}. First, we list the elements in N that are used in the derivation
of some string in L(G). These are, N = {S, B}. Next, we list the elements in T that are used in the derivation of some string
in L(G). These are, T={a,b}. Now, let’s derive a few strings in L(G) (remember, eventually we will list these strings in order
of increasing length).

3.4 Computer Science & Information Technology for GATE

S fi aaB fi aab

S fi aaB fi aaSB fi aaaaBBfi aaaabB fiaaaabb

S fi aaB fi aaSB fi aaaaBBfi aaaaSBB fi aaaaaaBBB fi aaaaaabBB fiaaaaaabbB fi aaaaaabbb.

So, L(G) = {aab, aaaabb, aaaaaabbb, …}. Rather, we can describe L(G) of this production rules as the strings consists of n
pairs of a’s followed by n b’s.

A production is called recursive if its left side occurs on its right side. For example, the production S Æ aS is recursive.
A production A Æ a is indirectly recursive if A derives a sentential form that contains A. For example, suppose we have
the following grammar:

S Æ b | aA

A Æ c | bS.

The productions S Æ aA and A Æ bS are both indirectly recursive because of the following derivations:

S fi aA fi abS,

A fi bS fi baA.

A grammar is recursive if it contains either a recursive production or an indirectly recursive production. We can make the
following general statement about grammars for infinite languages:

Note

A grammar for an infinite language must be recursive.

In the example above, L(G) is an infinite language. For a language to be infinite, it must have at least one recursive pro-

duction used in the derivation of some terminal string. Recall that productions are of the form a Æ b, where a, b are
strings over A = N U T, and a π l. A recursive production is defined as a production that directly or indirectly results in
the derivation of some string b such that a fi+b and some non-terminal R is in both a and b. Thus, when a grammar has
a recursive production used to derive some string, it effectively allows a “looping” action so that an infinite number of
additional strings can be derived.

Also, in the above example, during the derivation of the second and third strings, we came upon the step:

S fi aaB fi aaSB. Now there is a choice; should the S be rewritten first, or should the B be rewritten first. If the non-
terminal farthest to the right of the string is always selected to be re-written, the derivation is called a right-most deriva-
tion. If the non-terminal to the left of the string is always selected to be re-written first, the derivation is called a left-most
derivation. In the example above we performed a left-most derivation. Here is the right most derivation of the second
string from the example:

S fi aaB fi aaSB fi aaSb fi aaaaBb fi aaaaaabb.

n Example 1. Is l in a language?

n Answer: l is in language if and only if there is some derivation such that

S fi+ l.

n Example 2. P = {S Æ aB | l, B Æ a}.

n Answer: This language consists of a set of exactly two strings, aa and l.

n Example 3. Compare the language in the above example to the language described by the grammar with the following
productions: P = {S Æ aB, B Æa | l}.

n Answer: This latter language will also consist of a set of exactly two strings, aa and al. But recall that al = a. So this
language does not contain l, even though l occurs in the derivation of some string.

n Example 4. Consider the language with the set of productions: P = {S Æ a | l | Sl}. At first glance this seems to be an
infinite language that contains l. But is it infinite?

n Answer: Let us derive some strings.

S fi l

Theory of Computation 3.5

S fi a

S fi Sl fi ll

S fi Slfi al

S fi Slfi Sll fi lll

S fi Sl fi Sll fi all.

In this example we see that we are only deriving two strings, l and a. This grammar produces an infinite number of deri-
vations for these two strings, but the language described by the grammar is finite since it contains a finite number (two)
of strings.

Definition: A parse tree (also known as a derivation tree) is a tree rooted at the non-terminal S such that each non-termi-
nal node in the tree has as its children the terminals and non-terminal symbols that are used in rewriting the non-terminal
node, and such that each terminal is a leaf node in the tree.

n Example 5. In the grammar where P = {S Æ aBB, B Æ b|AS|aAS, A Æ gg}, the follow-
ing is a parse tree for the left-most derivation of the string aggabbb. In reading the string of
teminals described by a parse tree, the leaf nodes are read, left to right.

Definition: If a string s is in L(G), the meaning of s for G is its parse tree.

A grammar G is ambiguous if there exists some string s in L(G) such that s has more than
one parse tree.

Note

In the example above, we said we were going to provide the parse tree for the left-most derivation of the string ag-
gabbb. There also exists a parse tree for the right-most derivation of the string aggabbb. Does this make the grammar
ambiguous? No. The two parse trees are identical (they are the same tree), but when using a left-most derivation, the
order in which the tree is drawn will differ from the order in which it is drawn when using a right-most derivation.

A grammar is called ambiguous if its language contains some string that has two different parse trees. This is equiva-
lent to saying that some string has two distinct leftmost derivations or, equivalently, some string has two distinct
rightmost derivations.

Each string in L(G) has a meaning; the term ambiguous, however, describes certain grammars.

Definition: Two grammars, G1 and G2, are equivalent if and only if L(G1) = L(G2).

n Example Let L(G1) = {aa, bb, cc} and L(G2) = {l, aa, bb, cc}. Because L(G1) π L(G2), G1 and G2 are not equivalent.

Note

It is possible for two equivalent grammars to have different sets of productions, as long as they both generate the same
language.

Grammars can be combined with the resulting combined grammar typically generating a new language. To combine two
grammars, G1 = <N1,T1,S1,P1> and G2 = <N2,T2,S2,P2>, first assure that N1∩ N2 = Δ (If initially this is not the case, simply
choose new names for the non-terminals in one of the grammars). Then, the new grammar:
G = <(N = N1 U N2), (T = T1 U T2), S, (P = P1 U P2, and some additional productions)>.
Then, by adding the following new productions to P, we get new languages by combining G1 and G2:

Production added to P Description of new language Name of rule applied Description of new language

S Æ S0 | S1 L(G1) U L(G2) Union rule L(G1) U L(G2)

S Æ S0S1 L(G1 2) Product rule L(G1 2)

S Æ S1S0 L(G2 1) Product rule L(G2 1)

B B

S

a

bSA

g g a B B

b b

3.6 Computer Science & Information Technology for GATE

Suppose M and N are languages whose grammars have disjoint sets of nonterminals. (Rename them if necessary.) Suppose
that the start symbols for the grammars of M and N are A and B, respectively. Then we have the following new languages
and grammars:
Union Rule: The language M » N starts with the two productions

S Æ A | B.

Product Rule: The language starts with the production

S Æ AB.

Closure Rule: The language M* starts with the production

S Æ AS | L

For example, suppose we want to write a grammar for the following language:

L = {L, a, b, aa, bb, ..., an, bn, ..}.

After a little thinking we notice that L is the union of the two languages M = { an | n Œ } and N = {bn | n Œ }
 Thus we can write a grammar for L as follows:

S Æ A | B union rule,

A Æ L | aA grammar for M,

B Æ L | bB grammar for N.

For another example, suppose we want to write a grammar for the following language:

L = { ambn | m,n Œ }

After a little thinking we notice that L is the product of the two languages M = {am | m Œ } and N = {bn | n Œ }). Thus we
can write a grammar for L as follows:

S Æ AB product rule,

A Æ L | aA grammar for M,

B Æ L | bB grammar for N.

For another example, suppose we want to construct the language L of all possible strings made up from zero or more oc-
currences of aa or bb. In other words, L = {aa, bb}*. So we can write a grammar for L as follows:

S Æ AS | L closure rule,

A Æ aa | bb grammar for {aa, bb}.

We can simplify this grammar. Just replace the occurrence of A in S Æ AS by the right side of A Æ aa to obtain the pro-
duction S Æ aaS. Also replace A in S ÆAS by the right side of A Æ bb to obtain the production S Æ bbS. This allows us to
write the the grammar in simplified form as

S Æ aaS | bbS | L

n Example 1. L(G1)* can be formed by creating a new grammar G that combines G1 with itself. Using the union rule
above, derivations in the new grammar would start with the production S Æ S1S | l.

n Example 2. Describe using sets, concatenation, and Kleene closure the set of all strings made up of a’s and b’s with an
even number of letters.

n Answer: {aa, ab, ba, bb}*

3.1.3 Regular languages

We define Regular Languages (RLs) recursively:
Basis: For all a in A, the following are regular languages: Δ, {l}, {a}.
Inductive step : If L and M are regular languages, then any product or union of L and M is a regular language.

n Example 1. {a}{a, b}*{b} is the set of all strings over A = {a,b} that begin with an “a” and end with a “b”.

n Example 2. {a,b}* {a} {a,b}* {a} {a,b}* is the set of all strings over A = {a,b} with at least 2 a’s.

A Regular Expression (RE) is a way of describing a certain class of sets (regular sets).That is, a regular expression is an
algebraic expression describing an RL. REs use parenthesis to group terms for clarity, and three operators, the unary

Theory of Computation 3.7

Note

The empty set Δ is regular.

Any set containing one character is regular.

Definition: We define REs recursively:
Basis: Δ, l, a are REs for all a in A.
Inductive step: If B and C are REs, the following are also REs:

Note

Even though the operator + is not explicitly provided by the algebra of REs, it is often used in REs as a shorthand for
the following. Let B be a regular expression. Then, by induction, we know that B* is a regular expression. We also
know, by induction that BB* is a regular expression. B+ is shorthand for the regular expression, BB.

Every single alphabet symbol is a regular expression. The empty string, lambda, is a regular expression. The empty
set, that is nothing, is a regular expression.

If R and S are regular expressions then so are R+S, RS, R* and S*. For example 0*1 + 1 is a regular expression. The
semantic interpretation of R+S is the union of all strings in R and S. RS is the set of strings xy, where x is in R and y
is in S. R* consists of all the strings which are zero or more concatenations of strings in R. For example. 00011101
is in (00+01)*(11+00)01.

Definition: The language L(E) is the set of strings described by the regular expression, E.

Note the following:

L(Δ) = {} = Δ

L(l) = {l}

L(a) = {a}, for each a in A

L(R+S) = L(R) U L(S). This is called the language union rule.

L(R*) = L(R)*. This is called the language closure rule.

n Examples

1. L(a+b) = {a,b}

2. L(a(a+b)) = {aa,ab}

3. L((aa)+b) = {aa, b}

4. L(a+) = L(aa*) = {a, aa, aaa, …}

5. L(a*) = {l, a,aa, aaa, …}

6. L((ab*) + c) = {c, a, ab, abb, abbb, …}

7. L((ab)* + c) = {l, c, ab, abab, ababab, …}

8. a(a + b)*b is the set of all strings that starts with an “a” and ends in a “b”.

9. (b*abb*) is the set of all strings in which each “a” is followed by at least one “b”.

The properties of RE’s are given as follows:

1. The + properties

 R + T = T+R is commutativity property.

 R + Δ = R is “zero” property.

 R + R = R is identity property.

 (R + S) + T + R + (S + T). associative property.

3.8 Computer Science & Information Technology for GATE

 RΔ = Δ is “zero” property.

 Rl = R is identity property.

 (RS)T = R(ST) is associative property.

3. Distributive properties

 R(S + T) = RS + RT

 (S +T)R = SR + TR

4. Closure properties

 Δ* = l* = l.

5. R* = R*R* = (R*)* = R+R*,

 R* = l+R* = (l+R)* = (l+R)R* = l+RR*,

 R* = (R+,…,+Rk)*, for any k ≥ 1,

 R* = l +R+,…,+Rk-1+RkR*, for any k ≥ 1.

6. R*R = RR*

7. (R+S)* = (R*+S*)* = (R*S*)* (R*S)*R* = R*(SR*)

8. R(SR)* = (RS)*R

9. (R*S*)* = l + (R+S)*S,

 (RS*)* = l + R(R+S)*

Identities with regular expressions

1. fu = uf = f (f = empty set)

2. lu = ul = u

3. f* = l

4. l* = l

6. u + f = u

7. u + u = u

8. u* = (u*)*

9. u(v+w) = uv + uw

10. (u+v)w = uw + vw

11. (uv)*u = u(vu)*

12. (u + v)* = (u*v)*u*

n Example 1. Find the language of the regular expression a + bc*.

n Answer: We can evaluate the expression L(a + bc*) as follows:

L(a + bc*) = L(a) » L(bc*)

= L(a) » (L(b) · L(c*))

= L(a) » (L(b) · L(c)*)

= {a} » ({b}· {c}*)

= {a} » ({b). {L, c, c2, ., cn,…})

= {a} » {b, bc, bc2, bcn ,…}

= {a, b, bc, bc2, ..., bcn, ...}.

n Example 2. For example, the language {a, b, c} is represented by the regular expression a + b + c.

Note: All infinite languages need not be regular.

n Example 3. The language {L, a, b, ab, abb, abbb, ..., abn, ...} is regular as it can be represented by the regular expression
L + b + ab*.

Theory of Computation 3.9

Note: Distinct regular expressions do not always represent distinct languages. For example, the regular expressions a + b
and b + a are different, but they both represent the same language, L(a + b) = L(b + a) = {a, b}.

n Example 4. Prove the following equality:

ba*(baa*)* = b(a + ba)*.

n Answer:
By cancelling b from both sides, we get

a*(baa*)* = (a + ba)*.

Let R = a and S = ba. Then we have
(a + ba)* = (R + S)*. By using the closure property of RE, this can be written as:

 R*(SR*)* = a*(baa*)*.

Therefore the equality is proved.

n Example 5. Show that (Δ + a + b)* = a*(ba*)*
By starting with the left side as follows:

(Δ +a+ b)* = (a+ b)*

= a*(ba*)* (using (u + v)* = (u*v)*u*)

n Example 6. Show that
b*(abb* + aabb* + aaabb*)* = (b + ab + aab + aaab)*

By starting with the left side and proceeding towards right side.
b*(abb* + aabb* + aaabb*)* by using b*((ab + aab + aaab)b*)*
= (b + ab + aab +aaab)* ((u + v)* = (u*v)*u*).

n Example 7. Show that R + RS*S = a*bS*, where R = b + aa*b and S is any regular expression:

R+ RS*S = RL + RS*S

= R(L + S*S)

= R(L + SS*)

= RS*

= (b+ aa*b)S*

= (L + aa*)bS*

= a*bS*

n Example 8. If S ={a,b}, describe using regular expressions the following languages:

1. All strings that contain the substring “ab”

2. All strings that start with a “b”, end in a “b” and have at least one “a” in between

 All strings that do not have the substring ab

 All strings that contain an odd number of b’s

3. All strings in which the total number of a’s is divisible by 3.

4. All strings that end in a double letter (either “aa” or “bb”)

5. All strings that have a double letter somewhere in them

6. All strings that do not contain the string aaa

7. All strings with length <4

8. All strings in which each “a” is preceded by a “b”

9. All strings with an even number of a’s and an odd number of b’s

10. All strings that contain exactly 2 b’s

11. All strings that contain an odd number of occurences of the substring “ab”

3.10 Computer Science & Information Technology for GATE

12. All strings with odd length

13. All strings with odd length containing exactly one “a”

Note

The symbol F is a regular expression and L(F) = F ;

Any single character c is a regular expression and L(c) = {c}

If a and b are regular expressions then ab, aUb and a*, b* are regular expressions. Also, L(aUb) = L(a)UL(b), L(ab)
= L(a)L(b), L(a*) = (L(a))*.

A language L is regular if and only if there is a regular expression E with L = L(E).

n Example 9. Smallest possible string length under this Regular expression a(a + b)*b is------

n Answer: 2

n Example 10. Does the string “ab” is smallest acceptable string in both the languages which are represented by regular
expressions a(a+b)*b and (b*abb*)?

n Answer: Yes

3.1.4 Finite State Machines

A Finite State Machine (FSM) is a kind of very limited type of computation that has no memory or data structure
except for what you can encode directly into the machine. Every FSM looks like a directed graph where the nodes
are called states and the edges are called transitions. The edges are labeled with symbols of the alphabet, and we run
the machine by reading the input one symbol at a time from left to right, and following the transitions in the graph.
We start at a designated start node. When we are finished reading the string, acception of that string depends on the
state that we end up in. If the state is marked final, then we say yes, otherwise no. Any set of strings accepted by an
FSM is called a regular set.

Examples of Regular sets for the alphabet {0,1}.

a. Even number 1’s.

b. Strings containing 101.

c. Even number of 0’s and contains 101.

d. Even number of 0’s or contains 101.

e. All strings. Divisible by three as a binary number.

f. Everyone has at least two zeros that follow it.

g. Not divisible by three.

h. Second symbol not a one.

i. Some two zeros are separated by a number of symbols that is a multiple of three.

j. End with 00 or 01.

A Finite Automaton (FA) is a directed graph completely described by a 5-uple: T<S, A, T, s, F>,where, S is a finite set of
nodes or States, A is the finite Alphabet of terminal symbols, T is the Transition function providing the mapping S X A ->
S, s in S is the unique Starting node or state, and F (a subset of S) is a set of Final or accepting states.

There are two large groupings of FA’s: Deterministic Finite Automata (DFA’s) and Non-Deterministic Finite Automata
(NFA’s). The above definition of FA’s applies to both groups, although the structure of T will differ according to whether
the FA being described is a DFA or an NFA.

Remember that an FA is a mathematical structure (a directed graph). One (popular) way to depict this mathematical
structure is with a drawing in which all the following occur:

Elements of S are represented as labeled nodes in a graph (usually drawn as circles with the label in the circle).

T is represented by edges in the graph, with each edge labeled with some symbol from A.

Theory of Computation 3.11

Elements of F are indicated by drawing another circle around each circle (or labeled node) that represents a final
state.

An FA can be used to generate a language by applying the following algorithm:

1. Start at the start state s and with the empty string (the string of length 0) as the current string.

2. Each time a transition from a state to a state is effected, the label on the edge of that transition is concatenated with
the current string.

3. When a final state is reached, either

Place the current string in the set of strings generated by the FA and go to step 1, or

(if possible) go back to step 2.

Here is an example of an FA: <(S = {s, I, II, III, TRAP}, A = {a, b}, T (provided later), s, (F = {II, III})>.
And here is a graphic representation of that FA:

I

b

a

II

a

b

III

a b,

a b,

TRAP

a b,

s

The function T can be completely specified and described for FA as shown in Table 3.1 :

Table 3.1

Comments about the table and T (not actually part of T)

Each member of S is listed in column 2, with any special designa-
tions for that member listed in column 1; each symbol from the
alphabet is listed as a header for subsequent columns (that is,
after column 2).

A b

Start S I II Move from state S to state I and concatenate ‘a’ with the current
string; or, from S to state II and concatenate ‘b’ with the current
string

I III I

Final II II II Final state means: if here, the current string is in the language
generated by the FA

Final III TRAP TRAP Another final state
Can not get anywhere from trap state.

TRAP TRAP TRAP

In some TOC books, FSA state diagram is represented as shown, also where q0,q1, ... representing states, etc., Here, q0 is
always assumed as initial state, S is set of alphabet.

q2q1q0
a b

a b+

Q = {q0, q1, q2}

S = {a, b}

d(q0, a) = q1//If the input alphabet is a then next state becomes q1.

3.12 Computer Science & Information Technology for GATE

d(q1, a) = q1//If the input alphabet is a then next state becomes q1.

d(q1, b) = q1//If the input alphabet is b then next state becomes q1.

d(q1, b) = q2//If the input alphabet is a then next state becomes q2.

F = {q2}

The above FSA recognises strings which starts with a and ends with b.
Consider the FA given in the picture below:

I

II

a

b

a b,
a b,

TRAPs

a b,

n Example What is the language generated by the FA in the above figure?

n Answer: {b}.
A language L is recognised by a FA if L is exactly the language generated by the FA. So, we might ask the question: is the
language b* recognised by the FA in the given figure. If we can find at least one string that is in L but cannot be generated
by the FA, the answer is ‘no.’ We can start by enumerating some of the strings in L(b*). L(b*) = {l, b, bb, bbb, …}. Because
the string bbb (among others) is not in the set of strings generated by the FA, the FA does not recognise the language L(b*).

n Eaxmple What are the languages generated by the FA’s in the following figures?

n Answer: First figure: Strings starts with b’s.
 Second figure: {a}

I

II

a

b
a b,

TRAP
a b,

a b,

I

a

s

TRAP

a b,

b

s

n Example 1. Show the set of transitions used to test whether the string aabbab is acceptable in the following FSA.

q2q1q0
a b

a b+

n Answer:

d(q0, a) = q1

d(q1, a) = q1

d(q1, b) = q1

Theory of Computation 3.13

d(q1, b) = q1

d(q1, a) = q1

d(q1, b) = q2

The string terminates in a final state (i.e. q2), so this automaton recognises the string aabbab or aabbab is in the language
recognised by this automaton.

Regular Expressions and FA

The set of languages described by the set of Regular Expressions is exactly the set of Regular Languages.

There exists an algorithm to transform any Regular Expression into a Finite Automaton.

There exists an algorithm to transform any Finite Automaton into a Regular Expression.

Therefore, the set of languages generated/recognised by the set of Finite Automata is exactly the set of Regular Lan-
guages.

An FA is fully specified for an alphabet A if from every state in the FA there is exactly one transition specified for each
symbol in A. If an FA is not fully specified, it can be made so by adding states and transitions as needed, so long as these
do not affect the language generated by the FA.

Some Regular Expressions and their corresponding FA (parts) are given below.

a+

a

I
a

0

a*

a

s

Δ
{ | }a a AŒ

s

l s

a + b

II

a

s

b

I

s I

s I

a

b

s

a b
IIs

b
I

a

(a + b)+)
Is

a b,L a b((+))+ a b,

3.14 Computer Science & Information Technology for GATE

l-transitions
If an edge of an FA is labeled with l, this signifies that a transition from a state to a state along this edge can be made
without “consuming” a character from the input string. For example, try to construct an FA to recognise the language
L(ab+a*a). One such machine is shown in the following figure:

II

l

I

b

III

s

a

a
s

a

Note: For each FA with l-transitions, there exists at least one equivalent FA without l-transitions. Because they recognise
the same language, the machine in the following figure (without l-transitions) is equivalent to the machine in above figure
(having l-transitions).

III

b

III

s

a

a
s

a

Definition: The l-closure of s is the set of states that can be reached from s by traversing zero or more edges labeled with
l (“l-edges”).

The l-closure of s is denoted by l(s).
Consider the following example,

s
l

s
a

1 2
b

3

4

a, l

ll

The transition table for above figure is given as

A B l

Start s -- -- {1}

1 {2,3} -- --

2 -- {3} {1}

3 {4} -- {2,4}

Final 4 -- -- --

So,

 l(s) = {s,1}

 l(1) = {1}

 l(2) = {1,2}

 l(3) = {1,2,3,4}

 l(4) = {4}

In other words, if an FA contains the states A, B, C, and if there exists a l-edge from state A to state B and another l-edge
from state B to state C, as shown in the given figure,

Theory of Computation 3.15

l sB

sC

sA

l

then by applying the recursive definition of l-closure,

 l(A) = {A,B,C} U l(B) U l(C).

Theorem 1: If M = (Q, S, d, q0, F) is a finite automaton, then M’ = (Q, S, d, q0, Q – F) is a finite automaton with L(M’)
being the set complement of L(M).

A complete finite automaton is an automaton in which each node has a transition leaving that node for each character
in the alphabet. Any finite automaton can be transformed into a complete finite automaton by creating a new node and
having each node that “needs” a transition given a transition to the new node. In this way the new node acts as a sink. See
the following which contains an FSA with its completed version.

q2q1q0
a b

A completed automaton would be :

q2q1q0
a b

q3

a

b

a

b

Theorem 2: If M = (Q, S, d, q0, F) is a complete finite automaton, then M’ = (Q, S, d, q0, Q – F) is a finite automaton with
L(M’) being the set complement of L(M).

n Example 1. Which is trap state in the following DFSA?

0
a

b

1

a b,

a b,

Start

2

n Answer: 2

n Example 2. Build a DFA to recognise the regular language represented by the regular expression (a + b)*abb over the
alphabet A = {a, b}. The language is the set of strings that begin with anything, but must end with the string abb.

0
a

3Start 1 2
b b

b a

a
a

b

3.1.4.1 Non-deterministic Finite State Machines

We now consider a variation of the FSM that will make it much easier to design FSM’s. A deterministic FSM has an arrow
coming out of each state for each symbol in the alphabet. If an arrow is missing, we assume that it actually goes to a dead
state, that is a state with two self-looping arrows (for 0 and 1). A non-deterministic machine may have any number of ar-
rows coming out of each states with 0 and 1 appearing on the transitions arbitrary number of times.

3.16 Computer Science & Information Technology for GATE

How do we run a non-deterministic machine? We have potentially many choices of directions to move after reading
each symbol of the input. Well we don’t really run the machine, at least not in the sense that we run a deterministic ma-
chine. However, there is a very formal and precise definition as to which strings are accepted by a given non-deterministic
FSM. If we can read the symbols of a string and find some path that ends up in a final state then we accept that string. On
the other hand, if every choice of path ends up in a non-final state then we reject the string.

Let’s consider what T (the transition function) of an FA might be. We know we can represent T as either a transition
diagram or as a transition table. As a mathematical expression, we can state T as:

T(i, a) = j

which might be read as “There exists a transition from state i to state j labeled with ‘a’.” We can define T more precisely us-
ing induction.
Basis step: T(i, lambda) = i
Inductive step: T(i, as) = T(T(i, a), s)
Note that because T is a transition function, T(i, a) is a state.

Converting an arbitrary DFA, M into an NFA is trivial. All we have to do is add a non-accepting state to M and duplicate
some existing edge label into that state so that there will exists alternative edges with the same label from some state in M.
Algorithm to convert an NFA into a DFA

1. The DFA state is lambda(s), where s is the NFA start state.

2. For each state in the DFA {s_1, s_2, … , s_n}, and for each a in A, construct the transition table as follows

 T_D({s_1, s_2, …, s_n}, a) =

 lambda(T_N(s_1,a) U … U T_N(s_1,a)).

 (Where T_D is the transition function for the DFA and T_N is the transition function for the NFA)

3. A DFA state is final if any of its elements is a final state in the corresponding NFA.

3.1.4.2 Minimising FSM’s

The algorithm to minimise an FSM is based on the fact that the states can be partitioned into disjoint sets where all the
states in each state are equivalent. This equivalence relation is defined as follows: two states A and B are equivalent if a
given string could start in either place and its acceptance status would be identical.

For all FA’s that recognise the same language, L are equivalent. Among these there exists a unique DFA with the smallest
number of states. This is called the minimum-state DFA that recognises L. Here we are using “minimum” in the strict sense
that there does not exist an equivalent DFA with a smaller number of states.

First, recall that the set of regular languages is exactly the set of languages generated by regular expressions. Recall,
too, that there is an algebra of regular expressions that would permit us to simplify any RE. That is, suppose we have an
RE and wish to simplify it. We can use the RE to create an FA that recognises the same language. If the FA is an NFA, we
can use the algorithm previously detailed to transform the FA into a DFA. Then, we can use the algorithm to be presently
described to find the unique minimum-state DFA equivalent to that RE. If necessary, there exists an algorithm that we
could then apply to transform the minimum-state DFA into a (now) simplified RE.

This means for any regular expression, or for any NFA, or for any DFA, we can construct a unique minimum-state DFA
that recognises the same (regular) language.

The algorithm we are about to present is based on the following notion of equivalence. For any string w, two states (s,
and t) in the DFA are said to be equivalent if T(s, w) and T(t, w) are either both accepting states or both non-accepting
states.

Recall that an equivalence relation is a relation that is RST (Reflexive, Symmetric, and Transitive).
The idea behind this is fairly simple. Suppose, whatever path through the DFA was used to get to states s and t, that with

the string w left to “consume” when moving from states s and t, the machine will end up in an accepting state at the end of
the string w. Then s and t are equivalent in the sense that both T(s, w) and T(t, w) are accepting states.

And the contrary is true. Suppose, whatever path through the DFA was used to get to states s and t, that with the string
w left to “consume” when moving from states s and t, the machine will end up in a non-accepting state at the end of the
string w. Then s and t are equivalent in the sense that both T(s, w) and T(t, w) are non-accepting states.

This notion of equivalence allows us to partition the states of a DFA according to the following algorithm.

Theory of Computation 3.17

Algorithm for constructing a minimum-state DFA from a DFA, M
Step 0. Create the initial sets I_N and I_A, where each element of I_N is a set containing a single non-accepting state, and
each element of I_A is a set containing a single accepting state.
Step 1. Create a set of states Ei, (i = 0) for each pair of accepting states and for each pair of non-accepting states.
Step 2. Form subsets of equivalencies in the following manner. For all sets {s, t} in Ei, if there exists some letter a such that
{T(s, a), T(t, a)} is not in Ei, then {s, t} are not equivalent, so we discard {s, t}. Place the non-discarded members of Ei in a
set Ei+1 such that Ei+1 is a subset of Ei.
Step 3. Increment i and repeat Step 2 until, at some value of i, no pairs are discarded, that is, until Ei = Ei–1.
Step 4. Now use Ei-1 to partition I_N and I_A into equivalence classes of sets of states.
Step 5. The start state of the DFA will be the equivalence class containing M’s original start state.
Step 6. Any equivalence class containing an accepting state is an accepting state.

Regular Expression to Finite Automaton
Given a regular expression, we start the algorithm with a machine that has a start state, a single final state, and an edge
labeled with the given regular expression as follows:

s f
Regular expression

Now, transform this machine into a DFA or an NFA by applying the following rules until all edges are labeled with either
a letter or L:

1. If an edge is labeled with 0, then erase the edge.

2. Transform any diagram like i j
R S+

 in to the diagram i j

R

S

3. Transform any diagram like i j
R S◊ into the diagram i

R S
j

4. Transform any diagram like i
R*

j into the diagram i
L

j

R

L

End of Algorithm

n Example To construct an NFA for a* + ab, we’ll start with the diagram

s f
a ab* +

 Next we apply rule 2 to obtain the following NFA:

s f

a*

ab

 Next we will apply rule 4 to a* to obtain the following NFA:

s f
ab

L L

a

 Finally, we apply rule 3 to ab to obtain the desired NFA for a* + ab:

3.18 Computer Science & Information Technology for GATE

s f

L L

a

a b

Transforming Finite Automata into Regular Expressions
Starting with either a DFA or an NFA, the algorithm performs a series of transformations into new machines, where these
new machines have edges that may be labeled with regular expressions. The algorithm stops when a machine is obtained
that has two states, a start state and a final state, and there is a regular expression associated with them that represents the
language of the original automaton.
Assume that we have a DFA or an NFA. Perform the following steps:

1. Create a new start state s, and draw a new edge labelled with L from s to the original start state.

2. Create a new final state f, and draw new edges labelled with L from all the original final states to f.

3. For each pair of states i and j that have more than one edge from i to j, replace all the edges from i to j by a single edge
labelled with the regular expression formed by the sum of the labels on each of the edges from i to j.

4. Construct a sequence of new machines by eliminating one state at a time until the only states remaining are s and f.

 As each state is eliminated, a new machine is constructed from the previous machine as follows:

Eliminate State k

For convenience we will let old (i,j) denote the label on edge ·i,j Ò of the current machine. If there is no edge ·i, j Ò, then set

old(i, j) = Δ. Now for each pair of edges ·i, k Ò and ·k,j Ò, where i π j and j π k, calculate a new edge label, new(i, j), as follows:

new(i,j) = old(i,j) + old(i, k) old(k, k)* old(k,j).

For all other edges ·i,j Ò where i π k and j π k, set

new(i, j) = old(i, j).

The states of the new machine are those of the current machine with state k eliminated. The edges of the new machine are

the edges ·i, j Ò for which label new(i, j) has been calculated.

Now s and f are the two remaining states. If there is an edge ·s, f Ò , then the regular expression new(s, f) represents the

language of the original automaton. If there is no edge ·s, f Ò, then the language of the original automaton is empty, which

is signified by the regular expression Δ.

End of Algorithm

n Example 1. Suppose we start with the DFA:

0
a

b

1

a b,

a b+

Start

2

1. The first three steps transform this machine into the following machine, where s is the start state and f is the final
state:

0
a

b

f

a b+2

s
L

1
L

a b+

Theory of Computation 3.19

 Now let us eliminate the states 0, l, and 2. We can eliminate state 2 without any work because there are no paths pass-

ing through state 2 between states that are adjacent to state 2. In other words, new(i,j) = old(i,j) for each edge ·i, j Ò,
where i π 2 and j π 2. This gives us the machine

0
a

f

a b+

s 1
LL

 Now we will eliminate state 0 from this machine by adding a new edge ·s, 1 Ò that is labelled with the following regular
expression:

new(s, 1) = old(s, 1) + old(s, 0) old(0, 0)* old(0, 1)

= Δ + LΔ*a

= a

 Therefore, we delete state 0 and add the new edge ·s, 1 Ò labeled with a to obtain the following machine:

f

a b+

s 1
La

 Next we eliminate state 1 in the same way by adding a new edge ·s, f Ò labelled with the following regular expression:

new(s,f) = old(s, f) + old(s, 1) old(l, l)* old(1, f)

= Δ + a(a + b)*L

= a(a + b)*.

 Therefore, we delete state 1 and label the edge ·s, f Ò with a(a + b)* to obtain the following machine:

fs

a a b(+)*

 This machine terminates the algorithm. The label a(a + b)* on edge ·s, f Ò is the regular expression representing the
regular language of the original DFA given in the figure.

n Example 2. Verify that the regular expression (a + b)*abb represents the regular language accepted by the DFA from.
We start the algorithm by attaching start state s and final state f to the DFA to obtain the following machine:

fs 0 1 2 3

b a

L a b b L

a
a

b

Now we need to eliminate the internal states. As we construct new edge labels, we’ll simplify the regular expressions as we
go. First we will eliminate the state 0. To eliminate state 0, we construct the following new edges:

new(s, 1) = Δ + Lb*a = b*a,

new(3, 1) = a + bb*a = (L + bb*)a = b*a.

With these new edges we eliminate state 0 and obtain:

fs 1
b a* Lb

a

2 3
b

a

b a*

The states can be eliminated in any order. For example, we will eliminate state 3 next, which forces us to create the follow-
ing new edges:

3.20 Computer Science & Information Technology for GATE

new(2, f) = Δ + b Δ*L = b,

new(2, 1) = a + bΔ0*b*a = a + bb*a

= (L + bb*)a = b*a.

With these new edges we eliminate state 3 and obtain the following machine:

fs 1
b a* b

a

2
b

b a*

Next, we will eliminate state 2, which forces us to create the following new edges:

new(l, f) = Δ + b Δ*b = bb,

new(l, 1) a + b Δ*b*a = a + bb*a = (L + bb*)a = b*a.

With these new edges we eliminate state 2 and obtain the following machine:

fs 1
b a* bb

b a*

Finally, we remove state 1 by creating a new edge
new(s,f) = Δ + b*a(b*a)*bb

= b*(ab*)*abb (by 8 of Properties of Reg Exp)

= (a + b)*abb (by 7 of Properties of Reg Exp).

So we obtain the last machine with the desired regular expression for the DFA as given:

fs

(+)a b abb*

The process of constructing a regular expression from a finite automaton can produce some complex regular expressions.
If we remove the states in different orders, then we might obtain different regular expressions, some of which might be
more complex than others. So the algebraic properties of regular expressions are nice tools to simplify these complex
regular expressions. As we have indicated in the example, it is better to simplify the regular expressions at each stage of the
process to keep things manageable.

n Example 3. Convert the following NFA machine to DFA.

q1
a

a

q0

a

b

There would be four possible states for resulting DFA. {} {q0} {q1} {q0, q1} Note: {} is usually unnecessary unless we want a

complete deterministic FA. We have the original 4 transitions: q q q q q q q q
a a a b1 0 0 1 0 0 1 1{ }Æ{ } { }Æ{ } { }Æ{ }{ }Æ{ } but we

also have: q q q q q q q
a a0 0 1 0 1 0 1{ }Æ{ } { }Æ{ }, , ,

The resulting automaton is:

{ 0, 1}q q
a

a

a

{ 0}q

{ 1}q
a

b

a

Theory of Computation 3.21

n Example 4. Explain what is meant by equivalence states. Identify which are the equivalence states in the following FA.

a

a

q0 q1

a

q2

b

b

a

b

b

Finite automation can be reduced by removing EQUIVALENT STATES. Two states are equivalent if they have the same
transitions entering from the same nodes and have the same transitions leaving to the same nodes. Also, they must either
both be final states or both non-final states.

Here, q1 and q2 are equivalent states. So, the finite automation can be reduced to an equivalent finite automation with
2 states:

q0
a

q1 b

a

3.1.5 Right Linear Grammars

We have already understood that a grammar is described by productions. Best to start with an example and then give some
terminology.

S Æ 0B B Æ 0S S Æ 1S B Æ 1B S Æ l

S and B (normally all upper case letters) are called non-terminal symbols because they do not appear in the final gen-
erated strings. 0, 1, and l are called terminal symbols, where l is the empty string. All strings generated by the grammar
consist of non- l terminal symbols.

There is a unique non-terminal symbol called the start symbol usually designated as S. A production is a substitution
of one set of symbols for another. The left side is replaced by the right side. A sequence of productions starting with S and
ending with a terminal string x, is said to generate the string x. For example, S Æ 0B Æ 00S Æ 001S Æ 0011S Æ 0011,
shows that the grammar generates the string 0011. See if you can figure out which production was used in each step of the
derivation of this string.

The grammar above is a very special kind of grammar called a right-linear grammar. In a right-linear grammar, every
production has a single non-terminal symbol on the left, and either a single terminal symbol on the right or a combo ter-
minal followed by non-terminal symbol.
Every right-linear grammar generates a regular set, and that every regular set can be generated by a right-linear
grammar.
The grammar above corresponds to the set of strings over the alphabet {0,1} that have an even number of zeros. The idea
is that the non-terminal symbols correspond to states, and the terminal productions correspond to final states.

Context free grammars keep the restriction on the left side of each production but lose the restriction on the right side.
This lets us use a production S Æ 0S1, which combined with S Æ l generates the language 0n1n, which is not a regular
set. There are grammars in between context free and right-linear grammars called LR-grammars. There are less restricted
grammars called context-sensitive grammars, which demand only that the length of the left side be smaller than the length
of the right side. There are unrestricted grammars, which can recognise any set that a Turing machine can recognise. The
LR grammars have a restriction that is complicated to describe but they represent the most practical use of grammars, and
are fundamental in the design of compilers and for parsing.

3.1.5.1 The Pumping Lemma

The pumping lemma for regular languages describes an essential property of all regular languages. It says that all suffi-
ciently long words in a regular language may be pumped; that is, have a middle section of the word repeated an arbitrary

3.22 Computer Science & Information Technology for GATE

number of times to produce a new word which also lies within the same language. According to pumping lemma, for any
regular language L there exists a constant p such that any word w in L with length at least p can be split into three sub-
strings, w = xyz, where the middle portion y must not be empty, such that the words xz, xyz, xyyz, xyyyz, … constructed
by repeating y an arbitrary number of times (including zero times) are still in L. This process of repetition is known as
“pumping”. Moreover, the pumping lemma guarantees that the length of xy will be at most p, imposing a limit on the ways
in which w may be split. Finite languages trivially satisfy the pumping lemma by having p equal to the maximum string
length in L plus one.

Let R be a Regular set. For any z in R, there exists an n (specifically, the number of states in a machine accepting R),
such that z can be written as vwx, where |vw| <= n and |x| >= 1, and for i >= 0 vwix is also in R.

The lemma is usually used in its contra positive form. That is, if the pumping condition is not true then the set is not
Regular. Note that if the pumping condition is true, the set might be Regular and might not be. That is, the converse of the
pumping lemma is not true. It is not if and only if. You will be asked in a problem set to identify a non-Regular set where
the pumping lemma is true.

There are many sets which can be shown to be non-Regular using the pumping lemma.
This lemma can be also said as L: Let M be a finite automaton with k states and let z be a string that M recognizes with

the length of z being >= k (|z| >=k), then z can be written as z = uvw where |uv| <= k, |v| >= 0, and M recognizes uviw for
all i >=0.

a

a

q0 q1

q2

b

a

b

b

Let us take an example FA as shown above.

k = 3 and suppose z = abbaa

Since |z| = 5 > k, then we can break z into

u = a, v = bb, and w = aa

Then uv0w = aaa

uv1w = abbaa

uv2w = abbbbaa

The pumping lemma is used to show that a language IS NOT regular.

n Example 1. The language {aibi | i >=0} is not regular

Proof:
L contains strings of arbitrary length.
Suppose L is a regular language. (We will show this is impossible). Let M be a finite automaton that generates L and let z
e L and |z| >=k, where k is the number of states of M. Then by the pumping lemma, z = uvw where |uv| <= k and |v| >=0.

Case 1: v = an where n>=1 (i.e. v contains all a’s)
Then uv2w e L (by the pumping lemma)
but uv2w has more a’s than b’s, so cannot be in L.

Case 2: v = anbm m,n >=1 (i.e. v contains both a’s & b’s)
Then uv2w = u(anbm)2w = u(anbmanbm)w which is NOT in L

Case 3: v = bm (i.e. v is all b’s)
Then uv2w contains more b’s than a’s
In each possible case we have shown that uv2w cannot possibly be in L. This violates the pumping lemma and therefore L
must not be a regular language!

Diagonalisation – Another Way to Identify Sets that are Not Regular
The pumping lemma is very convenient for showing that certain sets are not regular, but it is not the only way. A more
general method that works for all kinds of different machines is called diagonalisation.

Theory of Computation 3.23

We consider binary strings that represent FSM’s. Imagine that we encode an FSM itself in binary. There are many ways
to do this and one will be discussed in class. Then some FSM’s will accept their own representation and some will not. The
ones that do are called self-aware, and the ones that do not are called self-hating. Now consider the set of all binary strings
that represent self-hating FSM’s. Is this set Regular?

If it were Regular, then there is an FSM Q that accepts the set. Does Q accept itself? If it does, then it is a self-hating
FSM, which means that it should reject itself. But if it rejects itself, then it is not a self-hating machine, and it should ac-
cept itself!

Strange, Q can neither accept or reject itself logically, hence Q cannot exist.
The neat thing about this trick is that it does not depend on the fact that the machine is an FSM. It could just as well

be any kind of a machine. There are generalisations of the pumping lemma but the technique of diagonalisation works
generally.

Using Closure Properties to Show a Set is not Regular

One can also use closure properties to show that a set is not regular. For example, to show that the set of binary strings with
an equal number of zeros and ones is not regular, we note that the intersection of that set with 0*1* is 0n1n. If the equal 0’s
and 1’s set was regular then so would 0n1n, and we know that is not the case, hence equal zeros and ones is also not regular.

Regular Expression Regular Grammar

a* S Æ L | aS

 (a + b)* S Æ L | aS | bS

a* + b* S Æ L | A | B

A Æ a | aA

B Æ b | bB

a*b S Æ b | aS

ba* S Æ bA

A Æ L | aA

 (ab)* S Æ L | abS

n Example 2. Construct a regular grammar for the language of the regular expression a*bc*. First we observe that the
strings of a*bc* start with either the letter a or the letter b. We can represent this property by writing down the following
two productions, where S is the start symbol:

S Æ aS | bC.

These productions allow us to derive strings of the form bC, abC, aabC, and so on. Now all we need is a definition for C to
derive the language of c*. The following two productions do the job:

C Æ L | cC.

Therefore a regular grammar for a*bc* can be written as follows:

S Æ aS | bC

C Æ L | cC

n Example 3. Construct grammar for the language of strings of a’s followed by strings of b’s. The largest language of this
form is the language { ambn | m, n Œ }, which is represented by the regular expression a*b*. A regular grammar for this
language can be written as follows:

S Æ L| aS | B

B Æ b | bB

n Example 4. Four sublanguages of { ambn | m, n Œ } that are defined by whether each string contains occurrences of a
or b. The following table shows each language together with a regular expression and a regular grammar.

3.24 Computer Science & Information Technology for GATE

Language Expression Regular Grammar

{ ambn | m ≥ 0 and n > 0} a*bb S Æ aS | B

B Æ b | bB

{ ambn | m > 0 and n ≥ 0} aa*b* S Æ aA

A Æ aA | B

B ÆL | bB

{ ambn | m > 0 and n > 0} aa*bb* S Æ aA

A Æ aA | B

B Æ b | bB

{ ambn | m > 0 or n > 0} aa*b + a*bb* S Æ aA | bB

A Æ L | aA | B

B Æ L | bB

3.1.6 Context-free Languages

We now jump a level in power and we consider a new collection of sets from a grammar point of view. A context-free
grammar is a grammar where every production has a single non-terminal symbol on the left side. Context free grammars
can generate non-regular states. For example, the 0n1n set is described by the language S Æ 0S1 | l. The design of context-
free grammars is more of an art than a science but there are least two identifiable strategies. One is inductive, and the other
semantic.

If a set is described inductively, then you can often leverage the inductive definition and turn it into a grammar. For
example, consider the set of balanced parentheses. This can be defined inductively: l is a balanced string. If x is a balanced
string then so is (x). If and x and y are balanced strings then so is xy (concatenation not multiplication). This can be turned
into a grammar by having each inductive rule be a production. We get S Æ (S) | S Æ SS | S Æ l.

If a set is described semantically, we can sometimes make a grammar by assigning semantic information to each non-
terminal symbol. For example, consider the set of strings that have an equal number of zeros and ones, but not necessarily
in any order. Let S generate these strings. Then we have S Æ 0A and S Æ 1B, where A generates strings that have one more
1 than 0, and B generates strings that have one more 0 than 1. We then continue A Æ 1S and B Æ 0S, and A Æ 0AA and B
Æ 1BB. Finally, S Æ l, A Æ 1 and B Æ 0. All this is consistent with the semantic interpretation of A, B and S.

There is a third strategy that is used for grammars that is not necessarily context-free. The strategy is to use the gram-
mar to simulate a machine-like computation. For example, consider the set of binary strings 0n1n0n.

In class we will consider the following context sensitive grammar and explain how it is essentially simulating a compu-
tation. D and C move back and forth like duck in a shooting gallery. L and R are bookends making sure that no symbols
move off the edges. A, B and C represent what will eventually be the terminal symbols 0n 1n and 0n, respectively.

Here is the grammar:

S Æ LDABCR ADAÆAAD BDBÆBBD CDCÆCCD

DR Æ ER LDAÆLAAD ADBÆABBD BDCÆBCCD

CE Æ EC BE Æ EB AE Æ EA LE Æ LD

LD Æ l R Æ l A Æ 0 B Æ 0 CÆ0

Meaning of context free
The term “context-free” comes from the requirement that all productions contain a single non-terminal on the left. When
this is the case, any production S Æ w can be used in a derivation without regard to the “context” in which S appears. For
example, we can use this rule to make the following derivation step:

aS fi aw.
A grammar that is not context-free must contain a production whose left side is a string of two or more symbols. For ex-
ample, the production Sc Æ w is not part of any context-free grammar. A derivation that uses this production can replace
the non-terminal S only in a “context” that has c on the right. For example, we can use this rule to make the following
derivation step:

Theory of Computation 3.25

aSc fi aw.

Most programming languages are context-free. For example, a grammar for some typical statements in an imperative
language might look like the following, where the words in boldface are considered to be single terminals:

S Æ while E do S | if E then S else S | {S L} | I := E

L Æ S L | L

E Æ ... (description of an expression)

I Æ ... (description of an identifier).

n Example 1. What is the language for which production rule is given as:

S Æ b | aSc

n Answer: Answer the language if of the form

anbcn , for n ≥ 0

That is, L = {b, abc, aabcc, aaabccc, …}, which can be described as: “The set of all strings consisting of a single b preceded
by zero or more a’s and followed by an equal number of c’s.”

Combining Context-Free Languages

Suppose M and N are context-free languages whose grammars have disjoint sets of nonterminals (rename them if neces-
sary). Suppose also that the start symbols for the grammars of M and N are A and B, respectively. Then we have the fol-
lowing new languages and grammars:

1. The language M » N is context-free, and its grammar starts with the two productions

S Æ A | B.

2. The language M N is context-free, and its grammar starts with the production

S Æ AB.

3. The language M* is context-free, and its grammar starts with the production

S Æ L | AS.

Note

CFL’s are not closed under intersection or complement. Thus, we do not know from the properties of CFL’s whether
L_0 « L_1 or whether L_0¢ is/are CFL.

3.1.7 Context-Sensitive Grammars

There are grammars that are more general than the context-free ones described above. A context-sensitive grammar is a
grammar whose productions are of the form

a Æ b

where the length of the string a is less than or equal to the length of the string b.
The language generated by such a grammar is similarly called a context-sensitive language. (Every context-free lan-

guage is context-sensitive).
Of course, one implication of this definition is that the empty string, L, is not in any context-sensitive language since

any string derivable from the start symbol, S, must have length > 1. It is, however, common to allow L to be in context-
sensitive languages by extending the definition of CSGs to permit the production S Æ L providing S does not appear as a
substring in the right hand side of any production.

We will follow this convention. Then, if L is a context sensitive language generated by G = ·N, T, S, P Ò and L œ L we can
easily construct the context sensitive grammar:

G’ = ·N » {S¢}, T, S¢, P » {S¢ Æ S, S¢ Æ L},Ò where S¢ œ N » T,

which generates L » {L}.

3.26 Computer Science & Information Technology for GATE

The following result is important since it shows that the membership problem for context sensitive grammars is solvable.
Theorem

If G = ·N, T, S, P Ò is a context sensitive grammar then L(G) is a recursive language.

Note

(Definition 1) A grammar is context-sensitive if all productions are of the form x Æ y, where x, y are in (N » T)+

and |x| £ |y|.

(Definition 2) A grammar is context-sensitive if all productions are of the form xAy, Æ xvy, where x,v, y are in (N

» T)*, A Œ V.

n Example 1.
The language { anbncn | n ≥ 1} is context-sensitive but not context free.
A grammar for this language is given by:

S Æ aSBC | aBC

CB Æ BC

aB Æ ab

bB Æ bb

bC Æ bc

cC Æ cc

Note that the left hand side of the productions are not all single non-terminals.Thus, context-sensitive. A derivation from
this grammar is:-

S fi aSBC

fi aaBCBC (using S Æ aBC)

fi aabCBC (using aB Æ ab)

fi aabBCC (using CB Æ BC)

fi aabbCC (using bB Æ bb)

fi aabbcC (using bC Æ bc)

fi aabbcc (using cC Æ cc)

which derives a2b2c2.
Thus we can form a hierarchy of languages called the Chomsky hierarchy. This consists of :

Type 0 – Phrase Structure

Type 1 – Context Sensitive

Type 2 – Context Free

Type 3 – Regular

Parse Trees and Ambiguity
A parse tree is a way to represent the derivation of a string from a grammar. A given string may have more than one parse
tree. If every string in the language has exactly one parse tree then the grammar is called unambiguous. If there is even one
string with two or more parse trees, then the grammar is called ambiguous.

What is considered a different parse tree? Two parse trees are distinct if they have a different structure, which means
you cannot lay one on top of the other and have the symbols match up. An equivalent formulation of this is to say that
there are two different leftmost (or rightmost) derivations of the string. Note it is not correct to say that two parse trees
being distinct is the same as the string having two different variations. That is many different derivations can give the same
parse tree, but every different leftmost derivation gives a unique parse tree.

Chomsky Normal Form

It is convenient to assume that every context-free grammar can without loss of generality be put into a special format,
called a normal form. One such format is Chomsky Normal Form. In CNF, we expect every production to be of the from

Theory of Computation 3.27

A Æ BC or D Æ d, where A, B, C and D are non-terminal symbols and d is a non-lambda terminal symbol. If lambda (the
empty string) is actually part of the language, then S Æ l is allowed.

We will use CNF in three different places:

1. A proof of a pumping lemma for CFG’s.

2. A proof that every language generated by a CFG can be accepted by a non-deterministic pushdown machine.

3. An algorithm (dynamic programming style) for determining whether a given string is generated by a given context
free grammar.

There are many steps needed to turn an arbitrary CFG into CNF. The steps are listed below:

1. Get rid of Useless symbols.

2. Get rid of lambda-productions.

3. Get rid of Unit Productions.

4. Get rid of Long Productions.

5. Get rid of Terminal symbols.

The steps are completely algorithmic with step one repeatable after each of the other steps if necessary. We will do a com-
plete example in class.

Useless Symbols
Delete all productions containing non-terminal symbols that cannot generate terminal strings.

Delete all productions containing non-terminal symbols that cannot be reached by S.
The details of the two steps for finding useless symbols are very similar and each is a bottom-up style algorithm. To

find all non-terminal symbols that generate terminal strings, we do it inductively starting with all non-terminal symbols
that generate a single terminal string in one step. Call this set T. Then we iterate again looking for productions whose right
sides are combinations of terminal symbols and non-terminal from T. The non-terminals on the left sides of these produc-
tions are added to T, and we repeat. This continues until T remains the same through an iteration.

To find all non-terminal symbols that can be reached by S, we do a similar thing but we start from S and check which
non-terminals appear on the right side of its productions. Call this set T. Then we check which non-terminals appear on
the right side of productions whose left side is a non-terminal in T. This continues until T remains the same through an
iteration.

The steps need to be done in this order. For example, if you do it in the opposite order, then the grammar S ÆAB, S Æ
0, A Æ 0, would result in the grammar S Æ 0, A Æ 0. If we do it in the correct order, then we get the right answer, namely
just S Æ 0.

Subsequent steps may introduce new useless symbols. Hence useless symbol removal can be done after each of the
upcoming steps to ensure that we do not waste time carrying useless symbols forward.

Lambda-Production Removal

The basic idea is to find all non-terminals that can eventually produce a lambda (nullable non-terminals), and then take
every production in the grammar and substitute lambdas for each subset of such non-terminals. We add all these new
productions. We can then delete the actual lambda productions. For example, A Æ 0N1N0 N Æ l. We add A Æ 0N10 |
01N0 | 010, and delete N Æ l.

The problem with this strategy is that it must be done for all nullable non-terminals, simultaneously. If not, here is a
problem scenario: S Æ 0 | X1 | 0Y0 X Æ Y | l Y Æ 1 | X. In this case, when we try to substitute for X Æ l, we add S
Æ 1 and Y Æ l, and then we sub for Y Æ l, we add S Æ 00 and X Æ l. The trick is to calculate all nullable non-terminals
at the start which include X and Y, and then sub for all simultaneously, deleting all resulting lambda productions, except
perhaps for S Æ l. If lambda is actually in the language, then we add a special start symbol S’ Æ S | l, where S remains the
old start symbol.

Unit Productions

To get rid of unit productions like A Æ B, we simply add AÆ anything, for every production of the form B Æ anything,
and then delete A Æ B. The only problem with this is that B might itself have unit productions. Hence, like we did in
lambda productions, we first calculate all Unit non-terminals that A can generate in one or more steps. Then the A Æ
anything productions are added for all the Unit non-terminals X in the list, where X Æ anything, as long as anything is not

3.28 Computer Science & Information Technology for GATE

a Unit production. The original Unit productions are then deleted. The Unit non-terminals that can be generated by A can
be computed in a straightforward bottom-up manner similar to what we did earlier for lambda productions.

For example, consider S Æ A | 11 A Æ B | 1 B Æ S | 0. The Unit non-terminals that can be generated by S, A and
B are A,B and B,S and A,S respectively. So we add S Æ 1 and S Æ 0; A Æ 11 and A Æ 0; and B Æ 1 and B Æ 11. Then we
delete S Æ A, A Æ B and B Æ S.

Long Productions

Now that we have gotten rid of all length zero and length one productions, we need to concentrate on length > 2 produc-
tions. Let A Æ ABC, then we simply replace this with A Æ XC and X Æ AB, where X is a new non-terminal symbol. We
can do this same trick inductively (recursively) for longer productions.

If we have long terminal productions or mixed terminal/non-terminal productions, then for each terminal symbol, say
our alphabet is {0,1}, we add productions M Æ 0 and N Æ 1. Then all 0’s and 1’s are replaced by M’s and N’s, where M and
N are new non-terminal symbols.

Pushdown Machines

A pushdown machine is just like a finite state machine, except is also has a single stack that it is allowed to manipulate.
(Note, that adding two stacks to a finite state machine makes a machine that is as powerful as a Turing machine). PDM’s
can be deterministic or nondeterministic. The difference here is that the nondeterministic PDM’s can do more than the
deterministic PDM’s.

In the previous sections, we explained how a DFSA is used to recognise (accept strings in) regular languages. Context-
free languages also have a machine counterpart: the pushdown automata (PDA). To recognise context-free languages, we
need to define a machine that solves the “memory problem” we noted above. The solution comes from adding a stack data
structure to a finite-state machine.

To understand how the stack is used in conjunction with a finite-state machine, let us visualise a pushdown automaton
for our example context-free language, L(G) = {anbn | n ≥ 1}. Let us define a machine with two states, as follows:

When the machine is in q0 : If an a is read, push a marker on the stack and stay in q0; if a b is read and there is a
marker on the stack, pop the stack and go to q1.

When the machine is in q1: If a b is read and there is a marker on the stack, pop the stack and stay in q1.

Assume that all other transitions are undefined and cause the machine to halt, rejecting the input.

The computation ends when both the input and the stack are empty.

Why does this machine accept L(G) = {anbn | n ≥ 1}? In the start state q0, the only possible moves are a) read one or more
a’s, adding a marker to the stack for each a which is seen; b) read exactly one b, popping the stack and moving to q1. As-
suming we have read n a’s and 1 b, then there will be n – 1 markers left on the stack. In state q1, the only possible move is
to read a b and pop the stack. Since the machine will halt (and reject) if there is input remaining and the stack is empty, the
only way to exhaust the input and end with an empty stack is to read exactly the same number of a’s and b’s.
A pushdown automaton can be formally defined M = (Q, S, G, ∂, q0, F):

Q, a finite set of states

S, the alphabet of input symbols

G, the alphabet of stack symbols

∂, Q × S × G Æ Q × G

q0, the initial state

F, the set of final states

Intuitively, if ∂(q, s, b) = (q’, g), then M, whenever it is in state q with b at the top of the stack, may read s from the input,
replace b by g on the top of the stack, and enter state q’.

Pushing, popping, and preserving the stack are possible:

∂(q,a,e) = (q’,A) push A on the stack without popping

∂(q,a,A) = (q’,e) pop A from the stack without pushing

∂(q,a,e) = (q’,e) stack unchanged

Now we can define a PDA M, such that L(M) = L(G) = {anbn | n ≥ 1}:

Theory of Computation 3.29

M = ({q0, q1},{a, b},{A}, ∂, q0, {q1})

∂(q0,a,e) = (q0, A)

∂(q0,b,A) = (q1, e)

∂(q1,b,A) = (q1, e)

(Self-test: Trace the operation of M on some strings in L(G), and some strings not in L(G). Assume computation is suc-
cessful (accept) only if the input is empty, the stack is empty, and the machine is in final state q1.)

Closure Properties

Deterministic PDMs have different closure properties than non-deterministic PDM’s. Deterministic machines are closed
under complement, but not under union, intersection or reverse. Non-deterministic machines are closed under union and
reverse but not under complement or intersection. They are however closed under intersection with regular sets. We will
discuss all these results in detail in class.

Non-CFL’s

Not every language is a CFL, and there are NPDM’s which accept languages that no PDM can accept. An example of the
former is 0^n1^n0^n, and and example of the latter id the union of 0n 1n and 0n 12n.

Every CFL has a Non-deterministic PDM that Accepts it

One side of this equivalence is easier than the other. We omit the proof of the harder direction. The easier direction shows
that every CFG G has an NPDM M where M accepts the language generated by G. The proof uses Chomsky Normal Form.

Without loss of generality, assume that G is given in CNF. We construct an NPDM M with three main states, an initial,
a final and a simulating state. The initial state has one arrow coming out of it labeled lambda, lambda, SZ. All the rest of
the arrows come out of the simulating state and all but one loops back to the simulating state. A detailed example can be
give by using the grammar S Æ AB A Æ BB | 0 B Æ AB | 1 | 0.

The idea of the proof is that the machine will simulate the grammar’s attempt at generating a leftmost derivation string.
The stack holds the current state of the derivation, namely the non-terminals that remain. At any point in the derivation,
we must guess which production to use to substitute for the current leftmost symbol, which is sitting on top of the stack. If
the production is a double non-terminal then that symbol is popped off the stack and the two new symbols pushed on in
its place. If it is a single terminal, then a symbol on the tape is read, while we just pop the symbol off the stack.

CYK Algorithm

The most important decision algorithm about CFG’s is given a string x and a CFG G, is x generated by G? This is equivalent
to given a text file, and a Java compiler, is the file a syntactically correct Java program?

The details of such an algorithm is essentially one third of a compiler, called parsing.
One way to solve this problem is to turn the CFG into CNF and then generate all parse trees of height 2n-1 or less,

where n is the length of x. (In a CNF grammar, all strings of length n are generated by a sequence of exactly 2n-1 produc-
tions). We check to see if any of these trees actually derive x. This method is an algorithm but runs in exponential time.

3.1.8 Turing Machine

The basic model of a Turing machine has a finite control, an input tape that is divided into cells, and a tape head that scans
one cell of the tape at a time. The tape has a leftmost cell but is infinite to the right. Each cell of the tape may hold exactly
one of a finite number of tape symbols. Initially, the n leftmost cells, for some finite n >= 0, hold the input, which is a string
of symbols chosen from a subset of the tape symbols called the input symbols. The remaining infinity of cells each hold the
blank, which is a special symbol that is not an input symbol.

Finite Control

3.30 Computer Science & Information Technology for GATE

A Turing machine can be formally defined as M = (Q, S, G, ∂, q0, B, F):, where

Q, a finite set of states

G, is the finite set of allowable tape symbols

B, a symbol of G, is the blank

S, a subset of G not including B, is the set of input symbols

∂: Q × G Æ Q × G × {L, R} (∂ may, however, be undefined for some arguments)
q0 in Q is the initial state
F Õ Q is the set of final states

n Example 1. The design of a Turing Machine M to accept the language L = {0n1n, n >= 1} is given below. Initially, the
tape of M contains 0n1n followed by an infinity of blanks. Repeatedly, M replaces the leftmost 0 by X, moves right to the
leftmost 1, replacing it by Y, moves left to find the rightmost X, then moves one cell right to the leftmost 0 and repeats the
cycle. If, however, when searching for a 1, M finds a blank instead, then M halts without accepting. If, after changing a 1 to
a Y, M finds no more 0’s, then M checks that no more 1’s remain, accepting if there are none.

Let Q = { q0, q1, q2, q3, q4 },

S = {0,1}, G = {0,1,X,Y,B} and F = {q4}

∂ is defined with the following table:

 INPUT SYMBOL

State 0 1 X Y B

q0 (q1,X,R) — (q3,Y,R) —

q1 (q1,0,R) (q2,Y,L) — (q1,Y,R) —

q2 (q2,0,L) — (q0,X,R) (q2,Y,L) —

q3 — — — (q3,Y,R) (q4,B,R)

q4 — — — — —

The Turing Machine as a computer of integer functions

In addition to being a language acceptor, the Turing machine may be viewed as a computer of functions from integers to
integers. The traditional approach is to represent integers in unary; the integer i >= 0 is represented by the string 0i. If a
function has more than one argument then the arguments may be placed on the tape separated by 1’s.

For example, proper subtraction m – n is defined to be m – n for m >= n, and zero for m < n. The TM

M = ({q0,q1,...,q6}, {0,1}, {0,1,B}, ∂, q0, B, {})

defined below, if started with 0m10n on its tape, halts with 0m-n on its tape. M repeatedly replaces its leading 0 by blank,
then searches right for a 1 followed by a 0 and changes the 0 to a 1. Next, M moves left until it encounters a blank and then
repeats the cycle. The repetition ends if

(i) Searching right for a 0, M encounters a blank. Then, the n 0’s in 0m10n have all been changed to 1’s, and n+1 of
the m 0’s have been changed to B. M replaces the n+1 1’s by a 0 and n B’s, leaving m-n 0’s on its tape.

(ii) Beginning the cycle, M cannot find a 0 to change to a blank, because the first m 0’s already have been changed.
Then n >= m, so m – n = 0. M replaces all remaing 1’s and 0’s by B.

The function ∂ is described below.

∂(q0,0) = (q1,B,R) Begin. Replace the leading 0 by B.

∂(q1,0) = (q1,0,R) Search right looking for the first 1.

∂(q1,1) = (q2,1,R)

∂(q2,1) = (q2,1,R) Search right past 1’s until encountering a 0. Change that 0 to 1.

∂(q2,0) = (q3,1,L)

∂(q3,0) = (q3,0,L) Move left to a blank. Enter state q0 to repeat the cycle.

∂(q3,1) = (q3,1,L)

Theory of Computation 3.31

∂(q3,B) = (q0,B,R) If in state q2 a B is encountered before a 0, we have situation i described above. Enter state q4
and move left, changing all 1’s to B’s until encountering a B. This B is changed back to a 0, state
q6 is entered and M halts.

∂(q2,B) = (q4,B,L)

∂(q4,1) = (q4,B,L)

∂(q4,0) = (q4,0,L)

∂(q4,B) = (q6,0,R) If in state q0 a 1 is encountered instead of a 0, the first block of 0’s has been exhausted, as in situ-
ation (ii) above. M enters state q5 to erase the rest of the tape, then enters q6 and halts.

∂(q0,1) = (q5,B,R)

∂(q5,0) = (q5,B,R)

∂(q5,1) = (q5,B,R)

∂(q5,B) = (q6,B,R)

3.2 Compiler Design

Three phases of the compilation process:

(1) Lexical analysis: reads high-level source program and divides it into a stream of basic lexical ‘tokens’.

(2) Syntax and semantic analysis phase: then combines these tokens into data structures reflecting the form of the source
program in terms of the syntactic structures of the language.

(3) Code generator: converts these data structures into code for the target machine.

Lexical
analysis

Syntax
analysis

Semantic
analysis

Code
generation

Source program

Object program

Task of a compiler:

1. the analysis of the source program (lexical syntax and semantic analysis)

2. the synthesis of the object program (a single code-generation phase)

3.2.1 Lexical Analysis

Reads the characters of the source program and recognises the tokens (lexemes) or basic syntactic components that they
represent. It is able to distinguish and pass on, as single units, objects such as:

Numbers,

Punctuation symbols,

Operators,

Reserved keywords,

Identifiers and so on.

Effect: simplifies the syntax analyser Æ effectively reducing the size of the grammar the syntax analyser has to handle.

In a free-formal language, the lexical analyser ignores spaces, newlines, tabs and other layout characteristics, as well as
comments.
e.g., for I := 1 to 10 do sum := sum + term[i]; (*sum array*)
will be transformed by the lexical analyser into the sequence of tokens:

for i := 1 to 10 do sum
:= sum + term [i];

3.32 Computer Science & Information Technology for GATE

Pascal, maintains a list of reserved words so that they can be distinguished from identifiers and passed to the next phase
of the compiler in the form of, for example, a short integer code (or, use a symbol table).
In a nutshell,

A lexical analyser is a pattern matcher for character strings

A lexical analyser is a “front-end” for the parser

Identifies substrings of the source program that belong together – lexemes

 Lexemes match a character pattern, which is associated with a lexical category called a token.

The lexical analyser is usually a function that is called by the parser when it needs the next token

There are three approaches to building a lexical analyser:

1. Write a formal description of the tokens and use a software tool that constructs table-driven lexical analysers given
such a description

2. Design a state diagram that describes the tokens and write a program that implements the state diagram

3. Design a state diagram that describes the tokens and hand-construct a table-driven implementation of the state dia-
gram

The second approach is our subject of study: State diagram design
A naïve state diagram would have a transition from every state on every character in the source language – such a
diagram would be very large.

In many cases, transitions can be combined to simplify the state diagram.

When recognising an identifier, all uppercase and lowercase letters are equivalent – Use a character class that in-
cludes all letters.

When recognising an integer literal, all digits are equivalent – use a digit class.

Reserved words and identifiers can be recognised together (rather than having a part of the diagram for each re-
served word).

 (Use a table lookup to determine whether a possible identifier is in fact a reserved word.)

Convenient utility subprograms:
1. getChar – gets the next character of input, puts it in nextChar, determines its class and puts the class in charClass

2. addChar – puts the character from nextChar into the place the lexeme is being accumulated, lexeme

3. lookup – determines whether the string in lexeme is a reserved word (returns a code)

Reasons to separate Lexical Analysis from Syntax Analysis:

1. Simplicity: Techniques for Lexical Analysis can be simpler than those required for Syntax Analysis. DFA vs. PDA.
Separation also simplifies the Syntax Analyser.

2. Efficiency: Separation into different modules makes it easier to perform simplifications and optimisations unique to
the different paradigms.

3. Portability: Due to input/output and character set variations, Lexical Analysers are not always machine indepen-
dent.

Errors often detected in a Lexical Analyser:

1. Numeric literals that are too long.

2. Identifiers that are too long (often a warning is given)

3. Ill-formed numeric literals.

4. Input characters that are not in the source language

Input Buffering

Moving input data into local memory can increase the performance.

Double buffering

Use the sentinel, “@” to identify the end of a buffer. If the end of buffer is found, increment to the next buffer and re-fill
the prior buffer. The sentinel enables only one check to be made, then a second check to know which buffer needs to be
refilled. Otherwise it would be necessary to check for the end of either buffer for each character read. Also consider the
event if the sentinel is an invalid character in the source code.

Theory of Computation 3.33

Buffering allows for easy look ahead of characters.

The look ahead will allow for the identification of a less than token before getting the next character from the buffer.

Example of a Lexical Analyser

Build a Lexical Analyser which identifies the following tokens:

1. digits

2. digits E [sign] digits

3. digits.digits [E [sign] digits]

“sign” refers to +, –

“E” refers to exponent by power 10

[] refers to 0 or 1 of contents

{ } refers to 0 or more of contents

έ = l
The above tokens can be accepted by the following DFA:

digit
s q1

digit

digit
q4

digit

q2

@

digitE
q5q3

digit
q6

digit
@

@

+

Table 3.1 illustrates the DFA state information

S q1 q2 q3 q4 q5 q6

Digit q1 q1 q4 q5 q4 q5 q5

. er q2 er er S S er

E er q3 er er q3 S er

+, – er S er q6 S S er

ά er S er er S S er

token array 0 int 0 0 float float 0

Figure 3.2 illustrates the relation between lexical analyser and syntax analyser.

Character
class

Look up

Lex
Syntax

analyser

Input

Next state

Request

Next token

Current character
Lookahead character

Input bufferSource

Figure 3.2

3.34 Computer Science & Information Technology for GATE

The String Table
The String Table is a data structure for unique lexemes. The String Table can be queried for the lexeme by a numeric code.
Lexemes are generally inserted in the String Table by the Lexical Analyser.
The String Table can be used for:

1. Error messages

2. Memory map listings

3. Intermodule linkages

Index String Token

0 fptr [ident]

1 number [ident]

2 5.1 [f_lit]

3

It is not recommended to use the String Table for reserved words. Use a separate structure to determine if an identifier
is a reserved word, and then assign a token value accordingly. If it is not a reserved word, insert it in the String Table if
necessary.

Do not confuse the String Table with the Symbol Table. The String Table is for unique spellings of lexemes, allow-
ing index comparisons instead of string comparisons during syntax analysis and code generation. The Symbol Table is a
dynamic data structure used differently than the String Table.

3.2.2 Syntax Analysis

The syntax analyser or parser has to determine how the tokens retuned by the lexical analyser should be grouped and
structured according to the syntax rules of the language.

Output: representation of the syntactic structure often expressed in the form of a tree (the ‘parse tree’).
Usually, lexical analyser should be responsible for all the simple syntactic constructs, such as identifiers, reserved words

and numbers, while the syntax analyser should deal with all the other structures.

Semantic Analysis

To determine the semantics or meaning of the source program (the translation phase) may cope with tasks involving
declarations and scopes of identifiers, storage allocation, type checking, selection of appropriate polymorphic operators,
addition of automatic type transfers, etc.

This phase is often followed be a process that takes the parse tree from the syntax analyser and produces a linear se-
quence of instructions equivalent to the original source program (instructions for a virtual machine).

Code Generation

(The final phase) to take the output from the semantic analyser or translator and output machine code or assembly lan-
guage for the target hardware (machine’s architecture is required to write good code generator).
+ code improvement or code optimisation.

Syntax Specification
Role: to define the set of valid programs.
Sets
e.g., a digit in Pascal could be defined as {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0}
or, {xyn | n>0} xy, xyy, xyyy, …, xyn

i.e., a string that starts with a single x followed by any number (greater than zero) of ys.

Backus-Naur Form (BNF)

A formal meta language that is frequently used in the definition of the syntax of programming languages (introduced in
the definition of ALGOL 60).

Theory of Computation 3.35

A technique for representing rules that can be used to derive sentences of the language.

(If a finite set of these rules can be used to derive all sentences of a language, then this set of rules constitutes a formal
definition of the syntax of the language).

n Example

 <sentence> Æ <subject> <predicate>

 <subject> Æ <noun> | <pronoun>

 <predicate> Æ <transitive verb> <object> | <intransitive verb>

 <noun> Æ cats | dogs | sheep

 <pronoun> Æ I | we| you | they

 <transitive verb> Æ like | hate | eat

 <object> Æ biscuits | grass | sunshine

 <intransitive verb> Æ sleep | talk | run

Using complete set of rules, sentences can be generated by making random choices.

e.g. <sentence>

 <subject> <predicate>

 <noun> <predicate>

 sheep <transitive verb> <object>

 sheep eat <object>

 sheep eat biscuits

Other, possible sentences in this language are:
I sleep,
Dogs hate grass,
We like sunshine

Note

No meaning of these sentences considered e.g. “cats eat sunshine” is syntactically correct, makes no good sense, no con-
cern to the BNF rules.

Two distinct symbol types in BNF:

1. Symbols such as <sentence> <pronoun> and <intransitive verb> are called non-terminal symbols (i.e. appear on the
left-hand of a BNF).

2. Symbols such as cats, dogs, I and grass are called terminal symbols, since they cannot be expanded further (the set
of symbols of the language being defined).

Non-terminals are enclosed by angle brackets.
Other convention

- Non-terminals are either enclosed by angle brackets or are single upper-case letters.

- Terminals are represented as single lower-case letters, digits, special symbols (such as +, * or =), punctuation symbols
or stings in bold type (such as begin).

Example related to another language

Set of rules: S Æ S + T | T

 T Æ a | bt

S and T are non-terminals, whereas
a, b and + are terminals
(S is being defined recursively).

3.36 Computer Science & Information Technology for GATE

 S

 S + T (using S Æ S + T)

 S + T + T (using S Æ S + T)

 T + T + T (using S Æ T)

 b + T + T (using T Æ b)

 b + a + T (using T Æ a)

 b + a + a (using T Æ a)

For example,
 <expression> Æ <term> | <expression> + <term>

 <term> Æ <primary> | <term> * <primary>

 <primary> Æ a | b | c

 a + b * c is generated as follows:

 <expression>

 <expression> + <term>

 <term> + <term>

 <primary> + <term>

 a + <term>

 a + <term> * <primary>

 a + <primary> * <primary>

 a + b * <primary>

 a + b * c

 or, a + b + c is generated as follows:

Syntax diagrams
Pictorial notation

A set of syntax diagrams, each defining a specific language construct.

e.g., the definition of a constant (in Pascal)

Constant Identifier

Unsigned Number

Character String

+

-

i.e., rectangular box – non-terminal symbol
terminal symbols, ‘+’ & ‘–’ enclosed in circles
(any path yields a syntactically correct structure)
Compact specification (e.g., Pascal in only a couple of sheets of paper).

EBNF (Extended Backus-Naur Form)

- used in the ISO Pascal Standard

- differs from BNF in several ways

- principal changes: the set of metasymbols (symbols used for special purposes in the metalanguage)

i.e.

- terminal symbols enclosed in double quotation marks

 - a full stop is used to end each production

Theory of Computation 3.37

 - equals sign is used to separate the non-terminal from its definition

 - parenthesis for grouping

e.g.

 AssignmentStatement = (Variable | FunctionalIdentifier) “:=” Expression

For repetition: [x] implies zero or more instance of x (i.e. x optional)

{x} implies zero or more instances of x

e.g. Identifier = Letter {Letter | Digit}

i.e. Simpler definition of syntax. Much Clearer.

The same in BNF could be:

 <Identifier> ::= <letter> | <identifier> <letter>

 | <identifier> <digit>

Grammars

Study of grammars started long before programming languages and was exposed primarily on the study of natural lan-
guages.

Then, found direct relevance in the formal study of programming languages.

The grammar – formally defined as a 4-tuple

G = (N, T, S, P)

N – the finite set of non-terminal symbols

T – the finite set of terminal symbols

S – the starting symbol (must be a member of N)

P – the set of productions (general form: a Æ b)

i.e., any occurrence of the string a in the string to be transformed can be replaced by the string b.
e.g., the set of BNF productions presented in example A above forms a part of the definition of the grammar of a language.
The remainder of the definition is:

N = {sentence, subject, predicate, noun, pronoun, intransitive verb, transitive verb, object}

T = {cats, dogs, sheep, I, we, you, they, live, hate, eat, biscuits, grass, sunshine, sleep, talk, run}

S = sentence

Still, the definition of the grammar is not quite complete, the strings a and b must have some relationship to the sets N
and T.

Suppose U is the set of all terminals and non-terminal symbols of the language; that is, U = N U T

U+ – the closure of U – non-empty strings

U* – the closure of U i.e. U+ U {e} – empty string

Sentential form: any string that can be derived from the starting symbol.
Sentence: a sentential form that does not contain any non-terminal symbols (just terminals, no expansion).

We have seen how sentences can be generated very simply using a set of BNF productions.
The reverse, how the BNF rules were applied to generate a sentence is much harder. This process of determining the

syntactic structure of a sentence is called parsing, or syntax analysis (major part of the compilation of H.l.L. programs).

Chomsky Classification

A grammar with general form

a Æ b (no restrictions on the sentential forms a & b)

is called a Chomsky type 0 or a free grammar (too general)

3.38 Computer Science & Information Technology for GATE

Restricted form
 aAb Æ aγb where a, b and γ are members of U*

g is not null

A is a single non-terminal symbol

then the resulting grammar is of type 1, the context-sensitive grammars.

Especially, if a Æ b

Where | a | <= | b | and | a | denotes the length of the string a, then the grammar is context sensitive.
(A is transformed to g only when it occurs in the context of being preceded by a and followed by b).
Type 2 or Context-free grammars if A Æ g where A is a single non-terminal (since A can always be transformed into γ
without any concern for its context.
(Immense importance in programming language design – corresponds directly to the BNF notation, where each pro-
duction has a single non-terminal symbol on its left-hand side, and so any grammar that is expressed in BNF must be a
context-free grammar).
e.g., Pascal and ALGOL 60 – context-free or type 2
Type 3 or finite, finite-state or regular grammars if all productions are of the form:

A Æ a or A Æ a B where A and B – non-terminal a is a terminal symbol (too restricted)

only for the design some of the structures used as components of most programming languages, e.g. identifiers, numbers,
etc.

That is, hierarchically, it is shown in figure 3.3.

Type 3 Type 2

context
Type 1

Type 0

Complexity increases

Figure 3.3

e.g., all type 3 languages are also type 1 languages

In processing from type 0 to type 3 grammars, language complexity and hence complexity of recognizers, parsers or com-
pilers decreases.

Type 3 – easier – cause of finite-state automata

3.2.3 Semantics

Semantic rules specify the meanings or actions of all valid programs (much more difficult techniques for semantic speci-
fication than for syntax specification, not so well developed yet).

Compiler is concerned with two processes:

1. the analysis of the source program (concern of syntax)

2. the synthesis of the object program.

Syntax is largely concerned with the analysis phase.
Semantics is largely concerned with the synthesis phase (+ sometimes syntax)

Specification of semantics:

- operational approach

- denotational semantics

- axiomatic approach

Theory of Computation 3.39

Parsing

e.g., <expression> Æ <term> | <expression> + <term>

 <term> Æ primary | <term> * <primary>

 <primary> Æ a | b | c

to generate expressions such as a * b + c.

However, the compiler has to reserve this process, that is, perform a syntax analysis of the string, to determine if a string
such as a * b + c is a valid expression and, if so, how it is structured in terms of the units <term> and <primary>.

The parse tree

Example (how the string a * b + c may be reduced)
Given the three productions defining <expression>, <term> and <primary>, the string a * b + c can be reduced as:

a * b + c

<primary> * b + c (<primary> Æ a)

<primary> * <primary> + c (<primary> Æ b)

<primary> * <primary> + <primary> (<primary> Æ c)

<term> * <primary> + <primary> (<term> Æ <primary>)

<term> * <primary> + <term> (<term> Æ <primary>)

<term> + <term> (<term> Æ <term> * <primary>)

<expression> + <term> (<expression> Æ <term>)

<expression> (<expression> Æ <expression> + <term>)

However, if the productions are used differently,

a * b + c

<primary> * b + c (<primary> Æ a)

<primary> * <primary> + c (<primary> Æ b)

<primary> * <primary> + <primary> (<primary> Æ c)

<primary> * <term> + <primary> (<term> Æ <primary>)

<primary> * <expression> + <primary> (<expression> Æ <term>)

<primary> * <expression> + <term> (<term> Æ <primary>)

<primary> * <expression> (<expression> Æ <expression> + <term>)

<term> * <expression> (<term> Æ <primary>)

<expression> * <expression> (<expression> Æ <term>)

and then become stuck, implying the false deduction,
i.e. a * b + c not a sentence.
Æ parsing process is not a trivial matter.
Syntactic structure of the string a * b + c is shown in figure 3.4.

<expression>

<expression> + <term>

<term> <primary>

<term> * <primary> c

<primary> b

a

Figure 3.4

3.40 Computer Science & Information Technology for GATE

The tree combines the relevant information contained in the set of productions, together with the content of the original
sentence, in a structure that is self-contained and which can be used by subsequent phases of the compiler.

Parsing strategies

Problem of parsing: Take the starting symbol of the language and start generate all possible sentences from it.
If the input matched one of these sentences, then all the input string is a valid sentence of the language (impractical

approach since infinite possible sentences).

Two categories:

1. Top-down parsers: starting at the root (the starting symbol) and proceeding to the leaves.

2. Bottom-up parsers: start at the leaves and move up towards the root.

Top-down parsers – easy to write, actual code capable of being derived directly from the production rules, but cannot
always applied as an approach.
Æ bottom-up parsers, can handle a larger set of grammars.

Top-down parsing

The parsing process starts at the root of the parse tree; it first considers the starting symbol of the grammar.
The goal is to produce, from this starting symbol, the sequence of terminal symbols that have been presented as input to
the parser.

Bottom-up parsing
Starts with the input string and repeatedly replaces strings on the right-hand sides of productions by the corresponding
strings on the left-hand sides of productions, until, hopefully, just the starting symbol remains.

Necessary to determine which strings should be replaced and in what order the replacement should occur.
Process of derivation (leftmost, rightmost).

Leftmost derivation of a * b + c from Rightmost derivation

expression

<expression> <expression>

<expression> + <term> <expression> + <term>

<term> + <term> <expression> + <primary>

<term> + <primary> + <term> <expression> + c

<primary> + <primary> + <term> <term> + c

a * <primary> + <term> <term> * <primary> + c

a * b + <term> <term> * b + c

a * b + <primary> <primary> * b + c

a * b + c a * b + c

Handle: the substring that is reduced, replaced by the left-hand side of the corresponding production.

n Example Parse of a * b + c

Sentential form Handle Production used Reduced sentential form

a * b + c a <primary> Æ a <primary> * b + c

<primary> * b + c <primary> <term> Æ <primary> <term> * b + c

<term> * b + c b <primary> Æ b <term> * <primary> + c

<term> * <primary> + c <term> * <primary> <term> Æ <term> * <primary> <term> + c

<term> + c <term> <expression>Æ <term> <expression> + c

Theory of Computation 3.41

Sentential form Handle Production used Reduced sentential form

<expression> + c c <primary> Æ c <expression> + <primary>

<expression> + <primary> <primary> <term> Æ <primary> <expression> + <term>

<expression> + <term> <expression> +
<term>

<expression> Æ <expression> +
<term>

<expression>

<expression>

i.e., the canonical parse (canonical derivation)

In a nutshell,

Goals of the parser when given an input program are:

 Find all syntax errors; for each, produce an appropriate diagnostic message, and recover quickly

 Produce the parse tree, or at least a trace of the parse tree, for the program

Two categories of parsers are:

1. Top-down parsers

 Given a sentential form, xAa , the parser must choose the correct A-rule to get the next sentential form in the
leftmost derivation, using only the first token produced by A

 The most common top-down parsing algorithms:

Recursive descent - a coded implementation

LL parsers - table driven implementation

2. Bottom-up parsers

 Given a right sentential form, a, what substring of a is the right-hand side of the rule in the grammar that must
be reduced to produce the previous sentential form in the right derivation.

 The most common bottom-up parsing algorithms are in the LR family (LALR, SLR, canonical LR)

3. The Complexity of Parsing.

 Parsers that works for any unambiguous grammar are complex and inefficient (O(n3), where n is the length of
the input).

 Compilers use parsers that only work for a subset of all unambiguous grammars, but do it in linear time (O(n),
where n is the length of the input).

Parsers look only one token ahead in the input.

3.2.4 Intermediate Code

Need for Intermediate Code Generation:

(1) Suppose we have n-source languages and m-Target languages. Without Intermediate code we will change each
source language into target language directly. So, for each source-target pair we will need a compiler. Hence, we
need (n*m) compilers, one for each pair. If we use Intermediate code, we need n-compilers to convert each source
language into intermediate code and m-compilers to convert intermediate code into m-target languages. Thus, we
need only (n+m) compilers.

(2) Re-targetting is facilitated; a compiler for a different machine can be created by attaching a back-end(which generate
Target Code) for the new machine to an existing Front-end (which generate Intermediate Code).

(3) A machine Independent Code-Optimiser can be applied to the Intermediate code.

(4) Intermediate code is simple enough to be easily converted to any target code.

(5) Complex enough to represent all the complex structure of high level language.

3.42 Computer Science & Information Technology for GATE

Code Generator

A code generator produces an object program when an input program is given. This is the final phase of compilation. It
takes as input the intermediate representation (IR) produced by the front end of the compiler, along with relevant symbol
table information, and produces as output a semantically equivalent target program.

Compilers that need to produce efficient target programs, include an optimisation phase prior to code generation.
The optimiser maps the IR into IR from which more efficient code can be generated. In general, the code optimisation
and code-generation phases of a compiler, often referred to as the back end, may make multiple passes over the IR before
generating the target program.

An intermediate language should, ideally, have the following properties:

It should be easy to translate from a high-level language to the intermediate language. This should be the case for a
wide range of different source languages.

It should be easy to translate from the intermediate language to machine code. This should be true for a wide range
of different target architectures.

The intermediate format should be suitable for optimisations.

While translating a source program into a functionally equivalent object code representation, a parser may first generate
an intermediate representation. This makes retargeting of the code possible and allows some optimisations to be carried
out that would otherwise not be possible. The following are commonly used intermediate representations:

1. Syntax tree

2. Postfix notation

3. Three-address code

Syntax Tree

The syntax tree is nothing more than a condensed form of the parse tree. The operator and keyword nodes of the parse
tree (figure 3.4 (a)) are moved to their parent, and a chain of single productions is replaced by single link (figure 3.5 (b)).
Syntax tree depicts the natural hierarchical structure of a source program.

E

E + E

id E E

id id

Figure 3.5 (a) Parse tree for id + id *id

+

id

id id

Figure 3.5 (b) Syntax tree for id + id *id

n Example 1. Consider the following assignment statement
a := b * -c + b * -c;
The following figure explains the syntax tree for the given expression.

Theory of Computation 3.43

assign

a b c b c* + *- -

assign

a +

b

*

- c b

*

- c

(a)

assign

a +

b c* - b c* -

(b)

(c)

assign

a +

b

*

uminus

(d)

c

b

*

uminus

c

Postfix Notation
Its nature allows it to be evaluated with the use of a stack, Operands are pushed onto the stack; operators pop the right
amount of operands from the stack, do the operation, then push the result back onto the stack. However, this notation
is restricted to simple expressions such as in arithmetic where every rule conveys an operation. It cannot be used for the
expression of most programming languages constructs.

n Example 2.

a+b fi ab+

a+b*c fi abc*+

Three-Address Code
Three address code is a sequence of statements of the form x = y op z. Since a statement involves no more than three refer-
ences, it is called a “three-address statement,” and a sequence of such statements is referred to as three-address code. For
example, the three-address code for the expression a + b * c + d is:

T1 = B*C

T2 = A+T1

T3 = T2+D

Three-address code (TAC) will be the intermediate representation. It is essentially a generic assembly language that falls in
the lower-end of the mid-level IRs. Some variant of 2, 3 or 4 address code is fairly commonly used as an IR, since it maps
well to most assembly languages.

A TAC instruction can have at most three operands. The operands could be two operands to a binary arithmetic opera-
tor and the third the result location, or an operand to compare to zero and a second location to branch to, and so on. For
example, below on the left is an arithmetic expression and on the right, is a translation into TAC instructions:

a = b * c + b * d;

t1 = b * c;

t2 = b * d;

t3 = t1 +t2;

a = t3;

n Example 3. An example c program and its IR code.

void main () main;

{ BeginFune ;

int b; _t0 = 3;

int a; b = _ t0;

3.44 Computer Science & Information Technology for GATE

_t1 = 12;

 b = 3; a = _t1;

 a = 12; _t2 = 2;

 a = (b + 2) –(a*3)/6; _t3 = b + _ t2;

} _t4 = 3;

_t5 = a* _t4;

_t6 = 6;

_t7 = _t5/ _t6;

_t8 = _t3 – _t7;

a = _t8;

End Funo;

Implementation of Three Address Statements
TAC is an abstract form of intermediate code. In a compiler, these statements can be implemented as records with fields
for the operator and the operands. It can be done in the form of Quadruples, Triples, and Indirect Triples

Quadruples
A quadruple is a record structure of four fields

operator

argument 1

argument 2

result

The contents of fields arg1, arg2 and result are pointers to the symbol table entries for the names represented by these
fields, therefore, temporary names must be added in the symbol table.

x – 2 * y

(1) load t1 y

(2) loadi t2 2

(3) mult t3 t2 t1

(4) load t4 x

(5) sub t5 t4 t3

Triples

x – 2 * y

(1) load y

(2) loadi 2

(3) mult (1) (2)

(4) load x

(5) sub (4) (3)

Indirect Triples
Another implementation of three-address code that has been considered is that of listing pointers to triples, rather than
listing the triples themselves. This implementation is naturally called indirect triples. For example, let us use an array state-
ment to list pointers to triples in the desired order.

Theory of Computation 3.45

x – 2 * y

stmt op arg1 arg2

(1) (100) load y

(2) (101) loadi 2

(3) (102) mult (100) (101)

(4) (103) load x

(5) (104) sub (103) (102)

Problems in Code Generation / Issues in the Design of a Code Generator:
The following are the assumptions regarding code generator:

1. The code generator is given the intermediate text in any one of its form.

2. But in specific algorithms, we deal with quadruples or in some case parse trees as the intermediate forms.

3. Necessary semantic checking is done.

4. The data areas and offsets have been determined for each name that information is available from the symbol table.

A code generator has three primary tasks: instruction selection, register allocation and assignment, and instruction order-

ing. Figure 3.6 illustrates position of code generator.

Source
program

Intermediate
code Code

optimizer

Intermediate
code

Code
generator

Target
program

Front
end

Figure 3.6 Position of Code Generator

Instruction selection involves choosing appropriate target-machine instructions to implement the IR statements. Register
allocation and assignment involves deciding what values to keep in which registers. Instruction ordering involves deciding
in what order to schedule the execution of instructions.

Many code generators partition IR instructions into “basic blocks”, which consist of sequences of instructions that are
always executed together.

The Target Program
The instruction-set architecture of the target machine has a significant impact on the difficulty of constructing a good
code generator that produces high-quality machine code.

An RISC machine typically has many registers, three-address instructions, simple addressing modes, and a relatively
simple instruction-set architecture. In contrast, a CISC machine typically has few registers, two-address instructions, a
variety of addressing modes, several register classes, variable-length instructions, and instructions with side effects.

In a stack-based machine, operations are done by pushing operands onto a stack and then performing the operations
on the operands at the top of the stack. To achieve high performance the top of the stack is typically kept in registers.
Stack-based machines almost disappeared because it was felt that the stack organisation was too limiting and required too
many swap and copy operations.

Instruction Selection
The code generator must map the IR program into a code sequence that can be executed by the target machine. The com-
plexity of performing this mapping is determined by factors such as:

The level of the IR.

The nature of the instruction-set architecture.

The desired quality of the generated code.

3.46 Computer Science & Information Technology for GATE

If the IR is high level, the code generator may translate each IR statement into a sequence of machine instructions using

code templates. Such statement-by-statement code generation, however, often produces poor code that needs further op-

timisation. If the IR reflects some of the low-level details of the underlying machine, then the code generator can use this

information to generate more efficient code sequences.
The nature of the instruction set of the target machine has a strong effect on the difficulty of instruction selection. For

example, the uniformity and completeness of the instruction set are important factors. If the target machine does not
support each data type in a uniform manner, then each exception to the general rule requires special handling. On some
machines, for example, floating-point operations are done using separate registers.

Instruction speeds and machine idioms are other important factors. If we do not care about the efficiency of the target

program, instruction selection is straightforward. For each type of three-address statement, we can design a code skeleton

that defines the target code to be generated for that construct. For example, every three-address statement of the form x =

y + z, where x, y, and z are statically allocated, can be translated into the code sequence.

The quality of the generated code is usually determined by its speed and size. On most machines, a given IR program
can be implemented by many different code sequences, with significant cost differences between the different implemen-
tations. A naive translation of the intermediate code may therefore lead to correct but unacceptably inefficient target code.

We need to know instruction costs in order to design good code sequences but, unfortunately, accurate cost informa-

tion is often difficult to obtain. Deciding which machine-code sequence is best for a given three-address construct may

also require knowledge about the context in which that construct appears.

Register Allocation

A key problem in code generation is deciding what values to hold in what registers. Registers are the fastest computational
unit on the target machine. Values not held in registers need to reside in memory. Instructions involving register operands
are invariably shorter and faster than those involving operands in memory, so efficient utilisation of registers is particu-
larly important. The use of registers is often subdivided into two sub-problems:

1. Register allocation, during which we select the set of variables that will reside in registers at each point in the pro-
gram.

2. Register assignment, during which we pick the specific register that a variable will reside in.

Finding an optimal assignment of registers to variables is difficult, even with single-register machines. Mathematically,
the problem is NP-complete.

Evaluation Order

The order in which computations are performed can affect the efficiency of the target code. As we shall see, some compu-
tation orders require fewer registers to hold intermediate results than others. However, picking a best order in the general
case is a difficult NP-complete problem. Initially, we shall avoid the problem by generating code for the three-address
statements in the order in which they have been produced by the intermediate code generator.

Code Generation from DAG

A useful data structure for automatically analysing basic blocks is a Directed Acyclic Graph (DAG). Constructing a DAG
from 3-address statements is a good way of determining common sub-expressions within a block.

The advantage of generating code for a basic block from its DAG representation is that, we can easily rearrange the
order of the final computation sequence of quadruples central to our discussion is the case where the DAG is a tree. For
this case we can generate code that we can prove is optimal under such criteria as program length or the fewest number
of temporaries used. This algorithm for optimal code generation from a tree is also useful when the intermediate code is
a parse tree.

Rearranging the Order
Consider the following quadruples sequence whose DAG representation is shown below:

T1 : = A + B

T2 := C + D

T3 := E – T2

T4 := T1 – T3. –> T4 : = (A+B) – (E–(C+D))

Theory of Computation 3.47

-T4

+ T1 - T3

A B E + T2

C D

Figure 3.7 DAG for Quadruple Sequence

If we generate code for the quadruples by considering assuming two registers R0 and R1 are available, and only T4 is live
on exit, the code sequence is as follows:

MOV A, R0

ADD B, R0

MOV C, R1

ADD D, R1

MOV R0, T1

MOV E, R0

SUB R1, R0

MOV T1, R1

SUB R0, R1

MOV R1, T4

Figure 3.8 Code Sequence

On the other hand suppose we rearranged the order of the quadruples so that computation of T1 occurs immediately
before that of T4 as:

T2 := C + D

T3 := E – T2

T1 := A + B

T4 := T1 – T3, Now we have the code sequence as:

MOV C, R0

ADD D, R0

MOV E, R1

SUB R0, R1

MOV A, R0

ADD B, R0

SUB R1, R0

MOV R0, T4

Figure 3.9 Revised Code Sequence

Note: By performing the computation according to second order, we have been able to save two instructions.

3.2.5 Code Optimisation

Source Level

Assembly Level

There is no guarantee that always a program will be optimised.

3.48 Computer Science & Information Technology for GATE

Optimisation Criteria
In general, there are two fundamental criteria that decide which optimisations should be applied to a procedure – speed
and space (data space and code space).

Various Optimisations
Figure 3.9 illustrates optimisations that can be carried out various levels. The order is important because in general, trans-
formations are order-dependent. However, there is no “optimal order” for optimisations, and other alternatives may also
be acceptable. Some transformations need to be repeated after other optimisations are applied.

The optimisations in box A are best performed on a high-level intermediate language (such as HIR). The optimisations
in box B are best performed on a high or medium-level intermediate language (such as HIR or MIR) and early in the
optimisation process. The optimisations done in C1...C4 are best done on a medium-level or low-level intermediate lan-
guage (MIR/LIR). C2 and C3 are two alternatives for redundancy elimination. The optimisations in box D are best done
late in the optimisation process and on a low-level intermediate code (e.g. LIR) or on assembly or machine language. The
optimisations in box E are done on the re-locatable load before it is loaded but after linking its components.

Constant Folding

Constant folding refers to evaluation at compile time of expressions whose operands are known to be constant. In its sim-
plest form, constant folding involves determining that all the operands in an expression are constant-valued, performing
the evaluation of the expression at compile time, and replacing the expression by its value.

Scalar Replacement of Aggregates

Scalar replacement of aggregates involves replacement of aggregates such as C structures and Pascal records with simple
scalars of appropriate type.

Algebraic Simplification and Re-associations

Algebraic simplifications use algebraic properties of operators or particular operator-operand combinations to simplify
expressions. Re-assocation refers to using specific algebraic properties—associativity, commutativity and distributivity, to
divide expression to a constant or loop-invariant part and a variable part. Like constant folding, algebraic simplification
and re-associations are best implemented as a subroutine, accessible to all phases of the optimiser.

Simplifications for integers:
i + 0 = 0 + i = i – 0 = i
0 - i= -i
i * 1 = 1 * i = i / 1 = i
i * 0 = 0 * i = 0
–(–i) = i
i + (–j) = i – j

Simplifications for shifts:
f shl 0 = f shr 0 = f shra 0 = f
f shl w = f shr w = f shra w = 0

Where w is the word length of the machine.

Some simplifications can be viewed as strength reductions, i.e., replacing an operator by one that is faster to compute,
such as

i m 2 = i * i
2 * i = i + i

(where i is an integer value while m as power function.).
Multiplications by small constants can frequently be done faster by sequence of shifts and adds. For example, i*7 can be
computed by:
t r i shl 3
t r t – i

Theory of Computation 3.49

Scalar replacement of array references

Data-cache optimizations

Procedure integration

Tail-call optimization, including tail-
recursion elimination

Scalar replacement of aggregates

Sparse conditional constant propagation

Global value numbering

Local and global copy propagation

Partial redundancy eliminationLocal and global common sub-
expression elimination

Loop-invariant code motion

Dead-code elimination

Code hoisting

Induction-variable strength reduction

Linear-function text replacement

Inter-procedural register allocation

Aggregation of global references

Constant folding Algebraic
simplifications

A

B

C1

C2

C4

D

E

C3

In-line expansion

Leaf-routine optimization

Shrink wrapping

Machine idioms

Tail merging

Branch optimizations and conditional moves

Dead code elimination

Software pipelining with loop unrolling, variable expansion

Figure 3.10

Here, we assume i value is shifted left by 3 bits and result is stored in t(r is assignment operator). We know that if a number
is left shifted by n bits its value will be multiplied by 2n. As we want i to be multiplied by 7, we shift the number 3 bits left
and then, subtract i from t.

Another class of simplifications involves the use of commutativity and associativity. For example:

(i – j) + (i – j) + (i – j) + (i – j) = 4 * i – 4 * j

The problem here is that the simplified form (on the right) may cause an overflow, which would not occur for the origi-
nal form (on the left).

3.50 Computer Science & Information Technology for GATE

Algebraic Simplifications of Addressing Expressions

Since overflow never makes a difference in addressing arithmetic, it is always safe to perform algebraic simplifications
on addressing expressions. However, for addressing expressions the most useful transformation is reassociation. We use
canonicalisation, namely transforming the expression to sum of products, and then use commutativity to collect the con-
stant-valued and loop-invariant parts together. For example, consider the following Pascal Fragment:

var a: array[lo1..hi1,lo2..hi2] of eltype;

 i, j : integer;

. . .

for j:=lo2 to hi2 do begin

 a[i,j] := b + a[i,j]

end;

The address of a[i,j] is:

base_a + ((i – lo1) * (hi2 – lo2 + 1) + j – lo2) * w

Note

Do refer row major and column major order storage from data structures unit.

Where base_a is the address of the base of the array and w is the size in bytes of objects of type eltype. This complicated
computation should be performed each time the loop is performed!.

After simplification and reassociation we get:
–(lo1*(hi2 – lo2 + 1) – lo2) * w + base_a + (hi2 – lo2+1)*i*w + j*w

Where -(lo1*(hi2 – lo2 + 1) – lo2) * w is a constant, that can be calculated in compile time, base_a + (hi2 – lo2+1)*i*w
is loop-invariant, and so can be computed once before entering the loop, leaving only j*w to be computed and added in
each iteration. This multiplication can also be strength reduced into addition. Please do refer row and column major order
storage discussion in Unit 2 for clarifications about the above expressions. This simplification can be done by representing
the expression in a tree, and applying a series of transformations recursively, until a canonical form is reached.

Local Optimisations

Most of the simple local optimisations performed in so-called basic block.

A basic block is a maximal sequence of instructions with:
no labels (except the first instruction)

no jumps(except the last instruction)

each instruction is executed after all the preceding instructions.

n Example 1. The following code will produce 2 blocks: (1–2) and (3–9).

1. prod : = 1 1. prod : = 1

2. i: = 1 2. i: = 1

3. t1 = 4*i 3. t1 = 4*i

4. t2: = a[t1] 4. t2: = a[t1]

5. t3: = t2 *t1 5. t3: = t2 *t1

6. t4: = prod + t32 6. t4: = prod + t3

7. t5 = i + 1 7. t5 = i + 1

8. i: = t5 8. i: = t5

9. if i < = 20 goto 3 9. if i < = 20 goto 3

Simple local optimisations should be performed in each block separately.

Control Flow Graph(CFG)
A control-flow graph is a directed graph with

basic blocks as nodes

Theory of Computation 3.51

an edge from block A to B if the execution can flow from the last instruction of A to the first instruction of B (the
last instruction of A is jump Lb)

n Example 2.

x:=1

L:

x:=X*X

Global optimisation

Global optimisation is more complicated to perform. The entire program should be analysed and series of simple optimi-
sations performed. However keeping in mind the control flow of the program an output of the simple optimisation can
be different.

Let us analyse the following CFG

y:=0y:=z+w

x:=3

a:=2*x

If constant propagation is performed then the result is:

y:=0y:=z+w

x:=3

a:=2*3

However if the original program was:

y:=0y:=z+w

x:=3

a:=2*x ? x:=3 or x:=4

Then constant propagation can not be used.
To use constant propagation (replace x with some value k) we must know that on every path to the use of x the last assign-
ment to x was x:=k.

Checking all the paths can be difficult (more information about global optimisation can be found in the course book).

3.52 Computer Science & Information Technology for GATE

Peephole optimisation

The machine language is assembly that is later translated by assembler to the machine code.
Peephole optimisation is an effective technique for improving the assembly code.
(Peephole optimisation may be applied to either intermediate form code or to assembly code).
The main idea in this technique is that the compiler searches for a comparatively short machine instruction sequence

that meeting particular context conditions and replaces the sequence with a more efficient one.

The “peephole” is a short sequence (of usually contiguous) instructions.

The optimiser replaces the sequence with another equivalent one (but faster).

n Example 3.

1. mov r0,a

2. mov a,r0

instruction 2 can be deleted because whenever 2 is executed 1 will ensure that the value of a already in memory register r0.

Or
Jump to the next instruction

jmp L1
Simply replaced with

L1: mov buffer, R0

L1:

Or
Duplicate transfer instruction

mov a, r0
Simply replaced with

mov a, r0

mov a, r0

Or
Jump to another jump instruction

jz L2

Simply replaced with…
L2: jmp .L3

jz L3

Word-wide optimisation
If we have short 16-bit data, access two values at once and then work with 32-bit data. Also, called packed data processing.

1. Use casts and intrinsics

 int dot_product(short *x, short *y, short z) //x,y point to short variables

 {

 int *w_x = (int *)x; //cast to point to a word

 int *w_y = (int *)y;

 int sum1 = 0, sum2 = 0, i;

 for (i = 0; i < z/2; i++){

 sum1 += _mpy(w_x[i], w_y[i]); // mpy 16LSB

 sum2 += _mpyh(w_x[i], w_y[i]); // mpy 16MSB

 }

 return (sum1 + sum2);

 }

 Equivalent to summing the even indexed numbers in the array (i=0,2,4) and summing the odd indexed numbers in
the array and then summing the sums. Do remember that mpy is an assembly instruction in some processors which
carries 16 bit multiplication.

Theory of Computation 3.53

2. Use _nassert intrinsic to specify that 16-bit short arrays are aligned on a 32-bit (word) boundary.

 int dot_product(short *x, short *y, short z){

 int sum = 0, i;

 _nassert (((int)(x) & 0x3) == 0);

 _nassert (((int)(y) & 0x3) == 0);

 #pragma MUST_ITERATE(20, , 4);

 //must be even number of times in order to split in half for optimization

 for (i = 0; i < z; i++) sum += x[i] * y[i];

 return sum;

 }

 _nassert tells the computer that the pointer x and y are on a word boundary (2 LSBs are 0). The compiler then knows
that it can optimise the following loop with mpy and mpyh. _nassert is useful in that you do not need to rewrite code
– simply add line.

Loop unrolling

Small loops can be unrolled for higher performance at the expense of increased code size.

When a loop is unrolled, the loop counter needs to be updated less often and fewer branches are executed.

If the iteration number is small a loop can be fully unrolled and the loop overhead completely disappears.

Loop unrolling is not supported by the compiler, should be done manually.

int countbit1 (uint n){

int bits = 0;

while (n !=0){

if (n & 1) bits++;

n >>=1;

}

return bits;

}

In ARM7 processor, checking a single bit takes 6 cycles, and the code size is only 9 instructions.

int countbit1 (uint n){

int bits = 0;

while (n !=0) {

if (n & 1) bits++;

if (n & 2) bits++;

if (n &4) bits++;

if (n & 8) bits++;

n >>=4; /* shift right by 4*/

}

return bits;

}

The above code checks 4 bits at a time, taking on average 3 cycles per bit. However, the code size is 15 instructions.

3.2.6 Run-Time Storage Organisation

The runtime environment is the structure of the target computers registers and memory that serves to manage memory
and maintain information needed to guide a programs execution1 process. In fact, almost every programming language
uses one of the following three kinds of runtime environments.

1
In most compiled languages, it is not possible to make changes to the code area during execution

3.54 Computer Science & Information Technology for GATE

Fully static Environment (Ex. In Fortran 77)

Fully dynamic Environment (Ex in C, C++, Pascal, Ada)

Stack Based Environment. (Ex in Lisp, other functional languages)

An executable program generated by a compiler will have the following or-
ganisation in memory on a typical architecture.

This is the layout in memory of an executable program. Note that in a
virtual memory architecture (which is the case for any modern operating
system), some parts of the memory layout may in fact be located on disk
blocks and they are retrieved in memory by demand (lazily).

The code area contains code of the program. It contains the entry points
for the procedures are functions used in the program. All code addresses are
computable at compile time; at least relative to some base.

There is one class of data that can be fixed in memory prior to execution
and that comprises global and/or static data of the a program (Note in For-
tran 77 all data items are global in nature). In C, external and static variables
also comes under this category in addition to global variables. The declara-
tions such const of C, Pascal and string literals, integer/long constants (such
as 12121) etc., also occupies this data area2.

The dynamically allocated data (i.e., the data created using malloc in C) as well as the static data without a fixed size
(such as arrays of variable size) are created and kept in the heap. The heap grows from low to high addresses. When you
call malloc in C to create a dynamically allocated structure, the program tries to find an empty place in the heap3 with suf-
ficient space to insert the new data; if it can not do that, it puts the data at the end of the heap and increases the heap size.

The focus of this section is the stack in the memory layout. It is called the run-time stack. The stack, in contrast to the
heap, grows in the opposite direction (upside-down): from high to low addresses, which is a bit counterintuitive. The stack
is not only used to push the return address when a function is called, but it is also used for allocating some of the local
variables of a function during the function call, as well as for some bookkeeping.

Fully Static Runtime Environment

Fully static runtime environment may be useful for the languages in which pointers or dynamic allocation is not
possible in addition to no support for recursive function calls.

Every procedure will have only one activation record which is allocated before execution.

Variables are accessed directly via fixed addresses.

Little book keeping overhead; i.e., at most return address may have to be stored in activation record.

The calling sequence involves calculation of each argument address and storing into its appropriate parameter loca-

tion and saving the return address and then a jump is made.

A Fortran Example

 PROGRAM TEST

 COMMON MAXSIZE

 INTEGER MAXSIZE

 REAL T(10), TEMP

 MAXSIZE=10

 READ *, T(1),T(2),T(3),T(4)

 CALL SUM(T,4,TEMP)

 PRINT *, TEMP

 END

2
Small compile time constants such 0 or 1 etc are directly included in the code.

3
Heap is a linear memory area. It is unrelated to heap data strcuture of data structure.

Stack

Free memory

Heap

Static data

Code

High address

Low address

Theory of Computation 3.55

 SUBROUTINE SUM(A,SIZE,QM)

 COMMON MAXSIZE

 INTEGER MAXSIZE, SIZE

 REAL A(SIZE), QM, TEMP

 INTEGER K

 TEMP=0.0

 DO 1 K=1,SIZE

 TEMP = TEMP + A(K)

1 CONTINUE

 QM = TEMP

 RETURN

 END

ACTIVATION RECORD STRUCTURE FOR MAIN & SUBROU-

TINE

Stack Based Runtime Environments

Here, activation records are allocated (push of the activation records)
whenever a function call is made. The necessary memory is taken
from stack portion of the program. When program execu-
tion returns from function the memory used by the activa-
tion record is deallocated (pop of the activation record).
Thus, stack grows and shrinks with the chain of function
calls (Each function may have several different activation
records also).

Let us consider the lifetime of a function call. When you
call a function you not only want to access its parameters,
but you may also want to access the variables local to the
function. Worse, in a nested scoped system where nested
function definitions are allowed, you may want to access
the local variables of an enclosing function. In addition,
when a function calls another function, we must forget
about the variables of the caller function and work with the
variables of the callee function and when we return from
the callee, we want to switch back to the caller variables.
That is, function calls behave in a stack-like manner. Con-
sider for example the following program:
 procedure P (c: integer)

 x: integer;

 procedure Q (a, b: integer)

 i, j: integer;

 begin

 x := x+a+j;

 end;

 begin

 Q(x,c);

 end;

At run-time, P will execute the statement x := x+a+j in Q.
The variable a in this statement comes as a parameter to Q,

MAXSIZE

T(1)

T(2)

T(10)

TEMP

4

A

SIZE

QM

RETURN ADDRESS

TEMP

K

SCRATCH AREA

Example Function call
and return

Derotic link

Frame 1

Derotic link

Frame 2

Derotic link

Frame 3

Derotic link

Frame 1

Derotic link

Frame 2

Derotic link

Frame 3

Derotic link

Frame 4

Frame pointer

State pointer
Frame pointer

State pointer

Return Value

Static Link

Dynamic Link
Stack Pointer

Return Address

Parameters (static)

Local Variables (static)

Local Arrays &
Array Parameters (dyn.)
Intermediate Results

Saved Registers

Activation Record Contents

Return Value

Static Link

Dynamic Link

Stack Pointer

Return Address

Parameters (static)

Local Variables (static)

Local Arrays &
Array Parameters (dyn.)

Intermediate Results

Saved Registers
SP

TP

3.56 Computer Science & Information Technology for GATE

while j is a local variable in Q and x is a local variable to P. How do we organise the runtime layout so that we will be able
to access all these variables at run-time? The answer is to use the run-time stack.

When we call a function f, we push a new activation record4 (also called as a activation frame) on the run-time stack,
which is particular to the function f. Each frame can occupy many consecutive bytes in the stack and may not be of a

fixed size. When the callee function returns to the caller, the activation record of the callee is popped out.
For example, if the main program calls function P, P calls E, and E calls P, then at the time of the second call to P, there

will be 4 frames in the stack in the following order: main, P, E, P
Note that a callee should not make any assumptions about who is the caller because there may be many different func-

tions that call the same function. The frame layout in the stack should reflect this. When we execute a function, its frame
is located on top of the stack. The function does not have any knowledge about what the previous frames contain. Two
things one has to do when executing a function: the first is that we should be able to pop-out the current frame of the cal-
lee and restore the caller frame. This can be done with the help of a pointer in the current frame, called the dynamic link5,
that points to the previous frame (the caller’s frame). Thus all frames are linked together in the stack using dynamic links.
This is called the dynamic chain. When we pop the callee from the stack, we simply set the stack pointer to be the value
of the dynamic link of the current frame. The second thing that we need to do, is if we allow nested functions, we need
to be able to access the variables stored in previous activation records in the stack. This is done with the help of the static
link. Frames linked together with static links form a static chain. The static link of a function f points to the latest frame in
the stack of the function that lexically (statically) contains f. If f is not lexically contained in any other function, its static
link is null. For example, in the previous program, if P called Q then the static link of Q will point to the latest frame of
P in the stack (which happened to be the previous frame in our example). Note that we may have multiple frames of P in
the stack; Q will point to the latest. Also notice that there is no way to call Q if there is no P frame in the stack, since Q is
hidden outside P in the program.

Program Counter (PC) whose value is the address of the next instruction to be executed.
Stack Pointer (SP) whose value is top of the stack (top of stack, tos).
Frame Pointer (FP) which points to the current activation record.
Argument Pointer (AP) which points to the area of the activation record reserved for arguments.
Instruction pointer (IP) or code pointer.
Closure is combination of IP and access link (Environment Pointer).

A typical organisation of a frame is the following:

higher addresses

previous frame

next frame (if not top of stack)

lower addresses

Stack
pointer

frame
pointer

argument 1

argument 2

argument n

w

dynamic link

return address

static link

local and
temporary
variables

argument 1

argument 2

argument m

w

activation
record (frame)

Before we create the frame for the callee, we need to allocate space for the callee’s arguments. These arguments belong to
the caller’s frame, not to the callee’s frame. There is a frame pointer (called FP) that points to the beginning of the frame.

4Also known as stack frame when it is in stack
5 control link

Theory of Computation 3.57

The stack pointer points to the first available byte in the stack immediately after the end of the current frame (the most
recent frame). There are many variations to this theme. Some compilers use displays to store the static chain instead of
using static links in the stack. A display is a register block where each pointer points to a consecutive frame in the static
chain of the current frame. This allows a very fast access to the variables of deeply nested functions. Another important
variation is to pass arguments to functions using registers.

When a function (the caller) calls another function (the callee), it executes the following code before (the pre-call) and
after (the post-call) the function call:

pre-call6: allocate the callee frame on top of the stack; evaluate and store function parameters in registers or in the
stack; store the return address to the caller in a register or in the stack.

post-call7: copy the return value; deallocate (pop-out) the callee frame; restore parameters if they passed by refer-
ence.

 In addition, each function has the following code in the beginning (prologue) and at the end (epilogue) of its execu-
tion code:

prologue: store frame pointer in the stack or in a display; set the frame pointer to be the top of the stack; store static
link in the stack or in the display; initialise local variables.

epilogue: store the return value in the stack; restore frame pointer; return to the caller.

Depending on the language, activation records are allocated from either static area (like
Fortran 77), or from stack area (like C or Pascal) or from heap area (like Lisp).

We can classify the variables in a program into four categories:

statically allocated data that reside in the static data part of the program; these are the global variables.

dynamically allocated data that reside in the heap; these are the data created by malloc in C.

register allocated variables that reside in the CPU registers; these can be function arguments, function return values,
or local variables.

frame-resident variables that reside in the run-time stack; these can be function arguments, function return values,
or local variables.

Every frame-resident variable (ie. a local variable) can be viewed as a pair of (level, offset). The variable level indicates the
lexical level in which this variable is defined. For example, the variables inside the top-level functions (which is the case for
all functions in C) have level=1. If a function is nested inside a top-level function, then its variables have level=2, etc. The
offset indicates the relative distance from the beginning of the frame that we can find the value of a variable local to this
frame. For example, to access the nth argument of the frame, we retrieve the stack value at the address FP+1, and to access
the first argument, we retrieve the stack value at the address FP+n (assuming that each arguments occupies one word).
When we want to access a variable whose level is different from the level of the current frame (ie. a non-local variable), we
subtract the level of the variable from the current level to find out how many times we need to follow the static link (ie. how
deep we need to go in the static chain) to find the frame for this variable. Then, after we locate the frame of this variable, we
use its offset to retrieve its value from the stack. For example, to retrieve to value of x in the Q frame, we follow the static
link once (since the level of x is 1 and the level of Q is 2) and we retrieve x from the frame of P.

Another thing to consider is what exactly do we pass as arguments to the callee. There are two common ways of passing
arguments: by value and by reference. When we pass an argument by reference, we actually pass the address of this argu-
ment. This address may be an address in the stack, if the argument is a frame-resident variable. A third type of passing
arguments, which is not used anymore but it was used in Algol, is call by name. In that case we create a thunk inside the
caller’s code that behaves like a function and contains the code that evaluates the argument passed by name. Every time
the callee wants to access the call-by-name argument, it calls the thunk to compute the value for the argument.

Case Study: The MIPS Architecture

The following explanation describes a function call abstraction for the MIPS architecture. This may be slightly different
from the one you will use for the project.

MIPS uses the register $sp as the stack pointer and the register $fp as the frame pointer. In the following MIPS code we
use both a dynamic link and a static link embedded in the activation records.

6call sequence
7 return sequence

3.58 Computer Science & Information Technology for GATE

Consider the previous program:

 procedure P (c: integer)

 x: integer;

 procedure Q (a, b: integer)

 i, j: integer;

 begin

 x := x+a+j;

 end;

 begin

 Q(x,c);

 end;

The activation record for P (as P sees it) is shown in the first figure of 3.11.
The activation record for Q (as Q sees it) is shown in the second figure of 3.11. The third figure of 3.11 shows the

structure of the run-time stack at the point where x := x+a+j is executed. This statement uses x, which is defined in P. We
can not assume that Q called P, so we should not use the dynamic link to retrieve x; instead, we need to use the static link,
which points to the most recent activation record of P. Thus, the value of variable x is computed by:

4

0

- 4

- 3

- 12

- 300
$sp

The view of the stack
inside procedure P

The view of the stack
inside procedure Q

c

dynamic
link

$fp

return
address

static
link

c

$sp

a

b

dynamic
link

return
address

static
link

i

j

temporary
registers

3

4

0

- j2

- 4

- 3

- j6

- 300

$sp

c

c

a = c

b = c
$sp

i

j

$sp

Run-time stack at the
point of x:=x+a+j

temporary
registers

temporary
registers

temporary
registers

Figure 3.11

lw $t0, -8($fp) # follow the static link of Q

lw $t1, -12($t0) # x has offset=-12 inside P

Function/procedure arguments are pushed in the stack before the function call. If this is a function, then an empty
placeholder (4 bytes) should be pushed in the stack before the function call; this will hold the result of the function.

Each procedure/function should begin with the following code (prologue):

 sw $fp, ($sp) # push old frame pointer (dynamic link)

 move $fp, $sp # frame pointer now points to the top of stack

 subu $sp, $sp, 500 # allocate say 500 bytes in the stack

 # (for frame size = 500)

 sw $ra, -4($fp) # save return address in frame

 sw $v0, -8($fp) # save static link in frame

Theory of Computation 3.59

(where $v0 is set by the caller - see below) and should end with the following code (epilogue):

 lw $ra, -4($fp) # restore return address

 move $sp, $fp # pop frame

 lw $fp, ($fp) # restore old frame pointer (follow dynamic link)

 jr $ra # return

For each procedure call, you need to push the arguments into the stack and set $v0 to be the right static link (very often
it is equal to the static link of the current procedure; otherwise, you need to follow the static link a number of times). For
example, the call Q(x,c) in P is translated into:
 lw $t0, -12($fp)

 sw $t0, ($sp) # push x

 subu $sp, $sp, 4

 lw $t0, 4($fp)

 sw $t0, ($sp) # push c

 subu $sp, $sp, 4

 move $v0, $fp # load static link in $v0

 jal Q # call procedure Q

 addu $sp, $sp, 8 # pop stack

Note that there are two different cases for setting the static link before a procedure call. Lets say that caller_level and cal-
lee_level are the nesting levels of the caller and the callee procedures (recall that the nesting level of a top-level procedure
is 0, while the nesting level of a nested procedure embedded inside another procedure with nesting level l, is l + 1). When
the callee is lexically inside the caller’s body, that is, when callee_level=caller_level+1, we have:

 move $v0, $fp

The call Q(x, c) in P is such a case because the nesting levels of P and Q are 0 and 1, respectively. Otherwise, we follow the
static link of the caller d + 1 times, where d=caller_level-callee_level (the difference between the nesting level of the caller
from that of the callee). For d=0, that is, when both caller and callee are at the same level, we have

 lw $v0, -8($fp)

For d=2 we have

 lw $t1, -8($fp)

 lw $t1, -8($t1)

 lw $v0, -8($t1)

These cases are shown in Figure 3.12.

S

R

Q

call Q

S

Q

call Q

R

(1) R calls Q
level (R) = level
(Q) 1-

the static link of Q
is set to the beginning
of R move $vo, $fp

(2) R calls Q
level (R) = level (Q)

the static link of Q
is set to the static link
of R Iw $vo, 8(- $fp)

static
link

static
link

(3) R calls Q
level (R) = level
(Q)+n

the static link of Q
is set by following the
static link of R n + 1
tunes

Iw $tO, 8($fp)-
Iw $tO, 8($tO)-
Iw $vO, 8($tO)-

S

R

Q

S

R

Q

R

Q

T

P

call Q
R

static
link

S

T

P

R

Q

Figure 3.12

3.60 Computer Science & Information Technology for GATE

Note also that, if you have a call to a function, you need to allocate 4 more bytes in the stack to hold the result.

n Example
Consider the following C code fragment.

 Void p(int x, double y)

 {

 int I;

 …..

 A:

 {

 double x;

 int j;

 …..

 }

 …..

 B:

 {

 char *a;

 int k;

 …

 }

 …

 }

Draw run time stack when we enter into block A. Calculate address of j with respect to its fp. Similarly find out the ad-
dress of k with respect to fp. Assume the data sizes as: integer = 2 bytes, char = 1 byte, double = 8 bytes, address =4 bytes.
n Answer:

When in block A: When in block B

Rest of stack Rest of stack

x: x:

y: y:

Control link
Activation record

of Pfp

Control link

Return address Return address

a: a:

i: i:

x: a:

j:
Stack pointer

k:

Free space Free space

Address of j = fp-17 Address of k = fp-13

n Example 1. Consider the following procedure in C syntac:
void f(char c, char s[10], double r){

int *x;

int y[5];

}

Using the standard C parameter passing conventions, and assuming the data sizes as: integer = 2 bytes, char = 1 byte,
double = 8 bytes, address =4 bytes, determine the offsets from the fp of the following, using activation record structure
which does not have access link.

Assuming all parameters are passed in C standard convention. That is, the array (address) is sent to the function. Oth-
ers are sent in passing by value style.

Theory of Computation 3.61

R

S: pointer to the array in callee function

C

Control link

Activation Record
X:

Y[4]
Y[3]
Y[2]
Y[1]
Y[0]

Addresses:

Variable address

C fp+4

S fp+5

S [I] @5(fp) + 2*I here @ means indirection

R fp+9

X fp -4

Y fp-18

n Example 2.
Consider the following C program segment.

 void f(int x, char c){

 int s[10];

 double y;

 }

Using the standard C parameter passing conventions, and assuming the data sizes as: integer = 2 bytes, char = 1 byte,
double = 8 bytes, address =4 bytes, determine the offsets from the fp of the following, using activation record structure
which does not have access link.

Rest of stack

x:

c: Fp

Control link ¨æææ

Return address

s[9]:

s[8]:

….

s[0]:

y:

Name Offset from fp

x +5

c +4

s –24

y –32

i’th element of s can be found as: –24+i*2+fp

3.62 Computer Science & Information Technology for GATE

n Example 3.
Draw stack frame structure for the following recursive function.
int x,y;

int gcd(int u, int v) {

if(v==0) return u;

else

return(gcd(v,u%v));

}

main(){

 x=15; y=10;

printf(“%d\n”, gcd(x,y));

}

x:15
y:10 Global/static area

Activation Record of main

Activation record for first function call

Activation record of second function call

u:15
v:10
Control link
Return address

u:10
v:5
Control link
Return address

u:5
v:0
Control link
Return address

Activation record of third function call

The calling function may create stack frame and push the arguments. Where as the other part is created by called function.

A language where a reference to a local variable if returned from a procedure in stack based environment it leads to
dangling reference as by that time activation record is de-allocated from the stack.

Because of dangling references, in C local functions are illegal.

Pass-by-value-Result requires several modifications to the basic structure of the runtime stack and the calling se-
quence. That is, first activation record can not be freed till local values are copied back. Also, it should have a mechanism
to re-compute their addresses after returning from a function call.

If a static variable is declared in a function then the necessary memory is not allocated in that functions activation re-
cord. Rather, it is allocated in the global/static area of the program such that it is available across different calls of f. If we
have another global/static variable with the same name also there will not be any confusion as symbol table maintains the
scope of the static variables.

Activation tree is the one which represents function calls hierarchy.

If frame size is constant then we can even use SP as reference for locating all variables in stack frame.

Parameters passed in registers will also have an address in activation record.

Outgoing arguments of frame n and return value of frame n+1 accessed within frame n with positive offset relative to
fp. But incoming arguments of frame n+1 and return value accessed within frame n+1 with negative offset relative to fp.

Theory of Computation 3.63

Parameter passing on to stack increases needless memory traffic. This can be improved by the following means:

Pass parameters in registers

Pass first k (usually 4 or 6) arguments in registers and remaining on stack.

Avoid additional memory traffic for storing current content of regisetrs used for parameter passing.

If procedures are leaf nodes try to continue the execution even without creating stack frames.

By using register windows (RISC architectures uses)

Inter Procedural register allocation

Use registers used by dead variables.

Global variable are accessed directly (or by offset from base pointer) where as local variables of a function are accessed
with respect to fp.

While dealing with variable length data (such as a function call printf(“Hello How are you\n”) such as unconstrained
array (also called as open arrays) of Ada. That is array size is unpredictable during compilation time. This can be taken
care by an extra level of indirection. That is, pointer is allocated during the compile time and actual memory is allocated
from tos and its addressed is stored here. Of course, during function return such a memory has to be de-allocated such
that there will not be any dangling problems.

Calling a function with variable no. of arguments (such as printf function call which accepts any number of argments)
is another important aspect should be given emphasis. This is dealt by C language compilers by pushing arguments in the
reverse order on to runtime stack. Then, the first parameter is always located at a fixed offset (+4) from fp. Another option
is to use argument pointer (used in VAX architectures).

Access link is an extra piece of book keeping information which is used in languages which supports local procedures
which points to the activation record of defining environment rather than calling environment. This is also called as static
link though it is not compile time quantity. If a function P embodies two sub functions say Q, R in it then P may not nec-
essarily have any access link.

Access chaining is implemented by repeatedly fetching access links to access a variable. This is an inefficient method.
Thus, display data structure is used which maintains access links outside the stack and is indexed by nesting level.

Some programming language supports functions as arguments to functions. Here, a pair of pointers known as closure
is used which is combination of instruction pointer and environment pointer.

The code that pushes the arguments is generated by the compiler when it processes the function call, but the offsets
are figured when the compiler processes the function declaration. Since the call and declaration can be in different files,
there is no way that the compiler can check for consistency unless you use a function prototype in a common header file.
Otherwise we get a nasty bug known as phase error.

Tail recursion
While writing recursive functions if we employ tail recursion the number of activation records the function call is created
will be reduced.
The following examples explains the factorial calculation:

Direct recursion version

int fact(int n){

if n(<0) return 0;

else if(n==0) return 1;

else if(n==1) return 1;

else return n*fact(n-1);

}

Tail recursion version

int fact(int n, int a){ /* a value of 1 is passed*/

if n(<0) return 0;

else if(n==0) return 1;

else if(n==1) return a;

else return fact(n–1, n*a);

}

3.64 Computer Science & Information Technology for GATE

If we call the above function with n value as 1 then in the first version in total 4 activation records may be created. Whereas
in the second one with one activation record the recursive call is executed.

Fully Dynamic Runtime Environment

Functional languages such as Lisp, ML, etc uses this style of call stack management. Sailently, here activation records are
de-allocated only when all references to them have disappeared, and this requires that activation records to dynamically
freed at arbitrary times during execution. Here, excellent memory manager (garbage collector) is needed.

The data structure that handles such a management is heap and thus this is also called as heap management.

3.3 Solved Questions

1. If an NFA M accepts the empty string (i.e., є), does
M’s start state have to be an accepting state? Why or
why not?

 Answer: No. It does not have to be an accepting state.
Because M is an NFA, we can accept the empty string
by having a non-accepting start state which has an
є-transition (or a sequence of such є-transitions) to
an accepting state.

2. Is every finite language regular? Why or why not?

 Answer: Yes. Every finite language is regular. You can
build an NFA for it by building a linear DFA that rec-
ognises each string individually. Then join them all to
a common start state using є-transitions.

3. Suppose an NFA M recognises a language L then its
complement M’ recognises L’ . Is this statement valid
for all languages?

 Answer: No. Valid for DFA only.

4. Construct an DFA over alphabet S={a,b} which rec-
ognises strings having substrings aaa or bba.

 Answer:

bb

F

b
b

b

b

O

aaa

b

a

a

a
a, b

a

ab

5. Let S and È be alphabets. Suppose that h is a function
from S* to È*. Define what it means for h to be a ho-
momorphism.

 Answer: A mapping h is a homomorphism if h(xy) =
h(x)h(y) for any strings x and y. Or, equivalently, h is a
homomorphism if h(c1c2…. cn) = h(c1)h(c2) … h(cn)

for any sequence of characters c1c2 … cn.

 Or, we can say it in other words: the output of h on a
string is the concatenation of its outputs on the indi-
vidual characters making up the string.

6. Give a regular expression for the language L contain-
ing all strings in a*b* whose length is a multiple of
three. E.g. L contains aaaabb but does not contain
ababab or aaabb.

 Answer: (aaa)*(bbb)* U(aaa)*aab(bbb)*U (aaa)*abb
(bbb)*.

7. Let S = {a, b, c}. Give an NFA for the language L
containing all strings in S* which have an a or a c in
the last four positions. E.g. bbabbb and abbbcb are
both in L, but acabbbb is not. Notice that strings of
length four or less are in L exactly when they contain
an a or a c.

 Answer:

0
a c,

1
a b c, ,

2
a b, c,

3 4
a b, c,

a b c, ,

8. Is the language {wwRw/w є {a; b}} a context-free lan-
guage?

 Answer: No. A context-free language can only gener-
ate matched pairs, not matched triples.

9. If L is a non-regular language over S*, and h is a ho-
momorphism, then h(L) must also be non-regular.
How valid is this statement?

 Answer: No. Suppose that h mapped all characters to
the empty string. Then h(L) would be regular no mat-
ter what L is.

10. Suppose all the words in language L are no more than
1024 characters long. Then L must be regular. Is this
statement valid?

 Answer: Yes. There is only a finite set of strings with ‹
1024 characters. So L is finite and therefore regular.

Theory of Computation 3.65

11. Draw a transition diagram of an FA which accepts all
strings of 0’s and 1’s in which both the number of 0’s
and 1’s are even.

 Answer:

q1

1

1

q0

1

1

q2

00

q3

00

12. Construct a DFA that accepts all strings consisting of
arbitrary number of a’s followed by a single ‘b’.

 L={an b/n>=0}

 Answer:

q1q0

a

b

q2

b

a

13. Construct a DFA that accepts all strings defined on
{0,1}, except those containing substring 001.

 Answer:

q0

1

q1
0

1

q2

0

q3
1

0, 1

0

trap state

14. Design an NFA that accepts all strings defined on {0,1},
except those containing two consecutive zero’s or one’s .

 Answer:

q1

q3

0, 1

q2

0

0

q0

1

1

1

0

15. Explain what is meant by є-closure. Also, find out
whether the string “ab” is acceptable according to the
given NFA.

 Answer:

 Œ- closure of a particular state is a set of all those states
of automata which can be reached from that state on a
path labeled by ‘Œ’.

 Rules:

q0 is added to Œ- closure of q0

If q1 is in Œ- closure of q0 and there is an edge labeled
‘Œ’ from q1 to q2, then q2 is also added to Œ-closure
of q0 if q2 is not already there.

If ‘T’ is a set of states then Œ- closure (T) is the union
of Œ- closure of single states.

 For the figure given below, check whether input ‘ab’ is
accepted or not

q2

c

q1

b

q0

a

Œ Œ

 Œ- closure (q0) = {q0, q1, q2}

 d*(q0, Œ) = Œ- closure (q0) = {q0, q1, q2}

 d*(q0, a) = Œ- closure (d(d*(q0, Œ)), a)

 = Œ- closure (d({q0, q1, q2}), a)

 = Œ- closure (d(q0,a), d(q1,a), d(q2,a))

 = Œ- closure ({q0}, f, f)

 = Œ- closure ({q0})

 = {q0, q1, q2}

d*(q0, ab) = Œ- closure (d(d*(q0, a)), b)

 = Œ- closure (d(q0,b), d(q1,b), d(q2,b))

 = Œ- closure (f, {q1}, f)

 = Œ- closure (q1)

 = { q1, q2}

 q2 is the final state , hence ‘ab’ is accepted by the ma-
chine.

16. Some useful DFAs

a. All strings that contain exactly 4 0s.
11111

0 0 0 0

0, 1

0

b. All strings ending in 1101.

0

1

1 0 1

1

1

000

3.66 Computer Science & Information Technology for GATE

c. All strings containing exactly 4 0s and at least 2 1s.

1 1 11

0 0000

1111 1

0000

1111 1

0000

1

0, 1

0

0

d. All strings whose binary interpretation is divisible
by 5.

1

1

1 0

1 0

0

1

0
0

e. All strings that contain the substring 0101.

0

0, 1

0 1 0 1

0

1 1

f. All strings that start with 0 and has odd length or
start with 1 and has even length.

0

0, 1 0, 11

g. All strings that don’t contain the substring 110.

0 0

1 1

0, 11

0

h. All strings of length at most 5.
0,1 0,1 0,1 0,1 0,1

0,1

0,1

i. All strings where every odd position is a 1.

0
1

0,1

0,1

17. Some useful NFAs

a. All strings containing exactly 4 0s or an even number
of 1s. (8 states)

e 0 0 0 0

1 1 1 11

1

1

0 0

e

b. All strings such that the third symbol from the
right end is a 0. (4 states)

0,10,10

0,1

c. All strings such that some two zeros are separated
by a string whose length is 4i for some i>=0. (6
states)

00,10,1 0,1

0,1

0 0,1

1

d. All strings that contain the substring 0101. (5
states)

0,1

0 1 0 1

0,1

e. All strings that contains an even number of 0s or
exactly two 1s. (6 states)

11

0 0 0

1 1

0

0

e

e

Theory of Computation 3.67

f. The language 0*1*0*0 (3 states)

0 1 0

0

1 0

18. L1: The set of strings where each string w has
an equal number of zeros and ones; and any
prefix of w has at least as many zeros as ones.
L2: The set of strings defined inductively as follows: if
w is in the set then 0w1 is also in the set; if u and v are
in the set then so is uv; and the empty string is in the
set. Prove that every string in L2 is contained in L1.

 Answer:

 We can analyse L2 inductively to see that it maintains
the property of L1 for each case:

1. The empty set. This is a member of L1, since it
satisfies the properties directly.

2. Consider the string 0w1. Assuming that w is in
L1, we maintain the equal number of 0s and 1s
because we add one of each. We also maintain the
prefix condition, since the 0 is added before the 1.

3. Consider the concatenated string uv. Assuming
that u and v are both in L1, simply concatenat-
ing them together will maintain the equal number
of 0s and 1s. The prefix condition is slightly more
difficult. We consider the following prefixes:

 a. PREFIX(u). Since u is in L1, this must be in L1.

 b. u. Again, since u is in L1, this must be in L1.

 c. uPREFIX(v). Since u has an equal number of
0s and 1s, and v is in L1, this must maintain the
prefix property.

19. L1: The set of strings where each string w has
an equal number of zeros and ones; and any
prefix of w has at least as many zeros as ones.
L2: The set of strings defined inductively as follows: if
w is in the set then 0w1 is also in the set; if u and v are
in the set then so is uv; and the empty string is in the
set. Prove that every string in L1 is contained in L2.

 Answer: The proof is by induction on the length of
strings in L1:

1. The base case is the empty string. This is in L2 by
definition.

2. For the inductive step, suppose that all strings in
L1 of length <= n are in L2. Let w be a string in L1
of lenght n+1 and suppose it is of the form A1A2...
An+1, where Ai is either 0 or 1. Let j be the first in-
dex with the property that A1A2...Aj has the same
number of zeros and ones. There are two cases to
analyse.

 a. j < n+1. Then not only does u = A1A2...Aj have

the same number of zeros and ones, any prefix

of u will have at least as many zeros as ones

since it is also a prefix of w. So u is in L1. Let

v = Aj+1Aj+2...An+1. Then v must have the same

number of zeros and ones since both u and

w=uv do. Also, any prefix x of v cannot have

more ones than zeros in it since then ux would

be a prefix of w that had more ones than zeros.

Therefore, v must be in L1. Since, both u and v

are of length ‹ n, by the induction hypothesis

they are in L2. Therefore, w = uv must be in

L2, by the definition of L2.

 b. j = n+1. Then w = 0u1 for some string u, and u

has the same number of zeros and ones, since

w does. Also, no prefix x of u can have more

ones than zeros, since then 0x would either

have more ones than zeros which is impos-

sible by hypothesis, or 0x would have the same

number of ones as zeros, which is also impos-

sible by since j = n+1. Therefore we can con-

clude that u is in L1, and since it is of length

‹n it is in L2 by the induction hypothesis.

 This completes the inductive step, and therefore L1 is

contained in L2.

20. Prove that if L1 is regular and L2 is regular then so is

L1-L2 (the set of all strings in L1 but not in L2).

 Answer: L1-L2 is the same as the intersection of L1

and the complement of L2. Since the set of regular

languages is closed under each of these operations,

L1-L2 must be regular.

21. If L is regular then prove Prefix(L) is regular where

Prefix(L) is the set of all strings which are a proper

prefix of a string in L.

 Answer: We can construct a DFA to decide Prefix(L)

by taking the DFA for L and marking all states from

which an accept state is reachable as accept states.

So, Prefix(L) must be regular.

22. Prove that Regular Sets are closed under MIN.

MIN(R), where R is a regular set, is the set of all

strings w in R where every proper prefix of w is not

in R. (Note that this is not simply the complement of

PREFIX).

 Answer: We can construct a DFA to decide MIN(R)

by taking the DFA for R and redirecting all outgoing

arrows from all the accept states to a dead state. So,

MIN(R) must be regular.

3.68 Computer Science & Information Technology for GATE

23. Prove that Regular Sets are NOT closed under infinite

union. (A counterexample suffices).

 Answer: Consider the sets {0}, {01}, {0011}, etc. Each
one is regular because it only contains one string. But
the infinite union is the set {0i1i | i>=0} which we
know is not regular. So the infinite union cannot be
closed for regular languages.

24. Prove that regular sets are not closed under infinite

intersection?

 Answer: We know that

 {0i1i | i>=0} = {0} U {01} U {0011} U ...,

 Taking complements and applying DeMorgan’s law

gives us

 {0i1i | i>=0}c = {0}c ^ {01}c ^ {0011}c ^ ...,

 Where we are using U to denote union and ^ to de-
note intersection. Recall the complement of a regular
language is regular, and hence the complement of a
not-regular language is not regular. So we can con-
clude that the left hand side of the equation is not-
regular, and each term in the intersection is regular.
Therefore infinite intersection does not preserve reg-
ularity.

25. Prove that the language {1k0i1i0j1j0k/i,j,k>0}is CFL.

 Answer: It is CFL. This can be generated using the
following rules.

 S Æ 1A0

 A Æ 1A0 | B

 B Æ CC

 C Æ 0D1

 D Æ 0D1 | є

26. Is the set of binary numbers that are divisible by 3

regular?

 Answer: Yes. We can recognize by using the following

FA. Thus, it is regular. However, it is very difficult to

have regular expression for this.

While drawing FA, the following discussion is very

useful. If we know that the input so far was a num-

ber that was divisible by 3, then we know that after

reading one more 0, the number is again divisible

by 3. (This is so because reading that 0 amounted to

multiplying the previous number by 2.) What if a 1

had been read instead? This would have amounted

to multiplying the previous number by 2 and adding

1. The resulting number, when divided by 3, would

yield a remainder of 1. This translates into a piece of

a finite-state machine shown in figure.

0

0

0

l

1

1

1 1 2
0

0

1

27. For each of the languages below, indicate the smallest
complexity class that contains it. (i.e. Regular, Deter-
ministic Context Free, Turing Machines (Recursive).
Assume an alphabet of {0,1} unless otherwise speci-
fied. You do not need to prove your answers.

 Answer:

a. DCFL. {0n1m0p1q | n+m = p+q and n,m,p,q > 0}

b. DCFL. {0n1m0m1n | n,m > 0}

c. regular . {0n1m0p1q | n,m,p,q > 0}

d. CFL. The set of strings over alphabet {0,1,2} with
an equal number of 0s and 2s or an equal number
of 0s and 1s.

e. regular. {0m | m = 2k+1 where k>0}

f. regular. The set of strings with 3n 0s and 4m 1s
for m,n > 0.

g. DCFL. The set of strings with at least ten times as
many 0s as 1s.

h. regular. The set of strings that are either odd
length or contain 5 consecutive 1s.

i. TM. {0m10m! | m>0}

j. DCFL. The set of stings over alphabet {0,1,2}
where the number of 1s equals the number of 2s
and every 0 is followed immediately by at least
one 1.

28. Is it recursively enumerable or not?

 For each of the following languages, state whether
the language is or is not recursively enumerable and
whether the complement of the language is or is not
recursively enumerable. Give some justification for
your answers.

a. The language of all TM’s that accept nothing.

b. The language of all TM’s that accept everything.

c. The language of all TM’s that accept Regular sets.

d. The language of all PDA’s that accept everything.

e. The language of all CFG’s that are ambiguous.

 Answer:

a. no yes The language of all TMs that accept noth-
ing.

 We need to try an infinite number of strings in a
TM to determine that it accepts nothing, but we

Theory of Computation 3.69

only need to find a single string that it accepts to
show that it accepts something.

b. no no The language of all TMs that accept every-
thing.

 We need to try an infinite number of string in a
TM to determine whether it accepts everything,
and we may or may not need to if it does not.

c. no no The language of all TMs that accept Regular
languages.

 We can enumerate all possible regular languages,
but testing every regular language against every
TM would take forever. If fact, even testing a TM
against a single infinite regular language would
take forever.

d. no yes The language of all PDAs that accept every-
thing.

 We would have to try every string before de-
claring that a PDA accepts everything, but since
membership in a CFG (equivalent to a PDA) is
decidable, we determine that a PDA does not ac-
cept anything once it rejects anything.

e. yes no The language of all CFGs that are ambigu-
ous.

 We can determine that a CFG is ambiguous by
finding a single string which has an ambiguous
derivation, but we cannot determine if a CFG is
unambiguous unless we try everything string in
it.

29. Put the following grammar into Chomsky Normal
Form. Show all work.

 S ÆA | AB0 | A1A

 A ÆA0 |є

 B Æ B1 | BC

 C Æ CB | CA | 1B

 Answer: Converting to Chomsky Normal Form

 Removing all e rules first. The resultant rules are:

 S Æ e | A | AB0 | A1A | B0 | A1 | 1A

 A Æ A0 | 0

 B Æ B1 | BC

 C Æ CB | CA | 1B

 Removing unit rules, we have arrived at the following
rules.

 S Æ e | A0 | 0 | AB0 | A1A | B0 | A1 | 1A

 A Æ A0 | 0

 B Æ B1 | BC

 C Æ CB | CA | 1B

 Convert remaining rules into proper form

 S Æ e | A0 | 0 | AS1 | B0 | A1 | 1A

 A Æ A0 | 0

 B Æ B1 | BC

 C Æ CB | CA | 1B

 S1 Æ B0 | 1A

 S Æ e | AN0 | AS1 | BN0 | AN1 | N1A

 A Æ AN0 | 0

 B Æ BN1 | BC

 C Æ CB | CA | N1B

 S1 Æ BN0 | N1A

 N0 Æ 0

 N1 Æ 1

30. Convert the following grammar into an equivalent
one with no unit productions and no useless symbols.

 S Æ A | CB

 A Æ C | D

 B Æ 1B | 1

 C Æ 0C | 0

 D Æ 2D | 2

 Converts to

 S Æ 0C | 0 | 2D | 2 | CB

 A Æ C | D

 B Æ 1B | 1

 C Æ 0C | 0

 D Æ 2D | 2

 A is now useless and can be removed.

31. Explain why the grammar below is ambiguous.

 S Æ 0A | 1B

 A Æ 0AA | 1S | 1

 B Æ 1BB | 0S | 0

 The grammar is ambiguous because we can find
strings which have multiple derivations:

S

0A

0 0AA

00 1S 1

001 1B 1

0011 0 1

S

0A

0 0AA

00 1 1S

0011 0A

00110 1

32. Construct context free grammar to accept the follow-
ing languages.

 a. {w | w starts and ends with the same symbol}

 Answer:

 S Æ 0A0 | 1A1

 A Æ 0A | 1A | e

 b. {w | |w| is odd}

3.70 Computer Science & Information Technology for GATE

 Answer:

 S Æ 0A | 1

 A Æ 0S | 1S | e

c. {w | |w| is odd and its middle symbol is 0}

 Answer:

 S Æ 0 | 0S0 | 0S1 | 1S0 | 1S1

 d.{0n1n | n>0} U {0n12n | n>0}

 Answer:

 S Æ 0A1 | 0B11

 A Æ 0A1 | e

 B Æ 0B11 | e

e. {0i1j2k | i!=j or j!=k}

 Answer:

 S Æ AC | BC | DE | DF

 A Æ 0 | 0A | 0A1

 B Æ 1 | B1 | 0B1

 C Æ 2 | 2C

 D Æ 0 | 0D

 E Æ 1 | 1E | 1E2

 F Æ 2 | F2 | 1F2

f. Binary strings with twice as many 1s as 0s.

 Answer:

 S Æ e | 0S1S1S | 1S0S1S | 1S1S0S

33. Identify whether the following languages are regular
or not?

a. {www | w is {0,1}*}

Answer: Not. Assume that the language is regular.
Let p be the pumping length, and choose s to be
the string 0p10p10p1. Now we try to break it up
into s=xyz. Since |xy| <= p and |y|>0, y can only
contain 0’s. When we pump the string even just
once we get xy2z = 0p+|y|10p10p1, and this is not of
the form www, since |y| > 0. This contradicts the
pumping lemma, so the language is not regular.

b. {0m1n | m is not equal to n}

Answer: No. We know that

 {0n1n | n >= 0} = {0m1n | m,n >= 0}^{0*1*}c,

 where we are using ̂ to denote intersection and c to
denote complement. The proof is by contradiction.
If {0m1n | m is not equal to n} really were regular
then {0n1n | n >= 0} would also be regular because
0*1* is regular and because of the closure proper-
ties of regular sets. Therefore it can’t be regular.

 There is a direct way to prove it as well: If p is the
pumping length and we take the string s = 0p1p+p!,
then no matter what the decomposition s = xyz is

the string xy1+p!/|y|z will equal 0p+p!1p+p! which is
not in the language.

c. {0m1n0m | m,n >= 0}

Answer: No. Assume that the language is regular.
Let p be the pumping length, and choose s to be
the string 0p10p. Now we try to break it up into
s=xyz. Since |xy| <= p, y can only have zeros in
it. Now xyjz = 0p+ (j-1) |y|10p, and since |y|>0 the
number of 0’s on the left and right sides of xyjz will
not be the same for any j>1 so xyjz will not be in
the language, contradicting the pumping lemma.
Therefore {0m1n0m | m,n >= 0} is not regular.

d. Regular. The set of strings that have an even num-
ber of double zeros in them.

 This can be decided by a DFA.

e. The set of all strings of the form xwxR where x and
w are strings over the alphabet {0,1}.

Answer: Regular. This description is somewhat
misleading. Since w can represent any string and
x can be 0 or 1, this is the same as all strings which
begin and end with the same character. This is
easily seen to be a regular language.

f. The set of all strings over the alphabet {0} whose
length is n! for some n > 0.

Answer: No. Assume that the set is regular. Let
p be the pumping length. Without loss of gener-
ality we can assume that p is at least 2. (We can
always increase the pumping length. We only do
this because some of our calculations donot work
for p = 1) Then, according to the pumping lemma,
we can break the string s=0p! in to s=xyz where y
has positive length and |xy| <= p. Then s=xy2z =
0p! + |y| must also be in the language, so p!+|y| must
also be a factorial. But (p+1)!-p! = (p)p! > p >= |y|
so it follows that p! + |y| < (p+1)!, and therefore
p! + |y| is not a factorial. This is a contradiction so
the language cannot be regular.

g. The set of strings over the alphabet {0} of the form
0n where n is not prime.

Answer: No. To prove this language is not regular,
we instead examine the complement because the
set of regular languages is closed under comple-
ment. Assume that the set is regular. Let p be the
pumping lenght of the language. Then, accord-
ing to the pumping lemma, we break the string
s=0p into s=xyz where y has positive length. Then,
s=xyiz = 0p + (i-1) |y| must also be in the set for any i.
In particular let i = p+1. Then xyp+1z=0p+p|y| must
be in the set so p + p|y| = p(1 +|y|) must be prime.
Thus we have a contradiction and the set cannot
be regular.

Theory of Computation 3.71

34. Prove that the language L={0n!/n>=0} is not regular.

 Answer: Assume that this language is regular and that
the pumping constant is n. Then choose the string w
= 0n!. Then the pumping lemma tells us that we can
write this as xyz with the three conditions satisfied.
The condition that y is not the empty string and |xy|
£ n, implies that y must be 0j where j Œ {1, 2, .., n}.
The pumping lemmas says that then xy2z should be
in L. But xy2z = an!+j . But if we add 1 to n to n! we do
not get another number which is a factorial. Thus, the
language is not regular.

35. Prove that the language L1={aibjck/j<i,j<k} is not con-
text free.

 Answer: Assume that language is CFL and take
pumping length of p. Consider a string s=ap+1bpcp+1.
Applying pumping lemma, that taking s as uvxyz such
that |vxy|<=p and|vy|>=1. As, |vxy|<=p, vy cannot
have a’s, b’s and c’s. Also, it cannot have equal number
of a’s or b’s or c’s. May be there can be two other pos-
sibilities.

 Case 1 : If vy has more a’s or more c’s than b’s, then
choose s¢ = uxz and observe that s¢ has at most as
many a’s or at most as many c’s as b’s (because more
a’s or more c’s than b’s were removed).

 Case 2 : If vy has more b’s or more a’s than c’s, then
choose s¢ = uv2xy2z and observe that s¢ has at most as
many b’s as a’s or c’s (because more b’s were added
tgab a’s or c’s).

 In both cases s¢ œ L1, contradicting the pumping lem-
ma. We conclude that L1 is not context free.

36. Compiler Construction

37. For the following grammar, Draw the parser tree for
the input “y + + + y + + + y + +”

+ +B

y

+ A

+A

A

+B

A

A

+

+ +

y y

A

S

 S Æ A
 A Æ A+A| B++
 B Æ y

38. S Æ abcS| Sabc| h

 Describe the language constructed by the grammar.

 Answer: Zero or more instances of abc including only
one h. h appears only at the beginning, at the end or
between c and a.

 Is it ambiguous? Why?

 YES, there are two parse trees for the sentence — ab-
chabc

 If it is ambiguous, write an unambiguous context-free
grammar that describes the same language.

 S Æ L h L

 L Æ L N | L

 N Æ abc | e

39. Write an unambiguous context-free grammar that
generates all strings of a and b.

 Answer: List Æ List char | char

 char Æ a | b

40. Describe the language denoted by the regular expres-
sion: ((e|0) l*)*

 Answer: All binary numbers

41. Write a regular expression that derive strings of a and
b. These strings contain at least two b’s.

 Answer:

 (a|b)* b (a|b)* b (a|b)*

 (a* b a* b a*)*(a|b)*

42 Write a regular expression that derive strings of a and
b. These strings contain at most two b’s.

 Answer:

 a* (e |b) a* (e |b) a*

43. Construct the DFA from the following NFA

9 15
a

10 14 13
b

e

11 12e

e

8

e

e

4 6
a

e

3

e

21

5 7
be e

e

a

e

e e

3.72 Computer Science & Information Technology for GATE

 Answer:

A {1, 2, 3, 4, 5} a b

B {2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13} D E

C {2, 3, 4, 5, 7} B C

D {2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15} D E

E {2, 3, 4, 5, 7, 13, 14} B C

DB

EC

a a
b b

A

a

a

a

b

b

44. Write an unambiguous context-free grammar for the
language of strings like a = b = c

 Note: equality operator is a right-associative operator

 Answer:

 Right Æ Letter = Right | Letter

 Letter Æ a | b| … | z

45. Write an unambiguous context-free grammar for the
language of right-associative lists of identifiers sepa-
rated by commas.

 Answer:

 List Æ id, List | id

46. Write a regular expression that derive strings of a and
b. These strings should have odd number of b’s.

 Answer:

 a* b (a* b a* b)* a*

47. Write a regular expression that derive strings of a and
b. These strings contain at least two b’s.

 Answer:

 (a|b)* b (a|b)* b (a|b)*

48. Write a regular definition for Pascal unsigned num-
bers which are strings such as 342, 43.08, 56.56E4,
76.8E-20 or 23E33.

 Answer:

 Digit Æ 0|1|…|9

 Num Æ Digit+ (. Digit+)? (E (+|–)? Digit+)?

49. Write a regular definition for the following language:
all strings of letters that contain the five vowels in or-
der.

 Vowels letters: a, e, i, o, u, A, E, I, O, U.

 Answer:

 Letter Æ {All letter capital and small except vowel let-
ters}

 S Æ Letter* (a|A) Letter* (e|E) Letter* (i|I) Letter*
(o|O) Letter* (u|U)

50. Is the following grammar ambiguous? Why?

 S Æ a S b S | b S a S | є

 Answer:

 Yes, a b a b has 2 parse trees, S Æ a S b S Æ a b S a S b
S Æ a b a b

 S Æ a S b S Æ a S b a S b S Æ a b a b

51. Is the following grammar ambiguous?

 stmt Æ if expr then stmt | matched_stmt

 matched_stmt Æ if expr then matched_stmt else stmt
| other

 Answer: Yes. The following is derived more than one
way.

 if expr then matched_stmt else if expr then stmt

52. Consider the following NFA over the alphabet {0,1}:

1

0,1

0

0

0

1

a. Convert this NFA to a minimal DFA.

b. Write a regular expression for the set that ma-
chine accepts.

c. Write a linear grammar where each right side is
of the form aB or a. (“a” a terminal and “B” a non-
terminal) to generate the set.

 Answer:

a. Equivalent NFA to the given DFA is:

32

12312
0

0

0

1

1

1
1

1
0

0
1

b. Regular expression for the set that machine ac-
cepts is given as:

 [0+(0+1)(1+00)*01]*(0+1)(1+00)*

c. Linear grammar where each right side is of the
form aB or a.

 A Æ 0A | 0B | 1B

 B Æ 1B | 0C | e

 C Æ 0B | 1A

53. Which of the following languages are regular? If the
language is regular, present a finite automaton or reg-
ular expression. If not, give a proof using the pumping
lemma.

Theory of Computation 3.73

(a) The set of all 0-1 strings in which the total number
of zeros to the right of each 1 is even.

 Answer: Regular as we can represent them using
regular expression 0*(1*00)*1*

(b) The set of all 0-1 strings that contain more 1s than
0s.

 Answer: Not regular. Use pumping lemma on
string 0m1m+1, where m is the pumping constant.

(c) The set of all 0-1 strings of the form 0m1n where m
is odd and n is even.

 Answer: Regular as we can represent the same us-
ing regular expression 0(00)*(11)*.

(d) The set of all 0-1 strings in which the number of
occurrences of “000” and of “111” are the same.
(Note that the string “1110000111” contains two
occurrences of each.)

 Answer: Not regular. Using pumping lemma, one
can prove.

(e) Prove L={an3/n>=1} is not regular?

Answer: Using pumping lemma, we can prove
this. Acceptable strings in this language are: a,
a8, a27, a64 etc. Consider the string aaaaaaaa and
pumping width as 2. and x=a, y=a and z=aaaaaa.
We have xy length is <=2. Now, consider the
string xyjz for j value of 5. The resulting string is
aaaaaaaaaa which is not in the language. Thus, it
is not regular.

 (f) Prove that the language L={ambnck/m,n,k>=0,
m π n,mπk,nπk}is not regular.

Answer: Use pumping lemma and prove.

54. What is the language that is represented by the follow-
ing rules?

 SÆ aSb|aSbb|є

 Answer: {anbm/m/2<=n<=m}

55. What is the language that is represented by the follow-
ing rules?

 S Æ aSa|bSb|aa|bb

 Answer: {wwR/|w|>=1},where R indicates reverse.

56. What is the language that is represented by the follow-
ing production rules?

 S ÆaaSb|aS|є

 Answer: { ai+jbj|i>=j>=0}

57. Let L1 and L2 be languages in the respective language
class, and let R be a regular language, and x be a given
word over alphabet S. The following table categorises
following decision problems as (D) decidable, (U) un-
decidable.

Language class/
Problem

regular context-free recursive r.e.

L1 » L2 = S*? D U U U

x ŒL1 ? D D D U

R Õ L1 ? D U U U

L1 – R = f ? D D U U

$y ŒL1, |y| £ 5? D D D U

(|y| denotes the length of y.)

58. If L is regular then L¢={x/ ax є L or bxє L} is also regu-
lar.

 Answer: As L is regular, then L1¢={x:ax є L} and L2¢

={x:xx є L} are regular. As union of two regular lan-

guages are regular, L¢ which is union of L1¢ and L2¢ is

also regular.

59. If L is regular, prove that L¢ = {xx− | x є L} is not regu-

lar. Here x− is x without its last symbol, e.g. (bab)− =

ba, b− = Œ. (We let Œ− = Œ.)

 Answer: Consider a language that is represented by

the regular expression a*b. Then L› is the language

{anban}. Let us use pumping lemma to check whether

L¢ is regular or not. Assume that the pumping length

is n and the string w= anban is in the language. For any

partition of w=xyz such that |xy|<=n and|y|>1, xy2z

will be of the form amban where m>n. That is, xy2z will

not be in L¢. So, L¢ is not regular.

60. If L is regular, then L¢ = {x | xy є L for some string y} is

regular.

 Answer: Yes. We can simply prove by adding some

more states to the DFA.

61. Prove using pumping lemma whether the following

language L is CFG or not.

 {w |$ i, j ≥ 0, w = ai bj ci dj}

 Answer: L is not context-free: Let p be a proposed

pumping lemma constant, and let w = apbpcpdp є L.

If w = uvxyz with |vxy| ≤ p and |vy| ≥ 0, then assume

without loss of generality that v only contains an a or

a b (or both) (as the cases of v containing c or d is

analogous, as is the case of y containing a particular

symbol). If v contains an a, then y does not contain

a c. On the other hand, if v contains a b, then y does

not contain a d. In either case, uv2xy2z L, as either the

number of a’s increases while the number of c’s does

not, or the number of b’s increases while the number

of d’s does not.

3.74 Computer Science & Information Technology for GATE

62. Minimise the following DFA.

0,1
q11q00

0

q01 q10

0

q0

0 1

start

0 1 0 1

q

q1

0 1

1

1

 Answer:

 To obtain the minimised DFA, we mark all pairs of
distinguishable states, First, every state (but q11) is
distinguishable from q11 because it is an accepting
state. Then, on transition 1, we note that q1 and q01 go
to q11, while q, q0, q00 and q10, go to a state distinguish-
able from q11. So these are all distinguishable pairs. At
this paint we have following pairs of distinguishable
states.

q0

q1 x x

q00 x

q01 x x x

q10 x x

q11 x x x x x x

q q0 q1 q00 q01 q10

 No, more pairs of states can be distinguished. The in-
distinguishable states split into three classes: Class A
consisting of states {q, q0, q00, q10}; class B, consisting
of (q1, q01}, and class C, consisting of q11. This yields
the following minimized DFA.

qA

0

start qB qC

1

0

1

0,1

63. What are the possible error recovery actions in lexical
analysis:

 Answer:

a. Deleting an extraneous character

b. Inserting a missing character

c. Replacing an incorrect character by a correct
character

d. Transposing two adjacent characters

64. Write the algorithm for simulating a DFA.

 Answer:

 s := s0;

 c := nextchar

 while c π eof do

 s := move(s,c)

 c := nextchar

 end

 if s is in F then

 return “yes”

 else return “no”;

65. Write the transition graph for an NFA that recognises
the language (a|b)*abb.

 Answer :

0
a

1
b

2
bStart

a

b

66. Name some variety of intermediate forms.

 Answer:

∑ Postfix notation or polish notation.

∑ Syntax tree

∑ Three address code

∑ Quadruple

∑ Triple

67. What are the techniques behind code optimisation
phase?

 Answer:

a. Constant folding

b. Loop constant code motion

c. Induction variable elimination

d. Common sub expression elimination

e. Strength reduction

f. Mathematical identities

68. Write the syntax for three-address code statement,
and mention its properties.

 Answer :

 Syntax: A= B op C

∑ Three-address instruction has at most one op-
erator in addition to the assignment symbol. The
compiler has to decide the order in which opera-
tions are to be done.

∑ The compiler must generate a temporary name to
hold the value computed by each instruction.

∑ Some three-address instructions can have less
than three operands.

Theory of Computation 3.75

69. What is linear analysis?

 Answer :

 Linear analysis is one in which the stream of charac-
ters making up the source program is read from left
to right and grouped into tokens that are sequences
of characters having a collective meaning. This is also
called as lexical analysis or scanning.

70. What is a symbol table?

 Answer :

 A symbol table is a data structure containing a record
for each identifier, with fields for the attributes of the
identifier. The data structure allows us to find the re-
cord for each identifier quickly and to store or retrieve
data from that record quickly. Whenever an identifier
is detected by a lexical analyser, it is entered into the
symbol table. The attributes of an identifier cannot be
determined by the lexical analyser.

71. What is the back-end phases of a compiler?

 Answer :

 The back end of compiler includes those portions that
depend on the target machine and generally those
portions do not depend on the source language, just
the intermediate language. These include

 ∑ Code optimisation

∑ Code generation, along with error handling and
symbol-table operations.

72. List the various error recovery strategies for a lexical
analysis.

 Answer :

∑ Panic mode recovery

∑ Deleting an extraneous character

∑ Inserting a missing character

∑ Replacing an incorrect character by a correct
character

∑ Transposing two adjacent characters

73. What is an operator precedence parser?

 Answer :

 A grammar is said to be an operator precedence if it
possess the following properties:

1. No production on the right side is ε.

2. There should not be an any production rule pos-
sessing two adjacent non terminals at the right
hand side.

 Advantages

 This type of parsing is simple to implement.

 Disadvantages

1. The operator like minus has two different pre-
cedence (unary and binary). Hence it is hard to
handle tokens like minus sign.

2. This kind of parsing is applicable to only small
class of grammar.

74. What are the properties of LR parser?

 Answer :

1. LR parsers can be constructed to recognise most
of the programming languages for which the con-
text free grammar can be written.

2. The class of grammar that can be parsed by LR
parser is a superset of class of grammars that can
be parsed using predictive parsers.

3. LR parsers work using non backtracking shift re-
duce technique yet it is efficient one.

 Types of LR parsers

∑ SLR parser- simple LR parser

∑ LALR parser- lookahead LR parser

∑ Canonical LR parser

75. What are the problems with top down parsing?

 Answer :

∑ Backtracking

∑ Left recursion

∑ Left factoring

∑ Ambiguity

76. Explain FIRST and FOLLOW algorithm.

 Answer :

 FIRST

1. If X is terminal, then FIRST(X) IS {X}.

2. If X Æ ε is a production, then add ε to FIRST(X).

3. If X is non terminal and X Æ Y1,Y2..Yk is a pro-
duction, then place a in FIRST(X) if for some i ,
a is in FIRST(Yi) , and ε is in all of FIRST(Y1),…
FIRST(Yi-1);

 FOLLOW

1. Place $ in FOLLOW(S),where S is the start sym-
bol and $ is the input right endmarker.

2. If there is a production A Æ aBb, then everything
in FIRST(b) except for ε is placed in FOLLOW(B).

3. If there is a production A Æ aB, or a production
AÆ aBb where FIRST(b) contains ε , then every-
thing in FOLLOW(A) is in FOLLOW(B).

77. What is handle? Explain about handle pruning.

 Answer :

 A handle of a string is a substring that matches the
right side of a production, and whose reduction to the
nonterminal on the left side of the production repre-
sents one step along the reverse of a rightmost deriva-
tion.

3.76 Computer Science & Information Technology for GATE

 A handle of a right – sentential form g is a production
of AÆb and a position of g where the string b may
be found and replaced by A to produce the previous
right-sentential form in a rightmost derivation of g.
That is , if S fi aAw fi abw, then AÆb are in the posi-
tion following a is a handle of abw.

 A rightmost derivation in reverse can be obtained by
handle pruning.

 If w is a sentence of the grammar at hand, then w =
gn, where gn is the nth right-sentential form of some
as yet unknown rightmost derivation

 S = g0 fi g1…fi gn–1 fi gn = w

78. What is meant by viable prefixes?

 Answer :

 The set of prefixes of right sentential forms that can
appear on the stack of a shift-reduce parser are called
viable prefixes. An equivalent definition of a viable
prefix is that it is a prefix of a right sentential form that
does not continue past the right end of the rightmost
handle of that sentential form.

79. What is phrase level error recovery?

 Answer :

 Phrase level error recovery is implemented by filling
in the blank entries in the predictive parsing table
with pointers to error routines. These routines may
change, insert, or delete symbols on the input and is-
sue appropriate error messages. They may also pop
from the stack.

80. What are the various types of intermediate code rep-
resentation?

 Answer:

∑ Syntax tree

∑ Posix

∑ Three address code

81. Explain about backpatching along with the common
functions used in it.

 Answer :

 Backpatching is the activity of filling up unspeci-
fied information of labels using appropriate se-
mantic actions in during the code generation pro-
cess. In the semantic actions the functions used are
mklist(i),merge_list(p1,p2) and backpatch(p,i)

 Functions that are used in backpatching are:

∑ mklist(i) creates the new list. The index i is passed
as an argument to this function where I is an in-
dex to the array of quadruple.

∑ merge_list(p1,p2) this function concatenates two
lists pointed by p1 and p2. It returns the pointer to
the concatenated list.

∑ backpatch(p,i) inserts i as target label for the state-
ment pointed by pointer p.

82. What are the various methods of implementing three
address statements?

Answer :

∑ Quadruple : a structure with atmost four fields
such as operator(OP),arg1,arg2,result.

∑ Triples : the use of temporary variables is avoided
by referring the pointers in the symbol table.

∑ Indirect triples : the listing of triples has been
done and listing pointers are used instead of using
statements.

83. What is a flow graph?

 Answer :

 A flow graph is a directed graph in which the flow
control information is added to the basic blocks.

∑ The nodes to the flow graph are represented by
basic blocks.

∑ The block whose leader is the first statement is
called initial block.

∑ There is a directed edge from block B1 to block
B2 if B2 immediately follows B1 in the given se-
quence. We can say that B1 is a predecessor of B2.

84. What is a DAG? Mention its applications.

 Answer :

 Directed acyclic graph(DAG) is a useful data struc-
ture for implementing transformations on basic
blocks. DAG is used in

∑ Determining the common sub-expressions.

∑ Determining which names are used inside the
block and computed outside the block.

∑ Determining which statements of the block could
have their computed value outside the block

∑ Simplifying the list of quadruples by eliminating
the common su-expressions and not performing
the assignment of the form x := y unless and until
it is a must.

85. Define peephole optimisation along with its charac-
teristics.

 Answer :

 Peephole optimisation is a simple and effective tech-
nique for locally improving target code. This tech-
nique is applied to improve the performance of the
target program by examining the short sequence of
target instructions and replacing these instructions by
shorter or faster sequence.

Theory of Computation 3.77

∑ Redundant instruction elimination

∑ Flow of control optimisation

∑ Algebraic simplification

∑ Use of machine idioms

86. What are the basic goals of code movement?

 Answer :

 To reduce the size of the code i.e. to obtain the space
complexity.

 To reduce the frequency of execution of code i.e. to
obtain the time complexity.

87. What is code motion?

 Answer :

 Code motion is an optimisation technique in which
amount of code in a loop is decreased. This transfor-
mation is applicable to the expression that yields the
same result independent of the number of times the
loop is executed. Such an expression is placed before
the loop.

88. What are the steps involved in Non Recursive predic-
tive parsing?

 Answer :

∑ Input buffer is filled with input string with $ as the
right end marker.

∑ Stack is initially pushed with $
∑ Construction of Parsing Table T

∑ Parsing by parsing routine

89. What is LL(1) grammar?

 Answer :

 A grammar ‘G’ whose parsing table has no multiply
defined entries, can be called as LL(1) grammar.

90. What is a Shift - Reduce Parser?

 Answer :

 It is a bottom up parser. The parsing is done from the
leaves to the root. The parse tree is constructed from
the bottom to top, for an input string.

91. What are the demerits of SLR?

 Answer :

∑ It will not produce uniquely defined parsing ac-
tion tables for all grammars.

 Shift-Reduce conflict.

92. Why LR parsing is good and attractive?

 Answer :

∑ LR parsers can be constructed for all program-
ming language constructs for which CFG can be
written.

∑ LR parsing is Non-backtracking Shift-Reduce
parsing.

∑ Grammars parsed using LR parsers are super set
of the class of grammar.

∑ LR parser can detect syntactic error as soon as

possible, when left-to-right

∑ Scan of the input.

93. What are the demerits of LALR parser.

 Answer :

∑ Merger will produce reduce / reduce conflict.

∑ On erroneous input, LALR parser may proceed to do
some reductions

∑ After the LR parser has declared an error, but LALR
parser never shift a symbol after the LR parser de-
clares an error.

94. What is Data flow engine?

 Answer :

 Much of the information needed to perform good
code optimisation involves “data flow analysis,” the
gathering of information about how values are trans-
mitted from one part of a program to each other part.
This is handled by the data flow engines.

OBJECTIVE TYPE QUESTIONS

1. The language recognised by the DFA which is formed
by complementing the states (accepting or non-ac-
cepting) of the nodes of the following DFA

a

a

q0

q1

q2

A. Є B. Є*

C. a D. {a, є}

2. Equivalent to the regular expression

 0* (a » b) » 0b*ucabb.

A. є (a » b) » f » B. a » bb

C. a » b » b D. None

3. The language {anbn/ 3 ≥ n ≥1} is not regular. (Y/N)

 Answer: N. It is regular. We can have a DFA to accept
such a language.

4. Minimum number of nodes in a DFA that recognizes
strings over {a,b} with length mod 3 = 0.

A. 4 B. N

C. 3 D. 2

5. Number of nodes in an FS machine that recognises
odd length strings over S that contains any number of
alphabets

A. 2 B. 3

C. 4 D. None

3.78 Computer Science & Information Technology for GATE

6. {ai|i is prime} is not context free. (Y/N)

7. {(anb)n|n >= 1} is context free.(Y/N)

8. {(anb)m|m, n >= 1} is context free. (Y/N)

9. If L1 is context free and L2 is regular, then L1/L2 is
context free. (Note that L1/L2 = {x | З y є L2, xy є L1})
(Y/N)

10. If L1/L2 and L1 are context free, then L2 must be re-
cursive. (Y/N)

11. If L1 and L1 [L2 are context free, then L2 must be
context free. (Y/N)

12. If L1 is context free and L2 is regular, then L1 − L2 is
context free. (Y/N)

13. If L1 is regular and L2 is context free, then L1 − L2 is
context free. (Y/N)

14. If L1 is regular and L2 is context-free, then L1 \ L2
must be a CFL. (Y/N)

15. If L1 and L2 are CFLs, then L1 [L2 must be a CFL.
(Y/N)

16. If L is context free, then LR (={xR|x є L}) is also con-
text free. (Y/N)

17. Nondeterministic and deterministic versions of PDAs
are equivalent. (Y/N)

18. If a language L does not satisfy the conditions stated
in the pumping lemma for CFLs, then L is not con-
text-free. (Y/N)

19. Every infinite set of strings over a single letter alpha-
bet S (={a}) contains an infinite context free subset.
(Y/N)

20. Every infinite context-free set contains an infinite
regular subset. (Y/N)

21. A language can be accepted by a nondeterministic
pushdown automation if it can be generated by a con-
text-free grammar. (Y/N)

22. Right-linear grammar are special cases of context-free
grammar. (Y/N)

23. If both L and L are context-free, then L must be regu-
lar. (Y/N)

24. There is a language L which is context-free but not
regular such that L is also context-free. (Y/N)

25. {xxxx|x є {0, 1}*} can be accepted by a deterministic
2-counter machine. (Y/N)

26. Given a TM M whose tape head can move left, right,
or stay stationary, the problem of determining wheth-
er M ever executes a stationary move is un-decidable.
(A stationary move is a transition without moving the
tape head.) (Y/N)

27. Given a TM M, the problem of determining ‘L(M)
= ;?’ is un-decidable.(Y/N)

28. Given two languages L1 and L2, if L1 ·m L—2, then
L—1 ·m L2. (·m denotes many-one reduction.) (Y/N)

29. If L1 and L2 are r.e., so is L1L2. (Y/N)

30. If L1 and L2 are recursive, so is L1 − L2. (Y/N)

31. The language {< M, x >| TM M does not accept input
x} is r.e. (< M, x > denotes the encoding of the pair M,
x.) (Y/N)

32. There exists a language L such that L is context free
but —L is not recursive. (Y/N)

33. Given a PDA M, the problem of determining whether
M accepts an infinite language is decidable. (Y/N)

34. Given two PDA M1 and M2, the problem of deter-
mining whether L(M1) \ L(M2) = is decidable. (Y/N)

35. Given two regular languages L1 and L2, the problem
‘Is L2 −L1 = ;?’ is un-decidable. (Y/N)

36. Let L1 be regular and L2 recursively enumerable.
Then L1 \ L2 is always recursive. (Y/N)

37. The union of infinitely many recursive languages is an
r.e. language. (Y/N)

38. Given an input x and a multi-tape DTM M, the prob-
lem of determining whether M ever reads x’s right-
most symbol is decidable. (Y/N)

39. The family of languages accepted by deterministic
TMs is closed under complement. (Y/N)

40. Given a TM M and an input w, the problem of de-
termining whether M (on input w) enters some state
more than 100 times is decidable. (Y/N)

41. Every infinite subset of an infinite non-regular lan-
guage is non-regular. (Y/N)

42. If L1 and L2 are context-free languages, then L1 \ L2
must be a recursive language. (Y/N)

43. If L1 and L3 are r.e. languages and L1 − L2 = L3, then
L2 must be an r.e. language. (Y/N)

44. Given a recursive language L, the problem of deter-
mining whether L = ; is decidable. (Y/N)

45. {< M > |L(M) is regular, M is a TM} is recursive.
(< M > denotes the encoding of TM M.) (Y/N)

46. {L | L = S* or L = F} is a trivial property of r.e. sets.
(Y/N)

47. Given a TM M and a symbol x 2 §, it is decidable
whether M (starting on a blank tape) ever writes x on
its tape. (Y/N)

48. Every primitive recursive function is a total function.
(Y/N)

49. Ackermann’s function is a total recursive function.
(Y/N)

50. Nondeterministic 1-counter machines are less power-
ful than deterministic 2-counter machines. (Y/N)

Theory of Computation 3.79

51. Given a context-free language L1 and a recursive lan-
guage L2, it is un-decidable whether L1 C L2. (Y/N)

52. If L and LR (the reversal of L) are both in r.e., then L
must be recursive. (Y/N)

53. Given a recursive set L and a regular set R, it is decid-
able whether L C R. (Y/N)

54. Given a recursive set L and a regular set R, it is decid-
able whether R C L. (Y/N)

55. Given a nondeterministic finite automaton M it is de-
cidable whether the language accepted by M is finite
or not. (Y/N)

56. Given a left-linear grammar G, it is decidable whether
L(G) = S*.(Y/N)

57. Recursive languages are closed under Kleene star (i.e.,
if L is recursive, so is L*).(Y/N)

58. Recursively enumerable languages are closed under
Kleene star. (Y/N)

59. The function f(n) = 2f (n−1), n>= 1; f(0) = 1 is primitive
recursive. (Y/N)

60. For every language L subset of 0*, L is always r.e. (Y/N)

61. Every total function f : N Æ N is a recursive function.
(f is total if f(x) is defined for every x є N.) (Y/N)

62. With respect to a given input, checking whether a C
program terminates or not is decidable. (Y/N)

63. The language {anbmcndm | m, n >= 1} can be accepted
by a deterministic TM in polynomial time (i.e., in P).
(Y/N)

64. {(aibi)j | i, j є N} is in P. (Y/N)

65. The class of NP languages is closed under intersec-
tion. (Y/N)

66. The class of NP languages is closed under concatena-
tion. (Y/N)

67. Given a context-free grammar G and a word x, the
problem ‘Is x є L(G)?’ is NP complete. (Y/N)

68. If {wwR | w єS*} is solvable in polynomial time, then P
= NP. (wR denotes the reversal of word w.)(Y/N)

69. If L2 subset L1, and L2 is NP-hard, then L1 must be
NP-hard as well. (Y/N)

70. A PDA with two stacks can recognise language
{0n1n2n/n>=0}. (Y/N)

71. For any language L, there are infinitely many different
grammars G such that L(G) = L. (Y/N)

72. If L is a CFL and R is a regular language, then R − L is
a CFL.(Y/N)

73. If some word w in L(G) has two different derivations,
then G is ambiguous.(Y/N)

74. If L is not context-free, then LR is not context free ei-
ther (where R is the reversal operator).(Y/N)

75. L = {0n1m0m /n + m = 3 mod 5} is context-free but not
regular. (Y/N)

76. L={aibjck | 0 < i < j < k} is context-free.(Y/N)

77. L = {0n1m0n | n < 12 < m} is regular. (Y/N)

78. If L is context-free and R and S are regular, then
MAJORITY(L,R,S)={w | w is in at least two of R, L, S}
is also context-free. (Y/N)

 Answer : Modify the PDA ML that accepts L to si-
multaneously simulate R and S. Accept if at least two
accept.

79. The minimum spanning tree problem is NP-com-
plete. (Y/N)

80. If some NP-complete language is solvable in polyno-
mial time, then the PCP problem becomes solvable
(i.e., recursive). (Y/N)

81. Given a TM M, ‘M never moves its head left on the
blank tape’ is a nontrivial property of r.e. sets. (Y/N)

82. Given a TM M and an input x, it is decidable whether
M never reads a blank symbol during the course of its
computation on input x. (Y/N)

83. Given a TM M and an input x, it is decidable whether
M ever visits a given state more than 10 times. (Y/N)

84. Every primitive recursive function is a total function.
(Y/N)

85. Ackermann’s function is a partial recursive function.
(Y/N)

86. Deterministic PDA are less powerful than nondeter-
ministic PDA. (Y/N)

87. If L and L are both in r.e., then L must be recursive.
(Y/N)

88. Given an r.e. set L and a regular set R, it is decidable
whether L subset R. (Y/N)

89. Given an r.e. set L and a regular set R, it is decidable
whether R subset L. (Y/N)

90. Given a PDA M it is decidable whether the language
accepted by M is finite or not. (Y/N)

91. If some NP-complete language is solvable in polyno-
mial time, then NP=co-NP. (Y/N)

92. X–Every infinite r.e. set contains an infinite context-
free subset. (Y/N)

93. The halting problem is NP-hard. (Y/N)

94. If P=NP, then DTIME(n2) = DTIME(2n). (Note:
DTIME denotes deterministic time.) (Y/N)

95. The PCP language (the language associated with the
Post correspondence problem) is in r.e. (Y/N)

96. Given a CFG G in Chomsky Normal Form, it is decid-
able whether L(G) S*.(Y/N)

3.80 Computer Science & Information Technology for GATE

97. Every r.e. language can be accepted by a deterministic
2-counter machine. (Y/N)

98. There exists a language L subset 0* which is not in r.e.
(Y/N)

99. There exists a total function f : N Æ N which cannot
be computed by any Turing machine. (f is total if f(x)
is defined for every x є N.) (Y/N)

100. The language whose production rules are given as:

 S Æ XY | W

 X Æ aXb | є

 Y Æ cY | є

 W Æ aWc | Z

 Z Æ bZ | є

A. {aibjck/i,j,k>=0}

B. {aibjck/i,j,k>=1}

C. {aibjck/i,j,k>=0,i=j or i=k}

D. {aibjck/i,j,k>=0,i=j or i!k}

101. Prove that the language L={w|'i,j>=0,w=aibjcjdi} is
context free. (Y/N)

 Answer: The above language can be generated us-
ing the following production rules. If we observe the
rules, all the left hand sides are having single non-ter-
minals. Thus, it is context free language.

 S Æ aSd|T

 T Æ cTd|є

102. Let R be a regular language and L be a context-free
language, prove that R||L is also context-free. (|| de-
notes the shuffle operator.) (Y/N)

103. The language {0n02n03n/n>=0} is

A. O* B. {0}*

C. {000*} D. {000000*}

104. L £ m{0n1n/n>=0} then

A. L is CFG B. L is regular

C. L is recursive D. L is context sensitive

A N S W E R K E Y

1. D 2. A 3. N 4. C

5. A 6. Y 7. N 8. N

9. Y 10. N 11. N 12. Y

13. N 14. Y 15. Y 16. Y

17. N 18. Y 19. N 20. N

21. Y 22. Y 23. N 24. Y

25. Y 26. Y 27. Y 28. Y

29. Y 30. Y 31. N 32. N

33. Y 34. N 35. N 36. N

37. N 38. N 39. N 40. Y

41. N 42. Y 43. N 44. N

45. N 46. N 47. N 48. N

49. Y 50. Y 51. N 52. N

53. N 54. N 55. Y 56. Y

57. Y 58. Y 59. Y 60. N

61. N 62. N 63. Y 64. Y

65. Y 66. Y 67. N 68. Y

69. N 70. Y 71. Y 72. N

73. N 74. Y 75. Y 76. N

77. Y 78. Y 79. N 80. N

81. N 82. Y 83. Y 84. Y

85. Y 86. Y 87. Y 88. N

89. N 90. Y 91. Y 92. N

93. Y 94. N 95. Y 96. N

97. Y 98. Y 99. Y 100. D

101. Y 102. Y 103. D 104. C

Previous Years’ GATE Questions

1. Consider the languages L1={F} and L2={a}. Which
one of the following represents L1L2* U L1*

(GATE 2013)

A. {є} B. F C. a* D. {є, a}

2. Which of the following statements is/are FALSE?

(GATE 2013)

1. For every non-deterministic Turing machine
there exists an equivalent deterministic Turing
machine.

2. Turing recognisable languages are closed under
union and complementation.

3. Turing recognisable languages are closed under
intersection and complementation.

4. Turing recognisable languages are closed under
union and intersection.

A. 1 and 4 only B. 1 and 3 only

C. 3 only D. 4 only

3. Which of the following statements is/are TRUE?

(GATE 2013)

1. The problem of determining whether there exists
a cycle in an undirected graph is in P.

2. The problem of determining whether there exists
a cycle in an undirected graph is in NP.

Theory of Computation 3.81

3. If a problem A is NP-complete, there exists a non-
deterministic polynomial time algorithm to solve A.

A. 1,2 and 3only B. 1 and 2 only

C. 2 and 3 only D. 1 and 3 only

4. Consider the following languages (GATE 2013)

 L1={0p1q0r/p,q,r>=0}

 L2={0p1q0r/p,q,r>=0, pπr}

A. L2 is context-free

B. L1∩ L2 is context-free

C. Complement of L2 is recursive

D. Complement of L1 is context-free but not regular.

5. Consider the following DFA A given below:

(GATE 2013)

0 0

1

1

0,1

 Which of the following are FALSE?

1. Complement of L(A) is context-free

2. L(A)=L((11*0+)(0+)*0*1*)

3. For the language accepted by A, A is the minimal
DFA

4. A accepts all strings over {0,1} of length at least 2

A. 1 and 3 only B. 2 and 4 only

C. 2 and 3 only D. 3 and 4 only

6. What is the complement of the language accepted by
the NFA shown below?

 Assume S = {a} and e is the empty string.

(GATE 2012)

a e

e

A. Δ B. {e}

C. a* D. {a, e}

 As we want complement of the language, first and last
states (nodes) becomes acceptable nodes. Thus, an
empty string itself leads to final state.

7. Which of the following problems are decidable?

1. Does a given program ever produce an output?

2. If L is a context-free language, then, is also con-
text-free?

3. If L is a regular language, then, is L also regular?

4. If L is a recursive language, then, is also recursive?

A. 1, 2, 3, 4 B. 1, 2

C. 2, 3, 4 D. 3, 4

8. Given the language L = {ab, aa, baa}, which of the fol-
lowing strings are in L*? (GATE 2012)

1. abaabaaabaa 2. aaaabaaaa

3. baaaaabaaaab 4. baaaaabaa

A. 1, 2 and 3 B. 2, 3 and 4

C. 1, 2 and 4 D. 1, 3 and 4

 Answer: string baaaaabaaaab of third option cannot
be generated by concatenating language elements.

9. Consider the set of strings on {0,1} in which, every
substring of 3 symbols has at most two zeros. For ex-
ample, 001110 and 011001 are in the language, but
100010 is not. All strings of length less than 3 are also
in the language. A partially completed DFA that ac-
cepts this language is shown below.

(GATE 2012)

0

1

0

e

0 01

1

0

00

0

11

q 0,1

1

101

1

 The missing arcs in the DFA are

A. 00 01 10 11 q

00 1 0

01 1

10 0

11 0

B. 00 01 10 11 q

00 0 1

01 1

10 0

11 0

3.82 Computer Science & Information Technology for GATE

C. 00 01 10 11 q

00 1 0

01 1

10 0

11 0

D. 00 01 10 11 q

00 1 0

01 1

10 0

11 0

 For the grammar below, a partial LL(1) parsing table
is also presented along with the grammar. Entries that
need to be filled are indicated as E1, E2, and E3. e is
the empty string, $ indicates end of input, and, | sepa-
rates alternate right hand sides of productions.

 S Æ a A b B | b A a B | e

 A Æ S

 B Æ S

a b $

S E1 E2 S Æ e

A A Æ S A Æ S error

B B Æ S B Æ S E3

10. The FIRST and FOLLOW sets for the non-terminals
A and B are (GATE 2012)

A. FIRST (A) = {a, b, e} = FIRST (B)

 FOLLOW (A) = {a, b}

 FOLLOW (B) = {a, b, $}

B. FIRST (A) = {a, b, $}

 FIRST (B) = {a, b, e}

 FOLLOW (A) = {a, b}

 FOLLOW (B) = {$}

C. FIRST (A) = {a, b, e} = FIRST (B)

 FOLLOW (A) = {a, b}

 FOLLOW (B) = Δ

D. FIRST (A) = {a, b} = FIRST (B)

 FOLLOW (A) = {a, b}

 FOLLOW (B) = {a, b}

11. The appropriate entries for E1, E2, and E3 are

(GATE 2012)

A. E1 : S Æ aAbB, A Æ S

 E2 : S Æ bAaB, B Æ S

 E3 : B Æ S

B. E1 : S Æ aAbB, S Æ e

 E2 : S Æ bAaB, S Æ e

 E3 : S Æ e

C. E1 : S Æ aAbB, S Æ e

 E2 : S Æ bAaB, B Æ e

 E3 : B Æ S

D. E1 : A Æ S, S Æ e

 E2 : B Æ S, S Æ e

 E3 : B Æ S

12. The lexical analysis for a modern computer language
such as Java needs the power of which one of the fol-
lowing machine models in a necessary and sufficient
sense? (GATE 2011)

A. Finite state automata

B. Deterministic pushdown automata

C. Non-Deterministic pushdown automata

D. Turing machine

13. Let P be a regular language and Q be a context free
language such that Q subset of P.

 (For example, let P be the language represented by the
regular expression p*q* and Q be { PnQn/n є N). Then
which of the following is ALWAYS regular?

(GATE 2011)

A. P ∩ Q B. P − Q C. S* − P D. S* − Q

 Answer: S* – P is the complement of P so it is always
regular, since regular languages are closed under
complementation.

14. In a compiler, keywords of a language are recognised
during (GATE 2011)

A. Parsing of the program

B. The code generation

C. The lexical analysis of the program

D. Dataflow analysis

15. Which of the following pairs have different expressive
power? (GATE 2011)

A. Deterministic finite automata (DFA) and Non-
deterministic finite automata (NFA)

B. Deterministic push down automata (DPDA) and
Non-deterministic push down automata (NPDA)

C. Deterministic single-tape Turing machine and
Non-deterministic single tape Turing machine

D. Single-tape Turing machine and multi-tape Tur-
ing machine

16. A deterministic finite automation (DFA)D with al-
phabet S = {a,b} is given below (GATE 2011)

Theory of Computation 3.83

b
p q r

b

a, b

a
aa,b a,b

s t

 Which of the following finite state machines is a valid
minimal DFA which accepts the same language as D?

A.

b
p q r

b

a, b

a

s

a

a, b

B.

a,b
p

a

a b,

q r

s

a b,

b

C.

a b,
p

a b,

q r

a b,

b

D. b

bp q

a, b

a

s

a

 Options B and C will accept the string b

 Option – D will accept the string “bba”

 Both are invalid strings.

 So the minimised DFA is option A

17. Consider two binary operators ‘≠’ and ‘Ø’ with the
precedence of operator Ø being lower than that of
the operator ≠. Operator ≠ is right associative while
operator Ø, is left associative. Which one of the fol-
lowing represents the parse tree for expression
(7 Ø 3 ≠ 4 ≠ 3 Ø 2)? (GATE 2011)

7

3

4

3

2

3

4

7

32

2

3

43

3

4

7 3

3

2

(C) (D)

(A) (B)

18. Consider the languages L1, L2 and L3 as given below

 L1= { 0p 1q |p,q є N}

 L2= {0p 1q |p,q N and p =q }and

 L3 = {0p 1q 0r |p,q,r єN and p =q= r}

 Which of the following statements is NOT TRUE?

(GATE 2011)

A. Push Down Automata (PDA) can be used to rec-
ognize L1 and L2

B. L1 is a regular language

C. All the three languages are context free

D. Turing machines can be used to recognize all the
languages

 L1: regular language

 L2: context free language

 L3: context sensitive language

19. Which data structure in a compiler is used for manag-
ing information about variables and their attributes?

(GATE 2010)

A. Abstract syntax tree

B. Symbol table

C. Semantic stack

D. Parse table

20. Which languages necessarily need heap allocation in
the runtime environment? (GATE 2010)

3.84 Computer Science & Information Technology for GATE

A. Those that support recursion

B. Those that use dynamic scoping

C. Those that allow dynamic data structures

D. Those that use global variables

21. Let L1 be a recursive language. Let L2 and L3 be lan-
guages that are recursively enumerable but not recur-
sive. Which of the following statements is not neces-
sarily true? (GATE 2012)

A. L2 – L1 is recursively enumerable

B. L1 – L3 is recursively enumerable

C. L2 « L1 is recursively enumerable

D. L2 » L1 is recursively enumerable

22. The grammar S Æ aSa|bS|c is (GATE 2010)

A. LL(1) but not LR(1)

B. LR(1) but not LR(1)

C. Both LL(1) and LR(1)

D. Neither LL(1) nor LR(1)

23. Let L = {w Œ (0 + 1)*|w has even number of 1s}, i.e.
L is the set of all bit stringswith even number of 1s.
Which one of the regular expressions below repre-
sents L? (GATE 2010)

A. (0 *10 *1) * B. 0 * (10 *10 *) *

C. 0 * (10 *1*) * 0 * D. 0 *1(10 *1) *10 *

24. Consider the languages L1 = {0i1j | i π j}. L2 = {0i1j | i =
j}. L3 = {0i1j | i = 2j + 1}, L4 = {0i1j | i π 2j}. Which one
of the following statements is true? (GATE 2010)

A. Only L2 is context free

B. Only L2 and L3 are context free

C. Only L1 and L2 are context free

D. All are context free

25. Let w be any string of length n in {0, 1}*. Let L be the
set of all substrings of w. What is the minimum num-
ber of states in a non-deterministic finite automaton
that accepts L? (GATE 2010)

A. n–1 B. n C. n+1 D. 2n–1

26. S Æ aSa|bSb|a|b

 The language generated by the above grammar over
the alphabet{a,b} is the set of (GATE 2009)

A. All palindrome

B. All odd length palindromes

C. Strings that begin and end with same symbol

D. All even length palindromes

27. Which one of the following languages over the al-
phabet {0,1} is described by the regular expression:
(0+1)*0(0+1)*0(0+1)*? (GATE 2009)

A. The set of all strings containing the substring 00

B. The set of all strings containing at most two 0’s

C. The set of all string containing at least two 0’s

D. The set of all strings that begin and end with ei-
ther 0 or 1

28. Which one of the following is FALSE? (GATE 2009)

A. There is a unique minimal DFA for every regular
language

B. Every NFA can be converted to an equivalent
PDA

C. Complement of every context-free language is re-
cursive

D. Every nondeterministic PDA can be converted to
equivalent deterministic PDA

29. Let L = L1∩L2, where L1 and L2 are languages as de-
fined below: (GATE 2009)

 L1={ambmcanbn/m,n>=0}

 L2={aibjck/i,j,k>=0}

 Then L is

A. Not recursive B. Regular

C. Context-free but not regular

D. Recursively enumerable but not context free

 This follows directly from the property of CFGs,
where we see that CFGs are not closed under intersec-
tion, but produces CFGs when intersected with RLs.

30.

01

0

1

0

1

 The above DFA accepts the set of strings over{0,1}
that

A. Begins either with 0 or 1

B. End with 0

C. End with 00

D. Contain the substring 00

31. Which of the following statements are TRUE?

(GATE 2009)

I. There exists parsing algorithms for some pro-
gramming languages whose complexities are less
that Q(n3)

II. A programming language which allows recursion
can be implemented with static storage allocation.

III. No L-attributed definition can be evaluated in the
framework of bottom-up parsing

IV. Code improving transformations can be per-
formed at both source language and intermediate
code level.

Theory of Computation 3.85

A. I and II B. I and IV

C. III and IV D. I,III, and IV

32. Which of the following is true for the language {ap } p
is a prime ? (GATE 2008)

A. It is not accepted by a Turing machine

B. It is regular but not context-free

C. It is context-free but not regular

D. It is neither regular nor context-free, but accepted
by a Turing machine

33. Which of the following are decidable? (GATE 2008)

I. Whether the intersection of two regular languages
is infinite

II. Whether a given context-free language is regular

III. Whether two push-down automata accept the
same language

IV. Whether a given grammar is context-free

A. I and II B. I and IV

C. II and III D. II and IV

 Explanation: I is true because intersection of two
regular languages is always regular. So we can build
DFA for intersection language and one can check
for the finiteness in polynomial time(checking for
loop). IV is also true because given a grammar
whether it is context free or not can be easily identi-
fied by writing some simple string recognition pro-
gram (context-free grammar (CFG) is a grammar in
which every production rule is of the form V Æ w
where V is a single nonterminal symbol, and w is a
string of terminals and/or nonterminal’s (possibly
empty) can be easily identified.

34. Which of the following describes a handle (as appli-
cable to LR-parsing) appropriately? (GATE 2008)

A. It is the position in a sentential form where the
next shift or reduce operation will occur

B. It is non-terminal whose production will be used
for reduction in the next step

C. It is a production that may be used for reduction
in a future step along with a position in the sen-
tential form where the next shift or reduce opera-
tion will occur

D. It is the production p that will be used for reduc-
tion in the next step along with a position in the
sentential form where the right hand side of the
production may be found

35. Some code optimisations are carried out on the inter-
mediate code because (GATE 2008)

A. They enhance the portability of the compiler to
other target processors

B. Program analysis is more accurate on intermedi-
ate code than on machine code

C. The information from dataflow analysis cannot
otherwise be used for optimisation

D. The information from the front end cannot other-
wise be used for optimisation

36. If L and`L are recursively enumerable then L is

(GATE 2008)

A. Regular B. Context-free

C. Context-sensitive D. Recursive

37. Which of the following statements is false?

(GATE 2008)

A. Every NFA can be converted to an equivalent
DFA

B. Every non-deterministic Turing machine can be
converted to an equivalent deterministic Turing
machine

C. Every regular language is also a context-free lan-
guage

D. Every subset of a recursively enumerable set is re-
cursive

38. Given below are two finite state automata (Æ indi-
cates the start state and F indicates a final state)

(GATE 2008)

a b

Y: Æ1 1 2

2(F) 2 1

a b

Z: Æ1 2 2

2(F) 1 1

 Which of the following represents the product autom-
aton Z×Y?

A. a b

ÆP S R

Q R S

R(F) Q R

S Q P

B. a b

ÆP S Q

Q R S

R(F) Q P

S P Q

C. a b

ÆP Q S

Q R S

R(F) Q P

S Q P

D. a b

ÆP S Q

Q S R

R(F) Q P

S Q P

3.86 Computer Science & Information Technology for GATE

39. Which of the following statements are true?

(GATE 2008)

I. Every left-recursive grammar can be converted to
a right-recursive grammar and viceversa

II. All e-productions can be removed from any con-
text-free grammar by suitable transformations

III. The language generated by a context-free gram-
mar all of whose productions are of the form X
Æ w or X Æ wY (where, w is a string of terminals
and Y is a non-terminal), is always regular

IV. The derivation trees of strings generated by a con-
text-free grammar in Chomsky Normal Form are
always binary trees

A. I, II, III and IV

B. II, III and IV only

C. I, III and IV only

D. I, II and IV only

40. Match the following (GATE 2008)

E. Checking that identifiers are
declared before their use

P. L = {an bmcndm|n ≥ 1,
m ≥ 1|}

F. Number of formal parameters
in the declaration of a func-
tion agrees with the number
of actual parameters in use of
that function.

Q. X Æ XbX | XcX | dXf
| g

G. Arithmetic expressions with
matched pairs of parentheses

R. L = {wcw|w Œ (a|b)*}

H. Palindromes S. X Æ bXb | cXc | e

A. E – P, F – R, G – Q, H – S

B. E – P, F – R, G – S, H – Q

C. E – R, F – P, G – Q, H – S

D. E – P, F – R, G – S, H – Q

41. Match the following NFAs with the regular expres-
sions they correspond to (GATE 2008)

P.

0

1

1

00

Q.

1

1

0

00

R.

1

1

0

10

S.

1

1

10

0

1. e + 0 (01 *1+00)*01*

2. e + 0 (10 *1+00)*0

3. e + 0 (10 *1+10)*1

4. e + 0 (10 *1+10)*10*

(A) P – 2, Q – 1, R – 3, S – 4

(B) P –1, Q – 3, R – 2, S – 4

 (C) P – 1, Q – 2, R – 3, S – 4

(D) P – 3, Q – 2, R – 1, S – 4

42. Which of the following are regular sets?

(GATE 2008)

I. { an b2m } n > = 0,m > = 0}

II. { an bm } n = 2m}

III. { an bm } n π m}

IV. {xcy /x, y, є {a,b} *}

A. I and IV only B. I and III only

C. I only D. IV only

43. Which of the following are true? (GATE 2008)

Theory of Computation 3.87

I. A programming language which does not permit
global variables of any kind and has no nesting of
procedures/functions, but permits recursion can
be implemented with static storage allocation

II. Multi-level access link (or display) arrangement is
needed to arrange activation records only if the
programming language being implemented has
nesting of procedures/functions

III. Recursion in programming languages cannot be
implemented with dynamic storage allocation

IV. Nesting procedures/functions and recursion re-
quire a dynamic heap allocation scheme and can-
not be implemented with a stack-based allocation
scheme for activation records

V. Programming languages which permit a func-
tion to return a function as its result cannot be
implemented with a stack-based storage alloca-
tion scheme for activation records

A. II and V only B. I, III and IV only

C. I, II and V only D. II, III and V only

44. An LALR(1) parser for a grammar G can have shift-
reduce (S-R) conflicts if and only if (GATE 2008)

A. The SLR(1) parser for G has S-R conflicts

B. The LR(1) parser for G has S-R conflicts

C. The LR(0) parser for G has S-R conflicts

D. The LALR(1) parser for G has reduce-reduce
conflicts

45. Which of the following problems is undecidable?

(GATE 2007)

A. Membership problem of CFLs

B. Ambiguity problem of CFGs

C. Finiteness problem for FSAs

D. Equivalence problem for FSAs

 Answer: B. For the membership problem we have the
CYK algorithm or any parsing algorithms of CFGs
which uses backup. The finiteness problem of FSAs is
to merely ensure that there is no cycle in the state dia-
gram of the finite state machine. For any two regular
sets L1 and L2 we have L1=L2 iff L1ΠL2’ U L2ΠL1’ is
empty. Since the regular sets are closed under union
and intersection the equivalence problem is decid-
able.

 A standard undecidability result is the determination
of the ambiguity of CFGs.

46. Which of the following is TRUE? (GATE 2007)

A. Every subset of a regular set is regular.

B. Every finite subset of a non-regular set is regular

C. The union of two non-regular sets is not regular

D. Infinite union of finite set is regular

 Every finite set is trivially a regular set. Choice A can-
not be correct as any formal language is a subset of
S* which is a regular set. Choice C cannot be correct
as the union of two nonregular cfls, a cfl and its com-
plement is necessarily regular e.g. take all the palin-
dromes over some alphabet. A formal language can
be looked upon as the infinite union of singleton sets
consisting of one string in the language, so D cannot
be correct.

47. Which of the following is a top-down parser?

(GATE 2007)

A. Recursive descent parser

B. Operator precedence parser

C. An LR(k) parser

D. An LALR(k) parser

 A recursive descent parser is nothing but an LL(1)
parser.

48. A minimum state deterministic finite automaton ac-
cepting the language L={w|w ε{0,1}*}, number of 0s
and 1s are divisible by 3 and 5, respectively has

(GATE 2007)

A. 15 states B. 11 states

C. 10 states D. 9 states

49. The language L = { 0i21j |i,j>=0} over the alphabet {0,
1, 2} is (GATE 2007)

A. Not recursive

B. Is recursive and is a deterministic CFL

C. Is a regular language

D. Is not a deterministic CFL but a CFL

 Answer : One can easily design a deterministic push
down automata which scans the input left to right,
when a 0 is encountered it stacks it, and moves to
the right. When a 2 is encountered it switches from a
stacking to a pop state and so long as a 1 comes in the
input it pops a 0. When the input is exhausted and the
stack is empty it goes to a final state.

50. Which of the following languages is regular?

(GATE 2007)

A. {wwR| w in {0,1}+}

B. {wwRx| w,x in {0,1}+|}

C. {wxwR| w,x in {0,1}+}

D. {xwwR| w in {0,1}+}

 Answer : This is merely the language where the strings
are either 0w0, 1w1 where w is any string in {0,1}*.

 The remaining are standard palindrome languages:

3.88 Computer Science & Information Technology for GATE

 For (A) intersect with 0*110* and apply the pumping
lemma.

 For (B) intersect with 0*110*1 and apply the pumping
lemma

 For (D) intersect with 10*110* and apply the pumping
lemma

51. Consider the grammar with the nonterminals N = {S,
C, S1}, terminals T= {a, b, I, t, e}, with S as the start
symbol, and the following set of rules:

 S Æ iCtSS1 | a

 S1Æ eS |e

 C Æ b

 The grammar is not LL(1) because: (GATE 2007)

A it is left recursive B. it is right recursive

C. it is ambiguous D. it is not context-free

 Explanation: The grammar is not left recursive, so
(A) is not correct. The grammar is very much a cfg, as
only a single nonterminal appears on the lhs of every
rule, so (D) is not correct. The grammar is right recur-
sive, as SÆ+----S----, but this has nothing to do with
the property of being LL(1),

52. Consider the following two statements:

(GATE 2007)

 P: Every regular grammar is LL(1)

 Q: Every regular set has a LR(1) grammar

 Which of the following is TRUE?

A. Both P and Q are true

B. P is true and Q is false

C. P is false and Q is true

D. Both P and Q are false

 Explanation: Consider the left recursive right linear
grammar generating a+, SÆSa|a

 This cannot be LL(1) so P is false. Every regular set is
necessarily a dcfl and so a LR(1) grammar exists for it,
so Q is true.

53. Consider the following grammar

 S ÆS*E

 SÆ E

 EÆF+E

 EÆF

 F ÆId

 Consider the following LR(0) items corresponding to
the grammar rule above

 i. S ÆS*.E ii. EÆ F.+E

 iii. EÆF+.E

 Given the items above, which two of them will appear
in the same set in the canonical sets-of-items for the
grammer?

A. (i) and (ii) B. (ii) and (iii)

C. (i) and (iii) D. None of the above

54. Let L1={0n+m1n0m/n,m>=0}, L2={0n+m1n+m0m/n,m
>=0}, and L3={0n+m1n+m0n+m/n,m>=0}. Which of
these languages are not context free?

A. L1 only B. L3 only

C. L1 and L2 D. L2 and L3

55. If s is a string over (0+1)* then let n0(s) denote num-
ber of0’sin s and n1(s) the number of 1s in s. Which
one of the following languages is not regular>?

A. L={s є (0+1)*/n0(s) is a 3-digit prime}

B. L={s є (0+1)*/for every prefix S’ of s/no(s’)-n1(s’)
‹ 2}

C. L = {s є (0 + 1)*/|n0(s)–n1(s)| ‹ 4}

D. L={s є (0+1)*/no(s) mod 7=n1(s) mod 5 =0}

56. For S є(0+1)* let d(s) denote decimal value of s (e.g.
d(101)=5). Let L={s є(0+1)*/d(s)mod 5=2 and d(s)
mod 7 π4}.

 Which one of the following statements is true?

A. L is recursively enumerable, but not recursive.

B. L is recursive, but not context-free

C. L is context-free, but not regular

D. L is regular

57. Consider the following statement about the context
free grammar.

 G={SÆSS, SÆab, SÆba, SÆє}

I. G is ambiguous

II. G produces all strings with equal number of a’s
and b’s.

III. G can be accepted by a deterministic PDA

 Which combination below expresses all the true state-
ments.

A. I only B. I and III only

C. II and III only D. I, II and III

58. Let L1 be a regular language, L2 be a deterministic
context free language and L3 a recursively enumer-
able, but not recursive, language. Which one of the
following statements is false?

a. L1 ∩ L2 is a deterministic CFL

b. L3 ∩ L1is recursive

c. L1 ∪ L2is context free

d. L1 ∩ L2 ∩ L3 is recursively enumerable

59. Consider the regular language L=(111+11111)*. The
minimum number of states in any DFA accepting this
language.

Theory of Computation 3.89

A. 3 B. 5 C. 8 D. 9

60. Consider the following grammar:

 SÆFR

 RÆ*S|є

 FÆid

 In the predictive parser table, M, of the grammar the
entries M[S,id] and M[R,$] respectively.

A. {SÆFR} and {RÆє} B. {SÆFR} and {}

C. {SÆFR} and {RÆ*S} D. {FÆid} and {RÆє}

61. Consider the following translation scheme

 SÆER

 RÆ*E{print(‘*’);}|є

 EÆF+E{print(‘+’);}|F

 FÆ(S)|id{print(id,value);}

 Here id is a token that represents an integer and
id.value represents the corresponding integer value.
For an input ‘2+3*4’, this translation

A. 2*3+4 B. 2*+34|

C. 23*4+ D. 234+*

62. Which one of the following grammars generates the
language L={aibj/i π j}?

A. S Æ AC|CB B. S Æ aS|Sb|a|b

C Æ aCb|a|b
A Æ a A| Œ
B Æ B b| Œ

C. S Æ AC|CB D. S Æ AC|CB

C Æ aCb| Œ
A Æ a A| Œ
B Æ B b| Œ

C Æ aCb| Œ
A Æ a A| a
B Æ B b| b

63. In the correct grammar above, what is the length of
the derivation (number of steps starring from S) to
generate the string albm with l π m.

A. Max(l,m)+2 B. L+m+2

C. L+m+3 D. Max(l,m)+3

A N S W E R K E Y

1. A 2. A 3. A 4. D
5. D 6. B 7. D 8. C
9. D 10. A 11. C 12. A

13. C 14. C 15. B 16. A
17. B 18. C 19. B 20. C
21. B 22. C 23. B 24. D
25. C 26. B 27. B 28. D
29. C 30. C 31. B 32. D
33. B 34. D 35. A 36. D
37. D 38. A 39. A 40. C
41. C 42. A 43. D 44. B
45. B 46. B 47. A 48. A
49. B 50. C 51. C 52. C
53. C 54. D 55. B 56. B
57. D 58. D 59. D 60. A
61. D 62. D 63. A

4C H A P T E R F O U R

Operating Systems

4.1 Process and Threads

A program under execution is called as a process. Normally, a Process Control Block (PCB) is created when a process is
initiated which contains process identification number, starting address of page table, security related information, open
file table entries per process, details regarding CPU time consumption, etc.

In today’s virtual memory-based operating systems the following things may take place in order when we run a pro-
gram.

1. User clicks an application or enters its name at the command prompt.

2. A special process structure with text, data, stack, heap, etc. is created in swap partition. It is called as virtual address
space.

3. A PCB is created and added to the ReadyQueue.

4. Then scheduler decides when the process to be executed.

n Example In Unix/Linux, we can use fork() to create a new processes. The fork() system call returns child’s PID to par-
ent process and 0 to child process. In a lay man’s term, we can say that the statements after fork() will be executed both in
the child and parent processes. Thus, if we happened to have a series of fork() calls (say n class) one after another we will
have total 2n processes to be generated by the program. They all can be said as process tree as child, parent, grandparent
relationship we may see among them.

The following program explains about the process tree. Here, fork() is called 3 times thus 23 processes will be created in
total including main process. Thus, in total we may see 8 times Hello message to be printed on the screen.

#include<sdtio.h>

#include<unistd.h>

int main(){

fork();

fork();

fork();

printf(“Hello\n”);

return 0;

}

4.2 Computer Science & Information Technology for GATE

parent fork fork fork

child

child

child fork

child

n Example The following program creates a process chain. Also check the process ID’s of the processes created by run-
ning the following program. The fork() system call return zero to the child process and PID of the child to the parent pro-
cess. Thus, we are calling another fork() if the returned value is zero, which will be true only in child process. Thus, first a
child will be created and for that another child will be created and so on. This is called as process chain.

#include<unistd.h>

#include<sdtio.h>

int main(){

if (fork() == 0){

 printf(“Pid: %d\tpid: %d\n”,getpid(),getppid());

if(fork()==0){

printf(“Pid: %d\tpid: %d\n”,getpid(),getppid());

 if (fork()==0)

printf(“Pid: %d\tpid: %d\n”,getpid(),getppid());

}

}

return 0;

}

The above program creates in total four processes such that every parent has one child exactly.

Parent Child Child Child

4.1.1 Thread

A thread is a sequential execution stream, and it is also the smallest scheduling unit of concurrency to run on a processor.
The beauty of the thread is that each thread can be programmed as if it owns the entire CPU (e.g., you can use an infinite
loop within a thread without halting the entire system). In other words, a thread contains the states of its own program
counter, register values, and execution stacks. Therefore, threads provide the illusion of having an infinite number of
CPUs, even on a single-processor machine.

Threads simplify programming significantly, and Microsoft Word is an example. As you are typing in Word, there is a
thread dedicated for checking grammar, a thread for checking spelling, a thread for reformatting the text, and many other
threads for various purposes. Since the thread for grammar checking can be programmed independently from the thread
for spelling check, the difficulty for programming a large application like Word is greatly simplified.

How the Main Thread is Special?

However, for compatibility reasons, the main() routine has to retain some characteristics it had prior to the advent of
POSIX threads. In particular:

1. We do not need to create explicitly the main thread with pthread_create(). This thread is created on our behalf at
process start-up by the system libraries.

2. The prototype for the main() function is int main(void) or int main(int,char* argv[]). This differs from the stan-
dard prototype of a thread’s start routine: void* start_routine(void*).

3. If we return from main(), the entire process terminates. That is, all threads vanish, the process ceases to exist and the
process exit status can be retrieved by the parent process.

Operating Systems 4.3

Threads and Dispatching Loop

Inside each thread, there is a thread control block. The thread control block maintains the execution states of the thread,
the status of the thread (e.g., running or sleeping), and scheduling information of the thread (e.g., priority).

Threads are run from a dispatching loop.

 LOOP

 Run thread

 Save states (into the thread control block)

 Choose a new thread to run

 Load states from a different thread (from the thread control block)

To run a thread, just load its states (registers, program counter, stack pointer) into the CPU, and do a jump. The process of
saving the states of one thread and restoring states of another thread is often called a context switch. The decision of which
thread to run next involves scheduling.

How Does the Dispatcher Regain Control?
The dispatcher gets control back from the running thread in two ways:

1. Internal events (sleeping beauty—go to sleep and hope Prince Charming will wake you):

(a) A thread is waiting for I/O.

(b) A thread is waiting for some other thread.

(c) Yield—a thread gives up CPU voluntarily.

2. External events:

(a) Interrupts—a completed disk request wakes up the dispatcher, so the dispatcher can choose another thread to
run).

(b) Timer—it’s like an alarm clock.

What States Should a Thread Save?

A thread should save anything that the next thread may trash before a context switch: program counter, registers, changes
in execution stack. Each thread should be treated as an independent stream of execution.

A context switch can also occur during an interrupt. During an interrupt, hardware causes the CPU to stop what it’s
doing, and to run the interrupt handler. The handler saves the states of the interrupted thread, runs the handler code, and
restores the states of the interrupted thread.

How Does the Dispatcher Choose the Next Thread?
The dispatcher keeps a list of threads that are ready to run.
If no threads are ready to run—the dispatcher just loops.
If one thread is ready to run— life is easy.

If more than one thread are ready to run, we can choose the next thread according to different scheduling policies.
Some examples are FIFO (first in, first out), LIFO (last in, first out), and priority-based policies.

The dispatcher also has the control of how to share the CPU among multiple threads. Suppose that we have thread A,
B, and C. At one extreme, a dispatcher can run one thread to completion before running the other.

A

B C Time

Alternatively, a dispatcher can use the timer to timeshare the CPU among three threads.

A

B C

A B

C A C A C Time

Per-Thread States
Each thread can be in one of three states:

1. Running—has the CPU

2. Blocked—waiting for I/O or another thread

4.4 Computer Science & Information Technology for GATE

3. Ready to run—on the ready list, waiting for the CPU

I/O request

Running

Ready Blocked
I/O complete

Yield, timer

Scheduled

4.1.2 Process and Threads

A Thread is said to be light weight process as the overhead involved is less when a context switching takes place between
two threads.

It is practically observed that context switching overhead is less for thread based systems then process based systems.
We cannot have in today’s operating system, a program running without creating a process.
The virtual address space for a program is created only when a process is created for that program. On systems which

are said to be having single process and single thread, we will not be able to find any real difference between the thread
and that process. Only if we have multiple threads under a single process, may we find conceivable difference in program
running time compared to an equivalent program which contains a main process and a set of child processes.

Thread based solutions are preferable if the available independent tasks are less computationally intensive otherwise
process based concurrency is preferable.

n Example The following program calls fork() after creating a thread in the main. As fork is called after fork, only thread
of main process will be running. Thus, we get Hello message once.

#include<stdio.h>

#include<pthread.h>

void * HI (void *x) {

printf(“Hello \n”);

}

int main () {

pthread_t tid;

pthread_create (&tid, NULL, HI, NULL);

fork();

pthread_join (tid, NULL);

 return 0;

}

n Example In the following program, we are calling pthread_create() after fork system call. Thus, it will be called in both
the processes. That is, new thread will be created in both the processes. Thus, we get the message Hello two times.

#include<stdio.h>

#include<pthread.h>

void * HI (void *x) {

printf(“Hello \n”);

}

int main () {

pthread_t tid;

fork();

pthread_create (&tid, NULL, HI, NULL);

pthread_join (tid, NULL);

return 0;

}

Operating Systems 4.5

n Example We wanted to find out whether we can fork from a thread function or not. We know already that a thread
can call another thread. Here, we are trying to see whether a thread can call fork or not. If so, what happens?

#include<stdio.h>

#include<pthread.h>

void * HI (void *x) {

fork();

printf(“Hello %d %u\n”, getpid (), pthread_ self());

}

int main () {

pthread_t tid;

printf(“Parent Process PID=%d/n”, getpid ());

pthread_create (&tid, NULL, HI, NULL);

pthread_join (tid, NULL);

return 0;

}

Snap shot of the above program is given as:

In our program, we have printed the process PID before creating a thread. Inside the thread function, we have called fork
system call. After that, we have executed a printf function which prints a message Hello, PID of the process and TID of
the thread. We have got these details two times which suggests that when a fork call is made, a new process is created and
in that new thread is also created. This can be corroborated from the PID values. However, if we see TID values we may
find both are same. Why?

We have fork handlers also like exit and signal handlers. For this purpose, we have to use pthread_atfork() method
whose syntax is given below.
int pthread_atfork(void (*prepare) (void), void (*parent) (void),

void (*child) (void));
The pthread_atfork() function declares fork handlers to be called prior to and following fork, within the thread that
called fork(). The order of calls to pthread_atfork() is significant.

Before fork() processing begins, the prepare fork handler is called. The prepare handler is not called if its address
is NULL.

The parent fork handler is called after fork() processing finishes in the parent process, and the child fork handler is
called after fork() processing finishes in the child process. If the address of parent or child is NULL, then its handler is not
called.

The prepare fork handler is called in LIFO (last-in first-out) order, whereas the parent and child fork handlers are called
in FIFO (first-in first-out) order. This calling order allows applications to preserve locking order.

n Example The following program demonstrates the use of pthread_atfork() function. We have created a thread by
calling pthread_create() before fork. For pthread_fork() functions we have supplied thread functions. As thread is created
first, its function HI will be executed first. Then, when fork is called the functions xyz, pqr and ijk are executed.

#include<stdio.h>

#include<pthread.h>

void xyz (void) {

printf(“Hi\n”);

4.6 Computer Science & Information Technology for GATE

}

void pqr (void) {

printf (“Hey\n”);

}

void ijk (void) {

printf (“Hei\n”);

}

void * HI (void * x) {

printf (“Hello\n”);

}

int main () {

pthread_t tid;

pthread_create (&tid, NULL, HI, NULL);

pthread_atfork (xyz, pqr, ijk);

fork();

pthread_join (tid, NULL);

return 0;

}

Snapshot of the above program is given as:

n Example The following program demonstrates how to use pthread_at fork function. As discussed above, functions
xyz, pqr and ijk are executed. For the sake of understanding, we have printed PID of the process also. We may find that xyz
and pqr are executed in the main process while ijk is executed in child process.

#include<stdio.h>

#include<pthread.h>

void xyz (void) {

printf(“Hi%d\n”, getpid ());

}

void pqr (void) {

printf (“Hey %d\n”, getpid ());

}

void ijk (void) {

printf (“Hai %d\n”, getpid ());

}

int main () {

pthread_atfork (xyz, pqr, ijk);

fork();

return 0;

}

Operating Systems 4.7

n Example: The following program is to demonstrate what happens to fork handlers if the threads are created after fork.
We find that xyz function is getting executed only once. That is also in main process. It is expected that this function

has to be called before fork. The function pqr is getting executed in parent process. While ijk is getting executed in child
process. Also, these functions have got executed in their respective process before a child thread is created. Threads are
executing their thread function, however in their respective parents which we can get support from PID values.

#include<stdio.h>

#include<pthread.h>

void xyz (void) {

printf(“Hi%d\n”, getpid ());

}

void pqr (void) {

printf (“Hey %d\n”, getpid ());

}

void ijk (void) {

printf (“Hai %d\n”, getpid ());

}

void * HI (void * x) {

pthread_atfork(xyz, pqr, ijk);

fork();

printf(“Hello %d %u\n”, getpid (), pthread_self());

}

int main () {

pthread_t tid;

printf(“Parent Process PID=%d/n”, getpid ());

pthread_create (&tid, NULL, HI, NULL);

pthread_join (tid, NULL);

return 0;

}

Snapshot of the above program is given as:

4.1.3 Why Concurrency?

On a single-processor machine, the operating system’s support for concurrency allows multiple applications to share re-
sources in such a way that applications appear to run at the same time. Since a typical application does not consume all
resources at a given time, a careful coordination can make each application run as if it owns the entire machine.

4.8 Computer Science & Information Technology for GATE

There are a number of benefits for an operating system to provide concurrency:

1. Of course, the most obvious benefit is to be able to run multiple applications at the same time.

2. Since resources that are unused by one application can be used for other applications, concurrency allows better

resource utilisation.

3. Without concurrency, each application has to be run to completion before the next one can be run. Therefore, con-
currency allows a better average response time of individual applications.

4. Concurrency does not merely timeshare the computer; concurrency can actually achieve better performance. For
example, if one application uses only the processor, while another application uses only the disk drive, the time to
run both applications concurrently to completion will be shorter than the time to run each application consecutively.

Concurrency also introduces certain drawbacks:

1. Multiple applications need to be protected from one another.

2. Multiple applications may need to coordinate through additional mechanisms.

3. Switching among applications requires additional performance overheads and complexities in operating systems
(e.g., deciding which application to run next.)

4. In extreme cases of running too many applications concurrently will lead to severely degraded performance.

Overall, when properly used, concurrency offers more benefits than drawbacks.

4.2 Inter-process Communication Concurrency, Synchronisation

Independent threads have the following characteristics:

1. No states shared with other threads

2. Deterministic computation (output depends on input)

3. Reproducible (output does not depend on the order and timing of other threads)

4. Scheduling order doesn’t matter

Cooperating threads have the following characteristics:

1. Shared states

2. Nondeterministic

3. Non-reproducible

For example, if you have two threads sharing the same display, they are likely to produce unpredictable results.

Thread A Thread B

printf(“ABC”); printf(“123”);

You may get “A12BC3” also as an outcome.

4.2.1 Why do we Need Cooperating Threads?

With additional mechanisms for coordination, threads can provide three major benefits:

1. Shared resources: multiple threads can share a single processor.

2. Speedup: an I/O-intensive thread can overlap the computation with a CPU-intensive thread.

3. Modularity: a word processor program can be decomposed into threads for particular functions, such as spelling
check and grammar check.

4.2.2 Atomic Operations

An atomic operation always runs to completion, or it does not happen at all. The operation is indivisible.

On most machines, memory references and assignment (load and store) of words are atomic.

Many instructions are not atomic. For example, on most 32-bit architectures, double precision floating point store is
not atomic; it involves two separate memory operations.

Operating Systems 4.9

Race conditions are situations where two or more threads are reading or writing some shared data and the final result
depends on who runs precisely when.

The idea of synchronisation is to use atomic operations to ensure cooperation between threads.

Mutual exclusion is a way to ensure one thread does a particular thing at a time, excluding the other threads.

Critical section is a piece of code that only one thread can execute at a time. Only one thread at a time will get into the
section of code.

The use of a lock prevents someone from doing something. Therefore, a thread should lock before entering critical sec-
tion, before accessing shared data. A thread should unlock when leaving the critical section, when done accessing shared
data. A thread should wait if the critical section is locked. The key idea of synchronisation involves waiting.

4.2.3 The test_and_set Operation

Unlike disabling interrupts, test_and_set works on both uniprocessors and multiprocessors. The test_and_set operation
atomically reads a memory location, sets it to 1, and returns the old value of the memory location.

value = 0;

Lock::Acquire() {

 while (test_and_set(value) == 1);

}

Lock::Release() {

 value = 0;

}

4.2.4 Busy-Waiting

The problem with both of the existing interrupt disable and test_and_set solutions is busy-waiting, or consumption of
CPU cycles while a thread is waiting for a lock. Busy- waiting is very inefficient.

Busy-waiting can be avoided with a waiting queue.

n Example

Flag = 0

Process P1 Process P2

while true while true

do do

- -

- -

while(flag) ; while (flag) ;

flag=1 flag =1

CS CS

Flag = 0 flag = 0

- -

- -

done done

The main drawbacks of the above code for 2 process synchronisation or mutual exclusion are:

(i) It does not guarantee mutual exclusion under special circumstances

(ii) There is a danger of indefinite postponement of a process

4.10 Computer Science & Information Technology for GATE

(iii) It is strictly alternative type

(iv) Extending this to multi processes multiple critical sections is a cumbersome process.

4.2.5 Spin Locks

In the above example, a process which wants to enter into the critical section checks for a shared variable and waits on that
variable (busy wait) if some condition is not satisfied otherwise it will enter into CS first changing this variable value such
that no other process can enter into the critical section. This type of things are known as spin locks.

Sleep – wait things are called as suspend locks. Here, a lock is tied to an interrupt (signal)

n Example Generalised Spin Lock with n possible values.

 Shared var x : (1,2,3…n)
X=1

Process P1
Repeat
 –
 –
until x = =1
CS
X= X + 1

Process P2
.
.
.

…….. Process Pn
Repeat
 Until X = = n
 CS
 X =1

The main drawback of the above technique is

(i) longer waiting times

(ii) process must wait even if there are no conflicting requests at the same time

When critical section code is started, it should continue without interruption i.e, the code should be atomic (indivisible)
Requirements for Critical Section Solution:

(i) at most one process should be in the C.S

(ii) There should not be any deadlock

(iii) No preemption

(iv) Eventual entry i.e, a process attempting to enter into C.S should eventually succeed.

Granularity of the C.S
If it is coarse then it limits the parallelism, if it is fine code complexity, software overhead increases.
Conditional critical section is a syntactically delimited code in which code is permitted to access a protected variable.
A conditional critical section also specifies a Boolean condition which must be true before the control enters into code
region.
Semaphores are a type of generalised lock, first defined by Dijkstra in the late 60s. Semaphores are the main synchronisa-
tion primitive used in UNIX. Semaphores have a positive integer value, and support the following two operations:

• P(): an atomic operation that waits for semaphore to become positive, then decrements it by 1.

• V(): an atomic operation that increments semaphore by 1, waking up a thread waiting at P(), if any.

The P operation was an abbreviation for the Dutch word proberen, meaning “to test,” and the V operation was an abbrevia-
tion for verhogen, meaning “to increment.” Semaphores are like integers, except:

1. No negative values.

2. Only operations are P() and V()—can’t read or write value, except to set it initially.

3. Operations must be atomic—two P() calls that occur together can not decrement the value below zero. Similarly, a
thread that is going sleep in P() will not miss wakeup from V(), even if they both happen at about the same time.

A binary semaphore has a Boolean value, instead of an integer value. P() waits until the value is 1, then sets it to 0. V() sets
the value to 1, waking up a thread waiting at P(), if any.

Two Uses of Semaphores

Mutual Exclusion

Operating Systems 4.11

When semaphores are used for mutual exclusion, the semaphore has an initial value of 1, and P() is called before the criti-
cal section, and V() is called after the critical section.

semaphore s = 1;

P(s);

// critical section

V(s);

Scheduling Constraints
Semaphores can also be used to express generalised scheduling constraints. In other words, semaphores provide a way for
a thread to wait for something. In this case, the initial value of the semaphore is usually 0 (but not always).

semaphore s1 = 0;
semaphore s2 = 0;

A() { B() {

write(x); P(s1);

V(s1); read(x);

P(s2); write(y);

read(y); V(s2);

} }

Producer-Consumer with a Bounded Buffer

One classic problem is the producer-consumer problem. A producer put things into a shared buffer; a consumer takes
them out. Since it is inefficient to operate the producer and consumer in lockstep, a fixed-size buffer is used between them.
The producer needs to wait if the buffer is full; the consumer needs to wait if the buffer is empty. The solution involves
both scheduling and mutual exclusion.
There are three constraints for the solution:

(1) The consumer must wait if buffers are empty (scheduling constraint).

(2) The producer must wait if buffers are full (scheduling constraint).

(3) Only one thread can manipulate the buffer at a time (mutual exclusion).

For each constraint, we need a semaphore.

semaphore nLoadedBuffers = 0; // consumer waits on 0

semaphore nFreeBuffers = N; // producer waits on 0

semaphore mutex = 1; // one thread waits when

 // another thread is

 // modifying the

 // buffer

Producer() {

P(nFreeBuffers);

P(mutex);

 // put 1 item in the buffer

V(mutex);

V(nLoadedBuffers);

}

Consumer() {

P(nLoadedBuffers);

P(mutex);

 // take 1 item from the buffer

V(mutex);

V(nFreeBuffers);

}

4.2.6 Monitors

Semaphore based concurrency control design makes code development difficult. The idea of monitors is to separate these
two concerns: use locks for mutual exclusion and condition variables for scheduling constraints.

4.12 Computer Science & Information Technology for GATE

A monitor is a lock with zero or more conditional variables for managing concurrent access to shared data. The lock

provides mutual exclusion to the shared data. A conditional variable allows a queue of waiting threads while being inside
a critical section.

Lock
A lock provides two operations:

Lock::Acquire()

 // wait until the lock is free, then grab it

Lock::Release()

 // unlock, wake up anyone waiting in Acquire

As a general rule of thumb, always acquire a lock before accessing a shared data structure; always release a lock after
finishing with the shared data structure. A lock is initially free. The following is a simple example of using a lock on a
synchronised list:

AddToQueue() {

Lock.Acquire();

 // put 1 item to the queue

Lock.Release();

}

RemoveFromQueue() {

Lock.Acquire();

 // if something on the queue

 // remove 1 item from the queue

Lock.Release();

 return item;

}

Condition Variables
Although the example queue is synchronised, if we want to perform waiting inside locked regions, we need additional
mechanisms. For example, a process may want to wait for something to be added to the queue before the removal opera-
tion.

However, holding the lock while waiting prevents other processes from entering the locked regions. Condition vari-
ables make it possible to go to sleep inside a critical section by atomically releasing the lock and going to sleep.

Associated with each condition variable is a waiting queue of threads inside a critical section, and condition variables
provide the following operations:

Wait(); // atomically release the lock and go to

 sleep; re-acquire lock on return

Signal(); // wake up a waiter, if any

Broadcast(); // wake up all waiters

Note

These operations should always occur inside locked regions. The following is a synchronised queue with waiting inside
the remove operation.

AddToQueue() {

lock.Acquire();

Operating Systems 4.13

 // put 1 item to the queue

condition.Signal(&lock);

lock.Release();

}

RemoveFromQueue() {

lock.Acquire();

while nothing on queue

 condition.Wait(&lock);

 // remove 1 item from the queue

lock.Release();

 return item;

}

Readers-Writers Problem

The readers-writers problem is commonly seen in database applications, where users are separated into readers who never
modify the database, and writers who read and modify the database. Although we want only one writer at the same, using
a single lock on the database would be overly restrictive, since many readers can read at the same time.

Constraints

1. A reader should wait when a writer is accessing or waiting for the database (Condition okToRead). (The writer has a
higher priority over reader, since it is more difficult for a writer to achieve exclusive access of the database.)

2. A writer should wait when there is a reader or a writer accessing the database (Condition okToWrite).

3. A reader or a writer should wait when someone is modifying global states (Lock lock).

Basic Structure of the Solution
The following is the pseudocode for the readers-writers problem:

Reader

 // wait until no writers

 // access database

 // wake up waiting writers

Writer

 // wait until no readers or writers

 // access database

 // wake up waiting readers or writers

Code

// Global States

AR = 0; // number of active readers

AW = 0; // number of active writers

WR = 0; // number of waiting readers

WW = 0; // number of writing writers

Condition okToRead = NULL;

Condition okToWrite = NULL;

Lock lock = FREE;

4.14 Computer Science & Information Technology for GATE

Reader() {

 lock.Acquire();

 // manipulate global states

 while ((AW + WW) > 0) {

 WR++;

 okToRead.Wait(&lock);

 WR--;

 }

 AR++;

 lock.Release();

 // access database

 lock.Acquire();

 // manipulate global states

 AR--;

 if (AR == 0 && WW > 0) {

 okToWrite.Signal(&lock);

 }

 lock.Release();

}

Writer() {

 lock.Acquire();

// manipulate global states

while ((AW + AR) > 0) {

 WW++;

okToWrite->Wait(&lock);

 WW--;

 }

 AW++;

 lock.Release();

 // access database

 lock.Acquire();

// manipulate global states

 AW--;

 if (WW > 0) {

okToWrite->Signal(&lock);

 } else if (WR > 0) {

okToRead->Broadcast(&lock);

 }

 lock.Release();

}

Note that if writers keep on arriving, readers may starve. Also, although all readers are awaken by the Broadcast(), an
arriving writer may put some readers back to the wait queue in the while loop before these readers get a chance to access
the database.

Comparison Between Semaphores and Monitors
Although both semaphores and monitors provide atomic operations and queueing, they have very different behaviors. For
example, the following implementation has a very different behavior.

Wait() { semaphoreÆP(); }

Signal() { semaphoreÆV(); }

First, condition variables only work inside a lock. Using semaphores inside a lock may cause a deadlock. Second, condition
variables have no history, but semaphores have. If a thread calls signal(), and the waiting queue is empty, the signal()
call does nothing. If a thread later arrives and calls wait(), the thread will wait. However, if a thread calls V(), and no one
is waiting, the semaphore increments. If a thread later calls P(), the semaphore decrements, and the thread continues.

The next example takes the lock into account. However, the behavior is still different.

Wait(Lock *lock) {

lockÆ Acquire(); // [1]

semaphore Æ P(); // [3]

lock Æ Release();

}

Signal() {

 if (semaphore queue is not empty) // [2]

 semaphoreÆV(); // [4]

}

Third, semaphores cannot look at the contents of semaphore queue. Fourth, releasing the lock and going to sleep need to
occur atomically. Should the semaphore queue be checked [2] right after releasing the lock [1] and before calling P() [3],
the corresponding V() [4] will never be called, and the thread sleeping in P() will never wake up.

Operating Systems 4.15

4.3 Deadlock

Deadlock can be considered as a situation in which there will not be any effective work in the system. Roughly speaking,
a deadlock occurs when threads are waiting for resources (e.g., devices and files) with circular dependencies. Deadlocks
generally involve nonpreemptable resources (e.g., storage allocated to a file, a lock for mutual exclusion), which cannot
be taken away from its current thread without causing the computation to fail. Deadlocks that involve preemptable re-

sources (e.g., CPU) can usually be resolved by reallocating resources from one thread to another. Recall that starvation is
a condition where a thread waits indefinitely. A deadlock implies starvation.

A deadlock can happen with any kind of resource. Deadlocks can also occur with multiple resources, and you cannot
solve the deadlock for each resource independently. For example, one thread can grab all the memory; another grabs all
the disk space, and yet another grabs all the tape storage. Each thread may need to wait for other to release. Round-robin
CPU scheduling cannot prevent deadlocks (or starvation) from happening.

Deadlock can occur whenever there is waiting.

4.3.1 Conditions for Deadlocks

Fortunately, someone has identified four necessary (but not sufficient) conditions for a deadlock to occur. Without all of
these four conditions, a deadlock cannot occur:

1. Limited access (lock-protected resources)

2. No preemption (if someone has the resource, it can’t be taken away)

3. Wait while holding (holding a resource while requesting and waiting for the next resource).

4. Circular chain of requests

Deadlock Prevention

Preventing deadlocks involves removing one of the four conditions.

(a) Infinite resources (buy a very large disk)

(b) No sharing (totally independent threads)

(c) No waiting (phone company)

(d) Preempt resources (copying memory content to disk)

(e) Allocate all resources at the beginning (if you need 2 chopsticks, grab both at the same time)

(f) Make everyone use the same ordering in accessing resources. (all threads must grab semaphores in the order of
P(x) and P(y)).

(g) A combination of techniques

4.3.2 Banker’s Algorithm

One example of prevention algorithm (e) is the Banker’s algorithm, allows the sum of maximum resource needs of all
threads to be greater than the total resources, as long as there is some way for all threads to finish without getting into
deadlock.

1. A thread states its maximum resource needs in advance.

2. The OS allocates resources dynamically when resource is needed. A thread waits if its granting request would leads
to deadlock (a request can be granted if some sequential ordering of threads is deadlock free.)

For example, you can allow a thread to proceed if the total available resources are greater than or equal to the maximum
remaining resources that might be needed by this thread. To be specific, suppose two single-threaded processes are run-
ning on a machine with 256 Mbytes of physical RAM, and each process requires a maximum of 150 Mbytes of memory.
Also, suppose each process has already allocated 100 Mbytes (200 out of 256 Mbytes of physical memory are allocated by
both processes). Although the combined maximum (300 Mbytes) exceeds the physical memory limit (256 Mbytes), 56
Mbytes of available memory can actually carry any one of the two processes to completion, without the risk of exhausting
the memory resource. Therefore, the current state of allocation for memory is considered safe.

4.16 Computer Science & Information Technology for GATE

Physical memory: 256 Mbytes

Allocated: 200 Mbytes

Maximum allocation

P1 150 Mbytes

P2 150 Mbytes

Current allocation

P1 100 Mbytes

P2 100 Mbytes

On the other hand, if each process has already allocated 110 Mbytes, the system has reached an unsafe allocation state—
the remaining 36 Mbytes is not enough for either process to complete.

Physical memory: 256 Mbytes

Allocated: 220 Mbytes

Maximum allocation

P1 150 Mbytes

P2 150 Mbytes

Current allocation

P1 110 Mbytes

P2 110 Mbytes

Since we cannot predict future, processes under the deadlock prevention approaches often overestimate resources and
lead to inefficient use of resources.

Deadlock Detection and Recovery

The deadlock detection-and-recovery strategy is the most commonly used approach. The basic algorithm involves three
steps:

1. Scan the resource allocation graph

2. Detect circular chains of requests

3. Recover from the deadlock

The idea is to remove the fourth deadlock condition of circular chain of requests.

Thread A

Thread B

Resource X Resource Y

waiting for

owned by waiting for

owned by

Once the circular chain of requests are identified, there are some possible actions:

Operating Systems 4.17

(a) Kill a thread and force it to give up resources.

(b) Rollback actions of a deadlocked thread.

Removing a deadlocked thread is not always possible, since a thread may own locks and resources. Removing a thread
may leave the remaining system in an inconsistency state. Rolling back a thread requires checkpointing, or taking snap-
shots of system states from time to time. So, a deadlocked thread can be rolled back (destroyed and restored) to a recent
consistent state.

n Example A file has to be shared among different processes, each of which has a unique no. The file can be accessed
simultaneously by the processes as long as sum of all unique numbers associated with those processes which are currently
accessing is less than N .

Comment on the following code whether it can extend such a control .

File_access monitor

Begin

Const int n

Const int N

Var delay : array[1..N] of condition

Var delayed : array[1…N] of FALSE

Var total : int 0

Procedure entry Start Access (id : int)

Begin

If total + id >= n do

Begin

Delayed[id] =TRUE

Delayed[id].wait

Total + = id

End

End

Procedure entry endAccess (id :int)

Begin

Total - = id

Let temp = n – total – 1

While temp > 0 and ~ delayed[temp]

Do

Temp - = 1

If (temp > 0)

Do {

 Delayed[id]=FALSE

 Delayed[id].signal

 }

end

end

The above code will guarantee mutual exclusion.
Whenever a process wants to access shared memory then it calls entry function of the monitor and before leaving the

function calls endAccess function signaling some blocked processes if they can proceed .

n Example There are 4 processes in the system and 4 resources types R1, R2, R3, R4 .There are 2 instances of R1 are
available and remaining all are only 1 instance. Currently R1 is allocated to P1 , another R1 is allocated to P2 , R3 to P3 ,
R4 to P4 ,R2 to P3 .

4.18 Computer Science & Information Technology for GATE

The following requests are made

 R1 ¨ P3

 R1 ¨ P4

 R3 ¨ P1

Is the system is deadlocked?

n Answer: By drawing a resource graph for the above setup, even though we may find a cycle but it is dead lock free as
there are multiple instances for R1 .
Normally in the case of problems of multiple resources we cannot say that there is a deadlock even though there is a
circular wait or cycle as there are multiple resources of that type.

4.4 CPU Scheduling

Goals for a Scheduler
A scheduler handles the removal of the running process from the CPU and the selection of the next running process,
based on a particular strategy. A scheduler aims to accomplish the following goals:

1. Minimise the wait time, or the time for a process to receive its first unit of service from the processor.
2. Maximise the throughput, or the number of completed jobs per unit time. There are two parts to maximising

throughput:
a. Minimise overhead (e.g., context switching).
b. Efficient use of system resources (not only CPU, but disk, memory, etc.).

3. Achieve fairness, so the CPU is shared among users in a fair way.

4.4.1 Scheduling Policies

First In, First Out (FIFO)

The FIFO strategy assigns the processor in the order of processor requests. The FIFO policy is nonpreemptive in the sense
that a process keeps running on a CPU until it is blocked or terminated. The FIFO strategy is also known as the FCFS

(first come first serve).
The main advantage of the FIFO policy is simplicity. The FIFO policy also provides a certain degree of fairness, since

requests are served in order. However, the main disadvantage is that short jobs can get stuck behind long running jobs.

Round Robin (RR)

To overcome the FIFO problem, the round-robin policy releases the CPU from long-running jobs periodically (based on
timer interrupts), so short jobs also can get a fair share of CPU. Therefore, round robin is a preemptive policy. Just about
every real operating system does something of this flavour.

The interval between timer interrupts is referred to as the time slice. After each time slice, the scheduler moves the
process to the back of the queue. Choosing the size of time slice is tricky. If the time slice is too big, the wait time suffers.
If the size is too small, throughput suffers, since the CPU spends a lot of time doing context switching.

In practice, we need to balance between these two scenarios. Typically, a modern operating system spends 1% overhead
doing context switching.
Comparison Between FIFO and Round Robin

Assuming zero-cost time slice, is RR always better than FIFO? Not really. Suppose we have 10 jobs, each takes 100 seconds
of CPU time, and the time slice for the round robin is 1 second. Let us look at job completion times.

Job Completion Times

Job # FIFO Round robin

1 100 991

2 200 992

… … …

9 900 999

10 1000 1000

Operating Systems 4.19

Although both round robin and FIFO finish at the same time, the average turnaround time is much worse under round
robin than under FIFO. Therefore, round robin is better for short jobs, but it is poor for jobs that are the same length.

STCF/SRTCF
STCF (Shortest Time to Completion First) runs whatever job has the least demand on CPU. The STCF is also known as
SJN (Shortest Job Next) or SJF (Shortest Job First).

SRTCF (Shortest Remaining Time to Completion First) is just a preemptive version of STCF. If a job arrives that has a
shorter time to completion than the remaining time on the current job, SRTCF immediately preempts the CPU for the
new job.

The idea is to get short jobs out of the system. We can see a big improvement on turnaround times for short jobs, and
a relatively small degradation of turnaround times for larger jobs, resulting in a better average turnaround time. In fact,
STCF and SRTCF are the best you can possibly do at minimising the turnaround time.

Comparison of SRTCF with FIFO and Round Robin
If all jobs are the same length, SRTCF becomes the same as FIFO. In other words, in that instance, FIFO is as good as you
can do. Under SRTCF if jobs have varying length, short jobs do not get stuck behind long jobs.

The following is an example that illustrates the benefit of SRTCF. Suppose we have three jobs: A, B, and C. A and B are
both CPU bound, and each runs for a week. Job C consists of an I/O bound loop, which consumes 1 msec of CPU and 10
msec of disk I/O (assuming complete overlapping of I/O and CPU processing). By itself, C uses 90% of the disk. By itself,
A or B could use 100% of the CPU. What happens if we try to share the system among A, B, and C?

Under FIFO, A and B will take two weeks before getting to job C.
Under round robin with 100 msec of time slice, we can only get 5% of disk utilisation, since job C uses disk for 10 msec

of every 201 msec.

A (100 msec) B C A B
CPU

I/O

However, if we reduce the time slice down to 1 msec, we can get 90% disk utilisation again—almost as good as job C run-
ning alone. Also, we have not slowed down A or B by all that much; they will get 90% of the CPU.

CPU

I/O

A B C A AB AB AB B C (1 msec)A B

Under SRTCF, job C is run as soon as possible, then A or B is run to completion.

CPU

I/O

C A C A

Overall, the advantage of the SRTCF is that it achieves the optimal average turnaround time. However, SRTCF can lead to
the possibility of starvation, where lots of short jobs can keep long jobs from making progress. In addition to unfair treat-
ment of long jobs, SRTCF depends on predicting the CPU running time for various jobs.

One way to predict the length of a job is by asking the user. If a user cheats (if a job takes longer than specified), the job
is killed. However, the user may not know any better. SRTCF is generally used as the optimal case for comparing various
scheduling algorithms.

Multilevel Feedback Queues

One way to predict the future is from the existing behavior of processes. However, since a process may switch between
CPU-bound and I/O-bound behaviors, a scheduling policy ideally can adapt changing behaviors based on recent behav-
iors.
Multilevel feedback queues use multiple queues, each with a different priority. An operating system does a round robin
at each priority level—run highest priority jobs first; once those finish, run next highest priority, etc. A round-robin time
slice increases exponentially at lower priorities.

4.20 Computer Science & Information Technology for GATE

Priority Time slice

Queue 1 1 1

Queue 2 2 2

Queue 3 3 4

Queue 4 4 8

Multilevel feedback queues adjust each job’s priority as follows:

1. Job starts in the highest priority queue.

2. If time slice expires, drop the job by one level.

3. If time slice does not expire, push the job up by one level.

The resulting algorithm approximates SRTCF: CPU-bound jobs drop like a rock, while short-running I/O-bound jobs
stay near the top. The multilevel feedback queues are still unfair for long running jobs. Some programs may sporadically
generate meaningless I/Os just to keep the job’s priority high.

Multilevel feedback queues are poor in handling situations like having one long-running job and 100 short-running
ones. UNIX tries to age, or increase the priority of, long-running jobs if they are not serviced for a period of time. How-
ever, the rate of aging jobs is difficult to determine. Also, for an overloaded system where no job can be serviced, every job
increases in priority, and interactive short jobs begin to suffer as well.

Lottery Scheduling
Lottery scheduling is another adaptive scheduling approach that addresses the fairness problem of multilevel feedback
queues. The lottery scheduler gives every job some number of lottery tickets, and on each time slice, it randomly picks a
winning ticket. On average, the CPU time allotted is proportional to the number of tickets given to each job.

To approximate SRTCF, short jobs get more tickets, and long running jobs get fewer. To avoid starvation, every job gets

at least one ticket (so everyone makes progress).

Lottery scheduling behaves gracefully as loads changes. Adding or deleting a job affects all jobs proportionally, inde-

pendent of how many tickets each job has. For example, if short jobs get 10 tickets, and long jobs get 1 each, for different

scenarios listed below, we can get meaningful behavior for all.

short jobs/ #
long jobs

% of CPU for
each short job

% of CPU for
each long job

1/1 91% 9%

0/2 N/A 50%

2/0 50% N/A

10/1 10% 1%

1/10 50% 5%

4.5 Memory Management and Virtual Memory

Main objective of virtual memory is to run large programs with limited RAM. This is achieved by loading small portions
of the program into RAM as and when needed. Evidently, we have two types of VM systems:

Segmentation
Paging

4.5.1 Paging

Paging-based translation reduces the complexity of memory allocation by having fixed-size chunks of memory, or pages.
The memory manager under paging can use a stream of 0s and 1s, or a bitmap, to track the allocation status of memory
pages. Each bit represents one page of physical memory—1 means a page is allocated; 0 means unallocated. Memory map-
ping is done at the granularity of a page, so a virtual page is mapped to a physical page of memory.

Operating Systems 4.21

Virtual address

Virtual page number Offset

Physical page
number

Physical page
number

Physical page
number

Error

Physical address

Physical page number Offset

Page table size

>

The following is an example of a page table with a page size of 4 Kbytes.

Virtual page number Physical page number

0 4

1 0

3 2

Virtual
addresses

Physical
addresses

0x2000

0x1000

0x0

0x3000

0x3fff

0x0

0x1000

0x2000

0x3000

0x4000

0x5000

Although it allows code sharing and easier memory allocation, paging has its own drawbacks. First, if a process sparsely
uses its address space, the size of the page table is prohibitive, in particular, if a process has the starting virtual address of 0
for the code and 231 – 1 for stack (assuming a 32-bit architecture). With 1-Kbyte pages, a process will need 2 million table
entries (memory spent for page table is called as table fragmentation). Second, if the page size is too big, paging suffers
from internal fragmentation, where allocated pages are not fully used.

Multi-Level Translation
To handle the sparse address space allocation, segmented-paging translation can break the page table into segments that
are allocated as necessary—a significant reduction of page table size. The virtual address is now decomposed into three
components: virtual segment number, virtual page number, and the offset.

Virtual segment
number

Virtual page
number

Offset

4.22 Computer Science & Information Technology for GATE

At the lowest level, memory allocation can still be done with a bitmap due to paging. Sharing can be performed at either
the segment or the page level.

However, segmented paging also has a few drawbacks: (1) this approach still requires a certain overhead for storing
additional pointers; (2) page tables still need to be contiguous; and (3) each memory reference now takes two or more
memory table lookups.

Paged Page Tables
To further reduce the overhead of contiguous page tables, another solution uses paged page tables, or a two-level tree of
page tables. This approach reduces unwanted allocation of page table entries and can be generalised into multi-level pag-

ing.
Multiple levels of page tables also mean multiple memory references before getting to the actual data. One way to speed

up the lookup is to use Translation Lookaside Buffers (TLBs), which stores recent translated memory addresses for
short-term reuses.

Inverted Page Tables
A simple and power approach to speed up lookups is to use a big hash table (inverted page table), where each virtual page
number is hashed to a physical page number. The size of the table is independent of the size of address spaces, and propor-
tional to the number of pages being used. However, managing hash collision can be complex and inefficient.

4.5.2 Caching Applied to Address Translation

Since a process often references the same page repeatedly, translating each virtual address to physical address through
multi-level translation is wasteful. Therefore, modern hardware provides a Translation Lookaside Buffer (TLB) to track
frequently used translations, to avoid going through translation in the common case. Typically, the TLB is on the CPU
chip, so the lookup time is significantly faster than looking up from the memory.

Virtual
addresses

TLB
In TLB

Not in TLB

Translation
tables

Physical
addresses

Data read or write
(untranslated)

Since Linux uses paging-based address translation, the remaining handout uses simple paging as the address translation
scheme. The following is an example of the TLB content:

Virtual page number Physical page number Control bits

2 1 Valid, rw

– – Invalid

0 4 Valid, rw

TLB Lookups
There are a number of ways to look up a TLB entry.

1. Sequential search of the TLB table.

2. Direct mapping restricts each virtual page to using a specific slot in the TLB. For example, one approach is to use
upper bits of the virtual page number to index the TLB.

if (TLB[UpperBits(vpn)].vpn == vpn) {

return TLB[UpperBits(vpn)].ppn;

} else {

ppn = PageTable(vpn);

TLB[UpperBits(vpn)].control = INVALID;

Operating Systems 4.23

TLB[UpperBits(vpn)].vpn = vpn;

TLB[UpperBits(vpn)].ppn = ppn;

TLB[UpperBits(vpn)].control = VALID|READ| WRITE;

return ppn;

}

 By using the upper bits alone, two pages may compete for the same TLB slot. For example, a page referenced by the
program counter may be competing for the same TLB entry that is used by the stack pointer page. Therefore, cache
content may be tossed out even if still needed.

 By using the lower bits alone, TLB references will be highly clustered, failing to take the full range of TLB entries.
Thus, common approaches select a combination of high and lower bits.

3. Set associativity refers to having N separate hardware TLB banks, so N banks perform lookup simultaneously. The
following diagram illustrates the two-way set associative cache.

 If either entries match, use the PPN; otherwise, translate and replace one of the two entries.

4. Fully associative cache allows looking up all TLB entries in parallel.

 If either entries match, use the PPN; otherwise, translate and replace one of the entries.

 Typically, the TLBs are small and fully associative. Hardware caches are larger, and are direct mapped or set associa-
tive to a small degree.

Replacements of TLB Entries
For direct mapping, the entry being mapped is replaced whenever there is a mismatch of the virtual page number. For
set associative or fully associative cache, it is possible to replace a random entry, the least recently used entry, or the most
recently used, depending on the reference patterns. In hardware, TLB replacement is mostly random because it is simple
and fast. In software, memory page replacements typically do something more sophisticated. The tradeoffs are the CPU
cycles and the cache hit rate.

Consistency Between TLB and Page Tables
Since different processes have different page tables, the on-chip TLB entries have to be entirely invalidated on context
switches. An alternative is to include process IDs in TLB, at the additional cost of hardware and an additional comparison
per lookup.

Relationship Between TLB and Hardware Memory Caches
A cache of memory values can be inserted in a number of places in the address translation process. The cache between
the CPU and the translation tables is called the virtually addressed cache. If the virtually addressed cache gets a cache hit,
it returns the data immediately without translating the virtual address. The cache between the translation tables and the
main memory is called the physically addressed cache. If the physically addressed cache gets a cache hit, it returns the data
without consulting the main memory.

CPU

VA

VA

VA

Data

Data

Data

TLB

TLB miss

Translation
tables

Data read or write
(untranslated)

Virtually
addressed cache Cache

miss
Cache
miss

Cache hit

TLB
hit

Physically
addressed cache

PA Data

PA Data

PA Data

PA Data

Main
memory

Cache hit

If the cache data is modified, there are two ways to propagate the data back to the main memory.

1. The write-through approach immediately propagates update through various levels of caching, so the cached values
are more consistent across different levels of memory hierarchy.

2. The write-back approach delays the propagation until the cached item is replaced from cache. The goal is to amortise
the cost of update propagation across several cache modifications.

4.24 Computer Science & Information Technology for GATE

Since write-back policy is less costly, memory caches typically use write-back. On the other hand, file systems typi-
cally use write-through policy because they care more about the persistence of data to survive machines crashes.

4.5.3 Demand Paging

Demand paging allows the pages that are being referenced actively to be stored in memory; the remaining pages, on disk.
Overall, demand paging allows bigger virtual address spaces and provides the illusion of infinite physical memory. De-
mand paging also allows more processes to fit in the physical memory, and to be running at the same time.

Demand Paging Mechanism
Demand paging means that page tables need to sometimes point to the disk locations as opposed to memory locations. A
page table now needs an additional present or valid bit. If present, the page table entry points to a page in memory.

If not present, a reference to an invalid page (page fault) will cause the hardware to trap, and the OS performs the fol-
lowing steps while running another process in the meantime.

1. Choose an old page in memory to replace
2. If the old page has been modified, write contents back to disk
3. Change the corresponding page table entry and TLB entry
4. Load new page into memory from disk
5. Update page table entry
6. Continue the thread

4.5.4 Page Replacement Policies

There are a handful of replacement policies.
Random Replacement
TLBs use random replacement because this policy is easy to implement in hardware.
FIFO
The FIFO policy throws out the oldest page. The policy is fair in the sense of letting every page live in memory for the same
amount of time. However, this policy may throw out pages that are heavily used, instead of those that are not frequently
used.
MIN
The ideal strategy is to replace a page that will not be used for the longest time in the future.
LRU
The Least-Recently Used (LRU) policy replaces a page that has not been used for the longest time. If the past is a good
predictor of the future, LRU is a good approximation to MIN. In real implementations, people do not even use LRU; they
approximate it.
LFU
Another similar policy is to replace the Least Frequently Used page (LFU). Since LFU tracks the usage count of pages, it
will take longer to replace pages with high count values, even if those pages are no longer in use.

n Example Suppose that a cache can hold three pages. A process makes references to four pages: ABCABDADBCB.
Under FIFO, we have the following page fault pattern. The page faults with the asterisk mark are compulsory misses.

Cache slot A B C A B D A D B C B

1 *A *D C

2 *B A

3 *C B

Under MIN, we have the following page fault pattern.

Cache slot A B C A B D A D B C B

1 *A C

2 *B

3 *C *D

Operating Systems 4.25

Under LFU, we have the following page fault pattern. The grayed-out numbers indicate the number of times a page is
referenced.

Cache slot A B C A B D A D B C B

1 *A 2 3

2 *B 2 3 4

3 *C *D 2 C

Under LRU, we have the following page fault pattern. The grayed-out X marks how recently a page is referenced.

Cache slot A B C A B D A D B C B

1 *A X X C

2 *B X X X

3 *C *D X

Although LRU seems to work as well as MIN, LRU does not work well when the next reference is the least recently used
page (i.e., a reference string of ABCDABCDABCD).

Cache slot A B C D A B C D A B C D

1 *A *D C B

2 *B A D C

3 *C B A D

In fact, FIFO is as bad as LRU. However, MIN still works pretty well.

Cache slot A B C D A B C D A B C D

1 *A B

2 *B C

3 *C *D

Does Adding Memory Always Reduce the Number of Page Faults?

For the LRU and MIN replacement policies, the answer is yes, since the memory content for using X cache pages is a sub-
set of the memory content for using X + 1 cache pages.
For the FIFO replacement policy, the answer is no. Since the memory content can be completely different with a different
number of cache pages. In other words, it is possible for the FIFO replacement policy to get more page faults by increasing

the cache size (Belady’s anomaly). The following two tables demonstrate the Belady’s anomaly.

Cache slot A B C D A B E A B C D E

1 *A *D *E

2 *B A C

3 *C B D

Cache slot A B C D A B E A B C D E

1 *A *E D

2 *B A E

3 *C B

4 *D C

4.26 Computer Science & Information Technology for GATE

Implementing LRU

A perfect implementation of LRU requires a timestamp on each reference to a cache page, and the OS needs to keep a list
of pages ordered by the timestamp. However, this implementation is too expensive considering the frequency of memory
references. The common practice is to approximate the LRU behavior.

Clock Algorithm

The idea of approximating the LRU replacement policy is to replace an old page, not the oldest page. The clock algorithm

arranges physical pages in a circle, with a clock hand. The hardware keeps a use bit for each physical page. The hardware
sets the use bit to 1 on each reference. If the user bit is not set, it means that the page has not been referenced for some time.

0

1

1

0

0

10

0

On page fault, the clock hand starts to sweep clock-wise. If it encounters a use bit that is set to 1, it sets it to 0 and moves
on. If the use bit is 0, the page is chosen for replacement.

The clock cannot tick indefinitely, since all each use bit is eventually cleared. A slow moving hand means that pages are
either found quickly, or there are few page faults. A quick moving hand means lots of page faults, or lots of use-bit sets.
One simple way to view the clocking algorithm is that of a crude partitioning of pages into young and old categories.

Nth Chance

The nth chance algorithm is a variant of the clocking algorithm, which does not throw a page out until the hand had
swept by n times. With a large n, the nth chance algorithm has a better approximation of the LRU. A smaller n is more
efficient. A common implementation is to use n = 1 for clean pages, n = 2 for dirty (modified) pages. After flushing the
updates to the disk, n is set to 1.

States for A Page Table Entry

Many page table implementations maintain a four-bit per page table entry.
• use bit: set when a page is referenced, cleared by the clock algorithm
• : set when page is modified, cleared when a page is written to disk
• valid bit: set when a program can make legitimate use of this page table entry
• read-only: set for a program to read the page, but not to modify it (e.g., code pages)

Thrashing

Thrashing occurs when the memory is over committed, and pages are tossed out while still needed. For example, a pro-
gram may have a hash table of 50 pages, while the physical memory has only 40 pages. Since the effective cache hit rate is
80%, the effective access time is computed as the following, assuming 2 nsec to make a memory reference and 2 msec to
make a disk reference.

T = 80%*2 nsec + 20%*(2 nsec + 2 msec)

~= 400 micro seconds

The OS should avoid thrashing, but the problem is that the system does not know what it is getting into. There are two
ways to avoid thrashing.

1. At the level of a single process, a program should be written in a way that the memory requirement is small at a
given time, so a process has better locality. For example, a matrix multiplication can be split into smaller sub-matrix
multiplications.

Operating Systems 4.27

2. At the level of multiple processes, the OS needs to figure out the memory needs per process, and run only the com-
putations that fit in the physical RAM.

Working Set
A working set is a set of pages that a process has referenced in the last T seconds. If the T is infinite, the working set is
the entire process. If T is smaller than the time to perform the page fault, the size of working set is one page and we have
thrashing. A working-set-based algorithm is modeled on the observation that the number of page faults will not decrease
significantly once the size of the working set has reached a threshold. Also, the threshold can be adjusted dynamically ac-
cording to the rate of page faults. The goal is to use a minimum number of pages to get the fewest page faults.
For example, the LRU scheme results in many page faults with a cache of three pages, if we have the reference stream:
ABCDABCDEFGH

Cache slot A B C D A B C D E F G H

1 *A *D C *F

2 *B A D *G

3 *C B *E *H

With the cache size of four pages, the same reference stream causes only compulsory misses.

Cache slot A B C D A B C D E F G H

1 *A *E

2 *B *F

3 *C *G

4 *D *H

However, if we further increase the cache size to hold eight pages, we can no longer reduce cache misses.

Cache slot A B C D A B C D E F G H

1 *A

2 *B

3 *C

4 *D

5 *E

6 *F

7 *G

8 *H

A 2nd chance clocking algorithm can be modified to implement the working-set-based replacement policy.

1. If n = 1, record the current time.

2. If n = 0, and if the age (current time – timestamp) of the page is greater than the threshold (no longer in the working

set), the page is replaced.

3. If n = 0, and if the age of the page is younger than the threshold (still in the working set), find the oldest page and

evict.

Global vs. Local Replacement Policies
For a global replacement policy (UNIX), all pages are in one pool for all processes. This policy is more flexible in the
sense that if one process needs more memory, it can grab some from processes that do not require as much memory. The
downside is that one misbehaving program can potentially drag down the whole system.

For the per-process replacement policy, each process has its own pool of pages (i.e., a separate clock for each process).

n Example The following diagram illustrates a blocked, direct-mapped cache for a computer that uses 32-bit data words
and 32-bit byte addresses.

4.28 Computer Science & Information Technology for GATE

32-bit address from CPU

00

2

B

Row 15

Row 14

Row 13
Row 12

Row 11

Row 10

Row 9

Row 8

Row 7

Row 6

Row 5
Row 4

Row 3

Row 2

Row 1

Row 0

32 32 32

=

32

HIT

B

DATA

V TAG
DATA
-00

DATA
-01

DATA
-10

DATA
-11

A. What is the maximum number words of data from main memory that can be stored in the cache at any one time?
n Answer: Maximum number of data words from main memory = (16 lines)(4 words/line) = 64 words

B. How many bits of the address are used to select which line of the cache is accessed?
n Answer: With 16 cache lines, 4 bits of the address are required to select which line of the cache is accessed.

C. How many bits wide is the tag field?
n Answer: Bits in the tag field = (32 address bits) - (4 bits to select line) - (4 bits to select word/byte) = 24 bits

D. Briefly explain the purpose of the one-bit V field associated with each cache line.
n Answer: The tag and data fields of the cache will always have value in them, so the V bit is used to denote whether these
value are consistent (valid) with what is in memory. Typically the V bit for each line in the cache is set to “0” when the
machine is reset or the cache is flushed.

E. Assume that memory location 0×2045C was present in the cache. Using the row and column labels from the figure,
in what cache location(s) could we find the data from that memory location? What would the value(s) of the tag

field(s) have to be for the cache row(s) in which the data appears?

n Answer: The cache uses ADDR[7:4] to determine where data from a particular address will be stored in the cache.

Thus, location 0×0002045C will be stored in line 5 of cache. The tag field should contain the upper 24 bits of the address,

i.e., 0×000204. Note that the bottom 4 bits of the address (0×C) determine which word and byte of the cache line is being

referenced.

F. Can data from locations 0×12368 and 0×322FF8 be present in the cache at the same time? What about data from

locations 0×2536038 and 0×1034? Explain.

n Answer: Location 0×12368 will be stored in line 6 of the cache. Location 0×322F68 will be stored in line F of the cache.

Since the lines differ, both locations can be cached at the same time. However, locations 0×2536038 and 0×1034 both

would be stored in line 3 of cache, so they both could not be present in the cache at the same time.

G. When an access causes a cache miss, how many words need to be fetched from memory to fill the appropriate cache
location(s) and satisfy the request?

n Answer: There are 4 words in each line of the cache and since we only have one valid bit for the whole line, all 4 words

have to have valid values. So to fill a cache line on a cache miss all 4 words would have to be fetched from main memory.

Operating Systems 4.29

n Example For this problem, assume that you have a processor with a cache connected to main memory via a bus. A
successful cache access by the processor (a hit) takes 1 cycle. After an unsuccessful cache access (a miss), an entire cache
block must be fetched from main memory over the bus. The fetch is not initiated until the cycle following the miss. A bus
transaction consists of one cycle to send the address to memory, four cycles of idle time for main-memory access, and
then one cycle to transfer each word in the block from main memory to the cache. Assume that the processor continues
execution only after the last word of the block has arrived. In other words, if the block size is B words (at 32 bits/word),
a cache miss will cost 1 + 1 + 4 + B cycles. The following table gives the average cache miss rates of a 1 Mbyte cache for
various block sizes:

Block size (B) Miss ratio (m), %

1 3.4

4 1.1

8 0.43

16 0.28

32 0.19

A. Write an expression for the average memory access time for a 1-Mbyte cache and a B-word block size (in terms of
the miss ratio m and B).

Average access time = (1-m)(1 cycle) + (m)(6 + B cycles) = 1 + (m)(5+B) cycles

B. What block size yields the best average memory access time?

Block size B (m) Access time Part (B)
I + m (5+B)

1 (.0034) 1.204

4 (.0011) 1.099

8 (.0043) 1.056

16 (.0028) 1.059

32 (.0019) 1.0703

C. If bus contention adds three cycles to the main-memory access time, which block size yields the best average mem-
ory access time?

Block size B (m) Access time Part (C)
I + m (8+B)

1 (.0034) 1.306

4 (.0011) 1.132

8 (.0043) 1.069

16 (.0028) 1.067

32 (.0019) 1.076

D. If bus width is quadrupled to 128 bits, reducing the time spent in the transfer portion of a bus transaction to 25%
of its previous value, what is the optimal block size? Assume that a minimum one transfer cycle is needed and don’t
include the contention cycles introduced in part (C).

Block size B (m) Access time Part (D)
I + m (5+roundup [B\4])

1 (.0034) 1.204

4 (.0011) 1.066

8 (.0043) 1.0301

16 (.0028) 1.0252

32 (.0019) 1.0247

4.30 Computer Science & Information Technology for GATE

n Example The following four cache designs C1 through C4, are proposed for a processor. All use LRU replacement
where applicable (e.g., within each set of a set associative cache).

Cache C1 C2 C3 C4

Total Data words 8K 4K 8K 16K

Total Lines 8K 4K 4K 8K

Associativity Fully 2-way S.A. Direct Mapped fully

Block size,
words/line

1 1 2 2

A. Which cache would you expect to take the most chip area (hence cost) ?

 Cache C4 would most likely take up the most chip area because it is fully associative, thereby requiring a comparator
for each cache line, and because it has the most data word capacity.

B. Which cache is likely to perform worst in a benchmark involving repeated cycling through an array of 6K integers?
Explain.

 C2 would likely have the worst performance on a benchmark involving repeated cycling through an array of 6K
integers since it is the only cache listed with less than 6K data word capacity.

C. It is observed that one of the caches performs very poorly in a particular benchmark which repeatedly copies one
1000-word array to another. Moving one of the arrays seems to cure the problem. Which cache is most likely to ex-
hibit this behaviour? Explain.

 We are told that one of the caches performs poorly in a particular benchmark which repeatedly copies one 1000-
word array to another and that if one of the arrays is moved, the problem seems to be cured. This behaviour is most
likely exhibited by cache C3 because it is a direct mapped cache which only has one location to put any particular ad-
dress. If the lower bits (used to choose the cache line) for the addresses of the array overlap, poor performance could
be observed. Moving the array so that the lower bits of the array addresses don’t overlap could solve this problem.

D. Recall that we say cache A dominates cache B if for every input pattern, A caches every location cached by B. Identify
every pair (A, B) of caches from the above list where A dominates B. Explain your reasoning.

 So long as we are not using a random replacement strategy, it is always possible to come up with a benchmark that
will make a particular type of cache have a miss on every data access. Thus, we cannot say that one particular type of
cache always dominates another type of cache. However, we can compare two caches of the same type. Both C4 and
C1 are fully associative caches with the same replacement strategy. We can say that C4 dominates C1 since C4 has a
greater data word capacity.

n Example The data-sheet for a particular byte-addressable 32-bit microprocessor reads as follows:
The CPU produces a 32-bit virtual address for both data and instruction fetches. There are two caches: one is used when
fetching instructions; the other is used for data accesses. Both caches are virtually addressed. The instruction cache is two-
way set-associative with a total of 212 bytes of data storage, with 32-byte blocks. The data cache is two-way set-associative
with a total of 213 bytes of data storage, with 32-byte blocks.

A. How many bits long is the tag field in each line of the instruction cache?

There are 32 = 25 bytes per block. The cache has 212 total bytes and is 2-way set associative, so each set has 211 bytes and
thus 211/25 = 26 cache lines. So the address is partitioned by the cache as follows:

[4:0] = 5 address bits for selecting byte/word within a block
[10:5] = 6 address bits for selecting the cache line

[31:11] = 21 address bit of tag field

B. How many address bits are used to choose which line is accessed in the data cache?

There are 32 = 25 bytes per block. The cache has 213 total bytes and is 2-way set associative, so each set has 212 bytes and
thus 212/25 = 27 cache lines. So the address is partitioned by the cache as follows:

[4:0] = 5 address bits for selecting byte/word within a block
[11:5] = 7 address bits for selecting the cache line

[31:12] = 20 address bit of tag field

Operating Systems 4.31

C. Which of the following instruction addresses would never collide in the instruction cache with an instruction stored
at location 0x0ACE6004?

(A) 0×0BAD6004 (D) 0×0ACE6838

(B) 0×0C81C81C (E) 0×FACE6004

(C) 0×00000004 (F) 0×0CEDE008

Collisions happen when instruction addresses map to the same cache line. Referring to the answer for (A), address bits
[10:5] are used to determine the cache line, so location 0x0ACE6004 is mapped to cache line 0.

Only (D) 0x0ACE6838 maps to a different cache line and hence could never collide in the instruction cache with loca-
tion 0x0ACE6004.

D. What is the number of instructions in the largest instruction loop that could be executed with a 100% instruction
cache hit rate during all but the first time through the loop?

The instruction cache hold 212 bytes or 210 = 1024 instructions. So if the loop had 1024 instructions it would just fit into
the cache.

n Example The following questions ask you to evaluate alternative cache designs using patterns of memory references
taken from running programs. Each of the caches under consideration has a total capacity of 8 (4-byte) words, with one
word stored in each cache line. The cache designs under consideration are:
DM: a direct-mapped cache.
S2: a 2-way set-associative cache with a least-recently-used replacement policy.
FA: a fully-associative cache with a least-recently-used replacement policy.

The questions below present a sequence of addresses for memory reads. You should assume the sequences repeat from
the start whenever you see “...”. Keep in mind that byte addressing is used; addresses of consecutive words in memory dif-
fer by 4. Each question asks which cache(s) give the best hit rate for the sequence. Answer by considering the steady-state
hit rate, i.e., the percentage of memory references that hit in the cache after the sequence has been repeated many times.

A. Which cache(s) have the best hit rate for the sequence 0, 16, 4, 36, ...

DM: locations 4 and 36 collide, so each iteration has 2 hits, 2 misses.
S2: 100% hit rate. 0 and 16 map to the same cache line, as do 4 and 36, but since the cache is 2-way associative they don’t
collide.
FA: 100% hit rate. The cache is only half filled by this loop.

B. Which cache(s) have the best hit rate for the sequence 0, 4, 8, 12, 16, 20, 24, 28, 32, ...

DM: locations 0 and 32 collide, so each iteration has 7 hits, 2 misses.
S2: locations 0, 16 and 32 all map to the same cache line. The LRU replacement strategy replaces 0 when accessing 32, 16
when accesing 0, 32 when accessing 16, etc., so each iteration has 6 hits, 3 misses.
FA: has 0% hit rate in the steady state since the LRU replacement strategy throws out each location just before it’s accessed
by the loop!

C. Which cache(s) have the best hit rate for the sequence 0, 4, 8, 12, 16, 20, 24, 28, 32, 28, 24, 20, 16, 12, 8, 4, ...

All caches perform the same -- locations 0 and 32 trade places in the caches, so each iteration has 14 hits and 2 misses.

D. Which cache(s) have the best hit rate for the sequence 0, 4, 8, 12, 32, 36, 40, 44, 16, ..

DM: 32 collides with 0, 36 with 4, 40 with 8, 44 with 12, so each itreation has only 1 hit and 8 misses.
S2: locations 0, 16 and 32 trade places in the cache, so each iteration has 6 hits and 3 misses.
FA: 0 hits since LRU throws out each location just before it’s accessed by the loop.

E. Assume that a cache access takes 1 cycle and a memory access takes 4 cycles. If a memory access is initiated only after
the cache has missed, what is the maximum miss rate we can tolerate before use of the cache actually slows down
accesses?

If accesses always go to memory, it takes 4 cycles per access. Using the cache the average number of cycles per access is
1 + (miss rate)*4

So if the miss rate is larger than 75% the average number of cycles per access is more than 4.

4.32 Computer Science & Information Technology for GATE

4.6 File Systems

A file system consists of the following major components:

• Disk management organises disk blocks into files.

• Naming provides file names and directories to users, instead of track and sector numbers.

• Protection keeps information secure from other users

• Reliability protects information loss due to system crashes.

User vs. System View of a File

At the user level, a user is only aware of the presence of individual files. At the system call level, each call processes a col-
lection of bytes. However, at the operating system level, a block is the logical transfer unit, while a sector is the physical
transfer unit. In UNIX, a block size is 4 Kbytes, which is greater than a 512-byte sector.

Given the discrepancy of user and system perceptions, a user access has to be translated into system accesses.

• If a process wants to read bytes 2 to 12, the operating system has to fetch the block containing those bytes, and return
those bytes to the process.

• If a process wants to write bytes 2 to 12, the operating system has to fetch the block containing those bytes, modify
those bytes, and write out the block.

Even though the system call provides byte-level accesses (e.g., getc and putc), the OS operates in blocks. Therefore, a
is a named collection of blocks.

File Usage Patterns

For a file system to perform well, a designer needs to understand user access behaviors. In general, there are three ways
to access a file.

1. Sequential access—bytes are accessed in order.

2. Content-based access—bytes are accessed according to constraints on byte contents (e.g., return 100 bytes starting
with “bhale bhale”).

3. Random access—bytes are accessed in any order.

Most file systems do not provide the content-based access.
There are also several file usage patterns.

• Most files are small (e.g., .login and .c files), and most file references are to small files.

• Large files use up most of the disk space (e.g., mp3 files).

• Large files account for most of the bytes transferred between memory and disk.

These usage patterns are bad news for file system designers. To achieve high performance, a designer needs to make sure
that small files are accessed efficiently, since there are many of them, and they are used frequently. A designer also needs
to make sure that large files are accessed efficiently, since they consume most of the disk space, and account for most of
the data movement.

4.6.1 Free Data Blocks Management

• Bitmap based

• Linked List based

In the bitmap based method, a bit vector of size equal to the number of disk blocks is used. If ith block is free then the
bit vector value at ith location will be 0 otherwise 1. Thus, if we want ten data blocks to store a file content then we have
to search for 10 consecutive 0’s in this vector (of course, assuming contiguous allocation policy). This becomes more like
string matching, which is little computational demanding. Also, memory requirements for storing bit vector also increases
with the increase in the disk size.

n Example If we are having a partition in which data blocks uses 4 byte addresses then the max number of data blocks
in the disk will be 232 and thus the bit vector size is also 232 bits i.e , 512 MB.

In operating systems such as DOS and windows the datablock allocation policy is continuous. we are required to find
out contiguous datablocks to store a file.

Operating Systems 4.33

n Example If we wanted to store a file which requires 100 data blocks then we are required to find a substring of 100 1’s
in the bit vector which becomes a substring matching which is usually more time consuming.

In the case of linked list approach, details about the free data blocks are maintained in a linked list known as free list.
Space requirements and searching for free data blocks are relatively easy here.

Here, also we will be using first fit, best fit, worst fit and next algorithms to select free datablock.

Disk Management Policies
A file contains a , which associates the file with its disk sectors. Also, a file system needs a disk allocation

bitmap to represent free space on disk, one bit per block. Blocks are numbered in cylinder-major order, so that adjacent

numbered blocks can be accessed without seeks or rotational delay.

Block number(s) Sector number(s) Track number(s) Cylinder number(s)

0 0-7 0 0

1 8-15 0 0

…

31 247-255 0 0

32 0-7 1 0

…

511 247-255 15 0

512 0-7 0 1

Although the OS keeps a cache of recently used disk blocks in memory, we will ignore caching for now when comparing
the performance of different disk management policies.

4.6.2 Contiguous Allocation

For contiguous allocation, file blocks are stored contiguously on disk. A user specifies the file size in advance, and the file
system will search the disk allocation bitmap according to various allocation policies (e.g., first-fit and best-fit policies) to
locate the space for the file. The file header contains the first block of the file on disk, and the number of blocks in the file.

Contiguous allocation provides fast sequential access. A random disk location in a file can be trivially computed by
adding an offset to the first disk block location of the file. The disadvantages are external fragmentation and difficulties to
grow files.

Linked-List Allocation
For linked-list allocation, each file block on disk is associated with a pointer to the next block. Perhaps, the most popular
example is the MS-DOS file system, which uses the File Attribute Table (FAT) to implement linked-list files. A file header
points to the table entry of the first file block, and the content of the file block contains the table entry number of the next
block. A special marker is used to indicate the end of the file.

One advantage of the linked-list approach is that files can grow dynamically with incremental allocation of blocks.
However, sequential accesses may suffer since blocks may not be contiguous. Random accesses are horrible and involve
multiple sequential searches. Finally, linked-list allocation is unreliable, since a missing pointer can lead to loss of the
remaining file.

Entry for block 2

Entry for block 3

Entry for block 4

Entry for block 5

4

0

5

EOF

File header

Segment-Based Allocation
Segment-based allocation uses a segment table to allocate multiple regions of contiguous blocks. The file header points to
a table of begin-block and end-block pairs.

4.34 Computer Science & Information Technology for GATE

Segment-based allocation provides the flexibility to break the alloca-
tion into a number of contiguous disk regions, while it still permits
contiguous allocation to reduce disk seek time. However, as the disk
becomes increasingly fragmented, in the extreme case, segment-
based allocation needs a bigger and bigger table to locate piece-wise
contiguous blocks. As an extreme case, segment-based allocation can
potentially need one table entry per disk block. In addition, under this
scheme, random accesses are not as fast as the contiguous allocation,
since the file system needs to locate the pair of begin block and end
block that contains the target byte before making the disk accesses.

Indexed Allocation

Indexed allocation uses an index to directly track the file block locations. A user
declares the maximum file size, and the file system allocates a file header with an
array of pointers big enough to point to all file blocks.

Although indexed allocation provides fast disk location lookups for random accesses,
file blocks may be scattered all over the disk. A file system needs to provide additional
mechanisms to ensure that disk blocks are grouped together for good performance (e.g.,
disk defragmentor). Also, as a file increases in size, the file system needs to reallocate the
index array and copy old entries. Ideally, the index can grow incrementally.

Multilevel Indexed Allocation

Linux uses multilevel indexed allocation, so certain index entries point to index blocks as opposed to data blocks. The file
header, or the i_node data structure, holds 15 index pointers. The first 12 pointers point to data blocks. The 13th pointer
points to a single indirect block, which contains 1,024 additional pointers to data blocks. The 14th pointer in the file
header points to a double indirect block, which contains 1,024 pointers to single indirect blocks. The 15th pointer points
to a triple indirect block, which contains 1,024 pointers to double indirect blocks.

This skewed multilevel index tree is optimised for both small and large files. Small files can be accessed through the first
12 pointers, while large files can grow with incremental allocations of index blocks. However, accessing a data block under
the triple indirect block involves multiple disk accesses—one disk access for the triple indirect block, another for the dou-
ble indirect block, and yet another for the single indirect block before accessing the actual data block. Also, the number of
pointers provided by this data structure cap the largest file size. Finally, the boundaries between the last four pointers are
somewhat arbitrary. With a given block number, it is not immediately obvious as to of which of the 15 pointers to follow.

File header

Block 0

Block 11

Single indirect block

Double indirect block

Triple indirect block

Data blocks

Data
blocks

Data
blocks

Data
blocks

Block 12

Block 1036

Block j + 1024

Block k + 1024

Block k

Block j

Begin blockFile header

Begin block

Begin block

End block

End block

End block

Data blocks

File header

Block 0

Block 1

Block 2

Data Blocks

Operating Systems 4.35

n Example Let Block size = A

Block addresses = b bytes

Blocking factor = N = A / b

According to Unix (Indexed) allocation strategy which uses third level indirection, largest possible single file size = 10
+ N + N2 + N3 blocks (Do remember in Unix direct blocks are 10 only).

n Example A Unix filesystem which uses 1K block size and 2 byte block addresses. Then calculate what is the largest
possible single file size.

n Answer : A = 1 KB

B = 2 bytes

N = 1024 / 2 = 512

So , Largest single file size = 10 + 512 + 5122 + 512 3 blocks

 ~= 5123 blocks

 = 128 X 2 X 512 X 2 X 512 X 1 KB

 = 128 GB

This is only theoretically possible value. But , we can disapprove it practically , as 2 byte addresses are used for data block
. So, max of 216 data blocks only available in the disk.
So, disk size only = 2 16 X 1 KB = 64 MB.

n Example A disk is formatted with 2 KB block size and 4 byte addresses , then find out largest possible single file size ?

n Answer: N = 2 KB / 4 = 512
 Max single file size = 256 GB
 This is more practical as really as disk size = 8 Tera bytes .

n Example If N is the blocking factor, how many blocks are used as index block in the worst case?
Max no of data blocks spend on Index blocks

= 1 + (1 + N) + (1 + N + N2)

4.6.3 Inode Structure in Unix

Inode of a file does not contain the name of the file.
It contains the following things:

 UID

 GID

 Permissions

 Times

 Links

 10 direct addresses

1st level indirect addr

2nd level indirect addr

3rd level indirect addr

 Inode Structure

• Assuming that a file’s inode is already available in RAM (i.e, already located) and then to access any byte of a file,
we require at most 4 disk accesses, where as to know the data block number which contains this byte may require
at most 3 disk accesses.

• MINIX and XENIX file systems use uptil second level indirection only.

• Inode numbers of a file and its hard link file will be same whereas a file and its soft link will not be same.

4.36 Computer Science & Information Technology for GATE

• Whenever a hard link file is created, link count of the files inode will be incremented by 1 whenever either a hard
link file or original file is deleted, link count value will be reduced by 1.

• When the link count value becomes 0 then all the data blocks consumed by that file will be marked as free and even
the inode is marked as free.

• Symbolic links are extensively used to fine tune the application software, they can be also used to link files in differ-
ent partitions.

• Inode is a 64 byte long.
• 0 is the inode no for root directory “ / ”.
• Binary name of a file or file descriptor or file handle of a file ‘ : ’
• Whenever we open a file, the file’s info such as mode of opening , permissions , offset , pointer to the virtual node all

are maintained in a table known as Open file table.
• That Row index is known as file descriptor of that file. This number is meaningful and is associated with that file as

long as the process is running and the file is not closed. This number is also known as binary name of that file and it
can be called as dynamic number associated with that file.

• Inode number of a file can be called as static name or static number related to that file. Never inode number of a file
is going to change during that files life.

Major numbers and minor numbers
Normally device drivers are set of functions. Some of them are automatically located during the booting time while others
can be loaded as and when required.

In the Kernel space, there exists a device driver table, probably one for block oriented devices and character oriented
devices.

Major number of a file is the one which conveys which device driver to be accessed while accessing that file. This is also
a integer number (In current Unix kernel this is an 8 – bit no). To be specifically it is the row index of the device driver
table in the kernel space which contains pointer to a structure having names of the functions which are to be used while
really doing the operation on that device.

For some devices major numbers will be made fixed i.e, during the booting time the respective device drivers are reg-
istered such that their info is stored in specific row of the device driver table.

Minor numbers are used to distinguish the devices which use the same device driver software.

It is acceptable 2 files from different partitions to be having same inode numbers. However, as their partitions are dif-
ferent their major numbers may differ and minor numbers will differ.

Swap partitions are not indexed file systems like Unix file systems like Unix file systems rather they are realised as con-
tiguous allocation.

FAT 12 filesystem is seen on the Floppy.
In Unix O.S, a directory block contains name of files and subdirectories in it along with their inode numbers, whereas

in the case of FAT based systems, a directory info contains Names and the starting cluster no.
If the data block size increases, wastage through internal fragmentation increases.
If the block size reduces the file access time increases.

Inverted Allocation

If we use a disk as a device for backups (e.g., tape), the storage capacity may be the primary concern, and the speed of disk
may not matter (as long as it is faster than tape). Since backup storage keeps track of all modifications, a small modifica-
tion to a large file results in storing the entire modified file, Inverted allocation allocates a disk block by hashing the file
block content to a disk block location. By doing so, different file blocks of the same content (e.g., empty blocks) can share
the same disk block for storage. For example, if one block is modified in a N-block file, the storage requirement for both
files is N + 1 blocks.

New file header

Block 1 Block 1

Block 2 Block 2

Block 0 Block 0

Data blocks

Old file header

Operating Systems 4.37

4.6.4 Disk System Performance Improvement

• If we happen to have more than one controller (say 2) and 2 hard disk drives then it is recommended to connect
these two drives one for each controller rather than using them as master and slave for single controller.

In personal computers , interrupt no 14 is assigned to hard disks (IDE or EIDE).
RAID drives are exclusively designed to improve the file system performance interms of access times and also in terms

of fault taulerency. In Parallel, we can access file from several disks to improve performance, if the file is distributed in
disks.

Interleaving of Sectors

The interleaving factor is used to reduce the rotational latencies effects, specifically if we assume the sectors are sequen-
tially numbered physically then after reading a sector, we require some finite amount of time to transfer the same to the
RAM, during which period disk assembly will not be stopped from its rotation. Thus, when the head is ready to read the
next sector, that would have been already crossed. Thus, the head has to wait till it comes. Inorder to reduce this delay,
sector no’s are staggered.

In today’s hard disk drives, the interleaving factor is not under the control of the program.
Rather it is a function (complex function) of speed of the processor, bus, rotational speed of the drive etc.
Low level formatting tools will be giving freedom to change this interleaving factor.

4.6.5 Disk Caching

Disk Cache can be either hardware Cache or Software Cache. Main theme behind the disk caching is also same as memory
caching i.e, most recently read data blocks are assumed to be requiring in the near future thus, retain them in the Cache
memories.

Such that next time when we require the same datablock, we would be taking from the disk cache rather than from disk.
Thus, program execution becomes fast.

Normally unlike memory caches, disk caches are not specifically designed memories.They are memories only with
faster access times.

Disk caches are even realised in RAM’s by the Operating systems. Very commonly the data blocks stored in the disk
caches are chained.

Compared to memory caches, disk caches realization is little different. Especially in memory caches specially designed
hardwares are employed whereas it is not true with disk caches.

The data blocks which are loaded into disk cache are circularly chained such that replacement, insertions, removals etc
are little easy.

Here also, Cache management policies such as FIFO, LRU, NRU can be used. However LRU type is in wide use.
High level formatting creates a logical view of the filesystem i.e, it treats as 1-D array of data blocks, in the mean time

it collects the info about the free data blocks as well.
Now a days there is no facility for low level formatting as the floppies or hard disks are coming pre-formatted.
While doing formatting or creating file system it contains some number of node, as some data blocks may be spoiled in

between or some datablocks may not be movable like “command.com” (ex : format A:\ s)
In free list based data block management first free list is created during the formatting (high level formatting). In this

list every node contains starting free data block and number of free data blocks. First few nodes details are saved in super-
block and then remaining nodes details are stored in data block area of the partition. During the booting time, this free
data blocks info is read from the superblock into the memory.

Only if currently available free list in the RAM cannot satisfy the requirement of a file then remaining part of the linked
list is read from the data block area of the disk into memory.

In some O.S’s whenever a file is removed , the data blocks whatever it was using will return to the free list available in
the core memory (RAM). In some O.S’s they will be kept at front of the list whereas some will be maintaining at the end
of the list.

If we have written the free data block info and place at front of the linked list then extending “undelete” service becomes
little difficult.

Major advantage of free list based data block management is the memory requirements and also disk requirements are
relatively less.

4.38 Computer Science & Information Technology for GATE

If External fragmentation increases then free list grows .
Under ideal conditions, after defragmentation one node should be available in the free list. However, if there exists

some non-movable code or spoiled datablocks at the end then after defragmentation also free list size may be more than
1 node.

4.7 I/O Systems

I/O devices can be roughly divided into two categories.
A block device (e.g., disks) stores information in fixed-size blocks, each one with its own address.
A character device (e.g., keyboards, printers, network cards) delivers or accepts a stream of characters, and individual
characters are not addressable.

A device is connected to a computer through an electronic component, or a device controller, which converts between
the serial bit stream and a block of bytes and performs error correction if necessary. Each controller has a few device reg-
isters that are used for communicating with the CPU, and a data buffer that an OS can read or write. Since the number
of device registers and the natures of device instructions vary from device to device, a device driver OS component is re-
sponsible hiding the complexity of an I/O device, so that the OS can access various devices in a relatively uniform manner.

User applicationsUser level

OS level

Hardware

Various OS components

Device drivers

Device controllers

I/O devices

Device Addressing
In general, there are two approaches to addressing these device registers and data buffers. The first approach is to assign
each device a dedicated range of device addresses in the physical memory, so accessing those device addresses requires
special hardware instructions associated with individual devices. The second approach (memory-mapped I/O) is not to
distinguish device addresses from normal memory addresses, so devices can be accessed the same way as normal memory,
with the same set of hardware instructions.

Memory
addresses

Primary
memory

Memory
addresses

Device
addresses

Separate device
addresses

Device 0

Device 1

Memory-mapped I/O

Device Accesses
Regardless of the device addressing approach, the operating system has to track the status of a device for exchanging data.
The simplest approach is to use polling, where the CPU repeatedly checks the status of a device for exchanging data.

However, wasting CPU cycles on busy-waiting is undesirable. A better approach is to use interrupt-driven I/Os, where
a device controller notifies the corresponding device driver when the device is available. Although the interrupt-driven
approach is much more efficient than polling, the CPU is still actively involved in copying data between the device and

Operating Systems 4.39

memory. Also, interrupt-driven I/Os still impose high overheads for character devices. For example, a printer raises one
interrupt per byte, so the overhead of interrupt far exceeds the cost of transmitting a single byte.

An even better approach is to use an additional Direct Memory Access (DMA) controller to perform the actual move-
ments of data, so the CPU can use the cycles for computation as opposed to copying data.

The use of DMA alone still has room for improvement. Since a process cannot access the data that is being brought into
memory at the moment, due to mutual exclusion, a more efficient approach is to pipeline the data transfer. The double

buffering technique uses two buffers in the following way: while one is being used, the other is being filled. Double buff-
ering is also used extensively for graphics and smooth animation. While the screen displays an image frame from one
buffer in the video controller, a separate buffer is being filled pixel-by-pixel in the background, so a viewer does not see
the line-by-line scanning on the screen. Once the background buffer is filled, the video controller switches the roles of the
two buffers and displays from the freshly filled buffer.

4.7.1 Overlapped I/O and CPU Processing

By freeing up CPU cycles while devices are serving requests, CPU-bound processes can be executed concurrently with
I/O-bound processes. For example, if process A is CPU-bound, and process B is I/O-bound, the system as a whole can
reach high utilisation by overlapping CPU and I/O processing effectively.

Process A Process B

Loop:

CPU

I/O

Loop:

90 msec of CPU
10 msec of I/O

10 msec of CPU
90 msec of I/O

A AB

A B

4.7.2 Disk as An Example Device

The hard disk is a 30-year-old storage technology, and is incredibly complicated. A modern hard drive comes with 250,000
lines of micro code to govern various hard drive components.
Hardware Characteristics
Briefly, a hard drive consists of a disk arm and disk platters. Disk platters are coated with magnetic materials for recording.
The disk arm moves a comb of disk heads, among which only one disk head is active for reading and writing.

One fascinating detail is that heads are aerodynamically designed to fly as close to the surface as possible. In fact, the
distance is so close that there is no room for air molecules, and a hard drive is filled with special inert gas to fly disk heads.
If a head touches the surface, it results in a head crash, which scrapes off magnetic information.

Each disk platter is further divided into concentric tracks of storage, and each track is divided into sectors (typically
512 bytes). Each sector is a minimum unit of disk storage. A cylinder consists of all tracks with a given arm position.
(Fig. 4.1)

Disk arm

Disk platters

Track

Sector

Figure 4.1 Disk Structure

A modern hard drive also takes advantage of the disk geometry. Disk cylinders are further grouped into zones, so zones
near the edge of the disk can store more information than zones near the center of the disk due to the differences in stor-

4.40 Computer Science & Information Technology for GATE

age area (also known as zone-bit recording). More information stored in outer zones also means that the transfer rate
(rotational speed multiplied by the information stored in a cylinder) is higher near the edge of the disk.

Since, moving a disk arm from one track to the next takes time, the starting position of the next track is slightly skewed
(track skew), so that a sequential transfer of bytes across multiple tracks can incur minimum rotational delay.

A hard drive also periodically performs therm-calibrations, which adjusts the disk head positioning according to the
changes in the disk radius caused by temperature changes. To account for other minor physical inaccuracies, typically 100
to 1000 bits are inserted between sectors.

A Simple Model of Disk Performance

The access time to read or write a disk section includes three components:

1. Seek time: the time to position heads over a cylinder (~8 msec on average).

2. Rotational delay: the time to wait for the target sector to rotate underneath the head. Assuming a speed of 7,200
rotations per minute, or 120 rotations per second, each rotation takes ~8 msec, and the average rotational delay is ~4
msec.

3. Transfer time: the time to transfer bytes. Assuming a peak bandwidth of 58 Mbytes/sec, transferring a disk block of
4 Kbytes takes 0.07 msec.

Thus, the overall time to perform a disk I/O = seek time + rotational delay + transfer time.
The sum of the seek time and the rotational delay is the disk latency, or the time to initiate a transfer. The transfer rate

is the disk bandwidth.
If a disk block is randomly placed on disk, then the disk access time is roughly 12 msec to fetch 4 Kbytes of data, or a

bandwidth 340 Kbytes/sec.
If a disk block is randomly located on the same disk cylinder as the current disk arm position, the access time is roughly

4 msec without the seek time, or a bandwidth of 1.4 Mbytes/sec.
If the next sector is on the same track, the access time is 58 Mbytes/sec without the seek time and the rotational delay.
Therefore, the key to using the hard drive effectively is to minimise the seek time and rotational latency.

Disk Tradeoffs
One design decision is the size of disk sector.

Sector size Space utilisation Transfer rate

1 byte 8 bits/1008 bits (0.8%) 80 bytes/sec (1 byte / 12 msec)

4 Kbytes 4096 bytes/4221 bytes (97%) 340 Kbytes/sec (4 Kbytes / 12 msec)

1 Mbyte (~100%) 58 Mbytes/sec (peak bandwidth)

A bigger sector size seems to get a more effective transfer rate from the hard drive. However, this allocation granularity is
wasteful if only 1 byte out of 1 Mbyte is needed for storage.

Disk Controller
Two popular disk controllers are SCSI (Small Computer Systems Interface), and IDE (Integrated Device Electronics).
Since they are not a part of the OS, please surf the net for more information.

4.7.3 Disk Device Driver

One major function of the disk device driver is to reduce the seek time for disk accesses. Since disk can serve only one
request at a time, the device driver can schedule the disk request in such a way to minimize disk arm movements. There
are a handful of disk scheduling strategies. For further reference consult Nutt’s book for detailed examples.

FIFO
Requests are served in the order of arrival. This policy is fair among requesters, but requests may land on random spots on
disk. Therefore, the seek time may be long.

SSTF (Shortest Seek Time First)
The shortest seek time first approach picks the request that is closest to the current disk arm position. (Although called the
shortest seek time first, this approach actually includes the rotational delay in calculation, since rotation can be as long as

Operating Systems 4.41

seek.) SSTF is good at reducing seeks, but may result in starvation.

SCAN
SCAN implements an elevator algorithm. It takes the closet request in the direction of travel. It guarantees no starvation,
but retains the flavor of SSTF. However, if a disk is heavily loaded with requests, a new request at a location that has been
just recently scanned can wait for almost two full scans of the disk.

C-SCAN (Circular SCAN)
For C-SCAN, the disk arm always serves requests by scanning in one direction. Once the arm finishes scanning for one
direction, it quickly returns to the 0th track for the next round of scanning.

n Example Describe the organ-pipe distribution and mention why it is a good tool increase the performance of disks.

n Answer: Placing the most used blocks of data close together in order to reduce the seek time, which is the most impor-
tant delay in disk performance. The organ-pipe distribution places data this way, using a histogram and allowing the most
used blocks of data to be in the same track, the next most used blocks in the next tracks, etc.

n Example What is the sequence of software layers that are traversed from the time a user needs to read a disk block un-
til the time the data is available to the user (from library call to the return from the library call). Among the layers are: (a)
libraries, (b) page replacement algorithms. (c) ISRs, (d) Device-independent OS software, (e) data placement algorithms,
(f) de-framentation software, (g) device drivers, (h) controllers, (i) device itself.

n Answer: libraries Æ Device-independent OS software Æ device drivers Æ controller Æ device Æ ISR Æ device drivers
Æ Device-independent OS software Æ libraries.

n Example In a virtual memory system, an 8KB page is swapped into main memory. This page is stores on a hard disk
with the following parameters:
Average track diameter = 6cm
Speed of rotation = 10,800 RPM
Average seek time = 5ms
Seek time between consecutive tracks = 1ms
Linear density = 100,000 bits/cm
Controller overhead = 2ms

a. How many sectors and tracks are required to store one page of data?

 Data per track = phi * 6 * 100,000 = 235500 bytes

 Number of tracks = 8KB/23500B = 0.035

 Number of sectors = 8KB/512=16

b. How long will it take to search and read this page from disk?

 Time needed= ave seek time + ave rotational delay + transfer time + control overhead

 = 5ms + 0.5*60*1000/10800ms + 0.035*60*1000ms + 2ms = 10ms

c. If clock rate is 500MHz, how many clock cycles are needed to search and read the page?

 500M cycles/sec * 10 ms = 5000000 cycles

d. If the disk in consideration is an Ultra SCSI then how many clock cycles it will take to transfer this information over
the I/O channel? (Ultra SCSI supports 20MHz bus and 40MB/sec data rate).

 20M cycles/sec * 8KB/(40MB/sec) = 4000 cycles.

4.8 Protection and Security

Security refers to the policy of authorising accesses. Protection refers to the actual mechanisms implemented to enforce
the specified policy. Security aims to prevent intentional misuses of a system, while protection aims to prevent either
accidental or intentional misuses.
A secure system tries to accomplish three goals:

1. Data confidentiality: secret data remains secret.
2. Data integrity: unauthorised users should not be able to modify any data without the owner’s permission.

4.42 Computer Science & Information Technology for GATE

3. System availability: nobody can disturb the system to make it unusable.
There are three components of security:

1. Authentication determines who the user is.
2. Authorization determines who is allowed to do what.
3. Enforcement makes sure that people do only what they are supposed to do.

4.8.1 Authentication

Authentication involves sharing a secret between two parties. One common approach of authentication is the use of pass-

words. However, there are some problems with the password approach:
First, the system must keep a copy of the secret (password). To prevent a malicious user from gaining the access to this

list of passwords, a system needs to use encryption, that is, using a key to transform the data and make it difficult to reverse
without the key. For example, the UNIX /etc/passwd file stores passwords that are encrypted using one-way transforma-
tions. Since, the system only stores the encrypted version, a malicious user cannot read those passwords. When you type
in the password, the system first encrypts your password and then compares it to the encrypted version.

The second problem with the password scheme is that it is difficult to come up with good passwords. Short passwords
are easy to crack, but people tend to write down long passwords.

The third problem concerns whether we can trust the encryption algorithm. If there is a backdoor, decryption may not
require exhaustive search.

4.8.2 Authentication in Distributed Systems

In the distributed environment, encryption is needed for authentication and guarding the secrecy of data in transit.

Private Key Encryption
The idea of private key encryption is to use an encryption algorithm that can be easily reversed, given the correct key (and
hard to reverse without the key).

Plaintext Cipher text

Encrypt

Key
Insecure

transmission

Cipher text Plaintext
Decrypt

Key

Secure
environment

Secure
environment

Without the key, one cannot decode the cipher text without exhaustive searches. From the plain text and the cipher text,
one cannot derive the key. As long as the key stays secret, private key encryption provides both secrecy and authentication.

The tricky part of the private key approach is to distribute keys in the first place. It usually involves an authentication

server, which keeps a list of keys and provides a way for two parties to talk to each other, as long as they trust the server.
Suppose Keyxy denotes the key for talking between x and y, and Keyxy[message] means to encrypt a message with Keyxy.

Also, suppose we have clients A and B, and the server S. A and B already own KeyAS and KeyBS, respectively in order to talk
to S. If A wants to talk to B, we go through the following steps under the Kerberos protocol.

 Client A first asks S: “Yo, ring me B, and I want KeyAB”

 A Æ S: KeyAS[give me KeyAB]

 S gives back KeyAB to A, and a message for B signed by KeyBS, containing KeyAB.

 S Æ A: KeyAS[here is KeyAB and a message to B]

 A sends the message to B

 A Æ B: KeyBS[use KeyAB to talk to A]

There are additional details:

1. The server adds timestamps to limit how long a key can be used; this will prevent a machine from replaying messages
later (e.g., “deposit $100”).

Operating Systems 4.43

2. The encrypted message also includes checksums to prevent a malicious user from inserting things into the message
(e.g., “deposit $1,000”).

3. To reduce the exposure of KeyAS (or KeyBS), A can periodically ask the server to give a temporary key KeyA’S that is
different each time to serve the function of KeyAS.

In a nutshell, the Kerberos protocols are proposed to have secured transactions between the processes running on diff
m/c’s which are connected thru a comp N/W. Here, the following assumptions are made,

(i) The network is insecure

(ii) The O.S is not trusted or insecure

(iii) The authentication server is trusted

Here, the Client will be contacting the Authentication Server (A.S) by presenting its credentials along with the server info also.
The A.S will generate a ticket having session key encrypted using Client’s key and some other field s such as Client ID and ses-
sion key which are encrypted using Server Key and then sent to the Client. Client extracts the session key from this ticket by
decrypting using its key and remembers the session key. Then, the client sends the ticket containing the other fields as it is to
the server, the server now applying its key decrypts the message and identifies the session key. Now, both client and server are
having exclusively designed keys and they can communicate each other using this session key.

Digital signatures have to be acquired from the authentication servers. Digital signatures are generated by using email
ID, time, some string specified by the user by the authentication server.

Public Key Encryption
Public key encryption is an alternative to the private key encryption, which separates authentication from secrecy. En-
cryption and decryption involves a pair of public keys and private keys. With private key systems, a key is used for both
encryption and decryption:

 Encryption(Key, plaintext) = cipher text

 Decryption(Key, cipher text) = plaintext

With the public key scheme, if the public key is used for encryption, the private key is used for decryption; if the private
key is used for encryption, the public key is used for decryption:

 Encryption(Keypublic, text) = cipher text

 Decryption(Keyprivate, cipher text) = plaintext

 Encryption(Keyprivate, text) = cipher text

 Decryption(Keypublic, cipher text) = plaintext

The idea is that the private key is kept secret, while the public key is listed in the directory. So, we can have the following
variations of encrypted transmissions:

• Keymy_public[Hi, venkat]: anyone can create it, but only I can read it (secrecy).

• Keymy_private[I’m venkat]: everyone can read it, but only I can send it (authentication).

• Keyyour_public[Keymy_private[I know your secret]]: only I can send it, and only you can read it.

However, how can you trust public keys?

4.8.3 Authorisation

The Access matrix is a formalisation of all the permissions in the system, describing who can do what. For example, in the
following matrix, it says that Bart can read Lisa’s diary.

File1 Lisa’s diary File3 …

Venkat read, write read

Lalitha read, write

Magadh read

…

However, due to the size and the sparse use of the matrix, almost all systems implement two alternatives: the access control
list and the capability list.

The Access control list stores all permissions for all users with each object. An analogy is a guard standing in front of a

4.44 Computer Science & Information Technology for GATE

door with a list of people who are allowed to enter. However, as the number of users increases, this list may become very
long. Under UNIX, the permission of each file is specified according to its owner, user group, and the world (everyone).
Therefore, a file may be specified as world readable, group readable and writeable, and owner executable.

The Capability list stores all objects the process has permission to touch for each process. An analogy is that each per-
son owns a set of keys. Whoever has the key has the right to enter the door. Page tables are an example. Each process has
a list of pages it has access to, not each page has a list of processes that have access permission.

Access control list allows an object to easily know who is allowed to access the object. However, it is difficult to know
which objects a user can access. Therefore, it is more difficult to revoke a user’s access rights to a set of objects. The capabil-
ity list allows a user to easily know the list of objects to access. However, it is difficult to discover the list of people who can
access an object. Therefore, it is more difficult to revoke capabilities of an object from a set of users. Most of the operating
systems today use an access control list for most resources.

Enforcement
The enforcer checks passwords, access control lists, and so on. Any bug in enforcer means that a malicious user can gain
the ability to do almost anything. In UNIX, the superuser has all the powers of the UNIX kernel. Because of the coarse-
grained access control, lots of things have to run as superuser in order to work. If there is a bug is in any one of these
programs, you are hosed!

To reduce the number of bugs, the enforcer should be as small as possible, which often leads to a simple protection
model. Minimal-privilege-based enforcers tend to be complex and more prone to bugs.

State of the World in Security
Authentication in the single-machine environment is mostly password-based, and people still use poor passwords. Au-
thentication in distributed systems mostly depends on encryption, but almost nobody encrypts (e.g., emails).

Authorisation is largely based on the access control list. However, many systems provide only very coarse-grained ac-
cess control (e.g., UNIX). Therefore, often protection mechanisms are turned off to enable sharing.

Enforcement is mostly achieved through the kernel model. It is hard to write a million lines of code without bugs, and
any bug is a potential security loophole.

4.8.4 Classes of Security Problems

Eavesdropping

Eavesdropping is the listener approach. One can tap into the serial line on the Ethernet, and see everything typed in; al-
most everything goes over network unencrypted. For example, your password goes over the network unencrypted when
you rlogin to a remote machine.

The military approach to defeat wired eavesdropping is to use pressurised cables. If the air pressure drops, someone
may be trying to tap into the cable.

Abuse of Privilege
If the superuser is evil, there is nothing you can do.
Imposter
An imposter breaks into the system by pretending to be someone else. For example, if a system authenticates by a person’s
voice or facial image, the system can be fooled. A countermeasure against the imposter attack is to use behavioral moni-

toring to look for suspicious activates (e.g., overwriting the boot block).
Trojan Horse
A Trojan horse is a seemingly innocent program that contains code that will perform an unexpected and undesirable
function. A countermeasure against the Trojan horse is integrity checking. Periodically, the system should check the con-
tent of the disk against the original checksums for various files.
Salami Attack
The idea is to build up a chunk one-bit at a time. A programmer at a bank can reprogram the accounting program, so that
the partial pennies go into his account. A countermeasure is for companies to have code reviews as a standard practice.
Logic Bombs
A programmer may secretly insert a piece of code into the production system. As long as the programmer feeds the system
password periodically, it does nothing. However, if the programmer is suddenly fired, the logic bomb does not receive its
password, so it goes off. Logic bombs can be also prevented by code reviews.

Operating Systems 4.45

Denial-of-Service Attack
Denial-of-service attacks refer to attacks on system availability. A handful of compromised machines can flood a victim
machine with network packets to disrupt its normal use. Currently, researchers are still looking for effective countermea-
sures.

Some important points about File System security

• “chmod” command of Unix can be executed on a file by the owner of that file only (exception for the superuser who
can change permissions of any file of any directory of any user).

• Chmod command is used and file permissions are changed then they are visible even we logout.

• Main drawback of chmod command is that a user cannot give permissions to a specified User. He can give to a group
of people only.

• If we wanted in Unix system to have freedom to give permissions to a specified user then, you have to create groups
such that there will be only one member.

• If we have execution permission for a directory then we can “cd” into that directory.

• Sticky bit if set for an executable file then next time when it is running it will be giving better response time.

• If the sticky bit is set for a directory then anyone can create files or subdirectories in it while maintaining their pri-
vacy rules.

• If gid bit is set for a file then kernel enforces mandatory locking if required.

• If uid bit is set for a (executable) file which belongs to some other user and when we run that file, we will be acquir-
ing the privileges of that user. Example Passwd command.

• To be specifically, external authentication is required to login into the system whereas internal authentication in-
cludes making sure that one user’s process does not disturb the privacy rules of other user processes or other user
resources.

• In order to protect the systems from external users , some application programs are been made such that if any one
tries to login with superuser name as “root” or operator etc. They will not be permitted to login . In secured Telnets
also it is not possible.

• In most of the versions of Unix when a user tries to login from a terminal unsuccessfully for 3 consecutive times,
we may get a message known as timed out and that same info is recorded in log files. There are some administration
tools which when executed, they report about these attempts.

• Some application SWs such as Oracle, when installed it will be creating some user accounts also, special accounts to
admin oracle who will be having super user privileges. They may be having well known passwords and usernames.
It is mandatory that the Unix administrator to change the passwords of those well known accounts, soon after their
installations.

• Password Aging: Is small security measure in which administrators will be enforcing that the users has to change
their passwords within some stipulated amount of time.

• Great security loop hole in Unix O.S is the super user himself

• In Unix designers during the system booting time by pressing some hot keys or by entering some boot options one
can enter into the system in single user mode. If the Unix system is unattended, there is a danger that users can
power off the m/c, on it again and login in single user mode and then they can take over the control of the system.

4.9 Introduction to Queuing Theory

• Poisson arrival with l constant arrival rate (customers per unit time) each arrival is independent.

• P(t £ t) = 1– e–lt

• Probability n customers arrive in time interval t is:

e–lt (lt) n/ n!

• Assume random service times (also Poisson): m constant service rate (customers per unit time)

• What is the CPU utilisation (fraction of time that CPU is busy?)

• Every 1/l seconds, one new arrival

4.46 Computer Science & Information Technology for GATE

 • Takes 1/m seconds to process one job

• Utilisation: (1/m)/ (1/l) = l/m = r

• On average, how many jobs are in the system?

• Using a bit of queuing theory: r/(1– r)

Little’s Theorem:

• Wq = mean time a customer spends in the queue

• l = arrival rate

• Lq = number of customers in queue

• W = mean time a customer spends in the system

• L = mumber of customers in the system

• Lq = lWq

• L = lW

• Server Utilisation: r = l/m

• Time in System : W = 1/(m–l)

• Time in Queue: Wq = r/(m–l)

• Number in Queue (Little): Lq = r2/(1– r)

n Example

 Arrival rate l = 2 jobs/sec

 Service rate m = 3 jobs/sec

 Utilisation r = l/m = 66.66%

 Time in system W = 1/(m – l) = 1 sec

 Time in queue Wq = r/(m – l) = .6666 sec

 Length of queue Lq = l* Wq = 1.3333

n Example An I/O system with a single disk gets about 10 requests/second and the average time for a disk IO to serve
is 50 ms. What is utilisation?

n Answer:
Arrival Rate =10
Service Rate = 1/50ms = 20
r = 10/20 = 0.5
Average No of IO requests in the system = Arrival rate * Waiting time

n Example Suppose the average time to satisfy a disk request is 50ms and arrival rate is 200 requests/sec. What is the
mean no of I/O requests at the disk server?

n Answer:
Length server = Arrival rate * Time server

 = 200*0.05 sec=10

n Example Suppose a processor sends 10 disk IO requests per second, these requests are exponentially distributed and
average disk service time is 20ms then calculate

a. On average how disk is utilised

b. What is the average time spent in the queue

c. What is 90th percentile of queue time

d. What is the average response time for a disk request, including the queuing time and service time?

n Answer:
Arrival rate = 10
Service rate =1/20ms
Utilisation = 10/(1/0.02) 0.2

Operating Systems 4.47

Timequeue = Timeserver * Server Utilisation/(1-Server utilisation) = 20ms*0.2/(1 – 0.2) = 5ms
The average response time = Timequeue + Time server

= 5 + 20 = 25ms
90th percentile of queue time = 11.5ms

n Example There is a restaurant which holds 100 people. The average dinner takes two hours and there are 25 people
waiting ahead of you. Calculate the average waiting time. Departure rate is 50 people per hour.
100 people = 50 people/hour * 2 hours
You have to wait approximately 30 minutes

n Example In a city with 1 lakh population an average person lives 70 yrs. Death rate, birth rate is same. That is system
is closed system.

n Answer: Death rate * average time in system = number in system
Death rate * 70 = 100000
Death rate = 14000 per year

n Example Suppose we have a single processor system, and jobs arrives at a rate of 10 jobs/second. Each job takes 50 ms.
What is the expected number of jobs in the system and average time in system.

n Answer:
 The arrival rate = 10
 Service rate = 20
Mean service time = 1/(20 – 10) = 1/10 = 100 msec
No of jobs in the system = r/(1– r) (where r is utilisation given as l/m = 10/20 = 0.5)
 = 0.5/(1– 0.5) = 1
The same can be got from Liitle’s theorem
No of jobs in the queue = Mean service Time * arrival rate = 100ms *10 = 1

n Example The mean arrival to a hot bathe service is 0.05 customers/sec and the mean bathe is 0.1 customers/sec. Cal-
culate mean service time.

n Answer:
Mean service time = 1/0.1 – 0.05 = 20 sec

n Example Consider a terminal concentrator with four 4800 bps input lines and one 9600 bps output line. The mean
packet size, 1/m is 1000 bits. Each of four line delivers poison traffic with an average of lI = 2 packets/sec. What is the
mean delay experienced by a packet from the moment the last bit arrives at the concentrator until the moment that bit
is retransmitted to the output line? Also what is the mean number of packets in the concentrator including the one in
service?

n Answer:
Arrival rate = 2*4 = 8
Service rate = 9600/1000 = 9.6
Mean delay = 1/(9.6-8) = 625 msec
Mean no of packets in the concentrator = (8/96)//(1–8/9.6) = 5

n Example Two computers are connected by a 64 Kbps line. There are eight parallel services using the line. Each ses-
sion generates poisson traffic with a mean 0f 2 packets/sec. The packet lengths are exponentially distributed with a mean
of 2000 bits. The designers must choose between giving each session a dedicated 8kbps of bandwidth (FDM or TDM) or
having all packets compete for a singe 64 kbps shared channel. Which is better?

n Answer:
Analysis (Each service a separate channel)
Arrivals = 2
Service rate=8000/2000 = 4
Mean dealy=1/(4–2) = 500 ms
Analysis(Shared channel)

4.48 Computer Science & Information Technology for GATE

Arrivals = 2*8
Service rate = 64/2000 = 32
Mean delay = 1/(32 – 16) = 66.7 msec

n Example A communication channel capable of transmitting at a rate of 50 kbps will be used to communicate 10 ses-
sions each generating poison traffic at a rate 150 packets/min. Packets lengths are exponentially distributed with mean
1000 bits.

a. For each session find the average number of packets in queue, the average number of packets in the system, and the
average delay per packets when the line is allocated to the session is using 10 equal capacity TDM line.

b. Repeat the above for the case where 5 of the sessions transmit at a rate of 250 packets/min while the other at a rate
of 50 packets/min.

n Answer:

l = 5/60 = 1/12 sec

N = 5 minutes

T = 20 + 5 minutes

4.10 Solved Questions

1. The following is a set of three interacting processes
(P1, P2, P3) that can access two shared semaphores:

 semaphore U = 3;

 semaphore V = 0;

[P1] [P2] [P3]

while(TRUE) while(TRUE) while(TRUE)

begin begin begin

 wait(U) wait(V) wait(V)

 print(“C”) print(“A”) print(“D”)

 signal(V) print(“B”) end

end signal(V)

end

 Within each process the statements are executed se-
quentially, but statements from different processes
can be interleaved in any order that’s consistent with
the constraints imposed by the semaphores. When
answering the questions below assume that once ex-
ecution begins, the processes will be allowed to run
until all 3 processes are stuck in a wait() statement, at
which point execution is halted.

a. Assuming execution is eventually halted, how many
C’s are printed when the set of processes runs?

 Answer: Exactly 3. Each time P1 executes the
“wait(U)” statement, the value of semaphore U is dec-
remented by 1. Since there are no “signal(U)” state-
ments, the loop in P1 will execute only 3 times (i.e.,
the initial value of U) and then stall the fourth time
“wait(U)” is executed.

b. Assuming execution is eventually halted, how many
D’s are printed when this set of processes runs?

 Answer: Exactly 3. P1 will execute its loop three times
(see the answer to the previous question), increment-
ing “signal(V)” each time through the loop. This will
permit “wait(V)” to complete three times. For every
“wait(V)” P2 executes, it also executes a “signal(V)”
so there is no net change in the value of semaphore V
caused by P2. P3 does decrement the value of sema-
phore V, typing out “D” each time it does so. So P3
will eventually loop as many times as P1.

c. What is the smallest number of A’s that might be
printed when this set of processes runs?

 Answer: 0. If P3 is scheduled immediately after P1
executes “signal(V)”, then P2 might continue being
stalled at its “wait(V)” statement and hence never ex-
ecute its print statements.

d. Is CABABDDCABCABD a possible output sequence
when this set of processes runs?

 Answer: No. Here are the events implied by the se-
quence above:

 start: U=3 V=0

 print C: U=2 V=1

 print A: U=2 V=0

 print B: U=2 V=1

 print A: U=2 V=0

 print B: U=2 V=1

 print D: U=2 V=0

 print D: oops, impossible since V=0

e. Is CABACDBCABDD a possible output sequence
when this set of processes runs?

 Answer: Yes:

Operating Systems 4.49

 start: U=3 V=0

 print C: U=2 V=1

 print A: U=2 V=0

 print B: U=2 V=1

 print A: U=2 V=0

 print C: U=1 V=1

 print D: U=1 V=0

 print B: U=1 V=1

 print C: U=0 V=2

 print A: U=0 V=1

 print B: U=0 V=2

 print D: U=0 V=1

 print D: U=0 V=0

f. Is it possible for execution to be halted with either U
or V having a non-zero value?

 Answer: No. If U has a non-zero value, P1 will be able
to run. If V has a non-zero value, P3 will be able to
run.

2. In a system, memory pages(frames) are 512 words
long. Consider the following Pascal program sege-
ment:

 Var A :array [1..128] of array [1..128] of integer

 for j := 1 to 128

 do for i :=1 to 128

 do A[i][j]=0;

 Assuming that 4 memory words are needed to store
an integer and that arrays are stored in row-major or-
der internally, how many page faults would be gener-
ated by the above program segment.

 Modify the above program such that the number of
page faults is reduced. Assume FIFO policy.

 Answer: As array size is 128 elements with each one
element 4 bytes, we need 512 bytes for one row.

 However, the above program access the elements
A[0][0], A[1][0],….A[127][0], A[0][1], A[1][1],
..A[127][1], etc,. That is, 0th column elements are ac-
cessed first then 1st column elements and vice versa.
When j = 0 and i = 0, we need A[0][0], however whole
0th row is read. However, after using A[0][0] next
page (next row) will be loaded without using elements
of the current row elements that are available already
in the memory. If we assume the number of frames
allocated for this program is limited (say one) we get
page fault for each element reference. By exchanging
the for loops we can have better program which ac-
cesses all the elements of row once it is loaded into
page.

 Var A :array [1..128] of array [1..128] of integer

 for i := 1 to 128

 do for j :=1 to 128

 do A[i][j] = 0;

 If we observe the above modified code, we will be ac-
cessing A[0][0], A[0][1], A[0][2],…. A[0][127], A[1]
[0], A[1][1]…..A[1][127], etc. Thus, when we load
first row while referring A[0][0], along with A[0][0]
all other elements will be loaded into memory and are
used. Thus, page faults will be dramatically reduced.

3. A 32 bit system has a page size of 8K bytes. If a two-
level paging scheme is used, where each page of the
page table is 4K bytes, calculate the size of the outer
page table.

 Answer:

 Page size = 8K =13 bits is offset

 Page of the page table is 4K. Therefore, 12 bits are for
second level page table.

 Total address bits = 32 bits

 Therefore, no of bits for the first level page table =
32–12 –13 = 7

 No of entries in the outer page table = 27 = 128

4. What is a stack algorithm?

 Answer: A stack algorithm is a page replacement al-
gorithm for which the pages in memory for n frames
is always a subset of the set of pages for n+1 frames.
Such algorithms do not exhibit Belady’s Anomaly, and
the optimal and LRU algorithms are examples.

5. What is hint? Explain.

 Answer:

 The idea of having the processor use the cached data
before the tag match completes can be applied to
caches. A subset of the tag, called a hint, can be used
to pick just one of the possible cache entries mapping
to the requested address. This datum can then be used
in parallel with checking the full tag. The hint tech-
nique works best when used in the context of address
translation.

6. What is victim cache?

 Answer:

 A victim cache is a cache used to hold blocks evicted
from a CPU cache due to a conflict or capacity miss.
The victim cache lies between the main cache and its
refill path, and only holds blocks that were evicted
from that cache on a miss. This technique is used to
reduce the penalty incurred by a cache on a miss.

 The original victim cache on the HP PA7200 was a
small, fully-associative cache. Later processors, such
as the AMD K7 and K8, used the very large secondary
cache as a victim cache, to avoid duplicate storage of
the contents of the large primary cache.

4.50 Computer Science & Information Technology for GATE

7. What is a trace cache?.

 Answer: A trace cache is a mechanism for increas-
ing the instruction fetch bandwidth and decreasing
power consumption (in the case of the Pentium 4) by
storing traces of instructions that have already been
fetched and decoded.

8. What are front-side and back-side caches?

 Answer: Front side cache means it will not be hav-
ing any special bus. Where as, back-side cache will be
having a separate bus which makes it to operate at the
speeds of the core.

Processor Cache RAM

 Front- Side Cache

ProcessorCache RAM

 Back-side Cache

9. What is the use of Write buffer?

 Answer: Store operations in to cache may take some
time and there is a danger of CPU to get stalled. To
reduce this, write buffer is used. Write buffer is FIFO
queue of incomplete write and is also called as store
buffer or write-behind buffer. If write buffer contains
a data item A, then it also indicated that its counterart
is memory is stale.

CPU

Cache

...

store A

...

store B

...

...
store A

10. What is meant by inclusive or exclusive caches in
multilevel caches?

 Answer: Exclusive means a particular cache line may
be present in exactly one of the cache levels and no
more than one. Inclusive means the line may be pres-
ent simultaneously in more than one level of cache.
Nothing prevents the line widths from being different
in differing cache levels.

11. What cache line coloring?

 Answer: Every cache-able address has one and only
one corresponding index line, which can cause prob-
lems. For instance, if the processor reads a sequence
of addresses that accidentally happen to correspond
to the same cache index, the cache line must be evict-
ed and re-fetched on each read. Such a situation easily
can happen in, say, a for loop reading elements of a
structure that happens to be about the same size as the
cache. For directly mapped caches, the index some-
times is called the cache colour, and this problem is
called the cache-line colouring problem.

12. What is the use of ASID or RID?

 Or

 What is line doubling?

 Answer: Virtual tagging introduces a serious hazard
known as line doubling. If two tasks share a single
physical line which appears under different addresses
in their virtual memory spaces, and one task modi-
fies its copy, the other task may not be aware of it and
continue using an obsolete copy. The easiest way to
avoid this issue is to flush cache on every task switch,
though it isn’t much attractive in means of perfor-
mance. Another way is to supply every line with an
auxiliary field known as ASID (Address Space IDenti-
fier) or RID (Region IDentifier).

13. A file system checker can also be used to check files
and directories. Suppose that the following table is
constructed:

 I-node number: 0 1 2 3 4 5 6 7 8 9

 File count: 1 0 1 1 0 1 1 0 1 0

 I-node count: 1 0 0 1 0 2 1 0 1 0

 The file count is obtained by traversing from the root
directory and computing the number of times an i-
node is used by a file. The i-node count is just the link
counts stored in each i-node. Are there any errors? If
so, how serious are they, and how can they be fixed?

 Answer: I-node 2 has an error. The file count is larger
than the I-node count. This means a link to the file is
not counted. This could be serious. If any file is erased,
the file is lost. Set the i-node count to 1 to fix it.

 I-node 5 has an error. The I-node count is larger than
the file count. That means I-node points to some file
that no longer exists. This is not serious. Set the i-
node count to 1 to fix it.

14. Consider the following program. Explain what it

does?

1 main (int argc, char * arcv []) {

2 int pid;

3

Operating Systems 4.51

4 pid = fork () ;

5

6 if (pid< 0) {

7 fprintf (stderr, “Exit”) ;

8 exit (–1) ;

9 }

10

11 else if (pid==0) {

12 execlp (“/bin/1s”, ”1s”, NULL);

13 }

14

15 else {

16 wait (NULL);

17 printf (“Done”);

18 exit (0);

19 }

20 }

 Answer: It creates a child process. In the child pro-
cess, execlp() is used to load “ls” program. While child
is running “ls” command, parent process will be wait-
ing. After child’s completion, parent displays “Done”.

15. Which of the following instructions should be privi-
leged?

a. Set value of timer

b. Read the clock

c. Clear memory

d. Issue a trap instruction

e. Turn off interrupts

f. Modify entries in device-status table

g. Switch from user to kernel mode

h. Access I/O device

 Answer: The following operations need to be privi-
leged: Set value of timer, clear memory, turn off inter-
rupts, modify entries in device-status table, access I/O
device. The rest can be performed in user mode.

16. When a process creates a new process using the fork()
operation, which of the following state is shared be-
tween the parent process and the child process?

a. Stack

b. Heap

c. Shared memory segments

 Answer: Only the shared memory segments are
shared between the parent process and the newly
forked child process. Copies of the stack and the heap
are made for the newly created process.

17. Researchers have suggested that, instead of having an
access list associated with each file (specifying which

users can access the file, and how), we should have a
user control list associated with each user (specifying
which files a user can access, and how). Discuss the
relative merits of these two schemes.

 Answer:

∑ File control list. Since the access control informa-
tion is concentrated in one single place, it is easier to
change access control information and this requires
less space.

∑ User control list. This requires less overhead when
opening a file.

18. Consider the following three threads and three sema-
phores:

 /* Initialize semaphores */

 s1 = 1; s2 = 0; s3 = 0; x = 0;

void thread1(){
x = x + 1;
}

void thread2(){
x = x + 2;
}

void thread3(){
x = x * 2;
}

 Add P(), V() semaphore operations (using sema-
phores s1, s2, s3) in the code for thread 1, 2 and 3 such
that the concurrent execution of the three threads can
only result in the value of x = 6.

 Answer:

void thread1(){
P(s1)
x = x + 1;
V(s2)
}

void thread2(){
P(s2)
x = x + 2;
V(s3)
}

void thread3(){
P(s3)
x = x * 2;
V(s1);
}

 If second and third threads starts first, they gets
blocked. When first thread starts, s1 value becomes
0 after P operation and x value will be initialized to
1. Then it signals to thread2 which is waiting on s2.
Thread2 changes x value to 3 then signals thread3,
which in turn double x value, thus x value becomes 6.

19. This question will test your understanding of concur-
rent programming, specifically deadlocks. For these
questions, assume each function is executed by a
unique thread on a uni-processor system.

1 void thread1() {

2 P(lock1);

3 P(lock2);

4 P(lock3);

6 /* do some work */

7 V(lock2);

8 V(lock3);

9 V(lock1);

10 }

11 void thread2() {

12 P(lock1);

13 P(lock2);

14 P(lock3);

15 /* do some work */

16 V(lock1);

17 V(lock2);

18 V(lock3);

19 }

 Does this code contain a deadlock? If so, write in-
struction sequence (through their line numbers)
leads to deadlock.

4.52 Computer Science & Information Technology for GATE

20. What will be the effect of the following program?

 main(){

 for(;;) fork();

 }

 Answer: It creates infinite number of processes. It ex-
hausts available swap memory and one may get error
message such as “unable to swap”. We may get another
error such as “unable to fork”. Usually, there will be
system resource limit known as “number of processes
which a process can create through fork”. By repeated
calling of fork(), we might be exceeding this limit,
thus we may get error such as “unable to fork”.

21. What is the difference between deadlock and starva-
tion?

Deadlock Stravation

reason Usually due to the
program design. It is
difficult for OS to de-
tect and prevent it.

Usually due to the
scheduling algorithm
of OS.

appearance Two or more process-
es are waiting for each
other and formed a
circle.

Can happen to a sin-
gle process.

solve Can not be solved
naturally, even if no
other processes are
running.

If no other process is
running, it can pro-
cess.

22. List general methods used to pass parameters to the
OS.

∑ Pass parameters in registers

∑ Registers pass starting addresses of blocks of pa-
rameters

∑ Parameters can be placed, or pushed, onto the
stack by the program and popped off the stack by
the operating system

23. If a thread causes an unrecoverable error such as stack
overflow, memory access violation, divide-by-zero,
and etc, what would probably happen to the process
containing the thread? Will other threads within the
same process be affected?

 Answer: The process containing the faulty thread
would likely exit abnormally. As a result, all threads
within the process will exit.

24. The following pair of processes share a common vari-
able X:

P1 P2

int Y; int Z;

A1: Y = X*2; B1: Z = X+1;

A2: X = Y; B2: X = Z;

 X is set to 5 before either process begins execution.
As usual, statements within a process are executed se-
quentially, but statements in P1 may execute in any
order with respect to statements in P2.

a. How many different values of X are possible after
both processes finish executing?

 Answer: There are four possible values for X. Here are
the possible ways in which statements from P1 and P2
can be interleaved.

 A1 A2 B1 B2: X = 11

 A1 B1 A2 B2: X = 6

 A1 B1 B2 A2: X = 10

 B1 A1 B2 A2: X = 10

 B1 A1 A2 B2: X = 6

 B1 B2 A1 A2: X = 12

b. Suppose the programs are modified as follows to
use a shared binary semaphore S:

P1 P2

int Y; int Z;

wait(S); wait(S);

A1: Y = X*2; B1: Z = X+1;

A2: X = Y; B2: X = Z;

signal(S); signal(S);

 S is set to 1 before either process begins their execu-
tion and. As before, initial value of X is 5. Now, how
many different values of X are possible after both pro-
cesses finish executing?

 Answer: The semaphore S ensures that, once begun,
the statements from either process execute without
interrupts. So now the possible ways in which state-
ments from P1 and P2 can be interleaved are:

 A1 A2 B1 B2: X = 11

 B1 B2 A1 A2: X = 12

c. Finally, suppose the programs are modified as fol-
lows to use a shared binary semaphore T:

P1 P2

int Y; int Z;

A1: Y = X*2; B1: wait(T);

A2: X = Y; B2: Z = X+1;

signal(T); X = Z;

 T is set to 0 before either process begins their execu-
tion. As before, X is set to 5.

 Now, how many different values of X are possible after
both processes finish executing?

 Answer: The semaphore T ensures that all the state-
ments from P1 finish execution before P2 begins. So

Operating Systems 4.53

now there is only one way in which statements from
P1 and P2 can be interleaved:

 A1 A2 B1 B2: X = 11

25. The following pair of processes share a common set of
variables: “counter”, “tempA” and “tempB”:

Process A Process B

... ...

A1: tempA = counter + 1; B1: tempB = counter + 2;

A2: counter = tempA; B2: counter = tempB;

... ...

 The variable “counter” initially has the value 10 before
either process begins to execute.

a. What different values of “counter” are possible
when both processes have finished executing?
Give an order of execution of statements from
processes A and B that would yield each of the
values you give. For example, execution order A1,
A2, B1, B2 would yield the value 13.

 Answer: There are three possible values for X. Here
are the possible ways in which statements from A and
B can be interleaved.

 A1 A2 B1 B2: X = 13

 A1 B1 A2 B2: X = 12

 A1 B1 B2 A2: X = 11

 B1 A1 B2 A2: X = 11

 B1 A1 A2 B2: X = 12

 B1 B2 A1 A2: X = 13

b. Modify the above programs for processes A and B
by adding appropriate signal and wait operations
on the binary semaphore “sync” such that the only
possible final value of “counter” is 13. Indicate
what should be the initial value of the semaphore
“sync”.

 Answer: We need to ensure that A and B run uniter-
rupted, but it doesn’t matter which runs first.

 semaphore sync = 1;

Process A Process B

 wait(sync); wait(sync);

A1: tempA = counter + 1; B1: tempB = counter + 2;

A2: counter = tempA; B2: counter = tempB;

 signal(sync); signal(sync);

26. Explain how a program address space is initiated?

 To start a program, the OS must

∑ allocates swap space: space on the backing store
that can hold images of the pages in memory

∑ allocates a page table for all of the pages a pro-
gram might use. This table must be contiguous
since the hardware indexes into it.

∑ allocates a disk block descriptor table to hold the
backing store information

∑ copies each page of the program into the swap
space noting the disk block and swap device num-
ber of the page in the appropriate disk block de-
scriptor table entry

∑ sets all of the valid bits in the page table to be zero

∑ runs the program

27. Explain about first fetch instruction of a program.

 Answer:

 The very first fetch of an instruction will cause a page
fault to occur since it will be attempting to read page
0. Since the valid bit is clear, the OS will take a page
fault exception immediately, go to the disk block de-
scriptor entry for page 0, find the disk block number,
get a free frame, load the page into the frame, update
the frame table entry with the pointer to the page ta-
ble entry, update the page table entry with the frame
number, set the valid bit to 1, and restart the faulting
instruction. When the programs runs onto page 1, or
jump to another page, it will be faulted in accordingly.

28. Which pages are pinned?

 Answer: Kernel pages.

29. What is the difference between logical addresses and
pointers?

 Answer: The difference between logical addresses and
pointers is that all pointers are user objects, and thus
pointers only point from one place in logical memo-
ry to another place in logical memory. The mapping
from logical to physical is only visible to the designer
of the system.

30. What is secondary page fault?

 Answer: In multi level page tables, if the required sec-
ond level page block is not available in the physical
memory, system raises as secondary page fault.

31. What are the different means of implementing page
table?

 Answer:

∑ Fast registers if the page table size is small

∑ memory

 ∑ content addressable memories (caches)

32. Why must the TLB be flushed on a context switch?

 Since the TLB translates virtual addresses to physical
addresses and processes don’t share physical memory
in general, the virtual address translations in the TLB
will not be valid for the new process.

33. In which of the following C language’s for loops, the

miss rate is more? Why?

4.54 Computer Science & Information Technology for GATE

 Loop 1

 int I, J, a[1024] [1024]

 for (I = 0; I < 1024; ++I) {

 for (J = 0; J < 1024; ++J) {

 a[I] [J] = 0;

 }

 }

 Loop 2

 int I, J, a[1024] [1024]

 for (I = 0; I < 1024; ++I) {

 for (J = 0; J < 1024; ++J) {

 a[J] [I] = 0;

 }

 }

 Answer: In the second one, miss rate is more. Do read
about row and column major in data structures unit.

34. Is it possible for a program to specify in which physi-
cal address a instruction has to occupy while it is run-
ning?

 Answer: No.

35. What is the difference between buffer and Cache?

 In computing, a buffer is a region of memory used to
temporarily hold output or input data, comparable to
buffers in telecommunication. The data can be output
to or input from devices outside the computer or pro-
cesses within a computer. Buffers can be implemented
in either hardware or software, but the vast majority
of buffers are implemented in software. Buffers are
used when there is a difference between the rate at
which data is received and the rate at which it can be
processed, or in the case that these rates are variable,
for example in a printer spooler.

 The difference between buffers and cache:

 Buffers are allocated by various processes to use as
input queues, etc. Most of the time, buffers are some
processes’ output, and they are file buffers. A simplis-
tic explanation of buffers is that they allow processes
to temporarily store input in memory until the pro-
cess can deal with it.

 Cache is typically frequently requested disk I/O. If
multiple processes are accessing the same files, much
of those files will be cached to improve performance
(RAM being so much faster than hard drives), it’s disk
cache.

36. Consider a system that has many threads of two dif-
ference types (typeA and typeB). All the threads call
the below subroutine named routine passing their
type as an argument.

 enum { typeA, typeB} ThreadType;

 Semaphore semaX = 0; // Initial value of semaX

is zero.

 Semaphore semaY = 0; // Initial value of semaY

is zero.

 void routine(ThreadType threadType){

 if (threadType == typeA) {

 P(semaX);

 V(semaY);

 }

 if (threadType == typeB) {

 V(semaX);

 V(semaX);

 P(semaY);

 }

 DoIt();

 }

 Do comment about how many times DoIt() will be ex-
ecuted by typeA threads compared to typeB threads.

 Answer: Because each typeA thread waits on X once
while each typeB thread signals X twice, there can be
up to twice as many typeA as typeB threads passing
through DoIt() at the same time. However, there can-
not be more typeA threads than this quantity, because
the number of A threads is limited by the number of
signals to X (two) that each typeB thread makes.

 Likewise, because each typeB thread waits on Y
once while each typeA thread signals Y once, there
can be up to as many typeB as A threads passing
through DoIt() at the same time. There cannot be
more typeB threads than this quantity because the
number of typeB threads is limited by the number of
signals to Y (one) that each typeA thread makes.

 The range of valid ratios of typeA threads to typeB
threads passing through DoIt() at the same time can
therefore be expressed as:

 b <= a <= 2b

 Where a is the number of typeA threads and b is the
number of typeB threads.

37. A computer has three commonly used resources des-
ignated A, B and C. Up to three processes designated
X, Y and Z run on the computer and each makes peri-
odic use of two of the three resources.

∑ Process X acquires A, then B, uses both and then
releases both.

∑ Process Y acquires B, then C, uses both and then
releases both.

∑ Process Z acquires C, then A, uses both and then
releases both.

Operating Systems 4.55

 Describe a scenario in which deadlock occurs if all
three processes are running simultaneously on the
machine. How to avoid it?

 Answer: All three processes make their first acquisi-
tion then hang waiting for a resource that will never
become available. We can avoid this re-ordering the
resource requests of process Z as A and C; for that
matter we can re-order requests of other processes
also.

38. What is a race condition?

 Answer: A race condition is a situation where two or
more processes are reading or writing some shared
data and the final result depends on which process
finishes last.

39. What is the priority inversion problem?

 Answer: A priority inversion problem is a situation
in which a low-priority process is blocking a high-
priority process.

40. Consider the following section of code:

main() {

 int i = 3;

 int pid;

 while(i > 0) {

 if ((pid = fork()) > 0) {

 printf(“In parent %d.\n”, i);

 exit(0);

 } else {

 printf(“In child %d.\n”, i);

 i--;

}

 }

 }

 Assume that the fork() system call is successful.

 How many processes will be created when the code is
executed?

 What will be printed?

 Answer: 4 processes (one parent plus 3 child process-
es) will be created.

41. A file system checker has constructed the counters
shown below:

 Block number: 0 1 2 3 4 5 6 7 8 9

 In use: 1 0 0 2 1 0 1 0 1 1

 Free: 0 1 1 0 1 1 0 0 0 0

 Are there any errors? If so, how serious are they (can
they be fixed)? Explain.

 Answer: The block number 3 has an error. The block
has been used by 2 files. This error might not be able to
fixed and need to be reported. The file system checker
can copy the content of this block into a free block list
such as the block 1. The file system states are then in

consistency but the file problems might not solved. So
this error needs to be reported.

 The block number 4 has an error. It is both in use and
free. The error can be fixed. The file system checker
just set the free bit to 0. This block becomes a block in
use.

 The block number 7 has an error. It is neither in use
nor free. The error can be fixed. The file system check-
er just set the in use bit to 0 and add it into the free list.

42. The aging algorithm with a = 1/2 is being used to pre-
dict run times. The previous for runs, from oldest to
most recent, are 40, 20, 40, and 15 msec. What is the
prediction of the next time? (5 points)

 Answer: If take all four previous run times into con-
sideration, the prediction

 is =(((40 + 20) / 2 + 40) / 2 + 15) / 2 = ((30 + 40) / 2 +
15) /2

 = (35 + 15) / 2 = 25

 If we take only two previous run times into consider-
ation, the prediction= (40 + 15)/2= 27.5

43. How many processes will be created when the follow-
ing program is executed?

 Assume that all fork system calls are successful.

 main(){

 int i, pid;

 for (i=1; i<=3; i++)

 pid = fork();

 }

 Answer: There are 8 processes (1 parent and 7 child
processes) created when this program is executed.

44. P is a set of processes. R is a set of resources. E is a set
of request or assignment edges. These sets P, R, and E
are as follows:

 P = {P1, P2, P3}, R = {R1,R2,R3},

 E = {P1ÆR1, P1ÆR2, P2ÆR2, P2ÆR3, P3 Æ R2,
P3ÆR3, R1 ÆP2, R2 ÆP2, R3 Æ P1}.

 R1 has one instance. R2 has two instances. R3 has one
instance.

(a) Draw the resource-allocation graph.

(b) Is there any deadlock in this situation? Briefly Ex-
plain.

 Answer: Resource allocation graph is given as:

P2 P3P1

R1 R2 R3

4.56 Computer Science & Information Technology for GATE

 Consider the resource-allocation graph. There are
four cycles in the system:

 P1 Æ R1 Æ P2 Æ!R3 Æ P1, P1 Æ R2 Æ P2 Æ R3 Æ
P1, P2 Æ R2 Æ P2, P2 Æ R3 Æ P1 Æ R1 Æ P2.

 P1 cannot finish because P1 needs R1 and R2 but can
only acquire R2 while R1 is held by P2.

 P2 cannot finish because P2 needs R2 and R3 but can
only acquire R2 while R3 is held by P1.

 P3 cannot finish because P3 needs R1 and R3 but can
only acquire R2 while R3 is held by P1.

 P1, P2, and P3 cannot progress. The deadlock occurs.

45. Consider a system has p processes. Each process need
a maximum of m resources and a total of r resources
available. What condition must hold to make the sys-
tem deadlock free?

 Answer: If a process has m resources it can finish and
cannot be involved in a deadlock. Therefore, the worst
case is where every process has m – 1 resources and
needs another one. If there is one resource left over,
one process can finish and release all its resources, let-
ting the rest finish too. Therefore, the condition for
avoiding deadlock is r >= p(m-1)+1.

46. Consider a system consisting of four resources of the
same type that are shared by three processes, each of
which needs at most two resources. Show that the sys-
tem is deadlock-free.

 Answer: Suppose the system is in deadlock situation.
This implies that each of the three processes is hold-
ing one resource and is waiting for another resource
which is held by one of the other two processes. Since
there are three processes and four resources, one
process must be able to obtain two resources. This
process requires no more resources; therefore it will
eventually terminate and returns its two resources
back which can be used by other two processes to ex-
ecute and terminate.

47. What are the contents of an entry in the System‐wide‐
open‐file table (I‐node table), and an entry in the per‐
process‐open‐file table (fd table)?

 Answer: Contents of an entry in the system-wide-
open-file table:

∑ Copy of the FCB of each open file.

∑ Number of processes that have opened the file.

 Contents of an entry in the per-process-open-file ta-
ble (fd table):

∑ Pointer to the appropriate entry in the system-
wide-open-file table.

∑ Pointer to the current location in the file.

∑ Access mode with which the file is opened.

48. A CPU scheduling algorithm determines an order for
the execution of its scheduled processes. Given n pro-
cesses to be scheduled on one processor, how many
possible different schedules are there? Give a formula
in terms of n.

 Answer: n!

49. Name items in the Process Control Block (PCB).

(1) Process state

(2) Process id

(3) Program counter

(4) CPU registers

(5) CPU scheduling information

(6) Memory-management information

(7) Accounting information

(8) I/O status information

50. Briefly explain the steps that the operating system
takes in order to perform the fork() system call in-
cluding the blocking and signaling the processes.
What would be the value of PID in: PID = fork() after
the fork is performed?

 Answer:

(i) When a parent process invokes the “fork()” sys-
tem call, the operating system performs a context-
switch and dispatches proper operating system
processes to take care of the child process cre-
ation.

(ii) The parent process is blocked and is put at the end
of the ready queue to be scheduled later;

(iii) The whole contents of the parent’s PCB is copied
into an empty entry (slot) of the PCB table, the
new PCB will be the PCB of the newly created
child process and the index number of the new
PCB would become the child’s PID;

(iv) The child’s PCB is put at the end of the ready
queue to be scheduled later;

(v) After being dispatched, both parent and child
processes with resume their executions from the
fork() system call; the parent process will receive
the PID of its child and the child will receive 0 as
the PID which is an indication to this process that
it is the child process;

(vi) The parent process will then block itself by ex-
ecuting “wait()” system call and will wait in a
queue until all its child (children) processes are
terminated, at which time the parent process is
signaled to be waken up and synchronise itself
with its child (children).

Operating Systems 4.57

51. Why do cycles are avoided in a directory structure,
and how can we guarantee that no cycles are gener-
ated in the directory structure?

 Answer: Allowing cycles in a directory structure
causes revisiting the same directories several times
(may even cause infinite-loop) during traversing a
directory structure to find a specific file or directory.
The followings are sample solutions to guarantee no
cycles:

∑ Allow only links to files not subdirectories

∑ Every time a new link is added use a cycle detec-
tion algorithm to determine whether a cycle has
been created or not.

52. Consider a system running ten I/O-bound tasks and
one CPU-bound task. Assume that the I/O-bound
tasks issue an I/O operation one for every millisec-
ond of CPU computing and that each I/O operation
takes 10 milliseconds to complete. Also, assume that
the context switching overhead is 0.1 millisecond and
that all processes are long running tasks. What is the
CPU utilisation for a Round-Robin scheduler when:

(a) The time quantum is 1 msec.

(b) The time quantum is 10 msec.

 Answer:

(a) The scheduler incurs a 0.1 msec. of context-
switching cost for every context switch. There is 1
unit of CPU time followed by 0.1 units of context
switch for both CPU and I/O bound jobs. So CPU
utilisation =1.0/(1.0+0.1) = 1/1.1=0.91 or 91%.

(b) This is slightly complicated because I/O jobs take
only 1 msec of CPU time while CPU uses 10 msec
in each turn. Since time quantum is 10 units, af-
ter CPU finishes 10 msec of CPU and is context
switched there will be exactly one I/O job waiting
in the ready queue. However, it would only use 1
msec. After this CPU-bound job gets the CPU
again. This way, on the long run, for every one turn
of CPU-bound job, I/O bound job gets a turn. So
for every 11 units of CPU usage, 0.2 units are over-
head. CPU utilisation=11/11.2 = 0.982 or 98.2%.

53. A CPU scheduler updates priorities of the processes
at regular intervals. The updating is a linear function
of recent CPU usage of a processes. It is observed that
two processes with their recent CPU usages as 40,18
will be getting their priorities as 80 and 69. What is
the scheduler’s priority updating policy?

 Answer: Let P = priority, x=recent CPU usage. Then,
from the given details of two processes, we have

 80 = m*40 + c

 69 = m*18 + c

 By solving these equations, we may find m as 0.5 and
c as 60. Thus, scheduler uses

 P = 0.5x + 60 as the priority updating function.

54. What are protection fault, page fault, segment fault?

 Answer: A protection fault occurs when an opera-
tion (usually read, write, or execute) is attempted in
a segment that is flagged as prohibiting the particular
operation. A segment fault occurs when the requested
segment is not present in memory. A page fault oc-
curs when the requested page is not in memory.

55. Suppose each process spends 40% of its time in an I/O
state. How many such processes are needed to bring
the system CPU utilisation to higher than 95%?

 Answer: CPU utilisation is defined as 1 − pn, where p
= 0.4 and n is the number of processes. We have the
following table:

n pn CPU Utilisation (1 – pn)

1 0.4 0.6

2 0.16 0.84

3 0.064 0.936

4 0.0256 0.9744

Therefore, four processes are required to have CPU
utilisation higher than 95%.

56. Describe what happens when a page fault occurs (as-
sume a system based on a paged virtual memory).

 ∑ An interrupt is generated by the memory man-
ager (hardware).

 ∑ The current state of things must be saved (all reg-
isters need to be saved, etc).

 ∑ OS (kernel code) is invoked from interrupt ser-
vice routine.

 ∑ Kernel determines the virtual page that caused the
fault, makes sure the page is valid (or generates
SEGV in offending process, etc).

 ∑ If no frames are free, page replacement algorithm
is invoked to boot a page from physical memory
(may need to be written to backing store).

 ∑ Virtual page is copied from backing store to phys-
ical memory and page table for relevant process is
updated. While this is happening other processes
can run. Once I/O is complete, the process that
generated the fault can continue – the instruction
that generated the fault is restarted.

57. A program is interrupted. However, the OS is taken
over the interrupt handling. When such a situation
arises?.

1. HW timer is off

2. The program calls a System Call

4.58 Computer Science & Information Technology for GATE

3. Other HW triggers an interrupt (disk, keyboard,
etc.)

4. Program explicitly yields to CPU via a system call

58. Consider a paging system with the page table stored
in memory. If a memory reference takes 200 nanosec-
onds, how long does a paged memory reference take?

1. For flat page tables

2. For two level page tables

3. For three level page tables

 Answer: For flat page tables it is 400 ns as first we have
to check page table which is in memory and then we
access the instruction from memory.

 For two level is 600 ns(200ns for first level table ac-
cesses + 200 ns for second level + 200ns for accessing
instruction).

 For three level is 800 ns.

59. In a demandpaged memory system, page table is held
in registers. It takes 8 milliseconds to service a page
fault if an empty frame is available or if the replaced
page is not modified and 20 milliseconds if the re-
placed page is modified. Memory access time is 100
nanoseconds. Assume that the page to be replaced is
modified 70% of the time. What is the maximum ac-
ceptable page fault rate for an effective access time of
no more than 200 nanoseconds?

 Answer: Average time to service a page fault: 0.7 * 20
ms + 0.3 * 8 ms = 16.4 ms

 Let p be the page fault rate. Therefore, effective access
time:

 (1 – p) * 100 ns + p * 16.4 ms <= 200 ns

 p * (16.4 ms – 100 ns) <= 100 ns

 p <= (100 ns) / (16.4 ms –100 ns)

 p <= 6.1 * 109

60. Which parameters influences effective memory ac-
cess time in a flat page table based virtual memory
system?

 PT = probability of a TLB miss

 PP = probability of a page fault, given a TLB miss oc-
curs

 TT = time to access TLB

 TM = time to access memory

 TD = time to transfer a page to/from disk

 PD = probability page is dirty when replaced

61. What are some of the differences between a processor
running in privileged mode (also called kernel mode)
and user mode? Why are the two modes needed?

 In user-mode:

∑ CPU control registers are inaccessible.

∑ CPU management instructions are inaccessible.

∑ Parts of the address space (containing kernel code
and data) are inaccessible.

∑ Some device memory and registers (or ports) are
inaccessible.

 The two modes of operation are required to ensure
that applications (running in user-mode) cannot by-
pass, circumvent, or take control of the operating sys-
tem.

62. Assuming a page size of 4KB and that a page table
entry takes 4 bytes, how many levels of page tables
would be required to map a 64 bit address space, if the
top level page table fits in a single page? Do calculate
number of physical pages that are required to hold the
entire page table.

 Answer: Since each page table entry is 4 bytes and
each page contains 4K bytes, then a one-page page
table(first level) would point to 1024 = 210 pages, ad-
dressing a total of 210 * 212 = 222 bytes. The address
space however is 264 bytes. Adding a second layer of
page tables, the top page table would point to 210 page
tables, addressing a total of 232 bytes. Continuing this
process,

 Depth Address Space

 1 222 bytes

 2 232 bytes

 3 242 bytes

 4 252 bytes

 5 262 bytes

 6 272 bytes (>= 264 bytes)

 We can see that 5 levels do not address the full 64 bit
address space, so a 6th level is required. But only 2 bits
of the 6th level are required, not the entire 10 bits. So
instead of requiring virtual addresses of 72 bits long,
we can mask out and ignore all but the 2 lowest order
bits of the 6th level. This gives a 64 bit address. Top
level page table then would have only 4 entries.

 Number of physical pages that are required to hold
the entire page table:

 Depth Physical 4Kb Pages Required

 1 1

 2 (1*210)+1 > 210

 3 ((1*210)+1)*210+1 > 220

 4 at least 230

 5 at least 240

 6 at least 240

and the required size of memory would be:

 (240 pages) * (4 Kb / page) = 242 Kb = 232 Mb

Operating Systems 4.59

63. Describe a plausible sequence of activities that occur
when a timer interrupt results in a context switch.

∑ The interrupt generates an interrupt (exception)
which transfers control to the kernel-mode han-
dler.

∑ The handler switches to the kernel stack base for
the current process.

∑ It saves the user-level state (registers, sp, ip) on the
stack.

∑ It determines a timer interrupt occurred and calls
the timer interrupt handler.

∑ The handler acknowledges the interrupt.

∑ It calls the dispatcher (scheduler).

∑ The scheduler chooses a new process to run.

∑ The current in-kernel context is saved on the ker-
nel stack, the sp stored in the PCB (or TCB).

∑ The new process’s sp is loaded; the new kernel
stack base is substituted for the old processes’
stack base.

∑ The new processes’ kernel context is restored.

∑ It returns to the assembly routine to restore the
user-level state.

∑ The user-state of the new process (as opposed to
the old) is restored.

64. The Unix inode structure contains a reference count.
What is the reference count for? Why can’t we just re-
move the inode without checking the reference count
when a file is deleted?

 Answer: Inodes contain a reference count due to hard
links. The reference count is equal to the number of
directory entries that reference the inode. For hard-
linked files, multiple directory entries reference a
single inode. The inode must not be removed until no
directory entries are left (ie, the reference count is 0)
to ensure that the filesystem remains consistent.

65. Inode-based filesystems typically use block groups.
Each block group consists of a number of contiguous
physical disk blocks. Inodes for a given block group
are stored in the same physical location as the block
groups. What are the advantages of this scheme? Are
they any disadvantages?

 Answer: Block groups keep the inodes physically
closer to the files they refer to than they would be
(on average) on a system without block groups. Since
accessing and updating files also involves accessing
or updating its inode, having the inode and the file’s
block close together reduces disk seek time, and thus
improves performance. The OS must take care that all
blocks remain within the block group of their inode.

66. Assume an inode with 10 direct blocks, as well as sin-
gle, double and triple indirect block pointers. Taking
into account creation and accounting of the indirect
blocks themselves, what is the largest possible num-
ber of block reads and writes in order to:

a. Read 1 byte

b. Write 1 byte

 Assume the inode is cached in memory.

 Answer: To write 1 byte, in the worst case:

∑ 4 writes: create single indirect block, create double
indirect block, create triple indirect block, write
data block.

∑ 3 reads, 2 writes: read single indirect, read double
indirect, read triple indirect, write triple indirect,
write data block

∑ Other combinations are possible

 To read 1 byte, in the worst case:

∑ 4 reads: read single indirect, read double indirect,
read triple indirect, read data block

67. Assume you have an inode-based filesystem. The file-
system has 512 byte blocks. Each inode has 10 direct,
1 single indirect, 1 double indirect, and 1 triple in-
direct block pointer. Block pointers are 4 bytes each.
Assume the inode and any block free list is always in
memory. Blocks are not cached.

a. What is the maximum file size that can be stored
before

 1. The single indirect pointer is needed?

 2. The double indirect pointer is needed?

 3. The triple indirect pointer is needed?

b. What is the maximum file size supported?

c. What is the number of disk block reads required
to read 1 byte from a file

 1. In the best case?

 2. In the worst case?

d. What is the number of disk block reads and writes
required to write 1 byte to a file

 1. In the best case?

 2. In the worst case?

 Answer: In one block, we can store 512/4=128 block
addresses (blocking factor)

a. 1. 5KB (as inode contains 10 direct addresses, we
can a file of size at most 10x512bytes, i.e., 5KB)

 2. 69KB (10 direct blocks + 128 indirect blocks.
Therefore, 138x512bytes = 69KB)

 3. 8261KB (10+128+1282blocks=16522x512byt
es = 8261KB)

b. 1056837K (10+128+1282+1283blocks)

4.60 Computer Science & Information Technology for GATE

c. 1. 1

 2. 4

d. What is the number of disk block reads and writes
required to write 1 byte to a file

 1. 1w

 2. 4r/1w

68. Suppose at time x, the user presses return on his key-
board. At time x + 1 (seconds), a user process exe-
cutes a read(0, &c, 1) call, which returns at time x
+ 2. Below are 12 events that can occur in the oper-
ating system. Choose the events that must occur in
this scenario, and put them in the correct order that
they will occur. Note, not all events will occur at all,
and some events may occur more than once. Choose
events from this list only.

a. The operating system fields a hardware interrupt
and suspends the currently running process.

b. If the keyboard buffer is not full, the operating
system reads a character from the keyboard de-
vice driver, typically using a privileged memory
location.

c. The operating system reads a character from the
keyboard device driver, typically using a privi-
leged memory location.

d. The operating system checks its keyboard buffer
to see if it is empty.

e. The operating system takes a character out of the
keyboard buffer, and places it into a register.

f. The operating system checks its keyboard buffer
to see if it is full.

g. The operating system calls the scheduler, which
selects a user process to execute.

h. The operating system fields a software exception
suspending the currently running process.

i. The operating system resets the keyboard DMA
device driver so that the keyboard can do another
transaction.

j. If the keyboard buffer is not full, the operating
system puts the character into the buffer.

k. The operating system schedules a DMA transac-
tion with the keyboard device driver, writing to
the keyboard buffer.

l. The operating system takes a character out of the
keyboard buffer, and places it into user memory.

 Answer:

a: The user presses the return, and the keyboard
generates an interrupt.

c: The OS reads the character from the keyboard de-
vice driver, thereby freeing the keyboard for fur-

ther use.

f: Since the user has not asked for the character
yet, it goes into the keyboard buffer. Thus, the OS
needs to check to see if that buffer is full.

j: And if not full, the character goes into the buffer.

g: Now we’re ready to call the scheduler.

h: One second later, the user process makes the
read() system call.

d: Now we check to see if the keyboard is empty.

l: Since it is not empty, we put a character into user
memory -- not into a register, since read() passes
a pointer as an argument.

g: Back to the scheduler.

a/h/g: Since a second passes from the system call to its
return, other processes must get executed in the
meantime. Therefore steps a, h and g must be ex-
ecuted. Arguably, between steps g and h above, we
can say the same thing.

69. Why is it important to try to balance file system I/O
among the disks and controllers on system in a multi-
tasking environment?

 Answer: By spreading disk activity out amongst mul-
tiple disks and controllers you can have many differ-
ent disk accesses all being served at once. A single
disk/controller can only handle one request at a time.
Spreading disk activity out should improve efficiency.

70. Explain what is meant by context and process switch-
es. Under what conditions will they occur?

 Answer: Context Switch

 A context switch is where the context of the CPU
(the collection of the CPU’s registers) is replaced with
another context. Usually the original context will be
saved somewhere in memory.

 A context switch usually occurs as a result of an inter-
rupt.

 Process Switch

 A process switch is where the process that is currently
running on the CPU is replaced with another process.
A process switch may include the following steps:

∑ save the context of the current running process
into its PCB

∑ change the status of the current process from run-
ning to something

∑ move the process to a particular queue

∑ select the next process to be made running

∑ remove this new process from the ready queue

∑ change the status of the new process

∑ place its context onto the CPU

Operating Systems 4.61

 A process switch will occur due to any of the follow-
ing factors

∑ the current running process finishes

∑ the current running process requests an I/O op-
eration

∑ the current running process’ quantum runs out

∑ the current running process is suspended

∑ another I/O event completes resulting in a higher
priority process obtaining the CPU

∑ the current running process generates an error
condition

71. In virtually all systems that include DMA modules,
DMA access to main memory is given higher priority
than processor access ot main memory. Why?

 Or

 Cycle stealing occurs when the I/O processor and the
CPU try to access the same memory module or the
same bus simultaneously. Why does the I/O processor
normally get priority?

 Answer: A major aim of multi-programming is to
achieve efficient use of the computer systems resourc-
es. This means you want the CPU executing instruc-
tions, the printer printing documents, the display dis-
playing output and the disk drive storing information.
That means you want interleaved I/O and CPU execu-
tion.

 I/O devices are very, very slow when compared to the
CPU. The CPU will want to access memory and the
bus much more regularly than I/O devices of any de-
scription.

 I/O is given precedence because you want the I/O de-
vice to use the memory or the bus and then to start
doing its I/O operation. Once serviced the I/O device
will take a long time before asking for the bus again.
During this period the CPU can be executing.

72. What is the advantage of having different quantum
sizes on different levels of a multilevel queuing sys-
tem?

 Answer: It sorts out IO bound processes from CPU
bound and gives them higher priority any process
with burst times less than quantum in highest queue
gets priority over others good with preemptive sched-
uling between queues.

73. On a disk with 1000 tracks and 1000 sectors per track,
with 2048 bytes per cluster calculate the size of a File
Allocation Table

∑ in memory (in bytes)

∑ on disk (in blocks {=sectors})

 Answer:

 Sector Size (Commonly) = 512 bytes

 Number of Sectors needed per cluster = 2048/512 = 4

 Total No of Clusters = 1000*1000/4=250000

 Assuming 4 bytes are used for each entry in the FAT,
we need =250000x4 bytes per FAT

 As in the disk we store 2 copies of the FAT we need the
2x250000x4 bytes in the disk.

74. Calculate the space needed for i-nodes where an
i-node has 224 characters of assorted name and at-
tribute data, and 8 pointers to (disk blocks). Assume
block addresses are 4bytes.

 Answer: Inode size = 224 + 8×4= 256bytes

75. Why a file access time will be low if it is physically
stored contiguously on a disk?

 Answer: Because of less seek time (horizontal laten-
cy).

76. Consider a Unix system with a disk of 10 million
blocks, each of 8Kb, and an expected 5 million files.

i. How big must a block pointer be?

ii. How many inodes should be allocated?

iii. How much space on disk will the inodes take, if
each is 256 bytes?

 Answer:

 For 10M blocks, the pointer must be at least 24 bits
(16M variants).

 Need at least 1 inode per file, so allocate 8M inodes.

 8M inodes take up =8M x 256 = 2GB (of 80GB).

77. Estimate the data transfer rates, in bytes per second,
of

i. A disk with 1000 sectors per track, each of 4KB.
The disk spins at 7200 rpm.

ii. A memory bus 64 bits wide, with a cycle time of
166 nanoseconds.

 Also comment whether memory bus can cope up
with the disk.

 Answer:

 7200 rpm=120 revolutions per second. That is, 8
msec/revolution.

 Data Reading Rate (rps * sectors/rev * bytes/sector)

 = 120 * 1000 * 4KB = 480 MB/sec.

 We move 8 bytes in 166 nanoseconds on memory bus,
so 48 bytes/microsecond. Thus data transfer rate on
memory bus = 48 MB/sec.

 So, this memory bus will not keep up with the disk.

78. In an indexed allocation, block sizes are 256 bytes and
block addresses are 4 bytes. If an index block is not
sufficient to store the block addresses then another

4.62 Computer Science & Information Technology for GATE

index block is used and is linked with the current
index block which is full. How many disk blocks are
required to access 300’th block of a file in this organ-
isation?

 Answer:

 Number addresses which we can store in an index
block =256/4= 64

 However, as the file is larger, one address is used to
point to next index block. Thus, effectively 63 block
numbers can be stored in an index block.

 The address of 300’th block is available in index block
5 ((int) 300/63 + 1).

 Thus, we have to read five index blocks to know the
300’th block number and one more disk access is
needed to read that block.

79. Calculate how many physical sectors of size 512 bytes
are required at most to store FAT in FAT-16 system.

 Answer: We know two copies are stored.

 As the file system is FAT-16, the disk addresses are 2
bytes and at most 216 entries will be seen in the FAT.

 Thus, total memory required for both the FAT’s =
2*216*2 bytes = 218 bytes.

 No. of physical sectors needed = 218/512 = 512

80. A FAT-16 system uses 4 sectors as a cluster. What is
the maximum acceptable partition size?

 Answer: At most 216 clusters are seen in this file sys-
tem. Cluster size is 4×512 bytes.

 Thus, maximum possible partition size = 216*4*512=
128MB.

81. A disk drive has 5000 cylinders, numbered 0 to 4999.
The drive is currently serving a request at cylinder
143, and the previous request was at cylinder 125. The
queue of pending requests, in FIFO order, is 86, 1470,
913, 1774, 948, 1509, 1022, 1750, 130.

 Starting from the current head position, what is the
total distance (in cylinders) that the disk arm moves
to satisfy all the pending requests, for each of the fol-
lowing disk-scheduling algorithms?

 1 FIFO

 2 SSTF

 3 SCAN (Elevator)

 4 C-SCAN (Modified ELevator)

 Answer:

 FIFO

 Service Order: 86, 1470, 913, 1774, 948, 1509, 1022,
1750, 130

 Total Distance Head to traverse = (143–86) + (1470–
86) + (1470–913) + (1774–913) + (1774–948) +
(1509–948) + (1509–1022) + (1750–1022) + (1750–

130) = 7081

 SSTF

 Service Order: 130, 80, 913, 948, 1022, 1470, 1509,
1750, 1774 = (143–130) + (130–80) + (1774–80) =
1757

 SCAN

 Service Order: 913, 948, 1022, 1470, 1509, 1750, 1774,
130,80 = (1774–143) + (1774–80) = 3325

 CSCAN

 Service Order: 913,948,1022,1470,1509,1750,1774,80,
130 = (1774–143)+(1774–80) + (130–80) = 3375

82. How long does it take to load a 64K program from a
disk with an average seek time of 30ms and rotation
time of 20ms, and with a track capacity of 32K:

(i) For a 2K page size?

(ii) For a 4K page size?

 Assume that each page is stored contiguously on the
disk, but that separate pages are distributed randomly
on the disk.

 Answer:

 For 2K Page Size

 Average Seek Time = 30 ms

 Rotational Latency = 20/2=10ms

 Reading Time to readk 2K = 20 × 2K/32K=1.25

 Total time needed to load a page = 30 + 10 + 1.25 =
31.25ms

 Program Size = 64K

 No of Pages = 64K/2K =32

 Therefore, time needed to load the program =
32×31.25 = 1000ms = 1sec

 For 4K Page Size

 Average Seek Time = 30 ms

 Rotational Latency = 20/2=10ms

 Reading Time to readk 2K = 20 × 4K/32K=2.5

 Total Time Needed to Load a Page = 30 + 10 + 2.5 =
32.5ms

 Program Size = 64K

 No of Pages = 64K/4K =16

 Therefore, time needed to load the program = 16×32.5
= 520ms.

83. A disk has the following specification:

 Average seek time: 10 ms

 Average latency: 5 ms

 Average transfer time: 10 ms / block

 A 150 Kb file is stored on the disk in 8 Kb blocks
which are randomly distributed over a single cylinder.
Calculate the expected total time to read the file.

Operating Systems 4.63

 Answer: As all the blocks are in the same cylinder,
once head is positioned in the required track/cylinder
we need not required to move. Thus, we have to seek
once only.

 Thus, seek time (horizontal latency) = 10ms.

 Time per block including rotational latency and
transfer time = 5ms + 10ms=15ms.

 Thus total time need to read the file = 10 ms + 150/8 ×
15 = 291.25ms (Blocks are randomly distributed over
the cylinder. Certainly, we may employ some ordering
on block reading to further reduce this time).

84. Assuming block size to be 1 KB and a disk address to
be 4 bytes long, what is the maximum file size possible
to store Unix inode based file organisation.

 N= blocking factor = 1KB/4=1024/4=256

 Single Largest File Size = 10 + 256 + 2562 + 2563

blocks = 16.7GB

85. A Unix file system is having disk block size of 512
bytes and block address as 4 bytes. Find out how many
disk accesses are needed to read.

 (i) 1000th byte of a file.

(ii) 10000th byte of a file

(iii) 100000th byte of a file.

 Assume the file inode is currently in RAM.

 Answer:

(i) 1 disk access: (The required byte (1000th) is 2nd
(1000/512 +1) block of the file whose number is
directly available in the inode. Do remember that
in the above statement, the divison operation is
carried out in integer mode. That is, 1000/512 is
taken as 1. We know, first ten data block’s of the
file will be having their numbers in the files inode
itself. Thus, we need one disk access to read that
data block having 1000th byte..

(ii) 2 disk accesses: The required byte will be 20th
block of the file. Inode contains first 10 data block
numbers. Remaining 512/4 blocks addresses will
be available in a indirect block. As we want 20th
block of the file, first we have to read the indirect
block and then the required block. Thus, we need
2 disk accesses.

(iii) 3 disk accesses (Here we need to access second in-
direct block).

86. In the Unix operating system, suppose the root direc-
tory “/” inode is in memory, and everything else is
not in memory, assuming that all directories fit in one
disk block, how many disk accesses are needed to read
the first file block of “/home/ram/cs423/homework/
report.txt”? Describe the purpose of each disk access

 Answer:

1. Load table(content) for / root directory.

2. Load inode for home directory.

3. Load table(content) for home directory.

4. Load inode for alice directory.

5. Load table(content) for ram directory.

6. Load inode for cs423 directory.

7. Load table(content) for cs423 directory.

8. load inode for homework directory

9. load table for homework directory

10. Load inode for report.txt.

11. Load first file block for report.txt.

 Thus, in total 11 disk accesses are needed.

87. A computer whose processes have 1024 pages in their
address spaces keeps its page tables in memory. The
overhead required for reading a word from the page
table is 5 nsec. To reduce this overhead, the computer
has a TLB, which holds 32 (virtual page, physical page
frame) pairs and can do a lookup in 1 nsec. What hit
rate is needed to reduce the mean overhead to 2 nsec?

 Answer: If h is the hit ratio and we assume the page
table lookup overhead includes the TLB miss, then
the effective overhead instruction time is h + 5(1–h).
If we equate this formulae to 2 ns, and solve for h, we
find that h must be at least 0.75.

 If h is the hit ratio and we assume the page table
lookup overhead excludes the TLB miss, then the ef-
fective overhead instruction time is h + 6(1– h). If we
equate this formulae to 2 ns, and solve for h, we find
that h must be at least 0.8.

88. Does it mean a thread is a procedure call or subrou-
tine?

 Answer: No, a thread has nothing to do with a proce-
dure call. For example, a program consists of 10 pro-
cedure calls (i=0,1,...,9), and the procedure i (i=1,...9)
needs the results from the procedure call i-1 before it
can run. In this case, a procedure cannot concurrently
run with another procedure, due to the dependency.
This process can only have one execution unit (one
thread) even with 10 procedure calls. Remember, the
key is to have multiple concurrently running entities.

89. Explain about passive vs. active entity in a process.

 Answer: This can be easily understood for multi-
thread process, each thread (with its TCB) is an active
entity, and others such as code, global data and files
are passive entities, shared by all threads within the
same process. If you look at this carefully, what it im-
plies is that only the thread part within a process is an
active entity, and it has the state definition.

4.64 Computer Science & Information Technology for GATE

90. What is the state for a process with multiple threads?

 Answer: There is no state definition for a process with
more than one thread. Each thread (as an active en-
tity) within a process has a state. Simply, suppose you
have two threads in a process, one thread is in ready
state, the other in waiting state, we cannot define the
state for that process. Or even if two threads are in
ready states, we do not define the state of the process
to be in ready state.

91. Explain the tasks of hard and symbolic links.

Answer: Both hard and symbolic links are used to
share files and directories between different users, or
to access the same file from different directories of the
same user. Creating a hard link causes that the “open
file count” in the I-node table (system-wide open file
table) to be incremented by one and therefore de-
leting that hard-link only decrements the “open file
count” until it reaches to zero and then the file will be
deleted. A sym-link is a file that contains a full path-
name for another file (or directory). Deleting the tar-
get file causes a dangling sym-link pointer that must
be deleted using garbage collection operation. We can
have symbolic link to a directory in addition to the
files/directories of other partitions. When we create a
symbolic link file, a new inode and free data block is
used. In the free data block, original files path is saved.
Inode numbers of original and its symbolic link files
are different unlike hard link files. When link count of
a file becomes 0, its data blocks will be moved to free
list.

92. For 64-bit machines, which address mapping tech-
niques are used commonly?

1. Hierarchical paging technique

2. Hashed page table technique

 Answer: In summary, for 64-bit architectures, hier-
archical page tables are generally inappropriate. For
example, the 64-bit UltraSparc would require seven
levels of paging (meaning 7 memory accesses) for
just translation of address. This is a prohibitively high
overhead for address translation.

 With “hashed page table technique” a large 64-bit ad-
dress is first mapped onto a hash value (using a hash
function) which is used as an index to lookup a hash-
table entry. Then, the original 64-bit address is com-
pared with the addresses that are already mapped and
stroed in a link-list of addresses in the corresponding
hash table entry, in order to find the matched address
and that associated memory frame number. This tech-
nique is much faster than the first alternative above.

93. For each of the disk allocation techniques (contigu-
ous, linked, indexed) specify its characteristics in

terms of: 1) Ease of growth of file size; 2) How the free
disk blocks are assigned; 3) Ease of random access to
a location in a file: 4) Advantages and disadvantages.

∑ Contiguous allocation:

(1) Files cannot grow, the max size of the file is set
from the beginning

(2) Contiguous free disk blocks are assigned to a file

(3) Random access is easily performed

(4) Advantage: scheduling is easy but external frag-
mentation wastes disk space and needs de-frag-
mentation.

∑ Linked allocation:

(1) File grow easily by adding a new free block at the
end of the linked free blocks

(2) The blocks connected by linking a new block to
the last block, where a small portion of each block
is used for the address of the next block. In FAT
technique, linked list of block numbers are kept in
the memory.

(3) Random access is not easy and needs to traverse
the link of addresses.

(4) Advantage: easy to grow or shrink, no external
fragmentation. Disadvantage: random access is
time consuming.

∑ Indexed allocation

(1) Files grow easily and using indirect index tables a
file can grow almost unlimited.

(2) Each file has an index-block which is a regular
disk block and the address of a free disk block is
assigned to the next location in this index block.

(3) Random access is easily performed with very low
overhead.

(4) Advantage: data blocks and index blocks are regu-
lar disk blocks so the method is very flexible, and
does not need a FAT table to be kept in memory.
Disadvantage: for small size files the index block
space is not used efficiently; however in Unix a
small number of indexes are kept in the FCB to
accelerate the address mapping and eliminate the
need to read index-block from file.

94. Twelve page requests occur in the following order: 9,
36, 3, 13, 9, 36, 25, 9, 36, 3, 13, and 25. Assume that
physical memory initially starts empty and fully-as-
sociative paging is used. Which of the following state-
ments are true?

I. If the physical memory size is 3 pages, then most-
recently-used (MRU) paging will result in the
same number of faults as if the optimal algorithm
was used.

Operating Systems 4.65

II. If first-in-first-out (FIFO) paging is used, and the
physical memory size is raised from 3 pages to 4
pages, then Belady’s anomaly will appear.

III. If least-recently-used (LRU) paging is used, and
the physical memory size is raised from 3 pages to
4 pages, then Belady’s anomaly will appear.

 Answer: The optimal algorithm is to remove the page
that will be needed farthest in the future. If this al-
gorithm is used with 3 pages, then physical memory
contains the following values:

After 9 (which caused a fault): 9

After 36 (which caused a fault): 36, 9

After 3 (which caused a fault): 3, 36, and 9
[from farthest to
soonest used]

After 13 (which caused a fault): 13, 36, and 9

After 9 (which hit): 13, 9, and 36

After 36 (which hit): 13, 36, and 9

After 25 (which caused a fault): 25, 36, and 9

After 9 (which hit): 9, 25, and 36

After 36 (which hit): 9, 36, and 25

After 3 (which caused a fault): 3, 36, and 25

After 13 (which caused a fault): 13, 3, and 25

After 25 (which hit): 13, 3, and 25

Total of 7 faults

Suppose that MRU is used with 3 pages. Then physical
memory contains the following values:

After 9 (which caused a fault): 9

After 36 (which caused a fault): 36, and 9

After 3 (which caused a fault): 3, 36,and 9[from
most to least re-
cently used]

After 13 (which caused a fault): 13, 36, and 9

After 9 (which hit): 9, 13, and 36

After 36 (which hit): 36, 9, and 13

After 25 (which caused a fault): 25, 9, and 13

After 9 (which hit): 9, 25, and 13

After 36 (which caused a fault): 36, 25, and 13

After 3 (which caused a fault): 3, 25, and 13

After 13 (which hit): 13, 3, and 25

After 25 (which hit): 25, 13, and 3

Total of 7 faults

 Clearly, MRU and the optimal algorithm happen
to generate the same number of faults in this case
(though this is not a universal truth for memory ref-
erence strings in general). Thus, I is true.

 LRU never demonstrates Belady’s anomaly, which is
when increasing the number of frames also increases
the number of faults. In contrast, FIFO sometimes re-
sults in Belady’s anomaly, so it is necessary to check.
Suppose that FIFO is used with 3 pages. Then physical
memory contains the following values:

After 9 (which caused a fault): 9

After 36 (which caused a fault): 9, 36

After 3 (which caused a fault): 9, 36, and 3 [from
first to last loaded]

After 13 (which caused a fault): 36, 3, and 13

After 9 (which caused a fault): 3, 13, and 9

After 36 (which caused a fault): 13, 9, and 36

After 25 (which caused a fault): 9, 36, and 25

After 9 (which hit): 9, 36, and 25

After 36 (which hit): 9, 36, and 25

After 3 (which caused a fault): 36, 25, and 3

After 13 (which caused a fault): 25, 3, and 13

After 25 (which hit): 25, 3, and 13

Total of 9 faults

 Suppose that FIFO is used with 4 pages. Then physical
memory contains the following values:

After 9 (which caused a fault): 9

After 36 (which caused a fault): 9, 36

After 3 (which caused a fault): 9, 36, and 3 [from
first to last loaded]

After 13 (which caused a fault): 9, 36, 3, and 13

After 9 (which hit): 9, 36, 3, and 13

After 36 (which hit): 9, 36, 3, and 13

After 25 (which caused a fault): 36, 3, 13, and 25

After 9 (which caused a fault): 3, 13, 25, and 9

After 36 (which caused a fault): 13, 25, 9, and 36

After 3 (which caused a fault): 25, 9, 36, and 3

After 13 (which caused a fault): 9, 36, 3, and 13

After 25 (which caused a fault): 36, 3, 13, and 25

Total of 10 faults

 Thus, FIFO does demonstrate Belady’s anomaly in
this case. As noted earlier, LRU never does. So II is
true and III is false.

95. Consider a cache with the following characteristics:

 32-byte blocks

 8-way set associative

4.66 Computer Science & Information Technology for GATE

 256 sets

 32-bit addresses

 writeback policy

 LRU replacement policy

(i) How many bytes of data storage are there?

 256 × 8 × 32 = 218 = 64 KB

(ii) How many tag bits per set?

 32 -- log2 256 --log2 32 = 19 bits per set

(iii) What operation is needed upon a read-miss (the
program wants to read from a memory location
that is not in the cache)?

a. Find the LRU cache line to replace. If it is dirty,
write the block to next level cache / memory.

b. Fetch 32-byte memory data from next level cache/
memory of that memory address and other data
from the same block/line;

c. Update the tag bit of that cache line.

(iv) What operation is needed upon a write-miss (the
program wants to write to a memory location that
is not in the cache)?

a. Find the LRU cache line to replace. If it is dirty,
write the block to next level cache / memory.

b. Fetch 32-byte memory data from next level cache/
memory of that memory address and other data
from the same block/line;

c. Write to the memory location in that cache line.
Mark the cache line as dirty. Update the tag bit of
that cache line.

96. Consider a 3-way set associative cache. A, B, C, D are
memory addresses that have the same index bits but
different tag bits from each other. In a program, the
reference sequence is as follows:

 A, B, A, C, D, A, D, C, A, C

(i) What is the miss rate if the cache is using LRU
replacement policy?

 40%

(ii) What is the miss rate if the cache is using MRU
replacement policy?

 50%

(iii) Assuming the memory addresses being accessed
are still A, B, C and D, provide a case of mem-
ory reference sequence with length=10, in which
MRU performs better than LRU. Show the refer-
ence sequence and the miss rate of LRU and MRU
policy.

 For example: A,B,C,D,A,B,C,D,A,B

97. Given a 2 Kbytes two-way set associative cache with
16 byte lines and the following code:

 for (int i = 0; i < 1000; i++) {

 A[i] = 40 * B[i];

 }

(i) Compute the overall miss rate (assume array en-
tries require 4 bytes)

 Each array contains 1000 elements. Each cache line
contains 4 words. Since each array element will be
accessed only once, all misses shall be compulsory
misses. Since every 4 words will be loaded or written
back simultaneously in a cache, the miss rate is 25%
since every 4th access misses.

(ii) What kind of cache locality is being exploited?

 Answer: Spatial locality.

98. Given a 100 MHz machine with a with a miss pen-
alty of 20 cycles, a hit time of 2 cycles, and a miss
rate of 5%, calculate the average memory access time
(AMAT). Suppose doubling the size of the cache de-
crease the miss rate to 3%, but causes the hit time to
increase to 3 cycles and the miss penalty to increase to
21 cycles. What is the AMAT now?

 Answer: AMAT = hit_time + miss_rate x miss_pen-
alty

 Since the clock rate is 100 MHz, the cycle time is: 1/
(100 MHz) = 10 ns

 Thus, AMAT = 10 ns × (2 + 20 × 0.05) = 30 ns

 Here we needed to multiply by the cycle time because
the hit_time and miss_penalty were given in cycles.

 For the new setup, AMAT = 10 ns × (3 + 21 × 0.03) =
36.3 ns

99. Show the design of a 2-way set associative translation
look-aside buffer with 32 entries. Assume the virtual
address is 32 bits, the page offset is 12 bits, and the
physical address is 20 bits. How many bits are re-
quired to implement the TLB if each table entry has
a physical page number, a tag, a valid bit, and three
access bits.

 Answer:

 Since the page offset is 12 bits, the remaining 20 bits
from the 32 bit address make up the virtual page
number. The TLB has the following parameters:

(1) Number of sets: 16 sets (Since (no. of entries)/(en-
tries/set = 32/2)

(2) TLB index size: 4 bits (Since 2^4 = 16 sets)

(3) TLB tag size: 16 bits (Remaining bits in virtual ad-
dress 32 – 12 – 4)

(4) Block size: 8 bits (remaining bits in physical ad-
dress 20 – 12)

(5) # of blocks: 32 blocks (number of TLB entries)

 TLB bits = number of blocks × (block size + tag size +
4) = 32 × (8 + 16 + 4) = 896 bits

Operating Systems 4.67

OBJECTIVE TYPE QUESTIONS

1. Unix commands indicate successful completion by
returning

A. 0 B. 1 C. –1 D. None

2. Exit status of a command in Unix is available in

A. A Shell variable

B. The program name itself

C. $$

D. $?

3. Programs use environment variables to

A. Store data between login sessions

B. Pass configuration settings to other programs

C. Act like cookies

D. None

4. A shell command is called “built-in” if

A. The shell does not call another program

B. The command is already compiled into the kernel

C. It is an internal command

D. it is an external command

5. When Unix opens a file, it selects an unused file de-
scriptor

A. with the lowest value

B. that was closed most recently

C. With the highest value

D. None

6. Connections to a pipe remain in effect after exec because

A. The array of open files is part of the process, not
the program

B. The parent adds the pipe to the environment

C. Child inherits all the opened files

D. None

7. A pipe can connect two children of the same process
if

A. The parent creates the pipe before creating both
children

B. The parent creates two pipes and connects them

C. First child will have always such an ability to con-
nect to other brother processes

D. None

8. You cannot use fopen for pipes because

A. Pipes do not have file names

B. Pipes have a limited capacity

C. Pipes are not occupying any disk space

D. None

9. A pipe can be used to transfer data between

A. Exactly two processes

B. Any number of processes

C. One process to many processes

D. None

10. A server can handle several requests at once by

A. Using fork to create a new process for each re-
quest

B. Using socket to create a new socket for each re-
quest

C. Using createthread

D. None

11. A web server sends output of programs to the client
by

A. Opening a new socket for the program

B. Using dup2 to redirect standard output

C. Opening httpd

D. None

12. All the threads in a process have access to

A. Only static global variable

B. All global variables in the process

C. All variables

D. None

13. When one thread calls exit

A. Only that thread stops running

B. All threads in the process stop

C. Unpredictable

D. None

14. Anonymous pipes are

A. Full-duplex B. Half-duplex

C. Simplex D. Broadcasting

15. Names pies are

A. Full-duplex B. Half-duplex

C. Simplex D. Broadcasting

16. Find wrong statement

A. Anonymous pipes can connect two processes in a
network

B. Names pipes can connect two processes in a net-
work

C. Sockets are end points of a connection

D. Port numbers are integers

17. Big-endian representation of decimal 258 is

A. 00000010 00000001

B. 00000001 00000010

C. 11111111 00000010

D. None

4.68 Computer Science & Information Technology for GATE

18. Exit status of a program in Windows is available in

A. A Shell variable

B. The program name itself

C. ERRORLEVEL environment variable

D. $?

19. Which system call replaces a process’ core image?

A. fork B. execv C. run D. None

20. Which is not the benefit of using threads?

A. Responsiveness B. Economy

C. Fairness D. None

21. Which scheduler decides the degree of multipro-
gramming?

A. Admission scheduler B. Memory scheduler

C. CPU scheduler D. None

22. Which is not a CPU scheduling criterion?

A. CPU utilisation B. Response time

C. Reliability D. Waiting time

23. The aging algorithm with a = 1/2 is being used to pre-
dict run times. The previous 3 runs, from oldest to
most recent, are 20, 40, and 20 msec. What is the pre-
diction of the next time?

A. 20 B. 25 C. 30 D. None

 Explanation: ((20 + 40)/2 + 20)/2 = 25

24. Which strategy is used in the Banker’s algorithm for
dealing with deadlocks?

A. Deadlock Ignorance

B. Deadlock Detection

C. Deadlock Avoidance

D. Deadlock Prevention

25. A system has 256 MB memory. The time to read or
write a 32-bit memory word is 10 nsec. Assume the
total processes take 3 times of memory taken by holes.
What is the time needed to eliminate holes by com-
paction?

A. 167.772 ms B. 335.544 ms

C. 503.316 ms D. None

26. Priority inversion between two processes, one with
high priority and the other with low priority, that
share a critical section, will cause the following prob-
lem:

A. High priority process executes before low priority
process and finishes faster than it should

B. Low priority process executes before high priority
process and finishes faster than it should

C. High priority process waits for low priority pro-
cess (that holds the semaphore) to finish, but the
low priority process never gets scheduled

D. Low priority process changes priority temporary
to the priority of the high priority process

27. Consider the 2-process solution to the critical section
problem (‘i’ refers to the current process and ‘j’ is the
other one):

 repeat

 while turn <> i do no-op;

 <critical section>

 turn:=j;

 <remainder section>

 until false;

 This solution does NOT satisfy

A. Mutual Exclusion B. Progress

C. Bounded Waiting D. Both (B) and (C)

E. None of the above

28. Let us assume four processes being forked and all four
processes are already active for 30 minutes in a single
processor computer system. Let us assume that two
of these four processes wait for information from the
disk. Which of the state information about these pro-
cesses is correct?

A. P1: ready, P2: running, P3: running, P4: blocking

B. P1: running, P2: blocking, P3: ready, P4: blocking

C. P1: blocking, P2: running, P3: blocking, P4: run-
ning

D. P1: blocking, P2: running, P3: new, P4: blocking

29. For a fixed number of processes, shortest-job-first
scheduling algorithm:

I. Minimises average waiting time

II. Minimises average turn-around-time

III. Minimises CPU throughput

IV. Maximises average response-time

 Which answers are true?

A. Only I & II B. Only I & IV

C. Only I, II, & III D. Only I, II, & IV

E. Only II & IV

30. There are four queues in a multi-level queuing sched-
uling system: The first queue runs the First-Come-
First-Serve scheduling policy, and the three other
queues run Round-Robin Scheduling Policies with
quantum = 8, 16, and 32 milliseconds, respectively.
What is the quantum of the First-Come-First-Served
queue?

A. 8 milliseconds B. 64 milliseconds

C. Infinity D. None of the above

31. What is a signal?

A. Convoy situation caused by N-1 I/O processes
and 1 CPU-bound process

Operating Systems 4.69

B. Context switch between processes

C. Software notification of an event to a process

D. None

32. Let us assume two events (jobs) arriving each with the
constant arrival rate of 10 processes per second. Let
us assume one server (processor) with the constant
service rate of 100 processes per second. What is the
server utilisation under these assumptions?

A. 20% B. 100% C. 5% D. None

33. Let us consider a pre-emptive Shortest Job First
scheduling where process A arrives at time 0 and
needs to run for 1 hour. From the start time 0, other
(short) processes will arrive every 1 minute and run
for 2 minutes each. This situation will cause

A. Deadlock for all processes

B. Starvation for process A

C. Starvation for the short processes

D. None of the above

34. The CPU detects an interrupt

A. Using busy bit

B. Using interrupt handler

C. Using interrupt request line

D. None

35. How large a file can you access using only the single
indirect, double indirect, and triple indirect point-
ers in the file inode if the block size is 8K (2^13) and
pointers are 64 (2^6) bits?

A. 8,388,608 bytes (8MB = 2^23)

B. 8GB (2^33)

C. 8TB (2^43)

D. 16MB (2^24)

E. 32GB (2^35)

F. 64TB (2^46)

G. (a) + (b)

H. (a) + (b) + (c)

I. (d) + (e) + (f)

J. (d) + (e)

 Explanation: Block addresses=8Bytes

 Blocking factor=8KB/8B=1024

 Therefore, maximum file size:

 File data blocks that use single indirect= 1024*8KB =
8MB

 File data blocks that use Double Indirect = 1024 *1024
× 8KB = 8 GB

 File data blocks that use Triple Indirect = 1024×1024
× 1024 = 8TB

 Thus, maximum single file size = 8MB + 8GB + 8TB

36. In a UNIX file-system the block-size has been set to
4K. Given that the inode blocks are already allocated
on disk, how many free blocks need to be found to
store a file of size 64K?

A. 16 B. 17 C. 64 D. 65

E. None of the above

 Explanation: 64/4=16. First 10 data block numbers
are stored in the i-node itself. To store next 6 data
block numbers, we need one free data block. Thus, we
need 16+1 blocks for this file.

37. Which of the following methods would you choose if
the file requires frequent direct access and also exter-
nal fragmentation is to be avoided (to keep disk utili-
sation high)?

A. Linked allocation B. Contiguous allocation

C. Indexed allocation D. None

38. Given a file of 100 blocks, what is the minimum num-
ber of disk I/O operations needed to insert a block in
the middle of the file if linked list allocation is used
(assume the block to be inserted is already in the
memory)?

A. 2 B. 52 C. 101 D. 151

39. Given a file of 100 blocks, what is the minimum num-
ber of disk I/O operations to insert a block in the mid-
dle of the file if contiguous allocation is used (assume
the block to be inserted is already in memory)?

A. 2 B. 52 C. 101 D. 151

40. Which of the following types of binding takes place
during runtime?

A. Symbolic names to virtual addresses

B. Virtual to physical addresses

C. Both (A) and (B)

D. None

41. If the page table is broken up into pages, with an outer
page-table to select the correct inner table, we are us-
ing

A. Paged swapping B. Inverted page table

C. Multi-level paging D. None of the above

42. The total space required for an inverted page table is
proportional to the number of

A. Pages in the virtual memory

B. Pages * holes

C. Pages + overlays

D. Page frames in the physical memory

E. None of the above

43. Which one is not a privileged instruction:

A. Setting the timer register

B. Read the clock

4.70 Computer Science & Information Technology for GATE

C. Turn on timer interrupt

D. Clear memory

44. Which of the following methods is not typically used
for passing parameters between a running program
and the operating system:

A. Pass parameters in registers.

B. Store the parameters in a table in memory and
pass the table address as a parameter.

C. Write the parameters in a file and pass the file ad-
dress (location) in a register.

D. Push the parameters onto the stack by the pro-
gram and pop off the stackby the operating sys-
tem.

45. A currently running process can be put on a ready
queue or one of the I/O queuesby each of the follow-
ing except:

A. The process did an illegal memory access.

B. The process issued an I/O request

C. There was an interrupt

D. The process issued a system call

46. What will be the probable output of the following pro-
gram?

 int main(){

 int value = 5;

 pid_t pid;

 pid = fork();

 if(pid==0){

 value +=15;

 }

 printf(“%d “, value);

 return 0;

 }

A. 5 20 B. 20 5 C. 5 5 D. a & b

E. None

47. Which of the following components of program state
are shared across threads in a multithreaded process?

A. Register values B. Heap memory

C. Global variables D. Stack memory

 Answer: The Global values and heap memory are
shared across a multi-threaded process. Register val-
ues and stack memory are private to each thread.

48. Match the operating system abstractions in the left
column to the hardware components in the right col-
umn

a. Thread 1. Interrupt

b. Virtual Address Space 2. Memory

c. File System 3. CPU

d. Signal 4. Disk

A. a-2, b-4, c-3, d-1 B. a-1, b-2, c-3, d-4

C. a-3, b-2, c-4, d-1 D. a-4, b-2, c-2, d-1

49. Which of the following file streams is NOT opened
automatically in a UNIX program?

A. Standard input B. Standard output

C. Standard error D. Standard terminal

50. Which of the following is NOT an advantage provid-
ed by shared libraries?

A. They save disk space

B. They save space in main memory

C. Multiple versions of the same library can be load-
ed into main memory

D. None of the above

51. Which of the following frees the CPU from having to
deal with transfer of memory to/from I/O devices?

A. Interrupts B. DMA

C. Buffer Cache D. Device Driver

52. Hard disk format technique that compensates for
track-to-track seek time (to enhance disk perfor-
mance when reading multiple tracks).

A. Buffer Cache B. Virtual Geometry

C. Cylinder Skew D. Interleaving

53. Which of the following scheduling algorithms will
not have starvation?

A. FIFO B. Round Robin

C. Shortest-Job-First D. Priority

E. Both (A) and (B) F. Both (B) and (C)

G. None of the above

54. In FCFS, I/O bound processes may have to wait long
in the ready queue waiting for a CPU bound job to
finish. This is known as

A. Aging B. Priority inversion

C. Belady’s anomaly D. Convoy effect

E. None of the above

55. In a system with paging only (every program is a col-
lection of pages, no segments), which of the following
can occur?

A. External fragmentation

B. Internal fragmentation

C. Deadlock when two processes each has been al-
located a page frame, and each wants to acquire
one more page frame, but the system has no page
frame that is still free.

D. All of the above

56. If the page table is broken up into pages, with an outer
page-table to select the correct inner table, we are us-
ing

Operating Systems 4.71

A. Paged segmentation

B. Inverted page table

C. Multilevel paging

D. None of the above

57. What is the expected CPU utilisation for a system that
has three processes running, each of which spends
80% (on average) of its time waiting for I/O.

A. 98% B. 34% C. 56% D. 49%

 Explanation: 1–0.83=0.488

58. Find incorrect one

A. NTFS file system cannot be installed on floppy
drives

B. NTFS file system cannot be installed on a hard
disk of size 100MB

C. NTFS file system does not need any repairing util-
ities

D. NTFS file system supports Unicode

E. None

59. ____ number of records in NTFS MFT are system re-
lated

A. 28 B. 16 C. 256 D. 1024

60. Largest file size in FAT-32 file system

A. 2GB B. 4GB

C. 2bytes less than 4GB D. None

61. Find correct one

A. Race conditions will not occur in uniprocessor
systems

B. SJF can be implemented a priority algorithm
where arrival time can be taken as priority

C. A process in ready state can go to either running
or exit.

D. Two-phase lock protocols guarantees deadlock
free concurrent transactions.

62. On a system a process executes for T time units before
making an I/O request. Context switching overhead
is S time units and time slice is Q units. If Q becomes
negligible then efficiency becomes

A. T/(T+S) B. T/(T+Q)

C. Infinity D. Approaches 0

63. Find incorrect statement with regard to increasing file
size in Unix file system.

A. Add quadruple (4th level) in-direct block.

B. Increase the block size

C. Both A & B

D. None

64. Find incorrect one regarding the use of large sized
pages in VM systems.

A. Reduces the number of processes that can have
pages in RAM, i.e. the level of multiprogramming
which is possible

B. Very expensive to swap in due to a lot of informa-
tion to retrieve from disk

C. Greater possibility of internal fragmentation with
programs which are smaller than page size

D. Larger amount of process information in RAM
therefore the page fault should be lower

E. None

65. Find incorrect one regarding the use of small sized
pages in VM systems.

A. Allows more processes to have pages in RAM
which makes it possible to interleave I/O and
CPU to a higher extent

B. Very little information to retrieve so swapping is
faster

C. Much lower possibility of internal fragmentation

D. Due to small size of pages it is possible that page
fault rate could be very high

E. None

66. Which of the following instructions (or instruction
sequences) are run in other than kernel mode?

A. Disable all interrupts.

B. Set the time of day clock.

C. Change the memory map.

D. Write to the hard disk controller register.

E. Write all buffered blocks associated with a file
back to disk (fsync).

67. The long-term scheduler:

A. Is responsible for moving jobs between queues
in a multi-level feedback queue scheduling algo-
rithm.

B. Makes decisions about the distant future of a sys-
tem.

C. Sets a process’s initial priority.

D. Decides whether a process enters the system, or
whether it must wait for other processes to exit
before entering the system.

 Explanation: Option A is wrong, because movement
in an MLFQ is dictated by the job’s short-term behav-
ior. Option B is too vague, and Option C is wrong be-
cause priority is typically set by a combination of the
user and the user’s priority.

68. Which of the following is the definition of a safe state:

A. A safe state is one where there is an ordering of
the processes P1 to PN such that if Pi is less than
Pj, then Pi does not need any of Pj’s resources to
complete.

4.72 Computer Science & Information Technology for GATE

B. A safe state is one where there is an ordering of
the processes P1 to PN such that if Pj is less than
Pi, then Pi does not need any of Pj’s resources to
complete.

C. A safe state is one where there is an ordering of
the processes P1 to PN such that when all Pi, i <
j, have completed, Pj can get all of its resources
without waiting.

D. A safe state is one where there is an ordering of
the processes P1 to PN such that when all Pi, i >
j, have completed, Pj can get all of its resources
without waiting.

 Explanation: Answer is option C. However, option a
is close to correct, however Pj and Pi may use instanc-
es of the same resource class.

69. Why do we not want a time quantum to be too small?

A. Because CPU-bound processes will not get their
fair share of the CPU, and overall CPU utilisation
will be decreased.

B. Because I/O-bound processes will not get their
fair share of the CPU, and overall CPU utilisation
will be decreased.

C. Because CPU-bound processes will not get their
fair share of the CPU, and overall average process
turnaround time will be increased.

D. Because I/O-bound processes will not get their
fair share of the CPU, and overall average process
turnaround time will be increased.

E. Because context-switch overhead will increase the
average process turnaround time.

F. Because the operating system will own the CPU
for too long, and overall average process turn-
around time will be increased.

Explanation: Answer is E. Clearly, a time quantum
that is too small will spend too much time context-
switching. There are no problems with fairness (elim-
inating answers A through D). So what is the dif-
ference between answers E and F ? The reason that
context switches are expensive has more to do with
cache-flushing than operating system overhead. Thus,
E is the correct answer.

70. Why do we not want a time quantum to be too big?

A. Because CPU-bound processes will not get their
fair share of the CPU, and overall CPU utilisation
will be decreased.

B. Because I/O-bound processes will not get their
fair share of the CPU, and overall CPU utilisation
will be decreased.

C. Because CPU-bound processes will not get their
fair share of the CPU, and overall average process
turnaround time will be increased.

D. Because I/O-bound processes will not get their
fair share of the CPU, and overall average process
turnaround time will be increased.

E. Because context-switch overhead will increase the
average process turnaround time.

F. Because the operating system will own the CPU
for too long, and overall average process turn-
around time will be increased.

 Explanation: Answer is D. Longer time quanta will
be harder on I/O bound processes. However, this has
nothing to do with CPU utilisation -- FCFS sched-
uling with an infinite time quantum will have better
CPU utilisation than any round robin scheduling.
However, process turnaround time is greatly in-
creased when CPU-bound jobs get more of the CPU.

71. Which of the following statements is false?

A. Kernel-only memory locations protect devices on
the memory bus from user processes.

B. Kernel-only memory locations protect the inter-
rupt vector from user processes.

C. DMA protects the CPU from mass disk transfers.

D. A hardware timer protects the system from pro-
grams that do not voluntarily give up the CPU.

 Explanation: Answer is C. This one has to do with the
definition of “protects.’’ Certainly kernel-only mem-
ory locations prevent users from corrupting devices
and the interrupt vector, so A and B are true. Simi-
larly, D is true, because without a hardware timer, a
user process could prevent other processes from run-
ning. How about option C? Certainly DMA frees up
the CPU -- without DMA, the CPU will have to be
more involved in mass transfers. But that is not a cor-
rectness feature, but a performance feature. Therefore,
the answer is C. However, option “none of the above’’
is also if we want to argue that C is true. However, A,
B and D are clearly true, and will not be accepted as
answers.

72. Two FAT 16 file systems with 8KB and 32KB cluster
sizes are available. When we store 1000 files each of
size 40KB it was observed that in the first one 391MB
they are occupying while in the second the same are
occupying more than 620MB. Probable reason for
this difference is

A. External fragmentation

B. Internal fragmentation

C. Less addresses

D. None

 Explanation: Answer is option A. In the first case
the 40KB file exactly occupies 5 clusters of 8KB each

Operating Systems 4.73

while in the second one two clusters are used in which
the second cluster contains only 8KB of data and re-
maining goes as wastage (external fragmentation).
Thus, more space is consumed in the second system.

73. Find incorrect statement about FAT-32 compared to
VFAT.

A. The FAT 32 system enables users to manage 8 GB
volumes with cluster sizes of just 4 kB. For hard
drives up to a maximum of 32 GB, the cluster size
is 16 kB.

B. FAT 32 also does not limit the number of directo-
ries or files in the root directory.

C. FAT-32 supports long file names.

D. None

74. In general, there will be _____ inodes than directories
in Unix file system.

A. More B. Less C. Same D. None

75. In which page replacement the following objective is
employed “replace the page whose next reference will
be furthest in the future”.

A. FIFO B. LRU

C. Second Clock D. Optimal

76. Consider the following C code:

 /* Initialize semaphores */

 mutex1 = 1;

 mutex2 = 1;

 mutex3 = 1;

 mutex4 = 1;

void T1() {

P(mutex4);

P(mutex2);

P(mutex3);

/* Access Data */

V(mutex4);

V(mutex2);

V(mutex3);

}

void T2() {

P(mutex1);

P(mutex2);

P(mutex4);

/* Access Data */

V(mutex1);

V(mutex2);

V(mutex4);

}

 Which of the following instruction execution se-
quences leads to deadlock?

A. T1’s P(mutex4), T2’s P(mutex1), T2’s P(mutex2),
T1’s P(mutex2)

B. T1’s P(mutex4), T2’s P(mutex1), T2’s P(mutex2),
T2’s P(mutex4)

C. T1’s P(mutex4), T2’s P(mutex1), T2’s P(mutex2),
T2’s P(mutex4), T1’s P(mutex2)

D. None

77. Possible output of the following program is:

 int main() {

 if (fork() == 0) {

 printf(“a”);

 exit(0);

 }

 else {

 printf(“b”);

 waitpid(-1, NULL, 0);

 }

 printf(“c”);

 exit(0);

 }

A. abc B. acb C. bac D. bca

E. cab

78. Assuming that the file “barfoo.txt” contains a string
“barfoo”, what will be the output from the following
program?

 int main(){

 int fd;

 char c;

 fd = open(“barfoo.txt”, O_RDONLY, 0);

 read(fd, &c, 1);

 if (fork() == 0) {

 read(fd, &c, 1);

 exit(0);

 }

 wait(NULL); /* wait for child to terminate */

 read(fd, &c, 1);

 printf(“c = %c”, c);

 exit(0);

 }

A. c=b

B. c=a

C. c=r

D. Cannot be predictable because of fork() system
call

 Explanation: Opened file descriptors are inheritable
by the child processes. In the given program, a file
“barfoo.txt” is opened and then fork() is called after
reading one character. Parent process blocks till child
finishes its duty as wait is called. Child process reads
another character from the file and then exits. When
parent process is started again, it reads one more
character (i.e., r) and stores in the variable c. The same
will be printed. Thus, we get c=r output from this pro-
gram.

79. What is the output of the following program?

 int main(){

4.74 Computer Science & Information Technology for GATE

 int fd1, fd2, fd3;

 fd1 = open(“foo.txt”, O_RDONLY, 0);

 fd2 = open(“bar.txt”, O_RDONLY, 0);

 close(fd1);

 fd3 = open(“baz.txt”, O_RDONLY, 0);

 printf(“%d”, fd3);

 exit(0);

 }

A. 0 B. 1 C. 2 D. 3

 Explanation: Answer is D. Every process will be hav-
ing its own opened file table. Row indexes of this table
is called as file descriptor. Every process will be having
file streams known as input, output and error stream
which are referred with file descriptors 0, 1 and 2
which are indirectly refers to the rows of opened file
table. Whenever we open a file, OS searches this table
from 0th row onwards for an empty row, whenever it
founds one it assigns that for the file which we are try-
ing to open. Thus, that row index becomes that files,
file descriptor as long as that process is running or till
we close. In this table, each contains file related dy-
namic information such as how many bytes are read/
written in addition to file security related informa-
tion. In the above program, we have opened two files
thus fd1 and fd2 values becomes 3 and 4. After that
fd1 is closed and then another file is opened. Thus, fd3
value becomes 3 as row 3 of the table is free now.

80. Consider the following C program, where the disk file
barfoo.txt consists of the 6 ASCII characters“barfoo”.

 int main(){

 int fd1, fd2;

 char c;

 fd1 = open(“barfoo.txt”, O_RDONLY, 0);

 fd2 = open(“barfoo.txt”, O_WRONLY, 0);

 read(fd1, &c, 1);

 c = ‘z’;

 write(fd2, &c, 1);

 read(fd1, &c, 1);

 printf(“%c”, c);

 exit(0);

 }

 The output is:

A. b B. a C. r D. None

 Explanation: Two file descriptors are created for the
samefile”barfoo.txt”; through fd1we can read from
the file while through fd2 we can write into the file.
We read a character through fd1 and write something
through fd2. Both are treated separately. Thus, when

we try to read another character through fd1, c value
becomes character ‘a’. Thus, we get ‘a’ as output.

81. What is the output of the following program?

 int main(){

 int fd1, fd2;

 char c;

 fd1 = open(“barfoo.txt”, O_RDONLY, 0);

 fd2 = open(“barfoo.txt”, O_RDONLY, 0);

 read(fd1, &c, 1);

 dup2(fd2, fd1);

 read(fd1, &c, 1);

 printf(“%c”, c);

 exit(0);

 }

A. b B. a C. r D. None

 Explanation: We are creating a duplicate descriptor
for fd2 as fd1. At this junction, we have not used fd2
for any I/O at all. Thus, offset value in the opened file
table will be having 0. When we call dup2(), the fd2
row as a whole copied to fd1. Thus, when we read via
fd1, we get first character in the file, ‘b’ as the output.

82. Assume that the main() calls the following function
test() exactly once.What will be the possible output?

 void test(void){

 if (fork() == 0){

 printf(‘‘0’’);

 exit(0);

 }

 printf(‘‘1’’);

 }

A. 01 B. 10 C. 11 D. A and B

 Explanation: When fork() is called, new process is
created. Statements in if condition are executed in the
child process. Thus, we may get “0” as the standard
output. Similarly, statement printf(“1”) is executed
in parent process. As we do not know which process
runs after fork(), we may get 01 or 10 as the outputs of
the above program.

83. Assume that the main() calls the following function
test() exactly once, what is the possible output?

 void test(void){

 int status;

 int counter = 0;

 if (fork() == 0){

 counter++;

 printf(‘‘%d’’, counter);

 exit(0);

Operating Systems 4.75

 }

 wait(&status);

 if (fork() == 0){

 counter++;

 printf(‘‘%d’’, counter);

 exit(0);

 }

 wait(&status);

 }

A. 00 B. 01 C. 11 D. 10

 Explanation: Child process inherits the automatic
variables of its parent. However, whatever operations
child carries on these inherited members will not vis-
ible in parent. Thus, when first fork() is invoked a new
child process will be created which increments coun-
ter value to 1 and prints the same before terminating.
During this time parent will be blocked because of
wait() system call. By the time second fork() is called,
parent sees counter value as 0. Thus, when second
child is created, it also sees counter value as 0 initially.
Then, it increments counter value and prints. Thus,
we get “1” again. In a nutshell, the above program
gives “11” as output.

84. Consider the following program

1. int main() {

2. int i = 0;

3. pid_t pid1, pid2;

4. if((pid1 = fork()) == 0) {

5. i++;

6. if((pid2 = fork()) == 0) {

7. i++;

8. printf(“i: %d\n”, ++i);

9. exit(0);

10. }

11. printf(“i: %d\n”, i);

12. }

13. else {

14. if(waitpid(pid1, NULL, 0) > 0) {

15. printf(“i: %d\n”, ++i);

16. }

17. }

18. printf(“i: %d\n”, ++i);

19. exit(0);

20. }

 Possible outputs of the above program are given as:

i: 1

i: 3

i: 2

i: 1

i: 2

i: 1

i: 1

i: 2

i: 3

i: 1

i: 2

i: 3

i: 2

i: 3

i: 2

i: 3

i: 3

i: 3

i: 1

i: 2

i: 1

i: 2

i: 1

i: 2

i: 3

i: 1

i: 2

i: 3

i: 4

i: 2

i: 3

 Which is the valid output?

A. I B. V C. VI D. A and B

 Explanation: Assume P0 is the main process. After
first fork(), new process say P1 is created. Instruc-
tion 18 will be executed both in P0 and P1. Also, after
fork(), if P0 runs then it gets blocked because of wiat-
pid() function. Thus, P1 gets executed. If P1 is started
then, it increments i value to 1 and then calls fork()
again. Thus, another child process say P2 will be cre-
ated. Statement 11 will be executed only in P1. Do re-
member, P2 is calling exit(), thus it will not execute
statement 11. In addition, we cannot say whether P1
or P2 runs first. If P1 runs, statement 11 gets executed,
thus we may get 1 as output. Otherwise if P2 runs,
we may get 3 as output. Thus, because of P1 and P2
execution we may supposed to get output as 1and 3 or
3 and 1. Thus, some options suchas II,III, IV, can be
eliminated. Users can analyse this program further.

85. Consider the following program.

 int main(){

 int status;

 int counter = 2;

 pid_t pid;

 if ((pid = fork()) == 0) {

 counter += !fork();

 printf(“%d”, counter);

 counter++;

 }

 else {

 if (waitpid(pid, &status, 0) > 0) {

 printf(“6”);

 }

 counter += 2;

 }

 printf(“%d”, counter);

 exit(0);

 }

 What is the output of the above program?

4.76 Computer Science & Information Technology for GATE

A. 236434 B. 236433

C. 236443 D. None

 Explanation: Assume P0 is the main process. When
first fork() is called, a new process (say P1) will be
created and P0 gets blocked on this. Inside P1, initial
value of counter is 0. When counter += !fork(); state-
ment is executed, counter value will be 2 in P1 and 3
in the new process(P2). The following printf will be
executed in both. Thus, we may supposed to get ei-
ther 23 or 32. After this, counter will be incremented
in both P1 and P2. Thus, they will be having 3 and 4
as their respective counter values. Do remember that
the last printf statement will be executed all the pro-
cesses P0, P1 and P2. P0 is blocked on P1. Thus, the
last printf statement when executed in P1 and P2, we
may get 34 or 43. However, if P0 is started, we get 6
and then 4(because of last printf).Thus, possible re-
sults are matching with option A.

86. Consider the following program.

 int main(){

 int status;

 int counter = 1;

 if (fork() == 0) {

 counter++;

 printf(“%d”,counter);

 }

 else {

 if (fork() == 0) {

 printf(“5”,);

 counter--;

 printf(“%d”,counter);

 exit(0);

 }

 else {

 if (wait(&status) > 0) {

 printf(“6”);

 }

 }

 }

 printf(“3”);

 exit(0);

 }

 Not possible output from this program is:

A. 253063 B. 251633

C. 520633 D. 506323

87. Assuming that the semaphores S and Q are initialized
to 1 at the beginning, the following concurrent pro-
grams leads to

Code for Procces A Code for Proccss B

do { do {

wait (S); wait (Q;

wait (Q); wait (S);

// some operations here // some operations here

signal (Q); signal (S);

signal (S); signal (Q);

} while (TRUE); } while (TRUE);

A. Successful completion

B. Indefinite blocking

C. Process B will be forced to get terminated by Pro-
cess A.

D. None

88. What are the two possibilities in terms of the address
space of a newly created process?

A. The child process has a new program loaded into
it.

B. The child process has an exact copy of the address
space of the parent process including program

C. The child process has an exact copy of the address
space of the parent process including data

D. The child process has an exact copy of the address
space of the parent process including program
and data

89. Fundamental models of IPC

A. Shared address space

B. Shared code

C. Shared memory

D. None

90. Find incorrect statement regarding the possible rea-
son for excessive thrashing.

A. Running too many processes for too short a time
slice

B. Processes that use more memory then you have in
their working set.

C. Bad page replacement algorithm that picks bad
pages.

D. Global page replacement where processes are can-
nibalising each other.

E. Optimising your scheduler for high-memory
loads.

91. It is proposed to have FAT16 file system created on a
disk with size 32MB and 1KB blocks. Size of FAT on
the disk

A. 20KB B. 64KB C. 23KB D. None

 Explanation: Size of FAT 16 = number of bits per en-
try * number of blocks

Operating Systems 4.77

 number of blocks = 32MB

1KB
=

2

2

25

10
 = 215 block

 = 32 K blocks

 Size of FAT16 = 16 bits × 215 blocks = 219 bits

 =
2

8 1024

19

¥
 = 64 KB

92. Find correct statement.

A. Bootstrap program is a part of the kernel of the
Unix operating system.

B. Bootstrap program is a small program that loads
the Kernel of operating system from hard disk to
the computer memory.

C. Bootstrap program is kept in the dynamic RAM
memory of the computer.

D. Bootstrap program is the second program that
runs after the OS is loaded.

93. Find in-correct statement

A. CPU changes its mode from user to monitor when
an I/O instruction is executed.

B. In user mode the user’s programs are protected
against other users’ programs from being accessed
or modified.

C. Any system call to the operating system causes the
CPU to change its mode to monitor.

D. All the operations of the operating system’s kernel
are performed in the monitor mode of the CPU.

94. Find in-correct statement

A. When CPU switches to another process, the sys-
tem must save the state of the old process and load
the saved state for the new process.

B. Direct Memory Access (DMA) can be used to
reduce the I/O operations during the context
switching.

C. Computer hardware and special purpose CPU
instructions can be used to reduce the context
switching time.

D. During context switching, a process’s current in-
struction is completed (i.e., its fetch, decode, ex-
ecute and write back cycles are completed) before
loading the other process.

95. Find in-correct statement

A. A parent process creates a child process by the
means of a copy and paste program within the
operating system.

B. The child process is created by copying all the
context of the parent process into a new slot of the
File Control Block (FCB) table.

C. The parent and child process will be running con-
currently and the parent process is in charge of all
the resources the child process is using.

D. The child process inherits opened files from its
parent.

96. Find in-correct statement.

A. Consistency semantics in a file system specifies
how multiple users may access to a shared file si-
multaneously.

B. Unix primarily supports group based permis-
sions.

C. In Unix file system writing to an open file is visible
immediately to other users of the same open file.

D. A File Control Block (FCB) contains all the infor-
mation about the process that owns this file.

97. Find valid statement

A. When a kernel thread is created, process structure
is created in swap memory.

B. Communication among threads is difficult since
the threads have separate address spaces and do
not share memory.

C. In mapping the user-level threads to kernel
threads, many-to-many model can be used in a
multi-processor system but if a user-level thread
is blocked then all user level threads become
blocked.

D. The many-to-many model allows the operating
system to create a sufficient number of kernel
threads.

98. Find invalid statement.

A. Critical section is a global variable that two or
more processes can access and modify.

B. Critical section is a part of a program where two
or more processes assess a shared resource.

C. Any solution to the critical section problem must
satisfy “mutual exclusion”, “progress” and “bound-
ed waiting” conditions.

D. Semaphore is a means to provide both mutual
exclusion and synchronization of the concurrent
processes.

99. Find in-correct statement.

A. A paging MMU with 32-bit logical address and
32Kbytes page size requires a page table with 217

entries.

B. In a two-level page table, we break a large page
table into outer and inner tables so that we use
table entries for only those pages of a process that
need to be in memory.

4.78 Computer Science & Information Technology for GATE

C. Inverted page table puts both the page number
and its frame number into a page table entry.
Therefore, we must search the table locations in
order to find the logical address and its corre-
sponding memory frame number in one of the
table entries.

D. A hashed page table solution is used when the
size of the logical address is very large (e.g., 64
bit address). In this mechanism, a logical address
is hashed into a hash table address (using a hash
function). Different addresses may be hashed into
the same hash address.

100. Find which of the following operation which need not
be privileged.

A. Clearing memory

B. Turn off interrupts

C. Switch from user mode to kernel mode

D. Set value of timer

101. Find invalid statement

A. Control and status registers are usually not visible
to user programs.

B. An interrupt will always lead to an operating sys-
tem action that corrects a problem and allows the
interrupted process to continue running.

C. An interrupt handler will usually disable further
interrupts temporarily. Some interrupt handlers
must not be interrupted; some can be either way.

D. Management of a process runtime stack usually
requires a stack pointer, a stack base, and a stack
limit.

102. Find invalid statement

A. One benefit/goal of memory management is the
protection of each user process address space
from unauthorized manipulation by another user
process.

B. Virtual memory divides a program’s address space
into pages which can be placed in main memory
according to some scheduling and allocation pol-
icy.

C. One of the goals of a scheduling policy for the
processor could be to give each process approxi-
mately equal access to the processor.

D. One of the goals of a scheduling policy for re-
sources other than the processor is to give each
process approximately equal access to the re-
source.

103. Find invalid statement.

A. One useful measure of a system’s ability to handle
a large number of jobs is throughput, defined as
the total time required to execute the set of jobs.

B. A process in a Blocked state is waiting for an
event, but that event is not related to the virtual
memory subsystem.

C. Process state transition diagrams are helpful to
understand the ways in which a process and the
OS must react to different situations.

D. A process control block would typically contain
information about memory allocations, threads
and other information used to manage the pro-
cess.

104. Find invalid statement

A. A process control block would typically contain
information about memory allocations, threads
and other information used to manage the pro-
cess.

B. Kernel-level threads are only used within the OS
kernel.

C. A symmetric multiprocessor allows some logical-
ly concurrent operations to occur simultaneously,
and this will require additional care in the design
of system and application programs.

D. It is possible for an interrupt handler to execute in
its own thread.

105. Find invalid statement

A. A binary semaphore takes on numerical values 0
and 1 only.

B. An atomic operation is a machine instruction or a
sequence of instructions that must be executed to
completion without interruption.

C. Deadlock is a situation in which two or more pro-
cesses (or threads) are waiting for an event that
will occur in the future.

D. Starvation is a situation in which a process is de-
nied access to a resource because of the competi-
tive activity of other, possibly unrelated, process-
es.

106. Find valid statement.

A. While a process is blocked on a semaphore’s
queue, it cannot be called as busywaiting.

B. Circular waiting is a necessary condition for
deadlock, but not a sufficient condition.

C. Mutual exclusion can be enforced with a general
semaphore whose initial value is greater than 1.

D. External fragmentation can occur in disk systems
which does not employ contiguous allocation pol-
icy.

107. Find valid statement

A. Pages that are shared between two or more pro-
cesses can never be swapped out to the disk.

Operating Systems 4.79

B. The allocated portions of memory using a buddy
system are all the same size.

C. Demand paging requires the programmer to take
specific action to force the operating system to
load a particular virtual memory page.

D. Prepaging is one possibility for the fetch policy in
a virtual memory system.

108. Find valid statement

A. The resident set of a process can be changed in
response to actions by other processes.

B. The working set of a process can be changed in
response to actions by other processes.

C. The translation lookaside buffer is a software data
structure that supports the virtual memory ad-
dress translation operation.

D. In a symmetric multiprocessor, threads can al-
ways be run on any processor.

109. A certain architecture supports indirect, direct, and
register addressing modes for use in identifying oper-
ands for arithmetic instructions. Which of the follow-
ing cannot be achieved with a single instruction?

A. Specifying a register number in the instruction
such that the register contains the value of an op-
erand that will be used by the operation.

B. Specifying a register number in the instruction
such that the register will serve as the destination
for the operation’s output.

C. Specifying an operand value in the instruction
such that the value will be used by the operation.

D. Specifying a memory location in the instruction
such that the memory location contains the value
of an operand that will be used by the operation.

E. Specifying a memory location in the instruction
such that the value at that location specifies yet
another memory location which in turn contains
the value of an operand that will be used by the
instruction.

110. The designers of a cache system need to reduce the
number of cache misses that occur in a certain group
of programs. Which of the following statements is/are
true?

I. If compulsory misses are most common, then the
designers should consider increasing the cache
line size to take better advantage of locality.

II. If capacity misses are most common, then the de-
signers should consider increasing the total cache
size so it can contain more lines.

III. If conflict misses are most common, then the
designers should consider increasing the cache’s

associativity, in order to provide more flexibility
when a collision occurs.

A. III only B. I and II only

C. II and III only D. I, II, and III

E. None of the above

111. A system designer has put forth a design for a direct-
mapped cache C. Suppose that reading a memory
address A is anticipated to have an overall expected
average latency T (A,C) (including the average cost
of cache misses on C). Which of the following state-
ments is/are true?

I. If C contains several words per cache line, then
the index of the cache line for A is given by the
rightmost bits of A.

II. Suppose C is a unified cache and C’ is a compa-
rable split cache with the same total capacity and
cache line size as C. Then, generally, T (A,C’) > T
(A,C).

III. Suppose C’’ is a two-way set associative cache
with the same total capacity and cache line size as
C. Then, generally, T (A,C’’) < T (A,C).

A. III only B. I and II only

C. II and III only D. I, II, and III

E. None of the above

112. We have two caches with the following details.

 Cache1 uses a direct-mapped cache containing 2
words per cache line. It would have an instruction
miss rate of 3% and a data miss rate of 8%.

 Cache2 uses a 2-way set associative cache containing
8 words per cache line. It would have an instruction
miss rate of 1% and a data miss rate of 4%.

 Assume approximately 0.5 data references on average
per instruction. The cache miss penalty in clock cycles
is 8 + cache line size in words; for example, the pen-
alty with

 1-word cache lines would be 8 + 1 = 9 clock cycles.

 Let D1 = cycles wasted by Cache1 on cache miss pen-
alties (per instruction)

 Let D2 = cycles wasted by Cache2 on cache miss pen-
alties (per instruction)

 On average, how many clock cycles will be wasted by
each on cache miss penalties?

A. D1 = 0.45, D2 = 0.48

B. D1 = 0.70, D2 = 0.40

C. D1 = 0.70, D2 = 0.48

D. D1 = 1.10, D2 = 0.40

E. D1 = 1.10, D2 = 0.96

4.80 Computer Science & Information Technology for GATE

 Explanation: Let p be the cache miss penalty, in
clock cycles, and let mi and md indicate the instruc-
tion and data miss rates, respectively. Then the to-
tal time spent on penalties, for an average instruc-
tion, is p (1 * mi + 0.5 * md), since there are about
0.5 data references per instruction. Consequently,
the total penalty for D1(=10*(0.03+0.5*0.08)) and
D2(=16*(0.01+0.5*0.04)), are 0.70 and 0.48, respec-
tively.

113. Consider the following alternative designs of a cache.

 Design #1 is a direct-mapped cache of 8 1-word cache
lines. The miss penalty is 8 clock cycles.

 Design #2 can store the same total number of items
as Design #1, but it is a two-way associative cache of
1-word cache lines. Least-recently-used is utilized to
determine which items should be removed from the
cache. The miss penalty is 10 clock cycles.

 Assuming the following eight memory references,
cache miss penalties in cycles for both:

 Memory References: 0, 3, 14, 11, 4, 11, 8, 0

A. Design #1 spends 56 cycles and Design #2 spends
60 cycles

B. Design #1 spends 56 cycles and Design #2 spends
70 cycles

C. Design #1 spends 48 cycles and Design #2 spends
70 cycles

D. Design #1 spends 64 cycles and Design #2 spends
60 cycles

E. Design #1 spends 64 cycles and Design #2 spends
80 cycles

 Explanation:

 Design#1: The following table illustrates the miss
and hit with given cache and given page reference se-
quence. We find in total 7 misses. Thus, 8x7=56 cycles
as the miss penality.

Memory
Reference/
Block No

0 1 2 3 4 5 6 7

0 * Miss

3 * Miss

14 * Miss

11 * Miss(page is re-
placed with 11)

4 * Miss

11 Hit

8 * Miss (0 is re-
placed with 8)

0 * Miss(8 is re-
placed with 0)

 Design#2: As this is two associative cache, we will be
having 4 blocks only. This also gives 7 misses (see the
following table). Therefore, miss penalty with this is
10 × 7 = 70 cycles.

Memory Refer-
ence/Block No

0 1 2 3

0 * Miss

3 * Miss

14 * Miss

11 * Miss(page 3 is re-
placed with 11)

4 * Miss(page 0 is re-
placed with 4)

11 * Hit

8 * Miss (0 is replaced
with 8)

0 * Miss(8 is replaced
with 0)

114. A certain computer has a TLB cache, a one-level phys-
ically-addressed data cache, DRAM, and a disk back-
ing store for virtual memory. The processor loads the
instruction below and then begins to execute it.

 lw R3, 0(R4)

 This indicates that the computer should access the
virtual address currently stored in register 4 and load
that address’s contents into register 3. Which of the
following is true about what might happen while ex-
ecuting this instruction?

A. If a TLB miss occurs, then a page fault definitely
occurs as well.

B. If a data cache miss occurs, then a page fault defi-
nitely occurs as well.

C. No more than one data cache miss can occur.

D. No more than one page fault can occur.

E. If a page fault occurs, then a data cache miss defi-
nitely does not occur as well.

115. Suppose that a direct-mapped cache has 29 cache
lines, with 24 bytes per cache line. It caches items of a
byte-addressable memory space of 229 bytes.

 How many bits of space will be required for storing
tags?

 (Do not include bits for validity or other flags; only
consider the cost of tags themselves.)

A. 28 bits B. 211 bits

C. 213 bits D. 225 bits

E. 232 bits

 Explanation: Of the 29 bits of the address space, 9
indicate the cache line index, and 4 indicate the offset
within the cache line. That leaves 16 = 24 bits for the

Operating Systems 4.81

127. PATH is _____

A. Route B. Path name of a file

C. Environment variable D. None

128. Find odd-one out

A. / B. c: C. A: D. /bin

129. Permissions to specific users can be granted in ____

A. DOS B. Linux C. Win NT D. None

130. External fragmentation _____

A. Solved through compaction

B. Contiguous file allocation

C. Chained allocation

D. Indexed allocation

131. Disk allocation table

A. FAT B. Open file table

C. bit map D. None

132. Bit table size on a 16 Gbyte disk with 4 Kbyte block is

A. 16 KB B. 4MB C. 2 GB D. none

133. Push-down stack ___

A. Round-robin

B. Free data bloacks management

C. Indexing

D. None

134. Free block list in memory is maintained as

A. Push-down stack B. FIFO queue

C. Both D. None

135. File allocation is done ____

A. Sector basis B. Cluster basis

C. Block basis D. Both B & C

136. I-node contains ___ bytes of address information

A. 64 B. 39

C. both a & b D. None

137. ____ is the largest single file size on a unix file system
with 1 KB block size and 4 byte block addresses

A. 128 GB B. 65 MB C. 16 GB D. None

138. Critical file system data is in _____

A. FAT

B. I-node based file system

C. NTFS

D. None

139. _____ can extend multiple disks

A. Partition B. Volume

C. Cluster D. None

140. Maximum volume size in NTFS ____ bytes

A. 232 B. 216 C. 264 D. None

tag. There are 29 tag entries, for a total of 29+4 = 213

bits.

116. College campuses have wireless ____ on campus that
allow students to use their PCs to connect wirelessly
to the college network and the Internet from any-
where on campus.

A. Hotspots C. Com spots

B. Hotpoints D. Com points

117. Small programs called ____ are used to communicate
with peripheral devices, such as monitors, printers,
and scanners.

A. Interfaces C. Drivers

B. Utilities D. Managers

118. A ____ is an area in RAM or on the hard drive desig-
nated to hold input and output on their way in or out
of the system.

A. Segment C. Page

B. Buffer D. Sector

119. A ____ consists of a series of screens that prompt the
user for the necessary information and then creates a
particular type of document based on the users input.

A. Worm C. Trojan horse

B. Wizard D. Phish

120. A strategy for speeding up hard drive performance is
____.

A. disk caching C. disk backing up

B. disk tracking D. disk Wiring

121. _______ is responsible for starting I/O operation on
a device and processing the completion of an I/O re-
quest.

A. OS B. Device driver

C. Read system call D. None

122. Major number is in ______

A. OS/2 B. Windows

C. DOS D. Unix

123. Merging log file & master file is used in ______

A. Unix file system B. FAT system

C. Pile file system D. None

124. Find odd-one out

A. Chmod() B. Umask C. Stat() D. Chown

125. Find odd-one out

A. Chmod B. Umask C. Chown D. Umask()

126. Binary name of a fie in unix is ___

A. Any characters length

B. Major & minor number pair

C. i-node number

D. None

4.82 Computer Science & Information Technology for GATE

141. In an NTFS system on a disk with partition size > 32
GB, a file of 3200 bytes occupies ____ cluster (sector
size is 512 bytes).

A. 7 B. 2 C. 1 D. None

142. Max file size supported by NTFS is ____

A. 232 clusters B. 248 clusters

C. Both A & B D. None

143. NTFS uses _____

A. Super block B. Bit map

C. Both D. None

144. Lazy write/lazy commit employed in ____

A. ext2 B. DOS C. NTFS D. FAT

145. Busy wait is in _____ I/O

A. Interrupt driven B. Programmed I/O

C. DMA D. None

146. Single process dead-lock can be controlled ____

A. Postphoning I/O

B. Re-ordering

C. By making sure that user memory involved in I/O
locked into main memory

D. None

147. Find odd-man out

A. Tapes B. Disks C. Terminal D. None

148. Reading ahead employs

A. Single buffer B. Double buffer

C. Circular buffer D. None

149. Line buffered

A. printf B. read C. fread D. None

150. Buffer swapping employs

A. System buffer B. Single buffer

C. Double buffer D. None

151. scroll-mode terminals

A. single buffering B. line buffering

C. double buffering D. None

152. Byte-at-a-time ____ is required

A. Single buffer B. Double buffering

C. Circular buffer D. None

153. In RAID data is

A. In a large disk B. Distributed in the disks

 C. Double buffered D. None

154. Redundancy in RAID 0 is ___

A. Two B. One

C. No redundancy D. None

155. Buffer cache in unix is ____

A. disk cache B. double buffer

C. memory cache D. None

156. To copy buffer cache to the process I/O are through
DMA ____ required

A. Processor cycles B. Bus cycle

C. Both A & B D. None

157. RAID 4 uses ____ storage

A. bit level B. byte level C. disk level D. None

158. In RAID 6 array if user data requires N disks then it
really contains ___ disks

A. 2 B. N C. N+2 D. None

159. In unix devices are

A. files

B. major & minor numbers

C. both A & B D. None

160. Windows 2000 supports

A. HW RAID B. SW RAID

C. both A & B D. None

161. Floppy uses ____ FAT

A. 24-bit B. 16-bit

C. 32 bit D. None

162. In FAT file system directory entry contains filenames
whereas in Unix directory entry will not contain file
names.

A. Yes B. No C. Probably D. None

163. In FAT, a files last cluster entry contains ___

A. 0xfe B. 0xff C. 0xff8 D. None

164. ROM monitor does ___

A. reads a disk block

B. transfers control to the disk block read

C. Both A & B D. None

165. Berkley fast file system allows ___ block sizes

A. fixed B. variable C. two D. None

166. Find odd-one out

A. /proc B. namefs C. ufs D. ffs

167. vnode

A. FAT B. NTFS C. vfs D. NFS

168. OS/2 supports

A. FAT B. HPFS

C. both A & B D. None

169. OS/2 supports

A. filenames upto 254 characters

B. case sensitive naming

C. Both A & B

D. None

170. Meta-data of file in OS/2

A. Fixed size B. Variable

C. User can add D. None

Operating Systems 4.83

171. Find odd-one out in terms of FAT

A. DOS B. Windows

C. Mac OS D. None

172. Fork

A. Unix system call B. Mac OS’s file data area

C. both A & B D. None

173. Stackable file system

A. DOS B. Unix C. NTFS D. BSD

174. Find Odd-one out in terms of NT system

A. DOS B. HPFS C. YFS D. NTFS

175. Find odd-one out

A. Context switching B. Process switching

C. Bank switching D. None

176. Extended memory

A. Not accessible by 8086

B. Above 1 Mb

C. can be addressed by 80286 and above

D. All

177. In user mode

A. PSW bit 0 value is 1

B. Instructions that modify control registers are not
legal and cause a program error

C. All addresses must be less than bound

D. All

178. Binary name of a file ___

A. Usually a unique number

B. Called internal name

C. Both A & B

D. External name

E. None

179. In system mode all addresses are

A. Physical addresses

B. Absolute addresses

C. Logical addresses

D. A & B

180. When a user program calls a system call

A. Mode changes to system mode

B. Interrupts are enabled

C. System call number is sued to find out code in sys-
tem call interrupt vector area

D. All

181. Find odd-one out in the perspective of open file

A. Dynamic object

B. File descriptor/handle is associated

C. File internal name changes

D. Have an entry in open file table

182. OS/2 uses ___ scheduling

A. preemptive B. non-preemptive

C. round-robin D. None

183. Disk arm scheduling is to reduce effect of __ on disk
access

A. horizontal latency B. rotational latency

C. both A & B D. None

184. Latency optimisation

A. seek optimisation

B. rotational optimisation

C. both A & B D. None

185. A scheduling algorithm with small variance

A. show good predictability

B. less chance for indefinite postponement

C. A & B

D. None

186. Interleaving is for

A. seek optimisation

B. latency optimisation

C. no effect under low load

D. B & C

187. Indefinite postponement

A. FCFS B. SSTF C. SCAN D. None

188. Guarantee of service is available in

A. FCFS B. SCAN C. C-SCAN D. All

189. Biased towards inner tracks

A. SSTF B. SCAN C. Both A & B D. None

190. SSTF under moderate loads

A. gives better throughput

B. low mean response times

C. higher variances

D. all

191. starvation

A. FCFS B. SSTF C. SCAN D. C-SCAN

192. For interactive systems, disk arm scheduler

A. good mean response time

B. low variation in response time

C. high variance in response times

D. A & B

193. N-step SCAN algorithm’s variance in response time

A. smaller than SSTF B. SCAN

C. Both A & B D. None

194. The scheduling algorithm which optimizes both hori-
zontal & rotational latency effects

A. Interleaving B. SCAN

C. SSTF D. Eschenbach

4.84 Computer Science & Information Technology for GATE

195. Find odd-one out

A. CSCAN B. SSTF

C. SLTF D. FCFS

196. Disk scheduling is not useful

A. batch processing system with less multiprogram-
ming

B. batch processing system with heavy multipro-
gramming

C. time sharing with moderate level of multipro-
gramming

D. None

197. WORM

A. device B. virus like program

C. both A & B D. None

198. Direct access device

A. RAM B. ROM C. Floppy D. None

199. Direct access device

A. Accessing can be at random

B. Access times varies from file to file

C. Both A & B

D. None

200. Device with random accessing ability & with same ac-
cess time for any unit data

A. cache B. FDD

C. RAM D. A & B

201. If seek time approximates latency time which of the
following scheduling algorithms preferable

A. SSTF B. CSCAN

C. SSTF with SLTF D. None

202. Under extremely heavy loads ____ is needed

A. seek optimisation

B. latency optimisation

C. both A & B

D. None

203. Cylinder oriented disk scheduling is

A. FCFS B. SSTF C. SLTF D. None

204. Constant bit density is

A. same sectors/track

B. number of sectors in outer tracks more

C. in ROM

D. None

205. What is the average read/write time for a 512 byte sec-
tor with 4 ms average seek time, transfer rate 4MB/s
and 7200 RPM, controller overhead is negligible and
queing delay is also negligible

A. 4 ms B. 7 ms C. 8.3 ms D. 8.15 ms

206. Disk stripping means

A. RAID

B. Parts of the file is split on separate drives

C. Disk partitioning

D. None

207. Windows NT pipes are

A. uni directional B. bi-directional

C. both A & B D. None

208. Namedpipe is

A. application level communication construct

B. consists both server & client

C. bi-directional

D. All

209. Pipe is

A. |

B. parent’s stdout is made child’s stdin

C. IPC channel

D. All

210. Anonymous pipe

A. Supported in win NT

B. Same workstation

C. Unix doesn’t support

D. All

211. Namedpipe

A. Only server can create

B. Mknod() is used in unix to get created

C. Supported in win NT

D. All

212. Namedpipe

A. frees application writes from low-level details

B. bi-directional

C. both server & client can read & write

D. All

213. In real mode

A. all memory addresses addressable by a process are
addressable by all programs

B. 8086/8088 processors always runs

C. traditional MSDOS device drivers, TSR’s run in
this mode

D. All

214. Protected mode

A. Windows/ Win NT

B. After switching to protected mode protected
mode applications are run

C. DPMI is used to run some DOS application in
protected mode

D. All

Operating Systems 4.85

215. Socket verses namedpipe

A. transport and application level things respectively

B. both are bi-directional

C. namedpipe runs on top of socket

D. All

216. File descriptor

A. an integer

B. inheritable

C. row index of descriptor table

D. All

217. Open file table

A. in user space B. per process

C. kernel space D. None

218. Metadata of a file

A. I-node B. FAT C. Both D. None

219. Hard link

A. When created link count increases

B. File I-node is same as original file I-node

C. Only done on same partition

D. All

220. Symbolic link

A. Link count of I-node will not change

B. File I-node will different from original

C. Can be created for a directory

D. All

221. An OS

A. Mediator between user and HW

B. Resource Manager

C. Implementer of virtual computer

D. All

222. Disk sharing can be done by

A. Time-multiplexing I/O channels

B. Space multiplexing disks

C. Both A & B

D. None

223. Virtual printer

A. spooling

B. printer file

C. creates illusion of multiple printers

D. All

224. System call may

A. generate interrupt

B. make OS to gain control of processor

C. not require service routine address

D. All

225. Find odd man out

A. pipe() B. popen()

C. msgget() D. fork()

E. All

226. Find odd one out

A. Read B. Write C. Stat D. Fread

227. What will be the result of the following program

 #include<stdio.h>

 main()

 {

 fork();

 fork();

 printf(“Hello\n”);

 }

A. two Hello’s B. three Hello’s

C. four Hello’s D. Unpredictable

228. Little language

A. low level B. high level

C. scripting

D. provide interactive access to a collection of func-
tions related to a task

229. Exit status of a unix command if successful

A. positive number B. zero

C. any number D. None

230. File descriptor & file stream pointers are

A. same B. different

C. supported in unix only

D. Both B & C

231. File descriptor

A. meaningful in unix only

B. is an integer

C. not portable like FILE

D. All

232. Memory mapping of a file

A. to share a part of a file by multiple process

B. lets a part of virtual address space to be associated
with a section of a file

C. writes by any of the process on mapped file’s part/
page can be seen by all processes

D. All

233. When we type xyz command in DOS then ______ se-
quence files are checked to load into memory

A. xyz.com, xyz.exe, and xyz.bat

B. xyz.exe, xyz.bat, and xyz.bat

C. xyz.bat, xyz.exe, and xyz.com

D. xyz.com, xyz.exe, and xyz

4.86 Computer Science & Information Technology for GATE

234. Disk internal fragmentation

A. depends on block size

B. depends on machine word size

C. depends on degree of multiprogramming

D. None

235. Disk internal fragmentation

A. increases with block size

B. is zero if file is exact multiple of sector size

C. A & B D. None

236. Directory structure in

A. DOS is tree

B. Unix is acyclic graph

C. Tree structured prohibits file sharing

D. All

237. Desktop file is supported in

A. DOS B. Unix C. Macintosh D. None

238. Compressed file systems

A. double drive

B. superstore drive

C. any file is stored in compressed form

D. all

239. ____ called as indirect pointers

A. links B. addresses

C. memory addresses D. None

240. Dangling links occurs

A. symbolic links

B. if the real file is deleted for which symbolic links
are existing

C. A & B

D. with hard links

241. Dangling pointers to now-non existing file occurs

A. symbolic links

B. if the real file is deleted for which symbolic links
are existing

C. A & B

D. with hard links

242. file reference count is

A. in inode

B. incremented/decremented whenever hardlink is
created or deleted for a file

C. A & B

D. None

243. Device driver

A. set of functions B. a program

C. developed exclusively using system calls

D. None

244. Swap space

A. can be a file

B. can be a partition

C. can be on multiple disks

D. All

245. If swap file is used

A. then adding extra space is easy

B. swapping becomes inefficient

C. external fragmentation may increases swap space
accessing

D. All

246. Swap partition

A. will not have any file or directory structure

B. may employ contiguous block allocation policy

C. very efficient

D. All

247. If swap partition is used

A. Internal fragmentation increases

B. Swap partition can be shared by multiple OS’s one
at a time

C. Management of blocks is easy

D. All

248. Normalised turnaround time

A. waiting plus service time

B. elapsed time

C. ratio of turnaround time to service time

D. None

249. Normalised turnaround time

A. min possible value is 1

B. for a good scheduler this parameter to be smaller

C. increase in values of this corresponds to decrease
in levels of service

D. All

250. PC supports ____ no of interrupts

A. 15 B. 16 C. 256 D. None

251. PC serial port I/O address is ____

A. 0x3f8 B. 0x2f8 C. A & B D. 0x2d

252. Interrupt number assigned to Hard Disk in PC is ___

A. 11 B. 12 C. 13 D. 14

253. Interrupts mask to enable clock, key board and print-
er

A. 01111100 B. 11110001

C. 10110111 D. None

254. Device independence

A. is for uniform naming

B. requires files to be modified differently for each device

Operating Systems 4.87

C. is for common device driver development

D. None

255. A device driver handles

A. one device

B. one class of closely related devices

C. A & B

D. None

256. UART is needed

A. for controlling terminals

B. coverts serial data to character

C. converts character data to serial

D. All

257. Video RAM address in PC

A. 0xB0000 B. 0xB8000

C. both A & B D. None

258. Memory mapped terminals are

A. not interrupt driven B. interrupts driven

C. processor driven D. None

259. Find out correct one

A. L1 cache will be in microprocessor

B. L2 cache will be in outside microprocessor

C. A & B

D. None

260. Cache memory may be constructed through

A. DRAM B. SRAM C. ROM D. None

261. Cache controller

A. copies data from physical memory to cache mem-
ory

B. copies data from physical memory to RAM disk

C. copies data from user space to kernel space

D. None

262. Cache memory

A. is needed with fast computers such that comput-
ers are not required to wait for RAM

B. improves system performance

C. A & B

D. None

263. Find odd-one out

A. Valid bit B. Used bit

C. Dirty bit D. Presence bit

264. An associative cache for a 64K machine with 8 bit
memory word is used then cache word length is

A. 32 bits B. 16 bits C. 25 D. None

265. Compiler generally allocate elements of an array to
contiguous memory location. This may

A. aid set associative caching

B. give locality of reference

C. A & B

D. None

266. A computer with 1K cache, 64K RAM with 8 bit word
is employing direct mapping, then the size of cache
word

A. 10 bits B. 16 bits C. 15 bits D. None

267. Harward architecture

A. separate caches for data & instructions

B. same caches for data & instructions

C. multiple processors

D. None

268. An associative cache for a 64K machine with 8 bit
memory word is used then cache word length is

A. 32 bits B. 16 bits C. 24 bits D. None

269. An associative cache for a 64K machine with 8 bit
memory word is used. A block size of 4 is used, then
cache memory word size is

A. 32 bits B. 46 bits C. 48 bits D. None

270. A two-way set associative memory with 1K is used
then the number of locations are

A. 1024 B. 16 C. 512 D. None

271. For I=1 to 1000 do

 x=x+I

 Assume x is stored in cache currently. Then __ is pre-
ferred

A. write-through B. write-back

C. both D. None

272. Intel’s Itanium processors L1 cache is

A. Single cache

B. Split cache

C. Split cache with 4-way set associative

D. None

273. Intel’s Itanium processor has

A. L1 cache in processor B. L2 cache in processor

C. A & B D. None

274. Intel’s Itanium processor L2 cache is

A. split B. unified

C. unified six-way set associative

D. split six-way set associative

275. Itanium supports

A. L1 cache B. L2 cache

C. L3 cache D. L4 cache

E. All

276. A CPU with 32 bit virtual address space, 16K page
size will have ___ entries in page table

4.88 Computer Science & Information Technology for GATE

A. 16536 B. 65535 C. 262144 D. None

277. Alpha microprocessors supports ___ page tables

A. single level B. 4 level

C. three level D. None

278. Intel Pentium processor

A. 16K L1 cache

B. 8K Instruction cache (a part of L1 cache)

C. 8K data cache (a part of L1 cache)

D. All

279. The code part of L1 cache in Pentium processor uses _

A. Direct mapping

B. 2-way set associative

C. 4-way set associative

D. None

280. Pentium’s code cache uses ____ replacement strategy

A. FIFO B. LRU

C. Pseudo LRU D. NRU

E. None

281. Data cache in Pentium processor uses line size of

A. 32 bits B. 32 bytes

C. 20 bits D. None

282. Pentium processor the code cache as a TLB of ___ en-
tries

A. 16 B. 32

C. 64 D. None

283. In Pentium, CPU

A. can not write into code cache

B. can write into data cache

C. A & B

D. can not write into data cache

E. All

284. Pentium processor has

A. L1 cache inside microprocessor

B. L2 cache outside

C. A & B

D. All

285. L2 cache size in Pentium processor

A. 256 KB B. 128 KB

C. 1 MB D. None

286. L2 cache in Pentium processor is

A. Unified B. Split C. 4 way D. None

287. L2 cache in Pentium processor is __

A. 2 way set associative

B. 4-way set associative

C. direct mapping

D. All

288. In Pentium processor virtual memory is handled by

A. Pentium processor B. Windows NT

C. Both A & B D. None

289. Associative memory (CAM) contains

A. data register B. mask register

C. match register D. output register

E. All

290. Number of matches in associative memory which is
used for cache/virtual memory is ___

A. one B. many C. two D. None

291. A processor with 64K of 8bit bytes of data is having 1
K cache then index bits are

A. 16 B. 6 C. 19 D. 3

E. None

292. Find the wrong one

A. In associative cache any word of physical memory
can occupy any word of cache

B. In direct mapped cache any word of physical
memory can be mapped to any specific location

C. In direct mapping block size is 1

D. Set associative memory uses CAM

293. LRU cache replacement is used in

A. associative cache B. direct mapped cache

C. set-associative D. None

294. Count value is available in

A. associative cache B. direct mapped cache

C. set associative D. None

295. Count value in set-associative cache

A. is larger then older the data

B. relative order of access

C. is zero for most recently accessed one

D. All

296. TLB does not contain

A. count B. dirty bit

C. every entry of page table

D. All

297. In x86 architecture, segment should start at

A. any address B. at fixed address

C. at an address whose low order bits are 0000

D. All

298. x86 supports

A. segment table B. segments

C. both D. None

299. A CPU can address 1Mx16, cache of 8Kx16 is used
through fully associative cache then number of bits
per location

A. 16 B. 33 C. 32 D. None

Operating Systems 4.89

300. Find odd-one out

A. Data bus B. Control bus

C. Address bus D. I/O bus

301. Internal interrupts

A. Occur entirely within the CPU

B. Timer

C. To handle exceptions

D. A, B & C

E. Software interrupts

302. When interrupt occurs

A. Current instruction is completed

B. Context switching may take place

C. Service routine is executed

D. All

303. In burst mode, DMA transfers

A. entire block B. one byte at a time

C. one record at a time D. None

304. _____ mode is recommended to transfer files through
DMA

A. input mode B. byte mode

C. burst mode D. character mode

E. transparent mode

305. A controller that must monitor data in real time or
near realtime may prefer ___ mode transfer with
DMA

A. transparent mode B. burst mode

C. cycle stealing mode D. None

306. In ___ mode DMA controller interleaves instructions
and data transfers

A. transparent B. burst

C. cycle stealing D. block

E. None

307. ____ mode DMA controller transfers data when CPU
is not using

A. transparent B. block transfer

C. cycle stealing D. None

308. Block address trace

A. required in FIFO page replacement

B. required in optimal page replacement

C. is sequence of virtual block address

D. B & C

E. None

309. Not a stack algorithm

A. LRU B. NRU

C. OPTIMAL D. FIFO

310. Look-through cache

A. separate local bus to cache

B. faster than look-aside

C. I/O operations and caching can be done concur-
rently

D. All

311. When miss occurs then ___ procedure can respond
quicly to CPU

A. look-aside B. look-through

C. can’t say D. None

312. Cache coherence

A. stop stale data usage

B. may be found in multiprocessors

C. even found in uniprocessor systems

D. All E. None

313. ___ guarantees no stale information in memory

A. write-through B. write-back

C. copy-back D. None

314. Preferable hit ratio for having good system perfor-
mance is

A. 0.9 B. almost one

C. about 100 D. None

315. If hit ratio reduces from 99% to 95%

A. access time increases

B. cache hit falls down

C. access time increases by about 23%

D. None

316. Find odd-one out

A. Programmers (assembly) can access all registers
in a processor

B. Programmer (assembly) can not access all regis-
ters in a processor

C. Some registers are not part of instruction set

D. None

317. Exceptions or traps

A. software interrupts

B. hardware interrupts

C. are triggered when valid instructions perform in-
valid operation

D. None

318. Usefull addressing mode for short jumps

A. direct B. indirect

C. relative D. None

319. Instructions are orthogonal

A. if they don’t overlap

B. if they don’t perform same function

4.90 Computer Science & Information Technology for GATE

C. A & B

D. are perpendicular

E. All

320. Intel Itanium contains

A. 128 general purpose registers for integer data

B. 128 general purpose registers for float point data

C. A & B

D. None

321. In 8085

A. Accumulator is A

B. Register A receives 8-bit arithmetic or logical op-
erations

C. Has 6 general purpose registers

D. Has 16-bit stack pointer register

E. All

322. Interrupts that are masked

A. are lost B. are not lost

C. are delayed D. B & C

323. Relocation register

A. is under the control of OS

B. is not available directly to the user program

C. is involved automatically when a program refers
any memory location

D. All

324. For the following code fragment, 2 stage pipeline is
proposed; 1st stage for multiplication (10 ns) and 2nd
stage for addition (10 ns) is required. Then how much
time it takes to complete.

 for I=1 to 100 do A[I]=B[I]*C[I]+D[I]

A. 2000 ns B. 1010 ns

C. 1020 ns D. 2010 ns

325. Repeat the above assuming latching in pipeline re-
quire 2 ns and fetching time is ignored.

A. 2000 ns B. 1012 ns C. 1212 ns D. None

326. NaN

A. Not a Number

B. Represents illegal operation such as infinity % in-
finity

C. Is assigned to unitialised variable

D. All

327. Sticky bit

A. can be used for a executable file in unix for perfor-
mance reasons

B. when set to a unix directory any one can write
into it

C. used in rounding algorithms

D. All

328. Gap

A. is a data structure which keeps characters in a
large array with a gap in the middle.

B. is the difference between two adjacent values in
floating point representations.

C. A & B

D. None

329. Reentrant programs

A. code that can not be changed while in use

B. code can be used or shared by several processes
simultaneously

C. code is not serially reusuable

D. may not contain static or locale data

E. All

330. Reentrancy

A. is a property of a program

B. is a characteristic of a process

C. makes multiple copies easier

D. is achieved by avoiding global or static variable

E. All

331. Malloc, new etc memory Allocators use

A. per-process memory

B. may call OS only if per-process memory is over or
exhausted

C. A & B

D. None

332. Object module produced by a compiler after linking
may not contain

A. symbol table B. header information

C. text D. data segment

E. environment variables

333. Find odd man out

A. EXE B. COFF C. ELF D. DLL

334. linker responsibility doesn’t include

A. Combining object modules into a load module

B. Relocate object modules when they are joined

C. Link object modules when they are joined

D. Search libraries for external references which are
not defined in object modules

E. Attach command line information to load mod-
ule

335.

 int a[10];

 int size=100;

 static int b=15;

 void main()

Operating Systems 4.91

 {

 int sum=0;

 }

 In the above program which is stack variable?.

A. a B. bb C. Size D. Sum

E. None

336. Find odd-one out

A. Symbol table in load module is necessary while
running.

B. Symbol table in load module is not needed while
running.

C. Strip command can be used in unix to remove
symbol table from a load module.

D. None

337. Find odd-one out

A. Object modules are compiled.

B. Load modules are compiled, linked, and are ready
for execution.

C. Object modules contain symbol table.

D. Load module contains single symbol table though
it is created by joining many object modules.

E. None

338. Find odd-one out

A. Load time dynamic linking

B. Run time dynamic linking

C. Static linking D. A & B

E. Dynamic linking

339. Find odd-man out

A. Process B. Interpretation

C. File descriptor D. Compilation

340. Find odd-one out

A. Program B. I-node number

C. Compilation D. Debugging

341. In ASCII first 32 characters are

A. Control codes

B. Nonprinting characters

C. Characters used in screen & printer control

D. Used in serial communication

E. All

342. In USB ___ number of devices can be connected on a
single port

A. 1 B. 2 C. 127 D. None

343. The serial ports of most PC’s can transmit data upto
____ bps

A. 9600 B. 2400 C. 1200 D. 115200

E. None

344. RS-422 serial standard is used in

A. PC B. Pentium

C. AppleMac D. None

345. RS-422 standard

A. Uses differential voltage to send data

B. Uses immune to electrical noise

C. Supports longer distances

D. Uses HSKO/HSKi signals

E. All

346. CRC field length in USB data packet

A. 8 bits B. 16 bits C. 1 bit D. None

347. CRC field length in USB token packet

A. 8 bits B. 5 bits C. 1 bit D. None

348. USB supports ___ packets

A. Token B. Data

C. Handshake D. All

349. Find odd-out one

A. USB data packet does not contain device address

B. PID packet is 8 bits

C. USB supports one device

D. None

350. Total bits required for direct mapped cache with 64
KB of data and one-word blocks if addresses are 32
bits is ___

A. 16 KB B. 98KB C. 100KB D. None

351. RISC

A. To simplify compilers

B. To improve performance

C. Will have fewer instructions

D. Tend to emphasise on registers

E. All

352. RISC architectures

A. Executes one instruction per cycle

B. Uses register-to-register operands

C. Simple address modes

D. Supports simple instruction formats

E. All

353. If the instruction length is aligned on boundaries,
then

A. Fetching is optimized

B. Single instruction does not cross page boundaries

C. A & B D. None

354. If the instruction length is fixed with fixed field loca-
tions, then

A. Control unit becomes less complex

B. Opcode decoding, register operand accessing can
be done concurrently

4.92 Computer Science & Information Technology for GATE

C. A & B D. None

355. Machine cycle in RISC can be defined as

A. Fetching two operands from registers

B. Perform ALU operation

C. A & B

D. None

356. Kerberos

A. Disk B. Network protocols

C. Processor D. None

357. Kerberos

A. Network protocols

B. Does not assumes both side machines are secure

C. Employs authentication server

D. All

358. In Pentium the data cache as a TLB of ____ entries

A. 16 B. 32

C. 64 for page size of 4KB

d. None

359. File descriptor

A. A integer >= 0

B. Of stdin is 0

C. Inheritable to chaild

D. All

360. A paging system is employing HW cache as TLB of
20ns access time (search time) and physical memory
access time is 100 ns. It is observed that the hit ratio is
80%. The effective memory access time is

A. 120ns B. 220ns C. 140ns D. None

361. A paging system is employing HW cache as TLB of
20ns access time (search time) and physical memory
access time is 100 ns. It is observed that the hit ratio is
98%. The effective memory access time is

A. 120ns B. 122ns

C. 220ns D. None

362. In a paging system with TLB it is observed that for
every 10 memory accesses 9 accesses are successfully
found in TLB. Find out effective access time if mem-
ory access is 200 ms and cache access is 10ms while
finding page base address

A. 20ms B. 30ms C. 40ms D. None

363. A given computer has a maximum of 3 page frames
which are allocated to a process. Page reference string
(FIFO order)is 2 3 2 1 5 2 4 5 3 2 5 2, then how many
page faults occurred if LRU is employed and initially
all the three frames are free.

A. 10 B. 11

C. 13 D. None of the above

364. From the following data find out when process 3 is
completed if shortest job next is employed.

Process Arrival Time Expected CPU Time

1 0 14

2 3 12

3 5 7

4 7 4

5 19 7

A. 7 B. 21 C. 25 D. None

365. Repeat for the above data for Round Robin algorithm
with time slice value is 5. Assume if a quantum expires
at the same time of a process arrival then the process
joins the queue first. Also assume over head for con-
text switching and other administration responsibili-
ties is negligible.

A. 24 B. 31 C. 44 D. None

366. Given the following data and for time slice value of 2
find out turn around time for process 3.

Process Arrival Service time Priority

1 1 8 2

2 2 2 4

3 3 1 3

4 4 2 4

5 5 5 1

A. 9 B. 3 C. 10 D. None

367. Calculate for the above data average wait time if FIFO
policy is employed

A. 5 B. 6 C. 6.4 D. None

368. Calculate average wait time for the data in problem 46
if round robin with priorities are employed

A. 4 B. 5 C. 6.4 D. None

369. When very few disk accesses are occurring every disk
scheduling algorithm tends to approximate which
specific disk scheduling algorithm?

A. FCFS B. SCAN C. C-SCAN D. SSTF

370. When only one request is available in the queue at any
time then all algorithms behave similar to

A. FCFS B. SCAN C. C-SCAN D. SSTF

371. Given that it takes 1 ms to travel from one track to the
next and that the arm is originally positioned at track
15 moving towards the low-numbered tracks then
time required to serve requests 4, 40, 11, 35, 7, and
14 is

A. 40ms B. 47ms C. 30ms D. None

372. In single-user, single tasking environment the follow-
ing disk scheduling algorithm is adequate

A. FCFS B. SCAN C. C-SCAN D. SSTF

Operating Systems 4.93

373. When a process is created

A. A free PCB is obtained

B. PCS is initialised

C. Obtains necessary resources such as memory, I/O
devices

D. All

374. Spreading disk activity among multiple disks & con-
trollers

A. Makes possible to transfer multiple blocks

B. Improves system response time

C. A & B

D. None

375. Which of the following need not be saved during con-
text switching.

A. General purpose registers

B. TLB’s

C. PC D. All

376. Suppose the time to serve a page fault is on an average
10ms, memory access is 1μs, hit ratio is 99.99% then
average memory access time

A. 1.9999ms B. 1ms

C. 9.999μs D. 1.9999μs

377. Which of the following disk scheduling algorithms is
likely to give better throughput?

A. FCFS B. SCAN C. C-SCAN D. SSTF

378. If an instruction takes ‘i’ μs, page fault μs, the effective
instruction time on an the average if a page fault oc-
curs every ‘k’ instructions

A. i+j/k B. i+j*k C. (i+j)/k D. (i+j)*k

379. Locality of reference implies that the page reference
being made a process

A. Will always be the page referred earlier

B. Is likely to be to one of the pages used in the last
few page reference

C. Will always be to one of the pages existing in
memory

D. Will always lead to a page fault

380. Thrashing

A. Reduces page I/O

B. Implies excessive page I/O

C. Decrease the degree of multi programming

D. Improve system performance

381. A Imbyte memory is managed using variable parti-
tion with no compaction. It currently has two parti-
tions 200Kb, and 260 Kb. The samlles allocation re-
quest in K bytes that could be denied is for

A. 151 B. 181 C. 231 D. 541

382. In which of the following page replacement strategies,
Belody anomaly may arise

A. FIFO B. LRU C. LIFO D. A & C

383. The address sequence generated by tracing a particu-
lar program execution in a pure demand paging with
100 records per page with 1 free main memory frame
is recorded as follows. What is the number of page
faults?

 Page reference sequence: 1,0,2,3,1,3,4

A. 13 B. 5 C. 7 D. None

384. Which of the following statements is false?

A. VM implements the translation of a programs ad-
dress space to physical address space

B. VM allows each program to exceed the size of the
primary memory

C. VM increases degree of multiprogramming

D. VM reduces the context switching overhead

385. If RAM is 64MB with 32 bit virtual address space and
page size is 4KB then approximate size of the page
table

A. 16MB B. 8MB C. 2MB D. 24MB

386. A CPU has 32-bit memory address, 256KB cache.
The cache is organised as a 4-way set associative with
block size of 16 bytes then the number of sets in the
cache

A. 64K B. 128K C. 32K D. None

387. How long does it take to load a 64K program from
disk whose average seek time is 30ms, whose rotation
time is 20ms and track hold 32K, Page size or block
size is 2K? Assume the blocks are spread randomly on
the disk.

A. 640 ms B. 100 ms

C. Information is not adequate

D. None

388. Given a machine with only a stack whose top can be
output and on which POP and PUSH are allowed.
Which of the following strings can be sorted in as-
cending order?

 A. 4312 B. 3421 C. 2134 D. 1243

E. 3142

389. What is the time about C, the cost of replacement
policy which is given as the number of page faults for
a particular reference string?

A. C(LRU) always < C(FIFO)

B. C(LRU) always > C(FIFO)

C. C(LRU) always = C(FIFO)

 D. Can't be answered

4.94 Computer Science & Information Technology for GATE

390. A system has 3 page frames in main memory and uses
LRU replacement policy with the follwing reference
string. What is the state of main memory (the pages
existing) after the 5th page fault?

 1223413121

A. 321 B. 124 C. 234 D. None

391. In a memory scheme, the address of a location is spec-
ified by a page address and a displacement within a
page, in hexadecimal.

 # of pages = 16.

 # of words per page = 256.

 The address of the 11th page, 94th word is :

A. B5E B. A5D C. 5EB D. E9C

392. A system has 4 tape drives. The following set of jobs
have demand for tape drives as shown:

 W Æ 1 X Æ 2 Y Æ 3 Z Æ 4

 Which of the following combinations may give rise to
deadlock?

 1) Y 2) WY 3) WYZ

A. 1 B. 2 C. 3 D. 2 & 3

E. None

393. The following processes exist in the process queue.
Completion times required are

 P1:2 P2:3 P3:4 P4:1 P5:6

 What is the mean completion time?

A. 5.4 B. 7.2 C. 12 D. None

394. The following sequence of operations is valid:

 1. Increment address pointer and enable read.

 2. Enable write and decrement address pointer.

 What does this implement?

A. Stack B. Queue C. List D. Deque

395. 5 processes are in a queue. The times for completion
of each are 6, 3, 4, 3 and 2 respectively. Find the mini-
mum average turn around time

A. 18/5 B. 9 C. 62/5 D. 63/5

E. 18

396. A disk has the following parameters : Tracks-35 ,Sec-
tors-10, Data transfer rate- 250,000 bits per sec ,speed
of rotation-300 rev/min .What is the total storage in
bytes?

A. 300ms B. 500ms

C. 1750000 × 6250 D. None

397. Interrupt is used for a byte transfer request from the
above disk. If the interrupt overhead is 10 microsecs,
4 byte transfer time is 8 microsecs, how much time is
available during byte transfers for other work?

A. 13ms B. 14micro seconds

C. 33ms D. None

398. A stack is initially empty. A program is executed. It
is either a PUSH or a POP instruction. Which of the
following cannot represent the stack’s contents after
HLT?

 program: I1, I2, I3, I4, I5, I6, HLT

A. <2> B. <3> C. <5> D. <1,2,5>

E. <3,4,5>

399. Two computers A,B exist with machine languages Ma
and Mb; Assembly languages La and Lb; Cross As-
sembler for B running A is

A. La to Ma B. La to Mb

C. Lb to Ma+La D. La to Ma+Mb

E. Lb to Ma

400. In a system using buffered I/O, which of the following
are needed for ensuring a consistesnt state on recov-
ery from a crash:

 I. Allocate more main memory for buffers

 II. Duplication of buffers in memory

 III. Atomic write of multiple buffers

A. I B. III C. II, III D. I,II

E. I, II, III

401. Which of the following are true:

 I. Set associative cache is cheaper than a direct
mapped cache.

 II. Set associative cache has higher hit ratio than a
Fully associative cache

III. Set associative cache has higher hit ratio than a
direct mapped cache

A. I B. I,III C. III D. I,II

E. I,II,III

402. Policy 1: Allocate a file on disk contiguously

 Policy 2: Allocate a file on arbitrary blocks on disk

 Which of the following is/are the advantage of Policy
1:

 I. It is good for reading large files sequentially

 II. Files are easily expandable in this method

 III. Random access is faster in this method

A. I B. I,III C. II D. III

E. I,II,III

403. Which of the following is false about RISC architec-
tures?

 A. All arithmetic operations deal with registers

 B. The only instructions accessing memory are load
and store

 C. The compiled code is shorter for RISC than for
CISC

 D. None

Operating Systems 4.95

404. Which of the following is not done when an interrupt
occurs?

A. Save the starting address of the executing proce-
dure

B. Save the address of the current instruction

C. Detect the cause of the interrupt

D. Save the values of the registers

E. Make a call to the kernel

405. 2 level cache. A main memory, 2 caches, 4 processors
connected to each cache. 1 level hit ratio is 0.95, 2nd
level hit ratio is half of the remaining requests.

 If accesing the 1st level cache takes 1 cycle. The 2nd

level cache takes 10 cycles and the main memory
takes 100 cycles. What are the average number of cy-
cles taken to access an element.

A. 2 B. 4 C. 6 D. 8

E. 100

406. Two processes have serial execution if instructions are
executed in some order and instructions of a particu-
lar process are in order. Two processes share variable
r1 and r2 and have local variable x, y r1 = r2 = 0

Process 1 Process 2

x = 1 y = 1

r1 = y r2 = x

 which of the following is not possible after serial exec-
tion of above process?

A. r1 = 0, r2 = 0 B. r1 = 1, r2 = 0

C. r1 = 1, r2 = 1 D. r1 = 0, r2 = 1

E. All of the above are possible

407. An overlay is

A. A part of OS

B. A single memory location

C. Swapping

D. Overloading the system with many user files

408. A computer system has 6 tapes with n processes com-
peting for them. Each process needs 3 tapes. The max-
imum value of n for which the syetm is guaranteed to
be deadlock free is

A. 2 B. 3 C. 4 D. 1

409. In round robin algorithm if time quantum is increased
then the average turn around time

A. Increases B. Decreases

C. Remains constant D. None

410. In a paged memory page hit ratio is 0.35, swap disk
access time is 100ns, the time for accessing page in
RAM is 10ns. The average time required to access a
page is

A. 3ns B. 68ns C. 68.5ns D. 78.5ns

411. Memory protection is done by

A. Processor and HW B. The OS

C. Compiler D. The user program

412. The difference between the time you get results and to
the time of submission is

A. Elapsed B. Turnaround

C. System D. None

413. Time command in Unix gives

A. User time B. System time

C. Elapsed time D. All

414. A process is said to be in ___ state if it is awaiting for
an event that will never occur.

A. Safe B. Unsafe

C. Starvation D. Deadlock

415. ___ is used to know timing details of a program at
clock tick level.

A. Time command B. Profiling

C. Make D. None

416. Zombie

A. State of a process B. Game

C. Virus D. None

417. PID of ___ process is 1 in unix.

A. Init B. Page daemon

C. Lp daemon D. Kernel

418. Number of bits used for PID in Unix is __.

A. 8 B. 16 C. 32 D. None

419. Distributed operating systems are

A. Based on Networks

B. Multiple computers are available

C. Designed to have max throughput

D. All

420. Array processors will have

A. OS

B. Not have OS

C. Their MCU runs under some OS

D. None

421. What is the average time required to read or write
512-byte sector for a disk with 5400 RPM with the
average seek time of 12ms, transfer rate of 5MB/sec.?
Assume controller overhead is 2ms and disk is idle
initially.

A. 10ms B. 12ms C. 19.7ms D. 19.2ms

E. None

422. Number of IDE controllers available in normal PC
motherboards are

4.96 Computer Science & Information Technology for GATE

A. 2 B. 3 C. 4 D. 1

E. None

423. Device controller

A. Will have limited instruction set

B. Does not have any stored programs

C. Contains interrupt service routines

D. A & B

E. None

424. I/O processors

A. Called as channels

B. May know how to execute more than one instruc-
tion

C. Device controller

D. All of the above

E. None

425. _____ is the terminal device controller.

A. OS B. Serial port

C. Modem D. None

E. Terminal device driver SW

426. New line command

A. Line feed in Unix B. CR in Mac

C. CR & line feed in PC D. All

E. None

427. A character terminal

A. Will have frame buffer

B. Will not have frame buffer

C. Will have character generation memory

D. None

428. In a character terminal

A. Each pixel is addressable

B. Each pixel is not addressable

C. Will contain character bit map stored

D. B & C

E. None

429. Colour map

A. Maps 8 bit colours to 24 bit colour specification

B. Also called as palette

C. Is a resource in a windowing system

D. Indicates the colours displayable at any time

E. All

430. X terminals

A. Supports graphics

B. Command oriented graphic terminal

C. Does not access to the frame buffer

D. All

E. None

431. RAID uses

A. Flat file system

B. Log structured file system

C. Compressed file system

D. None

432. RAID

A. Is to improve transfer rate

B. Is to increase reliability

C. Employs redundant disks

D. All

433. Disk performance can be improved by

A. Overlapped seeks on disks which are connected to
same controller

B. Connecting disks to separate controllers

C. Storing files among multiple disks

D. All

434. In ___ system a part of a file is stored in a disk and
another part is stored in another disk and vice versa.

A. FAT B. I-node based FS

C. RAID D. None

435. SCSI

A. May have separate SCSI bus

B. Controller connects directly to computer bus

C. Gives higher data rates

D. All

E. None

436. If a program is reading a file and writing modified
version to another file and using double buffering
then number of buffers it uses are ___.

A. 2 B. 1 C. 4 D. None

437. If a program is reading from a file and writing into a
file after modifying and employing double buffering
then number of outstanding disk requests are __.

A. 1 B. 2 C. 4 D. None

438. Number of outstanding disk requests in single buffer-
ing

A. 1 B. 0 C. 2 D. None

439. Greedy disk arm scheduling algorithm

A. FCFS B. Elevator C. SSTF D. None

440. All disk arm scheduling algorithms except FCFS has
bias

A. Yes B. No

441. When does starvation occur in elevator algorithm?

A. Never

B. Steady stream of requests for the same cylinder in
which currently head is located

Operating Systems 4.97

C. Never occurs D. None

442. Batching

A. Is an arm scheduling algorithm

B. Can be used to stop indefinite postponement

C. Is variant of Elevator algorithm

D. None

443. Disk caching is better for

A. Reading B. Writing

C. Reading than writing D. None

444. Advantage of accessing memory through the file in-
terface

A. Improved speed B. Flexibility

C. Trusted processes access to main memory

D. None

445. File pointers in most Unix systems

A. 4 bytes B. 32 bits

C. 4 bytes D. B & C

E. None

446. File system descriptor

A. Boot block B. Super block

C. I-node blocks D. None

447. Number of files that go into MSDOS root directory

A. 336 B. 256 C. 512 D. None

448. Mounting

A. To see multiple file systems as a single one

B. For uniform naming

C. Can not be done by users

D. All

449. Really ASCII is a 7-bit code. But most computers con-
sider it as a 1-byte character. How they consider most
significant bit?

A. Zero

B. 1 to support either symbols

C. Parity for error detection

D. All

450. I/O bus consists of

A. Data lines B. Address lines

C. Control lines D. All

451. Number of circuits in null modem

A. Null B. 2 C. 3 D. None

452. In strobe based data transfer

A. Source does not have any idea whether data is re-
ceived or not

B. First strobe signal is sent then data is sent

C. To indicate end of data strobe signal is removed

D. All

453. A terminal is having transfer rate of 10 CPS. Each
character is having 1 start bit, 8 data bits and two stop
bits then band rate is ___.

A. 10 CPS B. 110 bps C. 110 D. None

454. Bus speed is not limited by

A. Length of bus B. Number of devices

C. Buffering D. None

455. High speed bus

A. Processor-memory B. I/O

C. Back plane D. None

456. PCI bus is __

A. Processor-memory B. I/O

C. Backplane D. None

457. Number of tapes in SCSI bus are

A. More than backplane bus

B. Less than backplane bus

C. Can not say

D. None

458. An asynchronous bus

A. Is not clocked

B. Is clocked

C. Employs handshaking

D. A & C

E. None

459. A synchronous bus with clock cycle of 50 ns and 40ns
per handshake can do one transmission per clock cy-
cle. Then its bandwidth ____. The data portion of bus
is 32 bits wide and memory access time is 200 ns.

A. 10Mbps B. 11Mbps

C. 13.3MB/sec D. None

460. A asynchronous bus with clock cycle of 50 ns and
40ns per handshake can do one transmission per
clock cycle. Then its bandwidth is____. The data por-
tion of bus is 32 bits wide and memory access time is
200 ns.

A. 10MB/sec B. 11.MB/sec

C. 13.3MB/sec D. None

461. Asynchronous bus is preferred

A. As they can be scaled

B. Can support wide variety of devices with different
latencies

C. As they can support long physical distances

D. All

462. Bus bandwidth can be increased by

A. By increasing data bus width

B. Separate line

C. Block transfers D. All

4.98 Computer Science & Information Technology for GATE

463. A memory and bus system supports block access
of four 32-bit words. A 64-bit synchronous bus has
clocked at 200MHz, with each 64-bit transfer taking
one-clock cycle, to send an address memory. Two clock
cycles needed between each bus operation. A memory
access time for the first four words of 200ns; each ad-
ditional set of four words can be read in 20ns. Assume
that a bus transfer of the most recently read data and
a read of the next four words can be overlapped. The
bandwidth for a read of 256 words for is ___.

A. 4MB/sec B. 71.11 MB/sec

C. 177.11MB/sec D. None

464. A memory and bus system supports block access
of four 32-bit words. A 64-bit synchronous bus has
clocked at 200MHz, with each 64-bit transfer taking
1-clock cycle, send an address memory. Two clock cy-
cles needed between each bus operation. A memory
access time for the first four words of 200ns; each ad-
ditional set of four words can be read in 20ns. Assume
that a bus transfer of the most recently read data and
a read of the next four words can be overlapped. The
bandwidth for a read of 256 words for is ___.

A. 4MB/sec B. 71.11MB/sec

C. 224.56MB/sec D. None

465. Split transaction protocol

A. Is used to increase effective bus bandwidth

B. Uses protocol in which bus is released while
memory access takes place

C. Time to complete one transfer will take little more
time

D. Complex to implement

E. All

466. PCI standard backplane bus uses

A. Daisy chain arbitration

B. Centralised, parallel arbitration

C. Distributed arbitration by self-selection

D. Distributed arbitration by collision-detection

467. Can a 100MB/sec bus not transfer 100MB data in real
time?

A. Yes B. No

468. Hit time and miss penality

A. All same

B. Hit time is lower than miss penality

C. Hit time is greater than miss penality

D. Not appropriate to compare

469. Find odd-one out

A. Paging is used to exploit spatial locality

B. Caching is used to exploit temporal locality

C. A & B

D. None

470. If a cache size is M=2 ^n words, addresses is m bits
long (m >n) then ___ of lower order bits of address m
is adequate for direct mapping.

A. log2(M) B. log2(n) C. log2(m) D. None

471. If a cache size is M=2 ^n words, addresses is m bits
long (m >n) then ___ number of tag bits adequate in
direct mapping

A. log2(M) B. m-n

C. M-log2(M) D. A & B

E. None

472. ____ exploits only temporal mapping

A. Direct mapping B. Set associative

C. CAM D. None

473. Race condition

A. A can occur if two processes are running parallel
to each other

B. Can occur if there exists some sort of communica-
tion across two processes such as shared memory

C. A & B

D. None

474. Serially reusable resource

A. Memory

B. Disk

C. Is the resource that can only be used by one pro-
cess at a time and can be retruned soon after

D. All

475. A process can have

A. Only one critical section

B. Any number of critical sections

C. OS may put some restrictions on number of criti-
cal sections

D. None

476. Does a machine language instruction is interruptible

A. No

B. Yes

C. Commonly No. But on some machines they are
interruptible

D. None

477. In producer & consumer problems buffering is need-
ed

A. To take care of bursty producer

B. To take care of bursty consumer

C. Both A & B

D. None

Operating Systems 4.99

478. Threads

A. Are more efficient than processes

B. Are more cheaper to create and destroy as they
don not require allocation of real addresses

C. Switching is faster

D. Will have their own stack, registers

E. All

479. Find odd-one out when thread is created

A. Memory mapping will not be done

B. Open files are duplicated

C. Address translation cache is not initialised

D. None

480. Every thread contain

A. Thread control block B. User stack

C. Kernel stack D. None

481. Number of PCB’s for a process in multithreaded envi-
ronment

A. One B. One per process

C. One per thread D. None

E. A & B

482. As threads belongs to same process they can commu-
nicate without invoking the kernel

A. Yes B. No

C. None

483. Threads are

A. Synchronous B. Asynchronous

C. Fast in getting started and exiting compared to
processes

D. B & C

E. A & C

484. Find odd one out with respect to thread.

A. Ready B. Running

C. Blocked D. Suspended

E. None

485. If process is swapped out

A. All of its threads gets swapped out

B. Currently running thread continue to run

C. Files are closed D. None

486. User level threads can not

A. Take advantage of multiprocessing

B. Run without changing to kernel

C. Executed without going to kernel mode

D. None

487. Jacketing

A. Is used to convert blocking system call to non-
blocking

B. To avoid blocking threads

C. Contains jacket routine code which checks I/O
device is busy or not

D. All

488. Can a thread migrate from one processor to another
in all systems?

A. No B. Yes

C. Valid in Emerald D. None

489. In distributed OS

A. One thread for one process may be effective

B. Many threads for one process

C. One thread many processors

D. None

490. SMP

A. Tightly coupled MIMD machine

B. Kernel can run on any processor

C. Each processor does self scheduling from the poll
of processes

D. All

491. Are user level threads and light weight processes
same?

A. Yes B. No

492. A paging system is equipped with a TLB and page
fault rate is 20% and hit rate of TLB is 80%. TLB ac-
cess takes 10ns and RAM access takes 100ns. Calcu-
late average time required to access page address. As-
sume service time required to load page and making a
entry in page & TLB when page fault occurs is 10ms.

A. 10.5 ms B. 11.3 ms

C. 12.1 ms D. None

493. The context switching of process in a multi tasking OS
is done by

A. Round robin scheduler

B. Time quantum

C. Dispatcher

D. Medium term scheduler

494. Which of the following is not a valid process state
transition?

A. Running Æ ready

B. Ready Æ running

C. Blocked Æ running

D. None

495. The main goal of multiprogramming

A. Maximise device utilisation

B. Minimise response time

C. Increase CPU throughput

D. None

4.100 Computer Science & Information Technology for GATE

496. In Unix, if n fork() system cAlls are made then 2^n
processes are created.

A. Yes

B. No

497. background process

A. Supported by unix

B. Can not take interactive input

C. Outputs on to the terminal from which it is in-
voked

D. All

498. When a process consumed t1 amount of time in its
time slice (t) currently when an interrupt arrived for
which t2 time units are taken. Then, the amount of
time it is going to run for when it is started again is

A. t-t1 B. t-t1-t2 C. t D. None

499. Non-Preemptive

A. SRTF B. FCFS

C. Round-robin D. None

500. Smaller time slice and round robin results in the max-
imastion of

A. Throughput B. Efficiency

C. Fairness D. Context switching

501. Which of the following may not be the criteria for
scheduling?

A. Arrival time B. Priority

C. Response time D. Process size

502. Can a thread be created without first creating a pro-
cess?

A. Yes

B. No

503. More than one word are put in one cache block to

A. Exploit the temporal locality of reference program

B. Exploit the spatial locality of reference in a pro-
gram

C. Reduce miss penality

D. None

504. Which of the following statements is false?

A. VM implements the translation of program ad-
dress space to physical memory.

B. VM allows each program to exceed the size of pri-
mary memory.

C. VM increases the degree of multiprogramming.

D. VM reduces the context switching.

505. A processor needs SW interrupt to

A. Test the interrupt system of the processor

B. Implement co-routines

C. Obtain system services which need execution of
privileged instructions

D. Return to subroutine

506. A CPU has two modes, privileged and non-privileged.
In order to change the mode from privileged to non-
privileged

A. An HW interrupt is needed

B. An SW interrupt is needed

C. A privileged instruction is needed

D. A non-privileged instruction is needed

507. Consider a set of n tasks with know runtimes r1,r2,…
rn to be run on a uniprocessor. Which of the follow-
ing results in maximum throghput?

A. Round-robin

B. SJF

C. Highest response ratio next

D. FCFS

508. Where does the swap space reside?

A. RAM B. ROM

C. Disk D. On-chip cache

509. Swap space is

A. Disk partition B. Disk file

C. A & B D. None

510. Consider a VM system with FIFO page replacement
policy. For an arbitrary page access pattern increasing
the number of page frames in main memory will

A. Always decrease the number of page faults

B. Always increase the number of page faults

C. Sometime increase the number of page faults

D. Never affect the number of page faults

511. Which of the following required a device driver?

A. Register B. Cache

C. Main memory D. Disk

512. Size command in Unix

A. Displays text area size of the executable file

B. Displays data area size of the executable file

C. A & B

D. None

513. Job & Process are same

A. No

B. Yes

C. Job may become as a process at a later stage

D. None

514. Suppose the time to serve a page fault is on average
10 ms while a memory access takes 1ms. Then 99.99%
hit ratio results in average memory access time of

Operating Systems 4.101

A. 1.9999ms

B. 1ms

C. 9.999ms

D. 1.9999 microseconds

515. I/O redirection

A. Implies changing the name of a file

B. Can be employed to use an existing file as input
file for a program

C. Implies connecting two programs through a pipe

D. None

516. When an interrupt occurs, an OS

A. Ignores the interrupt

B. Always changes state of interrupted process to be
blocked and schedules another process

C. Always resumes execution of interrupted process
after processing the interrupt

D. May change state of interrupted process to be
blocked and schedule another process

517. Dirty bit for a page in a page table

A. Helps avoid unnecessary writes on a paging de-
vice

B. Helps maintain LRU information

C. Allows only read on a page

D. None

518. To continue a background process to continue to run

A. Nice B. Nohup

C. Bg D. None

519. In multiple queue scheduling

A. Any scheduling policy can be used in each queue

B. Time slice value may increase as it goes down-
words to down queue

C. Is used in Unix

D. All

520. The scheduling policy used in real time systems

A. FCFS B. Deadline

C. SJF D. Round robin

521. If a cache access requires one clock cycle and handling
cache misses stalls the processor for an additional five
cycles, which of the following cache hit rates comes
closest to achieving an average memory access of 2
cycles?

A. 75% B. 80% C. 83% D. 86%

E. 98%

Explanation: 2 = (1 cycle for cache) + (1 - hit rate)(5
cycles stall) fi hit rate = 80%

522. LRU is an effective cache replacement strategy pri-
marily because programs

 A. Exhibit spatial locality

 B. Exhibit temporal locality

 C. Usually have small working sets

 D. Read data much more frequently than write data

 E. Can generate addresses that collide in the cache

 Explanation: Temporal locality implies that the prob-
ability of accessing a location decreases as the time
since the last access increases. By choosing to replace
locations that haven’t been used for the longest time,
the least-recently-used replacement strategy should,
in theory, be replacing locations that have the lowest
probability of being accessed in the future.

523. If increasing the associativity of a cache improves per-
formance it is primarily because programs

 A. Exhibit spatial locality

 B. Exhibit temporal locality

 C. Usually have small working sets

 D. Read data much more frequently than write data

 E. Can generate addresses that collide in the cache

 Explanation: Increasing cache associativity means
that there are more cache locations in which a giv-
en memory word can reside, so replacements due to
cache collisions (multiple addresses mapping to the
same cache location) should be reduced.

524. If increasing the block size of a cache improves per-
formance it is primarily because programs

 A. Exhibit spatial locality

 B. Exhibit temporal locality

 C. Usually have small working sets

 D. Read data much more frequently than write data

 E. Can generate addresses that collide in the cache

 Explanation : Increased block size means that more
words are fetched when filling a cache line after a miss
on a particular location. If this leads to increased per-
formance, then the nearby words in the block must
have been accessed by the program later on, i.e., the
program is exhibiting spatial locality.

525. A fully-associative cache using an LRU replacement
policy always has a better hit rate than a direct-
mapped cache with the same total data capacity.

A. True B. False

 Explanation: False. Suppose both caches contain N
words and consider a program that repeatedly ac-
cesses locations 0 through N (a total of N+1 words).
The direct-mapped cache will map locations 0 and
N into the same cache line and words 1 through N-1
into separate cache lines. So in the steady state, the
program will miss twice (on locations 0 and N) each
time through the loop.

4.102 Computer Science & Information Technology for GATE

 Now the fully-associative case: when the program
first accesses word N, the FA cache will replace word
0 (the least-recently-used location). The next access
is to location 0 and the FA cache will replace word 1,
etc. So the FA cache is always chosing the word to be
replaced as the word that the program is about to ac-
cess, leading to a 0%hit rate.

526. Consider the following program:

 integer A[1000];

 for i = 1 to 1000

 for j = 1 to 1000

 A[i] = A[i] + 1

 When the above program is compiled with all com-
piler optimisations turned off and run on a processor
with a 1K byte direct-mapped, write-back data cache
with 4-word cache blocks, what is the approximate
data cache miss rate? (Assume integers are one word
long and a word is 4 bytes.)

A. 0.0125% B. 0.05%

C. 0.1% D. 5%

E. 12.5%

 Explanation: Considering only the data accesses,
the program performs 1,000,000 reads and 1,000,000
writes. Since the cache has 4-word blocks, each miss

brings 4 words of the array into the cache. So accesses
to the next 3 array locations won’t cause a miss. Since
the cache is write-back, writes happen directly into
the cache without causing any memory accesses un-
til the word is replaced. So altogether there are 250
misses (caused by a read of A[0], A[4], A[8], ...), for a
miss rate of 250/2,000,000 = 0.0125%.

527. In a non-pipelined single-cycle-per-instruction pro-
cessor with an instruction cache, the average instruc-
tion cache miss rate is 5%. It takes 8 clock cycles to
fetch a cache line from the main memory. Disregard-
ing data cache misses, what is the approximate aver-
age CPI (cycles per instruction)?

A. 0.45 B. 0.714

C. 1.4 D. 1.8

E. 2.22

 Explanation: CPI = (1 inst-per-cycle) + (0.05)(8 cy-
cles/miss) = 1.4

528. Consider an 8-line one-word-block direct-mapped
cache initialised to all zeroes where the following se-
quence of word addresses are accessed:

 1, 4, 5, 20, 9, 19, 4, 5, 6, and 9.

 Which of the following tables reflect the final tag bits
of the cache?

tag tag tag tag tag

1 1 0 0

4 9 1 0 1

5 3 1 0 0

20 19 2 19 2

9 4 0 4 0

19 5 0 5 0

6 6 0 6 0

1 1 1 1 1

0 0 0 0 0 0

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

5 5 5 5 5

6 6 6 6 6

7 7 7 7 70 8 0 0 0

A B C D E

 Explanation: First map the addresses to cache line
numbers and tags where line number = address mod 8
tag = floor(address / 8)

 address: 1 4 5 20 9 19 4 5 6 9

 line #: 1 4 5 4 1 3 4 5 6 1

 tag: 0 0 0 2 1 2 0 0 0 1

 So, figure (E) represents the final tag bits of the cache.

529. Consider the following partitioning of a CPU’s 32-bit
address output which is fed to a direct-mapped write-
back cache:

31
Tag

17 16
Index to the

cache

14 3
Byte offset of

the cache blcok

0

 What is the memory requirement for data, tag and
status bits of the cache?

A. 8 K bits B. 42 K bits

C. 392 K bits

D. 1,160 K bits

E. 3,200 K bits

Operating Systems 4.103

Explanation: The tag is 15 bits, cache index is 13 bits,
and byte offset 4 bits (i.e, 16 bytes/block). So there are
213 = 8192 cache lines. Each cache line requires

 15 tag bits

 1 valid bit

 1 dirty bit (since this is a write-back cache)

 128 data bits (16 bytes/cache line)

 ===

 145 bits per cache line

 Total storage required = 8192*145 bits = 1,160K bits.

530. Find odd one out of the following:

A. Process B. Thread

C. Job D. Program

531. ___ is the one which becomes as a process at a later
stage of its life.

A. Process B. Thread

C. Job D. Program

532. In Java, for every thread there exists a ____.

A. Class file B. Java file

C. Thread function with the name run()

D. File

533. Every thread will not have its own ____.

A. Thread function B. Page table

C. Stack pointer D. TCB

534. Find the correct one

A. Address space is created only when a process is
created

B. Even without address space also, a thread can run

C. In Java where function name overloading is sup-
ported, we can have more than one thread func-
tion by defining more than one run() methods.

D. A thread can be made to create a new page table.

A N S W E R K E Y

1. A 2. D 3. B 4. B, C

5. A 6. A 7. A 8. A

9. A 10. A 11. A 12. B

13. B 14. B 15. A 16. A

17. A 18. D 19. B 20. C

21. B 22. C 23. B 24. C

25. D 26. C 27. B 28. B

29. A 30. C 31. C 32. A

33. B 34. C 35. H 36. B

37. C 38. B 39. C 40. B

41. C 42. D 43. B 44. C

45. A 46. A,B 47. B,C 48. C

49. D 50. D 51. B 52. C

53. E 54. D 55. B 56. C

57. D 58. E 59. B 60. C

61. C 62. D 63. C 64. E

65. E 66. E 67. D 68. C

69. E 70. D 71. C 72. A

73. D 74. A 75. D 76. C

77. A,C 78. C 79. D 80. B

81. A 82. D 83. C 84. D

85. A 86. B 87. B 88. A,D

89. C 90. E 91. B 92. B

93. B 94. B 95. A 96. D

97. D 98. A 99. C 100. C

101. B 102. D 103. A 104. B

105. C 106. B 107. D 108. A

109. C 110. D 111. A 112. C

113. B 114. C 115. C 116. A

117. C 118. B 119. B 120. A

121. B 122. D 123. C 124. C

125. D 126. C 127. C 128. D

129. C 130. B 131. C 132. B

133. B 134. C 135. D 136. B

137. C 138. C 139. B 140. C

141. C 142. C 143. B 144. C

145. B 146. C 147. C 148. A

149. A 150. C 151. B 152. A

153. B 154. C 155. A 156. B

157. A 158. C 159. C 160. C

161. D 162. A 163. C 164. C

165. C 166. C 167. C 168. C

169. C 170. C 171. C 172. C

173. D 174. C 175. C 176. D

177. D 178. C 179. D 180. D

181. C 182. A 183. A 184. B

185. C 186. D 187. B 188. D

189. C 190. D 191. B 192. D

193. C 194. D 195. C 196. A

197. C 198. C 199. C 200. D

201. C 202. C 203. C 204. B

205. C 206. B 207. B 208. D

209. D 210. D 211. D 212. D

213. D 214. D 215. D 216. D

217. C 218. C 219. D 220. D

221. D 222. C 223. D 224. D

4.104 Computer Science & Information Technology for GATE

225. D 226. C 227. C 228. D

229. B 230. D 231. D 232. D

233. A 234. A 235. C 236. D

237. C 238. D 239. A 240. C

241. C 242. C 243. A 244. D

245. D 246. D 247. D 248. C

249. D 250. B 251. C 252. C

253. A 254. A 255. C 256. D

257. C 258. A 259. C 260. B

261. A 262. C 263. C 264. C

265. C 266. C 267. A 268. C

269. B 270. C 271. B 272. C

273. C 274. C 275. E 276. C

277. D 278. D 279. B 280. C

281. B 282. B 283. C 284. C

285. A 286. A 287. B 288. C

289. E 290. A 291. C 292. D

293. C 294. C 295. D 296. D

297. C 298. B 299. B 300. C

301. D 302. D 303. A 304. C

305. B 306. C 307. A 308. D

309. D 310. D 311. A 312. D

313. A 314. B 315. C 316. D

317. C 318. C 319. C 320. C

321. E 322. D 323. D 324. B

325. C 326. D 327. D 328. C

329. E 330. E 331. C 332. E

333. D 334. E 335. D 336. A

337. E 338. C 339. D 340. D

341. E 342. D 343. D 344. C

345. E 346. B 347. B 348. E

349. C 350. B 351. E 352. E

353. C 354. C 355. C 356. B

357. D 358. C 359. D 360. B

361. B 362. B 363. D 364. C

365. B 366. A 367. C 368. A

369. A 370. A 371. D 372. A

373. D 374. C 375. B 376. D

377. D 378. A 379. B 380. B

381. D 382. A 383. D 384. D

385. ? 386. A 387. D 388. D

389. D 390. A 391. A 392. C

393. B 394. A 395. B 396. C

397. B 398. A 399. B 400. B

401. E 402. A 403. D 404. A

405. B 406. A 407. B 408. A

409. C 410. D 411. A 412. A

413. D 414. C 415. B 416. A

417. A 418. B 419. D 420. C

421. C 422. A 423. D 424. D

425. B 426. D 427. C 428. D

429. E 430. D 431. B 432. D

433. D 434. C 435. D 436. C

437. B 438. B 439. C 440. A

441. B 442. D 443. C 444. C

445. D 446. B 447. C 448. D

449. D 450. D 451. C 452. D

453. C 454. C 455. A 456. C

457. B 458. D 459. C 460. B

461. D 462. D 463. B 464. C

465. E 466. B 467. B 468. B

469. D 470. A 471. D 472. A

473. C 474. D 475. C 476. C

477. C 478. E 479. B 480. D

481. A 482. A 483. D 484. D

485. A 486. A 487. D 488. C

489. C 490. D 491. B 492. D

493. C 494. C 495. C 496. A

497. D 498. B 499. B 500. C

501. D 502. B 503. B 504. D

505. C 506. C 507. B 508. C

509. C 510. C 511. D 512. C

513. C 514. B 515. B 516. C

517. A 518. B 519. D 520. B

521. B 522. B 523. E 524. A

525. B 526. A 527. C 528. E

529. D 530. D 531. C 532. C

533. B 534. A

Previous Years’ GATE Questions

1. A scheduling algorithm assigns priority proportional
to the waiting time of a process. Every process starts
with priority zero (the lowest priority). The scheduler
re-evaluates the process priorities every T time units
and decides the next process to schedule. Which one
of the following is true if the processes have no I/O
operations and all arrive at time zero? (GATE 2013)

A. The algorithm is equivalent to the first cum first
serve algorithm

Operating Systems 4.105

B. The algorithm is equivalent to the round robin al-
gorithm

C. The algorithm is equivalent to the shortest job
first algorithm

D. The algorithm is equivalent to the shortest re-
maining job first algorithm

2. Three concurrent processes X,Y,Z executes three dif-
ferent code segments that access and update certain
shared variables. Process X executes the P operation
(i.e wait) on semaphores a, b, and c; process Y executes
the P operation on semaphores b, c, and d; process z
executes P operation on c, d and a before entering the
respective code segments. After completing the ex-
ecution of its code segment, each process invokes the
V operation (i.e., signal) on its three semaphores. All
semaphores are binary semaphores initialised to one.
Which one of the following represents dead-lock free
order of invoking the P operations by the processes?

(GATE 2013)

A. X:P(a),P(b),P(c), Y:P(b), P(c), P(d), Z:P(c),P(d),
P(a)

B. X:P(b),P(a),P(c), Y:P(b), P(c), P(d), Z:P(c),P(d),
P(a)

C. X:P(b),P(a),P(c), Y:P(c), P(b), P(d), Z:P(a),P(c),
P(d)

D. X:P(a),P(b),P(c), Y:P(c), P(b), P(d), Z:P(c),P(d),
P(a)

3. In a k-way set associative cache, the cache is divided
into v sets, each of which consists of k lines. The lines
of a set are placed in sequence one after another. The
lines in a sets are sequenced before the lines of s+1.
The main memory blocks are numbered from 0 on-
wards. The main memory block numbered j must be
mapped to any one of the cache lines from

(GATE 2013)

A. (j mod v)*k to (j mod v)*k+k-1

B. (j mod v) to (j mod v)+k-1

C. (j mod k) to (j mod k)+v-1

D. (j mod k)*v to (j mod k)*v+v-1

4. Consider a hard disk with 16 recording surfaces (0-
15) having 16384 cylinders (0-16383) and each cyl-
inder contains 64 sectors (0-63). Data storage capac-
ity in each sector is 512 bytes. Data are organised
cylinder-wise and the addressing format <cylinder
no, surface no., sector no>. A file of capacity 42797KB
is stored in the disk and the starting disk location of
the file <1200,9,40>. What is the cylinder number of
the last sector of the file, if it is stored in a contiguous
manner?. (GATE 2013)

A. 1281 B. 1282 C. 1283 D. 1284

 Explanation: Capacity of cylinder= 16×64×512 bytes
= 512KB

 Number of cylinders needed to store the file=
42797/512 = 83.58

 As starting address of the file=<1200,9,40>, last cylin-
der becomes 1283.

5. A shared variable x, initialised to zero, is operated on
by four concurrent processes W, X, Y, Z as follows.
Each of the processes W and X reads x from mem-
ory, increments by one stores it to memory and ter-
minates. Each of the processes Y and Z reads x from
memory, decrements by two and stores to memory
and terminates. Each process before reading x invokes
P operation (i.e wait) on a counting semaphore S and
invokes V operation (i.e signal) on the semaphore S
after storing x in memory. Semaphore S is initialised
to two. What is the maximum possible value of x after
all processes complete execution. (GATE 2013)

A. –2 B. –1 C. 1 D. 2

 Explanation: We know least possible value of a
counting semaphore is 0. Thus, if we assume Y and
Z are executed first then value of x becomes 0. After
that when W and X are executed then value of x will
become 2. This is the largest possible value for x.

6. A certain computation generates two arrays a and b
such that a[i]=f(i) for 0<i<n and b[i]=g(i) for 0<i<n.
Suppose this computation is decomposed into two
concurrent processes X and Y such that X computes
the array a and Y computes array b. The processes em-
ploy two binary semaphores R and S, both initialised
to 0. The array a is shared by the two processes. The
structure of the processes are shown below.

(GATE 2013)

Process X:

private i;

for (i=0; i<n; i++) {

 a[i] = f(i);

 ExitX(R, S);

}

Process Y:

private i;

for (i=0; i<n; i++) {

 EntryY(R, S);

 b[i] = g(a[i]);

}

 Which one of the following represents the correct
implementations of ExitX and EntryY?

A. Exit X (R, S) {

 P (R) ;

V (S);

}

EntryY (R, S) {

P(S) ;

V(R);

}

B. Exit X (R, S) {

V(R) ;

V(S);

}

EntryY (R, S) {

P(R) ;

P(S);

}

4.106 Computer Science & Information Technology for GATE

C. Exit X (R, S) {

P(S) ;

V(R);

}

EntryY (R, S) {

V(S) ;

P(R);

}

D. Exit X (R, S) {

V(R) ;

P(S);

}

EntryY (R, S) {

V(S) ;

P(R);

}

7. A process executes the code (GATE 2012)

 fork();

 fork();

 fork();

 The total number of child processes created is

A. 3 B. 4 C. 7 D. 8

8. Consider the 3 processes, P1, P2 and P3 shown in the
table. (GATE 2012)

Process Arrival Time Time Units Required

P1 0 5

P2 1 7

P3 3 4

 The completion order of the 3 processes under the
policies FCFS and RR2 (round robin scheduling with
CPU quantum of 2 time units) are

A. FCFS: P1, P2, P3 RR2: P1, P2, P3

B. FCFS: P1, P3, P2 RR2: P1, P3, P2

C. FCFS: P1, P2, P3 RR2: P1, P3, P2

D. FCFS: P1, P3, P2 RR2: P1, P2, P3

 Explanation: Options B and C can be eliminated
based on the fact that in FCFS, processes are executed
in first come first serve basis. Now, we decide out of
A and C. See the following chart which indicates how
processes are executed under RR2.We find P1, P3 and
P2 are completed in the order. Thus, option C is valid.

Time

P1 0

P1 1

P2 2

P2 3

P1 4

P1 5

P3 6

P3 7

P1 8

P2 9

P2 10

Time

P3 11

P3 12

P2 13

P2 14

P2 15

9. Fetch_And_Add(X,i) is an atomic Read-Modify-
Write instruction that reads the value of memory lo-
cation X, increments it by the value i, and returns the
old value of X. It is used in the pseudocode shown
below to implement a busy-wait lock. L is an unsigned
integer shared variable initialised to 0. The value of 0
corresponds to lock being available, while any non-
zero value corresponds to the lock being not available.

(GATE 2012)

 AcquireLock(L){

 while (Fetch_And_Add(L,1))

 L = 1;

 }

 ReleaseLock(L){

 L = 0;

 }

 This implementation

A. Fails as L can overflow

B. Fails as L can take on a non-zero value when the
lock is actually available

C. Works correctly but may starve some processes

D. Works correctly without starvation

10. A file system with 300 GByte disk uses a file descrip-
tor with 8 direct block addresses, one indirect block
address and one doubly indirect block address. The
size of each disk block is 128 Bytes and the size of each
disk block address is 8 Bytes. The maximum possible
file size in this file system is (GATE 2012)

A 3 KBytes

B. 35 KBytes

C. 280 KBytes

D. Dependent on the size of the disk

 Explanation: In one block we can store 128/8=16
addresses. Thus, maximum file size=(8+16+16*16)
blocks=280x128bytes=35KB

11. Consider the virtual page reference string

(GATE 2012)

 1, 2, 3, 2, 4, 1, 3, 2, 4, 1

 on a demand paged virtual memory system running
on a computer system that has main memory size of 3
page frames which are initially empty. Let LRU, FIFO

Operating Systems 4.107

and OPTIMAL denote the number of page faults un-
der the corresponding page replacement policy. Then

A. OPTIMAL < LRU < FIFO

B. OPTIMAL < FIFO < LRU

C. OPTIMAL = LRU

D. OPTIMAL = FIFO

12. A computer has a 256 KByte, 4-way set associative,
write back data cache with block size of 32 Bytes. The
processor sends 32 bit addresses to the cache control-
ler. Each cache tag directory entry contains, in addi-
tion to address tag, two valid bits, one modified bit
and one replacement bit. (GATE 2012)

 The number of bits in the tag field of an address is

A. 11 B. 14 C. 16 D. 27

13. The size of the cache tag directory is (GATE 2012)

A. 160 Kbits B. 136 Kbits

C. 40 Kbits D. 32 Kbits

14. Let the page fault service time be 10ms in a computer
with average memory access time being 20ns. If one
page fault is generated for every 106 memory accesses,
what is the effective access time for the memory?

(GATE 2011)

A. 21ns B. 30ns C. 23ns D. 35ns

 Explanation: If p is page fault rate, effective memory
access time=p*page fault service time + (1-p)*memory
access time= =1/106*10*106+(1-1/106)*20 = 29.9ns =
30ns

15. Let the time taken to switch between user and ker-
nel modes of execution be t1 while the time taken to
switch between two processes be t2. Which of the fol-
lowing is true? (GATE 2011)

A. t1 > t2

B. t1 = t2

C. t1 < t2

D. Nothing can be said about the relation between t1
and t2

16. An 8KB direct mapped write-back cache is organised
as multiple blocks, each of size 32-bytes. The proces-
sor generates 32-bit addresses. The cache controller
maintains the tag information for each cache block
comprising of the following. (GATE 2011)

 1 Valid bit

 1 Modified bit

 As many bits as the minimum needed to identify the
memory block mapped in the cache.

 What is the total size of memory needed at the cache
controller to store meta data (tags) for the cache?

A. 4864 bits B. 6144bits C. 6656bits D. 5376bits

 Explanation: Answer is (D)

 Cache size = 8KB = 213Bytes

 Block size = 32B = 25B

 Number of cache blocks = 213/25 = 28

 RAM uses 32 bit addresses.

 Therefore, tag bits = (32–13) + 1 + 1 = 21

 Total size of memory needed for storing tags

 =Number blocks*number of bits used for tag

 =256 × 21 = 5376bits

17. An application loads 100 libraries at startup. Loading
each library requires exactly one disk access. The seek
time of the disk to a random location is given as 10ms.
Rotational speed of disk is 6000rpm. If all 100 librar-
ies are loaded from random locations on the disk,
how long does it take to load all libraries? (The time
to transfer data from the disk block once the head has
been positioned at the start of the block may be ne-
glected) (GATE 2011)

A. 0.50s B. 1.50s C. 1.25s D 1.00s

 Explanation:

 Rotational latency =half of time for one rotation =
1/2*60/6000*1000= 5ms

 Therefore, time needed for one disk access(time need-
ed to load one library) = 15 ms

 Time to load all libraries = 15 ×100 = 1500ms = 1.5sec

18. On a non-pipelined sequential processor, a program
segment, which is a part of the interrupt service rou-
tine, is given to transfer 500 bytes from an I/O device
to memory.

 Initialise the address register

 Initialise the count to 500

 LOOP: Load a byte from device

 Store in memory at address given by address register

 Increment the address register

 Decrement the count

 If count != 0 go to LOOP

 Assume that each statement in this program is equiv-
alent to a machine instruction which takes one clock
cycle to execute if it is a non-load/store instruction.
The load-store instructions take two clock cycles to
execute.

 The designer of the system also has an alternate ap-
proach of using the DMA controller to implement the
same transfer. The DMA controller requires 20 clock
cycles for initialisation and other overheads. Each
DMA transfer cycle takes two clock cycles to transfer
one byte of data from the device to the memory.

 What is the approximate speedup when the DMA

4.108 Computer Science & Information Technology for GATE

controller based design is used in place of the inter-
rupt driven program based input-output?

(GATE 2011)

A 3.4 B 4.4 C 5.1 D 6.7

 Explanation: Number of clock cycles required by us-
ing load-store approach = 2 + 500 × 7 = 3502 and that
of by using DMA = 20 + 500 × 2 = 1020

 Required speed up=3502/1020=3.4

19. Consider the following table of arrival time and burst
time for three processes P0, P1 and P2. (GATE 2010)

Process Arrival time Burst Time

P0 0 ms 9 ms

P1 1 ms 4ms

P2 2 ms 9ms

 The pre-emptive shortest job first scheduling algo-
rithm is used. Scheduling is carried out only at arrival
or completion of processes. What is the average wait-
ing time for the three processes?

A. 5.0 ms B. 4.33 ms C. 6.33 ms D. 7.33 ms

 Explanation:

 At 0 P0 will be started.

 At 1 P0 is preempted and P1 is initiated. It will be
completed at time 5. In the mean time P2 also arrives.
However, it will not be preempting P1. After P1, P0
starts and completes by 13. Then P2 will be loaded
and completed. Thus, waiting times for P0, P1 and
P2 are 0,4,(13–2=11). Therefore average waiting=
(0+4+11)/3=5ms

20. Consider the methods used by processes P1 and P2
for accessing their critical sections whenever needed,
as given below. The initial values of shared Boolean
variables S1 and S2 are randomly assigned.

Method used by P1 Method used by P2

while (S1 = = S2) ; while (S1 ! = S2) ;

Critica1 Section Critica1 Section

S1 = S2; S2 = not (S1);

 Which one of the following statements describes the
properties achieved? (GATE 2010)

A. Mutual exclusion but not progress

B. Progress but not mutual exclusion

C. Neither mutual exclusion nor progress

D. Both mutual exclusion and progress

21. A system uses FIFO policy for page replacement. It
has 4 page frames with no pages loaded to begin with.
The system first accesses 100 distinct pages in some
order and then accesses the same 100 pages but now
in the reverse order. How many page faults will occur?

(GATE 2010)

A 196 B. 192 C. 197 D 195

 Explanation: Answer is A. First time, every page ref-
erence makes a page fault. At the end of first access
last four pages will be in RAM and with them no page
fault occurs during the reverse pass. Thus, 196 page
faults will be seen in total.

22. Which of the following statements are true?

(GATE 2010)

I. Shortest remaining time first scheduling may
cause starvation

II. Preemptive scheduling may cause starvation

III. Round robin is better than FCFS in terms of re-
sponse time

A. I only B. I and III only

C. II and III only D. I, II and III

23. The following program consists of 3 concurrent pro-
cesses and 3 binary semaphores. The semaphores are
initialised as S0=1, S1=0, S2=0.

Process P0
while (true) {
wait (S0);
print ‘0’
release (S1);
release (S2);
}

Process P1
wait (S1);
Release (S0);

Process P2
wait (S2);
release (S0);

 How many times will process P0 print ‘0’?

(GATE 2010)

A. At least twice B. Exactly twice

C. Exactly thrice D. Exactly once

24. A system has n resources R0,…,Rn-1, and k processes
P0,…..Pk-1. The implementation of the resource re-
quest logic of each process Pi. is as follows:

 if (i% 2==0) {

 if (i<n) request Ri ;

 if (i+2<n)request Ri+2 ;

 }

 else {

 if (i<n) request Rn-i ;

 if (i+2<n)request Rn-i-2 ;

 }

 In which one of the following situations is a deadlock
possible? (GATE 2010)

A n = 40,k = 26 B. n = 21,k = 12

C n = 20,k = 10 D. n = 41,k = 19

25. A computer system has an L1 cache, an L2 cache, and
a main memory unit connected as shown below. The
block size in L1 cache is 4 words. The block size in
L2 cache is 16 words. The memory access times are 2

Operating Systems 4.109

nanoseconds. 20 nanoseconds and 200 nanoseconds
for L1 cache, L2 cache and main memory unit respec-
tively.

L1
Cache

Data Bus

4 words

Data Bus

4 words

L2
Cache

Main
Memory

 When there is a miss in L1 cache and a hit in L2 cache,
a block is transferred from L2 cache to L1 cache. What
is the time taken for this transfer? (GATE 2010)

A. 2 nanoseconds B. 20 nanoseconds

C. 22 nanoseconds D. 88 nanoseconds

26. When there is a miss in both L1 cache and L2 cache,
first a block is transferred from main memory to L2
cache, and then a block is transferred from L2 cache
to L1 cache. What is the total time taken for these
transfers? (GATE 2009)

A 222 nanoseconds B. 888 nanoseconds

C 902 nanoseconds D. 968 nanoseconds

27. A CPU generally handles an interrupt by executing an
interrupt service routine (GATE 2009)

A. As soon as an interrupt is raised

B. By checking the interrupt register at the end of
fetch cycle.

C. By checking the interrupt register after finishing
the execution of the current instruction.

D. By checking the interrupt register at fixed time in-
tervals.

28. In which one of the following page replacement poli-
cies, Belady’s anomaly may occur? (GATE 2009)

A. FIFO B. Optimal C. LRU D. MRU

29. The essential content(s) in each entry of a page table is
/ are (GATE 2009)

A Virtual page number

B Page frame number

C Both virtual page number and page frame num-
ber

D Access right information

30. Consider a 4-way set associative cache (initially emp-
ty) with total 16 cache blocks. The main memory con-
sists of 256 blocks and the request for memory blocks
is in the following order:

 0, 255, 1, 4, 3, 8, 133, 159, 216, 129, 63, 8, 48, 32, 73,
92, 155.

 Which one of the following memory block will not be
in cache if LRU replacement policy is used?

(GATE 2009)

A. 3 B 8 C 129 D 216

 Explanation: As cache is 4 way set associative cache
with 16 blocks, each set has 4 blocks numbered 0,1,2,3.
We take each memory block and use the last 2 bits to
place it into proper cache following LRU replacement
scheme. 216 would not be in cache as it is followed by
8, 48, 32 and 92.

31. Consider a system with 4 types of resources R1 (3
units), R2 (2 units), R3 (3 units), R4 (2 units). A non-
preemptive resource allocation policy is used. At any
given instance, a request is not entertained if it can-
not be completely satisfied. Three processes P1, P2,
P3 request the sources as follows if executed indepen-
dently.

Process P1:
t=0: requests 2
units of R2
t=1: requests 1
unit of R3
t=3: requests 2
units of R1
t=5: releases 1
unit of R2
and 1 unit of R1.
t=7: releases 1
unit of R3
t=8: requests 2
units of R4
 t=10: Finishes

Process P2:
t=0: requests 2
units of R3
t=2: requests 1
unit of R4
t=4: requests 1
unit of R1
t=6: releases 1
unit of R3
 t=8: Finishes

Process P3:
t=0: requests 1
unit of R4
t=2: requests 2
units of R1
t=5: releases 2
units of R1
t=7: requests 1
unit of R2
t=8: requests 1
unit of R3
 t=9: Finishes

 Which one of the following statements is true if all
three processes run concurrently starting at time t=0?

(GATE 2009)

A All processes will finish without any deadlock

B Only P1 and P2 will be in deadlock.

C Only P1 and P3 will be in a deadlock.

D All three processes will be in deadlock.

32. Consider a disk system with 100 cylinders. The re-
quests to access the cylinders occur in following se-
quence:

 4, 34, 10, 7, 19, 73, 2, 15, 6, 20

 Assuming that the head is currently at cylinder 50,
what is the time taken to satisfy all requests if it takes
1ms to move from one cylinder to adjacent one and
shortest seek time first policy is used? (GATE 2009)

A 95ms B 119ms C 233ms D 276ms

 Explanation: As head is at 50, it is going to handle
the requests as follows according to SSTF policy:
50,34,20,19,15,10,7,6,4,2,73

 Therefore, time taken=[(50–34)+(34–20)+(20–19)+
(19–15)+(15–10)+(10–7)+(7–6)+(6–4)+(4–2)+(73–
2)]*1ms = 119ms

4.110 Computer Science & Information Technology for GATE

33. In the following process state transition diagram for
a uniprocessor system, assume that there are always
some processes in the ready state:

Start
A A

Ready Running Terminated

B

C

Blocked

E F

 Now consider the following statements:

I. If a process makes a transition D, it would result
in another process making transition A immedi-
ately.

II. A process P2 in blocked state can make transition
E while another process P1 is in running state.

III. The OS uses preemptive scheduling.

IV. The OS uses non-preemptive scheduling.

 Which of the above statements are true?

(GATE 2009)

A I and II B I and III C II and III D II and IV

34. The enter_CS() and leave_CS() functions to imple-
ment critical section of a process are realised using
test-and-set instruction as follows:

 void enter_CS(X)

 {

 while (test-and-set(X));

 }

 void leave_CS(X)

 {

 X=0;

 }

 In the above solution, X is a memory location associ-
ated with the CS and is initialised to 0. Now consider
the following statements:

I. The above solution to CS problem is deadlock-
free

II. The solution is starvation free.

III. The processes enter CS in FIFO order.

IV More than one process can enter CS at the same
time.

 Which of the above statements is true?

(GATE 2009)

A. I only B. I and II C. II and III D. IV only

35. A multilevel page table is preferred in comparison to
a single level page table for translating virtual address
to physical address because (GATE 2009)

A It reduces the memory access time to read or write
a memory location.

B It helps to reduce the size of page table needed to
implement the virtual address space of a process.

C It is required by the translation lookaside buffer.

D It helps to reduce the number of page faults in
page replacement algorithms.

36. A hard disk has 63 sectors per track, 10 platters each
with 2 recording surfaces and 1000 cylinders. The ad-
dress of a sector is given as a triple <c,h, s> , where c
is the cylinder number, h is the surface number and s
is the sector number. Thus, the 0th sector is addressed
as <0,0,0> , the 1st sector as <0,0,1> , and so on

 The address <400, 16, 29> corresponds to sector num-
ber: (GATE 2009)

A. 505035 B. 505036 C. 505037 D. 505038

 Explanation: 400×2×10×63 + 16×63 + 29 = 505037

37. The address of the 1039th sector is (GATE 2009)

A < 0,15,31> B. <0,16,30>

C. < 0,16,31> D. <0,17,31>

 Explanation: 16×63 + 31 = 1039

38. Consider a 4-way set associative cache consisting of
128 lines with a line size of 64 words. The CPU gener-
ates a 20-bit address of a word in main memory. The
number of bits in the TAG, LINE and WORD fields
are respectively: (GATE 2007)

A. 9, 6, 5 B. 7, 7, 6 C. 7, 5, 8 D. 9, 5, 6

39. Consider a disk pack with 16 surfaces, 128 tracks per
surface and 256 sectors per track. 512 bytes of data are
stored in a bit serial manner in a sector. The capacity
of the disk pack and the number of bits required to
specify a particular sector in the disk are respectively:

(GATE 2007)

A 256 Mbyte, 19 bits B. 256 Mbyte, 28 bits

C. 512 Mbyte, 20 bits D. 64 Gbyte, 28 bits

 Explanation: Disk capacity = 16 × 128 × 256 × 512 =
24 × 27 × 28 × 29= 228 bytes = 256MB

 Number of sectors = 16 × 128 × 256 = 24 × 27 × 28 = 219

 Therefore, 19 bits are needed to refer to any sector.
Thus, correct option is A.

40. Consider the following statements about user level
threads and kernel level threads. Which one of the
following statements is false? (GATE 2007)

A Context switch time is longer for kernel level
threads than for user level threads.

B User level threads do not need any hardware sup-
port.

C Related kernel level threads can be scheduled on
different processors in a multi-processor system.

Operating Systems 4.111

alloc request

X Y Z X Y Z

P0 1 2 1 1 0 3

P1 2 0 1 0 1 2

P2 2 2 1 1 2 0

A. P0 B. P1

C. P2

D. None of the above, since the system is in a dead-
lock.

44. Two processes, P1 and P2, need to access a critical
section of code. Consider the following synchronisa-
tion construct used by the processes:

/* P1 */

while (true) {

wants1 = true;

while (wants2==true);

/* Critical

Section */

wants1=false;

}

/* Remainder section */

/* P2 */

while (true) {

wants2 = true;

while (wants1==true);

/* Critical

Section */

Wants2=false;

}

/* Remainder section */

 Here, wants1 and wants2 are shared variables, which
are initialised to false.

 Which one of the following statements is true about
the above construct? (GATE 2007)

A. It does not ensure mutual exclusion.

B. It does not ensure bounded waiting.

C. It requires that processes enter the critical section
in strict alternation.

D. It does not prevent deadlocks, but ensures mutual
exclusion.

45. Consider a machine with a byte addressable main
memory of 216 bytes. Assume that a direct mapped
data cache consisting of 32 lines of 64 bytes each is
used in the system. A 50 × 50 two-dimensional array
of bytes is stored in the main memory starting from
memory location 1100H. Assume that the data cache
is initially empty. The complete array is accessed
twice. Assume that the contents of the data cache do
not change in between the two accesses.

 How many data cache misses will occur in total?

(GATE 2007)

A. 48 B. 50 C. 56 D. 59

 Explanation: In direct mapping each physical memo-
ry block is mapped to block address % 32(no. of cache
lines). Now 1100H = 0001000100 000000 belongs to
block 0001000100 which is mapped to cache block

D Blocking one kernel level thread blocks all related
threads.

41. An operating system uses Shortest Remaining Time
first (SRT) process scheduling algorithm. Consider
the arrival times and execution times for the follow-
ing processes:

Process Execution time Arrival time

P1 20 0

P2 25 15

P3 10 30

P4 15 45

 What is the total waiting time for process P2?

(GATE 2007)

A. 5 B. 15 C. 40 D. 55

 Explanation: At 0 P1 will be started and completed at
20.

 At 20 P2(which is arrived at 15) will be started as it is
the only process in the ready queue.

 At 30, P3 arrives which needs 10 units to complete.
While currently running P2 needs 15 more time units
to complete. Thus, P2 is preempted and P3 is started.

 P3 completes at 40 and thus P2 is again initiated.

 At 45 P4 arrives which needs 15 time units to com-
plete. As this is more than currently running P2, P2
continues to run.

 Thus, total waiting time of P2=5+10=15 time units

42. A virtual memory system uses First In First Out
(FIFO) page replacement policy and allocates a fixed
number of frames to a process. Consider the follow-
ing statements:

 P: Increasing the number of page frames allocated to
a process sometimes increases the page fault rate.

 Q: Some programs do not exhibit locality of reference.

 Which one of the following is true? (GATE 2007)

A Both P and Q are true, and Q is the reason for P

B Both P and Q are true, but Q is not the reason for
P.

C P is false, but Q is true

D Both P and Q are false.

43. A single processor system has three resource types X,
Y and Z, which are shared by three processes. There
are 5 units of each resource type. Consider the fol-
lowing scenario, where the column alloc denotes
the number of units of each resource type allocated
to each process, and the column request denotes the
number of units of each resource type requested by
a process in order to complete execution. Which of
these processes will finish last? (GATE 2007)

4.112 Computer Science & Information Technology for GATE

0001000100%32 = cache block 4. So first element is
mapped to cache block 4. Since there are 64 elements
in each block, 1st 64 elements will be mapped to cache
block 4.Access of 1st 64 elements will cause only one
miss (1st miss causes entire block to be transferred to
cache). 2nd 64 elements will cause one more miss and
so on. Since there are 2500 elements access of all ele-
ments will cause 40 misses (2500/64).

 During second iteration there will be some elements
of the array in cache which are already accessed first
time. We know total array size is 2500bytes and cache
size is 32x64=2048 bytes. Thus, while accessing the ar-
ray in the first time itself, first 2500-2048=452bytes of
the array that are in the cache will be overwritten with
last 452 bytes. Thus, while accessing the array second
time with these first 452 bytes cache misses occurs as
they are not in the cache. That is, we will be getting
452/64=8 (approximately) misses. Also, during sec-
ond access these 452 bytes will be overwritten with
last 452 bytes of the array. Thus, 8 more cache misses
are spent. Thus, in total 40+8+8=56 cache misses are
needed.

46. Which of the following lines of the data cache will be
replaced by new blocks in accessing the array for the
second time? (GATE 2007)

A. line 4 to line 11 B. line 4 to line 12

C. line 0 to line 7 D. line 0 to line 8

47. A process has been allocated 3 page frames. Assume
that none of the pages of the process are available in
the memory initially. The process makes the following
sequence of page references (reference string): 1, 2, 1,
3, 7, 4, 5, 6, 3, 1

 If optimal page replacement policy is used, how many
page faults occur for the above reference string?

(GATE 2007)

A. 7 B. 8 C. 9 D. 10

 Explanation: Optimal page replacement policy: when
a page needs to be swapped in, the OS swaps out the
page whose next use will occur farthest in the near
future.

page number 1 2 1 3 7 4 5 6 3 1

page fault no. 1 2 3 4 5 6 7

 The pages in the frames are replaced as shown below:

1

2 7 4 5 6

3

 The total number of page faults is 7.

48. Least Recently Used (LRU) page replacement
policy is a practical approximation to optimal page

replacement. For the above reference string, how
many more page faults occur with LRU than with the
optimal page replacement policy? (GATE 2007)

A. 0 B. 1

C. 2 D. 3

 Explanation:

page frame 1 2 1 3 7 4 5 6 3 1

page fault no. 1 2 3 4 5 6 7 8 9

 The pages in the frames are replaced as shown below:

1 4 3

2 7 6

3 5 1

 Total number of page faults is 9.

49. Consider three CPU-intensive processes, which
require 10, 20 and 30 time units and arrive at times 0,
2 and 6, respectively. How many context switches are
needed if the operating system implements a shortest
remaining time first scheduling algorithm? Do not
count the context switches at time zero and at the end.

A. 1 B. 2

C. 3 D. 4

 Explanation: At time 0, only p1 is available and it is
executed. Thus, it cannot be taken as context switch.
Processesp2 and p3 arrive at times 2 and 6 respectively.
Process p1 executes to completion according to
shortest remaining first algorithm, then p2 and then
p3. While P2 and P3 are loaded, context switching
takes place. Therefore the number of context switches
are 2.

50. A CPU has a cache with block size 64 bytes. The main
memory has k banks, each bank being c bytes wide.
Consecutive c – byte chunks are mapped on consecu-
tive banks with wrap-around. All the k banks can be
accessed in parallel, but two accesses to the same bank
must be serialized. A cache block access may involve
multiple iterations of parallel bank accesses depend-
ing on the amount of data obtained by accessing all
the k banks in parallel. Each iteration requires decod-
ing the bank numbers to be accessed in parallel and
this takes k/2 ns. Latency of one bank access is 80 ns.
If c=2 and k = 24, the latency of retrieving a cache
block starting at address zero from main memory is:

A. 92 ns B. 104 ns

C. 172 ns D. 184 ns

 Explanation: Cache block size=64. Given c=2 and
k=24 indicates that we can take 48 bytes in parallel.
However, our cache block size 64. Thus, we need two
memory accesses as 64 is more than 48 bytes. Thus, la-
tency of reading one cache block=2*(80+24/2)=184ns

Operating Systems 4.113

51. A computer system supports 32-bit virtual addresses
as well as 32-bit physical addresses. Since the virtual
address space is of the same size as the physical
address space, the operating system designers decide
to get rid of the virtual memory entirely. Which one
of the following is true?

A. Efficient implementation of multi-user support is
no longer possible

B. The processor cache organisation can be made
more efficient now

C. Hardware support for memory management is no
longer needed

D. CPU scheduling can be made more efficient now

52. Consider three processes (process id 0, 1, 2 respec-
tively) with compute time bursts 2, 4 and 8 time units.
All processes arrive at time zero. Consider the longest
remaining time first (LRTF) scheduling algorithm. In
LRTF ties are broken by giving priority to the process
with the lowest process id. The average turn around
time is:

A. 13 units B. 14 units

C. 15 units D. 16 units

 Explanation: The Gantt chart for the above problem
is:

p
2

p
1

p
2

p
1

p
2

p
0

p
1

p
2

p
0

p
1

p
2

0 4 5 6 7 8 9 10 11 12 13 14

 Turn around time of p0 is 12-0 = 12.

 Turn around time of p1 is 13-0 = 13.

 Turn around time of p2 is 14-0 = 14.

 Average turn around time is (12+13+14)/3 = 13.

53. Consider three processes, all arriving at time zero,
with total execution time of 10, 20 and 30 units, re-
spectively. Each process spends the first 20% of execu-
tion time doing I/O, the next 70% of time doing com-
putation, and the last 10% of time doing I/O again.
The operating system uses a shortest remaining com-
pute time first scheduling algorithm and schedules
a new process either when the running process gets
blocked on I/O or when the running process finishes
its compute burst. Assume that all I/O operations can
be overlapped as much as possible. For what percent-
age of time does the CPU remain idle?

A. 0% B. 10.6%

C. 30.0% D. 89.4%

A N S W E R K E Y

1. B 2. B 3. B 4. C

5. D 6. B 7. C 8. C

9. B 10. B 11. B 12. C

13. A 14. B 15. C 16. D

17. B 18. A 19. A 20. A

21. A 22. D 23. A 24. B

25. C 26. A 27. C 28. A

29. B 30. D 31. A 32. B

33. B 34. A 35. B 36. C

37. C 38. B 39. A 40. D

41. B 42. B 43. C 44. A

45. C 46. A 47. A 48. C

49. B 50. D 51. C 52. A

53. B

5C H A P T E R F I V E

Entity Relationship

Data Model

5.1 Entity Relationship (ER) Model

Entity Relationship Model/ Diagram is a conceptual model.
Entity Relationship Data Model

It is based on a configuration of our real world perception into object sets called entities and the relationships among
these objects.

A logic tool is used for database scheme design.

It does not include implementation details.

It is described by an ER (Entity-Relationship) diagram.

Note

Implementation details are physical and have no place in an ER diagram. The ER diagram displays logical relationship,
not physical relationship.

Entity
An entity is a thing that has an independent existence.

An entity is described by its attributes.

An entity is determined by its instantiations.

(Instantiations are particular values for its attributes.)
n Example A customer is an entity with the attributes:
 Name
 ID No
 Address
 Telephone No
 An account is an entity with the attributes:
 Account No
 Balance

Entity Set (Entity Type)

Define a set of entities of the same type (share the same structure)

Denote by a rectangular box in ER diagram

5.2 Computer Science & Information Technology for GATE

Identify entity by a list of attributes placed in ovals

Identify key attributes (the set of attributes that uniquely identify entity type)

Name

ID No. Telephone No.

Address

Customer

Account No.

Account

Balance

Figure 5.1 An entity representation with its attributes

Relationship and Relationship Set
A relationship is an association among several entities.
A relationship set is a set of relationships of the same type.

Let E1, E2,... En be a set of entity sets.

< e1, e2,..., en > is a relationship, where ek is contained
in Ek.

A subset of E1 ¥ E2 ¥... ¥ En is a relationship set.
n Example

Customer Accountowns

Relationship Sets
Defines an association of entity sets.
Is a subset of cartesian product E1 ¥ E2 ¥ … ¥ En.
Ek is said to play a role in the relationship set.
Denoted by a diamond in the ER diagram as shown in Fig. 5.2.

Name

ID No Telephone No

Address Account No Balance

Customer has Account

Figure 5.2 A relation

Descriptive Attributes

Attributes of relationships

Customer Accountpayment

kroner

Figure 5.3 Payment relation (Please ask the people to remove the word kroner and the line which joinsit)

Structural constraints

Degree: number of participating entity sets
Cardinality constraints: {1:1, 1:N, M:N}
Participation constraints: partial or total

Entity Relationship Data Model 5.3

Name

ID No Telephone No

Address Account No Balance

Customer has Account

Figure 5.4 Customer and account relation

1:1 each customer has at most one account and each account is owned by at most one customer.
1:N each customer may have any number of accounts but each account is owned by at most one customer.
M:N each customer may have any number of accounts and each account may be owned by any number of customers.

5.1.1 Representing ER Model Using Tables

Basic rules

One table for one entity set

One column for one attribute

Superkey
A superkey is a set of one or more attributes which, taken collectively, allow us to identify uniquely an entity in the entity
set.
n Example In the entity set customer, customer-name and personal-number is a superkey. Note that customer-name

alone is not a superkey, as two customers could have the same name.

Candidate Key
A superkey may contain extraneous attributes, and we are often interested in the smallest superkey. A superkey for which
no subset is a superkey is called a candidate key.

n Example personal_number is a candidate key, as it is minimal and uniquely identifies a customer entity.

Primary Key
Primary key is a candidate key (there may be more than one) chosen by the DB designer to identify entities in an entity
set. An entity set that does not possess sufficient attributes to form a primary key is called a weak entity set. One that does
have a primary key is called a strong entity set.

Relation: Customer

Customer No. Name Address Post Code Gender Age Date of Birth

Siddm02 Siddke 48 South St 3070 F 38 04/12/1954

Walsh01 H Walsh 2 Allen Crt 3065 M 44 04/16/1947

Foret13 T Forest 69 Black St 3145 M 24 06/12/1967

Richb76 B Rich 181 Kemp St 3507 M 50 09/12/1941

5.1.1.1 Conceptual Design/Developing the ER Model

Do not think about the implementation.

Conceptual model is independent of DBMS.

Basic ER Model Constructs
Entity

An entity is an object that exists and is distinguishable from other objects (like a specific person, a company, a book).

Synonyms: Instance (an instantiation), member, individual
An Entity can be uniquely identified as one particular object in the universe. An entity may be concrete (like a person, a
book) or abstract (like a country border, a holiday, etc.)

5.4 Computer Science & Information Technology for GATE

Entity Sets

An entity set is a collection of entities of the same type (identified by the chosen properties).

n Example The students at our university.
Synonym: Entity Class
Entity sets need not be disjoint. For example, the entity set employee and the entity set client may have members in com-
mon.
Entity Types

An entity type is defined by its attributes.

Note that the entity type is defined by its attributes, whereas its instantiations are identified by these attributes.
A database is modeled as a collection of entities and relationships among them.

An entity set is a collection of entities that share the same properties.

Synonym: Entity Class

An entity type is defined by its properties (attributes).

A database is modeled as a collection of entities and relationships among them.

Attributes

Descriptive properties possessed by all members of an entity set.

n Example The set of students in a university form an entity set could be named Student.
The attributes of the Student could be: name, ID No, GPA, …

Formally, an attribute is a function that maps an entity set in a domain.

Every entity is described by a set of pairs in the form (attribute, data value), such as (street, Tröskaregatan), (city, Linköping)

This is akin to Class/Instantiation pattern for objects in OO programming.
Attribute Domain
The domain of an attribute is the set of permitted values for that attribute.

n Example GPA has a range from 1 to 4.
Attribute Species (kinds of)
 Simple vs composite
 Single valued vs multivalued
 Derived
 Null valued
 Identifier

A relationship may also have attributes.

Defining a Set of ENTITIES and their RELATIONSHIPS

The definition for a set of entities and their relationships depends on how we deal with attributes. Suppose we have an
entity set employee with attributes employee-name and phone-number. Is the phone an entity? If so, then we have two
entity sets. Also, this new definition allows employees to have 0 or more phones.

This may be a better representation of the way things are.

Does employee have the same status?

Employee-name does NOT have the same status as phone.

The question of what constitutes an entity and what constitutes an attribute depends on how we interpret the world that
is being modeled.
Relationships
Relationships associate one or more entities (usually 2).

5.1.1.2. Degree of Relationship

Unary relationship: associates entity with itself
Binary relationship: associates two entities
Ternary relationship: associates three entities
n-ary relationships: associates n entities

Cardinality and Structural Constraint

Entity Relationship Data Model 5.5

Relationships between entities have a cardinality associated with them. The [min:max] cardinality together are often re-
ferred to as the structural constraint.

Sometimes we need additional attributes for a relationship, which leads to formation of an associative entity type.
Graphical Symbols used in ER diagrams

Strong
Entity Set

Weak
Entity Set

Multivalued

identifying

attribute

Associative
Entity Type

identifying
attribute

derived
attribute

attribute

Relationship

Figure 5.5 Symbols used in representing ER diagrams

Symbols used in representing cardinalities

0:1

1:1

0:M

1:M

Figure 5.6 Symbolic representation of cardinalities

Existence Dependencies
If the existence of entity X depends on the existence of entity Y then X is said to be existence dependent on Y. (Or we say that
Y is the dominant entity and X is the subordinate entity.)

n Example Consider account and transaction entity sets, and a relationship log between them. This is a one-to-many
from account to transaction. If an account entity is deleted, its associated transaction entities must also be deleted. Thus
account is dominant and transaction is subordinate.

Strong/Weak Entity Sets

Weak Entity Set: An entity set whose existence is dependent on one or more other strong entity sets (termed the
‘identifying owner(s)’)

Thus if an instance of the strong entity set is removed, so must the related instances of the weak entity set.

Strong is dominant.
Weak is subordinate.

5.6 Computer Science & Information Technology for GATE

5.1.2 Entity Relationship Data Model

Based on a configuration of our real world perception into object sets called entities, and the relationships among
these objects.

A logic tool used for database scheme design.

Does not include implementation details.

It is described by an ER (Entity-Relationship) diagram.

Note

That implementation details are physical and have no place in an ER diagram. The ER diagram displays logical relation-
ships, not physical relationships.

Examples for various cardinalities

Entity Relationship Data Model 5.7

5.8 Computer Science & Information Technology for GATE

Entity Relationship Data Model 5.9

5.10 Computer Science & Information Technology for GATE

5.1.3 Transforming the Conceptual Data Model to SQL Tables

* Entity – directly to a SQL table

* Many-to-many binary relationship – directly to a SQL table, taking the 2 primary keys in the 2 entities associated
with this relationship as foreign keys in the new table.

Entity Relationship Data Model 5.11

* One-to-many binary relationship – primary key on “one” side entity copied as a foreign key in the “many” side
entity’s table.

* Recursive binary relationship – same rules as other binary relationships.

* Ternary relationship – directly to a SQL table, taking the 3 primary keys of the 3 entities associated with this rela-
tionship as foreign keys in the new table.

* Attribute of an entity – directly to be an attribute of the table transformed from this entity.

* Generalisation super-class (super-type) entity – directly to a SQL table.

* Generalisation subclass (subtype) entity – directly to a SQL table, but with the primary key of its super-class
(super-type) propagated down as a foreign key into its table.

* Mandatory constraint (1 lower bound) on the “one” side of a one-to-many relationship – the foreign key in the
“many” side table associated with the primary key in the “one” side table should be set as “not null” (when the lower
bound is 0, nulls are allowed as the default in SQL)

5.1.4 Enhanced ER Model

The following extensions will be added in enhanced-ER model:

1. Class/subclass relationships and type inheritance.

2. Specialisation and generalisation.

3. Constraints on specialisation and generalisation.

4. Union constructs.

5.1.5 File Structures (Sequential files, indexing, B and B + trees)

Read Operating Systems and Data Structures notes

5.2 Introduction to Tuple Relational Calculus (TRC)

Although relational algebra is useful in the analysis of query evaluation, SQL is actualy based on a different query lan-
guage: relational caclulus. There are two important relational calculus is used in practice namingly 1. Tuple relational
calculus and 2. Domain relational calculus. A typical TRC query looks the following:

{T/Condition} - return all tuples T that satisfy the condition Condition.

{T/R(T)} - returns all tuples T such that T is a tuple in relation R.

{T.name/FACULTY(T) AND T.DeptId = ‘CS’} – returns the values of name field of all faculty tuples with the value
‘CS’ in their department id field.

fi T is the target – a variable that ranges over some relation (its values are tuples of the relation)

fi Condition is the body of the query involving T and other variables and evaluates to true or false if a specific tuple
is substituted for T.

fi The result of a TRC query with respect to a given database is the set of all choices of tuples for the variable T that
make the query condition a true statement about the database.

fi The variable T is said to be free since it is not bound by a quantifier such as there exists ($), for all (").

fi Each variable T ranges over all possible tuples in the universe.

fi Tuple variables are also called as range variables.

5.2.1 Relation Algebra vs. Relational Calculus

Although the relational algebra and calculus are equivalent in their expressive power the following important differences
can be noted.

Relational algebra provides a collection of explicit operations – join, union, projection, etc.

The relational algebriac operations are used to tell the system how to build some desired relation in terms of other
relations.

5.12 Computer Science & Information Technology for GATE

The calculus merely provides a notation for formulating the definition of that desired relation in terms of those
given relations.

Relational Algebra is procedural; it is more like a programming language;

Relational calculus is nonprocedural. it is more close to a natural language.

The calculus formation is descriptive while the algebraic one is prescriptive.

SQL does not require the explicit introduction of a tuple variable, it allows the relation name S to serve as an implicit
tuple variable.

For example, suppose you want to query:
Get supplier numbers for suppliers who supply part P2.
An algebraic version of this query might follow these steps:

1. Form the natural join of relations SUP (supplier) and P (Part) on S#;

2. Next, restrict the result of that join to tuples for part P2;

3. Finally, project the result of that restriction on S#.

A calculus formulation might look like:
Get S# for suppliers such that there exists a shipment Part with the same S# value and with P# value P2.
That it,
{ t | $ s e SUP(t[S#]=P[S#]) L $ u e P(u[P#]=‘P2’) }

5.2.2 Why it is called relational calculus?

It is founded on a branch of mathematical logic called the predicate calculus.

5.2.3 Relationally Complete Language

A relational query language L is called as relational complete if we can express in L any query that can be expressed in
relational calculus.

Formal Definition
Consider a simple relational calculus expression:
{T.name/FACULTY(T) AND T.DeptId=‘CS’}
which returns the values of name field of all faculty tuples with the value ‘CS’ in their department id field.
Informally, we need to specify the following information in a TRC expression, namingly:

1. For each tuple variable t, the range relation (for example in the above expression relation FACULTY is the range
relation).

 Moreover, variables can be constrained by quantified statements to tuples in a single relation:

Esistential Quantifier. $T e R(cond) will succeed if Cond for atleast one tuple in T is true.

Universal Quantifier: $T e R(Cond) will succeed if Cond succeeds for all tuples in T.

Any variable that is not bound by a quantifier is said to be free variable otherwise bound variable.

A TRC expression may contain at most one free variable.

{T.name/FACULTY(T) AND T.DeptId = ‘CS’} can be read as: “ Find all tuples T such that T is a tuple in the FACULTY
relation and the value of DeptId field is ‘CS’. Return a tuple with a single field name which is equivalent to the name field
of one such T tuple”.
The same expression can be alternatively written as:

{R| $T e FACULTY (T.DeptId = ‘CS’ AND R.name = T.name)} which can be read as “ Find all tuples R such that
there exists a tuple T in FACULTY with the DeptId field of R is equivalent to the name field of this tuple T}”. The
same can be alternatively stated as “ Find all tuples R that can be obtained by copying the name field of SOME tuple
in FACULTY with the value ‘CS’ in its Dept Id attribute.

Please note that if in the first query instead of T.name if we write only T then the query displays all attributes of the
selected tuples.

2. A condition to select particular combinations of tuples. As tuple variables range over their respective range relations,
the condition is evaluated for every possible combination of tuples to identify the selected combinations for which

Entity Relationship Data Model 5.13

the condition evaluates true. The conditions are also called as functions which are considered to be made of atoms
(Details are given below).

3. A set of attributes to be retrieved, the requested attributes (in the above example T.name). The values of these at-
tributes are retrieved for each selected combination of tuples.

In addition, the following examples may outline equivalence of TRC and SQL statement.
{T|TEACHING(T) AND T.semister = ‘Fall2000’}
is equivalent to
SELECT *
FROM TEACHING T
WHERE T.semister = ‘Fall2000’;
Here,
Target T corresponds to SELECT list: the query result contains the entire tuple.
TEACHING(T) corresponds to FROM clause, i.e range or domain tuples.
T.semister=‘Fall2000’ corresponds to WHERE clause which is condition.
Atoms
An atom has one one of the following forms

s e r where s is a tuple variable and r is a relation.

s[x] op u[y], where s and u are tuple variables, x is an attribute on which s is defined, y is attribute on which u is
defined, and op can be >, <, <=, >=, =, π.

s[x] op c, where s[x] is as above and c is a constant and op is also same as above.

Formulas are created by joining atoms using the following rules.

An atom is a formula.

If P1 is a formula, then so are ÿP1 and (P1)

If P1 and P2 are formulae then so are P1^P2, P1Vp2, and P1 fi P2.

If P1(s) is a formula containing a free tuple variable s and r is a relation then $ ser (P1(s)) and "s e r(P1(s)) are also
formulae.

P1^P2 is equivalent to ÿ(ÿP1, ⁄ ÿ P2)

"te r (P1(t)) is equivalent to ÿ $t e r (ÿP1(t))

P1fiP2 is equivalent to ÿP1⁄P2.

Safety of Expressions
Main drawback of TRC is it may generate an infinite relation. For example, a query like the following may generate in-
finitley many tuples which may not even appear in the database!.

{t | ÿ (t e loan)}

Here we are trying to genrate the tuples which are not in the loan relation! Thus, domain of a tuple relational formula is
used to solve this problem.

Important Points

{ T| STUDENT(T) AND FAACULTY(T)} will valuate to true if T is a tuple in both the relations. However, this is not
possible since the schema of the two relations are different. Two tuples can never be identical.

If we use attribute which is not available in the tuple then the result is NULL.

{T|T.A>5} is unbounded expression which is not allowed. All tuple variables should be restricted to the tuples of a
specific relation, even if they are not quantified.

If a tuple variable T is bound to a relation R, then it only has values for the attributes in R. All other attribute values
are null.

A well formed query will have a single unbounded variable. All other variables will have a quantifier over them.

Bound variables are used to make assertions about tuples in database (used in conditions).

Free variables designate the tuples to be returned by the query.

SQL has no quantifiers. Rather it uses some conventions such as:

5.14 Computer Science & Information Technology for GATE

Universal quantifiers are not allowed (but SQL 1999 introduced a limited form).

Makes esistential quantifiers implicit: any tuple variable that does not occur in SELECT is assumed to implicitly
quantified with $.

Adjacent existential quantifiers and adjacent universal quantifiers commute.

Adjacent existential and universal quantifiers do not commute.

A quantifier defines the scope of the quantified variable.

Relational calculus comes from the first order predicate calculus.

R(s), where R is a relation name and s is a tuple variable then this atom stands for assertion that s is a tuple in rela-
tion R.

($s) (R(s)) says that relation R is not empty. That is, there exists a tuple s in R.

A free variable is more like a global variable of high level programming languages, that is, a variable defined outside
the current procedure. Where as “bound variable” is like a local variable, one that is defined in the procedure at
hand and can not be referenced from the outside.

Relational calculus based languages are higher-level than the algebraic languages. Calculus base languages leaves it
to a compiler or interpreter to determine the most efficient order of evaluation.

Parentheses may be placed around formulas as needed. We assume the order of evaluation of precedence is: arith-
metic comparison operators highest, then the quantifiers, then NOT, ⁄, Ÿ, in that order.

{T| R(T) ⁄ S(T)} makes sense if both relations R and S are of same arity.

{T| R(T) ŸÿS(T)} indicates set difference R-S if both relations are of same arity.

{T| ($u) (R(T) ^ R(u) ^ (t[1] π u[1] π t[2] π u[2])) } denotes R if R has two or more members and denotes the empty
relation if R is empty or has only one member.

If E is a relational algebraic expression then there is a safe expression in TRC equivalent to E.

Let A (branch_name, loan_no, amount), B (cust_name, loan_no) are two relations. The following TRC query dis-
plays names of all customers who have loan from “Delhi” branch.

 {T|$s e B(T[cust_name] = s[cust_name]

 Ÿ$ u e A (u[loan_no] = s[loan_no] Ÿ u[branch_name] = ‘Delhi’)) }

The following displays names of faculty who belongs to CS department.

 {T|$R e FACULTY (R.DeptId = ‘CS’ Ÿ T.name = R.name) }

 or

 {T.name| FACULTY(T) Ÿ T.DeptId = ‘CS’ }

The following TRC query may display name, social security number of those people who are staff and simultane-
ously students.

 {T|STUDENT(T) Ÿ$ R e FACULTY(T[SSN]=R[SSN] Ÿ T[Name]=R[Name]) }

Let A (cust_name, accountno), B (cust_name, loan_no) are two relations. The following TRC query displays names
of all customers who have both loan and account

 {T|$s e B(T[cust_name]=s[cust_name] Ÿ $ u e A (T[cust_name]=u[cust_name])) }

Let A (cust_name, account no), B (cust_name, loan_no) are two relations. The following TRC query displays names
of all customers who have loan or account

 {T|$s e B(T[cust_name]=s[cust_name] Ÿÿ u e A (T[cust_name]=u[cust_name])) }

Let A (cust_name, accountno), B (cust_name, loan_no) are two relations. The following TRC query displays names
of all customers who have loan but not account

 {T|$s e B(T[cust_name]=s[cust_name] Ÿÿ$ u e A(T[cust_name]=u[cust_name])) }

Let A(cust_name, accountno), B(cust_name, loan_no) are two relations. The following TRC query displays names
of all customers who have account but no loan.

 {T|$s e A(T[cust_name]=s[cust_name] Ÿÿ$ u e B(T[cust_name]=u[cust_name])) }

{T|$F e FACULTY($C e CLASS(F.Id=C.Instructor.Id Ÿ C.Year=’2002’ Ÿ T.Name=F.Name Ÿ T.Course_code=C.
Course_Code))}

Entity Relationship Data Model 5.15

 The above command displays faculty names, Course codes who taught in 2002.

Write equivalent TRC queries for the following SQL statement :

 SELECT DISTINCT F.Name

FROM FACULTY F

 WHERE NOT EXISTS

 (SELECT * FROM CLASS C

 WHERE F.Id = C.InstructorId AND C.Year = ‘2002’);

 {F.Name|FACULTY(F) Ÿ ÿ($C e CLASS (F.Id=C.InstructorId Ÿ C.Year=’2002’))}
 or

 {F.Name|FACULTY(F) Ÿ ("C e CLASS (F.Id <>C.InstructorId ⁄ C.Year<>’2002’)) }

Find all students who have taken all the courses required by ‘CSE432’.

 {S.Name | STUDENTS(S) Ÿ "R e REQUIRES(R.CrsCode <>’CSC432’ ⁄ ($T e TRANSCRIPT(T.StudId=S.StudId Ÿ
T.CrsCode= R.PreReqCrsCode))}

Find all students (names) who have never taken a course from ‘Acorn’.

 {S.Name | STUDENTS(S) Ÿ "C e CLASS($F e FACULTY (F.Id=C.InstructorId Ÿ (ÿ(F.Name=’Acorn’ ⁄ ÿ($T e

TRANSCRIPT(S.Id=T.StudId Ÿ C.CrsCode=T.CrsCode ŸC.Year=T.Year))))) }

Find all course tuples corresponding to all the courses that have been taken by all students.

 {E.Name | COURSE(E) Ÿ "S e STUDENT($T e TRANSCRIPT(T.StudId = S.StudId Ÿ E.CrsCode= T. CrsCode)) }

Find all students. Who has registered for course CS308

 {S | STUDENT(S) Ÿ ($T e TRANSCRIPT(S.Id = TStudId Ÿ T.CrsCode= ‘CS308’)) }

5.2.4 Domain Relational Calculus

This is second form of relational calculus which uses domain variables that take on values from attributes domain, rather
than values for an entire tuple. This is however, clisely related to TRC.

Formal Definition
An expression in DRC is expressed as

{<x1,x2,…xn>|P(x1,x2,….xn)}

<x1,x2,…,xn> represented domain variables and P represents a formula composed of atoms, which are same as TRC.

Atoms
An atom has one one of the following forms

<x1,x2,…xn> e r where r is a relation on n attributes.

s op u, where s and u are domain variables, and op can be >, <, <=, >=, =, π. We require that s and u have domains
that can be compared by the above operations.

s op c, where s is as domain variable and c is a constant and op is also same as above.

 Formulas are created by joining atoms using the following rules.

An atom is a formula.

If P1 is a formula, then so are ÿP1 and (P1)

If P1 and P2 are formulae then so are P1^P2, P1Vp2, and P1fi P2.

Find the branch name, loan number and amount for loans over 1300.
{<b,l,a>|<b,l,a> e loan Ÿ a>1300}

Find the names all customers who have a loan, an account or both at “Delhi” branch.

 {<c> | $ l (<c,l >e borrower

 Ÿ$b,a (<b,l,a> e loan Ÿb=”Delhi”))

 ⁄ $a (<c,a> e depositor

 Ÿ $b,n (<b,a,n> e amount Ÿ b=”Delhi”))}

5.16 Computer Science & Information Technology for GATE

Tuple Relational Calculus

RA vs. TRC

 Algebra : sCond (R)

 Calculus : {T|R (T) AND Cond (T)}, i.e. replace attributes A in Cond with T. A to obtain Cond (T).

 Algebra : PA1,....,Ak
 (R)

 Calculus : {T|A1,.... T. Ak | R(T)}

 Given R(A1,...., An) and S(B1,...., Am)
 Algebra : R × S
 Calculus : {T| $T1 Œ R, $T2 ŒR (
 T. A1 = T1. A1 AND AND T. An = T1. An AND

T. B1 = T2. B1 AND AND T. Bm = T2. Bm)}

 Algebra : R » S
 Calculus : {T| R (T) AND S(T)

 Algebra : R – S
 Calculus : {T| R(T) AND "T1 Œ S, (T1 <> T)}
 where T <> T1 is a shorthand for
 T. A1 <> T1 A1 OR ORT. An <> T1.An

5.3 Integrity Constraints

One row of a relation is called as a tuple

Domain of an attribute is the set of values which it can take

Domain Integrity Constraints : While developing the database system we can include a integrity constraint such that
a specified attribute in a table will be made to accept either a set of range of values or a set of values.

 While we insert a new record, this constraint will be validated by the database system before accepting

Attribute type Integrity Constraint : Normally while creating the tables every database management system sup-
ports freedom to specify the type of the attributes i.e, integer type or date type or string type etc.

 When we propagate (insertions) the database automatically enforces the type.

Arity of a relation is the no of attributes.

Cardinality means the no of tuples in that relation instance

Candidate Key : Normally Candidate keys are the minimal subset of the attribute Set.

 For a relation, more than one candidate key can exist.

 One of the candidate keys is taken as Primary key. Then other keys become the Alternate keys for that relation.
The attributes which are members of the candidate keys are called as Prime attributes. Primary Key is the one
which is employed during the storage, retrieval of the Records

 If we happen to have more than one candidate key for a table, their selection is based on how they make the logical
records physically distributed and what is its consequence on access times.

 * Super Key : is the one which may not be minimal set.

 If we add one attribute to a Candidate key or a primary key, the resulting set will be obviously a key and it is more
appropriate to call it as super key.

 For a table if there exists at least one candidate key then, all the attributes of that table makes the largest possible
super key.

Entity Relationship Data Model 5.17

 If for a table there is no candidate key exist for a table then there will not be any super key also.

* Foreign Key :

 Dept (Dept_id, Dept_name, Location)

10 Sales Miami

20 Purchase AKP

 Emp (Empno, ename, emp_mgr, title, Emp_dept)

111 10

113 17

114 NULL

In the above tables, for the first table Dept_id is the primary key and Emp_dept is the foreign key for the second table.
If it is so, first tuple’s insertion in the second Table is accepted as the last attribute value is in the domain of the Dept_id

of the First table.
The insertion of the second tuple is not accepted as the attr value of employee dept 17 is not in the domain of Dept_id

and is also not null.
The third tuples insertion is also accepted as the Emp_dept can take NULL.
This is known as Referential Integrity.
The foreign key can even exist for a single table also. For example, in the above Emp Table, Mgr_Id can be considered as

a foreign key as the manager should also be an employee. Thus, its probable values (domain) will be same as the domain
of the Emp_id.

5.4 Database Design and Normalisation

During the database design, we will be carrying out analysis of the tables which can be called as Normalisation.
The Normalisation is especially meant to eliminate the following anomalies,

(i) Insertion anomaly

(ii) Deletion anomaly

(iii) Update anomaly

(iv) Join anomaly

Even the objective of the normalisation includes elimination of redundancy in Database tables.

Redundancy may be one reason for some type of anomalies such as update anomalies.

Normalisation is even employed to impose some integrity constraints.

Goals of normalisation

1. Integrity

2. Maintainability

Reduced storage space required (usually, but it could increase)

Simpler queries (sometimes, but some could be more complex)

Simpler updates (sometimes, but some could be more complex)

5.4.1 Functional Dependencies

If X, Y are two attribute sets, R is the relation then in this relation the FD

 X Æ Y is said to be existing if for any two tuples t1, t2 if

 T1 [x] = T2 [x] implies T1 [y] = T2 [y]

 X functionally determines Y (or) Y is functionally dependent on X.

n Example Emp (ID, Name, Dept, Grade, Sal, Age, Addr)

5.18 Computer Science & Information Technology for GATE

In the above table the functional dependency ID Æ Name is very well valid for this relation. However, Name Æ ID may
not be a valid dependency, as there is a possibility that there can be two employees having same names but differ in ID no’s.

* If R satisfies X Æ Y then PI Z (R) also satisfies X Æ Æ Y if X, Y subset of Z

n Example Order (Order_no, part, supplier_name, Supplier_addr, Qty, Price)

Order_no Supplier_name Æ Supplier_addr

In the above table though the functional dependency is valid one. However, the supplier address is very much depends
on Supplier name rather than Order no.

Thus, we can say Supplier_addr partially depends on the order no and Supplier Name

If F is the set of functional dependencies meaningful in the relation and “ f ” is one FD from F then its lowercase “ f
” can be said as redundant FD if the set of FD’s F – { f } implies the FD “ f ”.

n Example In the FD set F given by X Æ Y

 Y Æ Z

 X Æ Z

 X Æ Z is a redundant FD.

The set of all FD’s implied by “ F ” is called as Closure of F and is denoted as F+

If F+ is same as F then F is called as full family of dependencies.

n Example ID Æ Name
 ID Æ Dept
 ID Grade Age Æ Salary
 ID Æ Age
 ID Æ Address

 { ID } +

 X = { ID }

 X = { ID, Name }

 X = { ID, Name, Dept }

 X = { ID, Name, Dept, Age, Addr }

 X = { ID, Name, Dept, Age, Addr, Grade, Salary }

If X is a key for a database then X+, contains all the attributes of that relation.

Superkey Rule 1. Any FD involving all attributes of a table defines a super-key on the LHS of the FD.

Given: Any FD containing all attributes in the table R(W, X, Y, Z) i.e., XY Æ WZ.
Proof:

(1) XY Æ WZ given

(2) XY Æ XY by the reflexivity axiom

(3) XY Æ XYWZ by the union axiom

(4) XY uniquely determines every attribute in table R, as shown in (3)

(5) XY uniquely defines table R, by the definition of a table as having no duplicate rows

(6) XY is therefore a super-key, by the definition of a super-key.

Super-key Rule 2. Any attribute that functionally determines a Super-key of a table, is also a super-key for that table.

Given: Attribute A is a super-key for table R(A, B, C, D, E) and E Æ A.
Proof:

(1) Attribute A uniquely defines each row in table R, by the def. of a super-key

(2) A Æ ABCDE by the definition of a super-key and a relational table

(3) E Æ A given

(4) E Æ ABCDE by the transitivity axiom

(5) E is a super-key for table R, by the definition of a super-key.

Entity Relationship Data Model 5.19

Algorithm to find out whether a given FD X Æ Y is Valid in a given relation or not

(i) Project X, Y from R

(ii) Sort the tuples of the table using { X }

(iii) Check every adjacent tuple X values and if they are same then check their Y values if they are matching continue
else fail.

 O (n log n) for sorting

 O (n) for comparison where ‘n’ is the cardinality of the projected relation

 So, Time Complexity is O (n log n)

5.4.2 Armstrong’s Axioms

(i) If Y subset of X then X Æ Y

(ii) If X Æ Y then XW Æ YW

(iii) If X Æ Y, YÆ Z then X Æ Z

(iv) If X Æ Y, YW Æ Z then XW Æ Z

(v) If X Æ Z, X Æ Y then X Æ YZ

(vi) If X Æ YZ then X Æ Y, X Æ Z

The FD of the first rule type is said to be trivial FD.
A FD X Æ Y is said to be redundant if the remaining FD’s logically implies This FD X Æ Y.
One way to find that the FD is redundant or not is to prove that by using all of the inference axioms and the remaining

FD’s, this FD is implied.
The Set of inference axioms are complete and sound. Here the Complete indicates they can be used to enumerate all the

possible acceptable FD’s. Here the Sound indicates they will not produce or derive non-acceptable Functional dependen-
cies.

n Example F = { X Æ YW, XW Æ Z, Z Æ Y, XY Æ Z }
Find whether XY Æ Z is redundant or not ?

G = { X Æ YW, XW Æ Z, Z Æ Y }

T1 = { XY }

T2 = { XYW }

T3 = { XYWZ }

As the dependent of XY i.e, Z belongs to T3.
So, XY Æ Z is redundant.

If G = Phi (empty) then we can conclude that XY Æ Z is not redundant.

If we go on remove the redundant FD from a FD set till we cannot remove any more FD, the remaining set of FD’s
is called as Non- Redundant Cover of that relation.

Though the Cover is Non-Redundant, the FD’s may have some extraneous attributes either left side or right side.
Removing these extraneous attributes. Also is very much needed. This operation is called as left Reduction, right
Reduction, respectively.

Let F is a Set of FD, XY Æ W is one FD, then X variable can be said as Extraneous if F – { XY Æ W } + { Y Æ W }
explains the same cover.

In order to check X Æ Y is redundant or not the following steps has to be taken,

(i) Have G = F – { X Æ Y }

(ii) T = { X }

(iii) For each FD A Æ B in G do the following

 If A is subset of T T = T union { B }

 If Y is subset of T then X Æ Y can be said as redundant

 Else Remove AÆ B from G.

5.20 Computer Science & Information Technology for GATE

(iv) if G is NULL then XÆ Y can be said as redundant.

* If Covers before and after removal of an attribute X on the left side of the FD are same then X can be said as extrane-
ous otherwise not.

n Example Find Non – Redundant Cover of
F = { X Æ Y, Y Æ Z, Z Æ Y, X Æ Z, Z Æ X }

Take X Æ Y :
G = { Y Æ X, Y Æ Z, Z Æ Y, X Æ Z, Z Æ X }

As X+ = { XYZ } contains Y so, X Æ Y is redundant.
Take Y Æ X :

G = { Y Æ Z, Z Æ Y, X Æ Z, Z Æ X }
As Y+ = { XYZ } contain X so, Y Æ X is redundant.

Take Y Æ Z :
G = { Z Æ Y, X Æ Z, Z Æ X }

As Y+ = {Y} do not contain Z. so, Y Æ Z is not redundant.

 Similar procedure clearly confirms that Z Æ Y, X Æ Z, Z Æ X are not redundant.
 Final FD set = { Y Æ Z, Z Æ Y, X Æ Z, Z Æ X }

n Example F = {X Æ Z, XY Æ WP, XY Æ ZWQ, XZ Æ R}
Selecting XY Æ WP:
Choose X as extraneous.
Y+ = { Y }, WP not subset of Y+. So, X is not extraneous.
 Choose Y as extraneous.
 X+ = { XZR }, WP not subset of X +, Y is also not extraneous.
Selecting XY Æ ZWQ :
Similarly, X, Y are not extraneous.
Selecting XZ Æ R :
X is not extraneous and Z is extraneous.
So, left reduced final set = { X Æ Z, XY Æ WP, XY Æ ZWQ, X Æ R }

Minimal Cover or Canonical Cover : is the one in which,

(i) Every FD is simple (RHS of any FD should have single attribute)

(ii) It is left reduced

(iii) It is non-redundant

n Example Find the minimal cover for the following set of functional dependencies.
 A Æ B C

 AC Æ D

 D Æ A B

 A B Æ D

 In AB Æ D, B is extraneous

 In AC Æ D, C is extraneous

 A Æ B C, A Æ D, D Æ A B are left reduced.

 {A Æ D, D Æ B, A Æ C, D Æ A} is the minimal cover.

 {A }, {D } are the candidate keys.

 In the above set of functional dependencies A,D are prime attributes.

n Example A Æ B C, B Æ C, A Æ B, A B Æ C. Find the minimal cover ?
In A B Æ C, B is extraneous.
{ A Æ B, B Æ C } is the minimal cover.
{ A } is the primary key.

* Normalisation : is especially aimed at to make the relations to be free from undesirable anamolies such as insertion
anamoly or updation or deletion anamoly.

Entity Relationship Data Model 5.21

 Normalisation is to obtain powerful relational retrieval algorithms which are based on a collection of relational
primitive operators.

 Normalisation is also to reduce the need for restructuring of the relations as new datatypes are added.

If a table contains entries with multi values then the table is said to be unnormalised.

Normally, such a type of table can be normalized by flattening the table i.e, for each value of an entry which is having
multiple values we create a new tuple by simply copying the other attribute values as same.

We can bring an unnormalised table with entries multiple values to 1 NF by either flattening the table or by decom-
posing the table.

A table is said to be in 2 NF if

(i) it is in 1 NF

(ii) no non-prime attribute is partially dependent on key or each non-prime attribute should fully dependent on
every candidate key.

A table is said to be in 3 NF if

(i) The relation should be in 2 NF

(ii) No non-prime attribute functionally determines any other non-prime attributes

Boyce-Codd normal form (BCNF)

 A table is in BCNF if, for every nontrivial FD X Æ A,

 (1) attribute X is a super-key.

TABLE PART

PNUM PNAME WT

P1 NUT 12

P2 BOLT 17

P3 WRENCH 17

P4 WRENCH 24

P5 CLAMP 12

P6 LEVEL 19

 We find the following FD as valid in this relation.

 PNUM Æ PNAME, WT

 Also, PNUM is key. Therefore, it is in 3NF.

n Example
Table P1. R (X, Y, Z) is decomposed into R1 (X, Y) R2 (Y, Z)
 F D = { X Æ Y, Z Æ Y }

 X Y Z

R1 A1 A2 B13

R2 B21 A2 A3

 This is a lossy decomposition.

If at all any row contains all A’s then it is lossless decomposition.

 R (X, Y, Z, W, P, Q) is decomposed into R1 (Z,P,Q) R2 (X, Y, W, P, Q).

 FD = { XY Æ W, XW Æ P, PQ Æ Z, XY Æ Q }

 X Y Z W P Q

R1 B1 B12 A3 B14 A5 A6

R2 A1 A2 A3 A4 A5 A6

 This is Lossless decomposition.

This algorithm is an iterative one and you proceed till there is no change in the table and it does not matter with the
order of the FD’s taken, result is same.

5.22 Computer Science & Information Technology for GATE

While carrying out 2 NF Normalisation, we have to first of all find out all possible Candidate keys (Prime attrs)
and Non-prime attrs. Also, we have to find out whether there are any partial dependencies of the non-prime attrs.
Then, we decompose this table such that all fully dependent attrs along with Prime attrs into one table and partially
dependent Non-Prime attrs, the attrs on which they depend into another table. This guarantees 2 NF requirements
However, transitive dependencies may exist.

ABU algorithm is very much suitable to identify whether the decomposition is Lossless or not. Especially, if finally
there is no row having all a’s in the above tables then we can say that the decomposition is lossy. The reverse is not
strong, rather we have to apply extra data dependency analysis.

1. R (A, B, C) FD = { A Æ B, B Æ C }

 A is the key for the database and all the non-prime attrs depends fully on A.

 Thus, it is in 2 NF.

 However, A Æ C is a transitive dependency. Thus, it cannot be in 3 NF.

2. R (X, Y, Z,W) FD = { Y Æ W, W Æ Y, X Y Æ Z }

 XY is a Key.

 XW is a Key.

 So, XYW are Prime attributes.

 Z is non- prime attribute

 The relation is in 3 NF.

3. R (A,B,C, D, E) FD = { AB Æ CE, E Æ AB, C Æ D }

 Keys : { AB }, {E }

 This relation is in 2 NF but not 3 NF.

4. Emp (Id, Name, Dept, Hrly_rate)

 Dept Æ Hrly_rate

 Id Æ Dept

 Id Æ Name

 This relation is in 1 NF but not in 2 NF, not in 3 NF.

Every 2 attribute relation is in BCNF.

5. Emp (ID, Name, Dept, Hrly_rate)

 ID Æ Dept, Dept Æ Hrly_rate

 This relation is in 2 NF.

6. Order (SSN, PNO, HRS, ENAME, PNAME, PLOC)

 SSN PNO Æ HRS

 SSN Æ ENAME

 PNO Æ PNAME

 PNO Æ PLOC

 Key is (SSN, PNO)

 HRS is fully dependent on SSN. ENAME is partially dependent on SSN.

 So, this is not in 2 NF.

Inorder to bring a table to 2 NF, we can decompose the table such that in one table all prime attrs and in another
table non-prime attrs and the prime attrs on which they depend.

n Example 2NF decomposition of the above relation is given by

 (SSN, PNO, HRS)

 (SSN, ENAME)

 (PNO, PNAME, PLOC)

7. Emp (SSN, ENAME, BDATE, ADDR, DNO, DNAME, DMGRSSN)

 DNO Æ DNAME

 DNO Æ DMGRSSN

Entity Relationship Data Model 5.23

In order to get the table into 3 NF, we can decompose such that in one table key, all those attrs which fully depends
on a key are kept and in other table, we may have the attrs which depends transitively on the key and the attributes
via which transitive dependency exists.

n Example The 3 NF decomposition of the above relation is given by

 (SSN, ENAME, BDATE, ADDR, DNO)

 (DNO, DNAME, DMGRSSN)

Projection of a set of FD’s on to a set of attributes is defined as those set of FD’s which are valid with this selected
set of attrs.

 Let F be projection onto a set of attributes T denoted as PI T (F)

 = { X Æ Y belongs to F+ / XY subset of T }

 Algorithm:

 X Æ Y

 X, Y can be composite attributes whose union should be proper subset of T.

 To calculate Projection Consider all proper subsets X of T (X subset of T, X !=T)

 That appear as the determinant of FD’s.

 For each Set

1. Calculate X +.

2. For each set of attributes of Y of X+ that satisfies simultaneously the following conditions

A. Y subset of T

b. Y subset of X+

c. Y not equal to T

 include X Æ Y as one of the FD’s of Projection of FD’s on T.

n Example R (X, Y, Z, W, Q)

FD = { XY Æ WQ, Z Æ Q, W Æ Z, Q Æ X }

T = { X, Y, Z }

 {X }, { Y }, {Z }, {XY }, {XZ }, { YZ }

{X}+ = {X }

{Y}+ = { Y }

{ Z }+ = { ZQX }

so, Z Æ X is implied.

{ XY } + = { XYZWQ }

so, XY Æ Z is acceptable

{ YZ } + = { YZWQX }

so, YZ Æ X is implied

{ XZ } + = { XZQ }

 The projected FD’s = { XYÆ Z, Z Æ X }

If a constraint on a relation R states that there cannot be more than one tuple with A given X value then X can be
called as a Candidate key.

If a Primary Key contains a single attribute then the relation can evidently be in 2 NF.

1. R (A, B, C, D)

 FD = { AB Æ C, BC Æ D }

 {AB } is the key.

 The largest acceptable normal state is 2 NF.

2. R (A, B, C)

 A Æ B, B Æ C What are the anomalies you will have?

5.24 Computer Science & Information Technology for GATE

 There is no guarantee always that when we bring a table from 1 NF to 2 NF all the anomalies are eliminated. Only
redundancy is reduced.

 Under some special conditions in 3 NF also we may find insertion, updation anomalies etc.

n Example Given a set of FDs H, determine a minimal set of tables in 3NF, while preserving all FDs and maintaining
only lossless decomposition/joins.

H: AB ÆC DMÆNP DÆKL

AÆDEFG DÆM

EÆG LÆD

FÆDJ PRÆS

GÆDI PQRÆST

Step 1: Eliminate any extraneous attributes in the left hand sides of the FDs. We want to reduce the left hand sides of as
many FDs as possible.
In general: XYÆZ and XÆZ fi Y is extraneous (Reduction Rule 1)

 XYZÆW and XÆY fi Y is extraneous (Reduction Rule 2)

For this example we mix left side reduction with the union and decomposition axioms:

 DM Æ NP fi D Æ NP fi D Æ MNP

 D Æ M D Æ M

 PQR Æ ST fi PQR Æ S, PQR Æ T fi PQR Æ .T

 PR Æ S PR Æ S PR Æ S

Step 2: Find a non-redundant cover H’ of H, i.e. eliminate any FD derivable from others in H using the inference rules
(most frequently the transitivity axiom).

A Æ E Æ G fi eliminate A Æ G from the cover
A Æ F Æ D fi eliminate A Æ D from the cover

Step 3: Partition H’ into tables such that all FDs with the same left side are in one table, thus eliminating any non-fully
functional FDs. (Note: creating tables at this point would be a feasible solution for 3NF, but not necessarily minimal.)

R1: AB Æ C R4: G Æ DI R7: L Æ D

R2: A Æ EF R5: F Æ DJ R8: PQR Æ T

R3: E Æ G R6: D Æ KLMNP R9: PR Æ S

Step 4: Merge equivalent keys, i.e., merge tables where all FD’s satisfy 3NF.
4.1 Write out the closure of all LHS attributes resulting from Step 3, based on transitivities.

4.2 Using the closures, find tables that are subsets of other groups and try to merge them. Use Rule 1 and Rule 2 to estab-
lish if the merge will result in FDs with super-keys on the LHS. If not, try using the axioms to modify the FDs to fit the
definition of super-keys.

4.3 After the subsets are exhausted, look for any overlaps among tables and apply Rules 1 and 2 (and the axioms) again.
In this example, note that R7 (LÆD) has a subset of the attributes of R6 (DÆKLMNP). Therefore, we merge to a single

table with FDs D ÆKLMNP, LÆD because it satisfies 3NF: D is a super-key by Rule 1 and L is a super-key by Rule 2.

Final 3NF (and BCNF) table attributes, FDs, and candidate keys:

R1: ABC (AB Æ C with key AB) R5:DFJ (F Æ DJ with key F)

R2: AEF (A Æ EF with key A) R6: DKLMNP (D Æ KLMNP, L Æ D, w/keys D, L)

R3: EG (E Æ G with key E) R7: PQRT (PQR Æ T with key PQR)

R4: DGI (G Æ DI with key G) R8: PRS (PR Æ S with key PR)

Step 4a. Check to see whether all tables are also BCNF. For any table that is not BCNF, add the appropriate partially
redundant table to eliminate the delete anomaly.

Entity Relationship Data Model 5.25

5.5 Transactions and Concurrency Control

5.5.1 What is a Transaction?

A transaction is a logical unit of work –

 It may consist of a simple SELECT to generate a list of table contents, or a series of related UPDATE command se-
quences.

 A database request is the equivalent of a single SQL statement in an application program or transaction.

∑ Must be either entirely completed or aborted –

 To sell a product to a customer, the transaction includes updating the inventory by subtracting the number of
units sold from the PRODUCT table’s available quantity on hand, and updating the accounts receivable table in
order to bill the customer later.

∑ No intermediate states are acceptable –

 Updating only the inventory or only the accounts receivable is not acceptable.

Example Transaction –

 Consider a transaction that updates a database table by subtracting 10 (units sold) from an already stored value of 40
(units in stock), which leaves 30 (units of stock in inventory).

∑ A consistent database state is one in which all data integrity constraints are satisfied.

∑ At this transaction is taking place, the DBMS must ensure that no other transaction access X.

 Evaluating Transaction Results

Examine current account balance

SELECT ACC_NUM, ACC_BALANCE

FROM CHECKACC

WHERE ACC_NUM = ‘0908110638’;

- SQL code represents a transaction because of accessing the database

- Consistent state after transaction

- No changes made to Database

Register credit sale of 100 units of product X to customer Y for $500:

 Reducing product X’s quality on and (QOH) by 100

UPDATE PRODUCT

SET PROD_QOH = PROD_QOH - 100

WHERE PROD_CODE = ‘X’;

 Adding $500 to customer Y’s accounts receivable

UPDATE ACCT_RECEIVABLE

SET ACCT_BALANCE = ACCT_BALANCE + 500

WHERE ACCT_NUM = ‘Y’;

- If both transactions are not completely executed, the transaction yields an inconsistent database.

- Consistent state only if both transactions are fully completed

- DBMS doesn’t guarantee transaction represents real-world event but it must be able to recover the database to a
previous consistent state. (For instance, the accountant inputs a wrong amount.)

5.26 Computer Science & Information Technology for GATE

5.5.2 Transaction Properties

All transactions must display atomicity, durability, serialisability, and isolation.
Atomicity
The Atomicity property of a transaction implies that it will run to completion as an indivisible unit, at the end of which
either no changes have occurred to the database or the database has been changed in a consistent manner.

The basic idea behind ensuring atomicity is as follows. The database keeps a track of the old values of any database on
which a transaction performs a write, and if the transaction does not complete its execution, the old values are restored to
make it appear as though the transaction never executed.

Ensuring atomicity is the responsibility of the database system itself; it is handled by a component called the Transac-
tion Management Component.
Consistency
The consistency property of a transaction implies that if the database was in a consistent state before the start of a transac-
tion, then on termination of the transaction, the database will also be in a consistent state.

Ensuring consistency for an individual transaction is the responsibility of the Application Manager who codes the
transaction.
Isolation
The isolation property of a transaction ensures that the concurrent execution of transactions results in a system state that
is equivalent to a state that could have been obtained had these transactions executed one at a time in same order.

Thus, in a way it means that the actions performed by a transaction will be isolated or hidden from outside the transac-
tion until the transaction terminates.

This property gives the transaction a measure of relative independence.
Ensuring the isolation property is the responsibility of a component of a database system called the Concurrency Con-

trol Component.
Durability
The durability property guarantees that, once a transaction completes successfully, all the updates that it carried out on the
database persists even if there is a system failure after the transaction completes execution.

Durability can be guaranteed by ensuring that either:

(a) The updates carried out by the transaction have been written to the disk before the transaction completes.

(b) Information about updates carried out by the transaction and written to the disk is sufficient to enable the database
to re-construct the updates when the database system is restored after the failure.

Ensuring durability is the responsibility of the component of the DBMS called the Recovery Management Component.
In a nutshell,:

Atomicity –

∑ All transaction operations must be completed

Incomplete transactions aborted

Durability –

 ∑ Permanence of consistent database state

Serialisability –

 ∑ Conducts transactions in serial order

 ∑ Important in multi-user and distributed databases

Isolation

∑ Transaction data cannot be reused until its execution complete

Consistency – (To preserve integrity of data, the database system must ensure: atomicity, consistency, isolation,
and durability (ACID).)

Execution of a transaction in isolation preserves the consistency of the database.

A single-user database system automatically ensures serialisability and isolation of the database because only one
transaction is executed at a time.

The atomicity and durability of transactions must be guaranteed by the single-user DBMS.

Entity Relationship Data Model 5.27

The multi-user DBMS must implement controls to ensure serialisability and isolation of transactions – in addition
to atomicity and durability – in order to guard the database’s consistency and integrity.

Failed Aborted

Active

Partially
committed

Committed

5.5.3 Transaction State

Active, the initial state; the transaction stays in this state while it is executing.

Partially committed, after the final statement has been executed.

Failed, after the discovery that normal execution can no longer proceed.

Aborted, after the transaction has been rolled back and the database restored to its state prior to the start of the
transaction. Two options after it has been aborted:

Restart the transaction – only if no internal logical error but hardware or software failure.

Kill the transaction – once internal logical error occurs like incorrect data input.

Committed, after successful completion. The transaction is terminated once it is aborted or committed.

5.5.4 Transaction Management with SQL

Defined by ANSI, the standards of SQL transaction support: COMMIT & ROLLBACK

User initiated transaction sequence must continue until one of following four events occurs:

1. COMMIT statement is reached—all changes are permanently recorded within the database.

2. ROLLBACK statement is reached—all the changes are aborted and the database is rolled back to its previous consistent
state.

3. End of a program reached—all changes are permanently recorded within the database.

4. Program reaches abnormal termination—the changes made in the database are aborted and the database is rolled
back to its previous consistent state.

For example:

UPDATE PRODUCT

SET PROD_QOH = PROD_QOH - 100

WHERE PROD_CODE = ‘345TYX’;

UPDATE ACCT_RECEIVABLE

SET ACCT_BALANCE = ACCT_BALANCE + 3500

WHERE ACCT_NUM = ‘60120010’;

COMMIT;

In fact, the COMMINT statement used in this example is not necessary if the UPDATE statement is the application’s last
action and the application terminates normally.

5.28 Computer Science & Information Technology for GATE

Transaction Log

The DBMS use transaction log to track all transactions that update database.

∑ May be used by ROLLBACK command for triggering recovery requirement.

∑ May be used to recover from system failure like network discrepancy or disk crash.

∑ While DBMS executes transactions that modify the database, it also updates the transaction log. The log stores:

 Record for beginning of transaction

 Each SQL statement

- The type of operation being performed (update, delete, insert).

- The names of objects affected by the transaction (the name of the table).

- The “before” and “after” values for updated fields

- Pointers to previous and next entries for the same transaction.

 Commit Statement – the ending of the transaction.

Note

Committed transactions are not rolled back.

1. If a system failure occurs, the DBMS will examine the transaction log for all uncommitted or incomplete transac-
tions, and it will restore (ROLLBACK) the database to its previous state on the basis of this information.

2. If a ROLLBACK is issued before the termination of a transaction, the DBMS will restore the database only for that par-
ticular transaction, rather than for all transactions, in order to maintain the durability of the previous transactions.

Concurrency Control

- Coordinates simultaneous transaction execution in multiprocessing database.

- Ensure serialisability of transactions in multiuser database environment.

- Potential problems in multiuser environments.

- Three main problems: lost updates, uncommitted data, and inconsistent retrievals.

Lost updates

Assume that two concurrent transactions (T1, T2) occur in a PRODUCT table which records a product’s quantity on
hand (PROD_QOH). The transactions are:

Transaction Computation

T1: Purchase 100 units PROD_QOH = PROD_QOH + 100

T2: Sell 30 units PROD_QOH = PROD_QOH - 30

Normal Execution of Two Transactions

Note

This table shows the serial execution of these transactions under normal circumstances, yielding the correct answer,
PROD_QOH=105.

Lost Updates

Note

The addition of 100 units is “lost” during the process.

Entity Relationship Data Model 5.29

1. Suppose that a transaction is able to read a product’s PROD_QOH value from the table before a previous transac-
tion has been committed.

2. The first transaction (T1) has not yet been committed when the second transaction (T2) is executed.

3. T2 sill operates on the value 35, and its subtraction yields 5 in memory.

4. T1 writes the value 135 to disk, which is promptly overwritten by T2.

Uncommitted Data

When two transactions, T1 and T2, are executed concurrently and the first transaction (T1) is rolled back after the
second transaction (T2) has already accessed the uncommitted data – thus violating the isolation property of trans-
actions. The transactions are:

Transaction Computation

T1: Purchase 100 units (Rollback) PROD_QOH = PROD_QOH + 100

T2: Sell 30 units PROD_QOH = PROD_QOH - 30

Correct Execution of Two Transactions

Note

The serial execution of these transactions yields the correct answer.

An Uncommitted Data Problem

Note

The uncommitted data problem can arise when the ROLLBACK is completed after T2 has begun its execution.

Inconsistent Retrievals

When a transaction calculates some summary (aggregate) functions over a set of data while other transactions are
updating the data.

The transaction might read some data before they are changed and other data after they are changed, thereby yield-
ing inconsistent results.

1. T1 calculates the total quantity on hand of the products stored in the PRODUCT table.

2. T2 updates PROD_QOH for two of the PRODUCT table’s products.

Retrieval During Update

Note

T1 calculates PROD_QOH but T2 represents the correction of a typing error, the user added 30 units to product
345TYX’s PROD_QOH, but meant to add the 30 units to product ‘123TYZ’s PROD_QOH. To correct the problem, the
user executes 30 from product 345TYX’s PROD_QOH and adds 30 to product 125TYZ’s PROD_QOH.

Transaction Results: Data Entry Correction

Note

The initial and final PROD_QOH values while T2 makes the correction—same results but different transaction process.

5.30 Computer Science & Information Technology for GATE

Transaction Result: Data Entry Correction

Note

∑ The transaction table demonstrates that inconsistent retrievals are possible during the transaction execution, mak-
ing the result of T1’s execution incorrect.

∑ Unless the DBMS exercises concurrency control, a multi-user database environment can create chaos within the
information system.

5.5.5 The Scheduler – Schedule, Serialisability, Recovery, Isolation

Previous examples executed the operations within a transaction in an arbitrary order:

∑ As long as two transactions, T1 and T2, access unrelated data, there is no conflict, and the order of execution is
irrelevant to the final outcome.

∑ If the transactions operate on related (or the same) data, conflict is possible among the transaction components,
and the selection of one operational order over another may have some undesirable consequences.

Establishes order of concurrent transaction execution.

Interleaves execution of database operations to ensure serialisability.

Bases actions on concurrency control algorithms

∑ Locking

∑ Time stamping

∑ Ensures efficient use of computer’s CPU

∑ First-come-first-served basis (FCFS) – executed for all transactions if no way to schedule the execution of trans-
actions.

∑ Within multi-user DBMS environment, FCFS scheduling tends to yield unacceptable response times.

∑ READ and/or WRITE actions that can produce conflicts.

Read/Write Conflict Scenarios: Conflicting Database Operations Matrix

Note

The table below show the possible conflict scenarios if two transactions, T1 and T2, are executed concurrently over the
same data.

Schedules – sequences that indicate the chronological order in which in-
structions of concurrent transactions are executed

a schedule for a set of transactions must consist of all instructions of those
transactions

must preserve the order in which the instructions appear in each individual
transaction.

Example of schedules (refer right figures 5.7–5.9)

Schedule 1 (see Figure 5.7): Let T1 transfer $50 from A to B, and T2 transfer
10% of the balance from A to B. The following is a serial schedule, in which
T1 is followed by T2.

∑ Schedule 2 (see Figure 5.8): Let T1 and T2 be the transactions defined pre-
viously. The following schedule is not a serial schedule, but it is equiva-
lent to Schedule 1.

T1 T2

read()

A := 50

write ()
read()

:= + 50
write()

A

A

A
B

B B
B

-

read()
temp := 0.1

write()
read()

:= +
write()

A
A*

A

A
B

B B temp
B

:= A temp-

Figure 5.7 A sample schedule

Entity Relationship Data Model 5.31

T1 T2

read()A

A A:= 50-

write()A

read()B
B B:= + 50
write()B

read()A
temp A*:= 0.1

A := A temp-

write()A

read()B
B B temp:= +
write()B

Figure 5.8 Concurrent schedule of schedule in Figure 5.7

∑ Schedule 3 (see Figure 5.9): The following concurrent schedule does not preserve the value of the sum A + B.

T1 T2

read A()

A A:= 50-

write()A

read()B
B B:= + 50
write()B

read A()
temp A*:= 0.1

A := A temp-

write()A

read()B

B B temp:= +
write()B

Figure 5.9 Another Concurrent schudule of schedule in Figure 5.7

5.5.5.1 Serialisability

A (possibly concurrent) schedule is serialisable if it is equivalent to a serial schedule. Different forms of schedule equiva-
lence give rise to the notions of:

1. conflict serialisability

2. view serialisability

Conflict Serialisability: Instructions li and lj of transactions Ti and Tj respectively, conflict if and only if there exists
some item Q accessed by both li and lj, and at least one of these instructions wrote Q.

1. Ii = read(Q), Ij = read(Q). Ii and Ij don’t conflict.

2. Ii = read(Q), Ij = write(Q). They conflict.

3. Ii = write(Q), Ij = read(Q). They conflict

4. Ii = write(Q), Ij = write(Q). They conflict

If a schedule S can be transformed into a schedule S¢ by a series of swaps of non-conflicting instructions, we say that
S and S’ are conflict equivalent.

We say that a schedule S is conflict serialisable if it is conflict equivalent to a serial schedule.

View Serialisability: Let S and S¢ be two schedules with the same set of transactions. S and S´ are view equivalent if
the following three conditions are met:

1. For each data item Q, if transaction Ti reads the initial value of Q in schedule S, then transaction Ti must, in schedule
S¢, also read the initial value of Q.

2. For each data item Q if transaction Ti executes read (Q) in schedule S, and that value was produced by transaction
Tj (if any), then transaction Ti must in schedule S¢ also read the value of Q that was produced by transaction Tj.

5.32 Computer Science & Information Technology for GATE

3. For each data item Q, the transaction (if any) that performs the final write(Q) operation in schedule S must perform
the final write(Q) operation in schedule S¢.

T4 T6

write()Q

T3

read()Q

write()Q
write()Q

As can be seen, view equivalence is also based purely on reads and writes alone.
A schedule S is view serialisable if it is view equivalent to a serial schedule.
Every conflict serialisable schedule is also view serialisable.

T1 T5

read A()

A A:= 50-
write()A

read()B
B B:= + 50
write()B

read A()

B := 10A -

write()B

read()A

A A:= + 10
write()A

Figure 5.10 View Serializable schedule of schedule in Figure 5.7

Schedule in Figure 5.10 – a schedule which is view-serialisable but not conflict serialisable.
Every view serialisable schedule that is not conflict serialisable has blind writes.
Other Notions of Serialisability
Schedule in Figure 5.10 produces same outcome as the serial schedule < T1, T5 >, yet is not conflict equivalent or
view equivalent to it.

Determining such equivalence requires analysis of operations other than read and write.

5.5.5.2 Recoverability

Need to address the effect of transaction failures on concurrently running transactions

Recoverable schedule – if a transaction Tj reads a data items previously written by a transaction Ti, the commit opera-
tion of Ti appears before the commit operation of Tj.

∑ The schedule in Figure 5.11 is not recoverable if T9 commits immediately after the read.

T8 T9

read A()

write()A

read()B

read A()

T11 T12

read()A

write()A
read()A

T10

read()A

write()A

read()B

Figure 5.11 An example irrecoverable schedule

Entity Relationship Data Model 5.33

∑ If T8 should abort, T9 would have read (and possibly shown to the user) an inconsistent database state. Hence
database must ensure that schedules are recoverable.

Cascading rollback – a single transaction failure leads to a series of transaction rollbacks. Consider the following
schedule where none of the transactions has yet committed (so the schedule is recoverable)

∑ If T10 fails, T11 and T12 must also be rolled back.

∑ Can lead to the undoing of a significant amount of work.

Cascadeless schedules– cascading rollbacks cannot occur; for each pair of transactions Ti and Tj such that Tj reads a
data item previously written by Ti, the commit operation of Ti appears before the read operation of Tj.

∑ Every cascadeless schedule is also recoverable

∑ It is desirable to restrict the schedules to those that are cascadeless

Implementation of Isolation

Schedules must be conflict or view serialisable, and recoverable, for the sake of database consistency, and preferably
cascadeless.

A policy in which only one transaction can execute at a time generates serial schedules, but provides a poor degree
of concurrency.

Concurrency-control schemes tradeoff between the amount of concurrency they allow and the amount of overhead
that they incur.

Some schemes allow only conflict-serialisable schedules to be generated, while others allow view-serialisable sched-
ules that are not conflict-serialisable.

5.5.6 Concurrency Control with Locking Methods

Lock guarantees current transaction exclusive use of data item, i.e., transaction T2 does not have access to a data
item that is currently being used by transaction T1.

Acquires lock prior to access.

Lock released when transaction is completed.

DBMS automatically initiates and enforces locking procedures.

All lock information is managed by lock manager.

Lock Granularity

Lock granularity indicates level of lock use: database, table, page, row, or field (attribute).

Database-Level

The entire database is locked.

Transaction T2 is prevented to use any tables in the database while T1 is being executed.

Good for batch processes, but unsuitable for online multi-user DBMSs.

Figure 5.7 transactions T1 and T2 cannot access the same database concurrently, even if they use different tables.
(The access is very slow!)

Table-Level

The entire table is locked. If a transaction requires access to several tables, each table may be locked.

Transaction T2 is prevented to use any row in the table while T1 is being executed.

Two transactions can access the same database as long as they access different tables.

It causes traffic jams when many transactions are waiting to access the same table.

Table-level locks are not suitable for multi-user DBMSs.

Figure 5.8 transaction T1 and T2 cannot access the same table even if they try to use different rows; T2 must wait
until T1 unlocks the table.

Page-Level

The DBMS will lock an entire diskpage (or page), which is the equivalent of a diskblock as a (referenced) section of
a disk.

5.34 Computer Science & Information Technology for GATE

A page has a fixed size and a table can span several pages while a page can contain several rows of one or more tables.

Page-level lock is currently the most frequently used multi-user DBMS locking method.

 Shows that T1 and T2 access the same table while locking different diskpages.

T2 must wait for using a locked page which locates a row, if T1 is using it.

Row-Level

With less restriction respect to previous discussion, it allows concurrent transactions to access different rows of the
same table even if the rows are located on the same page.

It improves the availability of data, but requires high overhead cost for management.

 For row-level lock.

Field-Level

It allows concurrent transactions to access the same row, as long as they require the use of different fields (attributes)
within a row.

The most flexible multi-user data access, but cost extremely high level of computer overhead.

Lock Types

The DBMS may use different lock types: binary or shared/exclusive locks.

A locking protocol is a set of rules followed by all transactions while requesting and releasing locks. Locking proto-
cols restrict the set of possible schedules.

Binary Locks

Two states: locked (1) or unlocked (0).

Locked objects are unavailable to other objects.

Unlocked objects are open to any transaction.

Transaction unlocks object when complete.

Every transaction requires a lock and unlock operation for each data item that is accessed.

Example of Binary Lock Table

Note

The lock and unlock features eliminate the lost update problem encountered. However, binary locks are now consid-
ered too restrictive to yield optimal concurrency conditions.

Shared/Exclusive Locks

Shared (S Mode)

Exists when concurrent transactions granted READ access

Produces no conflict for read-only transactions

Issued when transaction wants to read and exclusive lock not held on item

Exclusive (X Mode)

Exists when access reserved for locking transaction

Used when potential for conflict exists.

S X

S true false

X false false

Issued when transaction wants to update unlocked data

Lock-compatibility matrix

A transaction may be granted a lock on an item if the requested lock is compatible with locks already held on the
item by other transactions

Any number of transactions can hold shared locks on an item, but if any transaction holds an exclusive on the item
no other transaction may hold any lock on the item.

Entity Relationship Data Model 5.35

If a lock cannot be granted, the requesting transaction is made to wait till all incompatible locks held by other trans-
actions have been released. The lock is then granted.

Reasons to increasing manager’s overhead

The type of lock held must be known before a lock can be granted

Three lock operations exist: READ_LOCK (to check the type of lock), WRITE_LOCK (to issue the lock), and UN-
LOCK (to release the lock).

The schema has been enhanced to allow a lock upgrade (from shared to exclusive) and a lock downgrade (from
exclusive to shared).

Problems with Locking

Transaction schedule may not be serialisable

Managed through two-phase locking

Schedule may create deadlocks

Managed by using deadlock detection and prevention techniques

5.5.6.1 Two-Phase Locking

Two-phase locking defines how transactions acquire and relinquish (or revoke) locks.

1. Growing phase – acquires all the required locks without unlocking any data. Once all locks have been acquired, the
transaction is in its locked point.

2. Shrinking phase – releases all locks and cannot obtain any new lock.

Governing rules

Two transactions cannot have conflicting locks

No unlock operation can precede a lock operation in the same transaction

No data are affected until all locks are obtained

In the example for two-phase locking protocol the transaction acquires all the locks it needs (two locks are required)
until it reaches its locked point.

When the locked point is reached, the data are modified to conform to the transaction requirements.

The transaction is completed as it released all of the locks it acquired in the first phase.

Updates for two-phase locking protocols:

Two-phase locking does not ensure freedom from deadlocks.

Cascading roll-back is possible under two-phase locking. To avoid this, follow a modified protocol called strict two-
phase locking. Here a transaction must hold all its exclusive locks till it commits/aborts.

Rigorous two-phase locking is even stricter: here all locks are held till commit/abort. In this protocol transactions
can be serialized in the order in which they commit.

There can be conflict serialisable schedules that cannot be obtained if two-phase locking is used.

However, in the absence of extra information (e.g., ordering of access to data), two-phase locking is needed for con-
flict Serialisability in the following sense:

 Given a transaction Ti that does not follow two-phase locking, we can find a transaction Tj that uses two-phase lock-
ing, and a schedule for Ti and Tj that is not conflict serialisable.

5.5.6.2 Deadlocks

Occurs when two transactions wait for each other to unlock data. For example:

T1 = access data items X and Y

T2 = access data items Y and X

Deadly embrace – if T1 has not unlocked data item Y, T2 cannot begin; if T2 has not unlocked data item X, T1 cannot
continue.

Starvation is also possible if concurrency control manager is badly designed.

5.36 Computer Science & Information Technology for GATE

For example, a transaction may be waiting for an X-lock (exclusive mode) on an item, while a sequence of other
transactions request and are granted an S-lock (shared mode) on the same item.

The same transaction is repeatedly rolled back due to deadlocks.

Control techniques

Deadlock prevention – a transaction requesting a new lock is aborted if there is the possibility that a deadlock can
occur.

If the transaction is aborted, all the changes made by this transaction are rolled back, and all locks obtained by the
transaction are released.

It works because it avoids the conditions that lead to deadlocking.

Deadlock detection – the DBMS periodically tests the database for deadlocks.

If a deadlock is found, one of the transactions (the “victim”) is aborted (rolled back and restarted), and the other
transaction continues.

Deadlock avoidance – the transaction must obtain all the locks it needs before it can be executed.

The technique avoids rollback of conflicting transactions by requiring that locks be obtained in succession.

The serial lock assignment required in deadlock avoidance increase action response times.

Control Choices

If the probability of deadlocks is low, deadlock detection is recommended.

If the probability of deadlocks is high, deadlock prevention is recommended.

If response time is not high on the system priority list, deadlock avoidance might be employed.

Implementation of Locking

A Lock manager can be implemented as a separate process to which transactions send lock and unlock requests.

The lock manager replies to a lock request by sending a lock grant messages (or a message asking the transaction to
roll back, in case of a deadlock).

The requesting transaction waits until its request is answered.

The lock manager maintains a datastructure called a lock table to record granted locks and pending requests.

The lock table is usually implemented as an in-memory hash table indexed on the name of the data item being
locked.

Lock Table

∑ Black rectangles indicate granted locks, white ones indicate waiting requests.

17

1912

T23

123

T1 T8 T2

14

144

T23

T1 T23

T8

Entity Relationship Data Model 5.37

∑ Lock table also records the type of lock granted or requested.

∑ New request is added to the end of the queue of requests for the data item, and granted if it is compatible with all
earlier locks.

∑ Unlock requests result in the request being deleted, and later requests are checked to see if they can now be
granted.

∑ If transaction aborts, all waiting or granted requests of the transaction are deleted.

 Lock manager may keep a list of locks held by each transaction, to implement this efficiently.

5.5.7 Concurrency Control with Time Stamping Methods

Assigns global unique time stamp to each transaction

Produces order for transaction submission

Properties

Uniqueness: ensures that no equal time stamp values can exist.

Monotonicity: ensures that time stamp values always increase.

DBMS executes conflicting operations in time stamp order to ensure serialisability of the transaction.

If two transactions conflict, one often is stopped, rolled back, and assigned a new time stamp value.

Each value requires two additional time stamps fields

Last time field read

Last update

Time stamping tends to demand a lot of system resources because there is a possibility that many transactions may
have to be stopped, rescheduled, and re-stamped.

5.5.7.1 Timestamp-Based Protocols

Each transaction is issued a timestamp when it enters the system. If an old transaction Ti has time-stamp TS(Ti), a
new transaction Tj is assigned time-stamp TS(Tj) such that TS(Ti) < TS(Tj).

The protocol manages concurrent execution such that the time-stamps determine the serialisability order.

In order to assure such behavior, the protocol maintains for each data Q two timestamp values:

W-timestamp(Q) is the largest time-stamp of any transaction that executed write(Q) successfully.

R-timestamp(Q) is the largest time-stamp of any transaction that executed read(Q) successfully.

The timestamp ordering protocol ensures that any conflicting read and write operations are executed in timestamp
order.

Suppose a transaction Ti issues a read(Q)

1. If TS(Ti) £ W-timestamp(Q), then Ti needs to read a value of Q that was already overwritten. Hence, the read
operation is rejected, and Ti is rolled back.

2. If TS(Ti) ≥ W-timestamp(Q), then the read operation is executed, and R-timestamp(Q) is set to the maximum
of R-timestamp(Q) and TS(Ti).

Suppose that transaction Ti issues write(Q).

1. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was needed previously, and the system as-
sumed that that value would never be produced. Hence, the write operation is rejected, and Ti is rolled back.

2. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value of Q. Hence, this write operation
is rejected, and Ti is rolled back.

3. Otherwise, the write operation is executed, and W-timestamp(Q) is set to TS(Ti).

Concurrency Control with Optimistic Methods

A validation-based protocol that assumes most database operations do not conflict.

No requirement on locking or time stamping techniques.

5.38 Computer Science & Information Technology for GATE

Transaction executed without restrictions until committed and fully in the hope that all will go well during valida-
tion.

Two or three Phases:

∑ Read (and Execution) Phase – the transaction reads the database, executes the needed computations, and makes
the updates to a private copy of the database values.

∑ Validation Phase – the transaction is validated to ensure that the changes made will not affect the integrity and
consistency of the database.

∑ Write Phase – the changes are permanently applied to the database.

The optimistic approach is acceptable for mostly read or query database system that require very few update transac-
tions.

Each transaction Ti has 3 timestamps

∑ Start(Ti) : the time when Ti started its execution

∑ Validation(Ti): the time when Ti entered its validation phase

∑ Finish(Ti): the time when Ti finished its write phase

Serialisability order is determined by timestamp given at validation time, to increase concurrency. Thus TS(Ti) is
given the value of Validation(Ti).

This protocol is useful and gives greater degree of concurrency if probability of conflicts is low. That is because the seri-
alisability order is not pre-decided and relatively less transactions will have to be rolled back.

5.5.8 Database Recovery Management

Restores a database to previously consistent state, usually inconsistent, to a previous consistent state.

Based on the atomic transaction property: all portions of the transaction must be treated as a single logical unit of
work, in which all operations must be applied and completed to produce a consistent database.

Level of backup

∑ Full backup – dump of the database.

∑ Differential backup – only the last modifications done to the database are copied.

∑ Transaction log – only the transaction log operations that are not reflected in a previous backup copy of the da-
tabase.

The database backup is stored in a secure place, usually in a different building, and protected against dangers such as
file, theft, flood, and other potential calamities.

Causes of Database Failure

∑ Software – be traceable to the operating system, the DBMS software, application programs, or virus.

∑ Hardware – include memory chip errors, disk crashes, bad disk sectors, disk full errors.

∑ Programming Exemption – application programs or end users may roll back transactions when certain condi-
tions are defined.

∑ Transaction – the system detects deadlocks and aborts one of the transactions.

∑ External – a system suffers complete destruction due to fire, earthquake, flood, etc.

5.5.8.1 Transaction Recovery

Four important concepts to affect recovery process –

∑ Write-ahead-log protocol – ensures that transaction logs are always written before any database data are actually
updated.

∑ Redundant transaction logs – ensure that a disk physical failure will not impair the DBMS ability to recover data.

∑ Database buffers – create temporary storage area in primary memory used to speed up disk operations and im-
prove processing time.

∑ Database checkpoint – setup an operation in which the DBMS writes all of its updated buffers to disk and regis-
tered in the transaction log.

Entity Relationship Data Model 5.39

Transaction recovery procedure generally make use of deferred-write and write-through techniques.

Deferred-write (or Deferred-update)

∑ Changes are written to the transaction log, not physical database.

∑ Database updated after transaction reaches commit point.

∑ Steps:

1. Identify the last checkpoint in the transaction log. This is the last time transaction data was physically saved to
disk.

2. For a transaction that started and committed before the last checkpoint, nothing needs to be done, because the
data are already saved.

3. For a transaction that performed a commit operation after the last checkpoint, the DBMS uses the transaction
log records to redo the transaction and to update the database, using “after” values in the transaction log. The
changes are made in ascending order, from the oldest to the newest.

4. For any transaction with a RP::BACK operation after the last checkpoint or that was left active (with neither a
COMMIT nor a ROLLBACK) before the failure occurred, nothing needs to be done because the database was never
updated.

Write-through (or immediate update)

∑ Immediately updated by during execution

∑ Before the transaction reaches its commit point

∑ Transaction log also updated

∑ Transaction fails, database uses log information to ROLLBACK

∑ Steps:
1. Identify the last checkpoint in the transaction log. This is the last time transaction data was physically saved to

disk.

2. For a transaction that started and committed before the last checkpoint, nothing needs to be done, because the
data are already saved.

3. For a transaction that committed after the last checkpoint, the DBMS redoes the transaction, using “after” val-
ues in the transaction log. Changes are applied in ascending order, from the oldest to the newest.

4. For any transaction with a ROLLBACK operation after the last checkpoint or that was left active (with neither a
COMMIT nor a ROLLBACK) before the failure occurred, the DBMS uses the transaction log records to ROLLBACK
or undo the operations, using the “before” values in the transaction log. Changes are applied in reverse order,
from the newest to the oldest.

5.6 Solved Questions

1. The following question is based on the DDBMS sce-
nario in the following Figure.

Table Fragments Location

Customer N/A A

Product Prod_A A

Prod_B B

INVOICE N/A B
INV_LINE N/A B

Site CProd_A

Customer

Site A

Invoice Inv-Line Prod_B

Site B

 Specify the types of operations the database must sup-
port (remote request, remote transaction, distributed
transaction, or distributed request) in order to per-
form the following operations:

 To answer the following questions, remember that the
key to each answer is in the number of remote data
processors that are accessed by each request/transac-
tion. Remember that a distributed request is neces-
sary if a single SQL statement is to access more than
one remote DP site.

 Use the following summary:

Number of remote DPs

Operation 1 > 1

Request Remote Distributed

Transaction Remote Distributed

5.40 Computer Science & Information Technology for GATE

 Based on this summary, the following questions have
to be answered.

 At Site C:

A. SELECT *

 FROM CUSTOMER;

 Answer: This SQL sequence represents a remote re-
quest.

B. SELECT *

 FROM INVOICE

 WHERE INV_TOTAL > 1000;

 Answer: This SQL sequence represents a remote re-
quest.

C. SELECT *

 FROM PRODUCT

 WHERE PROD_QOH < 10;

Answer: This SQL sequence represents a distributed
request. Note that the distributed request is required
when a single request must access two DP sites. The
PRODUCT table is fragmented across two sites, A
and B. In order for this SQL sequence to run properly,
it must access the data at both sites.

D. BEGIN WORK;

 UPDATE CUSTOMER

 SET CUS_BALANCE = CUS_BALANCE +
100

 WHERE CUS_NUM=‘10936’;

 INSERT INTO INVOICE(INV_NUM, CUS_
NUM, INV_DATE, INV_TOTAL)

 VALUES (‘986391’, ‘10936’, ‘15-FEB-
2002’, 100);

 INSERT INTO INVLINE(INV_NUM, PROD_
CODE, LINE_PRICE)

 VALUES (‘986391’, ‘1023’, 100);

 UPDATE PRODUCT

 SET PROD_QOH = PROD_QOH – 1

 WHERE PROD_CODE = ‘1023’;

 COMMIT WORK;

 Answer: This SQL sequence represents a distributed
request.

 Note that UPDATE CUSTOMER and the two IN-
SERT statements only require remote request capa-
bilities. However, the entire transaction must access
more than one remote DP site, so we also need dis-
tributed transaction capability. The last UPDATE
PRODUCT statement accesses two remote sites be-
cause the PRODUCT table is divided into two frag-

ments located at two remote DP sites. Therefore, the
transaction as a whole requires distributed request
capability.

E. BEGIN WORK;

 INSERT CUSTOMER(CUS_NUM, CUS_
NAME, CUS_ADDRESS CUS_BALANCE)

 VALUES (‘34210’,’Victor Ephanor’, ‘123
Main St’, 0.00);

 INSERT INTO INVOICE(INV_NUM, CUS_
NUM, INV_DATE, INV_TOTAL)

 VALUES (‘986434’, ‘34210’, ‘10-AUG-1999’,
2.00);

 COMMIT WORK;

 Answer: This SQL sequence represents a distributed
transaction. Note that, in this transaction, each indi-
vidual request requires only remote request capabili-
ties. However, the transaction as a whole accesses two
remote sites. Therefore, distributed request capability
is required.

 At Site A:

F. SELECT CUS_NUM, CUS_NAME, INV_TO-
TAL

 FROM CUSTOMER, INVOICE

 WHERE CUSTOMER.CUS_NUM = IN-
VOICE.CUS_NUM;

Answer: This SQL sequence represents a remote re-
quest. Note that the request accesses only one remote
DP site; therefore only remote request capability is
needed.

G. SELECT *

 FROM INVOICE

 WHERE INV_TOTAL > 1000;

Answer: This SQL sequence represents a remote re-
quest, because it accesses only one remote DP site.

H. SELECT *

 FROM PRODUCT

 WHERE PROD_QOH < 10;

 Answer: This SQL sequence represents a distributed
request. In this case, the PRODUCT table is parti-
tioned between two DP sites, A and B. Although the
request accesses only one remote DP site, it accesses
a table that is partitioned into two fragments: PROD
A and PROD B. Only if the DBMS supports distrib-
uted requests a single request can access a partitioned
table.

 At Site B:

I. SELECT *

 FROM CUSTOMER;

Entity Relationship Data Model 5.41

 Answer: This SQL sequence represents a remote re-
quest.

J. SELECT CUS_NAME, INV_TOTAL

 FROM CUSTOMER, INVOICE

 WHERE INV_TOTAL > 1000;

 Answer: This SQL sequence represents a remote re-
quest.

K. SELECT *

 FROM PRODUCT

 WHERE PROD_QOH < 10;

 Answer: This SQL sequence represents a distributed
request. (See explanation for Part h.)

2. The following data structure and constraints exist for
a magazine publishing company.

The company publishes one regional magazine each
in Florida (FL), South Carolina (SC), Georgia (GA),
and Tennessee (TN).

The company has 300,000 customers (subscribers)
distributed throughout the four states listed in Part a.

On the first of each month an annual subscription
INVOICE is printed and sent to all customers whose
subscription is due (CUS_SUB_DATE) for renewal.
The INVOICE entity contains a REGION attribute
to indicate the state (FL, SC, GA, TN) in which the
customer resides.

 CUSTOMER (CUS_NUM, CUS_NAME, CUS_AD-
DRESS, CUS_CITY, CUS_STATE, CUS_SUB_DATE)

 INVOICE (INV_NUM, REG_CODE, CUS_NUM,
INV_DATE, INV_TOTAL)

 The company’s management is aware of the problems
associated with centralised management and has de-
cided that it is time to decentralise the management
of the subscriptions in its four regional subsidiaries.
Each subscription site will handle its own customer
and invoice data. The company’s management, how-
ever, wants to have access to customer and invoice
data to generate annual reports and to issue ad hoc
queries, such as:

List all current customers by region.

List all new customers by region.

Report all invoices by customer and by region.

A. Given these requirements, how must you parti-
tion the database?

 Answer: The CUSTOMER table must be partitioned
horizontally by state.

B. What recommendations will you make regarding
the type and characteristics of the required data-
base system?

 Answer: The Magazine Publishing Company requires
a distributed system with distributed database ca-
pabilities. The distributed system will be distributed
among the company locations in South Carolina,
Georgia, Florida, and Tennessee.

 The DDBMS must be able to support distributed
transparency features, such as fragmentation trans-
parency, replica transparency, transaction transpar-
ency, and performance transparency. Heterogeneous
capability is not a mandatory feature since we assume
there is no existing DBMS in place and that the com-
pany wants to standardise on a single DBMS.

C. What type of data fragmentation is needed for
each table?

 Answer: The database must be horizontally parti-
tioned, using the STATE attribute for the CUSTOM-
ER table and the REGION attribute for the INVOICE
table.

D. What must be the criteria used to partition each
database?

Answer: The following fragmentation segments re-
flect the criteria used to partition each database:

 Horizontal Fragmentation of the CUSTOMER Table
By State

Fragment
Name

Location Condition Node
name

C1 Tennessee CUS_STATE = ‘TN’ NAS

C2 Georgia CUS_STATE = ‘GA’ ATL

C3 Florida CUS_STATE = ‘FL’ TAM

C4 South Carolina CUS_STATE = ‘SC’ CHA

 Horizontal Fragmentation of the INVOICE Table By
Region

Fragment
Name

Location Condition Node
name

I1 Tennessee CUS_STATE = ‘TN’ NAS

I2 Georgia CUS_STATE = ‘GA’ ATL

I3 Florida CUS_STATE = ‘FL’ TAM

I4 South Carolina CUS_STATE = ‘SC’ CHA

5.42 Computer Science & Information Technology for GATE

E. Design the database fragments. Show an example with node names, location, fragment names, attribute names,
and demonstration data.

 Answer:

 Fragment C1 Location: Tennessee Node: NAS

CUS_NUM CUS_NAME CUS_ADDRESS CUS_CITY CUS_STATE CUS_SUB_DATE

10884 James D. Burger 123 Court Avenue Memphis TN 8-DEC-2000

10993 Lisa B. Barnette 910 Eagle Street Nashville TN 12-MAR-2000

 Fragment C2 Location: Georgia Node: ATL

CUS_NUM CUS_NAME CUS_ADDRESS CUS_CITY CUS_STATE CUS_SUB_DATE

11887 Ginny E. Stratton 335 Main Street Atlanta GA 11-AUG-2000

13558 Anna H. Ariona 657 Mason Ave. Dalton GA 23-JUN-2000

 Fragment C3 Location: Florida Node: TAM

CUS_NUM CUS_NAME CUS_ADDRESS CUS_CITY CUS_STATE CUS_SUB_DATE

10014 John T. Chi 456 Brent Avenue Miami FL 18-NOV-2000

15998 Lisa B. Barnette 234 Ramala Street Tampa FL 23-MAR-2000

 Fragment C4 Location: South Carolina Node: CHA

CUS_NUM CUS_NAME CUS_ADDRESS CUS_CITY CUS_STATE CUS_SUB_DATE

21562 Thomas F. Matto 45 N. Pratt Circle Charleston SC 2-DEC-2000

18776 Mary B. Smith 526 Boone Pike Charleston SC 28-OCT-2000

 Fragment I1 Location: Tennessee Node: NAS

INV_NUM REGION-CODE CUS_NUM INV_DATE INV_TOTAL

213342 TN 10884 1-NOV-2000 45.95

209987 TN 10993 15-APR-2000 45.95

 Fragment I2 Location: Georgia Node: ATL

INV_NUM REGION-CODE CUS_NUM INV_DATE INV_TOTAL

198893 GA 11887 15-AUG-2000 70.45

224345 GA 13558 1-JUN-2000 45.95

 Fragment I3 Location: Florida Node: TAM

INV_NUM REGION-CODE CUS_NUM INV_DATE INV_TOTAL

200915 FL 10014 1-NOV-2000 45.95

231148 FL 15998 1-MAR-2000 24.95

 Fragment I4 Location: South Carolina Node: CHA

INV_NUM REGION-CODE CUS_NUM INV_DATE INV_TOTAL

243312 SC 21562 15-NOV-2000 45.95

231156 SC 18776 1-OCT-2000 45.95

F. What type of distributed database operations must be supported at each remote site?

 Answer: To answer this question, we must first draw a map of the locations, the fragments at each location, and the
type of transaction or request support required to access the data in the distributed database.

Entity Relationship Data Model 5.43

Node

Fragment NAS ATL TAM CHA Headquarters

CUSTOMER C1 C2 C3 C4

INVOICE I1 I2 I3 I4

Distributed
Operations
Required

none none none none
distributed

request

 Given the problem’s specifications, we conclude that
no interstate access of CUSTOMER or INVOICE data
is required. Therefore, no distributed database access
is required in the four nodes. For the headquarters,
the manager wants to be able to access the data in all
four nodes through a single SQL request. Therefore,
the DDBMS must support distributed requests.

G. What type of distributed database operations
must be supported at the headquarters site?

Answer: See the answer for part f.

1. What is meant by a recursive relationship type? Give
some examples of recursive relationship types.

 Answer: Recursive relationship is the entity type par-
ticipates more than once in a relationship type in dif-
ferent role. For example a department manger is the
supervisor of the employee work for the department
or a supervisee of a general manger of a company.

2. Example of a 3NF table that is not BCNF,

 Consder a problem involving students, courses and
instructors. For each course, each student is taught by
only one instructor. A course may be taught by more
than one instructor. Each instructor teaches only one
course. Assuming, S = student, C = course, I = instruc-
tor. The following FD’s are seen valid in the relation.

 SC Æ I

 I Æ C

 This table is 3NF with a candidate key SC:

student course instructor

Sutton Math Von Neumann

Sutton Journalism Murrow

Niven Math Von Neumann

Niven Physics Fermi

Wilson Physics Einstein

 Delete anomaly: If Sutton drops Journalism, then we
have no record of Murrow teaching Journalism.

 How can we decompose this table into BCNF?

 Decomposition 1 (bad)........eliminates the delete
anomaly

 SC (no FDs) and I -> C (two tables)

 Problems -

1. lossy join

2. dependency SC -> I is not preserved

SC student course IC instructor course

Sutton Math Von Neumann Math

Sutton Journalism Murrow Journalism

Niven Math Fermi Physics

Niven Physics Einstein Physics

Wilson Physics

---------------- join SC and IC ------------------

SCI’ student course instructor

Sutton Math Von Neumann

Sutton Journalism Murrow

Niven Math Von Neumann

Niven Physics Fermi

Niven Physics Einstein (spurious row)

Wilson Physics Fermi (spurious row)

Wilson Physics Einstein

 Decomposition 2 (better).....eliminates the delete
anomaly

 SI (no FD) and I Æ C

 Advantages – eliminates the delete anomaly, lossless

 Disadvantage – dependency SC Æ I is not preserved

SI student instructor IC instructor course

Sutton Von Neumann Von Neumann Math

Sutton Murrow Murrow Journalism

Niven Von Neumann Fermi Physics

Niven Fermi Einstein Physics

Wilson Einstein Dantzig Math (new)

Sutton Dantzig (new)

 The new row is allowed in SI using unique (student,
instructor) in the create table command, and the join
of SI and IC is lossless. However, a join of SI and IC
now produces the following two rows:

student course instructor

Sutton Math Von Neumann

Sutton Math Dantzig which violates the FD SC Æ I.

performance)

 SC Æ I and I Æ C (two tables with redundant data)

 Problems – extra updates and storage cost

3. What is a composite entity, and when is it used?

 Answer: A composite entity, also known as a bridge
entity, is one that is used to transform M:N relation-

5.44 Computer Science & Information Technology for GATE

ships into sets of 1:M relationships. The composite
entity’s primary key consists of the combination of
primary keys from the entities it connects. For a de-
tailed review of the role played by composite entities,
refer to the second discussion focus question (How
are M:N relationships handled in the development
of an E-R diagram?)

6. What two courses of action are available to a designer
when a multivalued attribute is encountered?

Answer: The designer can split the multivalued attri-
butes into its components and keep these components
in the same entity.

 The designer may also create a new entity com-
posed of the multivalued attribute’s components and
link this new entity to the entity in which the multi-
valued attributes occurred originally. This second op-
tion is especially desirable when the number of out-
comes in the multivalued attribute is, for all practical
purposes, unlimited. For example, employees clas-
sified as “technical” may have certifications in many
different areas and at many different levels.

7. Consider the following schema for a relational data-
base:

Relation Attributes

professor ssn, profname, status,salary

course crscode, crsname, credits

taught croscode, semester, ssn

 Assumption: (1) Each course has only one instruc-
tor in each semester; (2) all professors have different
salaries; (3) all professors have different names; (4) all
courses have different names; (5) status can take val-
ues from “Full”, “Associate”, and “Assistant”.

 For each of the following queries, give an expression
in relational algebra:

(a) Return those professors who have taught both
‘csc6710’ and ‘csc 7710’.
pssn(scrscode=‘csc6710’(Taught)) « pssn(scrscode = ‘csc7710’

(Taught))

(b) Return those professors who have taught ‘csc7710’.
pssn(Professor)-pssn(scrscode = ‘csc7710’ (Taught))

(c) Return those professors who taught ‘CSC6710’
and ‘CSC 7710’ in the same semester
pssn(scrscode1=‘csc6710’(Taught[crscode 1, ssn semes-
ter]))

 scrscode2 = ‘csc7710’ (Taught[crscode 2, ssn semes-
ter]))

(d) Return those professors who taught ‘CSC6710’ or
‘CSC 7710’ but not both
pssn(scrscode=‘csc6710’v crscode = ‘csc 7710’ (Taught)) – pssn

(scrscode=‘csc6710’ (Taught) « (pssn(scrscode=‘csc7710’

(Taught)))

(e) Return those courses that have never been taught.

pcrscode (Course)-pcrscode (Taught)

(f) Return those courses that have never been taught
at least in two semesters.

pcrscode (ssemester 1 <> semester 2(Taught[crscode, ssn1
semester1 Taught [crscode, ssn2 semester2]))

(g) Return the names of professors who ever taught
‘CSC6710’.

pprofname(scrscode = ‘csc6710’ (Taught) Professor)

(h) Return the names of full professors who ever
taught ‘CSC6710’.

pprofname(scrscode = ‘csc6710’ (Taught) sstatus = ‘full’

(Professor)

(i) Return the names of full professors who ever
taught at least two courses in one semester.

pprofname (pssn (scrscode1<>crscode2(Taught [crscode 1,
ssn semester] (Taught[crscode 2, ssn semes-
ter])) sstatus = ‘full’ (Professor))

(j) List all the course names that professors ‘Smith’
taught in fall of 2007.

pcrsname (sprofname=‘Smith’ (Professor)

(ssemester=‘f2007’ (Taught) (Course)

(k) List the names of those courses that professor
Smith have never taught.

pcrsname (Course)-pcrsname (sprofname=‘Smith’ (Profes-
sor) (Taught) (Course)

(l) Return those courses that have been taught by all
professors.

pcrscode, ssn (Taught)/pssn (Professor)

(m) Return those courses that have been taught in all
semesters.

pcrscode, semester (Taught)/psemester (Taught)

(n) Return those courses that have been taught ONLY
by assisitant professors.

pcrscode(Course)-pcrscode(sstatus π ‘Assistant’ (Professor)

 Taught)

(o) Return those professors who have taught ‘csc6710’
but never ‘csc7710’.

pssn(scrscode= ‘csc 6710’(Taught))-pssn(scrscode=‘csc7710’

(Taught)

 For each of the following queries, give an expres-
sion in SQL:

(p) Return those professors who have taught both
‘csc6710’ and ‘csc7710’.

 SELECT T1.ssn

 From Taught T1, Taught T2,

 Where T1.crscode = ‘CSC6710’ AND
T2.crscode=‘CSC7710’ AND T1.ssn=T2.ssn

Entity Relationship Data Model 5.45

(q) Return those professors who have never taught
‘csc7710’.

 (SELECT ssn

 From Professor)

 EXCEPT

 (SELECT ssn

 From Taught T

 Where T.crscode = ‘CSC7710’)

(r) Return those professors who taught ‘CSC6710’
and ‘CSC7710” in the same semester

 SELECT T1.ssn

 From Taught T1, Taught T2, Where T1.crscode
= ‘CSC6710’ AND T2.crscode=‘CSC7710’ AND
T1.ssn=T2.ssn

 AND T1.semester=T2.semester

(s) Return those professors who taught ‘CSC6710’ or
‘CSC7710” but not both.

 (SELECT ssn

 FROM Taught T

 WHERE T.crscode=‘CSC6710’ OR T.crscode =
‘CSC7710’)

 Except

 (SELECT T1.ssn

 From Taught T1, Taught T2,

 Where T1.crscode = ‘CSC6710’) AND T2.crscode
=‘CSC7710’ AND T1.ssn=T2.ssn)

(t) Return those courses that have been taught at
least in 10 semesters.

 SELECT crscode

 FROM Taught

 GROUP BY crscode

 HAVING COUNT(*) >= 10

(u) Return those courses that have been taught by at
least 5 different professors.

 SELECT crscode

 FROM (SELECT DISTINCT crscode, ssn FROM
TAUGHT)

 GROUP BY crscode

 HAVING COUNT(*) >= 5

 SELECT crscode

 FROM Course C

 WHERE (SELECT COUNT(DISTINCT *)
FROM Taught T

 WHERE T.crscode = C.crscode

) >=5.

(v) Return the names of full professors who ever
taught at least two courses in one semester.

 SELECT P.profname

 FROM Professor P, Taught T1, Taught T2

 WHERE P.status = ‘Full’ AND P.ssn = T1.ssn
AND T1.ssn = T2.ssn

 AND T1.crscode <> T2.crscode AND T1.semester
= T2.semester

(w) In chronological order, list the number of courses
that the professor with ssn ssn =

 123456789 taught in each semester.

 SELECT semester, COUNT(*)

 FROM Taught

 WHERE ssn = ‘123456789’

 GROUP BY semester

 ORDER BY semester ASC

(x) Delete those professors who taught less than 40
credits.

 DELETE FROM Professor

 WHERE ssn IN(

 SELECT T.ssn

 FROM Taught T, Course C

 WHERE T.crscode = C.crscode

 GROUP BY ssn

 HAVING SUM(C.credits) < 40

)

(y) Return the professors who taught the largest
number of courses in Fall 2001.

 SE

 LECT *

 FROM Professor P1

 WHERE Not EXISTS

 (

 SELECT *

 FROM Professor P2

 WHERE(

 (SELECT COUNT(*)

 FROM Taught

 WHERE Taught.ssn = P2.ssn AND Taught.
semester=‘F2001’)

 >

 (SELECT COUNT(*)

 FROM Taught

 WHERE Taught.ssn = P1.ssn AND Taught.
semester=‘F2001’)

)

5.46 Computer Science & Information Technology for GATE

(z) Change all the credits to 4 for those courses that
are taught in f2006 semester.

 UPDATE Course

 SET credits = 4

 WHERE crscode IN

 (

 SELECT crscode

 FROM Taught

 WHERE semester = ‘f2006’

)

(aa) Return the name(s) of the professor(s) who taught
the most number of courses in

 S2006.

 SELECT profname

 FROM Professor

 WHERE ssn IN(

 SELECT ssn FROM Taught

 WHERE semester = ‘S2006’

 GROUP BY ssn

 HAVING COUNT(*) =

 (SELECT MAX(Num)

 FROM

 (SELECT ssn, COUNT(*) as Num

 FROM Taught

 WHERE semester = ‘S2006’

 GROUP BY ssn)

)

)

8. Construct a B+- tree for the following set of key values:

 (2, 3, 5, 7, 11, 17, 19, 23, 29, 31)

(i) Assume that the tree is initially empty and values are added in ascending order. Construct B+- trees for the cases
where the number of pointers that will fit in one node is as follows:

A. Four B. Six C. Eight

 Answer: The following were generated by inserting values into the B+- tree in ascending order. A node (other than
the root) was never allowed to have fewer than [n/2] values/pointers.

19

5 2911

2 53 7 11 17 19 2923 31

(a)

197

11

32 5 11 23

17

7 19

11

17 29

19

31

23 29

(b)

3132 5 7

(c)

(ii) For each B+- tree in Question i), show the form of the tree after each of the following series of operations:

A. Insert 9 B. Insert 10 C. Insert 8 D. Delete 23

E. Delete 19

 Answer:

 With n = 4

Entity Relationship Data Model 5.47

19

19

19

11

5

5

5

5

29

29

29

19

11

9

9

9

11

11

2

2

2

2

5

5

5

5

3

3

3

3

7

7

7

7

9

8

8

11

9

9

9

17

10

10

10

19

11

11

11

29

19

19

19

29

29

23

17

17

17

31

23

23

29

31

31

31

Insert 10:

Insert 8:

Delete 23:

Delete 19:

11

5 299

2 53 7 8 9 10 11 17 29 31

 With n = 6

7 19

2 3 5 7 9 11 17 19 23 29 31

Insert 10:

7 19

2 3 5 7 9 10 11 19 23 29 31

Insert 8:

17

5.48 Computer Science & Information Technology for GATE

7

7

7

10

10

10

19

19

2

2

2

3

3

3

5

5

5

7

7

7

8

8

8

9

9

9

10

10

10

10

19

11

11

11

23

29

17

17

17

29

31

Delete 23:

Delete 19:

3129

31

 With n=8

11

11

19

2

2

3

3

5

5

Insert 10:

Insert 8:

7

7

9

9

11

11

17

17

19

19

23

23

29

29

31

3110

11

2 3 5

Delete 23:

7 9 11 17 19 23 29 3110

11

2 3 5

Delete 19:

7 9 11 17 19 29 3110

9. How does Tuple-oriented relational calculus differ
from domain-oriented relational calculus?

 The tuple-oriented calculus uses a tuple variables i.e.,
variable whose only permitted values are tuples of
that relation. E.g. QUEL

 The domain-oriented calculus has domain variables
i.e., variables that range over the underlying domains
instead of over relation. E.g. ILL, DEDUCE.

10. When is a functional dependency F said to be mini-
mal?

Every dependency in F has a single attribute for its
right hand side.

We cannot replace any dependency X ÆA in F with
a dependency Y Æ A where Y is a proper subset of X
and still have a set of dependency that is equivalent
to F.

Entity Relationship Data Model 5.49

We cannot remove any dependency from F and still
have set of dependency that is equivalent to F.

11. What is Multivalued dependency?

 Multivalued dependency denoted by X ÆÆY specified
on relation schema R, where X and Y are both subsets
of R, specifies the following constraint on any relation
r of R: if two tuples t1 and t2 exist in r such that t1[X]
= t2[X] then t3 and t4 should also exist in r with the
following properties

t3[x] = t4[X] = t1[X] = t2[X]

t3[Y] = t1[Y] and t4[Y] = t2[Y]
t3[Z] = t2[Z] and t4[Z] = t1[Z]

 where [Z = (R-(X U Y))]
12. What is Lossless join property?

 It guarantees that the spurious tuple generation does
not occur with respect to relation schemas after de-
composition.

13. What is 4NF?
 A relation schema R is said to be in 4NF if for every

Multivalued dependency X ÆÆ Y that holds over R,
one of following is true
X is subset or equal to (or) XY = R.
X is a super key.

14. What is 5NF?
 A Relation schema R is said to be 5NF if for every join

dependency {R1, R2,..., Rn} that holds R, one the fol-
lowing is true
Ri = R for some i.
The join dependency is implied by the set of FD, over
R in which the left side is key of R.

15. What is Domain-Key Normal Form?
 A relation is said to be in DKNF if all constraints and

dependencies that should hold on the the constraint
can be enforced by simply enforcing the domain con-
straint and key constraint on the relation.

16. What do you mean by atomicity and aggregation?

 Atomicity:

 Either all actions are carried out or none are. Users
should not have to worry about the effect of incom-
plete transactions. DBMS ensures this by undoing the
actions of incomplete transactions.

 Aggregation:

 A concept which is used to model a relationship be-
tween a collection of entities and relationships. It is
used when we need to express a relationship among
relationships.

17. What is a Phantom Deadlock?

 In distributed deadlock detection, the delay in propa-
gating local information might cause the deadlock de-
tection algorithms to identify deadlocks that do not

really exist. Such situations are called phantom dead-
locks and they lead to unnecessary aborts.

18. What is a checkpoint and when does it occur?

 A checkpoint is like a snapshot of the DBMS state. By
taking checkpoints, the DBMS can reduce the amount
of work to be done during restart in the event of sub-
sequent crashes.

19. How can you find the minimal key of relational schema?

 Minimal key is one which can identify each tuple of the
given relation schema uniquely. For finding the mini-
mal key it is required to find the closure that is the set of
all attributes that are dependent on any given set of at-
tributes under the given set of functional dependency.

 Algo. I Determining X+, closure for X, given set of FDs F

1. Set X+ = X

2. Set Old X+ = X+

3. For each FD Y Æ Z in F and if Y belongs to X+

then add Z to X+

4. Repeat steps 2 and 3 until Old X+ = X+

 Algo.II Determining minimal K for relation schema
R, given set of FDs F

1. Set K to R that is make K a set of all attributes in R

2. For each attribute A in K

 A. Compute (K – A)+ with respect to F

 b. If (K – A)+ = R then set K = (K – A)+

20. What do you understand by dependency preservation?

 Given a relation R and a set of FDs F, dependency
preservation states that the closure of the union of
the projection of F on each decomposed relation Ri is
equal to the closure of F. i.e.,

 ((PR1(F)) U … U (PRn(F)))+ = F+

 if decomposition is not dependency preserving, then
some dependency is lost in the decomposition.

OBJECTIVE TYPE QUESTIONS

1. Software that defines a database, stores the data, sup-
ports a query language, produces reports and creates
data entry screens is a:

A. Data dictionary

B. Database management system (DBMS)

C. Decision support system

D. Relational database

2. The separation of the data definition from the pro-
gram is known as:

5.50 Computer Science & Information Technology for GATE

A. Data dictionary

B. Data independence

C. Data integrity

D. Referential integrity

3. In the client / server model, the database:

A. Is downloaded to the client upon request

B. Is shared by both the client and server

C. Resides on the client side

D. Resides on the server side

4. The traditional storage of data that is organised by
customer, stored in separate folders in filing cabinets
is an example of what type of ‘database’ system?

A. Hierarchical B. Network

C. Object oriented D. Relational

5. The database design that consists of multiple tables
that are linked together through matching data stored
in each table is called a:

A. Hierarchical database

B. Network database

C. Object oriented database

D. Relational database

6. What is the main limitation of Hierarchical Databas-
es?

A. Limited capacity (unable to hold much data.

B. Limited flexibility in accessing data

C. Overhead associated with maintaining indexes

D. The performance of the database is poor

7. An abstract data type is used to:

A. Link data from remote databases

B. Prevent users from getting to database security
information

C. Provide a conceptual view of the data so it is easier
to understand

D. Store complex data structure to represent the
properties of objects

8. Which component of the database management sys-
tem (DBMS) most affects the ability to handle large
problems (scalability)?

A. Data Storage Subsystem

B. Database Engine

C. Query Processor

D. Security Subsystem

9. The primary difference between the Relational data-
base (RDB) and Object Oriented database (OODB)
models is:

A. OODB incorporates methods in with the defini-
tion of the data structure, while RDB does not

B. OODB supports multiple objects in the same da-
tabase while RDB only supports a single table per
database

C. RDB allows the definition of the relationships be-
tween the different tables, while OODB does not
allow the relationships to be defined between ob-
jects

D. RDB supports indexes, while OODB does not
support indexes

10. Which of the following items is not the advantage of a
DBMS?

A. Improved ability to enforce standards

B. Improved data consistency

C. Local control over the data

D. Minimal data redundancy

11. When building a database, the data dealing with an
entity is modeled as a:

A. Attribute B. Class

C. Object D. Table

12. Database system modelers use this type of diagram to
graphically represent both the data structure and how
the different objects are interrelated.

A. Class Diagram B. Data Diagram

C. Object Diagram

D. Table Relationship Diagram

13. In relational database model, after conceptually de-
signing your database, the information contained in
a single class would be stored in a:

A. Database B. Field

C. Property D. Table

14. The property (or set of properties) that uniquely de-
fines each row in a table is called the:

A. Identifier B. Index

C. Primary key D. Symmetric key

15. Business rules can be represented in the database
through:

A. Associations (or relationships)

B. Attributes C. Properties

D. Secondary keys

16. The association role defines:

A. How tables are related in the database

B. The relationship between the class diagram and
the tables in the database

C. The tables that contains each attribute

D. Which attribute is the table’s primary key

Entity Relationship Data Model 5.51

17. The purpose of an N-Ary association is:

A. To capture a parent-child relationship

B. To deal with one to many relationships

C. To deal with relationships that involve more than
two tables

D. To represent an inheritance relationship

18. A reflexive association is one where one class is:

A. Broken down into special cases

B. Combined with multiple other classes

C. Combined with one other class

D. Linked back to itself

19. Which of the following statements is not correct?

A. A primary goal of a database system is to share
data with multiple users

B. It is possible to change a method or property in-
herited from a higher level class

C. While companies collect data all the time, the
structure of the data changes very often.

 D. In a client / server environment, data indepen-
dence causes client side applications to be essen-
tially independent of the database stored on the
server side.

20. Which of the following statements is not correct?

A. Data Normalisation is the process of defining the
table structure

B. The purpose of class diagrams is to model the in-
terrelationships between the different classes in
the database

C. Individual objects are stored as rows in a table

D. Properties of an object are stored as columns in a
table.

21. Which of the following statements is not correct?

A. The primary key must be unique for a given table

B. Specifying a zero (0) for the lower bound for the
association multiplicity on a class diagram indi-
cates that the item is required

C. Specifying a one (1) for the lower bound for the
association multiplicity on a class diagram indi-
cates that the item is required

D. Most databases allow multiple records that are
identical (i.e., records that have the same values
for all properties).

22. Which of the following statements is not correct?

A. All many-to-many relationships must be convert-
ed to a set of one-to-many relationships by adding
a new entity

B. In a one-to-one relationship between two classes,
the two classes are generally described by one ta-
ble in relational database model

C. Encapsulation provides some security and control
features

D. Properties and functions can be protected from
other areas of the applications

23. There is a relational schema which has k attributes.
The domain of each attribute consists of exactly 2 ele-
ments. A table is defined as subset of tuples where in
each tuple, a value is defined for each of the k attri-
butes. The minimum value of k needed for the num-
ber of distinct tuples to exceed 10^9 is

A. 5 B. 9 C. 17 D. 32

E. 24

24. The relation PAYMENT(Cust-ID, Account, Amount_
Paid, Date_Paid, Type_Payment, Discount). Assume
that a customer may have more than one account and
that he or she can make several payments on any day
but not more than one payment per day can be ap-
plied to each account. The key for the relation can be:

A. Cust-ID, Account

B. Account, Date_Paid

C. Cust-ID, Account, Date_Paid

D. None

25. The relation STORE(Location, No-of-Employees, To-
tal-Monthly-Sales, Manager, City)

A. No key available for this

B. If we assign STORE_ID as an extra attribute it can
act like PK

C. If we restrict a person to manage only one store
then Manager attribute can become as PK

D. If we restrict a person can manage all the stores in
a City then Manager attribute can become as PK

E. None

26. Candidate keys for a relation R(X, Y, Z, W, P) are

A. 1 B. 2 C. 3 D. 4

E. None

27. The valid FD’s in the following relation are

A B C

f e e

d e e

b c e

a c d

a b c

A. A Æ B B. AB Æ C

C. A Æ C D. AC Æ B

E. None

28. Out of the following FD’S F={ A Æ BC, E Æ C, D Æ

AEF, ABF Æ BD}. Then the left reduced set is

A. { AÆBC, EÆC, DÆAEF, ABFÆBD}

5.52 Computer Science & Information Technology for GATE

B. { AÆBC, EÆC, DÆAE, ABÆBD}

C. { AÆBC, EÆC, DÆAEF, AFÆBD}

D. { AÆBC, EÆC, DÆAEF, ABÆBD}

E. None

29. The canonical cover of following FD’S F={ A Æ BC, E
Æ C, D Æ AEF, ABF Æ BD}.

A. {AÆB, AÆC, EÆC, DÆA, DÆE, EÆF, AFÆD}

b. {AÆB, AÆC, EÆC, DÆA, DÆE, DÆF, AFÆD}

c. {AÆB, AÆC, EÆC, DÆA, DÆE, EÆF, AÆD}

d. {AÆB, AÆC, EÆC, DÆA, DÆE, EÆF, AFÆD}

E. None

30. If a relation contains only one key (single attribute)
and no transitive dependencies then select more valid
one.

A. 1NF B. 2NF

C. Every non prime attribute will be fully function-
ally dependent on key

D. 3NF

E. None

31. The number of candidate keys for a relation (ABCDE-
FGH) with the given FD’s {AÆC, BÆD,GÆH, EÆF,
CÆG}

A. 1 B. 2 C. 3 D. 4

E. None

32. The canonical cover of set of FD’s F={ AÆBC, BÆC,
AÆB, ABÆC}

A. AÆC AÆB B. AÆB AÆB

C. AÆB BÆC D. None

33. List the candidate keys for the relation R(ABCDE)
with FD’s F={ AÆBC, BÆD, CDÆE, EÆA}

A. A B. CD C. E D. None

34. Construct a B-Tree for the following data
(2,3,5,7,11,17,19,23,29,31). Assume in a node at most
4 keys can be stored and atleast 2. number of splitting
operations required are

A. 1 B. 2 C. 3 D. 4

A N S W E R K E Y

1. B 2. B 3. D 4. A

5. D 6. B 7. D 8. B

9. A 10. C 11. A 12. A

13. D 14. C 15. A 16. A

17. C 18. D 19. C 20. A

21. B 22. B 23. D 24. C

25. B 26. B 27. B 28. C

29. B 30. D 31. E 32. C

33. A 34. B

Previous Years’ GATE Questions

1. An index is clustered, if (GATE 2013)

A. It is on a set of fields that form a candidate key.

B. It is on a set of fields that include the primary key.

C. The data records of the file are organised in the
same order as the data entries of the index.

D. The data records of the file are organised not in
the same order as the data entries of the index.

2. Consider the following relational schema.

(GATE 2013)

 Students(rollno: integer, sname: string)

 Courses(courseno: integer, cname: string)

 Registration(rollno: integer, courseno: integer, per-
cent: real)

 Which of the following queries are equivalent to this
query in English?

 “Find the distinct names of all students who score
more than 90% in the course numbered 107”

(I) SELECT DISTINCT S.sname

 FROM Students as S. Registration as R

 WHERE R. rollno = S.rollno AND R. Courseno =
107 AND R. percent > 90

(II) Psname (scourseno = 107 Ÿ percent > 90 (Registration
Students)

(III) {T|$S ŒStudents, $R Œ Registration (S. rollno = R.
rollno Ÿ R. courseno = 107 Ÿ R. percent > 90 Ÿ T.
sname = S. sname)}

(IV) {<SN>|$SR $RP (<SR, SN> ŒStudents Ÿ < SR, 107,
RP> Œ Registration Ÿ RP > 90)}

A. I, II, III and IV B. I, II and III only

C. I, II and IV only D. II, III and IV only

 Relation R has eight attributes ABCDEFGH. Fields of
R contain only atomic values.

 F={CHÆG, AÆBC, BÆCFH, EÆA, FÆEG} is a set of
functional dependencies (FDs) so that F+ is exactly
the set of FDs that hold for R.

3. How many candidate keys does the relation R have?

(GATE 2013)

A. 3 B. 4 C. 5 D. 6

4. The relation R is (GATE 2013)

A. In 1NF, but not in 2NF.

B. In 2NF, but not in 3NF.

C. In 3NF, but not in BCNF.

D. In BCNF.

Entity Relationship Data Model 5.53

 write (Q) ;

 T2: read (Q) ;

 read (P) ;

 if Q = 0 then P : = P + 1 ;

 write (P) ;

 Any non-serial interleaving of T1 and T2 for concur-
rent execution leads to (GATE 2012)

A. A serialisable schedule

B. A schedule that is not conflict serialisable

C. A conflict serialisable schedule

D. A schedule for which a precedence graph cannot
be drawn

 Explanation:

 Two or more actions are said to be in conflict if:

1. The actions belong to different transactions.

2. At least one of the actions is a write operation.

3. The actions access the same object (read or write).

 The schedules S1 and S2 are said to be conflict-equiv-
alent if the following conditions are satisfied:

1. Both schedules S1 and S2 involve the same set of
transactions (including ordering of actions within
each transaction).

2. The order of each pair of conflicting actions in S1
and S2 are the same.

 A schedule is said to be conflict-serialisable when the
schedule is conflict-equivalent to one or more serial
schedules.

 In the given scenario, there are two possible serial
schedules:

1. T1 followed by T2

2. T2 followed by T1.

 In both of the serial schedules, one of the transactions
reads the value written by other transaction as a first
step. Therefore, any non-serial interleaving of T1 and
T2 will not be conflict serialisable.

10. Consider the following relations A, B, C. How many
tuples does the result of the following relational alge-
bra expression contain? Assume that the schema of A
U B is the same as that of A. (GATE 2012)

 (A » B) A.Id>40 V CId<15C

Table A

Id Name Age

12 Arun 60

15 Shreya 24

99 Rohit 11

5. Which of the following statements are true about an
SQL query? (GATE 2012)

P: An SQL query can contain a HAVING clause even
if it does not a GROUP BY clause

Q: An SQL query can contain a HAVING clause only
if it has a GROUP BY clause

R: All attributes used in the GROUP BY clause must
appear in the SELECT clause

S: Not all attributes used in the GROUP BY clause
need to apper in the SELECT clause

A. P and R B. P and S

C. Q and R D. Q and S

6. Given the basic ER and relational models, which of
the following is INCORRECT? (GATE 2012)

A. An attributes of an entity can have more that one
value

B. An attribute of an entity can be composite

C. In a row of a relational table, an attribute can have
more than one value

D. In a row of a relational table, an attribute can have
exactly one value or a NULL value

7. Suppose (A, B) and (C, D) are two relation schemas.
Let r1 and r2 be the corresponding relation instances.
B is a foreign key that refers to C in r2. If data in r1
and r2 satisfy referential integrity constraints, which
of the following is always true? (GATE 2012)

A. PB (r1) – PC (r2) = Δ B. PC (r2) – PB (r1) = Δ

C. PB (r1) = PC (r2) D. PB (r1) – PC (r2) π Δ

 Explanation:

 B is a foreign key in r1 that refers to C in r2. r1 and r2
satisfy referential integrity constraints. So every value
that exists in column B of r1 must also exist in column
C of r2.

8. Which of the following is true? (GATE 2012)

A. Every relation in 2NF is also in BCNF

B. A relation R is in 3NF if every non-prime attribute
of R is fully functionally dependent on every key
of R

C. Every relation in BCNF is also in 3NF

D. No relation can be in both BCNF and 3NF

 Explanation:

 BCNF is a stronger version 3NF. So every relation in
BCNF will also be in 3NF.

9. Consider the following transactions with data items P
and Q initialised to zero:

 T1: read (P) ;

 read (Q) ;

 if P = 0 then Q : = Q + 1 ;

5.54 Computer Science & Information Technology for GATE

Table B

Id Name Age

15 Shreya 24

25 Hari 40

98 Rohit 20

99 Rohit 11

Table C

Id Phone Area

10 2200 02

99 2100 01

A. 7 B. 4 C. 5 D. 9

 Explanation :

 Result of AUB will be following table

Id Name Age

12 Arun 60

15 Shreya 24

99 Rohit 11

25 Hari 40

98 Rohit 20

 The result of given relational algebra expression will
be

Id Name Age Id Phone Area

12 Arun 60 10 2200 02

15 Shreya 24 10 2200 02

99 Rohit 11 10 2200 02

25 Hari 40 10 2200 02

98 Rohit 20 10 2200 02

99 Rohit 11 99 2100 01

98 Rohit 20 99 2100 01

11. Consider the above tables A, B and C. How many
tuples does the result of the following SQL query con-
tains? (GATE 2012)

 SELECT A.id

 FROM A

 WHERE A.age > ALL (SELECT B.age

 FROM B

 WHERE B. name = “arun”)

A. 4 B. 3

C. 0 D. 1

 Explanation:

 The meaning of “ALL” is the A.Age should be greater
than all the values returned by the subquery. There is
no entry with name “arun” in table B. So the subquery
will return null. If a subquery returns null, then the
condition becomes true for all rows of A. So all rows
of table A are selected.

12. Consider a relational table with a single record for
each registered student with the following attributes.

1. Registration_Number:< Unique registration
number for each registered student

2. UID: Unique Identity number, unique at the na-
tional level for each citizen

3. BankAccount_Number: Unique account number
at the bank. A student can have multiple accounts
or joint accounts. This attributes stores the prima-
ry account number

4. Name: Name of the Student

5. Hostel_Room: Room number of the hostel

 Which of the following options is incorrect?

(GATE 2011)

A. BankAccount_Number is a candidate key

B. Registration_Number can be a primary key

C. UID is a candidate key if all students are from the
same country

D. If S is a superkey such that S UID is null then
S UID is also a superkey

 Explanation:

 A Candidate Key value must uniquely identify the
corresponding row in table. BankAccount_Number
is not a candidate key. As per the question “A student
can have multiple accounts or joint accounts. This at-
tributes stores the primary account number”. If two
students have a joint account and if the joint account
is their primary account, then BankAccount_Number
value cannot uniquely identify a row.

13. Consider a relational table r with sufficient number of
records, having attributes A1, A2,…, An and let 1 ‹ p
‹ n. Two queries Q1 and Q2 are given below.

(GATE 2011)

 Q1 : pA1.....An
 (sAp= c (r) where c is a const

 Q1 : pA1.....An
 (sc1 £ Ap £ c2

 (r) where c1 and c2 are con-
stants.

 The database can be configured to do ordered index-
ing on Ap or hashing on Ap. Which of the following
statements is true?

A. Ordered indexing will always outperform hashing
for both queries

Entity Relationship Data Model 5.55

B. Hashing will always outperform ordered indexing
for both queries

C. Hashing will outperform ordered indexing on Q1,
but not on Q2

D. Hashing will outperform ordered indexing on Q2,
but not on Q1.

 Explanation:

 If record are accessed for a particular value from ta-
ble, hashing will do better. If records are accessed in a
range of values, ordered indexing will perform better.

14. Database table by name Loan_Records is given below.
(GATE 2011)

Borrower Bank Manager Loan_Amount

Ramesh Sunderajan 10000.00

Suresh Ramgopal 5000.00

Mahesh Sunderajan 7000.00

 What is the output of the following SQL query?

 SELECT Count(*)

 FROM ((SELECT Borrower, Bank_Manager

 FROM Loan_Records) AS S

 NATURAL JOIN (SELECT Bank_Manager,

 Loan_Amount

 FROM Loan_Records) AS T);

A. 3 B. 9 C. 5 D. 6

 Explanation :

 Following will be contents of temporary table S

Borrower Bank_Manager

 Ramesh Sunderajan

Suresh Ramgqpal

Mahesh Sunderjan

 Following will be contents of temporary table T

Bank_Manager Loan_Amount

Sunderajan 10000.00

Ramgopal 5000.00

Sunderjan 7000.00

 Following will be the result of natural join of above
two tables. The key thing to note is that the natural
join happens on column name with same name which
is Bank_Manager in the above example. “Sunderjan”
appears two times in Bank_Manager column, so their
will be four entries with Bank_Manager as “Sunder-
jan”.

Borrower Bank_Manager Load_Amount

Ramesh Sunderajan 10000.00

Ramesh Sunderajan 7000.00

Suresh Ramgopal 5000.00

Mahesh Sunderajan 10000.00

Mahesh Sunderajan 7000.00

15. The table at any point in time. Using MX and MY, new
records are inserted in the table 128 times with X and
Y values being MX+1, 2*MY+1 respectively. It may
be noted that each time after the insertion, values of
MX and MY change. What will be the output of the
following SQL query after the steps mentioned above
are carried out? (GATE 2011)

 SELECT Y FROM T WHERE X = 7;

A. 127 B. 255 C. 129 D. 257

 Explanation:

X Y

1 1

2 3

3 7

4 15

5 31

6 63

7 127
......
......

16. A relational schema for a train reservation database is
given below.

 Passenger (pid, pname, age)

 Reservation (pid, class, tid) (GATE 2010)

Table: Passenger

pid pname age

 0 Sachin 65

 1 Rahul 66

 2 Sourav 67

 3 Anil 69

Table : Reservation

pid class tid

 0 AC 8200

 1 AC 8201

 2 SC 8201

 5 AC 8203

 1 SC 8204

 3 AC 8202

5.56 Computer Science & Information Technology for GATE

 What pids are returned by the following SQL query
for the above instance of the tables?

 SLECT pid

 FROM Reservation,

 WHERE class ‘AC’ AND

 EXISTS (SELECT *

 FROM Passenger

 WHERE age > 65 AND

 Passenger. pid = Reservation.pid)

A. 1, 0 B. 1, 2 C. 1, 3 D. 1, 5

 Explanation :

 When a subquery uses values from outer query, the
subquery is called correlated. The correlated subquery
is evaluated once for each row processed by the outer
query. The outer query selects 4 entries (with pids as
0, 1, 5, 3) from Reservation table. Out of these select-
ed entries, the subquery returns Non-Null values only
for 1 and 3.

17. Which of the following concurrency control proto-
cols ensure both conflict serialzability and freedom
from deadlock? (GATE 2010)

 I. 2-phase locking

 II. Time-stamp ordering

A. I only B. II only

C. Both I and II D. Neither I nor II

 Explanation:

 Two phase locking is a concurrency control method
that guarantees Serialisability. The protocol utilises
locks, applied by a transaction to data, which may
block (interpreted as signals to stop) other transac-
tions from accessing the same data during the trans-
action’s life. 2PL may be lead to deadlocks that result
from the mutual blocking of two or more transac-
tions. See the following situation, neither T3 nor T4
can make progress.

T3 T4

lock-X (B)

read (B)

B := B – 50

write (B)

lock-S (A)

read (A)

lock-S (B)

lock-X(A)

 Timestamp based concurrency control algorithm is a
non-lock concurrency control method. In Timestamp

based method, deadlock cannot occur as no transac-
tion ever waits.

18. Consider the following schedule for transactions T1,
T2 and T3: (GATE 2010)

T1 T2 T3

Read (X)

Read (Y)

Read (Y)

Write (Y)

Write (X)

Write (X)

Read (X)

Write (X)

 Which one of the schedules below is the correct seri-
alization of the above?

A. T1 T3 T2 B. T2 T1 T3

C. T2 T3 T1 D. T3 T1 T2

 Explanation:

 T1 can complete before T2 and T3 as there is no con-
flict between Write(X) of T1 and the operations in
T2 and T3 which occur before Write(X) of T1 in the
above diagram.

 T3 should can complete before T2 as the Read(Y)
of T3 doesn’t conflict with Read(Y) of T2. Similarly,
Write(X) of T3 doesn’t conflict with Read(Y) and
Write(Y) operations of T2.

 Another way to solve this question is to create a de-
pendency graph and topologically sort the dependen-
cy graph. After topologically sorting, we can see the
sequence T1, T3, T2.

19. The following functional dependencies hold for rela-
tions R(A, B, C) and S(B, D, E):

 B Æ A,

 A Æ C

 The relation R contains 200 tuples and the relation S
contains 100 tuples. What is the maximum number of
tuples possible in the natural join R S (R natural
join S) (GATE 2010)

A. 100 B. 200

D. 300 D. 2000

 Explanation:

 From the given set of functional dependencies, it can
be observed that B is a candidate key of R. So all 200
values of B must be unique in R. There is no func-
tional dependency given for S. To get the maximum
number of tuples in output, there can be two possibili-
ties for S.

Entity Relationship Data Model 5.57

(1) All 100 values of B in S are same and there is an
entry in R that matches with this value. In this
case, we get 100 tuples in output.

(2) All 100 values of B in S are different and these val-
ues are present in R also. In this case also, we get
100 tuples.

20. Consider two transactions T1 and T2, and four sched-
ules S1, S2, S3, S4 of T1 and T2 as given below:

(GATE 2009)

 T1 = R1[X] W1[X] W1[Y]

 T2 = R2[X] R2[Y] W2[Y]

 S1 = R1[X] R2[X] R2[Y] W1[X] W1[Y] W2[Y]

 S2 = R1[X] R2[X] R2[Y] W1[X] W2[Y] W1[Y]

 S3 = R1[X] W1[X] R2[X] W1[Y] R2[Y] W2[Y]

 S1 = R1[X] R2[Y]R2[X]W1[X] W1[Y] W2[Y]

 Which of the above schedules are conflict-serialis-
able?

A. S1 and S2 B. S2 and S3

C. S3 only D. S4 only

 Explanation:

 There can be two possible serial schedules T1 T2 and
T2 T1. The serial schedule T1 T2 has the following
sequence of operations

 R1[X] W1[X] W1[Y] R2[X] R2[Y] W2[Y]

 And the schedule T2 T1 has the following sequence of
operations.

 R2[X] R2[Y] W2[Y] R1[X] W1[X] W1[Y]

 The Schedule S2 is conflict-equivalent to T2 T1 and
S3 is conflict-equivalent to T1 T2.

21. Let R and S be relational schemes such that R={a,b,c}
and S={c}. Now consider the following queries on the
database: (GATE 2009)

I. pR–S (r) – pR–S (pR–S(r) × S–pR–S, S (r))

II. {t|tєpR–S (r) Ÿ" u єr ($v є s (u = v[s] Ÿ t = v [R
–S]))}

III. {t|tєpR–S (r) Ÿ" v єr ($u є s (u = v[s] Ÿ t = v [R
–S]))}

IV. SELECT R.a, R.b

 FROM R,S

 WHERE R.c = S.c

Which of the above queries are equivalent?

A. I and II B. I and III

C. II and IV D. III and IV

22. Consider the following relational schema:

 Suppliers (sid:integer, sname:string, city:string,
street:string)

 Parts(pid:integer, pname:string, color:string)

 Catalog(sid:integer, pid:integer, cost:real)

 Consider the following relational query on the above
database: (GATE 2009)

 SELECT S.sname

 FROM Suppliers S

 WHERE S.sid NOT IN (SELECT C.sid

 FROM Catalog C

 WHERE C.pid NOT IN (SELECT P.pid

FROM Parts P

WHERE P.color<> ‘blue’))

 Assume that relations corresponding to the above
schema are not empty. Which one of the following is
the correct interpretation of the above query?

A. To find the names of all suppliers who have sup-
plied a non-blue part.

B. To find the names of all suppliers who have not
supplied a non-blue part.

C. To find the names of all suppliers who have sup-
plied only blue parts.

D. To find the names of all suppliers who have not
supplied only blue parts.

 Explanation :

 The subquery “SELECT P.pid FROM Parts P WHERE
P.color<> ‘blue’” gives pids of parts which are not blue.
The bigger subquery “SELECT C.sid FROM Catalog C
WHERE C.pid NOT IN (SELECT P.pid FROM Parts P
WHERE P.color<> ‘blue’)” gives sids of all those sup-
pliers who have supplied blue parts. The complete
query gives the names of all suppliers who have not
supplied a non-blue part

23. Assume that, in the suppliers relation above, each
supplier and each street within a city has a unique
name, and (sname, city) forms a candidate key. No
other functional dependencies are implied other than
those implied by primary and candidate keys. Which
one of the following is true about the above schema?

(GATE 2009)

A. The schema is in BCNF
B. The schema is in 3NF but not in BCNF
C. The schema is in 2NF but not in 3NF
D. The schema is not in 2NF

 Explanation :

 The schema is in BCNF as all attributes depend only
on a superkey (Note that primary and candidate keys
are also superkeys).

24. Let R and S be two relations with the following sche-
ma (GATE 2008)

 R (P, Q, R1, R2, R3)

 S (P, Q, S1, S2)

5.58 Computer Science & Information Technology for GATE

 Where {P, Q} is the key for both schemas. Which of
the following queries are equivalent?

I. PP (R S)

II. PP (R) PP (S)

III. PP (PP,Q (R) « PP, Q (S))

IV. PP (PP,Q (R) – (PP,Q (R) – (PP,Q (S)))

A. Only I and II B. Only I and III

C. Only I, II and III D. Only I, III and IV

 Explanation:

 In I, Ps from natural join of R and S are selected.

 In III, all Ps from intersection of (P, Q) pairs present
in R and S.

 IV is also equivalent to III because (R–(R–S)) = R « S.

 II is not equivalent as it may also include Ps where Qs
are not same in R and S.

25. Consider the following ER diagram. (GATE 2008)

M

M1 M2 M3

R1 P

P1 P2

R1 N

N1 N2

 The minimum number of tables needed to represent
M, N, P, R1, R2 is

A. 2 B. 3 C. 4 D. 5

 Explanation:

 Many-to-one and one-to-many relationship sets that
the total on the many-side can be represented by add-
ing an extra attribute to the “many” side, containing
the primary key of the “one” side. Since R1 is many to
one and participation of M is total, M and R1 can be
combined to form the table {M1, M2, M3, P1}. N is a
week entity set, so it can be combined with P.

26. Which of the following is a correct attribute set for
one of the tables for the correct answer to the above
question? (GATE 2008)

A. {M1, M2, M3, P1} B. {M1, P1, N1, N2}

C. {M1, P1, N1} D. {M1, P1}

27. Consider the following relational schemes for a li-
brary database: (GATE 2008)

 Book (Title, Author, Catalog_no, Publisher, Year,
Price)

 Collection (Title, Author, Catalog_no)

 within the following functional dependencies:

 I. Title Author Æ Catalog_no

 II. Catalog_no Æ Title Author Publisher Year

 III. Publisher Title Year Æ Price

 Assume {Author, Title} is the key for both schemes.

Which of the following statements is true?

(GATE 2008)

A. Both Book and Collection are in BCNF

B. Both Book and Collection are in 3NF only

C. Book is in 2NF and Collection is in 3NF

D. Both Book and Collection are in 2NF only

 Explanation:

 Table Collection is in BCNF as there is only one func-
tional dependency “Title Author Æ Catalog_no” and
{Author, Title} is key for collection. Book is not in
BCNF because Catalog_no is not a key and there is
a functional dependency “Catalog_no Æ Title Au-
thor Publisher Year”. Book is not in 3NF because
non-prime attributes (Publisher Year) are transitively
dependent on key [Title, Author]. Book is in 2NF be-
cause every non-prime attribute of the table is either
dependent on the key [Title, Author], or on another
non prime attribute.

28. Consider the following log sequence of two transac-
tions on a bank account, with initial balance 12000,
that transfer 2000 to a

1. T1 start

2. T1 B old=12000 new=10000

3. T1 M old=0 new=2000

4. T1 commit

5. T2 start

6. T2 B old=10000 new=10500

7. T2 commit

 Suppose the database system crashes just before log
record 7 is written. When the system is restarted,
which one statement is true of the recovery proce-
dure? mortagage payment and then apply a 5% inter-
est. (GATE 2006)

A. We must redo log record 6 to set B to 10500

B. We must undo log record 6 to set B to 10000 and
then redo log records 2 and 3

C. We need not redo log records 2 and 3 because
transaction T1 has committed

D. We can apply redo and undo operations in arbi-
trary order because they are idempotent.

 Explanation :

 Once a transaction is committed, no need to redo or
undo operations.

29. Consider the relation enrolled (student, course) in
which (student, course) is the primary key, and the
relation paid (student, amount) where student is the
primary key. Assume no null values and no foreign
keys or integrity constraints. Given the following four
queries:

Entity Relationship Data Model 5.59

 Query1: select student from enrolled where student in
(select student from paid)

 Query2: select student from paid where student in
(select student from enrolled)

 Query3: select E.student from enrolled E, paid P
where E.student = P.student

 Query4: select student from paid where exists

 (select * from enrolled where enrolled.student = paid.
student)

 Which one of the following statements is correct?

(GATE 2006)

A. All queries return identical row sets for any data-
base

B. Query2 and Query4 return identical row sets for
all databases but there exist databases for which
Query1 and Query2 return different row sets.

C. There exist databases for which Query3 returns
strictly fewer rows than Query2.

D. There exist databases for which Query4 will en-
counter an integrity violation at runtime.

 Explanation:

 The output of Query2, Query3 and Query4 will be
identical. Query1 may produce duplicate rows. But
rowset produced by all of them will be same.

Table enrolled

student course

 abc c1

 xyz c1

 abc c2

 pqr c1

Table paid

student amount

 abc 20000

 xyz 10000

 rst 10000

Output of Query 1

 abc

 abc

 xyz

Output of Query 2

 abc

 xyz

Output of Query 3

 abc

 xyz

Output of Query 4

 abc

 xyz

30. Consider the relation enrolled (student, course)
in which (student, course) is the primary key, and
the relation paid (student, amount), where student
is the primary key. Assume no null values and no
foreign keys or integrity constraints. Assume that
amounts 6000, 7000, 8000, 9000 and 10000 were
each paid by 20% of the students. Consider these
query plans (Plan 1 on left, Plan 2 on right) to “list
all courses taken by students who have paid more
than x”. (GATE 2006)

Indexed nested loop join Indexed nested loop join

Project on course

Probe index
on student

Sequential scan,
select amount > x

enrolled paid enrolled paid

Probe index
on student

Sequential scan

Select on amount > x

Project on course

5.60 Computer Science & Information Technology for GATE

 A disk seek takes 4ms, disk data transfer bandwidth
is 300 MB/s and checking a tuple to see if amount is
greater than x takes 10 micro-seconds. Which of the
following statements is correct?
A. Plan 1 and Plan 2 will not output identical row

sets for all databases.
B. A course may be listed more than once in the out-

put of Plan 1 for some databases
C. For x = 5000, Plan 1 executes faster than Plan 2 for

all databases.
D. For x = 9000, Plan I executes slower than Plan 2

for all databases.

 Explanation :

 Assuming that large enough memory is available for
all data needed. Both plans need to load both tables
courses and enrolled. So disk access time is same for
both plans.

 Plan 2 does lesser number of comparisons compared
to plan 1.

1. Join operation will require more comparisons as
the second table will have more rows in plan 2
compared to plan 1.

2. The joined table of two tables will will have more
rows, so more comparisons are needed to find
amounts greater than x.

31. The following functional dependencies are given:

(GATE 2006)

 AB Æ CD, AF Æ D, DE Æ F, C Æ G, F Æ E, G Æ A

 Which one of the following options is false?

A. CF+ = {ACDEFG}
B. BG+ = {ABCDG}
C. AF+ = {ACDEFG}
D. AB+ = {ABCDFG}

 Explanation :

 Closure of AF or AF+ = {ADEF}, closure of AF doesn’t
contain C and G.

 Option (D) Also looks correct. AB+ = {ABCDG}, clo-
sure of AB doesn’t contain F.

32. Which one of the following statements about normal
forms is false? (GATE 2005)
A. BCNF is stricter than 3NF
B. Lossless, dependency-preserving decomposition

into 3NF is always possible
C. Lossless, dependency-preserving decomposition

into BCNF is always possible

D. Any relation with two attributes is in BCNF

 Explanation :

 It is not always possible to decompose a table in
BCNF and preserve dependencies. For example, a set
of functional dependencies {AB Æ C, C Æ B} cannot
be decomposed in BCNF. See this for more details.

33. The following table has two attributes A and C where
A is the primary key and C is the foreign key referenc-
ing A with on-delete cascade.

(GATE 2005)

A C

2 4

3 4

4 3

5 2

7 2

9 5

6 4

 The set of all tuples that must be additionally deleted
to preserve referential integrity when the tuple (2,4) is
deleted is:

A. (3,4) and (6,4)

B. (5,2) and (7,2)

C. (5,2), (7,2) and (9,5)

D. (3,4), (4,3) and (6,4)

 Explanation :

 When (2,4) is deleted. Since C is a foreign key refer-
ring A with delete on cascade, all entries with value 2
in C must be deleted. So (5, 2) and (7, 2) are deleted.
As a result of this 5 and 7 are deleted from A which
causes (9, 5) to be deleted.

34. The relation book (title, price) contains the titles and
prices of different books. Assuming that no two books
have the same price, what does the following SQL
query list? (GATE 2005)

 select title

 from book as B

 where (select count(*)

 from book as T

 where T.price > B.price) < 5

A. Titles of the four most expensive books

B. Title of the fifth most inexpensive book

C. Title of the fifth most expensive book

D. Titles of the five most expensive books

 Explanation:

 When a subquery uses values from outer query, the
subquery is called correlated subquery. The correlated
subquery is evaluated once for each row processed by
the outer query.

 The outer query selects all titles from book table. For
every selected book, the subquery returns count of
those books which are more expensive than the se-

Entity Relationship Data Model 5.61

lected book. The where clause of outer query will be
true for 5 most expensive books. For example count
(*) will be 0 for the most expensive book and count(*)
will be 1 for second most expensive book.

35. Let r be a relation instance with schema R = (A, B,
C, D). We define r1 = ‘select A,B,C from r’ and r2 =
‘select A, D from r’. Let s = r1 * r2 where * denotes
natural join. Given that the decomposition of r into r1
and r2 is lossy, which one of the following is true?

(GATE 2005)

A. s is subset of r B. r U s = r

C. r is a subset of s D. r * s = s

 Explanation:

 Consider the following example with lossy decompo-
sition of r into r1 and r2. We can see that r is a subset
of s.

Table r

A B C D

1 10 100 1000

1 20 200 1000

1 20 200 1001

Table r1

A B C

1 10 100

1 20 200

Table r2

A D

1 1000

1 1001

Table s (natural join of r1 and r2)

A B C D

1 10 100 1000

1 20 200 1000

1 20 100 1001

1 20 200 1001

36. Let E1 and E2 be two entities in an E/R diagram with
simple single-valued attributes. R1 and R2 are two
relationships between E1 and E2, where R1 is one-
to-many and R2 is many-to-many. R1 and R2 do not
have any attributes of their own. What is the mini-
mum number of tables required to represent this situ-
ation in the relational model? (GATE 2005)

A. 2 B. 3

C. 4 D. 5

 Explanation:

 The situation given can be expressed with following
sample data.

E1

a

b

c

E2

x

y

z

R1

E1 E2

a x

a y

b z

R2

E1 E2

a x

a y

b y

37. Consider a relation scheme R = (A, B, C, D, E, H) on
which the following functional dependencies hold:
{AÆB, BC Æ D, E Æ C, D Æ A}. What are the candi-
date keys of R? (GATE 2005)

A. AE, BE B. AE, BE, DE

C. AEH, BEH, BCH D. AEH, BEH, DEH

 Explanation :

 A set of attributes S is candidate key of relation R if the
closure of S is all attributes of R and there is no subset
of S whose closure is all attributes of R.

 Closure of AEH, i.e. AEH+ = {ABCDEH}

 Closure of BEH, i.e. BEH+ = {ABCDEH}

 Closure of DEH, i.e. DEH+ = {ABCDEH}

A N S W E R K E Y

1. C 2. A 3. B 4. A

5. B 6. C 7. A 8. C

9. B 10. A 11. B 12. A

13. C 14. C 15. A 16. C

17. B 18. A 19. A 20. B

21. A 22. B 23. A 24. D

25. A 26. A 27. C 28. C

29. A 30. C 31. C 32. C

33. C 34. D 35. C 36. C

37. D

6C H A P T E R S I X

Information System and

Software Engineering

6.1 Software Engineering—A Layered Technology

Software engineering encompasses a process, the manage-
ment of activities, technical methods, and use of tools to
develop software products. Fritz Bauer defined Software
engineering as the “establishment and use of sound engi-
neering principles in order to obtain economical software
that is reliable and works efficiently on real machines.”

IEEE definition of software engineering: (1) the applica-
tion of a systematic, disciplined, quantifiable approach to
the development, operation, and maintenance of software;
that is, the application of engineering to software. (2) The
study of approaches as in (1).

We need discipline but we also need adaptability and
agility.

Software engineering is a layered technology as shown
in Fig. 6.1. Any engineering approach must rest on an
organizational commitment to quality.The bedrock that
supports software engineering is a quality focus.

tools

methods

process model

a ''quality'' focus

Figure 6.1 Software Engineering: A layered view

The foundation for software engineering is a process
layer. It is the glue that holds the technology layers together
and enables rational and timely development of computer
software. Process defines a framework that must be
established for effective delivery of software engineering
technology.

The software process forms the basis for management
control of software projects and establishes the context in
which technical methods are applied, work products (mod-
els, documents, data, reports, etc.) are produced, milestones
are established, quality is ensured, and change is properly
managed.

Software engineering methods provide the technical
“how to’s” for building software. Methods encompass a
broad array of tasks that include communication, require
analysis, design, coding, testing and support.

Software engineering tools provide automated or semi-
automated support for the process and the methods.

When tools are integrated so that information created by
one tool can be used by another, a system for the support of
software development called computer-aided software engi-
neering is established.

6.1.1 A Process Framework

Software process models can be prescriptive or agile, com-
plex or simple, all-encompassing or targeted, but in every
case, five key activities must occur. The framework activi-
ties are applicable to all projects and all application do-
mains, and they are a template for every process model.

6.2 Computer Science & Information Technology for GATE

Software process

Process framework

Umbrella activities

Framework activity #1

Software engineering action

Each framework activity is populated by a set of software
engineering actions — a collection of related tasks that pro-
duces a major software engineering work product (design
is a software engineering action). Each action is populated
with individual work tasks that accomplish some part of the
work implied by the action.

The following generic process framework is applicable to
the vast majority of software projects.
Communication: Involves heavy communication with
the customer (and other stakeholders) and encompasses
requirements gathering.
Planning: Describes the technical tasks to be conducted,
the risks that are likely, resources that will be required, the
work products to be produced and a work schedule.
Modeling: Encompasses the creation of models that allow
the developer and customer to better understand software
requirement and the design that will achieve those require-
ments.
Construction: Combines code generation and the testing
required uncovering errors in the code.
Deployment: Deliver the product to the customer who
evaluates the delivered product and provides feedback.

Each software engineering action is represented by a
number of different task sets – each a collection of software
engineering work tasks, related work products, quality as-
surance points, and project milestones.

The task set that best accommodates the needs of the
project and the characteristics of the team is chosen.

The framework described in the generic view of software
engineering is complemented by a number of umbrella ac-
tivities. Typical activities include:
Software project tracking and control: Allows the team to
assess progress against the project plan and take necessary
action to maintain schedule.
Risk management: Assesses the risks that may affect the
outcome of the project or the quality.
Software quality assurance: Defines and conducts the ac-
tivities required to ensure software quality.
Formal technical review: Uncover and remove errors be-
fore they propagate to the next action.
Measurement: Defines and collects process, project, and
product measures that assist the team in delivering software
that meets customers’ needs.
Software configuration management: Manages the effect
of change throughout the software process.
Reusability management: Defines criteria for work prod-
uct reuse.

Work product preparation and production: Encompass-
es the activities required to create work products such as
models, documents, etc.

6.2 The Software Engineering Process

6.2.1 The Linear Sequential Model

(Waterfall Model)

The linear sequential model is one of the oldest models
available and is still thought to be one of the most widely
used process models in software development.

The linear sequential model illustrates a sequenced sys-
tematic approach to software development, which starts with
analysis and progresses through each stage to testing and
maintenance (completion). Each stage has a set of defined
milestones and results and progress to another stage does not
occur until these predefined results are accomplished.

Code Test

System/information
Engineering

Analysis Design

Figure 6.2 The Linear Sequential Model

The first stage, system engineering and modelling involves
establishing requirements for all systems elements such as
system architecture, hardware, system function and goals,
etc. System/Information Engineering and analysis encom-
passes requirements gathering at the system level and stra-
tegic business level with a certain amount of top-level anal-
ysis and design. When this stage is complete and software
system constraints are identified due to system require-
ments software requirements analysis begins.

6.2.1.1 Software Requirements Analysis

This activity involves requirements gathering specifically
for the software part of the system. The information do-
main, required function, behaviour, performance, and in-
terfacing need to be fully understood. These requirements
are defined during meetings with software developers and
customers/users.

6.2.1.2 Software Design

This is a multistage process. The design process translates
the requirements defined in last stage into a software rep-
resentation that can be assessed for quality before coding
begins.

Information System and Software Engineering 6.3

ments and what task software is to carry out. This model
gives all stakeholders a better understanding of software to
be built, clarifies and discovers requirements that may not
have been discovered until after system was developed.

Listen to
customer

Build/revise
mock-up

Customer test-
drives mock-up

Figure 6.3 The Prototyping Paradigm

6.2.3 Evolutionary Software Process Model

Complex software systems evolve during software develop-
ment creating new system and software requirements. This
makes straight line SDLC impossible to follow. However
due to competition and marketing forces, a limited ver-
sion of the software must be released. This method allows
production of increasingly more complete versions of the
software product.

6.2.4 The Spiral Model

Boehm developed the spiral model in 1988; it is an iterative
prototyping model that uses the systematic and formal

6.2.1.3 Testing

Testing begins once code has been generated. Testing un-
covers errors, which caused incorrect output or input that
do not match the agreed requirements of the system.

6.2.1.4 Maintenance

All software except perhaps embedded software, will go
through changes after it has been developed. These chang-
es may arise due to changes in the external environment
(e.g., change in hardware infrastructure) or due to errors
encountered or changes in customers’ requirements (func-
tional or non-functional). The maintenance phase will re-
apply the above steps to the existing program rather than
creating a new one.

6.2.2 The Prototyping Model

This model is often used when customers/users are unable
to quantify or describe their requirements accurately for the
software system. This is an iterative model with each succes-
sive phase becoming more detailed and strictly documented
than the first. Therefore, the first iteration is very creative
and unconstrained and informal. This model usually begins
with requirements gathering. Then a prototype is quickly
put together using initial requirements gathering. The quick
design focussed on a representation of those aspects of the
software that will be viable to customers/users in order to
try to improve their requirements. The customers/users
then test-drive or evaluate the prototype. Iterations through
this loop allow stakeholders to better understand require-

Determine objectives,
alternatives
constraints

Evaluate alternatives;
identify, resolve risks

Risk analysis

REVIEW

Risk
analysis

Risk analysis

Proto-
type 2

Proto-
type 3

Final
proto-
type

Requirements plan

Life cycle plan
Operation
Concepts

Development plan

Integration and
test plan

Requirement
validation

Design
Validation and
vertication

Plan next phase
Service

Simulations models benchmarks

Acceptance
test

Product
design Detailed

design

Code
Unit test

Integration
test

Develop, verify
next-level product

Figure 6.4 Example of a Spiral Development Process [Boehm88]

6.4 Computer Science & Information Technology for GATE

approaches of the linear model. The model like all the others
is broken up into phases from communication, planning,
risk analysis, engineering construction and release, and
customer evaluation. After each iteration targets deliver-
ables, risk and the number of iterations to be completed
are adjusted after discussions between stakeholders. A
prototype is usually produced after each iteration starting
with paper-based models and working to more complete
prototypes. Each of the phases encompasses certain work
tasks that are characteristic of the software project. Thus
this model can be applied to small and large projects with
more complex, comprehensive and numerous tasks can be
carried out for each phase. However, it is not the perfect
model. It may be difficult to convince customers that the
development process is controllable. Also its success relies
heavily on the success of the risk analysis expertise used.

6.3 Software Requirement Specification

A system is a collection of elements that are organised to per-
form a task using some method. They involve elements such
as hardware, software, people, procedures and processes. A
system analyst defines these elements of system initially.

System Analysis Objectives:

Before preparing SRS (Software Requirement Specifica-
tion) system should be analysed for following tasks:

(a) To identify customer needs

(b) Feasibility of system

(c) To perform technical and economic analysis

(d) Establish cost

The main aim is to identify customer needs, which lead to
success of software system.

Feasibility Study:

This is a study about time and money is enough or not. This
involves cost-benefit analysis of the system.

Technical feasibility indicates that what technology to be
used for development and tools needed.

Requirements Engineering:

This phase believes – “A problem well specified is half-solved”.
Requirement engineering is a disciplined application

of proven, principals, methods, tools and notations to de-
scribe a proposed system’s intended behavior and its associ-
ated constraints.

This includes following activities:

(1) Identification and documentation of user needs.

(2) Creation of a document describing external behavior
and its associated constraints.

(3) Analysis and validation of document to ensure com-
pleteness.

The primary output of this stage is requirement speci-
fication, which describes both hardware and software. If

it describes only software then it is “Software requirement
Specification”. The document must be understandable by:
users, customers, designers and testers. The document in-
cludes.

(1) Inputs and Outputs

(2) Functional requirements

(3) Non-functional requirements-performance

Reasons for Poor-Requirement Engineering:

(1) Requirements will change

(2) Difficult to cover

(3) Communication barrier between developers and users

(4) Lack of confidence of developers

(5) Use of in-appropriate methods

(6) Insufficient training

Software Requirement Specification (SRS)

SRS is a means of translating ideas in the minds of clients
into a formally specified set of requirements. SRS docu-
ment is a communication medium between customer and
the supplier. The document is initially not to be edited.

This phase includes following activities;

(a) Problem/Requirement Specification

(b) Requirement Specification.

The first step is to understand the problem, goals, and con-
straints.

Second step is the specification of needs that is identified
in first step. This phase terminates with validated require-
ment specification document.

Why SRS is required?

This may be used in competitive tendering of the company
or writing to their own.

Used to capture user requirements and highlight any in-
consistencies, conflicting requirements.

The client does not know about software or software de-
velopment and the developers do not understand client’s
problem and application area. Hence there is a communi-
cation gap between client and developers. Thus, SRS act as
a bridge between this communication gaps.

A good SRS should satisfy all parties. SRS also helps cli-
ents to understand their needs.

What is contained in SRS? / Components of SRS

The SRS document should contain a list of requirements
that has to be agreed by both client and developers.

(1) Functional requirements

(2) Performance requirements

(3) Interface requirements

(4) Operational requirements

(5) Resource requirements

(6) Verification requirements

(7) Acceptance testing requirements

Information System and Software Engineering 6.5

(8) Documentation requirements

(9) Quality requirements

(10) Safety requirements

(11) Reliability and Maintainability requirements

(1) Functional Requirements

This is a subset of overall system requirements. This con-
sider trade-offs (hardware and software) and also describes
how the system operates under normal conditions and re-
sponse to software failures OR invalid inputs to system.

(2) Performance Requirements

This can be stated in measurable value i.e., rate, frequency,
speeds and levels. This can be extracted from system speci-
fications.

(3) Interface Requirements

This can be specified separately for hardware and software.
These requirements specify any interface standard that is
requested. These should be carefully documented.

(4) Operational Requirements

This gives the “in the field” view of the system. The specified
details are,

(a) How system will operate and communicate?

(b) What are the operator syntax/notations?

(c) How many operators and their qualification required?

(d) What help is provided by system.

(e) How error messages should be displayed?

(f) What is screen layout look?

(5) Resource Requirements

Specify utilisation of hardware, such as amount, percentage
and memory usage. This is very important when extending
hardware. The software resources include using specific,
certified, standard compilers and databases.

(6) Verification Requirements

This specifies how customer accepts after completion of
project. This specifies how functional and performance re-
quirements to be measured. This also states, whether tests
are to be staged or only under completion of the project and
also whether a representative of client’s company should
present or not.

(7) Acceptance Testing

This provides details of tests to be performed for customer
acceptance in document.

(8) Documentation Requirements

This specifies what documents are to be supplied to client,
either through the project OR at the end of the project. The
document and other relevant documentation

(9) Quality Requirements

This specifies whether product should meet international
or local standards. The quality factors are: Correctness, re-
liability, efficiency, integrity, usability, maintainability, flex-
ibility, portability and reusability

(10) Safety Requirements

This specifies safety steps to be taken for protection of hu-
man, equipments and data. i.e., protecting from moving
parts, electrical circuitry and other physical dangers

(11) Reusability Requirements

This states that software must perform function under stat-
ed conditions, for a given period of time.

(12) Maintainability Requirements

This is maintenance of software in the site it is used, for
hardware and software changes in the system.

Characteristics of Good SRS

The SRS must be clear, concise, consistent, traceable and
unambiguous.
Complete: The SRS should include all types of require-
ments to be specified.
Consistent: There should not be any conflict, there may be
following confliction.

• Multiple descriptors: Two or more words referring
to the same object.

• Opposing physical requirements: Description of
real world objects clash, i.e., one requirement states
warning indicates orange and another states red.

• Opposing functional requirements: This is a con-
flict in functions.

Traceable: Tracing the references, which help in modifica-
tions have made to requirement to bring out to its current
state. This is an aid in modification in future documents by
stating references.

Unambiguous: This means “Not having two or more possi-
ble meanings”. This means each requirement can have only
one interpretation. One way of removing the ambiguity is
to use requirement specification language. This is beneficial
when detecting ambiguity using lexical syntactic analysers.
The disadvantage is time needed for learning and under-
standing of the system to be built.

Verifiable: The software requirement specification must
be verifiable, that it contains all of the requirements of the
user. Verifiable requirements are that the software product
must use a cost effective method. Non-verifiable require-
ments are system should have good-interface and work well
under most conditions.

How requirement are specified?

The two factors needed for requirement specification are:

1. Notation used to describe requirement

2. How the notations is to be presented to the reader of
SRS document

Notations

These are the terms used for specifying the requirements.
This is used since the customer does not understand the
technical language. Hence, the requirement expert must
know the ability of knowledge of customer to understand

6.6 Computer Science & Information Technology for GATE

modeling. Modeling techniques include Z schema, DFD,
ER diagram, state transition diagram, and flow charts.

Benefits of Good SRS

1. Establish basis for agreement between client and sup-
plier.

2. Reduces development cost

3. Helps in removal of inconsistencies, omissions and
misunderstandings.

4. Helps in validation of final product.

6.4 Software Cost Estimation

Estimation of cost of the software products is an important
task. There are many factors which influence on cost of a
software products development and maintenance.

The primary cost factors are:

(a) Programmer ability and familiarity of application
area

(b) Complexity of product

(c) Size of the product and available time

(d) Required level of reliability

(e) Level of technology used

(f) Familiarity and availability of technology

6.4.1 Cocomo Model

Constructive Cost Estimation model was proposed by
Boehm. He postulates three classes of products:

(1) Organic products – Application programs (Data pro-
cessing and scientific)

(2) Semi- detached – Utility programs (Compilers, Link-
ers)

(3) Embedded – System programs

Boehm introduces three forms of COCOMO:

(1) Basic COCOMO

Computes development effort & cost, given program size in
estimated lines of code.

(2) Intermediate COCOMO

Computes effort as function of program size and various
cost drivers that relates to product, hardware, personnel,
and project attributes.

(3) Advanced COCOMO

This model incorporates all intermediate model charac-
teristics with an assessment of cost driver’s impact on each
step of software engineering process.

COCOMO can be applied to 3 modes of the projects

(a) Organic mode: These are simple, small projects de-
veloped by small teams with good experience.

(b) Semi-detached: These are medium sized projects
(in size and complexity) developed by the team with

mixed experience. This project doesn’t meet the rigid
requirements of the project.

(c) Embedded project: These projects should be devel-
oped within set of tight constraints.

Example: Flight control software.

Basic COCOMO Equation

E= ab x (KLOC) exp(bb) [Effort of person – months]
D=cb x (E) exp(db) [development time in months]

Where
E – Effort applied in person – months
D – Development time
KLOC – estimated no of lines of code
ab, cb – co-efficients
bb, db – components are in table.
From E and D, we can compute no of peoples required for
project N, by equation, N = N / D [People]

Software project ab bb Cb db

Organic 2.4 1.05 2.5 0.38

Semi-detached 3.0 1.12 2.5 0.35

Embedded 3.8 1.20 2.5 0.32

Intermediate COCOMO

This is an extended model with a set of cost drivers. The
equation is

 E = ai(LOC) exp(bi) x EAF

EAF – effort adjustment factor (range 0.9 – 1.4)
E- Effort applied in person months
ai, bi – co-efficients is shown in table below.

Software project ai bi

Organic 3.2 1.05

Semi-detached 3.0 1.12

Embedded 2.8 1.20

Table of cost drivers

Cost Driver Description

RELY

DATA Required software reliability

CPLX Database size

TIME Product complexity

STOR Execution time constraints

VIRT Virtual machine volatility – degree to which the
computer operating system change

TURN Computer turn around time

ACAP Analyst capability

AEXP Application experience

PCAP Programmer capability

VEXP Virtual machine (i.e operating system) experience

LEXP Programming language experience

MODP Use of modern programming practices

TOOL Use of software tools

SCED Required development schedule.

Information System and Software Engineering 6.7

Staffing level estimation

Modern studied different staffing patterns of different R and
D projects and uses Raleigh curve for staffing estimation.

This is the simplest way to determine numbers of soft-
ware engineers is to divide effort estimation. This is an
important since all phases of development doesn’t require
constant number of engineers. If a constant number of en-
gineers used may cause some phases will be over staffed
and some under staffed.
He derived an equation

E = K/td
2 x t x exp[–t2/2td

2]

Where E- effort required at time t. This is also an indication
of number of engineers at particular time.
K – Area under curve.
td – Time at which curve attains max. value.

E = K/td
2 x t x exp[–t2/2td

2]

E
ff
o
rt

s

Td Time

Td = Design time

6.5 Software Design

This is the step of moving from problem domain to solution
domain by taking input as SRS document and output of
this stage is architecture design of system to be build.

Design objectives: The major goal of this stage is to provide
a best possible design, within limitations by requirements,
by social and physical environment constraints. The criteria
used to evaluate design are

1. Verifiability (a) Completeness

 (b) Consistency

 (c) Efficiency

2. Traceability (a) Simplicity / understandability

Software design: Design is a blueprint or a plan of the so-
lution system, representing components, subsystems and
their interactions.

Major design activities are:

1. Architectural design: Identifying subsystems and
their relationships which makeup the system and
documented.

2. Abstract specification: Each subsystem must be ab-
stract and its services to be provided.

3. Component design: Designing services and inter-
faces of different components.

4. Data structure design: Designing detail specification
of data structure to be used in system.

5. Algorithm design: Designing algorithm used to ser-
vice to be provided in the system.

6.5.1 Important Points Related Module Level

Concepts

A module is a logically separable part of program which
is discrete unit. In a programming language, a module is
a function or a procedure. A module should support well
defined abstractions, solvable and modifiable separately.

The criteria used for modularisation are:

a. Coupling

b. Cohesion

Coupling: Coupling is the strength of interconnections
between modules or a measure of interdependence among
modules.

If two modules are closely connected means they are
“highly coupled”. “Loosely coupled” modules are having
weak interconnections, where modules have no inter con-
nections are having “no coupling”.

Coupling increases as the complexity of interface be-
tween modules increases.

Coupling is an abstract concept and it cannot be mea-
sured or formulated. Coupling can be minimised by reduc-
ing number of interface per module and complexity of in-
terface.

Two components can be dependent on

(a) Reference made between components i.e. module A
invokes module B, that means B depends on A.

(b) Amount of data passed between modules, just like
passing a block (array) of data from module A to
module B.

(c) Amount of control that a component has on another.

(d) The degree of complexity in interface between com-
ponents.

In practical, it is impossible to build components with no
coupling. But if coupling is high, then other components
are affected at the time of modification of a component.
Hence, a low coupling helps to minimise number of com-
ponents needing revision.
The types of coupling are:

(1) No coupling: The modules are not having intercon-
nections.

(2) Data coupling: In this coupling, only data will be
passed from one module to another.

(3) Stamp coupling: In this, data structure will be passed
from one component to another.

(4) Control coupling: In this a component passed a pa-
rameter to control the activity of another.

6.8 Computer Science & Information Technology for GATE

(5) Common coupling: In this many modules access
from a common data store (global data). In this, it is
difficult to determine which component is responsi-
ble for change in data.

(6) Content coupling: One component is completely
dependent on another. That is a component uses data
or control information maintained within another
module.

Components in object-oriented design have low coupling
since each object contains functions which defines actions
performed by it or on it. Thus, low coupling is an advantage
of object-oriented design.

Cohesion

Cohesion of a module represents how tightly bound the in-
ternal elements of the module are to one another. This is an
intra-module concept.
There are different levels of cohesion, they are

(1) Co-incidental Cohesion: This is a condition, where
there is no meaningful relationship among the ele-
ments of the module.

(2) Logical Cohesion: In this, there is some logical rela-
tionship between elements of the module.

(3) Temporal Cohesion: The elements in a module are
executed together. These exit in modules performing
“initialisation”, “clean-up”, and “termination”.

(4) Procedural Cohesion: A procedurally cohesive
module contains elements that belongs to same pro-
cedural limit.

(5) Communicational Cohesion: In this level, module
has elements that are related by a reference to the
same input or output data. This level module is per-
forming more than one function.

(6) Sequential Cohesion: The elements are together in
one module, where output of one forms an input to
another.

(7) Functional Cohesion: This is the strongest cohe-
sion, in which all elements of a module are related for
performing a single function. Functions like compute
square are functionally cohesive.

All models in a design must be good when it functionally
cohesive and low coupling, the number of modules ob-
tained by the portioning must be minimised. Because large
number complexity and lead to a bad design

6.5.2 Design Notations

The representations schemes used in design are called as
Design notations. Notations used to specify the external
characteristics structure and processing details of the sys-
tem, the design notations used are

1. Pseudo code

2. Structured English

3. Data flow diagram

4. Structural charts

6.5.2.1 Data Flow Diagrams

DFD is a tool used by system analysts to show the flow of
data in an information system. The different symbols or
components for representation are:

6.5.2.1.1 Process

Process transforms a data flow by either changing its struc-
ture or by generating new information from it.

Process Id Location of Process

Title of the process

A process must have at least one data flow into it and one
data flow out of it. A process in DFD having contains a pro-
cess id, location of process and process title.

6.5.2.1.2 Data flows

A data flows can be represented by an arrow depicts data
flowing form one process to another. The arrow head shows
directions of flow and with a label as identification.

—
Data Flow Name

Æ

6.5.2.1.3 Data stores

A data store is a computer file, a manual record or a pile of
documents. It is a collection of related information a tele-
phone book, patient records student records.

ID Data Store Name

Each data store is having a unique id that is a letter fol-
lowed by a number and data store name.

6.5.2.1.4 Sources and sinks (terminations
or external entities)

External entities are which provide or reactive information
form to the system.

Source name Sink name

A sink is a one which receives information from the in-
formation to the system. An external entities are people,

place, a manager, a sales department

Information System and Software Engineering 6.9

6.5.2.1.5 DFD leveling

DFD’s allows analyst or user to look a system at different
levels of details. DFD leveling is a practice where a DFD
depend on its details into set of DFD’s. The DFD depend on
its detail representation called as level 2 diagrams. If neces-
sary it is possible to design level 3 and level 4, etc. for more
detailed representation.

Context diagrams (level 0 DFD):

A level O DFD is known as context diagram representing
high level details of the system. Context diagram comprises
a process box for entire system, with external entities and
data flows between them.

A current physical DFD is a DFD showing data and op-
eration within current existing system.

Guidelines to draw context diagram

a. Read case study from start to end, until you get a fair
idea about system and its processes.

b. Make a list of external entities.

c. Identify data flows from system and to the s/m.

Level 1 DFD

More detailed representation is shown in level 1 DFD. Level
1 DFD contains data flows, data stores, process and external
entities. The data flows are connected to and from the actu-
al process which create reactive or change them. Processes
are identified by number as 1,2,3,4 and so on.

Guidelines to draw level 1 DFD:

a. Make a sentence of function in system and identify
verb as a process in the system

b. Make a list of all potential process

c. Group potential process to form 3 to 10 process. A
DFD must contain minimum of 3 and maximum of
10 process

d. Identify data flows

e. Identify list of data stores

6.5.2.1.6 Advantages of DFD

1. Easy to understand and validate correctness

2. Since DFD is a pictorial representation, it can be un-
derstood quickly than textural narration

3. DFD shows an abstract specification of system. It only
shows what system will do? Rather than how it can be
done?

6.5.2.2 Structured Charts

This is used in functional oriented design. The structure of a
program is made up of modules and their interconnections.

A structured chart is a graphical representation of struc-
ture of a problem. In this module is represented by a box,

with its name. The flow of data parameters are represented
by arrows. The parameters can be shown as data by unfilled
circle of the arrow (Fig. 6.5).

The invoking (calling) function is called “superiordi-
nates” and function is called “subordinate”

Main

Read nums Sort Add-n

Swap()

a, n Sum

x y, x y,

Figure 6.5 Structured Charts showing function calls

There may be situations, where designer wish to communi-
cate procedural information explicitly like loops and deci-
sions, there are represented as shown in Fig. 6.6(a) and (b).

A

B C D

A

B C D

(a) Iteration (b) Decision

Figure 6.6 Representation of loops and decision

making in structured charts

6.6 Software Testing Fundamentals

Testing is the process of exercising a program with the spe-
cific intent of finding errors prior to delivery to the end user.

6.6.1 Software Testing Strategies

Who Tests the Software?

developer independent tester

Understands the system

and, is driven by "delivery"

Must learn about the system,

and, is driven by quality

developer independent tester

Understands the system

and, is driven by "delivery"

Must learn about the system,

and, is driven by quality

All software testing strategies provide the software devel-
oper with a template for testing and all have the following
generic characteristics:

• Conduct effective formal technique reviews, by do-
ing this, many errors will be eliminated before test-
ing commences.

6.10 Computer Science & Information Technology for GATE

• Testing begins at the component level and works
“outward” towards the integration of the entire com-
puter-based system.

• Different testing techniques are appropriate at differ-
ent points in time.

• Testing is conducted by the developer of the software
and an independent test group.

• Testing and debugging are different activities, but de-
bugging must be accommodated by testing strategy.

6.6.1.1 Verification and Validation

Verification refers to the set of activities that ensure that
software correctly implements a specific function.
Validation refers to the set of activities that ensure that the
software has been built is traceable to customer requirements.

Verification: Are we building the product right?

Validation: Are we building the right product?

The definition of Verification and Validation encompasses
many of the activities that are encompassed by Software
Quality Assurance (SQA).

Testing does provide the last fortress from which qual-
ity can be assessed and more pragmatically, errors can be
uncovered.

Testing should not be viewed as a safety net that will
catch all errors that occurred because of weak software
engineering practices. Stress quality and error detection
throughout the software process.

6.6.1.2 Organising for Software Testing

For every software project, there is an inherent conflict of
interest that occurs as testing begins. Programmers that
built the software are asked to test it. Unfortunately, these
developers have a vested interest in demonstrating that the
program is error free and work perfectly according to the
customer’s requirement.

An independent test group does not have the conflict
that builders of the software might experience.

There are often a number of misconceptions that can be
erroneously inferred from the preceding discussion:

1. That the developer of software should not test.

2. That the software should be tossed over the wall to
strangers who will test it mercilessly.

3. That testers get involved only when testing steps are
about to begin.

These aforementioned statements are incorrect.
The role of an Independent Test Group (ITG) is to remove

inherent problems associated with letting the builder test
the software that has been built. The ITG and software en-
gineering. Work closely throughout a software project to
ensure that thorough tests are conducted.

Unit test Integration
test

Validation
test

System
test

Testing strategyTesting strategy
Unit test Integration

test

Validation
test

System
test

6.6.1.3 Strategic Issues

Testing Strategy

We begin by ‘testing-in-the-small’ and move toward
‘testing-in-the-large’

For conventional software

The module (component) is our initial focus

Integration of modules follows

For OO software

Our focus when “testing in the small” changes
from an individual module (the conventional
view) to an OO class that encompasses attributes
and operations and implies communication and
collaboration.

Specify product requirement in a quantifiable manner long
before testing commences. “Portability, maintainability, and
usability.”

State testing objectives explicitly. “Test effectiveness, test
coverage, mean time to failure, etc.”

Build use-cases. “Understand the users of the software
and develop a profile for each user category”.

Rapid cycle testing. “Develop a testing plan that empha-
sizes”. Feedback generated from rapid-cycle tests can be used
to control quality levels and the corresponding test strategies.

Build “robust” software that is designed to test itself.
Use effective formal technical reviews as a filter prior to

testing.
Conduct formal technical reviews to assess the test strategy

and test cases themselves.
Develop a continuous improvement approach for the test-

ing process. The test strategy should be measured by using
metrics.

6.6.1.4 Test Strategies for Traditional Software

6.6.1.4.1 Unit Testing

Both black-box and white-box testing techniques have roles
in testing individual software modules.

Unit Testing focuses verification effort on the smallest
unit of software design.
Unit Test Considerations

Module interface is tested to ensure that information prop-
erly flows into and out of the program unit under test.

Information System and Software Engineering 6.11

Local data structures are examined to ensure that data
stored temporarily maintains its integrity.

All independent paths through the control structure are
exercised to ensure that all statements in a module have
been executed at least once.

All error handling paths are tested.
If data do not enter and exit properly, all other tests are

moot.
Comparison and control flow are closely coupled. Test

cases should uncover errors such as:

1. comparison of different data types

2. incorrect logical operators or precedence

3. expectation of equality when precision error makes
equality unlikely

4. incorrect comparison of variables

5. improper loop termination

6. failure to exit when divergent iterations is encountered

7. improperly modified loop variables

Boundary testing is essential. software often fails at its
boundaries. Test cases that exercise data structure, control
flow, and data values just below, at, and just above maxima
and minima are very likely to uncover errors.

Error handling: When error handling is evaluated, po-
tential errors should be tested:

1. error description is unintelligible

2. error noted does not correspond to error encountered

3. error condition causes O/S intervention prior to error
handling

4. exception-condition processing is incorrect

5. error description does not provide enough informa-
tion to assist the location of the cause of the error.

Unit Test Procedures

Because a component is not a stand-alone program, driver
and/or stub software must be developed for each unit test.

RESULTS

test cases

interface

local data structures

boundary conditions

independent paths

error handling paths

stub stub

Module

RESULTS

test cases

interface

local data structures

boundary conditions

independent paths

error handling paths

Figure 6.7 Unit Testing

In most applications, a driver is nothing more than a
“main program” that accepts test case data, passes such data
to the component, and prints relevant results.

Stubs serve to replace modules that are subordinate to
the component to be tested. A stub “dummy program” uses
the subordinate module’s interface, may do minimal data
manipulation, provides verification of entry, and returns
control to the module undergoing testing.

6.6.1.4.2 Integration Testing Strategies

Integration testing often forms the heart of the test specifi-
cation document. Do not be dogmatic about a “pure” top
down or bottom up strategy. Rather, emphasise the need
for an approach that is tied to a series of tests that (hope-
fully) uncover module interfacing problems.

Options:

• The “big bang” approach: all components are com-
bined in advance; the entire program is tested as a
whole.

• An incremental Integration: is the antithesis of the
big bang approach. The program is constructed and
tested in small increments, where errors are easier to
isolate and correct.

Integration Testing is a systematic technique for construct-
ing the software architecture while at the same time con-
ducting tests to uncover errors associated with interfacing.
The objective is to take unit tested components and build a
program structure that has been dictated by design.

Top-down Integration

Top-down Integration testing is an incremental approach to
construction of the software arch.

Modules are integrated by moving downward through
the control hierarchy, beginning with the main control
module (main program).

Modules subordinate to the main control module are
incorporated into the structure in either depth-first or
breadth-first manner.

Depth-first integration integrates all components on a
major control path of the program structure. Selection of a
major path is somewhat arbitrary and depends on applica-
tion-specific characteristics.

Breadth-first integration incorporates all components di-
rectly subordinate at each level, moving across the structure
horizontally.

The integration process is performed in a series of 5 steps:

1. The main control module is used as a test driver, and
stubs are substituted for all components directly sub-
ordinate to the main control module.

2. Depending on the integration approach selected sub-
ordinate stubs are replaced one at a time with actual
components.

6.12 Computer Science & Information Technology for GATE

3. Tests are conducted as each component is integrated.

4. On completion of each set of tests, another stub is re-
placed with the real component.

5. Regression testing may be conducted to ensure that
new errors have not been introduced.

The process continues from step 2 until the entire program
structure is built.

as new modules are integrated

stubs are replaced one at
a time, "depth first"

top module is tested with
stubs

D E

C
as new modules are integrated

stubs are replaced one at
a time, "depth first"

B F

A

G

top module is tested with
stubs

Top-down strategy sounds relatively uncomplicated, but, in
practice, logistical problems can arise.

Bottom-down Integration

Bottom-down Integration testing begins construction test-
ing with atomic modules.

The Bottom-down Integration strategy may be imple-
mented with the following steps:

1. Low-level components are combined into clusters that
perform a specific software sub-function.

2. A driver is written to coordinate test case input and
output.

3. The cluster is tested.

4. Drivers are removed and clusters are combined mov-

ing upward in the program structure.

drivers are replaced one at a
time, "depth first"

worker modules are grouped into
builds and integrated.

cluster

drivers are replaced one at a
time, "depth first"

D E

C

B F G

worker modules are grouped into
builds and integrated.

A

cluster

6.6.1.4.3 Regression testing

Regression testing is the re-execution of some subset of tests
that have already been conducted to ensure that changes
have not propagated unintended side effects.

Regression testing is the activity that helps to ensure that
changes do not introduce unintended behaviour or addi-
tional errors.

The regression test suite contains three different classes
of test cases:

1. A representative sample of tests that will exercise all
software functions.

2. Additional tests that focus on software functions that
are likely to be affected by the change.

3. Test that focus on the software system components
that have been changed.

6.6.1.4.4 Smoke Testing

Smoke Testing: It is an integration testing approach that
is commonly used when software products are being de-
veloped.

A common approach for creating “daily builds” for prod-
uct software smoke testing steps:

1. Software components that have been translated into

code are integrated into a “build.” A build includes

all data files, libraries, reusable modules, and engi-

neered components that are required to implement

one or more product functions.

2. A series of tests is designed to expose errors that will

keep the build from properly performing its func-

tion. The intent should be to uncover “show stopper”

errors that have the highest likelihood of throwing

the software project behind schedule.

3. The build is integrated with other builds and the en-

tire product (in its current form) is smoke tested

daily. The integration approach may be top down or

bottom up.

Smoke testing provides a number of benefits when it is ap-
plied on complex, time critical software projects.

• Integration risk is minimised: because smoke tests are
conducted daily, incompatibilities and other errors
are uncovered early.

• The quality of the end-product is improved: because
the approach is construction oriented, smoke testing
is likely to uncover functional errors and architec-
tural and component-level design errors.

• Error diagnosis and correction are simplified: errors
uncovered during smoke testing are likely associated
with “new software increments”.

• Progress is easier to access: with each passing day,
more of the software has been integrated and more

has been demonstrated to work.

Information System and Software Engineering 6.13

6.6.1.4.5 Test Strategies for Object-
Oriented Software

This section clarifies the differences between OOT and con-
ventional testing with regard to unit testing and integration
testing. The key point to unit testing in an OO context is
that the lowest testable unit should be the encapsulated
class or object (not isolated operations) and all test cases
should be written with this goal in mind.

Given the absence of a hierarchical control structure
in OO systems integration testing of adding operators to
classes is not appropriate.

Unit Testing in the OO Context

An encapsulated class is the focus of unit testing; however,
operations within the class and the state behaviour of the
class are the smallest testable units.

Class testing for OO software is analogous to module
testing for conventional software. It is not advisable to test
operations in isolation.

Integration Testing in the OO Context

An important strategy for integration testing of OO soft-
ware is thread-based testing. Threads are sets of classes
that respond to an input or event. Use-based tests focus on
classes that do not collaborate heavily with other classes.

Thread-based testing integrates the set of classes re-
quired to respond to one input or event for the system.
Each thread is integrated and tested individually.

Use-based testing begins the construction of the system
by testing those classes (called independent classes) that
use very few server (if any) classes.

Next, the dependent classes, which use independent
classes, are tested.

This sequence of testing layers of dependent classes con-
tinues until the entire system is constructed.

Cluster testing is one-step in the integration testing of
OO software. A cluster of collaborating classes is exercised
by designing test cases that attempt to uncover errors in the
collaborations.

6.6.1.5 Validation Testing

Validation testing is described as the last chance to catch
program errors before delivery to the customer. If the
users are not happy with what they see, the developers
often do not get paid. The key point to emphasise is
traceability to requirements. In addition, the importance
of alpha and beta testing (in product environments)
should be stressed.

High Order Testing

Validation Test Criteria:
Focus is on software requirements. A test plan outlines

the classes of tests to be conducted, and a test procedure

defines specific test cases. Both the plan and procedure
are designed to ensure that all functional requirements are
satisfied, all behavioral characteristics are achieved, and all
performance requirements are attained, documentation is
correct, and usability and other requirements are met.

Configuration Review:
It is important to ensure that the elements of the software
configuration have been properly developed.

Alpha/Beta testing:
The focus is on customer usage.

The alpha-test is conducted at the developer’s site by
end-users. The software is used in natural setting with the
developer “looking over the shoulder” of typical users and
recording errors and usage problems. Alpha tests are con-
ducted in a controlled environment.

The beta-test is conducted at the end-users sites. The de-
veloper is generally not present. Beta test is a live applica-
tion of the software in an environment that cannot be con-
trolled by the developer. The end-user records errors and
all usage problems encountered during the test and the list
is reported to the developer. Then software engineers make
modifications and then prepare for release of software
product to the entire customer base.

6.6.1.6 System Testing

The focus is on system integration. “Like death and taxes,
testing is both unpleasant and inevitable.”

System Testing is a series of different tests whose prima-
ry purpose it to fully exercise the computer-based system.
The following are the types of system tests:

Recovery Testing

Forces the software to fail in a variety of ways and verifies
that recovery is properly performed. “Data recovery”

Security Testing

It verifies that protection mechanisms built into a system
will, in fact, protect it from improper penetration.

Beizer “The system’s security must, of course, be tested
for invulnerability from frontal attack-but must also be
tested for invulnerability from flank or rear attack.”

Stress Testing

It executes a system in a manner that demands resources in
abnormal quantity, frequency, or volume.
For example:

(1) Special tests may be designed to generate 10 inter-
rupts per second, when one or two is the average rate,

(2) Input data rates may be increased by an order of mag-
nitude to determine how input functions will respond,

(3) Test cases that require maximum memory or other
resources are executed,

(4) Test cases that may cause memory management prob-
lems are designed,

6.14 Computer Science & Information Technology for GATE

(5) Test cases that may cause excessive hunting for disk-
resident data are created.

A variation of stress testing is a technique called sensitivity
testing. They attempt to uncover data combinations within
valid input classes that may cause instability or improper
processing.

Performance Testing

It tests the run-time performance of software within the
context of an integrated system.

Performance tests are coupled with stress testing and
usually require both hardware and software instrumenta-
tion. “Processing Cycle, log events”.

6.6.1.7 The Art of Debugging

The Debugging Process

test casestest cases

correctionscorrections

identified
causes

identified
causes

regression
tests

regression
tests

suspected
causes

suspected
causes

new test
cases

new test
cases

Debugging occurs as a consequence of successful testing.
That is, when a test case uncovers an error, debugging is an
action that results in the removal of the error.

Debugging is not testing but occurs as a consequence of
testing. Debugging process begins with the execution of a
test case.

Results are assessed and a lack of correspondence between
expected and actual performance is encountered. In many
cases, the non-corresponding data are a symptom of an
underlying cause as yet hidden. Debugging attempts to match
symptom with cause, thereby leading to error correction.
Debugging will always have one of two outcomes:

(1) The cause will be found and corrected, or

(2) The cause will not be found.

Why is debugging so difficult?

1. The symptom and the cause may be geographically
remote highly coupled components.

2. The symptom may disappear temporarily when an-
other error is corrected.

3. The symptom may actually be caused by non-errors
(round-off inaccuracies).

4. The symptom may be caused by human error that is
not easily traced.

5. The symptom may be a result of timing problem,
rather than processing problems.

6. It may be difficult to accurately reproduce input con-
ditions (a real-time application on which input order-
ing is indeterminate).

7. The symptom may be intermittent. That is particu-
larly common in embedded systems that couple hard-
ware and software inextricably.

8. The symptom may be due to causes that are distrib-
uted across a number of tasks running on different
processors.

Psychological Considerations

It appears that debugging process is an innate human trait.
Although it may be difficult to learn how to debug, a num-
ber of approaches to the problem can be proposed.

Three debugging strategies have been proposed:

1. Brute force

2. Backtracking

3. Cause Elimination

Each of these strategies can be conducted manually, but
modern tools can make the process much more effective.

Brute force is probably the most common and least ef-
ficient method for isolating the cause of a software error.
Using a “let the computer find the error”, memory dumps,
run-time traces, and loading the program with output
statements.

Although the mass of information may ultimately lead to
success, it more frequently leads to wasted effort and time.

Backtracking: Beginning at the site where a symptom has
been uncovered, the source code is traced backwardly until
the site of the cause is found. The larger the program, the
harder is to find the problem.

Cause elimination: It is maintained by induction or de-
duction and introduces the concept of binary partitioning.
Data related to the error occurrence are organised to isolate
potential causes.

A “cause hypothesis” is devised, and the aforementioned
data are used to prove or disprove the hypothesis. Alterna-
tively, a list of all possible causes is developed, and tests are
conducted to eliminate each.

Its initial tests indicate that a particular cause hypothesis
shows promise; data are refined in an attempt to isolate the
bug.

Formal reviews by themselves cannot locate all software
errors. Testing occurs late in the software development
process and is the last chance to catch bugs prior to cus-
tomer release.

6.6.2 Testing Procedures

Testability: is simply how easily a computer program can
be tested.

Information System and Software Engineering 6.15

The following characteristics lead to testable software:

Operability: It operates cleanly if implemented with quality
in mind.

Observability: The results of each test case are readily ob-
served. Variables are visible during execution. Source code
is available.

Controllability: The degree to which testing can be auto-
mated and optimised

Decomposability: Testing can be targeted; independent
modules can be tested independently.

Simplicity: Reduce complex architecture and logic to sim-
plify tests; code simplicity coding standards.

Stability: Few changes are requested during testing, the
software recovers well from failures.

Understandability: Changes to the design are communi-
cated to the testers.

6.6.2.1 Test Characteristics

1. A good test has a high probability of finding an error.
Tester must understand the system and develop a
mental picture of how it might fail.

2. A good test is not redundant; every test should have a
different purpose.

3. A good test should be “best of breed”; the test that has
the highest likelihood of uncovering a whole class of
errors should be used.

4. A good test should be neither too simple nor too
complex.

6.6.2.2 Black-Box and White-Box Testing

This section discusses the differences between black-box
and white-box testing.

“Bugs lurk in corners and congregate at boundaries ...”

OBJECTIVE

CRITERIA

CONSTRAINT

to uncover errors

in a complete manner

with a minimum of effort and time

OBJECTIVE

CRITERIA

CONSTRAINT

to uncover errors

in a complete manner

with a minimum of effort and time

Black-Box testing alludes to tests that are conducted at the
software interface. It examines some fundamental aspects
of a system with little regard for the internal logical struc-
ture of the software.

White-Box testing is predicated on close examination of
procedural detail. Logic paths through the software and
collaborations between components are tested by provid-
ing test cases that exercise sets of conditions and/or loops.

6.6.2.3 White-Box Testing

This section makes the case that white-box testing is im-
portant, since there are many program defects (e.g. logic
errors) that black-box testing can not uncover.

Sometimes called glass-box testing, is a test case design
philosophy that uses the control structure described as part
of component-level design to derive test cases.

The S/W engineering can derive test cases that:

1. Guarantee that all independent paths within a mod-
ule have been exercised at least once,

2. Exercise all logical decisions on their true and false
sides,

3. execute all loops at their boundaries and within their
operational bounds,

4. Exercise internal data structures to ensure their valid-
ity.

6.6.2.4 Basis Path Testing

This section describes basis path testing as an example of a
white-box testing technique.

Basis Path Testing is a white-box testing technique
which enables the test case designer to derive logical com-
plexity measure of procedural design and use this measure
as a guide for defining a set of execution paths.

Test cases derived to exercise the basis set are guaran-
teed to execute every statement in the program at least once
time during testing.

6.6.2.4.1 Flow Graph Notation

A flowchart is used to depict program control structure.
Each circle, called a flow graph node, represents one or more
procedural statements. A sequence of boxes and decision
diamond can map into a single node. The arrows on the
flow graph, called edges or links, represent flow of control
and are analogous to flowchart arrows.

An edge must terminate at a node, even if the node does
not represent any procedural statements.

Areas bounded by edges and nodes are called regions.
When counting regions, we include the area outside the
graph as a region.

6.6.2.5 Control Structure Testing

Basis path testing is one form of control structure testing.
This section introduces three others (condition testing,
data flow testing, loop testing). The argument given for us-
ing these techniques is that they broaden the test coverage
from that which is possible using basis path testing alone.

6.6.2.6 Black-Box Testing

The purpose of black-box testing is to devise a set of data
inputs that fully exercise all functional requirements for a
program. It is important to know that in black-box testing
the test designer has no knowledge of algorithm implemen-
tation. The test cases are designed from the requirement

6.16 Computer Science & Information Technology for GATE

statements directly, supplemented by the test designer’s
knowledge of defects that are likely to be present in mod-
ules of the type being tested.

It is also called behavioural testing, which focuses on the
functional requirements of the software.

Black-box testing attempts to find errors in the following
categories:

1. incorrect or missing functions

2. interface errors

3. errors in data structures or external database access

4. behaviour or performance errors

5. initialisation and termination errors

Black-box testing tends to be applied during the later stage of
testing. Tests are designed to answer the following questions:

How is functional validity tested?

How is system behaviour and performance tested?

What classes of input will make good test cases?

Is the system particularly sensitive to certain input
values?

How are the boundaries of a data class isolated?

What data rates and data volume can the system toler-
ate?

What effect will specific combinations of data have on

system operation?

OOT—Test Case Design

Berard [BER93] proposes the following approach:

1. Each test case should be uniquely identified and
should be explicitly associated with the class to be
tested

2. The purpose of the test should be stated

3. A list of testing steps should be developed for each test
and should contain [BER94]:

a. a list of specified states for the object that is to be
tested.

b. a list of messages and operations that will be
exercised as a consequence of the test.

c. a list of exceptions that may occur as the object is
tested.

d. a list of external conditions (i.e., changes in the
environment external to the software that must
exist in order to properly conduct the test).

e. supplementary information that will aid in un-
derstanding or implementing the test.

Testing Methods

Fault-based testing

• The tester looks for plausible faults (i.e., aspects of
the implementation of the system that may result in
defects). To determine whether these faults exist, test
cases are designed to exercise the design or code.

Class Testing and the Class Hierarchy

• Inheritance does not obviate the need for thorough
testing of all derived classes. In fact, it can actually
complicate the testing process.

Scenario-based Test Design

• Scenario-based testing concentrates on what the
user does, not what the product does. This means
capturing the tasks (via use-cases) that the user has
to perform, then applying them and their variants as
tests.

OOT Methods: Random Testing at the Class Level

Random testing

• identify operations applicable to a class

• define constraints on their use

• identify a minimum test sequence

— an operation sequence that defines the minimum
life history of the class (object)

• generate a variety of random (but valid) test sequences

— exercise other (more complex) class instance life
histories

OOT Methods: Partition Testing

Partition Testing

• reduces the number of test cases required to test a
class in much the same way as equivalence partition-
ing for conventional software.

• state-based partitioning

— categorise and test operations based on their abil-
ity to change the state of a class

• attribute-based partitioning

— categorise and test operations based on the attri-
butes that they use

• category-based partitioning

— categorise and test operations based on the ge-
neric function each performs.

OOT Methods: Inter-Class Testing

Inter-class testing

• For each client class, use the list of class operators
to generate a series of random test sequences. The
operators will send messages to other server classes.

• For each message that is generated, determine the
collaborator class and the corresponding operator in
the server object.

• For each operator in the server object (that has been
invoked by messages sent from the client object), de-
termine the messages that it transmits.

• For each of the messages, determine the next level of
operators that are invoked and incorporate these into
the test sequence.

Information System and Software Engineering 6.17

empty
acct setup accnt

set up
acct

deposit
(initial)

withdrawal
(final)

Working
acct

deposit

withdraw

balance
credit

accntinfo

close

dead
acct

nonworking
acct

open

Figure 6.8 State diagram for Account class (adapted from

[KIR94])

The tests to be designed should achieve all state coverage
[KIR94]. That is, the operation sequences should cause
the Account class to make transition through all allowable
states.

Testing Patterns

Pattern name: pair testing

Abstract: A process-oriented pattern, pair testing describes
a technique that is analogous to pair programming in which
two testers work together to design and execute a series of
tests that can be applied to unit, integration or validation
testing activities.

Pattern name: separate test interface

Abstract: There is a need to test every class in an object-ori-
ented system, including “internal classes” (i.e., classes that
do not expose any interface outside of the component that
used them). The separate test interface pattern describes
how to create “a test interface that can be used to describe
specific tests on classes that are visible only internally to a
component.”

Pattern name: scenario testing

Abstract: Once unit and integration tests have been con-
ducted, there is a need to determine whether the software
will perform in a manner that satisfies users. The scenario
testing pattern describes a technique for exercising the soft-
ware from the user’s point of view. A failure at this level
indicates that the software has failed to meet a user visible
requirement. [KAN01]

6.7 Software Quality

Software quality can be defined as:
Conformance to the explicitly stated functional and perfor-
mance requirements, explicitly documented development

standards, and implicit characteristics that are expected of all
professionally developed software.

This implies the existence of a set of standards used by
the developer and customer expectations that a product
will work well. Conformance to implicit requirements (e.g.
ease of use and reliable performance) is what sets software
engineering apart from simply writing programs that work
most of the time. Several sets of software quality factors are
described.

The definition serves to emphasise three important points:

1. Software requirements are the foundation from
which quality is measured. Lack of confirmation to
requirement is lack of quality.

2. Specified standards define a set of development crite-
ria that guide the manner in which software is engi-
neered. If the criteria are not followed, lack of quality
will almost surely result.

3. There is a set of implicit requirements that often goes
unmentioned. If software conforms to its explicit re-
quirements but fails to meet implicit requirements,
software quality is suspect.

6.7.1 McCall’s Quality Factors

McCall’s quality factors were proposed in the early 1970s.
They are as valid today as they were in that time. It’s likely
that software built to conform to these factors will exhibit
high quality well into the 21st century, even if there are dra-
matic changes in technology.

The factors that affect software quality can be catego-
rized in two broad groups:

1. factors that can be directly measured (defects uncov-
ered during testing)

2. factors that can be measured only indirectly (usability
and maintainability)

PRODUCT REVISION

PRODUCT OPERATION

Correctness

Reliability

Usability

Integrity

Efficiency

PRODUCT TRANSITION

Maintainability
Flexibility
Testability

Portability
Reusability
Interoperability

Figure 6.9 McCall’s Triangle of Quality

The software quality factors shown above focus on three
important aspects of a software product:

• Its operational characteristics

• Its ability to undergo change

• Its adaptability to new environments

6.18 Computer Science & Information Technology for GATE

Referring to these factors, McCall and his colleagues pro-
vide the following descriptions:

Correctness: The extent to which a program satisfies its
specs and fulfills the customer’s mission objectives.

Reliability: The extent to which a program can be expected
to perform its intended function with required precision.

Efficiency: The amount of computing resources and code
required to perform is function.

Integrity: The extent to which access to software or data by
unauthorised persons can be controlled.

Usability: The effort required to learn, operate, prepare in-
put for, and interpret output of a program.

Maintainability: The effort required to locate and fix errors
in a program.

Flexibility: The effort required to modify an operational
program.

Testability: The effort required to test a program to ensure
that it performs its intended function.

Portability: The effort required to transfer the program
from one hardware and/or software system environment to
another.

Reusability: The extent to which a program can be reused in
other applications related to the packaging and scope of the
functions that the program performs.

Interoperability: The effort required to couple one system
to another.

6.7.2 9126 Quality Factors

ISO 9126 is an international standard for the evaluation of
software quality.

• Functionality – A set of attributes that bear on the
existence of a set of functions and their specified
properties. The functions are those that satisfy stated
or implied needs.

Suitability

Accuracy

Interoperability

Compliance

Security

• Reliability – A set of attributes that bear on the capa-
bility of software to maintain its level of performance
under stated conditions for a stated period of time.

Maturity

Recoverability

• Usability – A set of attributes that bear on the effort
needed for use, and on the individual assessment of
such use, by a stated or implied set of users.

Learnability

Understandability

Operability

• Efficiency – A set of attributes that bear on the re-
lationship between the level of performance of the
software and the amount of resources used, under
stated conditions.

Time Behaviour

Resource Behaviour

• Maintainability – A set of attributes that bear on the
effort needed to make specified modifications.

Stability

Analysability

Changeability

Testability

• Portability – A set of attributes that bear on the abil-
ity of software to be transferred from one environ-
ment to another.

Installability

Replaceability

Adaptability

6.7.3 A Framework for Technical Software

Metrics

General principles for selecting product measures and met-
rics are discussed in this section. The generic measurement
process activities parallel the scientific method taught in
natural science classes (formulation, collection, analysis,
interpretation, feedback).

If the measurement process is too time consuming, no
data will ever be collected during the development process.
Metrics should be easy to compute or developers will not
take the time to compute them.

The tricky part is that in addition to being easy com-
pute, the metrics need to be perceived as being important
to predicting whether product quality can be improved or
not.

6.7.3.1 Measures, Metrics and Indicators

• A measure provides a quantitative indication of the
extent, amount, dimension, capacity, or size of some
attribute of a product or process.

• The IEEE glossary defines a metric as “a quantitative
measure of the degree to which a system, compo-
nent, or process possesses a given attribute.”

• An indicator is a metric or combination of metrics
that provide insight into the software process, a soft-
ware project, or the product itself.

Information System and Software Engineering 6.19

6.7.3.2 Measurement Principles

• The objectives of measurement should be established
before data collection begins.

• Each technical metric should be defined in an unam-
biguous manner.

• Metrics should be derived based on a theory that is
valid for the domain of application (e.g., metrics for
design should draw upon basic design concepts and
principles and attempt to provide an indication of the
presence of an attribute that is deemed desirable).

• Metrics should be tailored to best accommodate spe-
cific products and processes.

Measurement Process

• Formulation. The derivation of software measures
and metrics appropriate for the representation of the
software that is being considered.

• Collection. The mechanism used to accumulate data
required to derive the formulated metrics.

• Analysis. The computation of metrics and the appli-
cation of mathematical tools.

• Interpretation. The evaluation of metrics results in an
effort to gain insight into the quality of the represen-
tation.

• Feedback. Recommendations derived from the inter-
pretation of product metrics transmitted to the soft-
ware team.

Software metrics will be useful only if they are character-
ised effectively and validated to that their worth is proven.

• A metric should have desirable mathematical prop-
erties.

• When a metric represents a software characteristic
that increases when positive traits occur or decreases
when undesirable traits are encountered, the value of
the metric should increase or decrease in the same
manner.

• Each metric should be validated empirically in a
wide variety of contexts before being published or
used to make decisions.

6.7.3.3 The Attributes of Effective Software

Metrics

• Simple and computable. It should be relatively easy to
learn how to derive the metric, and its computation
should not demand inordinate effort or time.

• Empirically and intuitively persuasive. The metric
should satisfy the engineer’s intuitive notions about
the product attribute under consideration.

• Consistent and objective. The metric should always
yield results that are unambiguous.

• Consistent in its use of units and dimensions. The
mathematical computation of the metric should use
measures that do not lead to bizarre combinations of
unit.

• Programming language independent. Metrics should
be based on the analysis model, the design model, or
the structure of the program itself.

• An effective mechanism for quality feedback. That is,
the metric should provide a software engineer with
information that can lead to a higher quality end
product.

6.7.3.4 Metrics for the Analysis Model

Collection and Analysis Principles

• Whenever possible, data collection and analysis
should be automated.

• Valid statistical techniques should be applied to es-
tablish relationship between internal product attri-
butes and external quality characteristics.

• Interpretative guidelines and recommendations
should be established for each metric.

Analysis Metrics

• Function-based metrics: Use the function point (FP)
as a normalising factor or as a measure of the “size”
of the specification. FP can be used to:

1. Estimate the cost required to design, code, and
test.

2. Predict the number of errors that will be
encountered during testing.

3. Forecast the number of components and/or the
number of project source lines in the implemented
system.

• Specification metrics: Used as an indication of quality
by measuring number of requirements by type.

• The function point metric (FP), first proposed by
Albrecht [ALB79], can be used effectively as a
means for measuring the functionality delivered by
a system.

• Function points are derived using an empirical
relationship based on countable (direct) measures
of software’s information domain and assessments of
software complexity.

• Information domain values are defined in the
following manner:

number of external inputs (EIs)

number of external outputs (EOs)

number of external inquiries (EQs)

number of internal logical files (ILFs)

number of external interface files (EIFs)

6.20 Computer Science & Information Technology for GATE

Computing Function Points

Information

Domain Value Count simple average complex

Weighting factor

External Inputs (EIs)

External Outputs (EOs)

External Inquiries (EQs)

Internal Logical Files (ILFs)

External Interface Files (EIFs)

Count total

33 4 6

43 5 15.4

33 4 6

73 10 15

53 7 10

=

=

=

=

=

7

component possesses features in its abstraction, from the
point of view of the current application.”

Completeness: An indirect implication about the degree to
which the abstraction or design component can be reused.

Metrics for OO Design-II

Cohesion: The degree to which all operations working to-
gether to achieve a single, well-defined purpose

Primitiveness: Applied to both operations and classes, the
degree to which an operation is atomic

Similarity: The degree to which two or more classes are
similar in terms of their structure, function, behaviour, or
purpose

Volatility: Measures the likelihood that a change will occur.

6.7.3.6.1 Class-Oriented Metrics–The CK
Metrics Suite

Weighted methods per class (WMC): The number
of methods and their complexity are reasonable indicator
of the amount of effort required to implement and test a
class.

Depth of the inheritance tree (DIT): The maximum
length from the node to root of the tree.

Number of children (NOC): The subclasses that are im-
mediately subordinate to a class in the class hierarchy are
termed its children.

Coupling between object classes (CBO): This is the num-
ber of collaborations listed for a class on its CRC card. Keep
CBO low.
Response for a class (RFC): This is a set of methods that
can potentially be executed in response to a message re-
ceived by an object of that class. RFC is the number of
methods in the response set. Keep RFC low.

Lack of cohesion in methods (LCOM): This is the num-
ber of methods that access one or more of the same attri-
butes. Keep LCOM low.

Metrics for the Design Model

Design metrics for computer software, like all other soft-
ware metrics, are not perfect. And yet, design without mea-
surement is an unacceptable alternative.

6.7.3.5 Architectural Design Metrics

• Structural complexity = g(fan-out), fan-out is de-
fined as the number of modules immediately subor-
dinate to the module, that is, the number of modules
that are directly invoked by module i. Fan-in is de-
fined as the number of modules that directly invoked
module i.

• Data complexity = f(input & output variables, fan-
out), provides an indication of the complexity in the
internal interface for a module i.

• System complexity = h(structural & data complex-
ity), is defined as the sum of structural and data com-
plexity.

HK metric: architectural complexity as a function
of fan-in and fan-out

Morphology metrics: a function of the number of
modules and the number of interfaces between
modules.

6.7.3.6 Metrics for OO Design

Whitmire [WHI97] describes nine distinct and measurable
characteristics of an OO design:

Size: Size is defined in terms of four views: population,
volume, length, and functionality.

Complexity: How classes of an OO design are interrelated
to one another?

Coupling: The physical connections between elements of
the OO design.
Sufficiency: “The degree to which an abstraction possesses
the features required of it, or the degree to which a design

Information System and Software Engineering 6.21

6.8 Solved Questions

1. Consider the following task along with their efforts.
Apply CPM and find out the optimal path.

Task Immediate prerequisite tasks Effort (person-days)

A None 9

B A 5

C A 7

D B, C 11

E D 8

The following figure illustrates the critical path and non-
critical path.

Task
B

Task
A

Task
D

Task
E

Critical task

End

Task
C Total project time: 35 days

9

9

5

7

11 8

Non-critical Task

Critical Path

Non-critical Path

 Forward Pass

Task Tasks

precedence

Task

length

Earliest pos-

sible start

time (ES)

Earliest pos-

sible finish

time (EF)

A None 9 0 9

B A 5 9 14

C A 7 9 16

D B,C 11 16 27

E D 8 27 35

 Backward pass

Task Tasks

precedence

Task

length

Late start

time (ES)

Late finish

time (EF)

A None 9 0 9

B A 5 11 16

C A 7 9 16

D B,C 11 16 27

E D 8 27 36

 Total slack time of an activity is the difference in start
time between a non-critical task’s late start time and
its early start time or its late finish time and early fin-
ish time.

 Total slack time of a task = LS – ES

 Or

 Total slack time of a task = LF – EF

 For example, Activity B: LS – ES (11 – 9)
or LF – EF (16 – 14) => 2

 Total slack time is the maximum allowable delay for
all non-critical activities.

2. Effort Equation

a. PM = C * (KDSI)n (person-months)

i. where PM = number of person-month (=152
working hours),

ii. C = a constant,

iii. KDSI = thousands of “delivered source in-
structions” (DSI) and

iv. n = a constant.

3. Productivity equation

a. (DSI) / (PM)

i. where PM = number of person-month
(=152 working hours),

ii. DSI = “delivered source instructions”

4. Schedule equation

a. TDEV = C * (PM)n (months)

i. where TDEV = number of months estimated
for software development.

5. Average Staffing Equation

a. (PM) / (TDEV) (FSP)

i. where FSP means Full-time-equivalent Soft-
ware Personnel.

OBJECTIVE TYPE QUESTIONS

1. What are the major steps in performing object-ori-
ented design?

A. Identify the objects and operations

B. Determine the relationships among objects

C. Design the driver

D. A and B above

E. A, B, and C above

2. Which of the following is not true about structured
design (functional decomposition)?

A. The focus is on actions to be performed.

B. Control flow plays the primary role; data is sec-
ondary.

C. The top-level algorithm is designed first.

D. B and C above

E. None of the above (all of the statements are true)

6.22 Computer Science & Information Technology for GATE

3. Which of the following is not true about object-ori-
ented design?

A. The focus is on data and associated operations.

B. Data plays the primary role; control flow is sec-
ondary.

C. The top-level algorithm is designed first.

D. A and C above

E. None of the above (all of the statements are true)

4. In object-oriented design, which of the following is
not likely to be a problem-domain object?

A. A factory assembly line

B. A robot arm

C. A sorted list

D. A and B above

E. A, B, and C above

5. Which of the following best describes the objects that
are listed initially in an object table?

A. They are problem-domain objects that definitely
become solution-domain objects.

B. They are problem-domain objects that may or
may not become solution-domain objects.

C. They are solution-domain objects that definitely
become problem-domain objects.

D. They are solution-domain objects that may or
may not become problem-domain objects.

E. They are solution-domain objects for which there
are no equivalent problem-domain objects.

6. In the object-oriented design of a card-playing pro-
gram, suppose that “card deck” has been identified as
one object and “user command” has been identified as
another object. Focusing specifically on the card deck
object, how does it relate to the user command object?

A. A has-a relationship

B. An is-a relationship

C. An independent and equal relationship

D. A and B above

E. None of the above

7. Consider the following portion of a problem definition:

 The program displays a menu to the user. If the user
responds with ‘M’, the program displays emails of the
user. If the user responds with ‘x’, the program exits.

 In an object-oriented design, which of the following
probably would not be identified as an object?

A. Menu B. User

C. Time of day D. Date

E. Response

8. The nature of software applications can be character-
ized by their information

A. Complexity B. Content

C. Determinacy D. Both B and C

9. Which of the items listed below is not one of the soft-
ware engineering layers?

A. Process B. Smelting

C. Methods D. Tools

10. Which of these are the 5 generic software engineering
framework activities?

A. Communication, planning, modeling, construc-
tion, deployment

B. Communication, risk management, measure-
ment, production, reviewing

C. Analysis, designing, programming, debugging,
maintenance

D. Analysis, planning, designing, programming,
testing

11. Process models are described as agile because they

A. Eliminate the need for cumbersome documenta-
tion

B. Emphasize maneuverability and adaptability

C. Do not waste development time on planning
activities

D. Make extensive use of prototype creation

12. Which of these terms are level names in the Capabil-
ity Maturity Model?

A. Performed B. Repeated

C. Reused D. Optimised

E. Both A and D

13. The incremental model of software development is

A. A reasonable approach when requirements are
well defined.

B. A good approach when a working core product is
required quickly.

C. The best approach to use for projects with large
development teams.

D. A revolutionary model that is not used for com-
mercial products.

14. The rapid application development model is

A. Another name for component-based development.

B. A useful approach when a customer cannot de-
fine requirements clearly.

C. A high speed adaptation of the linear sequential
model.

D. All of the above.

15. Evolutionary software process models

A. Are iterative in nature

B. Can easily accommodate product requirements
changes

Information System and Software Engineering 6.23

C. Do not generally produce throwaway systems

D. All of the above

16. The prototyping model of software development is

A. A reasonable approach when requirements are
well defined.

B. A useful approach when a customer cannot de-
fine requirements clearly.

C. The best approach to use for projects with large
development teams.

D. A risky model that rarely produces a meaningful
product.

17. The spiral model of software development

A. Ends with the delivery of the software product

B. Is more chaotic than the incremental model

C. Includes project risks evaluation during each it-
eration

D. All of the above

18. The concurrent development model is

A. Another name for the rapid application develop-
ment model.

B. Often used for the development of client/server
applications.

C. Only used for development of parallel or distrib-
uted systems.

D. Used whenever there are a large number of changes

19. The component-based development model is

A. Only appropriate for computer hardware design.

B. Not able to support the development of reusable
components.

C. Works best when object technologies are avail-
able for support.

D. Not cost effective by known quantifiable software
metrics.

20. The result of the requirements engineering elabora-
tion task is an analysis model that defines which of the
following problem domain(s)?

A. Information B. Functional

C. Behavioral D. All of the above

21. The use of traceability tables helps to

A. Debug programs following the detection of run-
time errors

B. Determine the performance of algorithm imple-
mentations

C. Identify, control, and track requirements
changes

D. None of the above

22. Which of these is not an element of an object-orient-
ed analysis model?

A. Behavioral elements

B. Class-based elements

C. Data elements

D. Scenario-based elements

23. UML activity diagrams are useful in representing
which analysis model elements?

A. Behavioral elements

B. Class-based elements

C. Flow-based elements

D. Scenario-based elements

24. The data flow diagram

A. Depicts relationships between data objects

B. Depicts functions that transform the data flow

C. Indicates how data are transformed by the
system

D. Indicates system reactions to external events

E. Both B and C

25. Control flow diagrams are

A. Needed to model event driven systems.

B. Required for all systems.

C. Used in place of data flow diagrams.

D. Useful for modeling real-time systems.

E. Both A and D

26. Which of the following are areas of concern in the
design model?

A. Architecture B. Data

C. Interfaces D. Project scope

E. A, B and C

27. The importance of software design can be summarised
in a single word

A. Accuracy B. Complexity

C. Efficiency D. Quality

28. A useful technique for evaluating the overall complexity
of a proposed architecture is to look at the component

A. Cohesion flow

B. Dependencies

C. Sharing dependencies

D. Size

E. Both B and C

29. In component-level design “persistent data sources”
refer to

A. Component libraries

B. Databases

C. Files

D. All of the above

E. Both B and C

6.24 Computer Science & Information Technology for GATE

30. Which of the following need to be assessed during
unit testing?

A. Algorithmic performance

B. Code stability

C. Error handling

D. Execution paths

E. Both C and D

31. Regression testing should be a normal part of integra-
tion testing because as a new module is added to the
system, new

A. Control logic is invoked

B. Data flow paths are established

C. Drivers require testing

D. All of the above

E. Both A and B

32. Smoke testing might best be described as

A. bulletproofing shrink-wrapped software

B. rolling integration testing

C. testing that hides implementation errors

D. unit testing for small programs

33. Which of the following are characteristics of testable
software?

A. Observability B. Simplicity

C. Stability D. All of the above

34. The testing technique that requires devising test cases
to demonstrate that each program function is opera-
tional is called

A. Black-box testing B. Glass-box testing

C. Grey-box testing D. White-box testing

35. The testing technique that requires devising test cases to
exercise the internal logic of a software module is called

A. Behavioral testing B. Black-box testing

C. Grey-box testing D. White-box testing

36. What types of errors are missed by black-box testing
and can be uncovered by white-box testing?

A. Behavioral errors B. Logic errors

C. Performance errors D. Typographical errors

E. Both B and D

37. The cyclomatic complexity metric provides the de-
signer with information regarding the number of

A. Cycles in the program

B. Errors in the program

C. Independent logic paths in the program

D. Statements in the program

38. Data flow testing is a control structure testing tech-
nique where the criteria used to design test cases is
that they

A. Rely on basis path testing

B. Exercise the logical conditions in a program
module

C. Select test paths based on the locations and uses
of variables

D. Focus on testing the validity of loop constructs

39. Loop testing is a control structure testing technique
where the criteria used to design test cases is that they

A. Rely basis path testing

B. Exercise the logical conditions in a program
module

C. Select test paths based on the locations and uses
of variables

D. Focus on testing the validity of loop constructs

40. Black-box testing attempts to find errors in which of
the following categories?

A. Incorrect or missing functions

B. Interface errors

C. Performance errors

D. All of the above

E. None of the above

41. Product quality is defined as:

A. Delivering a product using correct development
procedures

B. Delivering a product which is developed itera-
tively

C. Delivering a product with correct requirements

D. Delivering a product using high quality
procedures

E. Delivering an initial product and changing its
once released to meet customer requirements

A N S W E R K E Y

1. E 2. E 3. C 4. C

5. B 6. C 7. B 8. D

9. B 10. A 11. B 12. E

13. B 14. C 15. D 16. B

17. C 18. B 19. C 20. D

21. C 22. C 23. D 24. E

25. E 26. E 27. D 28. E

29. E 30. E 31. E 32. B

33. D 34. A 35. D 36. E

37. B 38. C 39. D 40. D

41. C

Information System and Software Engineering 6.25

Previous Years’ GATE Questions

1. A company needs to develop a strategy for software
product development for which it has a choice of two
programming languages L1 and L2. The number of
lines of code (LOC) developed using L2 is estimated
to be twice the LOC developed with L1. The product
will have to be maintained for five years. Various pa-
rameters for the company are given in the table below.

Parameter Language L1 Language L2

Man years needed for
development

LOC / 10000 LOC / 10000

Development Cost
per year

Rs. 10,00,000 Rs. 7,50,000

Maintenance Time 5 years 5 years

Cost of maintenance
per year

Rs. 1,00,000 Rs. 50,000

 Total cost of the project includes cost of development
and maintenance. What is the LOC for L1 for which
the cost of the project using L1 is equal to the cost of
the project using L2? (GATE 2011)

A. 4000 B. 5000

C. 4333 D. 4667

 Explanation: Let L1, L2 be the LOC’s of both the
languages. Thus, L2=2L1.

 Now, we equate the total cost of both the languages.

 x/10000*1000000+5*100000=2x/10000*750000+5*50

 x=5000

2. A company needs to develop digital signal process-
ing software for one of its newest inventions. The
software is expected to have 40000 lines of code. The
company needs to determine the effort in person
months needed to develop this software using the
basic COCOMO model. The multiplicative factor for
this model is given as 2.8 for the software develop-
ment on embedded systems, while the exponentia-
tion factor is given as 1.20. What is the estimated ef-
fort in person months?

(GATE 2011)

A. 234.25 B. 932.50

C. 287.80 D. 122.40

 Explanation: Effort in person months = α(KDSI)β

where KDSI is the code size in kilo lines. By substitut-
ing the given values, we get =2.8*(40)1.2=234.25

3. What is the appropriate pairing of items in the two
columns listing various activities encountered in a
software life cycle? (GATE 2010)

 P. Requirements Capture 1. Module Development
and Integration

 Q. Design 2. Domain Analysis

 R. Implementation 3. Structural and
Behavioral Modeling

 S. Maintenance 4. Performance Tuning

A. P-3, Q-2,R-4,S-1 B. P-2, Q-3,R-1,S-4

C. P-3, Q-2,R-1,S-4 D. P-2, Q-3,R-4,S-1

4. The following program is to be tested for statement
coverage:

 begin

 if (a== b) {S1; exit;}

 else if (c== d){ S2;}

 else {S3; exit;}

 S4;

 end

 The test cases T1, T2, T3 and T4 given below are ex-
pressed in terms of the properties satisfied by the val-
ues of variables a, b, c and d. The exact values are not
given.

 T1 : a, b, c and d are all equal

 T2 : a, b, c and d are all distinct

 T3 : a=b and c !=d

 T4 : a !=b and c=d

 Which of the test suites given below ensures coverage
of statements S1, S2, S3 and S4? (GATE 2010)

(A) T1, T2, T3 (B) T2, T4

(C) T3, T4 (D) T1, T2, T4

 Explanation: If T1 is given S1 will be covered and ex-
ited. If T2 is the given one, then S3 will be executed
and exited. If T4 is given S2 will be executed then S4.
Thus, all S2, S2, S3 and S4 are covered.

5. The coupling between different modules of a soft-
ware is categorised as follows: (GATE 2009)

I. Content coupling

II. Common coupling

III. Control coupling

IV. Stamp coupling

V. Data coupling

 Coupling between modules can be ranked in the or-
der of strongest (least desirable) to weakest(most de-
sirable) as follows:

A. I-II-III-IV-V

B. I-III-V-II-IV

C. V-IV-III-II-I

D. IV-II-V-III-I

6.26 Computer Science & Information Technology for GATE

6. In a software project, COCOMO (constructive cost
model) is used to estimate

A. Effort and duration based on the size of the soft-
ware

B. Size and duration based on the effort of the soft-
ware

C. Effort and cost based on the duration of the soft-
ware

D. Size, effort and duration based on the cost of the
software

7. The diagram that helps in understanding and repre-

senting user requirements for a software project using

UML (unified modeling language)) is

A. Entity relationship diagram

B. Deployment diagram

C. Data flow diagram

D. Use case diagram

8. A software organisation has been assessed at SEI
CMM Leve l4. Which of the following does the or-
ganisation need to practice beside Process Change
Management and Technology Change Management
in order to achieve Level 5?

A. Defect Detection. B. Defect Prevention.

C. Defect Isolation D. Defect Propagation.

9. A software configuration management tool helps in

A. Keeping track on the schedule based on the mile-

stones reached

B. Maintaining different versions of the configu-

rable items

C. Managing manpower distribution by changing

the project structure

D. All of the above

10. A software project involves execution of 5 tasks

T1,T2,T3,T4 and T5 of duration 10,15,18,30 and 40

days respectively. T2 and T4 can start only after T1

completes. T3 can start after T2 completes. T5 can

start only after both T3 and T4 complete. What is the

task T3 in days?

A. 0 B. 3

C. 18 D. 30

11. Assume that the delivered lines of code L of a software

is related to the effort E in person months and dura-

tion t in calendar months by the relation L P* (E/B)1/3

* t4/3, where P and B are two constants for the soft-

ware process and skills factor. For a software project,

the effort was estimated to be 20 person months and

the duration was estimated to be 8 months. However,

the customer asked the project team to complete the

software project in 4 months. What would be the re-
quired effort in person months?

A. 10 B. 40

C. 160 D. 320

12. A software was tested using the error seeding strategy
in which 20 errors were seeded in the code. When the
code was tested using the complete test suite, 16 of
the seeded errors were detected. The same test suite
also detected 200 non-seeded errors. What is the esti-
mated number of undetected errors in the code after
this testing?

A. 4 B. 50

C. 200 D. 250

13. The availability of a complex software is 90%. Its Mean
Time Between Failure (MTBF) is 200 days. Because
of the critical nature of the usage ,the organization de-
ploying the software further enhanced it to obtain the
availability of 95%. In the process, the Mean Time To
Repair (MTTR) increased by 5 days.

 What is the MTBF of the enhanced software?

A. 205 days B. 300 days

C. 500 days D. 700 days

14. In a data flow diagram, the segment shown below is
identified as having transaction flow characteristics,
with p2 identified as the transaction center.

p1 p4

p3

p5

p2

 A first level architectural design of this segment will
result in a set of process modules with an associated
invocating sequence. The most appropriate architec-
ture is

A. P1 invokes p2, p2 invokes either p3 or p4 or p5

B. P2 invokes p1, and then invokes p3, or p4 or p5

C. A new module Tc is defined to control the
transaction flow. This module Tc first invokes
P1 and then invokes P2. P2 in turn invokes p3,
or p4 or p5

D. A new module Tc is defined to control the trans-
action flow. This module Tc invokes P2, p2 in-
vokes P1, and then P3 or P4 or p5.

15. A software project has four phases P1, P2, P3 and
P4. Of these phases, P1 is the first one and needs to

Information System and Software Engineering 6.27

be completed before any other phase can commence.
Phases P2 and P3 can be executed in parallel. Phase
P4 cannot commence until both P2 and P3 are com-
pleted. The optimistic, most likely and pessimistic
estimates of the phase completion times in days, for
P1, P2, P3 and P4 are respectively, (11,15,25), (7,8,15),
(8,9,22) and (3,8,19).

 The critical path for the above project and the slack of
P2 are, respectively

A. P1-P2-P4, 1 day B. P1-P3-P4,1 day

C. P1-P3-P4, 2 day D. P1-P2-P4, 2 day

16. The costs (in rupees per day) of crashing the expected
phase completion times for the four phases respec-
tively are 100, 2000, 50 and 1000. Assume that the ex-
pected phase completion times of the phases cannot
be crashed below their respective most likely comple-
tion times. The minimum and maximum amounts
(in rupees) that can be spent on crashing so that ALL
paths are critical are, respectively

A. 100 and 1000 B. 100 and 1200

C. 150 and 1200 D. 200 and 2000

17. In the spiral model of software development, the pri-
mary determinant in selecting activities in each itera-
tion is

A. Iteration size

B. Cost

C. Adopted process such as rational unified process
or extreme programming

D. risk

18. Find the following statements in the context of soft-
ware testing are true or false (S1) Statement coverage
cannot guarantee execution of loops in a program
under test (S2) Use of independent path testing crite-
rion guarantees execution of each loop in a program
under test more than once

A. True, True B. True, False

C. False, True D. False, False

19. A software project plan has identified ten tasks with
each having dependencies as given in the following
table:

Task Depends on

T1

T2 T1

T3 T1

T4 T1

T5 T2

Task Depends on

T6 T3

T7 T3,T4

T8 T4

T9 T5,T7,T8

T10 T6,T9

 On the basis of above table answer the following.

 (Q1)What is the maximum number of tasks that can
be done concurrently?

 (Q2) What is the minimum time required to complete
the project, assuming that each task requires one time
unit and there is no restriction on the number of tasks
that can be done in parallel?

A. 5,6 B. 4,4

C. 4,5 D. 5,4

20. A software engineer is required to implement two sets
of algorithms for a single set of matrix operations in
an object-oriented programming languages, the two
sets of algorithms are to provide precisions of 10-3
and 10-6, respectively. She decides to implement two
classes, Low precision matrix and high precision ma-
trix, providing precisions 10-3 and 10-4 respectively.
Which of the following is the best alternative for the
implementation?

 (S1) The two classes should be kept independent

 (S2) Low prevision matrix should be derived from
high precision matrix

 (S3) High precision matrix should be derived from
low precision matrix

 (S4) One class should be derived from the other; the
hierarchy is immaterial.

A. S1 B. S2

C. S3 D. S4

A N S W E R K E Y

1. B 2. A 3. B 4. D

5. C 6. C 7. A 8. B

9. B 10. B 11. D

12. Ambiguous question 13. D

14. C 15. Ambiguous question

16. Ambiguous question 17. D

18. D 19. D 20. C

7C H A P T E R S E V E N

Computer Networks

7.1 Introduction to Networks

Computer network is a system (collection and connection
of computers) which allows two or more computers to com-
municate. Elements of computer network are intermediate
message processors such as bridges, routers and gateways
in addition to computers.

7.1.1 Classification of Networks

Networks can be classified based on

• Range of communication

• Relationship between components

• Physical design structure (topology)

• Communication techniques (protoco)

7.1.1.1 Networks by Range (LANs, MANs and

WANs)

Local Area Network (LAN)
This is a network typically set up in a home, office or small
group of buildings. The range of this type of network is
limited, confined to an area of 1000 square metres. The ef-
fect of this small range is that no computer on this network
will be further than 30-50 metres from its nearest neigh-
bour. The number of computers/devices on an individual
LAN will normally not exceed 50. Note that multiple LANs
can be linked together to provide greater network access/
coverage.

Metropolitan Area Network (MAN)
This is a network that spans a city or extended group of
buildings as in a college campus. To enhance speed MANs
often use fibre optic cables to connect segments of the net-
work. The optical cables allow for extremely high rates of
data transfer. A number of LANs may be joined together

to form part of a MAN. It is expected that several hundred
computers may be present on a MAN.

Wide Area Network (WAN)
This type of network spans a wide geographical area. Due to
the dispersed nature of the computers, WANs must handle
and support multiple networking technologies. In contrast
to a typical LAN, users may not be using the same types of
hardware/software. The need for the constant availability of
the WAN means that dedicated personnel, equipment and
lines must be used. The internet is an extreme example of
a WAN. Large organisations may also maintain their own
private WANs with the use of leased lines. The existence of
these networks provide global reach. Many private WANs
are also connected to the internet but outsiders cannot en-
ter without providing the relevant usernames/passwords or
other security information.

Note

Internet is global and refers to WAN. Intranet refers to LAN.

7.1.1.2 Networks by Relationships between

Components

Client/Server
This is a relationship primarily between two computers in
which one machine makes requests (called the client) and
the other machine (called the server) satisfies the requests.
For example, when a user downloads a web page they are
actually making a request for information from another
machine (called the web server).

Typically the server is a powerful machine which uses
special hardware to improve performance. The server may
be connected to thousands of clients at a time. The client
typically will be a PC or machine with reduced computing
ability when compared to the server.

7.2 Computer Science & Information Technology for GATE

Client

Request mode

Request satisfied

SERVER

Client/Server setup
Peer-to-peer
This is a setup where two computers (both clients) commu-
nicate directly with each other, acting alternately as client
(i.e., making requests) and server (i.e., satisfying requests).
The machines typically will be on the same level in terms
of hardware/software capabilities unlike the client/server
setup where the server is the more powerful machine.

There is no concept of a server in a true peer-to-peer
setup, only clients (i.e., each machine is responsible for
making and satisfying requests as is required).

Multi-tier (n-tier)
Under this setup the functions of the server are distributed
throughout a number of tiers. This model has been adopted
for e-commerce websites. The database system may be sta-
tioned on an independent machine which allows for greater
efficiency, while the server which produces the web pages is
in contact with the client. In more advanced setups four or
more tiers may be needed.

Client

Presentation/
Business
Logic
SERVER

Database
system
server

Web client Web server Database server

Internet 3-tier setup

7.1.1.3 Networks by Physical Design Structure

(Topologies)

A network can be visualised as a series of nodes connected

by links. The links represent communication pathways to

other machines. The topology of a network is determined

Network topology is not concerned with the things that

physically affect the network such as signal strength, dis-

tances between nodes, tranmission rates, etc. Topology is

-

longs to Computer Science/Mathematics.

Bus Topology Star Topology Ring Topology

Network Topologies

Bus topology: This is a network in which a single line

(called the bus) connects all the nodes in the network.

Communication occurs up and down this pathway.

Advantages

1. Easy to implement

2. Cheap

3. Failure of a node does not affect others

Disadvantages

1. Difficult to pinpoint errors (troubleshoot)

2. Performance may decrease as number of nodes is in-
creased

3. Limited cable length and nodes

Star topology: This is a network in which one central node
connects all peripheral nodes. Transmissions are sent to
the central node and then re-broadcasted to all peripheral
nodes.
Advantages

1. Quick setup

2. Easy to pinpoint errors

3. A cable break may not bring down entire network

Disadvantages

1. Maintenance costs may be high

2. Performance may decrease as number of nodes is in-
creased

3. Limited cable length and nodes

Ring topology: This is a network in which each node has
two other nodes connected to it. The nodes form a circular
arrangement of communication channels. Transmissions
from one node may travel through several others before
reaching the targeted destination node. Transmission may
occur in one direction only.
Advantages

1. Performance maintained as nodes added

2. Equal access granted to all nodes

Disadvantages

1. Expensive

2. One node failing may affect others

7.1.2 Communication Architectures

There are a number of network architectures, and two of
the most widely used are :

• ISO Open Systems Interconnection (OSI) 7 layer ref-
erence model.

• TCP/IP reference model

Both of them follows layered architecture. Each layer is
intended to perform a specific task in the overall problem
of communication. Each layer is independent of all the
others. Communication with the layers immediately above

Computer Networks 7.3

and below is via a well defined interface. Layer N is said
to request service from layer N-1 (below) and provide a
service to the layer N+1 (above). Layer N in one protocol
stack communications with the same layer in a remote
protocol stack via the layers below. This is known as virtual
or peer-to-peer communication.

OSI Model : TCP/IP Model :

Application Layer Application Layer

Presentation Layer Transport Layer

Session Layer Network Layer

Transport Layer Data Link Layer

Network Layer Physical Layer

Data Link Layer

Physical Layer

7.1.2.1 Comparison of TCP/IP and OSI

Reference Models

Both Models have similarities and differences.
Similarities

1. Both use the concept of a protocol architecture, where
there are a number of independent layers, each carry-
ing out a specific task.

2. The functionality is very similar for most of the lay-
ers in each reference model. For example, both have a
transport layer which operates end-to-end.

Differences

1. OSI reference model makes clear the distinction be-
tween services, interfaces and protocols. The service
defines what services the layer offers, the interface de-
fines how they are accessed and the protocols are the
actual implementation of the services. This adheres to
standard software engineering practice. In contrast,
the TCP/IP Reference Model does not use this ap-
proach and hence the protocols (implementations)
are not always transparent.

2. TCP/IP has no presentation or session layer.

3. OSI supports connection-oriented and connection-
less communication in the network layer, but only
connection-oriented communication in the transport
layer. In contrast, TCP/IP allows only connectionless
communication in the network layer but a choice of
connection-oriented and connectionless in the trans-
port layer.

4. The OSI defines very precisely the physical and data
link layers. TCP/IP ignores this approach and instead
the Host-to-network layer merely defines the interface
to the underlying network.

Some Important Points

To be critical, data communication deals with aspects re-
lated to data link layer and physical layer and computer
networks deals with remaining layers. Moreover, PL and
DLL aspects are realised in HW i.e, in formware. For exam-
ple, network cards or ethernet cards are the ones which car-
ries the activities of DLL and PL. Whereas, NL, TL, and AL
are implemented in SW. CISCO people have implemented
NL, TL related services in their routers.

Protocols means rules and regulations but they will not
tell anything about how they are implemented or realised.

Physical layer protocol specifies physical, electrical, me-
chanical, procedural, functional interface between a data
terminating equipment (computer) and data communicat-
ing equipment such as modem.

Null Modem is used to connect two computers via their RS
232 ports either COM1 or COM2 First popular serial com-
munication software was Kermit developed by Cambridge
University, UK.

Data units are normally divided into smaller units while
communicating

• To utilise the bandwidth in a better manner

• Not to allow one application to monopolise the lines

• Because of the protocol constraints, s/w constraints
such as buffer sizes etc

• Because of the error characteristics of the practical
channels.

(For example, if a channel is identified as having error
rate as 1 in 100000 bits and the size of the communication
data unit is more than 100000 bits than every communica-
tion data unit is bound to face an error. Even if we trans-
mit, the retransmitted one also going to face error. Thus,
there will not be any effective data transfer. Thus, frames
data communication units < 100000 bits are used. That to
preferable their sizes should be less than 1/2*100000).

Data Link layer main responsibility is successfully de-
livery of frame from one side of a link to another side of a
link in the case of point to point networks. Its responsibility
also includes acknowledge management, flow control, slow
receiver problem.

Flow control is related to one particular link and is done
by data link layer whereas congestion control is a global
phenomenon carried out by many m/c’s in the subnet and
this is the responsibility of the network layer.

Main responsibility of network layer is delivery of packet
from source m/c to destination m/c (peer communication).
Its responsibility also includes route finding, congestion
control, deadlock avoidance, extending connection orient-
ed and connectionless services.

Transport Layer responsibility is connection establish-
ment, management, multiplexing of services, etc.

7.4 Computer Science & Information Technology for GATE

Session Layer is related to management of connections
after failures i.e., after connection failures when the con-
nection is re-established, the data transfer should start from
the point where it is broken.

Presentation layer is concerned with data encryption,
compression, etc, of communicatable data units. In the case
of TCP/IP model this is normally implemented as an ap-
plication layer service.

Data is usually sent by varying some physical parameters
such as volatge or current.

Bandwidth Limited signals are the ones which are made
to have some range of frequencies only. The channel also
limits the signal bandwidth. Filters are used to limit the
amount of bandwidth available to a customer. Limiting the
bandwidth limits the data rate.

7.1.3 Switching Methods

There are 2 types of switching methods

• Circuit switching

• Packet switching

7.1.3.1 Circuit Switching

Set up a dedicated end-to-end connection. Switching im-
plies that the connection is switched through a number of
intermediate exchanges. For example, present telephone
networks, mobile cellular networks

7.1.3.2 Packet Switching

Information is broken into segments. These segments are
called packets at layer 3 and frames at layer 2. More gener-
ally they are called Protocol Data Units (PDUs). Packets are
sent individually through the network. For example, Inter-
net, Superhighway, most data networks

Advantages and disadvantages of switching methods
Circuit switching

• Private, secure, not subject to congestion

• But inefficient use of bandwidth, pay for time call is
connected regardless of amount of data

Packet switching

• Shared use of high cost components, efficient use of
bandwidth, only pay for data in transit

• But not secure or private, subject to congestion

7.1.4 Delays Associated with Networks

Propagation Delay

• Time taken for a signal to travel from the transmitter
to the receiver

• Speed of light is the fastest a signal will propagate

 3 X 108 m/sec through space

 2 X 108 m/sec through copper

Transmission Delay (Time)

• Time taken to put the bits on the transmission media

 Transmission speed of 2Mbps means

 2 X 106 bits can be transmitted in 1 second

Processing Delay

• Time taken to execute protocols

 check for errors

 send Acks etc.

Queuing Delay

• Only in packet switched networks

• Time spent waiting in buffer for transmission

• Increases as load on network increases

Round Trip Delay
Round trip delay is defined as the time between the first bit of
the message being put onto the transmission medium, and
the last bit the acknowledgement being received back by the
transmitter. It is the sum of the all the delays detailed above.
The round trip delay is a critical factor in the performance
of packet switched protocols and networks. Indeed, it has
been stated that a good algorithm for estimating the round
trip delay is at the heart of a good packet switch protocol.

7.1.5 Bandwidth

• Bandwidth is a measurement of the width of a range
of frequencies and is measured in hertz (Hz).

• In data networks bandwidth is normally specified as
bits per second (BPS)

• Shannon-Hartley Theorem states that

Dmax = Blog2(1 + S/N)
where Dmax is the maximum bit rate
B is the bandwidth in Hz
and S/N is the signal to noise ratio

All transmission mediums are degraded by ‘noise’. If the
average power of the signal is given by S, and the average
power of the noise is given by N, then the signal to noise
ratio is given by S/N. The greater the value of S/N then the
greater is the theoretical transmission rate of that medium.

7.1.5.1 Bandwidth of a Signal

According to fourier series any arbitrary signal can be de-
composed into a set of periodic components which are
commonly known as integral component of that signal. Out
of these components, the component with lowest frequency
value and component with highest frequency value are said
to be the band of frequencies available in the signal. The
difference in their frequencies is known as bandwidth of
that signal. In practice, the smallest component frequency

Computer Networks 7.5

may be very small and often negligible. Thus bandwidth of
the signal can be mentioned as the frequency of the largest
frequency component.

Bandwidth of a channel is the largest frequency of the
signal which the channel can carry without much distortion

Bandwidth of human voice is 4 KHz whereas and width
of video is 5-6 MHz.

Baud rate is the number of signal transitions per unit
time or number of signalling elements per unit time.

Data Rate = log2 V * Baud rate
Where,

V = number of voltage levels
For a binary valued channel, baud rate will be same as

the data rate. For multi-valued channels, data rate will be
always more than baud rate.

7.1.5.2 Shannon’s Sampling Theorem

Maximum number of samples should not be more than 2
times of the bandwidth of the signal. If the sampling rate is
more than the Shannon’s rate, we may get aliasing effect or
ghost signals will be coming into the system.
Explain why for real-time voice communication, 64 Kbps
lines are required?

Answer: Voice bandwidth =4KHz
\ According to Shannon’s sampling theory the sampling
rate is 8000 samples/sec.
\ Data generated for one second = 8000x8bits (assuming
each sample is represented through 8-bits).

= 64000bps = 64kbps

Note

In data communication, kilo = 103, Mega=106, Tera=109, …

Pulse coded modulation encoded symbols normally
takes 8 bits/sample
According to Nyquists theorem, (it talks about channel)
 Max data rate of a channel = 2*H*log2 V
 H = Bandwidth of channel
 V = Number of voltage levels which channel carried

Note

Unless otherwise told, assume channels are binary valued
channels. That is, they carry signals of two levels only.

This theorem is applicable for ideal channels only.
For Practical channels,
 Max data rate = H * log2 (1 + S/N)
 S/N is called signal to noise ratio
SNR value = 10 * log10 S/N dB (units for SNR is decibals)

1. A channel bandwidth is 3 KHz and SNR value is marked
as 30 decibals. Calculate the max achievable data rate on
this channel ?

Answer: SNR = 10 * log10 S/N
30 = 10 * log10 S/N

S/N = 1000
Max data rate =3000 * log2 (1 + 1000) = 30,000 bps

Note

Two materials (channels) are given with different SNR val-
ues in decibals, the one with higher SNR value is preferred
as it is less immune to external disturbance or noise.

2. A 4 KHz band width line is proposed to send digital
voice. What should be the SNR value required for the same?

Answer: Digital voice date rate = 64000bps
64000 = 4000 * log2 (1+ S/N)

S/N = 65535
SNR = 10 * log10 65535 ~ 43 dB

3. A video telephone which sends 200X150 pixels per
frame, 15 frames/sec is connected to a line channel whose
band width is 8 kHz. It supports 32 shades monochrome
pictures only. Calculate what should be the required SNR
value for channel to carry this video phone o/p in real time.

Answer: As 32 shades are used, each pixel requires 5 bits.
Video telephone o/p = 64kbps + 200 * 150 * 15 * 5

(implicit audio + video)
= 2314 kbps

2314 = 8000 * log2 (1 + S/N)

S/N = 1.183E87
then,

SNR = 10 * log10 (S/N) = 871dB

4. A fax m/c supports two scanning resolutions 120 dpi and
300 dpi (The first one is known as standard mode and sec-
ond mode is fine mode). This is connected to a 4 kHz line
It is reported that max achievable data rate on this line is
19,200 bps. Find out how much time it may take to send an
A4 size page in std mode and fine mode.

Answer: Standard mode:
A4 size = 10¢¢ X 8¢¢

Data required to send = 10¢¢ X 8¢¢ X 120 X 120 X 1 bits
So,
Time required = (10 X 8 X 120 X 120) / 19200 = 60 secs.
Fine Mode:
Data required to send = 10 X 8 X 300 X 300 X 1 bit
So,
Time required = (10 X 8 X 300 X 300)/19200 = 375 sec

5. Television channels are 6MHz wide. How many bits/sec
can be sent if four-level digital signals are used?

Answer: Data rate=2x10x106xlog24=24Mbps

6. If a binary signal is send over a 3KHz channel whose S/N
is 20. What is the maximum achievable data rate?.

Answer: Max achievable Data Rate = 3x103log2(1+20)=15Kbps

7.6 Computer Science & Information Technology for GATE

7. If our receiving and transmitting devices can distinguish
among four different voltage levels in a given signal instead
of just two, how many bits can be transmitted in a single
signal element? If the baud rate is 1200 what is the data rate
we can achieve?

Answer: V= 4
 \ No of bits a signal element can carry = log2 4 = 2

 \ Data Rate = 2*1200=2400bps

8. Given a channel with intended capacity of 20Mbps, the
bandwidth of the channel is 3MHz. What SNR is needed in
order to achieve this capacity?

Answer: 20Mbps = 3MHz log2(1+S/N)

S/N = 25.66

SNR = 10 log10 25.66 =17 dB

9. A five-bit start-stop asynchronous transmission with
start and data pulses of each 13.5min duration plus a stop
pulse of 19min giving a total character duration of 100min
is used? What is the signalling speed? What is the data rate?

Answer: Signalling speed = baud rate= 1/13.5ms=74
Data rate = 5bits/100ms= 50 bps

10. It is desired to send a sequence of computer screen im-
ages over an optical cable. The screen images are 640x480
pixels each and each pixel requires 24bits. It is required to
send 60 frames per second?. What is the minimum band-
width needed for the channel which is supposed to carry
this data?

Answer: Data Required to be sent = 60 X 640 X 480 X 24=
442.368
Band width required for the channel = 442.368/2=221.184MHz

11. A Modem to be used with a PSTN (public switched
telephone network) which used amplitude and phase shift
keying with eight levels per signalling element. If the band-
width of the PSTN is 3100Hz, deduce the Nyquist maxi-
mum data rate.

Answer: Nyquist data rate = 2 X 3100 X log2 8 = 18600bps

12. Deduce maximum data rate of a tele networking with a
bandwidth of 500 Hz and a SNR of 5dB.
Answer: 5 = 10 log10 S/N. Therefore, S/N=3.16

Max data rate = 599 X log2 (1+3.16) =1000bps

13. Assume that the TV picture is sent over a channel with
4.5 Mhz bandwidth and 35dB SNR value. Find the capacity
of the channel.

Answer: L 35=10log10 S/N Therfore, S/N=3162.3

Data Rate = 4.5 X 106 x log 2(1+3162.3) =52Mbps

14. What is the channel capacity for a teleprinter channel
with 300Hz bandwidth and S/N value of 3?.

Answer: Date Rate = 300 X log2(1+3) =600bps

15. For a video conferencing system a 10MHz channel is
given. Video camera outputs 30 frames for a second with

512x512, 8-bit pixels. At the same rate images are required
to be transferred due to some technical reasons (real time
video communication). Will the given channel is adequate?
If it is not possible, it is proposed to compress and send. If
so, how much compression ratio is needed for the compres-
sion algorithm selected?

Answer: Data rate = 30 X 512 X 512 X 8= 62.9Mbps
What max data rate we can achieve on the channel = 2X 10
MHz X log 22 =20Mbps
(As nothing is given about voltage levels we assume binary
signal itself)

\ Channel is not sufficient.
Compression ratio required for the compression algorithm
= 62.9/20=3.195

7.2 Physical Layer

These describe the electrical and mechanical interface nec-
essary to establish a communications path.

Layer 1 protocols are concerned with the physical and
electrical interfaces. It defines for example:-

• Connection types and allocation of signals to pins

• Electrical characteristics of signals which includes
bit synchronisation and identifying a signal element
as a 0 or 1

Hence, layer 1 is responsible for transmitting and receiv-
ing the signals.

RS232/V.24

Signal voltage levels

• –3V to –25V binary 1 for data, OFF for a control
signal

• +3V to +25V binary 0 for data, On for a control sig-
nal

25 Volts is the maximum rating for a line without a load. In
practice RS232/V24 signals are set to typically be + –12V

Use of RS232/V.24 as DTE/DCE interface standard
Ground Signals

• Pin 1 (SHG) Protective Ground/Shield Ground to
reduce external interference

• Pin 7 (SIG) Signal Ground provides a reference for
other signals

Transmit and Receive

• Pin 2 (TxD) Transmit Data

• Pin 3 (RxD) Receive Data

Maintaining a Connection / ‘Hardware Handshaking’

• Pin 6 (DSR) Data Set Ready, Modem indicates to DTE
that it is ready, i.e., connected to a telephone wire

• Pin 20 (DTR) Data Terminal Ready, DTE uses this to
prepare the modem to be connected to the telephone
line. If it is placed in an OFF condition it causes the

Computer Networks 7.7

modem to drop any connection in progress. Thus the
DTE ultimately controls the connection.

‘Hardware’ Flow Control

• Pin 4 (RTS) Request to Send, Sent by DTE to modem
to prepare it for transmission.

• Pin 5 (CTS) Clear to Send, Modem indicates to DTE
that it is ready to transmit.

• Pin 8 (CD) Carrier Detect, Sent by modem to DTE,
to inform it that a signal has been received from the
other end of link.

Other

• Pin 22 (RI) Ring Indicator, sent by modem to DTE
to inform it that a ringing signal has been received
from the other end of the link. Used by auto-answer
modems to wake-up the attached terminal.

7.2.1 Modulation Techniques

The Public Switch Telephone Network (PSTN) was de-
signed for carrying analogue (i.e. voice) signals, not digital
data. How can we transmit digital data over the PSTN? The
solution to this problem is to modulate the digital informa-
tion onto an analogue carrier signal. This is achieved by one
of three main techniques -

(1) Amplitude Shift Keying (ASK)

(2) Frequency Shift Keying (FSK)

(3) Phase Shift Keying (PSK)

In order to connect a digital data source to a telephone
line we use a piece of equipment known as a MODULA-
TOR/DEMODULATOR or MODEM for short. The modu-
lator part of a MODEM converts the digital data that is to
be transmitted into a modulated analogue signal, the de-
modulator part accepts a modulated analogue signal off of
the line and turns it back into digital data.

7.2.1.1 ASK

Amplitude shift keying uses a single carrier frequency, that
is transmitted at two different amplitude (or volume) levels
in order to represent a logic level 0 and a logic level 1.

Low Amplitude
= logic level 0

High Amplitude
= logic level 1

7.2.1.2 FSK

Frequency Shift Keying uses two different frequencies to
represent a logic level 0 and a logic level 1. For example, the

V23 MODEM standard uses a signal of 1300 Hz to repre-
sent a 1 and a signal of 2100 Hz to represent a 0.

2100 Hz = logic level 0

1300 Hz = logic level 1

Full duplex operation is achieved by using two other frequen-
cies (390 Hz and 450 Hz) for the other (or back) channel.

Note

Less susceptible to errors than ASK, used up to 1200 BPS
on voice lines. Techniques is also used in high frequency
radio transmission and in LANs

7.2.1.3 PSK

Phase shift keying uses a single carrier frequency for each
channel (2 are required for full duplex operation). These are
1200 Hz and 2400 Hz. The logic levels are represented by
phase changes in the signal.

Consider a system with 4 phases -

0 degree phase shift

90 degree phase shift

180 degree phase shift

270 degree phase shift

If we have four different states we can represent 2 bits
with each signalling element. So we can define 0 degrees as
00, 90 degrees as 01, 180 degrees as 11 and 270 degrees as 10.

This now gives you a clue as to how we can obtain very
high data rates (currently up 56600 bits per second) down
a telephone line that was designed far at best 3 kHz of an-
alogue data. The total number of data bits transmitted is
double the number of signalling element changes on the
telephone wire.

7.8 Computer Science & Information Technology for GATE

The total number of signalling element changes is
known as the BAUD RATE, and this is bandwidth limited
by the transmission medium. However if each signalling
element represents N bits then the actual data rate is N *
BAUD RATE.

7.2.1.4 Differential Phase Shift Keying (DPSK)

In order to design electronic circuitry that detects phase
shifts, it is advantageous to ensure that lots of phase shifts
occur even if the line is idle. A PSK system would just trans-
mit a continuos tone in these circumstances, so the receiver
clock will tend to drift. One solution is to use DPSK, which
defines each pair of data bits (or dibits) as the phase change
between two signalling elements.For example V22 defines
the following coding system -

DIBIT VALUE PHASE CHANGE

00 90 Degrees

01 0 Degrees

11 270 Degrees

10 180 Degrees

The carrier frequencies are again 1200 Hz and 2400 Hz,
with a baud rate of 600. This means that the data rate is
1200 bite per second (BPS).

7.2.1.5 Quadrature Amplitude Modulation QAM

Higher data rates are achieved by a combination of PSK
with ASK. So as well as changing the phase of the transmit-
ted signal we can also alter its amplitude. The V22bis MO-
DEM standard is the simplest example of this technique.
V22bis defines 16 different types of signalling element, so
each element represents 4 binary bits. The baud rate is still
600 baud, so the data rate achieved by V22bis is 2400 BPS.

Another examples is V32 which defines 16 states, trans-
mitted as 2400 baud = 9600 BPS.

Higher data rates are now achievable (up to 56.6 kBPS)
by increasing the number of discrete signalling elements
available to the MODEM.

7.2.1.6 Modems

Sending Computer Data over Telephone Channels

• Computers produce digital data (pulses)

• Telephone channels are designed for analogue signals

• So digital data must be converted into a suitable for-
mat (analogue signals) if telephone channels are to
be used

• Device which does this is called a MODEM

Modulator Demodulator

A MODEM can set up a switched path through the tele-
phone network, or use a leased line.

Digital
Local

Analogue
Local

Analogue
Remote

Digital
Remote

Computer MODEM MODEM Computer

7.2.2 Transmission Modes

There are two transmission modes to name Asynchronous
and Synchronous transmission.

Fundamental difference between the two modes is:
Asynchronous Transmission – The receiver clock is not
synchronised with respect to the received signal.
Synchronous Transmission – The receiver clock operates in
synchronisation with the received signal.

For both types of transmission the receiver must be able
to achieve bit synchronisation.

For Asynch transmission byte synchronisation must also
be achieved.

For Synch transmission, synchronisation of a block of
bits (or bytes) must also be achieved.

Asynchronous Transmission
Bit Synchronisation

• Transmitter must operate with the same characteris-
tics as receiver

• Receiver clocks runs asynchronously with respect to
the incoming signal

• Problem is to ensure the incoming signal (bit) is
sampled as near centre as possible

• Local receiver clock runs at N times transmitted bit
rate (typically x16 or x64)

• Each new signal is sampled after N ticks of the clock

• The higher the receiver clock rate, the closer to the
centre the signal will be sampled

Character Synchronisation

• Each character is enveloped in start and stop bits.

• Transmitter and receiver must be programmed to
operate with the same number of start and stop bits.

• Transmitter and receiver must be programmed
to operate with the same number of bits for the
transmitted character. This is typically 7 for ASCII,
5 for TELEX, or 8 for CEPT display profiles (e.g.
teletext).

• When the line is idle, 1’s are normally transmitted
and the stop bits are also 1’s.

• Start bit is usually a zero, thus there is always a 1-0
transition at the start or every character.

• Note the start bit is sample at N/2 clock ticks.

Computer Networks 7.9

• Receiver can achieve character synchronisation sim-
ply by counting the number of bits in the character

• These are then transferred to a buffer.

• Next 1-0 transition indicates the start of the next
character on the line.

Other Information
• Oldest, most common technique

• Application areas

slow speed modems - up to 56.6 Kbps switched
38.4 Kbps leased (over distance of 50 feet)
interactive applications running on dumb terminals

• Transmitter and receiver must be configured to have
the same characteristics:-

5,6,7,8 data bits
0,1 parity bits
1 start bit
1, 1.5, 2 stop bits

 These can be set by software, or alternatively can be
set using hardware switches.

• Large overhead associated with asynchronous trans-
mission i.e., start stop bits for every character there-
fore the true information rate is much less that the
bit rate.

• Less reliable as bit rate increases.

7.2.2.1 Synchronous Transmission

Two variants of synchronous transmission
• Bit oriented – used by most modern protocols be-

cause it is more efficient
• Character oriented – older protocols

Bit and frame (block) synchronisation must be obtained
Frame Synchronisation
This relates to delimiting the frame, i.e. finding the start and
end of the frame.
There are a number of ways in which this can be achieved.
Three typical methods are :-

• Fixed length frames – used in ATM

• Carry frame length in fixed position in packet – used
in Ethernet

• Use of FLAGS and Bit stuffing – as in X.25 and Frame
Relay, which marks both the beginning and the end
of the frame.

Flags and Bit Stuffing
• Data transmission entity is a frame.

• Frame is view as a string of bits.

• Typically a frame consists of many thousands of bits.

• The frame is encapsulated by two flags. Flags have bit
value 01111110.

• Bit Stuffing is used to ensure the flag is not embed-
ded in the frame, thus causing the end of the frame
to be assumed – incorrectly. This process ensure that

the encapsulated data is TRANSPARENT to the link
level protocol.

• Bit stuffing is the process of automatically stuffing
(adding) a 0 in the bit stream when 5 consecutive 1’s
are found.

• Thus, 6 consecutive 1’s never appear in the frame
contents, thus flag pattern (and end of frame) is nev-
er found in the frame contents.

• Normally 1’s are transmitted when the line is idle.

Note that a detailed discussion of how frame synchro-
nisation is achieved in character oriented protocols is not
covered. However, the techniques are similar in principle to
those used in Bit Stuffing.

7.2.2.2 Bit Synchronisation in Synchronous

Transmission

There are two ways in which the receiver can obtain bit syn-
chronisation:-

• Encoding the clock in the data

• Use of a digital phase lock loop circuit – with this
scheme frequent transitions in the data are needed
(i.e. frequent changes of binary zeros and ones)

7.2.2.3 Encoding Schemes

Manchester encoding
Data is encoded using two signal levels

• A binary 1 is encoded as a low-high signal

• A binary 0 is encoded as a high-low signal

• The transition (i.e. from high to low) always occurs
at the centre of the bit

• The receiver uses this transition to sample the signal
close to the centre of the second half

• So for a binary 1 which is low-high the signal will be
high

• For a binary 0 which is high-low the signal will be low

• Bit is then added to the register

• Twice the bandwidth is needed for this scheme, so it
is normally only used with LANs

Differential Manchester encoding
• A transition at the start of the bit only occurs if the

next bit to be coded is a 0

• There is still a transition in the centre of each bit

• (Similar concept to differential PSK modulation
technique)

7.2.2.4 Bit Synchronisation using Digital Phase

Locked Loop (DPLL) Circuit

A DPLL is the electronic equivalent of a musical tuning
fork. It resonates at a fixed frequency, which is used to sam-

7.10 Computer Science & Information Technology for GATE

ple the input data stream. The role of the DPLL is to ensure
that the ‘tuning fork’ oscillates in phase with the arriving
data. It therefore must see a transition (1 to 0 or 0 to 1)
every now again in order to adjust itself back to the correct
phase. When the output of the DPLL is in phase with the
input data stream it is said to be ‘in lock’.

There are two aspects to the synchronisation process

• Must obtain the same frequency as the transmitter

• Must sample in the middle of a bit

Obtaining the frequency of the transmitter

• Receiver can extract this from the signal, but it will
drift unless transitions occur. How are transitions
guaranteed?

Finding the middle of the bit.

• Receivers clock runs at a multiple of the transmitters
clock (32 is a typical number)

• Pulse sample is adjusted to quickly find the middle

• Need occasional transitions to maintain synchroni-
sation

Bit N Bit N + 1 Bit N + 2

A B C D

Bit sampled
in the middle,
32 ticks from
the last sample.

The next sample
may have to be
adjusted relative
to the transition.

Bit sampled
in the middle,
32 ticks from
the last sample.

No transition
has occured but
this is assumed
to be the start of
the bit.

The next actual
transition can occur
in regions A, B, C, D
or on the B/C boundary.

32 1616

Regions A, B, C, D are 8 ticks

7.2.3 Serial Communication

This is the barest possible means available in every PC to
communicate with each other. IBM PC will be having two
ports COM1: (address 0x3F8), COM2: (0x2F8). Normally
this communication is used between computer and devices
outside. It is evident that CPU does not communicate se-
rially with such devices. Rather it communicate through
UART interface which takes care of converting serial data
to parallel data and vice versa. Prominently asynchronous
and synchronous serial communication techniques are in
wide use. For example modem is a good example for the
first type.

Asynchronous Serial Communication
The connected devices do not have common clock, must
synchronise their data transfer. This is carried out by mak-
ing both sides to agree on some transmission parameters
before data transfer. They are: 1. Speed (mentioned either
in data rate in bits per second or baud rate/signaling rate)
2. No of data bits per transmission, 3. Whether uses parity
(odd parity or even parity) or not. 4. No of stop bits and
start bits.

Usually when the transmission line is idle its value is
logic 1. Usually least significant bit of the data is transmit-
ted first. After sending the last bit, parity bit will be send till
that point receiver will be waiting. Usually 1, 1 1/2, 2 stop
bits are used. The width of the start bit is same as any data
bit.

N81 setting in which one stop/start bits with 8-bit data
(including parity) is the one which is commonly used in
many modem transmissions. Here percentage of overhead
is 20.

Synchronous Serial Communication
Especially, this method is proposed to reduce the trans-
mission overhead. This is achieved by sending a block of
data rather then byte by byte. It does appends header and
trailer information such as source address, destination ad-
dress, checksum (for error detection), start/stop bit se-
quences and then the resulting data unit known frame is
sent. Though this additional information also overhead but
normally this is at lower percentage than asynchronous
communication.

A common synchronous communication transmission
standard, the High level Data Link Control (HDLC). Here
total overhead bits are 48 bits. If we assume data is 256 bits
then the overhead is 15.79%. Even if the data size grows the
overhead percentage will be reduce, as overhead bits will
not change from 48 bits. This is not true in the case of asyn-
chronous serial communication.

When a byte or series of bytes (frame) is received or
transmitted at constant time intervals with uniform phase
differences, the communication can be called as synchro-
nous. Bits of a data frame are sent in a fixed maximum time
interval. Whereas in Iso-synchronous mode the maximum
time interval can be varied. Two salient characteristics of
this style of communication are:

Computer Networks 7.11

1. Frames can not be sent at random intervals. Thus no
need of handshaking.

2. A clock ticking at a certain rate has to be always there
for transmitting serially the bits of all the frames.

Universal Asynchronous Receiver/Transmitter (UART)
As mentioned above the CPU always communicates in par-
allel mode. Thus in order to communicate on serial lines
UART’s are used which takes the responsibility of convert-
ing to serial data stream to parallel stream and vice versa. A
typical organisation of a UART is shown below.

The UART is the one which is responsible for generat-
ing start, stop, and parity bits as well as removing them.
The processor can send control signals to UART to indicate
speed, word size, parity, and no of parity bits.

UART employs Transmit Holding Register (THR),
Transmit Shift Register (TSR). While one byte is transferred
from CPU to THR, the one TSR is sent on the line. This is
one form of double buffering employed to reduce delays.

Example devices using UART’s are: keypad, mouse, mo-
dem, character input/output devices (terminals).

P
C

 C
O

M
P

o
rt

CD

DSR

RD

DTR

RTS

CTS

TD

Serial Port at
Modem

Serial Communication Standards (RS232-C)
At most only one device can be connected to this device
unlike USB port. Serial ports of most of the PC’s can trans-
mit data up to 115,200bps. This standards supports nine
signals given as:

RTS (Request to Send)
CTS (Clear to Send)
TD Transmit Data
DTR Data Terminal Ready
DSR Data Set Ready
RD Receive Data
CD Carrier Detect
RI Ring Indicator

G Ground

XMIT

RECV

(2)

(3)

Ground

RECV

XMIT

(2)

(3)

7

Figure 7.1

Usually RS232-C connector is a 25 pin D-connector (of
course 9 pin D-connectors can be also used). At the barest
level only 3 circuits are used as shown in Fig. 7.1 and result-
ing cabling is known as Null Modem.
A complete Null Modem cabling

TD2

RD3

RTS(4)

CTS(5)

DSR(6)

G(7)

CD(8)

DTR(20)

RI(22)

(2)TD

(3)RD

(4)RTS

(5)CTS

(6)DSR

(7)G

(8)CD

(20)DTR

(22)RI

A maximum separation of 15m at 9600bps is supported in
this standard. This uses NRZ-L signalling.

Main drawbacks of RS232C is its limited distance of 15m
and if the ground reference pin 7 is different for both sides
then undesirable electrical disturbances will be applied to
transmitted signal.

RS-449 calls for two sets of connectors: 37-pin for data,
control, timing, diagnostics, and a 9-pin for secondary chan-
nel. Whereas RS232C has a single 25 pin connector. RS449
supports both balanced and unbalanced while RS232C sup-
ports only unbalanced. A balanced one is in which the sig-
nals are carried between the DTEs on a pair of wires. They
are sent as a current down on one wire and return on the
other; the two wires create complete circuit. In unbalanced
one the signal is sent over a single wire with DTEs sharing a
common ground. A balanced is less effected by noise.

RS422A and RS423A supports balanced and unbalanced,
respectively. RS422A supports 100000bps for 1000m and
10000000bps for 10m whereas RS423A support 3000bps
for 1000m and 300000bps for 10m.

The Universal Serial Bus Standards
Unlike RS232-C here we can connect at most 127 devices to
an USB port. The data is transmitted in packets. The USB
port is much faster than RS232-C port. USB version 1.1
supports 1.5Mbps (3m channel), 12Mbps for 25m channel,
where as version 2 supports 480Mbps for 25m channel.

USB bus cable has four wires, one for +5V, two for twist-
ed pairs and one for cable. There will be termination im-
pedance at each end.

Serial signals are NRZI (non return to zero) type.
USB supports data transfer of 4 types given as:

1. controlled data transfer support guaranteed bus ac-
cess

2. bulk data transfer support low priority large data
transfer

3. interrupt driven support periodic bandwidth

4. iso-synchronous transfers which support guaranteed
bandwidth

7.12 Computer Science & Information Technology for GATE

USB employs device polling. USB controllers are further
classified as UHCI (universal Host controller interface),
OHCI (open host controller interface). Communication
overhead is more on host CPU in UHCI.

The USB standard specifies four types of packets such as
token, data, handshake, and special.

The token packet is used to initiate data transfers. It
specifies address (ADDR), direction specifier (packet iden-
tifier PID), end of packet (ENDP), and CRC checksum.

Here, data packets contains no addresses. Data field val-
ue can be upto 8192 bits.

Handshake packets are to either send ACK or NACK
(negative ACK).

n Example A computer sends 0.5KB (6144 bits) of data
to one of its USB peripherals.

a. Show the packets sent by the computer to perform
this transfer. What is the total no of bits transferred?

b. What percentage of the bits transmitted is overhead?

c. How many bits would be required to send the same
data using an RS232C serial ort with no parity, 8 data
bits and 1 stop bit is used?

n Answer: According to the above discussion, a data pack-
et in a USB standard can have at most 8192 bits. Our data
is only 6144 bits. Thus, no of overhead bits = 8 + 16 = 24.

 Percentage of overhead = 24/(6144 + 24) = 0.38%

 In the case of RS232C for every 1 byte 1 start bit
and 1 stop bit has to be sent. Thus overhead bits =
2*0.5*1024 =1024bits

 Percentage of overhead = 1024/(6144 + 1024) = 14.3%

7.2.4 Line Sharing

A communication line can be shared using the multi-point
configuration. For instance, terminals that wish to com-
municate with the master computer. In practice multiplex-
ing is used to achieve this. Various Multiplexing methods
are:

• Time division multiplexing – mainly in circuit switch-
ing.

• Statistical multiplexing – mainly on packet switching.

• Frequency Division Multiplexing – mainly on un-
guided transmissions

• Space division

7.2.4.1 Time Division Multiplexing (TDM)

Each TE has a separate connection to the TDM (Fig. 7.2).
TDM samples each TE, in turn and puts aggregate onto
high speed link. Each cycle (of servicing all TE’s) has a fixed
time period, and data from cycle is called a frame (time

frame). This is similar to time-slicing in operating systems.
Thus, the bandwidth allocated to a TE is fixed.

TDM

S1

S2

Sn

TE's

Multiplexing DeMultiplexing

R1

R2

Rn
TDM

Sn SnS2 S2S1 S1

Time Frame

TE's

High-speed Link

Figure 7.2 Time Division Multiplexer

In USA, TDM carriers are used to support PSTN lines as
shown in Table 7.1. For example, T1 carrier supports 24 voice
grade channels and a control channel of 8000bits(framing
bits). Table 7.1 illustrates the carrier hierarchy. In Europe
uses 31B+D is used (2.048Mbps) called as E1 lines there
allow for 32 64k channels where 31 are voice and one D
channel (64Kbps) is for signalling or framing. Also, ISDN
carriers are also made available in the mean time. The 2B+D
Basic Rate Interface uses 64k for each B-channel plus 16k
for the D-channel, the 23B+D Primary Rate Interface uses
64k for each B-channel plus 64k for the D-channel, which
equals 1.544 Mbps, T1 bandwidth.

Table 7.1

Carrier
Signal
Level

of T1
signals

of Voice
Channels

Speed

T1 DS-1 1 24 1544 kbps

T1c DS-1c 2 48 3152 kbps

T2 DS-2 4 96 6312 kbps

T3 DS-3 28 672 44736 kbps

T4 DS-4 168 4032
274760

kbps

7.2.4.2 Statistical Multiplexing (Stat MUX)

Figure 7.3 shows a number of TEs connected to a Stat
MUX. Note that typically there will be another Stat MUX
connected to other end of the synchronous link, which also
terminates a number of TEs. Before data can be accepted
from a TE, the TE must inform the Stat MUX of the des-
tination TE it wishes to communicate with. This informa-
tion is conveyed to the Stat MUX at the other end of the
synchronous link. Thus, at the destination, when a frame
arrives from TE S1 (this is stored in the frame header), the
Stat MUX routes it to the appropriate destination.

The Stat MUX collects data (characters – asynchronous
transmission) from the TEs and builds variable length
frames. The end of a frame will be recognised for instance

Computer Networks 7.13

when carriage return is detected. Frames are moved to the
stat mux’s output buffer to await transmission. Mux will op-
erate a particular layer 2 protocol for synchronous link (e.g.,
LAPB). With statistical multiplexing, only active TEs are
serviced by the multiplexer. During transmission a frame
will occupy the entire bandwidth of the high-speed link.

Sum of the average transmissions, for all TEs, must not
exceed approximately 0.7 of the capacity of the high-speed
link.

UARTS1

S2

Sn

TE Asynchronous

Synchronous
(high-speed)

Link

Stat MUX

UART

UART

SnS2 S1 S1
S3

Link

Output Buffer

Figure 7.3 Statistical Division Multiplexer

7.2.4.3 Multiplexing – Comparison

Stat MUX (or concentrator) :
Frames are layer 2 frames and can be variable length.
Frames from DTE occupies entire bandwidth of high-

speed link while it is being transmitted.
Therefore, each DTE can take a variable amount of

bandwidth – bandwidth on demand.
Frames are stored on a buffer while they await transmission.
Sum of average transmissions for low-speed links must

not exceed approximately 0.7 of the capacity of the high-
speed link. Note, the sum of the average transmissions is
not the same as the sum of the capacity.

TDM:-
Time Frames have a fixed length and have the same

structure.
Time Frame contains a data sample from all TE’s.
Bandwidth allocation is fixed.
Capacity of high-speed link is equal to sum of capacity

of low-speed links.

7.2.4.4 Frequency Division Multiplexing

Unlike TDM and STATISTICAL Multiplexing, FDM is a
technique that divides the available bandwidth into discrete
frequency bands or channels. Each DTE is allocated their
own channel, all of which can be used simultaneously. Data is
put onto the communications media using a radio frequency
modem which is tuned to that DTE’s channel frequency.

7.2.5 Note on Multistage Crossbar Switches

Design

Optimal design of a three stage crossbar switch :
Nx = 2N(2n-1) + 1(n-1)(N/n)^2

k = 2n–1

Nx = 4N(sqrt(2N) - 1)

N = no. of i/p lines

Nx = no. of crossing point

k = no. of crossbar switches in middle layer

n = no. of switches in first, last layer

7.3 Data Link Layer

The main function of layer 2 is to provide an error free link
to layer 3.
Error Detection
Parity Bit

• Very simple scheme, where transmitter adds an extra
parity bit to each character

• If even parity is used then the total number of 1’s in
the character (including the parity bit) must be even

• Can also have odd parity

Which error patterns can the parity scheme not detect? If
two bits gets spoiled, this fails.

Block Check Sum

• This is an extension to the parity bit method

• There is a parity bit associated with each character as
before

• String of characters are viewed as a vector 8 bits wide
with a ‘parity character’ added to the end

• So there is a parity bit for each bit position in string
of characters

• For a one character overhead, many more errors can
be detected

Which error patterns the block check sum can not detect?

Cyclic Redundancy Check (CRC)

• CRC techniques used to produce the Frame Check
Sequence (FCS) included in layer 2 frames

• Normally it is placed at the end of the frame

• CRCs can have varying lengths

 16 bits is the normal CRC in WANS

 32 bits is the normal CRC in LANs

• The greater the number of bits in the CRC, the greater
the length of the frame that can be covered

7.3.1 Error Recovery (Correction) Classification

Error detection allows the receiver to detect transmission
errors, for instance using the CRC. Having detected an er-
ror, the receiver must recover from it.

There are two mains types or error correction schemes

• Forward error correction

• Backward error correction

7.14 Computer Science & Information Technology for GATE

With forward error correction, extra information is gen-
erated by the transmitter and sent as part of the frame. The
receiver uses the information to detect and correct the errors.
The overhead (extra bits) associated with this form of recov-
ery dictates that it is normally used only on channels with a
high Bit Error Rate (BER) e.g., air interface on mobile cel-
lular networks.

With backward error correction, the receiver asks the
transmitter to retransmit the necessary frames. Currently
backward error correction is the most common form of er-
ror correction.

7.3.1.1 Forward Error Correction (FEC)

Additional bits are added to the message which enable re-
ceiver to detect and correct errors. Thus there is an overhead
associated with FEC.

The Hamming Single Bit Code is used to explain the
principles of error correction. However, in practice, much
more complicated encoding schemes, based on convolu-
tional codes, are used.

Hamming Single Bit Code: Read First Unit
CRC: Do read example elsewhere in this Unit

7.3.1.2 Backward Error Correction

The principle of BEC is that the transmitter repeats frames
which have got ‘lost’. There are many different BEC proto-
cols. These can be roughly classified according to the Re-
peat reQuest (RQ) strategy they operate. The three most
widely used RQ strategies are:-

Idle RQ :
With Idle RQ the transmitter sends a frame and waits for
an acknowledgement before sending the next frame. The
transmitter remains idle until the acknowledgement arrives
– hence the name.

Go-back-N Automatic Repeat reQuest (ARQ) :
The receiver identifies an error and requests that all out-
standing frames are retransmitted, starting with the frame
in error. It therefore, discards all frames that is has already
received which were transmitted after the lost or corrupted
frame.

Selective Repeat ARQ :
The receiver identifies an error and requests that only the
frame in error is retransmitted.

Before these protocols can be fully understood the me-
chanics of sequence numbers and sliding windows must be
mastered.

7.3.1.3 Sequence Numbers

• Errors can occur on the link, for example a frame
gets corrupted by noise on the link.

• The receiver detects the error and requests another
copy of the frame.

• Implication is both receiver and transmitter can
uniquely identify specific frames.

• Frames are uniquely identified by sequence num-
bers.

• The sequence number must be carried in the frame -
normally in the header.

• The obvious format is an integer.

• The link will carry large numbers of frames (perhaps
thousands per minute) but it is not possible to re-
serve a large number of bits for the frame number.
Remember, in packet switching a link is shared by a
large number of calls.

• Thus a scheme is needed, whereby sequence num-
bers are reused after a period of time.

• The receiver controls when the sequence number
can be reused by acknowledging correctly received
frames.

For example, with a 3 bit sequence number we will have
8 sequence numbers – which is the sequence number space.
The stream of sequence numbers allocated would be

0,1,2,3,4,5,6,7,0,1,2,3,4,5,6,7,0
In summary, sequence numbers uniquely identify

frames and allow the receiver to detect missing frames.

7.3.2 Idle RQ Protocols

Idle RQ is probably the simplest BEC protocol. The trans-
mitter sends the first frame, frame 0 and waits for a positive
acknowledgement. When the acknowledgement arrives it
sends frame 1 and again waits for an acknowledgement.
Eventually the sequence number will cycle back to 0 again.

If the receiver detects an error in a frame, then it dis-
cards the frame sends a negative acknowledgement. The
transmitter responds to the negative acknowledgement by
resending the frame. At any time, there is only one frame
awaiting acknowledgement, therefore there is never any
confusion over which frame must be retransmitted.

A frame may also get ‘lost’. Clearly, in this case the re-
ceiver will not receive the frame, therefore an acknowledge-
ment cannot be sent. There is a potential deadlock situa-
tion here. The transmitter cannot send a new frame until
an acknowledgement is received and the receiver cannot
send an acknowledgement until the frame is received. This
is resolved by introducing a ‘time-out’. When a transmitter
sends a frame a clock is started. If the clock goes off before
the acknowledgement is received, then the frame is auto-
matically retransmitted again.

With Idle-RQ the link utilisation is poor. To increase
the efficiency of the protocol Idle-RQ is extended to allow

Computer Networks 7.15

the transmitter to have many frames outstanding. This
is achieved by operating a sliding window (which is also
called as pipelining) as follows.

7.3.3 Sliding Window Protocols

Related to sequence numbers is the concept of a sliding
window. The following constants/variables are required to
implement a sliding window
Constants Sequence number space

Window size
Variables : Upper window edge = V(S) S denotes Send

Lower window edge = V(A) A denotes
Acknowledge

V(S) is the value of the next sequence number which will
be allocated by the transmitter. It is incremented by 1 every
time a frame is transmitted.

V(A) is updated by the receiver, when an acknowledge-
ment is received from the other end of the link. Note, an
acknowledgement may (and typically does) acknowledge
multiple frames.

Together, these two variables control the send window.
V(R) is present in the receiver and is used to check wheth-

er the correct frame sequence has been received. The frame
sequence number in the frame is compared with V(R). If
they are equal, then this is the frame expected, and V(R) is
incremented by one, ready for receipt of the next frame.

These variables always refer to the next frame. For in-
stance, V(S) is the sequence number that will be allocated
to the next frame that is transmitted. Similarly, V(R) in the
receiver, is the sequence number of the frame that the re-
ceiver expects to receive next. The contents of the variable
V(A) is the number of frame that will next be acknowl-
edged. Also note that these are the variables required for
data transmission in one direction and acknowledgements
in the opposite direction. For a full duplex link (simultane-
ous transmissions in both directions) a set of these vari-
ables would be required in both transmitter and receiver.

How Sequence Numbers work
Initial state:- Nothing has been transmitted

Assume the sequence number space is 8 and the window
size is 3

(Note that with 8 numbers the window could be bigger)
Remember the sequence numbers must wrap round

from 7 back to 0
If V(A) and V(S) have the same value, then there are no

outstanding acknowledgements.
The window size constrains the relative values of V(A)

and V(S). With a window size of 3, if V(A) is 1 then V(S)
cannot be greater than 4.

The numerical difference between V(S) and V(A) is
the number of acknowledgements outstanding, i.e. frames
which have been sent but not yet acknowledged.

Note that copies of the transmitted frames are stored in
a buffer and only deleted when an acknowledgement is re-
ceived. Thus, the window size also dictates the buffer size
required at the transmitter.

7.3.3.1 Go-Back-N ARQ

With backward error control protocols, transmitters must
store transmitted frames in a buffer until they have been
acknowledged by the receiver. Acknowledgements may be
piggy-backed on information frames going in the reverse
direction (piggy-backing will be explained later) or alter-
natively separate explicit acknowledgements may be gen-
erated (Receiver Ready (RR) frames). A timer is used to
ensure that acknowledgements are sent on time, otherwise
the transmitter will time-out and automatically retransmit
all unacknowledged frames. In the event of a transmission
error, the receiver requests retransmission, beginning with
a specified frame number and the transmitter responds ac-
cordingly. Clearly there must be no ambiguity in the frame
number requested by the receiver and the frame number
used by the transmitter. This has implications for the maxi-
mum window size, as demonstrated in the timing diagrams
below.

Maximum window size for Go-back-N
In summary, with Go-back-N the maximum window size
must be less than the sequence number space (N-1). Thus
for a 2 bit sequence number, the sequence number space
is 4 and the maximum window size is 3 (4-1). Note that
a window size smaller than the maximum is also accept-
able. The retransmission buffer size is dependant upon the
maximum window size. The transmitter must be able to re-
transmit any of the unacknowledged frames therefore, the
retransmission buffer size is also N-1.

How Go-back-N recovers from the following situations:
Corrupted Information frame

• Corrupted frame will be discarded by the receiver.

• Receiver will become aware of the missing I frame
when the next I frame arrives – it will detect an out of
sequence error (V(R) not = frame sequence number).

• Receiver sends an REJ frame, which requests re-
transmission.

(Note, if the corrupted I frame is also the last frame to be
sent, then the transmitter will time-out because it will be
expecting an acknowledgement from the receiver. On time-
out the frame will be automatically retransmitted.)

Corrupted Receiver Ready (ACK) frame

• Transmitter may time-out and retransmit unac-
knowledged frames.

• However, if a subsequent RR frame is received in
time, then the transmitter and receiver are oblivious
to the missing acknowledgement.

7.16 Computer Science & Information Technology for GATE

Corrupted REJ

• On detecting an out of sequence error, the receiver
will send an REJ frame to the transmitter.

• The REJ frame informs the transmitter what frame
number the receiver is expecting and the transmitter
begin retransmission from that point.

• Clearly all previous frames have been received, thus
the REJ also acts as an acknowledgement.

• If the REJ is corrupted then the transmitter will even-
tually time-out and retransmit all unacknowledged
frames.

7.3.3.2 Selective Repeat (sometimes called

Selective Reject)

As the name implies, with Selective Reject, the destination
requests retransmission of individual frames which have
been corrupted. Retransmissions are requested using the
frame type SREJ. In other respects however the protocol
functions in much the same way as Go-back-N, including
frame formats, control field formats, etc. The higher layer
expects to receive Protocol Data Units (PDUs) in order,
thus with Selective Reject, it is necessary to buffer PDUs
at the destination while awaiting retransmission of earlier
ones.

Using a similar approach as was taken for Go-back-N,
it is possible to show that Selective Reject has the following
characteristics:-

For a sequence space of 8 (3 bit sequence number)

1. The window size cannot exceed half the sequence
space, thus for a 3 bit sequence number the window
size must not exceed 4. This can lead to a situation
known as sequence number starvation.

2. Clearly the transmit buffer is the same size as the win-
dow.

3. A buffer of the same size as the transmit buffer must
also be implemented in the destination. This buffer is
typically more complicated than the transmit buffer
because PDUs may have to be reordered within the
buffer.

7.3.3.3 Comparative performance of Go-back-N

and Selective Reject

1. Throughput efficiency – Retransmissions scheme for
Go-back-N leads to reduced throughput compared to
Selective Reject. For Go-back-N, with a high offered
load, this can lead to a situation known as congestion
collapse.

2. Maximum window size – The maximum window size
for Selective Reject is half the sequence number space
compared to the sequence number space less one for

Go-back-N, i.e. Selective Reject the window size is al-
most half that for Go-back-N, for the same sequence
number space. Note that for both schemes, the win-
dow size dictates the transmit buffer size.

3. For Go-back-N the receive buffer in the destination is
1, while for Selective Reject it is the same as transmit
buffer.

7.3.3.4 Performance LLC Protocols

Stop and Wait (ARQ)
Source station sends a frame and waits for its acknowledg-
ment. Only after receiving the ACK next frame is sent. If it
does not receive any ACK before time elapses, same frame
will be retransmitted.

a = Tp / Tf (how many frames we can send with in
propagation delay)

u = 1 / (1 + 2a) = Tf / (Tf + 2Tp)
u = 1 / Nr (1 + 2a)

Nr = expected number of retransmissions
u = (1 – p) / (1 + 2a) = utilisation
p = probability that a single frame is in error

Tf = frame time
Tp = propagation delay

General Sliding Window Protocol (pipelining)
Unlike ARQ, here a group of frames will be sent at a time
for the duration equal to Tf+2Tp.

u = 1 if N > 2a + 1
u = N / (2a + 1) if N < 2a + 1
N= no of frames sent

Go back N
Receiver, will not send ACK if I’th frame is spoiled and at
the same time it will not accept subsequent frames also
even if they reach with out any error. At the source side for
I’th frame timer gets elapsed and in the next transmission
attempt I’th frame and subsequent frames and some more
new frames are sent.

u = (1 – p) / (1 + 2*a*p) if N > 2a +1
u = N (1 – p) / (2a + 1) (1 - p + N * p) if N < 2a +1

Selective Repeat:
Here, NAK frames are sent by the destination when it re-
cieves a spoiled or garbled frame. Receiver, during the next
transmission those frames for which NAK frames are re-
ceived are transmitted.

u = 1 – p if N > 2a +1
u = N (1 – p) / (2a + 1) if N < 2a + 1

* If N = 1 it turns to stop and wait protocol

n Example A channel is employing stop and wait proto-
col with frame size of 10000 bits and at data rate of 100
Kbps. The propagation delay is 250 ms. The probability of a
frame facing an error is 0.5. Then calculate the efficiency of
the channel under this protocol.

Computer Networks 7.17

n Answer : Tp = 250 ms

Tf = 10000/100000 = 100 ms

a = Tp/Tf = 250/100 = 2.5

u = (1 – p) / (1 + 2a) = (1 – 0.5) / (1 + 2.5 *2)

= 0.0833

n Example What should be the frame size for the above
problem to have atleast 50% efficiency under same error
conditions.

n Answer : 0.5 = (1 – 0.5) / (1 + 2a)
a = 0

This situation may occur only if the propagation delay is
almost 0 or the frame is of infinite size.

n Example A sliding window protocol is employed on a
satellite channel with a propagation delay of 250 ms and
frame sizes are 1000 bits long and data rate of the channel is
100 Kbps. Then calculate the efficiency if we send 1 frame at
a time, 7 frames at a time, 127 frames at a time.
n Answer : U = N / 2a + 1

a = 250 / 10 = 25

(i) 1 < 25 so, U = 1 / (1 + 50)

(ii) N = 7 so, U = 7 / (1 + 50)

(iii) U = 1 since N > 2a +1

n Example A channel has a bit rate of 4 Kbps and propa-
gation delay of 20 ms. For what range of frame sizes does the
stop and wait protocol gives an efficiency of at least 50%?

n Answer : a = ?

0.5 = 1 / (1 + 2a)

a = 0.5

Tf = Tp / a = 40 ms

so, Frame size = 4000 * 40 * 10–3 = 160 bits

n Example Frames of 1000 bits are sent over 1 Mbps
satellite channel. 3 bit sequence no’s are used. What is the
channel utilisation for (i) Go back N (ii) Selective repeat

n Answer : Go back N :
No of frames sent at a time = 7 (as 3 bit no’s)

Tp = 250 ms

Tf = 1000 / 106 = 1ms

a = 250

so, U = N / 2a + 1 =7 / 500 +1

Selective Repeat :
No of frames sent at a time = 2(3–1) = 4 (N/2 half of the frames)

so, U = 4 / 500 +1

n Example Compute the fraction of bandwidth i.e, wasted
on overhead (headers and retransmissions) for selective re-
peat on a heavily loaded 50 Kbps satellite channel with data
frames consisting of 40 header, 3960 data bits. ACK frames
never occur, NAK frames are 40 bits. The error rate for NAK
frames are negligible. The sequence no’s are 8 bits long

n Answer : Selective Repeat:

No of frames sent at a time N = 2 ^ (8 –1) = 128

Overhead bits = 128 * 40 + 0.01 * 128 (40 + 4000)

so, Fraction of Bandwidth wasted = Overhead bits/50* 10^3

7.3.4 Local Area Networks (LAN’s)

LAN protocols are also called as medium access control
protocols. Media is shareable in LAN, everyone is equally
sharable but there will be some control in accessing the
shared channel.
Issues

• MAC (Medium Access Control) layer (how nodes
gain access to transmission media).

• Topology

• Transmission media

• Ownership

• Applications

• Speed

Media Access Control

Deterministic Probabilistic
(Random access)

E.g. TOKEN RING ETHERNET

Standards (IEEE 802.5) (IEEE 802.3)

Network

Logical Link Control 802.2

Medium Access Control

Physical

Layer #

3

2

1

802.3

802.5

3

LLC

MAC

1

Layer 2

Piers

DTE
(Source)

3

LLC

MAC

1

DTE
(Destination)

Layer 2

Protocol stack

General Characteristics:

• End to end communications LLC to LLC.

• With bus and ring topologies, all DTEs share the
same physical transmission media, i.e. they are all at-
tached to it. All frames are transmitted on it.

• MAC layer is concerned with how they gain access to,
and that they share transmission media in a fair way.

7.18 Computer Science & Information Technology for GATE

CSMA/CD (Carrier Sense, Multiple Access / Collision
Detect)

• Used in technical / office environments.

• 10 Mbps baseband COAXIAL cable.

10 base 2 - thin wire (0.25 diameter)
maximum segment length : 200m

10 base 5 - thick wire (0.5 diameter)
maximum segment length : 500m

10 base T - Hub (star) topology, but using twisted pair

• It is possible to connect together with repeaters to ex-
tend the length to 2.5 kilometres.

Assumptions about the stations:

(i) carrier sensing

(ii) collision detection

(iii) time is continuous

(iv) employs binary exponential back off algorithm
after collision

(v) if no collision is detected before sending last bit
of frame, station concludes that frame is sent suc-
cessfully

(vi) The channel is multiple access type i.e, more than
one station can access the channel simultaneously

Frame transmission.

• Sending DTE encapsulates data in an MAC frame,
with required source and destination addresses in
the frame header.

• The frame is broadcast on media, the bits will propa-
gate in both directions of the bus.

Frame reception.

• All DTEs are linked to the cable, and the DTE for
whom the frame is destined, recognises the desti-
nation address and continues to read the rest of the
frame until completion. Once the DTE realises the
destination address is not its own it ignores the re-
mainder of the transmission.

• The data part of the frame is sent up to the LLC (Log-
ical Link Control) layer.

Frame Format

7 Octets

1 Octet

2 or 6 Octets

2 or 6 Octets

<= 1500 Octets

Optional (Minimum field length)

4 Octets (32 bit CRC)

Preamble

Start of frame

Destination address

Source address

Length indicator

Data

Pad

FCS

2 Octets

Preamble – allows MAC unit to achieve bit synchronisation
(Manchester encoding used). It consists of 7 octets with the
format 10101010 followed by a single ‘start of frame’ octet
of the form 10101011.
Frame transmission in detail.

• DTE listens to transmission media, to decide whether
another frame is being transmitted. (Carrier sense)

• If / when media is idle, DTE transmits frame, and
simultaneously monitors media to ascertain whether
another DTE has also transmitted a frame i.e., to as-
certain whether a collision has occurred.

What are the implications of this ?
(If it listens while it transmits it must listen for the round
trip delay time plus a small amount for error handling.)

DTE 1

DTE 2

DTE 3

DTE 4

DTE 5

DTE 6

BUS
X

Worst case collision

Figure 7.4

If a collision occurs at X, which is close to DTE 6 but
some distance from DTE 1, DTE 1 will have to wait much
longer than DTE 6 for the occurrence of the collision to
reach it, this is shown by the arrows below the diagram
in Fig. 7.4, the large arrow going both ways shows DTE 1
round trip delay, DTE 6 is much smaller.

• When a DTE which is transmitting a frame detects
a collision, it reinforces it by transmitting (Immedi-
ately) a jam sequence, and discontinues transmitting
its frame.

• (How many DTEs will detect a collision? As many as
the amount that have decided the line is idle.)

• If a DTE detects a collision it attempts a (maximum)
number of retransmissions before giving up.

• It retries after an integral number of slot times.

 Slot time = twice propagation delay of LAN +
transmission delay of jam sequence.

• Number of slots : 0 £ R £ 2k k = number
of retries R = number of slots

7.3.4.1 Important Points about Ethernet IEEE

802.3 LAN

In Ethernet Protocol, the min required frame time should
be atleast 2Tp (Tp=end to end propagation delay). If the re-
quired data to be sent is very small then padding is done to
make the frame bigger and satisfies 2Tp condition.

Computer Networks 7.19

n Example Calculate the min frame size required for a 10
mbps line of max length 2500 ms with 4 repeaters where the
propagation delay is 25.8 micro sec. Also calculate the min
frame size if the distance is reduced to 250 ms. Also calcu-
late the min frame size if the data rate is 1 Gbps?

n Answer:
2Tp = 2 * 25.8 51.6 micro sec

So, min frame size = 10 * 10 6 * 51.6 * 10-6 = 516 bits
= 64 bytes

case 1: Distance = 250 m
So, 2Tp = 5.12 micro sec
So, min frame size = 10 * 106 * 5.12 * 10-6 = 51.2 bytes

= 7 bytes

case 2: Distance = 2500 ms
data rate = 1 Gbps

2Tp = 51.2 micro sec
So, min frame size = 51.2 * 10 -6 * 10 9= 51.2 * 1000

= 6400 bytes

Note

If the network spread increases, round trip propagation de-
lay increases. consequently, min frame size also increases.
Similarly if the data rate of the LAN increases, min frame
size also increases.

IEEE 802.3 Frame structure
preamble : 7 bytes
start : 1 byte
source : 2 or 6
destn : 2 or 6
size : 2
data : 0 – 1500
padding : 0 – 49
checksum : 4 bytes
2 byte addresses are used for device control which are con-
nected to systems such as mainframe computers
For LAN, 6 byte addresses is nothing but network card ad-
dress

n Example A LAN is having a propagation delay of 5.12
micro sec and is working at 100Mbps then calculate the min
frame size and also calculate the worst possible number of
padding bytes required?

n Answer: Min frame size = 5.12 * 2 * 100 * 106 * 10 –6

= 1024 bits
= 128 bytes

number of padding bytes required = 128 – (8+6+6+2+0+4)
= 102 bytes

7.3.4.2 TOKEN Ring LAN

• Topology : Closed loop.

• Each station is attached to two other stations : 1 up
stream - 1 down stream.

• It is actually a series of point to point links.

• All DTEs are connected together in a physical ring.

• Just like BUS based LAN’s, all the frames share the
same transmission path i.e. ring.

• One/A token (small frame, 24 bits long) circulates
round the ring.

• The token is either available or in use.

• In order to send a frame a DTE must acquire the token.

A free token consists of 24 bits divided into 3 Octets. The
first octet is the Start Delimeter (SD), the middle octet is
the Access Control (AC) field, and the final octet is the End
Delimeter (ED).

Manchester encoding is used at the physical layer. Viola-
tions of Manchester encoding are used to create the SD and
ED octets.

Frame Transmission

• A DTE must first wait for the token to be available, to
circulate round the ring to the DTE.

• It then changes the token from available to in use.
(Set the T bit in Ac field to 1) It then transmits its
MAC frame immediately after the AC field of the to-
ken, CRC computed, etc.

• The frame is repeated. i.e., each bit is received by all
DTEs and retransmitted.

• Until it circulates back to the initiating DTE where
it is removed, and the token is made available again,
and passed on.

Frame Reception

• All DTEs receive frame, but only DTE whose address
matches the destination address in the frame header
keeps a copy of the frame.

• Receiving DTE updates Acknowledge (A) and Copy
(C) fields in the frame trailer, this informs the origi-
nator that another DTE has received and copied the
frame.

• The more DTEs on the ring the better the through-
put, as the transmission line fairly used and there are
no collisions, the only delay is once around the ring.

Other issues.

• Priorities can be implemented by setting the Reser-
vation bits in an in-use tokens AC field..

• 1 of the DTEs must be set up as a monitor to ensure
frames do not circulate continuously on the ring.

• Rings are usually wired such that if one DTE fails,
then the others are still connected in a ring.

Slotted Rings.

• Fixed length frames circulate round the ring in slot
frames. Most common slotted ring LAN is the Cam-
bridge ring.

7.20 Computer Science & Information Technology for GATE

• Frame comprises : Source address (1 octet)
 Destination address (1 octet)
 Two data octets
 5 control bits
 Total of 32 bits.

• The ring operates in a similar way manner to token
ring.

• Frame transmission : Sending station waits for an
empty frame.

 The full / empty bit is set to 1.
 The source and destination

addresses are copied onto the
frame header.

 2 octets of data are copied to
the data field.

 The frame is circulated onto
the ring.

• Frame reception : At each station the frame is re-
ceived and if the destination ad-
dress matches the stations address,
a copy of the frame is kept.

 The destination station sets two
bits which indicate that :

- The station is active.
- The frame was accepted.

• The frame continues round the ring until it is re-
ceived by the sender, which checks that the frame has
been accepted, it then resets the full / empty bit.

• Note, a sending station is not allowed to have more
than one frame in transit.

• A monitor station is required to manage the ring.

7.3.4.3 BUS vs Ring LAN

Distance

 BUS - maximum bus length, 5 x 5 segments (each
500m) in CSMA/CD, (2.5Km)

 Ring - maximum distance between stations 500m,
but no overall limit on size.

Performance

 BUS - low delay and high throughput when the of-
fered load is low. As offered load is increased, col-
lisions occur and the delay increases and through-
put decreases.

 Ring - no collisions. When the offered load is low,
there is a delay in waiting for the token to arrive at
the sending station. As the offered load increases,
the delay does not increase substantially. Through-
put is equal to offered load.

Robustness

 BUS - more robust under failure. One station go-
ing down does not bring the network down. (If no

ACK is received then it will not resend to that des-
tination).

 Ring - If the ring is broken then the network is
down, thus more elaborate wiring systems are re-
quired to ensure this does not happen.

Acknowledgements

 BUS - separate ACKs are required, thus extra traf-
fic on the network.

 Ring - ACKs from the destination to the source are
piggy backed on the frame, thus no separate ACK’s
are required.

Simplicity

BUS - MAC protocol complex.
Ring - MAC protocol simple.

7.3.4.4 Some Important Points about Token

Ring and Token Bus

Collision free protocols are used in Token ring, Token bus.
Token Bus supports priority based service. The station
which is holding the token is the one is eligible to use the
channel while other stations keep quiet.

Thus while real data communication takes place colli-
sions will not be there. However while ring adjustments
takes place there will be collisions among the control frames
which are reserved through binary exponential back-off al-
gorithm.

The ring formed here is a logical ring. It is observed to be
useful for assembly line operations.

1. Token Ring is made up of point to point links

2. Broadcasting behaviour is made possible in this phys-
ical ring with point to point links by allowing a frame
sent by a station to rotate around the ring and letting
it to reach the source station again where it will be
removed

7.3.4.4.1 Responsibilities of Monitor

1. To take care of orphan frames or garbled frames. The
monitor has to flush out the orphan frames such that
the bandwidth is conserved.

2. Monitor station has to take the responsibility of to-
ken circulation. If a station holding a token is crashed
along with a token then it is the responsibility of the
monitor station to identify this and generate the token
and enjoy the token and then hand over it to the next
station.

3. It has to send special packet called active monitor
present at regular interval such that no one will com-
pete to become the monitor.

4. It has to send beacon frame to identify any breaks in
the network.

Computer Networks 7.21

Stations will be having interface units which works in two
modes

(i) listening mode

(ii) promiscuous mode

In the listening mode whatever data is coming is sent to
outgoing line without forwarding it to the computer con-
nected to interface unit.

In the promiscuous mode, data will be sent to the com-
puter and at the same time it is made available to the ring.

Token ring supports priority based service. Wire center
technology is used in practice to take care of breaks in the
ring.

Every frame contains special bits at the end, normally
0’s when sent by source station, destination stations or its
interface units will be setting these bits to indicate either of
the following conditions

(i) frame is spoiled

(ii) frame is reached but destination station did not ac-
cept as it doesn’t have buffer space

(iii) frame is reached but destination station is not work-
ing

(iv) frame is reached and successfully accepted

n Example A 1 Km long, 10 Mbps CSMA/CD LAN has
a propagation speed of 200 m per micro sec. Data frames
are 256 bits including 32 bits of header, checksum, other
overhead. The first bit slot after a successful transmission is
reserved for the receiver to capture the channel to send a 32
bit ACK frame. What is the effective data rate, exclude the
overhead? (Assume that there are no collisions)

n Answer:
2Tp = 10 micro sec

Frame time = 256 / 10 * 106 = 25.6 micro sec
ACK frame time = 32 / 10 * 106 = 3.2 micro sec
In the worst case, efficiency = 25.6 / 38.8

n Example Consider building a CSMA/CD network run-
ning at 1 Gbps over 1 Km cable with no repeaters. The sig-
nal speed in the cable is 2 lakh Km per sec. What is the min
frame time?

n Answer: 2Tp = 2 Km / 2 * 10 ^ 5 km /sec = 10 micro sec
Min data frame time = 10 micro sec
So, min frame size = 10 * 10-6 * 109= 10000 bits

n Example A token bus system works like this, when a
token arrives at a station, a timer is reset to 0. The station
then begins sending priority 6 frames until the timer reach-
es a value T6 then it switches over to priority 4 frames and
continues transmitting them until timer reaches a value T4.
This is repeated for priority 2 and 0 also. If all the stations
are having T6 to T0 values as 40,80,90 and 100 ms. Then
what fraction of total bandwidth is reserved for each prior-
ity class?

n Answer: T6 40 40%
 T4 80 40%
 T2 90 10%
 T0 100 10%

Token ring uses 3 byte tokens. A token contains special
bit pattern and it is going on circulating in the ring if the
stations are idle. Whenever a station wants to send the data,
it is going to take over the the token. Really the token is de-
signed such a way that it differs by 1 bit value of any frames
first 3 bytes. Whenever, a station takes takes the token that
bit will be reversed and then data bits will be appended to it.

In the design of the token ring, physical length of the bit
is very crucial. For example, if the length of the ring is very
less than monitor station has to set or insert extra delays
such that token will be circulated in the ring.
Token Ring variants : IEEE 802.5, IBM Token ring, Cam-
bridge ring
Most of the token rings work at data rates 4 Mbps and 16
Mbps
We can connect 250 m/c ‘s at most
4 Mbps one uses twisted pair and differential manchester
encoding

7.3.4.4.2 Token Insertion Policies

Practically 2.5 bits delay will be there at i/f units

No of stations = M

Delay at each station = b bits long

Data rate = R bps

V = signal propagation speed

d = ring circumference

so, propagation delay (T) = d/v + Mb/R

Ring latency = T * R bits

Ist token reinsertion strategy is to reinsert the token after
the frame transmission is completed but not until after the
last bit of the frame returns to the sending station.

IEEE 802.5 uses this policy

For Example : M = 20

b = 2.5 bits

V = 2 * 10 ^ 8 m /sec

R = 4 Mbps

d = 20 * 100

T = ring latency = 90 bits
Let data frame = 400 bits (including overhead)
so, next token reinsertion is done at 490 bits
so, efficiency = 400/490 = 82 %
with the increase in Ring latency, efficiency falls down dras-
tically.

2nd token reinsertion strategy is to reinsert the token
after the frame transmission is completed but not until after
the header of the frame returns to sending station.

This is used by IBM token ring.

7.22 Computer Science & Information Technology for GATE

n Example
Ring latency = 90 bits
Data frame = 400 bits (including overhead)
Header bits = 15 bytes = 120 bits
Last bit of the header arrives at source station after 120 +
90 = 210 bits
As this 210 bits delay is less than 400 bits, soon after send-
ing the last bit of the data frame token is reinserted.
So, efficiency is 100%
but, practically not 100% because of token walk time.

n Example
Ring latency = 840 bits
Data frame = 400 bits (including overhead)
header bits = 120 bits
Last bit of the header arrives at source station after 120 +
840 = 960 bits
So, efficiency = 400/960 = 42%

The 3rd token reinsertion is strategy is to reinsert the
token immediately after the frame transmission. Both IEEE
802.5 and IBM token ring with 16 Mbps uses this policy.

n Example Ring latency = 840 bits
Data frame = 400 bits (including overhead)
So efficiency = 100% (theoretically)

Here, the efficiency can be said as highest or 100%. It
will be little less than 100% because of the token walk time.
However, this necessitates buffers at the stations.

3rd category of token reinsertion is called multi token
operation whereas 2nd one is called single token operation
and first one is called single packet operation.

The max throughput occurs if always every station has
frames to transmit at any time (otherwise delays will occur)

7.3.5 Bridges

Bridge responsibilities are:

(i) Frame formatting

(ii) Priority (Adding ficticious priority and removing if
necessary)

(iii) sending ACK’s if necessary

(iv) Taking token and serving, it has to drain the frame as
well

Bridge will be having only physical layer and data link layer
Bridge has to take care of responsibilities of differences be-
tween two LAN’s
Hub’s available currently works simultaneously as a repeat-
er and also as a bridge
Bridges are the places where you can have filters and fire
walls etc.
By combining LAN’s you can have a MAN spread of few
10’s of Km.
Distributed Queue Dual Bus (DQDB) protocol is used for
MAN in many practical buses.

7.3.5.1 Types of Bridges

7.3.5.1.1 Source Routing Bridges

The source stations themselves writes via which route
(bridge, LAN, bridge,....) the frame has to traverse. Simply
the bridges has to transmit the incoming frame from one
LAN to other LAN using this routing info. Here the source
stations learns about the other stations of other LAN’s and
uses that info while routing the frames. Thus, the load on
the stations are more whereas, the load on bridges is less.
They have to do only packet reformatting etc.

7.3.5.1.2 Transparent Bridges

These are the one’s which can be purchased off the shelf and
simply used in our network. Here the source station simply
sends the frame to the bridge for which its LAN is connect-
ed. It is the responsibility of the bridge to decide about the
route inorder to acquire the knowledge about the stations,
Bridges uses a special learning Alg. With the knowledge ac-
quired through this alg about the routes, the frame is sent
to the destn m/c. Here the load is more on the bridge rather
than the m/c.

Spanning tree bridge is a variant of transparent bridge.
If the computer network has cycles, then spanning tree is
calculated and packets are sent so that the wastage of band-
width is less.

Flooding : In flooding when a packet arrives at a bridge
point or router point, the same will be transmitted on all
lines except the line on which it arrived.

Guarantee of service is most important than the
efficiency or robustness. It is achieved through sacrificing
efficiency by having redundancy.

Every packet will be having record route and every LAN
and bridge write ID into that frame while traversing. This
info is used by source. If circular then it will be rotating.so,it
will keep info of no of hops = the no of bridges and when
the count becomes 0 then that will be killed.

Multiport bridges are used to connect more than two
LAN’s.

7.4 Network Layer

There are two variations of packet switching

• Virtual Circuit

• Datagram

Virtual circuit (Connection Oriented Network Service,
CONS)

Usual 3 phases :- Call set up

Data transfer

Disconnect

Computer Networks 7.23

At call set-up, a Call Request packet is built by the source
TE and transmitted into the network. A logical channel
number is allocated at each node along the route and this
information is stored in the switch table (refer to diagram
overleaf). The logical channel number uniquely identifies
the call, and has local significance only. The routing infor-
mation, i.e. the output link which the packets should be
switched to, is supplied by the routing algorithm. When the
call has been established, data transfer can take place. The
logical channel number is carried in the header of every
packet. The node accesses the switch table and translates
the input logical channel number and link number to the
output logical channel number and link number. Thus the
packet is switched to the appropriate output link and clear-
ly, all data packets follow the same route.

When all the data has been transferred the call can be
cleared.

Datagram (Connectionless Network Service, CLNS)
With datagram networks, there is no call set-up, therefore
there is no call disconnect. Packets are routed independent-
ly, thus they must carry the full destination address in the
packet header. Packets can therefore arrive out of order, so it
usual for the destination to operate a Selective Reject error
control scheme. No flow control can be applied in the net-
work therefore the nodes are more vulnerable to congestion.
However, depending on the routing algorithm in operation,
it is possible to route around congested areas of the network
and network failures. Datagram networks are particularly
well suited to calls which transmit only a very small amount
of data. Because packets are routed independently they can
potentially follow a different route in the network.

IP Addressses

Class Address Range Supports

Class A 1.0.0.1 to 126.255.255.254 Supports 16 million
hosts on each of 127
networks.

Class B 128.1.0.1 to 191.255.255.254 Supports 65,000 hosts
on each of 16,000
networks.

Class C 192.0.1.1 to 223.255.254.254 Supports 254 hosts
on each of 2 million
networks.

Class D 224.0.0.0 to 239.255.255.255 Reserved for multicast
groups.

Class E 240.0.0.0 to 254.255.255.254 Reserved for future
use, or Research and
Development Purposes.

Ranges 127.x.x.x are reserved for the loopback or localhost,
for example,127.0.0.1 is the common loopback address.
Range 255.255.255.255 broadcast to all hosts on the local
network.

n Example: A router has the following (CIDR) entries in
its routing table:

Address/Mask Next Hop

135.46.56.0/22 Interface 0

135.46.60.0/22 Interface 1

192.53.40.0/23 Router 1

Default Router 2

For each of the following IP addresses, what does the router
do if a packet with that address arrives?

n Answer:

A. 135.46.63.10 – Interface 1

B. 135.46.57.14 – Interface 0

C. 135.46.52.2 – Router 2

D. 192.53.40.7 – Router 1

E. 192.53.56.7 – Router 2

n Example IPv6 uses 16-byte addresses. If a block of 1
million addresses is allocated every picosecond, how long
will the addresses last?

n Answer: It would take approximately 10,790,283,070,806
years to allocate all of the available addresses.

7.4.1 Internet Protocol (offers a Connectionless

Service)

The Internet Protocol (IP) is the protocol used in the In-
ternet. The Internet comprises a large number of intercon-
nected networks. The computers attached to the networks
are called hosts (hosts are the equivalent of DTEs in X.25)
and the devices used to interconnect the networks are
called gateways (gateways are the equivalent of X.25 switch-
es). Routing is the main function carried out by a gateway.
The basic unit of transfer is a datagram (PDU). Similar to
other protocols, an IP datagram (PDU) comprises a header
followed by data. The IP datagram format is shown below.
The role of the various fields which make up the header are
as follows:

0 4 8 16 19 24 31

VERS HLEN SERVICE TYPE TOTAL LENGTH

IDENTIFICATION FLAGS FRAGMENT OFFSET

TIME TO LIVE PROTOCOL HEADER CHECKSUM

SOURCE IP ADDRESS

DESTINATION IP ADDRESS

IP OPTIONS (IF ANY) PADDING

DATA

VERS (4 bits) – This contains the version of IP that was
used to create the datagram. It essentially defines the for-
mat of the datagram and is required to ensure all network

7.24 Computer Science & Information Technology for GATE

components which process the datagram apply the same
format. The latest version is 4, but version 6 is currently be-
ing defined.

HLEN (4 bits) – Defines the length of the header in 32
bit words.

SERVICE TYPE – Defines how the datagram should be
processed. This comprises a number of sub fields which are
shown below.

PRECEDENCE (or priority) (3 bits) – Defines the prior-
ity of the datagram, from 0 (normal) through to 7 (highest).
Generally, this is ignored, but it will become more impor-
tant in the provision of QoS.

 D – Is a one bit flag which when set requests low delay.

 T – Is a one bit flag which when set specifies high
throughput.

 R – Is a one bit flag which when set specifies high reli-
ability.

Note that it is not possible for the network to guaran-
tee the service requests that have been made, however it is
clearly important for the network to at least know the user
requirements.

The last two bits of the service type field are unused.
TOTAL LENGTH (16 bits) – Defines the total length of

the datagram measured in octets.
IDENTIFICATION, FLAGS and FRAGMENT fields

(total 32 bits) control the fragmentation and reassembly of
datagrams. This is discussed later in this section.

TIME TO LIVE (8 bits) – This is measured in seconds,
and defines how long the datagram is allowed to remain in
the Internet. This field is decremented as the datagram is
moves through the network. When the field reaches zero the
datagram is discarded and a message sent back to the source.

PROTOCOL (8 bits) – Defines the high-level protocol
that was used to create the message being carried in the
data. This essentially defines the format of the data portion
of the datagram.

HEADER CHECKSUM (16 bits) – This is a checking
field used to check the integrity of the header.

SOURCE IP ADDRESS and DESTINATION IP AD-
DRESS (32 bits each) – Define the source and destination
IP address.

IP OPTIONS – The length of this field is variable, de-
pending on which options are chosen. Options are stored
contiguously in the OPTIONS field, and each option com-
prises an OPTION CODE field followed by an optional
LENGTH (8 bits) and DATA field (variable integral num-
ber of 8 bits). Options relate to network management and
control. For instance, if the record route option is specified
then each network element which processes the datagram
must add their IP address to the record route option field.

A detailed description of all options is beyond the scope
of these notes.

The major functions carried out by IP are Fragmenta-
tion/Reassembly, Routing and Error Reporting.

Fragmentation/Reassembly
Datagrams may be transported across many physical net-
works. There may be various maximum physical frame siz-
es associated with these physical networks. Consequently
if a datagram is longer that the maximum physical frame
size defined by the network it must be fragmented into a
number of smaller fragments accordingly. Each of the frag-
ments becomes a new datagram and most (not all) of the
header fields will be copied from the original datagram to
each new fragment.

Of great importance in the fragmentation process is the
IDENTIFICATION field. This must be copied into each
fragment because this identifies the original datagram to
which the fragment belongs. The FRAGMENT OFFSET
field specifies where (the offset) this fragment was posi-
tioned in the original datagram. The last fragment resets
the MORE FRAGMENTS bits. From the FRAGMENT
OFFSET and TOTAL LENGTH fields in the last fragment
the destination can calculate the length of the original data-
gram. It is a simple task to reassemble the datagram.

Routing

Before routing can be discussed, addressing must be un-
derstood. An IP address is 32 bits long, and comprises a
netid (network identifier) field and a hostid (host identi-
fier) field. Each network must be allocated a unique netid
within the domain of the Internet, while each host must
be allocated a unique hostid within the domain of the net-
work to which it is attached. In this way a (netid, hostid)
pair can uniquely identify a host, and thus it is possible
to route a datagram from a source host to a destination
host without any ambiguity. Note that the hostid is typi-
cally divided into subnetid and hostid. This subdivision
allows the network identified by the netid to be considered
as a ‘local internet’ comprising networks identified by the
subnetid and hosts attached to the subnetwork identified
by hostid.

There are three different address classes, Class A, B and
C. These differ only in the number of bits allocated to the
netid and the hostid. For instance, Class A addresses allo-
cate 7 bits for the netid and 24 bits for the hostid, while
Class C allocates 21 bits for the netid and 8 bits for the hos-
tid. Clearly Class A addresses allow fewer networks but a
greater number of hosts on each of the networks compared
to Class C. The format of these address classes are shown
in Fig. 7.6. To make it easier to read the address, the 32 bits
are broken down into 4 bytes, the byte values converted to
decimal and separated by dots (periods). Also, in quoting
network addresses the hostid field is set to zero. For exam-
ple, the netid for DMU is 146.227.0.0

Computer Networks 7.25

Class A

Class C

Class B

0 1 2 3 4 8 16 24 31

netid0 hostid

1 0 netid hostid

1 1 0 netid hostid

Figure 7.6 Address Classes

If the gateway is attached directly to the network netid

 the destination address is converted to a physical ad-
dress

 the datagram is encapsulated in a physical frame

 the destination physical address is included in the
physical frame

 the frame is transmitted on the network

else

 the next gateway address is extracted from the
routing table

 the gateway address is converted to a physical
address

 the datagram is encapsulated in a physical frame

 the gateway physical address is included in the physi-
cal frame

 the frame is transmitted on the appropriate network

Given is the example of network:-
Compile a routing table for G2 and explain how G2 will

route datagrams arriving for hosts. Assign network identi-
fiers to the networks.

To explain the process of routing, consider the example
of internet as shown in Fig. 7.7. The internet comprises 5
networks connected together by 3 gateways to form an in-
ternet. Each of the networks have a unique netid which is
shown in the diagram and each gateway has a (netid,hostid)
address for every network to which it is attached. For in-
stance gateway G2 is connected to three networks. Every
gateway must maintain a routing table. Typically on a lo-
cal internet the routing tables are maintained manually
by a network administrator who must update them as the
network topology changes. In contrast, in the Internet an
adaptive distributed routing algorithm maintains the rout-
ing tables automatically. Each entry in the routing table
gives a netid and the address of the next gateway in the
route to that netid. Because the routing process is carried
out one hop at a time, this is commonly called hop by hop
routing. The routing process carried out by each gateway
can be summarised as follows:-

A datagram arrives at a gateway
The destination address is extracted
The routing table is searched using the netid part of the

address

Network
1

Network
4

Network
5

Network
3G1 G3G2

Network
2

Figure 7.7 Process of Routing

Error Reporting
A datagram service is a best effort service. If a host or gate-
way discards a datagram for reasons other than transmis-
sion errors then an ICMP (Internet Control Message Pro-
tocol) is sent back to the source host. This is termed error

reporting. The ICMP gives the reason for discard, for in-
stance the destination host is unreachable.

The ICMP is also used to manage congestion. If a da-
tagram is discarded because the buffers are full then a
‘source quench’ ICMP message is return to the host. The

7.26 Computer Science & Information Technology for GATE

host is expected to respond to the message by reducing
the traffic rate.

There are other functions carried out by the ICMP which
are outside the scope of these notes.

7.4.1.1 Some Points about TCP / IP and UDP

• IP packet is normally called as Datagram

• For connection oriented service – TCP is used

• For connection less service – UDP is used

• Network address length depends on the class type
whereas network card address is independent of the
class of the network and is always 48-bit long

• Port number, IP number can be combinedly called as
socket. But however it is not too valid.

• It’s more appropriate to call socket as a file rather
than an address. In UNIX O.S it is visualized as a file.
Thus, some of the Unix system calls such as read ().
Write () can be used on the sockets.

* Proxy ARP : An m/c will be responding on behalf of a
group of IP addresses i.e, this m/c will respond to ARP
message by sending its N/W card address for a group of
m/c ’s. Thus, the router will be delivering the IP packets
to this ARP which may take further action to deliver
the packets to the real host.

• DHCP (Dynamic Host Configuration Protocol) :

 DHCP protocol is a variant of bootp protocol,
with the help of which A host which is physically
moved from one LAN in a cluster is automatically
Identified.

IP Packet Format:

4 4 8 16 bits

 Ver | IHL | Type of Service | Total length

 Identification | //// | DF|MF| Fragment Offset

 Time to Live | Protocol | Header check sum

 Source Address

 Destination Address

 Options 0 or more

In the packet structure shown, we have the MF bit. This
is usually to indicate whether this packet is the last frag-
ment or not. All fragments except the last one will have this
bit set.

DF bit is used to indicate whether this IP packet can be
fragmented or not all m/c’s are required to accept this pack-
et as a whole if this bit is set. However, if it is not possible
then an ICMP error message is sent to the host.

IHL denote the Internet header length in multiples of
32-bit words.

The version field indicates the the IP protocol version is
it 4 or not.

The Header total size thus should be in between 20 and
60 bytes. The type of service specifies, what type of service
we wanted, whether we want service with lowest error rate
or with min delay or max packet size.

The total length includes the total length of the packet
including the header size and data size. As of today, the max
allowable packet size is 65535 bytes.

The identification field contains the details about packet
seq. no., fragment no. etc.

Fragment offset indicates the offset of the fragment w.r.t
original packet in multiples of 8 bytes.

Time to Live field is used to indicate how long the packet
can live in the internet. Typically its value is 255 sec. When-
ever it reaches router then it gets reduced and when this
becomes 0, this packet is recognized as Stalled Packet.

CheckSum is 16 bit and is calculated only for the header
of the IP packet. Entire header value is taken as 16 bit and
by doing 1’s complement of each 16-bit word first each half
word of the header are added together using 1’s comple-
ment arithmetic and then 1’s complement is taken for the
result. Initially the header checksum is assumed to be all 0’s
while calculating.

The Options field is used whenever we wanted either of
the following services:

(i) Strict source routing

(ii) Loose source routing

(iii) Record route routing

(iv) Time stamp routing

7.4.1.2 Distance Vector Routing Protocols

Most routing protocols fall into one of two classes: distance
vector or link state. The name distance vector is derived
from the fact that routes are advertised as vectors of (dis-
tance, direction), where distance is defined in terms of a
metric and direction is defined in terms of the next-hop
router. For example, “Destination A is a distance of five
hops away, in the direction of next-hop Router X.” As that
statement implies, each router learns routes from its neigh-
boring routers’ perspectives and then advertises the routes
from its own perspective. Because each router depends on
its neighbors for information, which the neighbors in turn
might have learned from their neighbors, and so on, dis-
tance vector routing is sometimes facetiously referred to as
“routing by rumor.”

A typical distance vector routing protocol uses a routing
algorithm in which routers periodically send routing updates
to all neighbors by broadcasting their entire route tables.

Periodic updates means that at the end of a certain time
period, updates will be transmitted. This period typically
ranges from 10 seconds for AppleTalk’s RTMP to 90 sec-
onds for the Cisco IGRP.

Computer Networks 7.27

When a router first becomes active on a network, how
does it find other routers and how does it announce its own
presence? Several methods are available. The simplest is to
send the updates to the broadcast address (in the case of IP,
255.255.255.255). Neighbouring routers speaking the same
routing protocol will hear the broadcasts and take appro-
priate action. Hosts and other devices uninterested in the
routing updates will simply drop the packets.

Most distance vector routing protocols take the very
simple approach of telling their neighbours everything they
know by broadcasting their entire route table, with some
exceptions that are covered in following sections. Neigh-
bours receiving these updates glean the information they
need and discard everything else.

Figure 7.8 shows a distance vector algorithm in action.
In this example, the metric is hop count. At time t0, Routers

A through D have just become active. Looking at the route
tables across the top row, at t0 the only information any of
the four routers has is its own directly connected networks.
The tables identify these networks and indicate that they
are directly connected by having no next-hop router and
by having a hop count of 0. Each of the four routers will
broadcast this information on all links.

At time t1, the first updates have been received and pro-
cessed by the routers. Look at Router A’s table at t1. Router
B’s update to Router A said that Router B can reach net-
works 10.1.2.0 and 10.1.3.0, both zero hops away. If the net-
works are zero hops from B, they must be one hop from
A. Router A incremented the hop count by one and then
examined its route table. It already recognised 10.1.2.0, and
the hop count (zero) was less than the hop count B adver-
tised, (one), so A disregarded that information.

NET

NET

NET

NET

10.1.1.0
10.1.2.0

10.1.1.0
10.1.2.0
10.1.3.0

10.1.1.0
10.1.2.0
10.1.3.0
10.1.4.0

10.1.1.0
10.1.2.0
10.1.3.0
10.1.4.0
10.1.5.0

0
0

t0

t1

t2

t3

0
0
1

0
0
1
2

0
0
1
2
3

VIA

VIA

VIA

VIA

HOPS

HOPS

HOPS

HOPS

10.1.2.2

10.1.2.2

10.1.2.2
10.1.2.2

10.1.2.2

10.1.2.2

NET NET NET

NET NET NET

NET NET NET

NET NET NET

10.1.2.0
10.1.3.0

10.1.3.0
10.1.4.0

10.1.4.0
10.1.5.0

10.1.2.0
10.1.3.0
10.1.1.0
10.1.4.0

10.1.3.0
10.1.4.0
10.1.2.0
10.1.5.0

10.1.4.0
10.1.5.0
10.1.3.0

10.1.2.0
10.1.3.0
10.1.1.0
10.1.4.0
10.1.5.0

10.1.3.0
10.1.4.0
10.1.2.0
10.1.5.0
10.1.1.0

10.1.4.0
10.1.5.0
10.1.3.0
10.1.2.0

10.1.2.0
10.1.3.0
10.1.1.0
10.1.4.0
10.1.5.0

10.1.3.0
10.1.4.0
10.1.2.0
10.1.5.0
10.1.1.0

10.1.4.0
10.1.5.0
10.1.3.0
10.1.2.0
10.1.1.0

0
0

0
0

0
0

0
0
1
1

0
0
1
1

0
0
1

0
0
1
2
2

0
0
1
1
2

0
0
1
2

0
0
1
2
2

0
0
1
1
2

0
0
1
2
3

VIA VIA VIA

VIA VIA VIA

VIA VIA VIA

VIA VIA VIA

HOPS HOPS HOPS

HOPS HOPS HOPS

HOPS HOPS HOPS

HOPS HOPS HOPS

10.1.2.2
10.1.3.2

10.1.3.1
10.1.4.2

10.1.4.1

10.1.3.2
10.1.3.2

10.1.4.2
10.1.3.1

10.1.4.1

10.1.3.2
10.1.3.2

10.1.4.2
10.1.3.1

10.1.4.2
10.1.4.1

10.1.2.1 10.1.3.1 10.1.4.1

10.1.2.1 10.1.3.1 10.1.4.1

Router A Router B Router C Router D

10.1.2.0 10.1.3.0 10.1.4.0 10.1.5.010.1.1.0

Figure 7.8 Distance vector algorithm in action

Network 10.1.3.0 was new information, however, so A
entered this in the route table. The source address of the
update packet was Router B’s interface (10.1.2.2) so that in-
formation is entered along with the calculated hop count.

Notice that the other routers performed similar opera-
tions at the same time t1. Router C, for instance, disregard-
ed the information about 10.1.3.0 from B and 10.1.4.0 from
C but entered information about 10.1.2.0, reachable via B’s

interface address 10.1.3.1, and 10.1.5.0, reachable via C’s in-
terface 10.1.4.2. Both networks were calculated as one hop
away.

At time t2, the update period has again expired and
another set of updates has been broadcast. Router B sent
its latest table; Router A again incremented B’s advertised
hop counts by one and compared. The information about
10.1.2.0 is again discarded for the same reason as before.

7.28 Computer Science & Information Technology for GATE

10.1.3.0 is already known, and the hop count hasn’t
changed, so that information is also discarded. 10.1.4.0 is
new information and is entered into the route table.

The network is converged at time t3. Every router rec-
ognizes every network, the address of the next-hop router
for every network, and the distance in hops to every net-
work.

Route Invalidation Timers
How will it handle re-convergence when some part of the
topology changes? If a network goes down, the answer
is simple enough other neighbouring router, in its next
scheduled update, flags the network as unreachable and
passes the information along.

Split Horizon
A route pointing back to the router from which packets were
received is called a reverse route. Split horizon is a technique
for preventing reverse routes between two routers.

n Example
Consider a subnet with routers A,B,C,D,E. Distance vector
routing is used, and the following vectors have just come in
to router C: from B: (5,0,8,12,6,2); from D: (16,12,6,0,9,10);
and from E: (7,6,3,9,0,4). The measured delays from router
C to B, D, and E, are 6, 3, and 5, respectively. What is C’s
new routing table? Give both the outgoing line to use and
the expected delay.

The new routing table would be listed as follows:

To Outgoing Line Expected Delay

A B 11

B B 6

C C 0

D D 3

E E 5

F B 8

n Example

A

B

D

L
I

J
K

E

F

C

Original Subnet

G H

B

I

K
E

F

C

Router C Spanning Tree

D
A

Suppose that node B in above has just rebooted and has no
routing information in its tables. It suddenly needs a route
to H. It sends out broadcasts with TTL set to 1, 2, 3, and so
on. How many rounds does it take to find a route?

n Answer: It will take 3 rounds of broadcasts to locate a
route to H.

7.5 Transport Layer

Main responsibilities of the transport layer is to extend ser-

vices to the Application layer from which Byte stream is

available to the Transport layer.

Socket can be considered as Transport Layer Service Ac-
cess Point.

(i) Connection establishment, management, closing etc
is also the responsibility of the transport layer

(ii) Extending the Quality of service

(iii) Multiplexing of data coming from different applica-
tions

(iv) Error control also

Transport Layer extends connection oriented, reliable

full duplex service to the application layer.

Binder is a kernel component which registers Process

id no’s and the Port which it is using. When a packet ar-

rives with a given port no, based upon this port no Binder

decides to which process this packet has to be hando-

vered.

Daemon Programs when they are initiated, they will be

first creating a socket with a port (well known port) and

then they will be waiting for the connection request to this

port address. Thus, this port is called as listening port. Ev-

ery well known service such as Telnet, ftp etc will be ex-

tending their services at a fixed port only.

When a Client request arrives to the port at which the

server is listening then the server creates a new process. In

that process, a new socket is created with different Port no.

whose value is more than 1023 and that socket and the cli-

ent side socket are binded together.

In TCP connection establishment, Client can send con-

nection request and server replies with a special packet

called SYN packet and then the Client replies again with

an acknowledgment for the same. Since then, both sides

knows connection is established.

Sliding Window Protocol is employed while data trans-

fer takes place between two TCP entities. The sender side

will be sending a packet with its sequence number. The re-

ceiver side TCP entity replies along with acknowledgement,

amount of free buffer space available with it.

Both Nagal’s algorithm and Silly window syndrome are

complementary to each other.

Connection can be closed by anyone, however otherside

connection may be still active thus, the one which did not

close can continue to use its socket to send the data.

Computer Networks 7.29

TCP Segment Structure :

Source Port Destination Port

Sequence no

Acknowledge no

HL URG ACK PSH RST SYN FIN Window size

Check sum Urgent pointer

Options (0 or more 32 – bit words)

Data (Optional)

For example, application gateways are very much em-
ployed to country policies such as Max allowed message
size, security related key sizes etc.

While internets (WAN) of two countries are supposed
to be connected then very commonly application gateways
are employed. However, if we employ conventional gate-
ways then common management is required on it, which is
not recommended always.

Thus half gateways are employed both sides in which
both sides will agree a common protocol and the data pack-
ets are converted into this common standards and thus the
problems are less.

UDP (User Datagram Protocol):
User’s datagram protocol is a connectionless service.

Here the Client m/c’s can send the IP datagrams without
having connection established. Those applications which
doesn’t require persistent service for a client can employ
UDP based design such that delays for connection estab-
lishment can be reduced.

Services such as time of the day service etc can be ex-
tended through a UDP service.

Whenever a Client m/c wants a centralised timer value,
it can simply send a request without establishing the con-
nection.

UDP segment contains 8-byte header followed by the
data, the header field contains Source port, destn port,
UDP length, UDP check sum is calculated for the data and
the header.

7.5.2 Domain Name System (DNS)

1. Domain name of a server is easy to remember by hu-
man, but computers still need IP address for commu-
nication. Therefore, it is necessary to translate domain
name into IP address. It is done by the Domain Name
System (DNS). Example: www.ust.hk Æ 143.89.14.34

2. DNS Server, or name server, stores a database of DNS
records. It also caches DNS responses of recent look-
ups for a time specified by the time-to-live (TTL)
value of the DNS record). DNS servers communicate
with each other from time to time to keep the records
up-to-date.

Source Port and destn port are 16 bit long which conveys
from which port this segment is arrived from the source
m/c and destn port indicates to which port of the destn m/c
this segment has to be delivered.

The sequence numbers and acknowledgements means
they are in normal sense only.

As, the TCP extends the byte oriented service, usually
the sequence number indicates the starting byte number
w.r.t the buffer or message as a whole. Whereas the Ack
number indicates the next byte expected.

The Header length is 4 bits long, it conveys how many 32-
bit words, the header is having including the options field.

URG bit indicates whether the urgent pointer is in use
or not.

If the URG bit is set then the urgent pointer is meaning-
ful. This urgent pointer indicates byte offset from the cur-
rent sequence number at which urgent data has to be found.

Ack bit is set then the acknowlwdgement field is valid.
If PSH bit (Pushed data) is set then the receiver is re-

quested to deliver the data to the application prog without
buffering. However, most of the today’s TCP’s implementa-
tions will be ignoring this bit.

RST bit is used to reset a connection because of post-
crash or some other problems.

SYN bit is used to establish the connection. However,
the same is used in connection reply also.

FIN (Finish bit) is used to release a connection. It speci-
fies that the sender has no more data to transmit. However,
after closing a connection a process may continue to re-
ceive data indefinitely.

Window size: This field indicates how many bytes may
be sent, starting at the byte acknowledged.

Checksum here is calculated for header and data and
calculation is as usual taking 1’s complement addition and
complementing the final.

Options are available such as to specify the max TCP load.

7.5.1 Gateways

The networks which differ at transport layer level or appli-
cation layer level are connected through special junction
boxes called as gateways.

7.30 Computer Science & Information Technology for GATE

3. Example of how DNS works:

• User wants to open a web site at server www.ust.hk
(HKUST’s web server)

• The PC makes a request to the DNS server for the
required IP address.

• If DNS record is found, the DNS server will give a
response of IP address to the PC.

• At last, the PC can use the IP address to contact the
remote host.

User’s PC

DNS Server

HKUST’s

Web Server
www.ust.hk

DNS Server

User type in web browser:
http://www.ust.hk/

User’s PC makes a request
to DNS Server for the IP
address of www.ust.hk if it
does not have it in cache.

If the DNS server does not have the
record in cache, it will ask other DNS
server for the information.

Response: 143.89.14.34
DNS Server will cache the
record for some time.

Response: 143.89.14.34
User’s PC will cache the
record for some time

PC sends a request for
web page to 143.89.14.34

Response: data of the web page
or error message of file not foundLAN1

4

5

2

3

2A

2B

Figure 7.9 Working of TNS

4. Types of DNS records:

• “A” (Address) record is used to translate a domain
name to an IPv4 address

• “MX” (Mail eXchange) record is used to translate
from a name in the right-hand side of an e-mail ad-
dress to the name/address of a machine able to han-
dle mail for that domain.

• “CNAME” (Canonical Name) record specifies a do-
main name alias.

• “PTR” (Pointer) record is commonly used for reverse
DNS lookup (IP-to-name lookup).

5. Note that it is possible to map multiple names to one IP
address. It is also possible to map a name to multiple IP
addresses for load balancing (Round robin DNS).

6. Dynamic DNS is a service for any host with dynamic IP
address. Once a host has its IP address changes (as as-
signed by the ISP), a program on the host will update
the DNS record at the Dynamic DNS server. The TTL
(time-to-live) of the record is set to a very small number
to facilitate frequent updates.

7.6 Solved Examples

n Example Calculate the minimum bandwidth for a
5000bits/sec signal transmitted over a communication
channel. The minimum bandwidth should be calculated for
the worst-case sequence 101010. State any assumptions you
make when performing the calculation.

n Answer:
Given signal minimum bandwidth=5000bits/sec:
This is 1 bit every 1/5000 Sec.

or 0.2x10-3 sec or 0.2 milli-Sec (0.2ms)

Fundamental frequency only:

worst case 101010:

This means period (T) of “10” is 0.4ms

Giving a fundamental frequency of

f=1/T which is fo = 1/0.4x10–3 = 2500Hz

has fundamental frequency fo = 2500Hz,

Minimum bandwidth 0-2500Hz (considering only the
fundamental)

n Example A computer on a 6-Mbps network is regulat-
ed by a token bucket. The token bucket is filled at a rate of 1
Mbps. It is initially filled to capacity with 8 megabits. How
long can the computer transmit at the full 6 Mbps?

Answer: Using the formula S=C/(M-ρ) where S is the burst
length, C is the bucket capacity (8 Mb), M is the output rate
(6 Mbps), and ρ is the bucket fill rate(1 Mbps) we can de-
termine that the computer could transmit for 1.6 seconds.

n Example Imagine a flow specification that has a maxi-
mum packet size of 1000 bytes, a token bucket rate of 10
million bytes/sec, a token bucket size of 1 million bytes, and
a maximum transmission rate of 50 million bytes/sec. How
long can a burst at maximum speed last?

n Answer: Using the formula S = C/(M– r) we can calcu-
late a burst at maximum speed to last for 204 milliseconds.

Computer Networks 7.31

n Example An audio streaming server has a one-way dis-
tance of 50 msec with a media player. It outputs at 1 Mbps.
If the media player has a 1-MB buffer, what can you say
about the position of the low-water mark and the high-
water mark?

n Answer: The low water mark must be higher than the
amount of data that can be played in 50 msec so that buffer
underrun does not occur and the high water mark must be
at a point that is more than the amount of data that can be
played in 50 msec below the 1 MB mark so that buffer over-
run does not occur.

n Example What is the bit rate for transmitting uncom-
pressed 800x600 pixel color frames with 8 bits/pixel at 40
frames/sec?

n Answer: The bit rate for this transmission would be 154
Mbps.

n Example Consider a 100,000-customer video server,
where each customer watches two movies per month. Half
the movies are served at 8 P.M. How many movies does
the server have to transmit at once during this time period?
If each movie requires 4 Mbps, how many OC-12 connec-
tions does the server need to the network.

n Answer: This server would need 336,456 OC-12 connec-
tions to supply the needed bandwidth.

n Example A client sends a 128-byte request to a server
located 100 km away over a 1-gigabit optical fiber. What is
the efficiency of the line during the remote procedure call?

n Answer: The line will be in use.02% of the time.

n Example RTP is used to transmit CD-quality audio,
which makes a pair of 16-bit samples 44,100 times/sec, one
sample for each of the stereo channels. How many packets
per second must RTP transmit?

Answer: 176,400 packets must be sent every second.
Consider the effect of using slow start on a line with a 10-

msec round-trip time and no congestion. The receive win-
dow is 24 KB and the maximum segment size is 2 KB. How
long does it take before the first full window can be sent?

n Answer: It will take 120-msec before the first full window
will be send.

Example To get around the problem of sequence num-
bers wrapping around while old packets still exist, one
could use 64-bit sequence numbers. However, theoreti-
cally, an optical fiber can run at 75 Tbps. What maximum
packet lifetime is required to make sure that future 75 Tbps
networks do not have wraparound problems even with 64-
bit sequence numbers? Assume that each byte has its own
sequence number, as TCP does.

n Answer: The maximum packet lifetime should be just
shy of the total time it takes to issue all of the available 64-
bit sequence numbers.

n Example What is the bandwidth-delay product for a
50-Mbps channel on a geostationary satellite? If the pack-
ets are all 1500 bytes (including overhead), how big should
the window be in packets?

n Answer: The bandwidth-delay product for this would be
50-Mbps * the delay. Not knowing the exact location of
the geostationary satellite makes the delay difficult to deter-
mine. Assuming the packets are all 1500 bytes the window
size should be equal to the bandwidth-delay product.
n Example Give three examples of protocol parameters
that might be negotiated when a connection is set up.

n Answer: The protocol parameters that may be negotiated
during the setup of a connection could be maximum packet
size, maximum transmission/reception speed, and quality
of service standards.

n Example Assuming that all routers and hosts are work-
ing properly and that all software in both is free of all errors,
is there any chance, however small, that a packet will be
delivered to the wrong destination?

n Answer: There is always a chance that a packet will be
delivered incorrectly or even totally lost. Interference and
noise on the transmission lines can interfere with and cre-
ate corruption that interrupts the delivery of packets on a
network.

n Example To what does the word node (host) refer?

n Answer: A node or host is any addressable device at-
tached to a network.
Name and describe two key issues related to computer net-
works.
Data transfer rate: The speed with which data is moved
across the network
Protocol: The set of rules that define how data is formatted
and processed across a network

n Example Describe the client/server model and discuss
how has it has changed how we think about computing.

n Answer: The client/server is a model in which resources
are spread across the web. The client makes a request for
information or an action from a server and the server re-
sponds. For example, a file server, a computer dedicated to
storing and managing files for network users, responds to
requests for files. A web server, a computer dedicated to re-
sponding to requests for web pages, produces the requested
page. Before the client/server model was developed, a user
thought of computing within the boundaries of the comput-
er in front of him or her. Now the functions that were pro-
vided within one computer are distributed across a network,
with separate computers in charge of different functions.

n Example Just how local is a local-area network?

n Answer: A local-area network connects a relatively small
number of machines in a relatively close geographical area,

7.32 Computer Science & Information Technology for GATE

usually within the same room or building, but occasionally
a LAN spans a few close buildings.

n Example Distinguish between the following LAN to-
pologies: ring, star, and bus.

n Answer: A ring topology is one in which the nodes are
connected in a closed loop. A star topology is one in which
the nodes are all connected to a central node. A bus topol-
ogy is one in which the nodes share a common line.

n Example How does the shape of the topology influence
message flow through a LAN?

n Answer: In a ring topology, messages flow in only one di-
rection around the LAN. In a star topology, messages flow
through the central node. In a bus topology, messages flow
in both directions along the bus.

n Example What is a MAN and what makes it different
from a LAN and a WAN?

n Answer: A MAN is a metropolitan-are network. It is a
network with some of the features of both a LAN and a
WAN. Large metropolitan areas have special needs because
of the volume of traffic. MANs are collections of smaller
networks but are implemented using such techniques as
running optical fiber cable through subway tunnels.

n Example Distinguish between the Internet backbone
and an Internet service provider (ISP).

n Answer: The Internet backbone is a set of high-speed
networks that carry Internet traffic. An ISP is a company
that provides access to the Internet, usually for a fee. An
ISP connects directly to the Internet backbone or to a larger
ISP with a connection to the backbone.

n Example Name and describe three technologies for
connecting a home computer to the Internet.

n Answer: Phone modem: A modem is a device that con-
verts computer data into an analog audio signal and back
again, thus allowing you to transfer data to and from a com-
puter using your telephone line.

DSL line: A DSL (digital subscriber line) is an Internet
connection made using digital signals on regular phone
lines.

Cable Modem: A cable modem is a device that allows
computer network communication using the cable TV
connection.

n Example Phone modems and digital subscriber lines
(DSL) use the same kind of phone line to transfer data.
Why is DSL so much faster than phone modems?

n Answer: Phone modems translate digital signals to ana-
log in order to send them over voice frequencies.

n Example DSL sends the digital signals over the same
phone line but at a different frequency.

n Answer: Because DSL and voice are at different frequen-
cies, they can share the same phone line.

n Example Why do DSL and cable modem suppliers use
technology that devotes more speed to down loads than to
uploads?

n Answer: Users spend more time asking for data to be sent
to their machines (downloads) than they do sending data
to other machines (uploads). Therefore, DSL and cable
modem suppliers maximize the speed on the most com-
mon task.

n Example Messages sent across the Internet are divided
into packets. What is a packet and why are messages di-
vided into them?

n Answer: A packet is a unit of data sent across a network.
It is more efficient to send uniform sized messages across
the Internet.

n Example Explain the term packet switching.

n Answer: Packets that make up a message are sent indi-
vidually over the Internet and may take different routes to
their destination. When all the packets arrive at the desti-
nation they are reassembled into the original message.

n Example What is a router?

n Answer: A router is a network device that directs packets
between networks towards their final destinations.

n Example What is a repeater?

n Answer: A repeater is a network device that strengthens
and propagates a signal along a lone communication line.

n Example What problems arise due to packet switching?

n Answer: Because packets may take different routes, they
may not arrive in order. Thus, they must be reassembled
into the right order at the receiving end.

n Example What are proprietary systems and why do
they cause a problem?

n Answer: A proprietary system is one designed and built
by a commercial vendor that keeps the technologies used
private. If a network’s software is a proprietary system, then
it can only communicate with other networks that use the
same software.

n Example What is an open system and how does it fos-
ter interoperability?

n Answer: An open system is a system based on a
common model of network architecture adhering to an
accompanying suite of protocols. If all commercial vendors
adhere to a common logical architecture and protocols,
then networks on multiple platforms from multiple vendors
can communicate.

n Example Compare and contrast proprietary and open
systems.

n Answer: Both proprietary and open systems can be used
to create networks. Networks using the same proprietary
systems can communicate with each other, but not with

Computer Networks 7.33

networks that do not use the same system. Networks using
open systems can all communicate.

n Example What is the seven-layer logical breakdown of
network interaction called?

n Answer: Open Systems Interconnection (OSI) Reference
Model

n Example What is a protocol stack and why is it layered?

n Answer: A protocol stack is layers of protocols that build
and rely on each other. Protocols are layered so that new
protocols can be developed without abandoning funda-
mental aspects of lower levels.

n Example What is a firewall, what does it accomplish,
and how does it accomplish it?

n Answer: A firewall is a computer system that protects a
network from inappropriate access. A firewall filters in-
coming traffic, checking the validity of incoming messages,
and perhaps denying access to messages. For example a
LAN might deny any remote access by refusing all traffic
that comes in on port 23 (the port for telnet).

n Example What is a hostname and how is it composed?

n Answer: A hostname is a unique identification for a spe-
cific computer on the Internet made up of words separated
by dots.

n Example What is an IP address, and how is it com-
posed?
n Answer: An IP address is made up of four numeric val-
ues separated by dots that uniquely identifies a computer
on the Internet.

n Example What is the relationship between a hostname
and an IP address?

n Answer: Hostnames are for people and IP addresses are
for computers. Each hostname is translated into a unique
IP address. People refer to the machine by its hostname;
computers refer to the machine by its IP address.

n Example Into what parts can an IP address be split?

n Answer: An IP address can be split into a network ad-
dress, which specifies the network, and a host number,
which specifies a particular machine on the network.

n Example How many hosts are possible in Class C net-
works, in Class B networks, and in Class A networks?

n Answer: Class C networks use three bytes for the net-
work number and only one byte for the host number, so
they can identify 256 hosts. Class B networks use two bytes
for the network number and two bytes for the host number,
so they can identify 32768 hosts. Class A networks use one
byte for the network number and three bytes for the host
number, so they can identify 224 hosts.

n Example What is a domain name?

n Answer: A domain name is that part of the hostname
that specifies the organisation or group to which the host
belongs.

n Example What is a top-level domain name?

n Answer: The last part of a domain name that specifies the
type of organisation or its country of origin.

n Example How does the current domain name system
try to resolve a hostname?

n Answer: First a request is sent to a nearby domain name
server (a computer that attempts to translate a hostname
into an IP address). If that server cannot resolve the host-
name, it sends a request to another domain name server. If
the second server can’t resolve the hostname, the request
continues to propagate until the hostname is resolved or
the request expires because it took too much time.

n Example Frames are generated at node A and sent to
node C through an intermediate node B. Distance between
A and B is 4000Km while B and C is 1000Km. Determine
the minimum transmission rate required between nodes B
and C so that the buffers at node B are not flooded, based
on the following:

• The data rate between A and B is 100 kbps.

• The propagation delay is 5 msec/km for both the
lines

• There are full duplex, error free lines between the
nodes.

• All data frames are 1000 bits long; ACK frames are
separate frames of negligible length.

• Between A and B, a sliding window protocol is used,
with a window size of 3 (three).

• Between B and C, stop and wait is used.

n Answer:
In order not to flood the buffers of B, the average number
of frames entering and leaving B must be the same over a
long interval.

A to B: Propagation time = 4000* 5 msec = 20 msec

Transmission time per frame = 1000/(100*103) = 10 msec.

B to C: Propagation time = 1000* 5 msec = 5 msec

Transmission time per frame = x = 1000/R

Frame time in between A to B=1000bits/100Kbps=10msec

R = data rate between B and C (unknown)

A can transmit three frames to B and then must wait for
the acknowledgement of the first frame before transmitting
additional frames. The first frame takes 10 msec to transmit
between A to B (frame time); the last bit of the first frame
arrives at B 20 msec after it was transmitted and therefore
30 msec after the frame transmission began. It will take an
additional 20 msec for B’s ack to return to A. Thus A can
transmit three frames in 50 msec.

7.34 Computer Science & Information Technology for GATE

B can transmit one frame to C at a time. It takes 5 + x
msec for the frame to be received at C and an additional
5 msec for C’s acknowledgement to return to A. Thus, B
can transmit one frame every 10 + x msec, or three frames
every 30 + 3x msec. Thus:
30+3x=50
Therefore, x= 6.66 msec
Now, date between B and C, R = 1000/x = 150 kbps.

n Example A 4Mbps token ring has a token holding time
value of 10msec. What is the longest frame that can be sent
on this ring?

n Answer: Data rate = 4Mbps
Token holding time = 10msec
Therefore, Frame length = 4*106*10*10-3= 40000 bits
Thus, the longest frame that can be send on this ring is
40000 bits or 5000 bytes.

n Example Find the minimum frame length for a 1Mbps
bit rate CSMA/CD LAN that is having a maximum net-
work span of 10 kilometers with no repeaters. Assume a
medium propagation delay of 4.5 nanoseconds per meter.
Is CSMA/CD a reasonable protocol for a network of this
span and bit rate?

n Answer: Minimum frame size for CSMA/CD LAN is 2
times of propagation delay.

Propogation Delay, Tpr = (4.5 * 10-9)*(10 * 103)

= 4.5 * 10–5 sec.

Thus, frame size = (1.0 * 106) * (9.0 * 10–5) = 11.25 bytes.
CSMA/CD would be a very reasonable protocol for a net-
work of this span and speed since the minimum frame size
is not “ excessive” (e.g., larger than 64 bytes)

n Example Assume a 100Mbps link of 10,000meters in
length with 5 nanoseconds per meter propagation delay.
Assume constant length 400 byte data frames, 64 byte ACK
frames, 10 microsecond of processing delay for each data
frame, and 5 microseconds of processing time for each
ACK. The sender always has data to send. Solve for link
utilisation (U) between a sender and a receiver assuming a
stop and wait protocol.

n Answer:

t_pr = 10,000 * 5e9 = 50 s

t_fr = 8 * 400 / 100e6 = 32 s

Ack Delay : t_ack = 8 * 64 / 100e6 = 5.12 s
We note that the processing delays are not negligible com-
pared to these values so we must include them in our cal-
culation of U...

U = t_fr / (t_pr + t_fr + t_proc + t_ack + t_proc) = 21%

If we neglect t_ack and t_proc our result would have been
U = 24% which is more than 10% “off ” from the real result
confirming that to ignore these values would not have been
correct to do.

n Example For a Gigabit Ethernet the minimum packet
length is 512 bytes, for 100 Mbps the minimum packet
length is 64 bytes. Compute media (or wire) speed for Giga-
bit and 100Mbps Ethernet for minimum length packets.
What conclusion can you draw?

n Answer
1.0e9 / (8 * (512 + 12 + 8)) = 234,962 pkts/sec for Gigabit
1.0e8 / (8 * (64 + 12 + 8)) = 148,819 pkts/sec for 100Mbps
The “8” is for preamble and the “12” is for inter-frame gap.
The media speed for Gigabit is less than double that of
100Mbps for minimum size packets. To get the full gain of
Gigabit, you must use large payloads

n Example Consider building an IEEE 802.3 network at
1Gbps over a 1km cable with no repeaters. What is the min-
imum frame size?. (Assume the signal speed in the cable is
200,000Km/sec).

n Answer: In order to detect collisions, the station must be
still transmitting when the first bit reaches the far end of
the cable.
For a 1Km cable, the one waypropagation time is t=5msec.
So 2t=10msec (RTT, round trip transmission).
At 1 Gbps all frames shorter than 10,000 bits can be com-
pletely transmitted in under 10microsec. Thus, the mini-
mum frame size is 10,000 bits or 1250 bytes.

n Example How many bps can the modem achieve at
1200 baud?

n Answer: There are 4 legal values per baud, or, in other
words, each signal change represents 2 bits. Thus the bit rate
is twice the baud rate. At 1200 baud, the bit rate is 2400 bps.

n Example Imagine 2 LAN bridges, both connecting a
pair of 802.4 networks. The first bridge is faced with 100
512 byte frames per seconds that must be forwarded. The
second is faced with 200 4096 byte frame per second. Which
bridge do you think will need the faster CPU? Discuss.

n Answer: The 100 frames/sec bridge would need a faster
CPU. Although the other one has a higher throughput, the
100 frames/sec bridge has more interrupts, more process
switches, more frames passed and more of everything that
needs the CPU.

n Example Consider a 200-meter 4Mbps token ring con-
taining 20 stations, each transmitting with equal priority.
Suppose no station is allowed to transmit more than 5000
data octets before giving up the token. Once a station gives
up a token how long will it take (in the worst case) for that
station to get the token again?

n Answer: Designate the station in question by A. The
worst case scenario occurs if each of the other 19 stations
also has 5000bytes to send.

• Assume speed of signal: 200meters/msec. Token is
24bytes/msec.

Computer Networks 7.35

• Let t5000 is the time to transmit 5000bytes and ttoken

the time to transmit the token(for the nineteen sta-
tions plus A).

With data rate 4 Mbps:
• T5000 = 5000*8*250nsec = 10000msec.
• ttoken = 24*250nsec = 6msec.
• Once the last bit is transmitted, it requires 20micro-

sec (micr sec to cover 200m+19microsec internal
delay).Once the last frame bit has circulated the ring,
station can send the token.

Thus the time between sending the first bit and first to-
ken bit is 10020 micro-sec (since stations are 10 m apart,
the propagation time of the token between adjacent sta-
tions is 0.05 micro second(negligible). Time required to
send one frame followed by one token is 10020+6 micr sec

Time A has to wait:19*10026micro-sec+6(this is 1st to-
ken)=190500 micro-sec

n Example Ethernet frames must be at least 64 bytes long
to ensure that the transmitter can detect collisions. A faster
Ethernet has the same minimum frame size but can trans-
mit 10 times faster. How is it possible to still detect colli-
sions?

n Answer: In order to detect collisions, the station must
be still transmitting when the first bit reaches the far end
of the cable. As the network speed goes up, the minimum
frame length must go up or the maximum cable length
must come down proportionally.
Indeed, let: u=speed of signal, l = length of the cable, and
s=data rate (bps)
Then the minimum frame size is: x=s*l/u.

Thus, since x is the same for both Ethernet and Fast Eth-
ernet, and s in Fast Ethernet is 10 times as much as in Eth-
ernet, l, the wire length, must be 1/10 as long as in Ethernet.

n Example A group of N stations share a 56kbps pure
ALOHA channel. Each station outputs a 1000bit frame on
an average of once every 100 sec, even if the previous one
has not yet been send (e.g. the stations are buffered). What
is the maximum value of N?

n Answer: Recall that ALOHA achieves an average
throughput of appr 18%, when operating at reasonable load.
In an ALOHA network with channel capacity 56 kbps, only
18% of this capacity will be used to deliver meaningful data.

With pure ALOHA the usable bandwidth is 0.184 *
56kbps= 10.3kbps.

This 10 kbps must be divided among N hosts, each of
which is transmitting an average of 1000 bits every 100 sec-
onds. This corresponds to a transmission rate of 10 bits per
second per host. If the channel can support 10 kbps of data,
then it can support up to N users, each transmitting at 10
Bps. Each station requires 10 bps (1000bit/ 100sec), so N =
10300 /10 = 1030 stations.

n Example Ten thousand airline reservation stations are
coming for the use of a single slotted ALOHA channel. The
average station makes 18 request/hour. A slot is 125 msec.
What is the approximate total channel load.

n Answer:

Average requests for 10000 stations = 10^4 x 18 / (60 x 60)
=50 requests/sec

Average slots number = 1 / (125 x10^–6) = 8000 slots/sec.

Total channel load = average requests / average slots num-
ber

= 50 / 8000 = 0.0625

Hence, the total channel load is 0.0625 request/slot.

n Example: Consider an application which transmits
data at a steady rate (e.g., the sender generates an N bit unit
of data every k time units, where k is small and fixed). Also,
when such an application starts, it will stay on for relatively
long period of time. Answer the following questions, briefly
justifying your answer:

(a) Would a packet-switched network or a circuit-
switched network be more appropriate for this appli-
cation? Why?

(b) Suppose that a packet-switching network is used and
the only traffic in this network comes from such ap-
plications as described above. Furthermore, assume
that the sum of the application data rates is less that
the capacities of each and every link. Is some form of
congestion control needed? Why?

n Answer: (a) A circuit-switched network would be
well suited to the application described, because the ap-
plication involves long sessions with predictable smooth
bandwidth requirements. Since the transmission rate is
known and not bursty, bandwidth can be reserved for
each application session circuit with no significant waste.
In addition, we need not worry greatly about the overhead
costs of setting up and tearing down a circuit connection,
which are amortised over the lengthy duration of a typical
application session. (b) Given such generous link capaci-
ties, the network needs no congestion control mechanism.
In the worst (most potentially congested) case, all the
applications simultaneously transmit over one or more
particular network links. However, since each link offers
sufficient bandwidth to handle the sum of all of the ap-
plications’ data rates, no congestion (very little queuing)
will occur.

n Example
F = M * L bits over a path of Q links. Each link transmits
at R bps. The network is lightly loaded so that there are no
queueing delays. When a form of packet switching is used,
the M * L bits are broken up into M packets, each packet
with L bits. Propagation delay is negligible.

7.36 Computer Science & Information Technology for GATE

(a) Suppose the network is a packet-switched virtual-
circuit network. Denote the VC set-up time by ts sec-
onds. Suppose to each packet the sending layers add a
total of h bits of header. How long does it take to send
the file from source to destination?

(b) Suppose the network is a packet-switched datagram
network, and a connectionless service is used. Now
suppose each packet has 2h bits of header. How long
does it take to send the file?

(c) Repeat (b), but assume message switching is used
(i.e., 2h bits are added to the message, and the mes-
sage is not segmented).

(d) Finally, suppose that the network is a circuit switched
network. Further suppose that the transmission rate
of the circuit between source and destination is R bps.
Assuming ts set-up time and h bits of header append-
ed to the entire file, how long does it take to send the
file?

n Answer:

(a) The time to transmit one packet onto a link is (L + h)

/ R. The time to deliver the first of the M packets to the
destination is Q * (L + h) / R . Every (L + h) / R sec-
onds a new packet from the M - 1 remaining packets
arrives at the destination. Thus the total latency is ts +

(Q + M - 1) * (L + h) / R

(b) (Q + M - 1) * (L + 2h) / R

(c) The time required to transmit the message over one
link is (LM + 2h) / R. The time required to transmit
the message over Qlinks is Q * (LM + 2h) / R

(d) Because there is no store-and-forward delays at the
links, the total delay is ts + (ML + h) / R

n Example This elementary problem explores propaga-
tion delay and transmission delay, two central concepts in
data networking. Consider two hosts, Hosts A and B, con-
nected by a single link of rate R bps. Suppose that the two
hosts are separated by m meters, and suppose the propaga-
tion speed along the link is s meters/sec. Host A is to send a
packet of size L bits to Host B.

(a) Express the propagation delay, dprop in terms of
m and s.

(b) Determine the transmission time of the packet, dtrans

in terms of L and R.

(c) Ignoring processing and queing delays, obtain an ex-
pression for the end-to-end delay.

(d) Suppose Host A begins to transmit the packet at time
t=0. At time t = dtrans, where is the last bit of the pack-
et?

(e) Suppose dprop is greater than dtrans. At time t=dtrans,
where is the first bit of the packet?

(f) Suppose dprop is less than dtrans. At time t=dtrans, where
is the first bit of the packet?

(g) Suppose s=2.5*108, L=100 bits and R=28 kbps. Find
the distance m so that dprop equals dtrans.

n Answer:

(a) dprop = m/s seconds.

(b) dtrans = L/R seconds.

(c) dend-to-end = (m / s + L / R) seconds.

(d) The bit is just leaving Host A.

(e) The first bit is in the link and has not reached Host B.

(f) The first bit has reached Host B.

(g) Want m = (L / R) * S = (100 / 28 * 103) * (2.5 * 108) =
893 km

n Example One host (named X) sends two packets to an-
other host (named Y) through router S1. Assume there is
no queuing delay and processing delay. The bandwidth and
propagation delay of link 1 are 25 Kbps and 0.1 ms respec-
tively. The corresponding values for link 2 are 10 Kbps and
0.1 ms. The first packet is of size 10 Kb, and the second one
of size 5 Kb. Draw the time-line diagrams illustrating these
transmissions in the following 2 cases:

(a) the second packet is sent 2 secs after the first one is
sent (to be precise, the transmission of the second
packet begins 2 secs after the transmission of the first
one)

(b) the second packet is sent 1 sec after the first one is sent
(the transmission of the second packet begins 1 sec
after the transmission of the first one)

(a)

Transmission
of Packet 1
(0.4 secs)

Transmission
of Packet 2
(0.1 sec)

(= 2 secs)t

Transmission
of Packet 1
(1 sec)

Transmission
of Packet 2
(0.5 sec)

Computer Networks 7.37

(b)

Transmission
of Packet 1
(0.4 secs)

Transmission
of Packet 2
(0.2 sec)

Transmission
of Packet 1
(1 sec)

Transmission
of Packet 2
(0.5 sec)

t = 1 sec

n Example When using virtual-circuit transport, the
virtual-circuit setup time is 400ms. Packets travel over a
path that goes through 10 links and each link is a 56 kbps
line. Each packet contains a 7-byte header and 400 bits
of data. When using a datagram transport, each packet
contains a 12-byte header and 400-bit data. However, there
is no circuit setup delay. In the following parts, ignore the
processing delay, propagation delay and queuing delay.

(a) How long does it take to transmit N packets using
virtual-circuit transport?

(b) How long does it take to transmit N packets using da-
tagram transport?

(c) For what values of N is the transfer by virtual-circuit
transport faster? For what value of N is datagram
transport faster?

n Answer:

(a) The packet size is the size of data + the size of header
= (400 + 56) bits = 456 bits.

 Time to transmit 456 bits = 456/56k = 8.14ms.

 The transmission of N packets over 10 links takes,
N*8.14ms + 9*8.14ms.

 Adding the setup-up time, the total delay is 400ms +
N*8.14ms + 9*8.14ms = 473ms + N*8.14ms.

(b) The packet size is the size of data + the size of header
= (400 + 96) bits = 496 bits.

 Time to transmit 496 bits = 496/56k = 8.86ms.

 The transmission of N packets over 10 links takes,
N*8.86ms + 9*8.86ms.

 There is no setup time. As a result, the total delay is
N*8.86ms + 79.74ms.

(c) The two are almost equal when N = 548.

Therefore, for messages that are shorter than 548 packets,
use datagram transport. Otherwise, use virtual-circuit ser-
vice.

n Example Suppose a 100-Mbps point-to-point link is
being set up between the earth and a new lunar station
which is approximately 385000km from earth, and data
travels over the link at the speed of light (3 x 108 m/s). The
transmission is reliable and sliding window-based.

(a) Calculate the minimum Round Trip Time (RTT) for
the link.

(b) Using the RTT as the delay, calculate the delay x band-
width product for this link.

(c) What is the maximum number of bits that can be in
transit at any one point?

(d) A camera on the lunar base takes pictures of the
earth and saves them in digital format to disk. Sup-
pose Mission Control on earth wishes to download
the most current image, which is 25MB. What is the
minimum amount of time that will elapse between
when the request for the data goes out and the trans-
fer is finished?

n Answer:

(a) The minimum RTT is two times of the propagation
delay on the link = (2*385000000)/3*108 = 2.57s.

(b) The delay-bandwidth product = (2.57 s)*(100 Mbits/s)
= 257Mbits = 32M bytes.

(c) Same as the delay bandwidth product.

(d) It would then take (1/2) RTT for the earth to make
the download request and another (1/2) RTT for
the propagation delay for sending the data from the
moon to the earth. The total time is the sum of the
transmission time and the two (1/2) RTT.

 Minimum amount of time = 25MB/100Mbps + (1/2)
RTT + (1/2) RTT

 = 200Mb/100Mbps + 2.57 s

 = 2 s + 2.57s

 = 4.57s

n Example Suppose the length of a 10Base5 cable is 2500
metres. If the speed of propagation in a thick coaxial cable
is 200,000,000 m/s how long does it take for a bit to travel
from the beginning to the end of the network? Assume that
there is a 10μ s delay in the equipment.

n Answer: A typical 10Base5 network will be having a
maximum length of 500 metres, so repeaters should be in-
serted into the cable in order to ensure transmission is pos-
sible over the full length of the 2500m cable. Four repeaters
are required as shown below:

Thus, time needed for 1 bit to transfer from one end to
the other is =4 x 10μs + 2500/200,000,000 = 52.5μs.

7.38 Computer Science & Information Technology for GATE

Source

500 m 500 m 500 m 500 m 500 m

Repeater Repeater Repeater Repeater Destination

2500 m 12.5 sm

10 sm 10 sm 10 sm 10 sm

1

0

1

1

0

0

1

1

1

1

M=

G=

10111 1 10 0 0 1 1 1 1 0 1 0 1 0

0

0

1

1

0

1

1

0

1

1

0

1

0

1

0

0

1

1

0

1

1

1

1

0

1

1

0

0

0

0

1

0

1

1

1

0

1

0

1

0

1

1

0

1

1

0

1

1

0

1

1

1

0

0

0

0

0

0

01

0

1

1

0

1

1

1

0

1

1

0

1

1

1

0000

0000

1

0

0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 1 0 0 1 1 1 1 0

(c) Suppose that we received the corrupted dataword with

the old CRC value as follows: 10100011101010. We can

determine the syndrome in this case as:0010

1

0

1

1

0

0

1

1

1

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 1 0 0 1 1 1 1 0M=

G=

10111 1 10 0 0 0 1 1 1 0 1 0 1 0

0

0

1

1

1

1

0

0

1

0

0

1

1

0

0

0

1

1

1

1

0

0

0

0

0

1

0

0

1

0

0

0

1

1

1

0

1

0

0

0

1

1

1

1

0

0

1

1

1

1

0

0

0

0

0

0

0

0

00

0

1

1

1

1

0

0

0

1

1

1

1

0

0

0100

0100

1

0

0000

n Example What is the use of subnet mask?

n Answer: The subnet mask enables us to subdivide ad-

dresses to achieve more useful mixes of host and subnets

for a given range of addresses.

n Example The data rate of 10Base5 is 10Mbps. How
long does it take to create the smallest frame?

n Answer: The smallest frame is 64 bytes or 512 bits.
With a data rate of 10 Mbps, we have

Tfr = (512 bits) / (10 Mbps) = 51.2 μs

This means that the time required to send the smallest
frame is the same at the maximum time required to detect
the collision.

n Example Given the dataword 1010011110 and the divi-
sor 10111

(a) Show the generation of the codeword at the send-
er site using binary division

(b) Show the checking of the codeword at the receiv-
er site assuming no error has occurred.

(c) What is the syndrome at the receiver end if the
dataword has an error in the 5th bit position
counting from the right? Namely: dataword
1010001110 is received.

n Answer: (a) Binary division case
 CRC Checksum is 1010
 Codeword was 10100111101010

1

0

1

1

0

0

1

1

1

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 1 0 0 1 1 1 1 0M=

G=

10111 1 10 0 0 1 1 1 1 0 0 0 0 0

0

0

1

1

0

1

1

1

0

1

1

0

1

0

1

0

1

0

1

1

0

1

1

1

0

0

0

1

1

0

0

0

1

1

0

0

1

1

1

0

0

0

0

1

0

1

1

0

1

1

1

0

1

1

0

1

1

1

0

0

0

0

0

0

0

0

0

0

1

1

0

1

1

1

0

0

1

1

0

1

1

1

0

T= 1 0 1 0 0 1 1 1 1 01010

CRC Checksum

Original Message

0101

0

(b) At the receiver, result of division operation is given be-
low. We find checksum as 0000.

Computer Networks 7.39

n Example Given IP address 136.27.32.104 and subnet
mask of FFFFFE00, which class network is it, how many
subnets are there, and what is the host address.

n Answer: Binary equivalent of given IP address:
136.27.32.104 = 10001000 00011011 00100000 01101000

First two bits are 10, thus it is class B type of network.
Thus, most significant 16 bits indicates the network ad-
dress. Now consider the net mask’s binary equivalent.
1111111111111111111000000000. As we have seven 1s af-
ter first sixteen 1’s, we will be having 27 subnets. Also, least
9 bits are for host(from last nine zeros in net mask). Host
number is 001101000=104.

n Example Consider the queuing delay in a router buffer
with infinite size. Assume that each packet consists of L
bits. Let R denote the rate at which packets are pushed out
of the queue (bits/sec).

(a) Suppose that the packets arrive periodically every L=R
seconds. What is the average router queuing delay?

n Answer: Zero.
(b) (0.5) Suppose that N packets arrive simultaneously ev-
ery (L/R)N seconds. What is the average router queuing
delay?

Answer L/R*(N-1)/2 second

n Example Differentiate Non-persistent and persistent
HTTP connections.

n Answer:
Non-persistent

• HTTP/1.0
• server parses request, responds, and closes TCP con-

nection
• 2 RTTs to fetch each object
• Each object transfer suffers from slow start

Persistent
• default for HTTP/1.1
• on same TCP connection: server, parses request, re-

sponds, parses new request,..
• Client sends requests for all referenced objects as

soon as it receives base HTML.
• Fewer RTTs and less slow start.

n Example A user in Delhi, connected to the internet via
a 2 Mb/s connection retrieves a 25 KB (B=bytes) web page
from a web server in Mumbai, where the page references 3
images of 200 KB each. Assume that the one way propaga-
tion delay is 20 ms. Approximately how long does it take for
the page (including images) to appear on the user’s screen,
assuming non-persistent HTTP using a single connection
at a time?

n Answer: In non-persistent HTTP connection, every ob-
ject request is dealt separately by establishing separate con-
nection for each. For every request, we need 4 RTT which

includes two RTTs for fetching object in addition to re-
quests and responses. Thus, time needed to load the page =
4*(80 ms) + (8*(25+3*200) Kbits)/(2 Mb/s) = 320 ms + 2.5
sec = 2.82 sec

n Example
Suppose within your web browser you click on a link to ob-
tain a web page. Suppose that the IP address for the associ-
ated URL is cached in your local host, so that a DNS look
up is not necessary. Further suppose that web page associ-
ated with the link contains a small amount of HTML text as
well as N very small objects. Let RTT denote the round trip
delay between the local host and the server containing the
objects. Assuming zero transmission time of the objects,

(a) With non-persistent HTTP with no parallel TCP
connections, how much time elapses from when the
client clicks on the link until the client receives the
objects?

n Answer:
 T = RTT (TCP establishment) + RTT (for HTML base

file)
 Total Time elapsed is (N+1)*T

(b) Repeat (a) for non-persistent HTTP with parallel
connections.

n Answer:
 T = RTT (TCP establishment) + RTT (for HTML base

file)
 Total Time elapsed is 2*T. This is because the client

will parse the HTML base file and he should find the
referenced objects. Then it established a separate TCP
connection in parallel for each object

(c) Repeat (b) for persistent HTTP with pipelining.

n Answer:

 T=RTT (TCP establishment) + RTT (for HTML base
file)

 Total Time elapsed is T+ RTT. This is because the cli-
ent will parse the HTML base file and he should find
the referenced objects. Then it sends requests to all
referenced objects using pipelining method. The as-
sumption here is that all these N objects are on the
same server.

n Example A user in Lucknow, connected to the inter-
net via a 20 Mb/s (b=bits) connection retrieves a 250 KB
(B=bytes) web page from a server in Chennai, where the
page references 4 images of 1 MB each. Assume that the one
way propagation delay is 25 ms. Approximately, how long
does it take for the page (including images) to appear on
the user’s screen, assuming non-persistent HTTP using a
single connection at a time (for this part, you should ignore
queueing delay and transmission delays at other links in the
network)?

7.40 Computer Science & Information Technology for GATE

n Answer:
5*(100) ms + (2 + 4*8 Mb/(20 Mb/s) = 500 ms + 1.7 sec =
2.2 seconds
How long does it take if the connection uses persistent
HTML (single connection)?
100 ms + 50 ms + 1.7 sec = 1.85 seconds
Suppose that the path from the server to the user passes
through a 1 Gb/s link at a router R, and that the rate at
which packets arrive at router R that must be sent on this
link is 450,000 packets per second. If the average packet
length is 2,000 bits, what is the average queuing delay at
this link?
I = (900 Mb/s)/(1 Gb/s) = 0.9, so average queue length = I/
(1-I) =.9/.1 = 9 packets
time to send a packet = (2000 bits)/(1000 bits per μs)
average delay = 9*2 μs = 18 μs

n Example Consider a 10 Mb/s link that is 400 km long,
with a queue large enough to hold 2,000 packets. As-
sume that packets arrive at the queue with an average rate
of 4,000 packets per second and that the average packet
length is 2,000 bits. Approximately, what is the propaga-
tion delay for the link (be sure to include the units in your
answer)?

n Answer: (400 km)/(210,000 km/s) is approximately 2 ms

The transmission time for an average length packet – (2000
bits)/(10 bits/μs) = 200 μs
The traffic intensity – (4000 packets/sec)*(2000 bits/packet)/
(10 Mb/s) = 0.8
The average number of packets in the queue – 0.8/(1- 0.8) = 4
The average queuing delay – 4*200 = 800 μs

n Example The diagram below shows three routers and
four layer 2 networks. The table is the routing table for the
left-hand router. In three of the entries in the routing table,
the output has been left blank. Fill in the missing values.
Based on the information in the table, what is the IP ad-
dress of the interface that connects the top router to the
central subnet?

n Answer: 3.2.1.3. If we observe the table ip address that
corresponds to top router 4.5.6.0/24 is 3.2.1.3. That means,
all the packets that are destined to 4.5.6.0/24 will be sent to
3.2.1.3. This indicates that 3.2.1.3 is the router interface ad-
dress of top network.

n Example What is the IP address of the interface that
connects the right-hand router to the central subnet?

n Answer: 3.2.1.1. Explanation is same as above.

n Example What is the subnet prefix for the central subnet?

n Answer: 3.2.1.0/24

subnet
7.8.9.0/24

subnet
6.5.4.0/24

subnet
4.5.6.0/24

R

R

next hop

prefix output ip

7.8.9.0/24 -

3.2.1.0/24 -

6.5.4.0/24 3.2.1.17

4.5.6.0/24 3.2.1.32

2

2

1

R

1 2

n Example Differentiate server distributed large file and
peer to peer based distribution of file among multiple clients.

n Answer: See the following figure in which a server will be
distributing a large file of size F bits.
Important points in Server sending a large file to N receivers

 – Large file with F bits

 – Single server with upload rate us

 – Download rate di for receiver i

• Server transmission to N receivers

– Server needs to transmit NF bits

– Takes at least NF/us time

• Receiving the data

– Slowest receiver receives at rate dmin= mini{di}

– Takes at least F/dmin time

• Download time: max{NF/us, F/dmin}

Computer Networks 7.41

F bits

upload rate us

d1

d2

d3

d4

Internet

Download rates di

The following figure illustrates peers helping in distributing
the file among the multiple clients.

F bits

upload rate us

Upload rates
Download rates

ui
id

d1

u1
u2

u3

u4

d2

d3

d4

Internet

Important points in this approach of distributing a file.
• Start with a single copy of a large file

– Large file with F bits and server upload rate us

– Peer i with download rate di and upload rate ui

• Two components of distribution latency
– Server must send each bit: min time F/us

– Slowest peer receives each bit: min time F/dmin

• Total upload time using all upload resources
– Total number of bits: NF
– Total upload bandwidth us + sumi(ui)

Total: max{F/us, F/dmin, NF/(us+sumi(ui))}

n Example (a) Consider a situation in which 1000 clients
are trying to download a 10 MB file from a server. If the
server has a 100 Mb/s access link and the clients have access
links with a downstream rate of 2 Mb/s, how long does it
take to download the file to all clients, under ideal condi-
tions (you may ignore the time to establish a TCP connec-
tion to the server).

n Answer: The total download bandwidth is 2 Gb/
s(1000x2Mb/s), so the server’s access bandwidth is the
limiting factor. The number of bits that the server must
send is 80 gigabits (1000x10MB=1000x10x106x8bits),
so under ideal conditions, it would take about 800
seconds(80gigabits/100Mb/s=80x109/100x106) to deliver
the file to all clients.

(b) Now, consider the peer-to-peer situation, in which
there is no server and one peer holds the file to be distrib-
uted. Assuming that the upstream rate from each peer is 1
Mb/s and the downstream rate is 2 Mb/s, how long does it
take to distribute the file to all peers?

n Answer: In this case, the limiting factor is the upstream
rate from the peers, so the time is 80 Mb/(1 Mb/s), so 80
seconds. That is, file size divided by upload speed of peer
as explained in the previous question.

n Example The diagram at below shows the state of the
sending side of a sliding window protocol with a window
size of 4 and the selective repeat feature. The array repre-
sents the send buffer and each pair in the buffer represents
a packet and its sequence number, together with the time at
which it is scheduled to be retransmitted. (so, for example,
the pair (p3,14) denotes a packet with sequence number 3,
which is to be retransmitted at time 14). Assume that the
timeout used for retransmitting packets is 20 time units.

0

1

2 (p2,10)

(p3,14)

(p4,22)4

3

5

6

7

sendBase=2

nexSeqNum=5

time=6

a. Suppose that at time 7, the application passes us a new
payload to be sent, at time 8, we receive an ack with
sequence number 3, and that at time 9, we receive an
ack with sequence number 2. Show the state of the
sender at time 10, in a diagram.

b. If no additional payload or ack is received before time
25, what is the next thing that should happen and how
does it affect the sender’s state?

n Answer: (a) If we observe the given figure, we may find
that there are 3 packets under transmission and window
size is 4. Thus, when new payload arrives at 7, it will be
sent by making it retransmission time as 27 (7+timeout
for retransmission=7+20). Do remember that its sequence
number is taken as 5 and nextSeqNum is made as 6. The
following figure illustrates the state of the sender at time 10.

0

1

2

(p4,22)

(p5,27)

4

3

5

6

7

sendBase=4

nexSeqNum=6

time=10

7.42 Computer Science & Information Technology for GATE

(b) At time 22, packet p4 should be retransmitted and its
retransmit time should be increased to 42.

n Example The chart below shows packets sent by an
audio source and received at a sink. Assume that the time
between packet transmissions is 20 ms and that packets are
time stamped by the sender and that the receiver playout
buffer uses a fixed playout delay of 200 ms. Also, assume
that the sender’s and receiver’s clocks are exactly synchro-
nized.

a. List the packet numbers for those packets that arrive
too late to be played out.

b. What is the smallest playout delay required to ensure
that packets never arrive too late for playout (for the
example)? You may round up to a multiple of 20 ms.

1

2

3

4

5

6

7

8

9

0 100 200 300 400

n Answer:

a. Packets 6 and 7 are late. We can verify this from figure.

b. The minimum playout delay is 240 ms.

n Example The diagram below shows a video server and
a web site that are simultaneously sending to a residential
network with a 2 Mb/s download bandwidth. The one way
propagation delay for both data streams is 50 ms. Assume
that the video stream is 1 Mb/s and that web server is down-
loading a large file to the client as fast as it can using TCP.

a. If the output queue at the access router is 50 KB long
and the video is sent using UDP, what is the minimum
size for the playout buffer to ensure that packets never
reach the video application too late to be played out?

b. How big should the playout buffer be if the video is
sent using TCP, assuming no packet ever has to be
sent more than three times (that is, a packet might get
lost twice, but never three times). Assume the worst-
case possible delay for a late packet.

n Answer:
a. 2 Mb/s is 250 KB/s, so a 50 KB buffer has a max delay

of 200 ms.
 Since the video rate is 125 KB/s, we need 25 KB of

delay in the playout buffer.
b. The minimum delay in this case is 50 ms.

 The maximum delay is 2.5×RTT + 3×(max queuing
delay)=850 ms. That gives a delay variation of 800 ms,
so the playout buffer must be large enough to handle

that much delay. At a video rate of 1 Mb/s, the re-
quired buffer size is.8 Mb or 100 KB.

50 KB

2 Mb/s

web clientweb server

video server video client
50 ms

n Example

(a) Consider sending large file over TCP with no loss.
Suppose TCP uses AIMD(additive increase/mul-
tiplicative decrease) for congestion control but
without slow start. Assume CongWin increases by
1MSS(maximum segment size) every time an ACK is
received. Assume the RTT=3s and is constant. How
long does it take CongWin (congestion window) to
increase from 1 MSS to 5 MSS?

(b) What is the average throughput for this connection
through 12s for an MSS=2400 bytes?

n Answer
(a) It takes 1 RTT to increase CongWin to 2 MSS, it takes

2 RTT to increase CongWin to 3 MSS, it takes 3 RTT
to increase CongWin to 4, it takes 4 RTT to increase
CongWin to 5 MSS. Therefore it takes 12 s total to
increase to 5MSS.

 However, as in many of the Q’s posed by the class text
ambiguity arises. Assuming there is one packet per
MSS one and every packet is acked leading to Cong-
Win increasing for every Ack one could take the fol-
lowing answer. It takes 1 RTT to increase CongWin to
2 MSS, it takes 2 RTT to increase CongWin to 4 MSS,
and it takes 3 RTT to increase CongWin to 8 (this is
not how AIMD would actually work).

 Answer in this case would be 3x3RTT=9s.
 Either of above answers will be accepted.

(b) In first RTT 1 MSS was sent, in second RTT 2 MSS
were sent, in second RTT 2 MSS were sent, in third
RTT 3 MSS were sent, in fourth RTT 4 MSS were sent,
we have a total of 1+2+3+4=10 MSS.

 Therefore average throughput was 10 MSS/ 4 RTT =
10x2400/12 =2 Kbytes/s

 However, (again using alternative view as use Ack for
every MSS as increase signal) another solution is:

 In first RTT 1 MSS was sent, in second RTT 2
MSS in third RTT 4 MSS sent, in fourth RTT 8
MSS were sent, so through 4 RTT (ie 12 s) we
have a total of 1+2+4+8=15 MSS.

Computer Networks 7.43

 Therefore, average throughput was 15 MSS/ 4
RTT = 15x2400/12 =3 Kbytes/s

 Either of above answers will be accepted.

n Example Consider a simple block cipher that uses 4 bit
blocks. Use cipher block chaining with the initial vector is
1011. We xor with the data block and add 3. Retain 4 bits
after discarding the overflow bits. We take this as the cipher
block for next block. What is the cipher text corresponding
to the clear text 0101 1011 0011.

n Answer:
First, we xor the first block with the initial vector getting
1110, then add 3 giving us 0001.

Next, we xor the second block with the previous cipher text
getting 1010, then add 3 giving us 1101.

Finally, we xor the third block with the previous cipher text
getting 1110, then add 3 giving us 0001.

So, the complete cipher text is 0001 1101 0001.

n Example Using e = 13, d = 37, and n=77 in the RSA al-
gorithm, encrypt the message “FINE” using the values of 00
to 25 for the letters A - Z. For simplicity, do the encryption
and decryption letter by letter.

n Answer:

a. Encryption:

 P1 = “F” = 05 Æ C1 = 0513 mod 77 = 26

 P2 = “I” = 08 Æ C2 = 0813 mod 77 = 50

 P3 = “N” = 13 Æ C3 = 1313 mod 77 = 41

 P4 = “E” = 04 Æ C4 = 0413 mod 77 = 53

b. Decryption:

 C1 = 26 Æ P1 = 2637 mod 77 = 05 = “F”

 C2 = 50 Æ P2 = 5037 mod 77 = 08 = “I”

 C3 = 41 Æ P3 = 4137 mod 77 = 13 = “N”

 C4 = 53 Æ P4 = 5337 mod 77 = 04 = “E”

n Example One adaptive rate control method for broad-
band network management operates by requesting a source
to reduce its output rate by a factor r every time that a con-
gestion signal is received, and it increases its output rate by
an additive amount b otherwise. Assuming that a source
outputs at a rate of “100%” at time t = 0.

(a) Suppose that the source receives four congestion sig-
nals and we observe that the output rate has fallen to
60%. Compute the reduction factor r in this case.

(b) Based on the result of a) above, if we receive a further
two congestion signals and then no further conges-
tion signals are sent from that point onwards. Com-
pute the time required for the system to recover to its
full 100% output rate if b = 5% per 10 msec.

n Answer:
Rate is 100% at time t = 0.

(a) Rate after 4 signals would be 100r4 = 60. Solving for r
gives, r as 0.880112

(b) After two more signals we have it as 0.4647588 = 46.5%
if it now rises at the rate of 5% per 10 msec there are
approximately 11 steps required to restore it to about
100% or 11 x 10 msec = 110msec to reach 100%

n Example Consider an Internet router whose routing
table details are given below. For the IP addresses given in
parts a through e, —calculate the corresponding output link
from the given routing table.

Address/mask Link Interface

135.46.56.0/22 0

135.46.60.0/22 1

192.53.40.0/23 2

default 3

(a) 135.46.63.10 (b) 135.46.57.14

(c) 135.46.52.2 (d) 192.53.40.7

(e) 192.53.56.7

n Answer:

a. Interface 1 as subnet maks are same.

b. Interface 0 c. Interface 3

d. Interface 2 e. Interface 3

n Example
What are the differences between CSMA/CD of 802.3 Eth-
ernet protocol and CSMA/CA of 802.11 MAC protocol in
how they deal with or avoid collisions? What are the actions
that they take in case the channel is sensed idle?

n Answer: In CSMA/CD, transmission is aborted when
collisions are detected and the sender needs to wait a ran-
dom amount of time before retrying. However, in CSMA/
CA, once the sender starts transmission of a frame, it trans-
mits that frame entirely.

n Example Are frame retransmissions used by wired
Ethernet and wireless 802.11 standards? Why or why not?

n Answer: Frame retransmissions for reliable data transfer
are employed by 802.11 due to increased error and loss rate
in wireless environment. Ethernet does not use frame re-
transmissions.

n Example Allah and Bobby would like to communicate
securely over a network using certificates. Assume that an
intruder (Trimurthy) somehow obtained the private key of
a Certificate Authority (CA). Describe in detail (including
messages exchanged by Trimurthy) what kind of an attack
can take place in this situation. How can the intruder inter-
cept messages exchanged between Allah and Bobby? As-
sume that Allah is the one who tries to initiate communica-
tion with Bobby.

7.44 Computer Science & Information Technology for GATE

n Answer: If Trimurthy obtains the private key of a CA, she
can perform the man-in-the-middle attack. Suppose Allah
wants to talk to Bobby: - Allah sends a message to the CA
asking Bobby’s public key.

- Trimurthy intercepts and since she has the CA’s pri-
vate key, decrypts and reads the message.

- Trimurthy generates a pair of fake public key and pri-
vate key (K+

TB, K–
TB)to be used as if they were Bobby’s

real keys and sends Allah back a message pretending
to be from the CA.

- Allah receives the Bobby’s fake public key, signs and
encrypts a message using her own private key and
Bobby’s public key and sends it to Bobby.

- Trimurthy intercepts, decrypts the message (using Al-
lah’s public key K+

A which can be obtained from CAs
and Bobby’s fake private key K–

TB), reads it and modi-
fies it if he wants to.

- Trimurthy generates another pair of fake private key
and public key (K+

TA, K–
TA) to be used as Allah’s keys,

encrypts the message using this fake private key and
Bobby’s real public key (which can be obtained from
CAs).

- Bobby receives the message, he communicates with
the CA to obtain Allah’s public key (to decrypt the
message and possibly reply back)

- Trimurthy intercepts one more time, decrypts the
message and sends back Allah’s fake public key K+

TA

- The man-in-the-middle attack is accomplished; from
this time on, Allah and Bobby believe they com-
municate with each other in a secure environment,
however Trimurthy can read their messages, modify
them, discard (not forward) them or send fake mes-
sages.

n Example Consider a server sending a 64 MB audio file
to a receiver over a 1Mbps connection using packets of size
1 MB. After a packet is sent, the sender waits until an ACK

packet of size 8 bytes is received before a new packet can
be sent (no pipelining). Find the latency of the connection
if the data transfer lasts 10 minutes in total. Assume that
the packet processing delays (tproc) at the sender and the
receiver are negligible.

n Answer: Given

Data required to be sent=64MB audio= M = 512 Mbits

Connection speed= R = 1 Mbps;

Packet size=P=1MB= = 8 Mbits;

Time spent=T=10 minutes = 600 s;

Acknowledgement packet size=A=8bytes = 64bits

tprop
tprocrec

ttran1

ttran2 tprop

tprocrec

ACK

data packet

t t

Transmitter Receiver

Neglecting both processing delays, latency =

(p A)M PTR

RM

- +
2

 = 8.6874s

n Example Consider the network depicted in the figure
below. The IP addresses and MAC addresses of individual
interfaces are as denoted in the figure.

74-29-9c-E8-FF-55 88-D2-2P-54-1A-0F

49-BD-D2-C7-55-2ACC-49-DE-D0-AB-70

IP:111.111.111.111

IP:111.111.111.112

IP:111.111.111.110
E6-E9-00-17-BB-4B

IA:23-F9-CD-06-9B
IP: 222.222.222.220

IP:222.222.222.221

IP:222.222.222.222

Computer Networks 7.45

Suppose that the sender host with the IP address
111.111.111.111 wants to send an IP datagram to the
receiver host with IP address 222.222.222.222. Answer the
following questions:
(a) How many subnets are there in this network? Which IP
addresses belong to which subnet?

n Answer:
Subnet1: 111.111.111.110, 111.111.111.111, 111.111.111.112
Subnet2: 222.222.222.220, 222.222.222.221, 222.222.222.222

(b) What is the destination IP address of the datagram
when it leaves the sender host? What is the destination IP
address of the datagram when it leaves the router?

n Answer: In both cases 222.222.222.222

(c) What is the destination MAC address of the frame
when it leaves the sender host? What is the destination
MAC address of the frame when it leaves the router?
Which protocol is used to determine the destination MAC
address?

n Answer: ARP protocol is used.
From sender: E6-E9-00-17-BB-4B, From router: 49-BD-
D2-C7-56-2A

n Example List 3 network performance characteristics
that have a big impact on the end-to-end network QoS, in
the perception of the end user.

n Answer: Throughput, delay, jitter, loss, availability.

n Example List 3 mechanisms that can be used in order
to achieve better network QoS.

n Answer: Overprovision of capacity, reservation of re-
sources, admission control, prioritization of services.

n Example Why is it said that packet switching employs
statistical multiplexing? Contrast statistical multiplexing
with the multiplexing that takes place in TDM.

n Answer: In a packet switched network, the packets from
different sources flowing on a link do not follow any fixed,
pre-defined pattern. In TDM circuit switching, each host
gets the same slot in a revolving TDM frame.

n Example In the case of client-server applications
over TCP, why the server program be executed before the
client program? For the client-server applications over
UDP, why the client program be executed before the serv-
er program?

n Answer: With the UDP server, there is no welcoming
socket, and all data from different clients enters the server
through the only one available socket related to that ser-
vice. With the TCP server, there is a welcoming socket, and
each time a client initiates a connection to the server, a new
socket is created. To support n simultaneous connections,
the server would need n+1 sockets. Also, to responds to
clients requests server has to start waiting for connection
requests at its welcome port.

n Example In BitTorrent(P2P network), suppose Ali pro-
vides chunks to Bobby throughout a 30-second interval.
Will Bobby necessarily return the favor and provide chunks
to Ali in the same interval? Why or why not?

n Answer: It is not necessary that Bobby will also provide
chunks to Ali. Ali has to be in the top 4 neighbors of Bobby
for Bobby to send out chunks to her; this might not occur
even if Ali provides chunks to Bobby throughout a 30 sec-
ond interval.

n Example What is a way using Last-Modified: header
line in HTTP?
n Answer The header line is used by Conditional GET to
check whether the object asked has been modified.

n Example Compare CRC and checksums.
Checksums have a greater probability of undetected errors
than do CRCs. That is, CRCs are better at detecting errors
and will result in less undetected errors than checksums.
CRCs can easily be computed in hardware, but not very
easily in software. Checksums can be computed in software
much faster than CRCs.

n Example Suppose that 1Mbps connection is shared by
5 well behaving TCP and 5 UDP sources. The maximum
window size of the TCP sources is 50 KB. UDP sources send
at a speed of 100 Mbps. What is the maximum transmission
speed of UDP and TCP sources? Justify your answer?

n Answer: UDP sources do not have congestion control
mechanism and they will send with their full speed. The
TCP sources will decrease their window size, due to con-
gestion in the link, to the minimum size (maximum seg-
ment size). Therefore, in average, 1 Mbps will be equally
shared by UDP sources only. The TCP sources get almost
nothing.

n Example Consider the given figure, showing an insti-
tutional network connected to the Internet. Suppose that
the average object size is 900,000 bits and that the average
request rate from the institution’s browsers to the origin
servers in 1.5 requests per second. Also suppose that the
amount of time it takes from when the router on the Inter-
net side of the access link forwards an HTTP request until
it receives the response is two seconds on average.

Model the total average response time as the sum of the
average access delay (that is, the delay from Internet router
to institution router) and the average Internet delay. For the
average access delay, useΔ/(1- Δβ), where Δ is the average
time required to send an object over the access link and β is
the arrival rate of objects to the access link.

(a) Find the total average response time.

(b) Now suppose a cache is installed in the institutional
LAN. Suppose the hit rate is 0.4. Find the total average
response time.

7.46 Computer Science & Information Technology for GATE

1.5 Mbps access link

10 Mbps LAN

Public Internet

Origin Servers

n Answer:

a. Response time T can be calculated as follows:

D =
object size

access line speed

0.9 10 b

1.5 10 b/s
0.6

6

6=
¥

¥
=

b = 1.5 requests/s

T =
D

D1
+ 2 = 8s

- b
b.

b1= 0.6 . 1.5 = 0.9 requests/s

b2 = 0.4 . 1.5 = 0.6 requests/s

D1 = 0.6 s

D2 = 0.09 s

T1 =
D

D
1

11
+ 2 = 3.304s

1- b

T2
D

D
2

2 21
= 0.0951s

- b

 Finally we can calculate response time as:

T= 0:6 *T1 + 0:4 * T2 = 2sec(App)

Response time for HTTP requests in this institutional
network can be reduced by around 75% if a proxy is intro-
duced, provided that the hit-rate equals to 0.4.

n Example Consider an overlay network with N active
peers, with each pair of peers having an active TCP connec-
tion. Additionally, suppose that the TCP connections pass
through a total of K routers. How many nodes and edges
are there in the corresponding overlay network? Why?

n Answer: N nodes and N(N-1)/2 edges. The edges of the
overlay network are formed by the individual TCP connec-
tions. Routers are not part of the overlay network since they
operate at the lower network layer.

n Example Consider a reliable data transfer protocol that
uses only negative acknowledgments (NAKs). Suppose the
sender sends data only infrequently. Would an NAK only
protocol be preferable to a protocol that uses acknowledg-
ments (ACKs) only? Why? Now suppose the sender has a
lot of data to send and the end-to-end connection experi-
ences few losses. In this case, would a NAK-only protocol
be preferable to a protocol that uses ACKs? Why?

n Answer: In an NAK only protocol, the loss of packet x is
only detected by the receiver when packet x+1 is received.
That is, the receivers receives x-1 and then x+1, only when
x+1 is received does the receiver realise that x was missed. If
there is a long delay between the transmission of x and the
transmission of x+1, then it will be a long time until x can be
recovered, under an NAK only protocol. On the other hand,
if data is being sent often, then recovery under an NAK-
only scheme could happen quickly. Moreover, if errors are
infrequent, then NAKs are only occasionally sent (when
needed), and ACK are never sent – a significant reduction
in feedback in the NAK-only case over the ACK-only case.

n Example What is the destination MAC address of the
frame when it leaves the sender host? What is the destination
MAC address of the frame when it leaves the router?Which
protocol is used to determine the destination MAC address?

n Answer: ARP protocol is used.
A router implements both link and network layers. A

datagram (a network layer packet) keeps its destination ad-
dress as it travels through routers. If a router were to change
the destination IP address (e.g. to the IP address of the next
hop router link interface), it would be impossible for the
next router to forward the datagram to its original destina-
tion. On the other hand, the link layer destination address
can be (and is) changed across different subnets. Nodes in
different subnets need to make an ARP lookup to find the
destination MAC address.

n Example Consider the given network. The nodes in
this network run the distance-vector algorithm synchro-
nously using time slots. In a given time slot, all nodes re-
ceive distance vectors of their neighbours, update their own
distance vectors, and signal the changes in their distance
vectors to their neighbours. Using the distance-vector algo-
rithm, calculate the distance vectors at node D at each time
slot until there are no more distance-vector updates ex-
changed among routers. Assume that the nodes only know
their distances to their direct neighbours initially.

A

B

D

C

E

F

3

7 1

2

7

3

Computer Networks 7.47

n Answer:

A

A

B

B

C

C

cost to

cost to

D

D

E

E

F

F

A

A

•

0

•

7

•

•

•

3

•

•

•

•

C

C

•

•

•

2

•

0

•

1

•

•

•

3

D

D

3

3

•

3

1

1

0

0

7

7

•

4

E

E

•

•

•

•

•

•

•

7

•

0

•

•

fr
o
m

fr
o
m

Step 1:

Step 2:

And the final table of distance vectors at node D is

A B C

cost to

D E F

A 0 6 4 3 10 7

C 4 2 0 1 8 3

D 3 3 1 0 7 4

E 10 10 8 7 0 11

fr
o
m

Step 3:

n Example The following figure shows the generation
(at sender) and the arrival (at receiver) times for ten audio
packets.

a. If we start our player at t8, which packets cannot be

b. If we start our player at t9, which packets cannot be
played?

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20

Time

Packets generated Packets arrived

Packets

10

9

8

7

6

5

4

3

2

1

n Answer:

(a) Packet 6 will be missing. See from the following figure

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20

Time

Deadline
missed

Packets arrived

Packets

10

9

8

7

6

5

4

3

2

1

Packet 6 misses its
playout deadline.

7.48 Computer Science & Information Technology for GATE

(b) No packet will be missing. All will be available for playing.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20

Time

All play instances are below
(or on) the packet arrival plot.

All packets can be played out
in time.

Packets arrived

Packets

10

9

8

7

6

5

4

3

2

1

n Example In modern packet-switched networks, the

source host segments long, application-layer messages (for

sends the packets into the network. The receiver then re-

assembles the packets back into the original message. We

refer to this process as message segmentation. Figure il-

lustrates the end-to-end transport of a message with and

without message segmentation. Consider a message that is

8·106 bits long that is to be sent from source to destination

Ignore propagation, queuing, and processing delays.

Source

Source

(a)

(b)

Packet switch

Packet

Packet switch

Packet switch

Packet switch

Message

Destination

Destination

Figure End-to-End message transport: (a) without message

segmentation; (b) with message segmentation.

a. Consider sending the message from source to desti-
nation without message segmentation. How long does
it take to move the message from the source host to
the first packet switch? Keeping in mind that each
switch uses store-and-forward packet switching, what
is the total time to move the message from source host
to destination host?

Answer: Time from source host to first packet switch =
8 * 106 / 2 * 106 = 4 sec, Total time = 4 * 3 hops = 12 secs

b. Now suppose that the message is segmented into 4,000
packets, with each packet being 2,000 bits long. How
long does it take to move the first packet from source
host to the first switch? When the first packet is be-
ing sent from the first switch to the second switch, the
second packet is being sent from the source host to
the first switch. At what time will the second packet
be fully received at the first switch?

 Answer: Time to send first packet from source host to
first packet switch = 2 * 10 3 / 2 * 10 6 = 1 msec. Time
at which second packet is received at the first switch
= time at which first packet is received at the second
switch = 2 * 1 msec = 2msec

c. How long does it take to move the file from source
host to destination host when message segmentation
is used? Compare this result with your answer in part
(a) and comment.

 Answer: Time at which first packet is received at the
destination host = 1 msec * 3 hops = 3msec. After this,
every 1 msec one packet will be received; thus time
at which last (4000th) packet is received = 3 msec +
3999*1msec = 4.002sec. It can be seen that delay in
using message segmentation is significantly less (al-
most 1/3).

d. Discuss the drawbacks of message segmentation.

 Answer: 1. Packets have to be put in sequence at the
destination, 2. the total amount of header bytes is more.

n Example Consider the Go-Back-N protocol. Suppose
that the size of the sequence number space (number of
unique sequence numbers) is N, and the window size is N.
Show (give a timeline trace showing the sender, receiver
and the messages they exchange over time) that the Go-
Back-N protocol will not work correctly in this case.

Computer Networks 7.49

n Answer: Suppose that the sequence number space is 0,1
and N=2, i.e., that two messages can be transmitted but
not-yet-acknowledged. The timeline shows an error that
can occur:

M0

M0

M1 A0

A0

A1

Deliver M0

X Deliver M1

Deliver duplicate
of M0: error!

Time out,
Resend M0
copy

n Example Explain how an FTP protocol works.

n Answer: The file transfer protocol is an application-layer
protocol that use TCP as its underlying transport proctor.
FTP opens two TCP channels. One for control and the oth-
er is for data transfer. It works as follows. First the client
sends a request to the FTP server to establish a TCP con-
nection over port 21. This channel is used for exchanging
control messages such as error messages, get/put messages
and so on. When the client to get a file, for example from
the server he sends his request though the control TCP
channel. However, the requested file will be sent over the
TCP connection established on port 20.

n Example What is the purpose/use of the UDP checksum?

n Answer: To detect bit error, i.e., flipped bits, in the UDP
segment.

n Example Assume your SW company “myNetwork” fol-
lowing servers:

1. DNS server: “dns.myNetwork.com” with IP as
“128.119.12.39”

2. Web server: “myNetwork.com” with two IP as
“128.119.12.54” and “128.119.12.52”. Internet users can
also access the web server by “www.myNetwork.com”.

3. Email server: “mail.myNetwork.com” with IP as
“128.119.12.53”

Typical email address of a user of your company looks
like: “username@myNetwork.com”.

(a) What resource records (RRs) do you need to provide
to the upper-level “.com” Registrar?

(b) What RRs do you need to put in your company’s DNS
server?

n Answer:

(a) Need to provide registrar with names and IP addresses
of your authoritative name server. So the company
needs to provide two RR records:

 (myNetwork.com, dns.myNetwork.com, NS)

 (dns.myNetwork.com, 128.119.12.39, A)

(b) (myNetwork.com, 128.119.12.54, A)

 (myNetwork.com, 128.119.12.52, A)

 (www.myNetwork.com, myNetwork.com, CNAME)

 (myNetwork.com, mail.myNetwork.com, MX)

 (mail.myNetwork.com, 128.119.12.53, A)

n Example Assume a campus has a single access link to
Internet. Assume computers in the institution send out 13
requests per second. Each object average size is 100,000
bits. Also assume the internet side delay of a request is 1
seconds. Using M/M/1 queue to model the access delay in
the 1.5Mbps access link. That is to say, the average response
time is E[T]=1/(μ-λ), where λ is the arrival rate of objects
to the access link and μ is the service rate of the access link.

(a) Find the total average response time when no institu-
tional cache is used. (Hint: total delay includes Inter-
net delay, access link delay, and LAN delay)

(b) Now suppose the institutional cache is used. The hit
rate for the cache is 0.6. Find the total average re-
sponse time.

n Answer:

(a) Arrival rate to access link λ = 13/sec

 service rate of access link μ = 1.5Mbps /100Kbit

 = 15/sec

Thus, the access link delay is = 1/(μ-λ) = 1/2 = 0.5 sec
For internal Ethernet LAN, the service rate is μ1 =

10Mbps/100Kbit = 100, thus the LAN delay is = 1/(μ1-l) =
1/(100–13) = 1/87 = 0.011sec

Therefore, the total delay is = 1sec + 0.5 sec + 0.011sec
=1.511sec

(b) With cache, 40% requests go outside. Thus for the
1.5Mbps access link, the arrival rate will be λ = 13*0.4 =
5.2/sec

Thus, the access link delay for the 40% requests is = 1/
(μ-λ) = 1/(15-5.2) = 0.102sec

For internal Ethernet LAN, all requests must go through
it no matter whether it goes out or goes to cache, thus the
LAN delay is still 0.011sec

The total delay is = 0.4(1+0.102+0.011) + 0.6*0.011 =
0.452 sec

n Example Consider an enormous file L bytes from host
A to host B. assume an MSS of 150 bytes, what is the maxi-
mum value of L such that TCP sequence numbers are not
exhausted?

n Answer There are 232= 4,294,967,296 possible sequence
numbers. The sequence number does not increment by one
with each segment. Rather, is incremented by the number
of bytes of data sent. So the size of the MSS is irrelevant –
the maximum size file that can be sent from A to B is simply
the number of bytes representable by 232 ≈ 4.19Gbytes.

7.50 Computer Science & Information Technology for GATE

n Example Suppose all of the network sources send data
at a constant bit rate. Would packet-switching or circuit-
switching be more desirable in this case? Why?

n Answer: Circuit-switching is more desirable here as there
are no statistical multiplexing gains to be had, and by us-
ing circuits, each connection will get a constant amount of
bandwidth that matched its CBR rate. On the other hand,
circuit-switching has more overhead in terms of signaling,
so there is an argument that packet-switching is better here
since there is no call setup overhead. One can say either
of them is OK.

n Example Suppose if all the network sources are bursty
– that they only occasionally have data to send. Would
packet-switching or circuit switching be more desirable in
this case? Explain.

n Answer: Packet-switching is better here because there
are statistical multiplexing gains – when a source does not
have data to send, it will not be allocated bandwidth (that
would be idle). Hence this bandwidth is available for use
by other sources.

n Example Describe the use of the “If-Modified-Since”
header in the HTTP protocol.

n Answer: When a web client or web cache has a copy of
previously requested document, its GET request to the
server includes an If-modified-Since line that gives the time
at which the browser/cache received the copy of the docu-
ment. If the document has not been modified at the web
server since this time, the web server need not (and will
not) send a duplicate copy of the document.

n Example What does it mean when we say that control
messages are “in-band”?

n Answer: It means that control message and data mes-
sages may be interleaved with each other on the same con-
nection. Indeed a single message may contain both control
information and data.

n Example What does it mean when we say that control
messages are “out-of-band”?

n Answer It means that control and data messages are
carried on separate connections. One example of a protocol
that has out-of-band control messages (Answer: FTP).

n Example Give example protocols that has in-band con-
trol messages.

n Answer: Examples includes HTTP, DNS, TCP, SMTP).

n Example Consider a TCP connection between hosts A
and B. Suppose that the TCP segments from A to B have
source port number x and destination port number y.
What are the source and destination port numbers for the
segments traveling from B to A?

n Answer: Source port is y, destination port is x.

n Example What is the purpose of the connection-ori-
ented welcoming socket, which the server uses to perform
an accept()? Once the accept() is done, does the server use
the welcoming socket to communicate back to the client?
Explain.

n Answer A connection oriented server waits on the wel-
coming socket for an incoming connection request. When
that connection request arrives a new socket is created at
the server for communication back to that client.

n Example Suppose a web server has 1000 ongoing TCP
connections. How many server-side sockets are used? How
many server-side port numbers are used? Explain.

n Answer: If there are 1000 ongoing connections, and noth-
ing else happening on the server, there will 1001 sockets in
use – the single welcoming socket and the 1000 sockets in
use for server-to-client communication. The ONLY server-
sideport number in use at the server will be the single port
number associated with the welcoming socket, e.g., port 80
on a web server.

n Example Consider the networks shown in the figure
below. There are two user machines www.ritch.com and
www.sarada.com in the network a.com. Suppose the user
at www.ritch.com types in the URL www.appu.com/bigfile.
htm into a browser to retrieve a 1Gbit (1000 Mbit) file from
www.appu.com.

Internet

a.com

R1

R2

1 M bps
(in each direction)

www.ritch.com

www.appu.com

Authoritative
DNS server
for appu.com

www.sarada.com

HTTP
cache

Local
DNS

server

1 Gbps
LAN

1 Gbps
LAN

a. List the sequence of DNS and HTTP messages sent/re-
ceived from/by www.ritch.com as well as any other messag-
es that leave/enter the a.com network that are not directly
sent/received by www.ritch.com from the point that the
URL is entered into the browser until the file is completely

Computer Networks 7.51

received. Indicate the source and destination of each mes-
sage. You can assume that every HTTP request by www.
ritch.com is first directed to the HTTP cache in a.com and
that the cache is initially empty, and that all DNS requests
are iterated queries.

• www.ritch.com needs to resolve the name www.appu.
com to an IP address so it sends a DNS REQUESTmes-
sage to its local DNS resolver (this takes no time given
the assumptions below)

• Local DNS server does not have any information so it
contacts a root DNS server with a REQUEST message
(this take 500 ms given the assumptions below)

• Root DNS server returns name of DNS Top Level Do-
main server for.com (this takes 500 ms given the as-
sumptions below)

• Local DNS server contacts.com TLD (this take 500 ms
given the assumptions below)

• TLD.com server returns authoritative name server for
appu.com (this takes 500 ms given the assumptions
below)

• Local DNS server contacts authoritative name server
for appu.com (this takes 100 ms given the assumptions
below)

• Authoritative name server for appu.com returns IP
address of www.appu.com. (this takes 100 ms given
the assumptions below)

• HTTP client sends HTTP GET message to www.appu.
com, which it sends to the HTTP cache in the a.com
network (this takes no time given the assumptions).

• The HTTP cache does not find the requested document
in its cache, so it sends the GET request to www.appu.
com. (this takes 100 ms given the assumptions below)

• www.appu.com receives the GE request. There is a
1 sec transmission delay to send the 1Gbps file from
www.appu.com to R2. If we assume that as soon as
the first few bits of the file arrive at R1, that they are
forwarded on the 1Mbps R2-to-R1 link, then this delay
can be ignored.

• The 1 Gbit file (in smaller packets or in a big chunk,
that’s not important here) is transmitted over the 1
Mbps link between R2 and R1. This takes 1000 seconds.
There is an additional 100 ms propagation delay.

• There is a 1 sec delay to send the 1Gbps file from R1
to the HTTP cache. If we assume that as soon as the
first few bits of the file arrive at the cache, that they are
forwarded to the cache, then this delay can be ignored.

• There is a 1 sec delay to send the 1Gbps file from the
HTTP cache to www.ritch.com. If we assume that as
soon as the first few bits of the file arrive at the cache,
that they are forwarded to the cache, then this delay
can be ignored.

• The total delay is thus:.5 +.5 +.5 +.5 +.1 +.1 + 1 + 1000
+1+1 = 1105.2 secs (1002.2 is also an OK answer).

(Note that we have neglected to account for TCP hand-shak-
ing delays for the HTTP exchanges.)

b. Now assume that machine www.sarada.com makes a re-
quest to exactly the same URL that www.ritch.com made.
List the sequence of DNS and HTTP messages sent/re-
ceived from/by www.sarada.com as well as any other mes-
sages that leave/enter the a.com network that are not direct-
ly sent/received by www.sarada.com from the point that the
URL is entered into the browser until the file is completely
received. Indicate the source and destination of each mes-
sage. [Hint: make sure you consider caching here]

• www.sarada.com needs to resolve the name www.
appu.com to an IP address so it sends a DNS RE-
QUEST message to its local DNS resolver (this takes
no time given the assumptions above)

• The local DNS server looks in its cache and finds the IP
address for www.appu.com, since www.ritch.com had
just requested that that name be resolved, and returns
the IP address to www.sarada.com. (this takes no time
given the assumptions above)

• HTTP client at www.sarada.com sends HTTP GET
message to www.b1.com, which it sends to the HTTP
cache in the a.com network (this takes no time given
the assumptions).

• The HTTP cache finds the requested document in its
cache, so it sends a GET request with an If-Modified-
Since to to www.appu.com. (this takes 100 ms given
the assumptions)

• www.appu.com receives the GET request. The docu-
ment has not changed, so www.appu.com sends a
short HTTP REPLY message to the HTTP cache in
a.com indicating that the cached copy is valid. (this
takes 100 ms given the assumptions)

• There is a 1 sec delay to send the 1Gbps file from the
HTTP cache to www.sarada.com.

• The total delay is thus:.1 +.1 + 1 = 1.2 secs

c. Now suppose there is no HTTP cache in network a.com.
What is the maximum rate at which machines in a.com can
make requests for the file www.appu.com/bigfile.htm while
keeping the time from when a request is made to when it is
satisfied non-infinite in the long run? (Answer: since it takes
1000 secs to send the file from R2tro R1, the maximum rate
at which requests to send the file from appu.com to a.com is 1
request every 1000 seconds, or an arrival rate of.001 requests/
sec.)

n Example Why did we need to introduce sequence
numbers? Also, why did we need to introduce timers?

n Answer: Sequence numbers are required for a receiver to
find out whether an arriving packet contains new data or is

7.52 Computer Science & Information Technology for GATE

a retransmission. To handle losses in the channel timers are
used. If the ACK for a transmitted packet is not received
within the duration of the timer for the packet, the packet
(or its ACK or NACK) is assumed to have been lost. Hence,
the packet is retransmitted.

n Example Consider a datagram network using 8-bit
host addresses. Suppose a router uses longest prefix match-
ing and has the following forwarding table:

Prefix Match Interface

1 0

11 1

111 2

otherwise 3

For each of the four interfaces, give the associated range
of destination host addresses and the number of addresses
in the range.

n Answer:

Destination Address Range Link Interface

10000000

through (64 addresses) 0

10111111

11000000

through(32 addresses) 1

11011111

11100000

through (32 addresses) 2

11111111

00000000

through (128 addresses) 3

01111111

n Example Do the routers in both datagram network
and virtual-circuit networks use forwarding tables? If so,
describe the forwarding tables for both classes of networks.

n Answer: Yes, both use forwarding tables. For a VC for-
warding table, the columns are : Incoming Interface, In-
coming VC Number, Outgoing Interface, Outgoing VC
Number. For a datagram forwarding table, the columns are:
Destination Address, Outgoing Interface.

n Example Why is an ARP query sent with a broadcast
frame? Why is an ARP response sent within a frame with a
specific destination MAC address?

n Answer: An ARP query is sent in a broadcast frame be-
cause the querying host does not which adapter address
corresponds to the IP address in question. For the response,
the sending node knows the adapter address to which the
response should be sent, so there is no need to send a
broadcast frame (which would have to be processed by all
the other nodes on the LAN).

n Example Define switches and routers and explain pros
(at least two items) of switches comparing with routers.

n Answer: A router is a layer-3 switch and a switch is a
layer-2 packet switch. The pros are switch’s plug-and-play,
high filtering and forwarding.

n Example Why are acknowledgements used in 802.11
but not in wired Ethernet?

n Answer: The adapter would not be able to detect all colli-
sions due to hidden terminal problem and fading.

n Example Define terminologies such as streaming,
packet jitter, policing and real-time.

n Answer:
Streaming: playing-out while downloading a file
Packet jitter: the variation of packet delay.
Policing: the regulation of the rate at which a class or flow
is allowed to inject packets into the network
Real-time: response times will be very less.

n Example What are the differences between message
confidentiality and message integrity? Can you have one
without the other? Justify your answer.

n Answer: Confidentiality is the property that the origi-
nal plaintext message cannot be determined by an attacker
who intercepts the ciphertext-encryption of the original
plaintext message. Message integrity is the property that
the receiver can detect whether the message sent (whether
encrypted or not) was altered in transit. The two are thus
different concepts, and one can have one without the other.
An encrypted message that is altered in transmit may still
be confidential (the attacker cannot determine the original
plaintext) but will not have message integrity if the error
is undetected. Similarly, a message that is altered in transit
(and detected) could have been sent in plaintext and thus
would not be confidential.

n Example What is the purpose of a nonce in an end-
point authentication protocol?

n Answer: A nonce is used to ensure that the person be-
ing authenticated is “live.” Nonces thus are used to combat
playback attacks.

n Example Compare and contrast between Connection-
Oriented communication service and Connectionless com-
munication service?

n Answer: Some of the principle characteristics of the con-
nection-oriented service are:

• Two end-systems first “handshake” before either
starts to send application data to the other.

• Provides reliable data transfer, i.e., all application data
sent by one side of the connection arrives at the other
side of the connection in order and without any gaps.

• Provides flow control, i.e., it makes sure that nei-
ther end of a connection overwhelms the buffers in

Computer Networks 7.53

the other end of the connection by sending to many
packets to fast.

• Provides congestion control, i.e., regulates the
amount of data that an application can send into the
network, helping to prevent the Internet from enter-
ing a state of grid lock.

The principle characteristics of connectionless service are:
• No handshaking

• No guarantees of reliable data transfer
• No flow control or congestion control

n Example Explain about network edge, network access,
network core.

Answer:
1. Network Edge: where workstations, servers, etc. are

hosting the application
2. Network Core : the backhaul networks where rout-

ers that facilitate the delivery of data between the net-
work edges

3. Network Access : the physical medium and network
access technologies such as dial-up, ADSL, HFC that
facilitate the interconnection between the network
edge and access router

n Example Consider the web browsing application over
unreliable channel. For designing a reliable data trans-
mission protocol, numerate three events that may happen
while transmitting which will affect the reliability of your
link and how your protocol will response.

n Answer For ensuring reliable data transfer, we need to
deliver the whole date correctly and in-order. When we have
unreliable channel the may expect packets loss due to either
buffer overflow or packet damage. Original packet might be
lost or ACKs also might be lost. Then we need to equip our
reliable protocol with the following control/information:

Event Control/information

Packet loss Error detection/correction
Retransmission mechanisms
Sequence number
Acknowldgment for previous succes-
fully received packets

ACK loss Time out procedure

Sequence number

n Example Distinguish between Network application
and Application-layer protocol.

n Answer The network application is composed of many
pieces. For example, the web is a network application which
includes several pieces such as standard formats, web
browsing. However, the application layer protocol is just
one piece that defines the rules for certain communications
among application-layer peers.

n Example What is a P2P network? Does it include
routers? Why?

n Answer: P2P is a logical network where every peer can
acts as a client and as a server. It is an overlay network does
not include routers.

n Example Locating the content in P2P network is a
non-trivial problem. What do we mean by “locating con-
tent”? And why is it a problem?

n Answer: Locating content in the P2P context means how
to find the IP address of the peer that can provide this con-
tent. It is a problem because the uses are not Always-on.
Further, every time a peer is on the net, he may have differ-
ent IP address.
n Example What do we mean by an overlay network and
how is Gnutella overlay network created and maintained?

n Answer: The overlay network in a P2P file sharing system
consists of the nodes participating in the file sharing sys-
tem and the logical links between the nodes. With Gnutella,
when a node wants to join the Gnutella network, it first dis-
covers (“out of band”) the IP address of one or more nodes
already in the network. It then sends join messages to these
nodes. When the node receives confirmations, it becomes a
member of the of Gnutella network. Nodes maintain their
logical links with periodic refresh messages.

n Example Briefly explain how TCP demultiplexing takes
place?

n Answer: The demultiplexing function takes place at the
receiver side at the transport layer. In particular for a TCP
connection, the demultiplexing needs to check 4-tuple that
constitutes a unique logical TCP connection between the
client and the server. These, 4-tuple are source IP address,
source port number, destination IP address and destination
port number.

n Example In a computer memory an integer (4byte) and
a short (2byte) values are stored as shown below. Assuming
that the computer is little endian style, how this informa-
tion is sent over internet? That is, what is network order
of this integer and short? Assume numbers in the memory
are given in Hex.

n Answer: 44, 33, 22, 11, bb, aa

0x128

0x129

0x12a

0x12b

0x12c

0x12d

11

Hex Address Memory Content

22

33

44

aa

bb

32 bit value

16 bit value

7.54 Computer Science & Information Technology for GATE

n Example State the four functions of the data link layer.

n Answer:

a. Framing

b. Reliable data transfer

c. Flow control

d. Channel access control

n Example MAC Protocols can be classified into three
broad classes. State these classes and give an example for
each one.

n Answer:

a. Channel partitioning (e.g. CDMA, FDMA, TDMA)

b. Random access (e.g. ALOHA, CSMA, etc.)

c. Token turns (e.g. token ring, polling)

n Example What is the access methodology used in
Ethernet technology? (please note abbreviation alone is not
accepted)

n Answer:
CSMA/CD (Carrier Sense Multiple Access /Collision De-
tection)

n Example In order to have efficiency of 0.6, what should
be the distance between hub and a node in a 100baseT
Ethernet LAN. Assume propagation delay is 200m/μsec
and frame size is 64 bytes.

n Answer: tprop=d/200x108

t_tran = 64bytes/100Mbps = 64*8/100*106 = 5.12μs

efficiency = 1/(1+5a) = 0.6

Therefore, a = 0.133 = tprop/ttran

0.133 = d/200x108/ 5.12μs

Therefore, distance d = 184m

n Example Distinguish from the operational point of
view between CSMA/CA and CSMA/CD protocols. Also,
explain why CSMA/CD is difficult to apply in wireless en-
vironments.

CSMA/CA is carrier sense multiple access/collision
avoidance

CSMA/CD is carrier sense multiple access / collision de-
tection. Then CSMA/CA is based on avoiding the collision
and detection the collision. Therefore, the protocol takes
several measures to assure avoiding collision.

• Using CSMA (by sensing before transmission)

• Using reservation through special requests, namely
“ready-to-send” (RTS) and “clear-to-send” (CTS)
where the first one is sent by the sending mobile
while the other is a response from the receiving
mobile.

• Using different Inter frame gaps (DIFS, SIFS)

• Random backoff when collision occurs

Also CSMA/CS requests the receiver to send ACK frame
to acknowledging the reception of the frame. This ACK is
not part of CSMA/CD

On the other hand, CSMA/CD is design such that colli-
sion can be detected therefore, there are restrictions on the
length of the frame, network segment length and so on.

CSMA/CD is very difficult to implement is wireless net-
work because of the following

• Very noisy channel

• Reception/transmission should be carried out on the
same channel to be able to detect the collision and
this is very difficult to implement is wireless network.

n Example Illustrate with a figure where multiplexing
and de-multiplexing takes place in the internet layers.

n Answer:

Process

TCP Port Number

Protocol

Frame Type

UDP Port
Number

TCP UDP

ICMP IGMP OSPF

RARPARP

IP

Ethernet driver

Ethernet

Process Process Process Process

Multiplexing/demultiplexing in the layers.

n Example Explain how multiplexing is done at IP layer?

n Answer In the IP case, each protocol using IP is as-
signed a unique protocol number, which is carried in the
Protocol IP header field in every packet generated by the
protocol. By examining the value of this field of an incom-
ing IP datagram, the type of payload can be determined.

n Example Explain how multiplexing is done at DLL?

n Answer Frame Type

n Example What is the use of subnetting?

n Answer: In order to provide the flexibility in network
administration and operation, the subnetting technique
was introduced, where an IP address is further divided into
three levels: a network ID, a subnet ID, and a host ID. With
subnetting, IP addresses can be assigned using a finer gran-
ularity, e.g.,a small organisation can be assigned a subnet
address that just satisfies its requirement. In addition, with
subnetting, an organisation can divide its assigned network

Computer Networks 7.55

space into a number of subnets, and assign a subnet to each
department. The subnets can be interconnected by rout-
ers, resulting in better performance, stronger security, and
easier management.

n Example Subnet masks of two class B type of networks
are given as: 255.255.255.0 and 255.255.255.192. Find out
which one supports more number of subnets.

n Answer: If we present these masks in binary fashion, least
significant 0’s sequence indicates host bits. See the following
figure. Also, we know they are class B type addresses, most
significant 16 bits indicates the network address. Thus, we
know that for first type 8 bits are used for subnetting while
for the other 10 bits are used. Thus, second network will be
having 210=1024 subnets.

Class B

Class B

Subnet Mask:

Subnet Mask:

= 0xFFFFFF00=255.255.255.0

= 0xFFFFFFC0=255.255.255.192

1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

Network Id = 128.238

Network Id = 128.238

Subnet ID

Subnet ID

Host ID

Host ID

16 bits

16 bits

8 bits

10 bits

8 bits

6 bits

n Example Explain about error detection that is used in
IP, ICMP, IGMP, UDP and TCP.

n Answer: Given protocols use the checksum algorithm
(or parity check) to detect bit errors in the header of a re-
ceived packet. Suppose the checksum header field is K bits
long (e.g., K = 16 in IP, UDP, and TCP). The value of the
field is first set to 0. Then, the K-bit one’s complement sum
of the header is computed, by considering the header as a
sequence of K-bit words. The K-bit one’s complement of the
sum is stored in the checksum field and sent to the receiv-
er. The receiver, after receiving the packet, calculates the
checksum over the header (including the checksum field)
using the same algorithm. The result would be all ones if the
header is error free. Otherwise, the header is corrupted and
the received packet is discarded.

n Example Explain about error detection in Ethernet.

n Answer: CRC

n Example What is SACK?

n Answer: In practice in TCP layer, a window of TCP seg-
ments may be sent and received before an acknowledge-
ment is received by the sender. If multiple segments in this
window of segments are lost, the sender has to retransmit
the lost segments at a rate of one retransmission per round
trip time (RTT), resulting in a reduced throughput. To cope
with this problem, TCP allows the use of selective acknowl-
edgement (SACK) to report multiple lost segments. While a
TCP connection is being established, the two ends can use
the TCP Sack-Permitted option to negotiate if SACK is al-
lowed. If both ends agree to use SACK, the receiver uses the
TCP Sack option to acknowledge all the segments that has
been successfully received in the last window of segments,

and the sender can retransmit more than one lost segment
at a time.

n Example Consider a pipelined, reliable transport proto-
col that uses go-back-N with cumulative acknowledgments.
Assume that timeouts trigger retransmissions (duplicate
ACKs do not) and that the receiver does not maintain any
receive buffer.
a. If the one-way delay between the sender and receiver is
50 ms and every packet is 10,000 bits long, how big must
the window be to allow the sender to send at a steady rate
of 1 Gb/s under ideal conditions?

n Answer: RTT=2*50ms=0.1 second, so a 1 Gb/s link sends
100M bits per RTT or 10K packets per RTT. So the window
size must be at least 10,000 to support a 1 Gb/s rate.

b. Suppose that approximately one packet in 100,000 is lost.
If the sender uses a timeout of 500 ms and a window size of
20,000 packets, how often does sender experience a timeout?
How many packets will it retransmit when a time out occurs?

n Answer: Assuming that the bottleneck link rate is 1 Gb/s,
the sender can still only send 10K packets per RTT. After
each loss, it takes half a second for the sender to detect the
loss and all packets sent in that half second are effectively
wasted (since the receiver discards them in go-back-N). But
the window size limits the number of packets sent follow-
ing the lost packet to 20K. So immediately after each loss,
the sender sends 20K packets, pauses for.3 seconds then re-
sends the first 20K packets before sending another 60K, at
which point it loses another packet. So, the sender experi-
ences a timeout every 1.3 seconds.

If we do not assume a 1 Gb/s bottleneck link rate, the
sender can send 20K packets per RTT. In this case, after

7.56 Computer Science & Information Technology for GATE

sending the packet that gets lost, it again times out after
half a second, before re-sending 20K packets plus 60K new
ones (which takes 400 ms). So, the sender has a timeout
every 900 ms.
c. Estimate the throughput for this connection, assuming
one packet in 100,000 is lost.

n Answer: Assuming a 1 Gb/s bottleneck link rate, the
receiver gets 80K new packets every 1.3 seconds, so the
throughput is (8/13) Gb/s which is about 620 Mb/s.

If we do not assume a 1 Gb/s bottleneck link rate, the
receiver gets 80K new packets every. 9 seconds, so the
throughput is (8/9) Gb/s, which is about 890 Mb/s.

n Example A TCP transmission host A to host B, after
receiving the ACK with ack number 20, A sends packets
with sequence numbers 20, 30, 40, 50, 60, 70, 80, 90 and
100. Sometime later, it receives ACKs with sequence num-
bers 40, 40, 60, 60, 60, 60, 60. Assume that A sends no ad-
ditional data segments in the meantime.

a. What sequence number would you expect to see in the
next packet sent by A?

n Anwer: 60

b. What ACK number would you expect in the next ACK?
You may assume that all packets sent by A carry 10 bytes
of data.

n Answer: 110

n Example The following diagram shows two TCP send-
ers at left and the corresponding receivers at right. Both
senders use TCP Reno protocol. Assume that the MSS is
1 KB, that the one-way propagation delay for both con-
nections is 50 ms and that the link joining the two rout-
ers has a bandwidth of 2 Mb/s. Let cwnd1 and cwnd2 be
the values of the senders’ congestion windows and assume
that cwnd1= cwnd2. What is the smallest value of cwndi

for which the link joining the two routers stays busy all
the time?

2 Mb/s

50 msS1

R1

S2
R2

n Answer:
We need 200 Kbits per RTT to keep the link busy, or 100
Kbits per sender. That means 12.5 KB.

Assume that the link buffer overflows whenever
cwnd1+cwnd2 ≥ 36 KB and that at time 0, cwnd1=12 KB
and cwnd2= 24 KB. Approximately, what are the values of

cwnd1 and cwnd2 one RTT later? Assume that all packet
losses are detected by a triple duplicate ack.

n Answer: 6 KB and 12 KB
a. How many RTTs pass before cwnd1+cwnd2=36 again?
What are the values of cwnd1 and cwnd2 at this point?

n Answer: After 9 more RTTs, we have cwnd1= 15 KB and
cwnd2 = 21 KB.

That is, currently cwnd1 and cwnd2 values are 6 and 12.
After first RTT, they become 7,13; second RTT they become
8,14. Thus, after 9th RTT they become 15 and 21.

b. Approximately, how many RTTs pass (in total) before
cwnd2 – cwnd1 < 2 KB?

n Answer: Initially, cwnd1 and cwnd2 are 12 and 24. Thus,
in the next RTT their values become 6 and 12. After 9 RTTs,
they become 15 and 21. In the next RTT, their values be-
come 7 and 10. Their difference is 3 KB and it remains 3
KB for another 9 RTTs when the buffer fills again, at which
point their values are 16 and 19. In the next RTT, they will
having their difference as 1.5 KB(16/2,19/2). So, approxi-
mately 21 RTTs pass before the difference in the congestion
windows drops below 2 KB.

n Example A packet switch receives a packet and deter-
mines the outbound link to which the packet should be
forwarded. When the packet arrives, one other packet is
halfway done being transmitted on this outbound link and
four other packets are waiting to be transmitted. Packets
are transmitted in order of arrival. Suppose all packets are
1,200 bytes and the link rate is 3 Mbps. What is the queu-
ing delay for the packet? More generally, what is the queu-
ing delay when all packets have length L, the transmission
rates is R, x bits of the currently-being-transmitted packet
have been transmitted, and n packets are already in the
queue?

n Answer: The arriving packet must first wait for the link
to transmit 5,400 bytes or 43,200 bits. Since these bits are
transmitted at 3 Mbps, the queuing delay is 14.3 msec. Gen-
erally, the queuing delay is (nL + (L - x))/R.

n Example Consider sending a large file of F bits from
Host A to Host B. There are three links (and two switches)
between A and B, and the links are uncongested (that is,
no queuing delays). Host A segments the file into segments
of S bits each and adds 80 bits of header to each segment,
forming packets of L=80 + S bits. Each link has a transmis-
sion rate of R bps. Find the value of S that minimizes the
delay of moving the file from Host A to Host B. Disregard
propagation delay. Start solving this problem by calculating
the overall delay first.

n Answer: Time at which the 1st packet is received at the

destination
S

R

+
¥

80
3 sec. After this, one packet is re-

Computer Networks 7.57

ceived at destination every
S

R

+ 80
 sec. Thus delay in send-

ing the whole file =

delay =
S

R

F

S

S S

R

F

S

+ 80
3 + 1

+ 80

80

+ 80
+ 2¥ -Ê

ËÁ
ˆ
¯̃

¥ Ê
ËÁ

ˆ
¯̃

= ¥ Ê
ËÁ

ˆ
¯̃

To calculate the value of S which leads to the minimum delay,
d

ds
delay F= fi =0 S 40

n Example Define “flow control” and briefly explain how
TCP implements flow control.

n Answer: Flow control assures that the receiver’s buffer
does not overflow. Under the TCP protocol the receiver no-
tifies the sender of the current remaining free space in its
receive buffer using the receive window field in the TCP
header. The sender insures that the receive buffer doesn’t
overflow by guaranteeing that the total size of the sent, but
unacknowledged segments is less than the value of the re-
ceive window in the last segment that the sender received.

n Example Answer the TCP connection establishment
protocol related questions.
a. How many segments are sent?

n Answer: 3

b. Which of these segments are client initiated?

n Answer: 1, 3

n Answer: SYN

n Example Consider hosts A and B communicating over
a TCP connection. Assume unrealistically that the initial
sequence number for each of A and B is 0. Assume that
all segments sent between A and B have 20 byte headers. A
sends B a segment with a 20 byte payload, B responds with
a segment with a 30 byte payload and then another segment
with a 40 byte payload, and finally A responds with a seg-
ment with a 50 byte payload. Give the value of the sequence
number field and acknowledgement number fields for each
segment.
n Answer:

Segment 1: Seq = 0 Ack = 0

Segment 2: Seq = 0 Ack = 20

Segment 3: Seq = 30 Ack = 20

Segment 4: Seq=20 Ack =70

n Example Congestion window size for a TCP session
that uses TCP Reno is 8 and that a loss event will occur
when the window size is 14. Show, how congestion window
size changes with a figure.

n Answer: The following figure illustrates the working. Af-
ter 6 RTT’s, window size becomes 14. At which point, con-
gestion window is adjusted to 7.

1
0

2 3 4 5 6 7

Number of transmissions

8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

C
o
n
g
e
s
ti
o
n
 w

in
d
o
w

 (
in

 s
e
g
m

e
n
ts

)
n Example Consider TCP congestion control. Assume
we have a round trip time RTT of 2 seconds. Assume
that the segment size is 1 kilobyte. Assume that the
bandwidth of the connection is 100 kilobits per second.
What is the smallest window size for which there will be
no stalling?

n Answer:
Using the equation WS/R > RTT + S/R
W 8000/100,000 = 2 + 8000/100,000 for W. The solution to
this is W=26.

n Example Assume that you have 3 long lived TCP con-
nections over a single bottleneck link with bandwidth R.
The average (over a long time) bandwidth that each con-
nection receives should be about how much?

n Answer: The average of R/3 and (R/3)/2, which is R/4.

n Example Consider two hosts A and B connected by a
single link of rate C bits per second. Suppose that the two
hosts are separated by d meters. Suppose that the speed of
communication on the link is s meters per second. Host A
has to send to B a packet of size K bits.
a. What is the propagation delay in terms of C, d, s, and K?

n Answer: d/s

b. What is the transmission delay in terms of C, d, s, and K?

n Answer: K/C

c. What is the end to end delay in terms of C, d, s, and K?

n Answer: d/s + K/C

n Example Assume that you have a base html file with
30 embedded images that is requested by a client. Assume
that the base file and all of the images are small enough
to fit within one TCP segment. How many round trips are
required to retrieve the base file and the images under the

7.58 Computer Science & Information Technology for GATE

following settings? Assume that the round trip times domi-
nate all other times.
a. HTTP 1.0 with no parallel connections

n Answer: 2 RTT per file for a total of 62

b. HTTP 1.0 with up to 10 parallel connections

n Answer: 2 RTT for the base file, plus 6 RTT for the em-
bedded images, for a total of 8.

c. HTTP 1.1. with no pipelining

n Answer: 2 RTT for the base file, plus 1 RTT for each of
the remaining files, for a total of 32.

d. HTTP 1.1. with pipelining

n Answer: 2RTT for the base file, and 1 RTT for the re-
maining files, for a total of 3 RTT.

n Example Assume that a TCP process A first measures
the actual round trip time to another TCP process to be 30
ms, and A thus sets its estimated round trip time to be 30
ms. The next actual round trip time that A sees is 60 ms. In
response A increases its estimated round trip to 50 ms. The
next actual round trip time that A sees is 40 ms. What is
the next estimated round trip computed by A? Justify your
answer.

n Answer: TCP uses an exponential weighted moving av-
erage, that is,

New EstimatedRTT = x OldEstimatedRTT + (1- x) Ne-
wObservedRTT.

So when the estimated RTT of 50 is calculated, we know
that 50 = x 30 + (1-x) 60, so x=1/3. Plugging into this for-
mula to compute the new estimated RTT gives

n Example Assume a server A creates sockets by supply-
ing it IP address 1.2.3.5 and port number as 81 to the Socket
system call. Then it calls bind, listen system calls. Another
host creates socket and calls connect system call by supply-
ing 1.2.3.5 and 81 as parameters. One more host also does
the same. Assume on A, connection oriented service is ex-
tended. How many sockets are in total created on A, and
how many ports are in use on A?

n Answer: 3 and 1

n Example Consider a packet with a total length of 250
bytes (including IPv4 header, with no options) and an id
field equal to 17, sent from a host A to a host B, passing
through routers X and Y. Assume that the subnet where
host A is connected has an MTU of 500 bytes, the subnet
where host B is connected has an MTU of 80 bytes and the
subnet between X and Y has an MTU of 120 bytes. Assum-
ing that the “don’t fragment” flag is not set, how many frag-
ments does router X divide the packet into? What is the
length of each fragment?

Answer: The payload has 230 bytes and each packet in the
subnet joining X and Y has room for a 100 byte payload,
but since 100 is not divisible by 8, we’ll have 96 bytes in
the initial fragments. So, there are 3 fragments with payload
sizes of 96, 96 and 38 giving packet sizes of 116, 116 and 58.
a. Complete the diagram below so that it represents the

Y (not X). Fill in

all the blanks.

... ...

id= MF= offset= id= MF= offset=

... ...

payload payload

length= length=

n Answer: First two fragments are the one which can be
formed by dividing first fragment having payload length
of 96 and coming out from X. As, MTU in the network in
which host B is available is 80, this 96 one has to be divided.
Do remember that payload sizes has to be multiples of 8
bytes. Thus, 96 is divided into 56 and 40. According two
fragments are created with the following field values.

... ...

id=17 MF=1 offset=0 id=17 MF=1 offset=7

... ...

payload payload

length=56 length=40

b. Suppose host A sends a 50 byte packet with the “don’t

each of the two routers.

n Answer: This packet is shorter than the MTU of all sub-
nets, so it will be delivered to B without any fragmentation.

n Example Suppose a TCP message that contains 2048
bytes of data and 20 bytes of TCP header is passed to IP for
delivery across two networks of the Internet. The first net-
work uses 14 byte headers and has an MTU of 1024 bytes;
the second uses 8-byte headers with an MTU of 512 bytes.
Each network’s MTU gives the size of the largest IP data-
gram that can be carried in a link-layer frame. Give the
sizes and offsets of the sequence of fragments delivered to
the network layer at the destination host. Assume all IP
headers are 20 bytes. Note, the IP requires that fragmenta-
tion should always happen on 8-byte boundaries.

n Answer: Consider the first network. Packets have room
for 1024 – 20 = 1004 bytes of IP-level data; because 1004 is
not a multiple of 8 each fragment can contain at most 8×
floor((1004/8)) = 1000 bytes. We need to transfer 2048 +
20 = 2068 bytes of such data. This would be fragmented into
fragments of size 1000, 1000, and 68.

Computer Networks 7.59

Fragment Size Offest

1 1000 0

2 1000 1000

3 68 2000

Over the second network, the 68-byte packet would be un-

fragmented but the 1000-data-byte packet would be frag-

bytes of IP-level data. 1000 bytes of such data would be-

Fragment Size Offest

1 488 0

2 488 488

3 24 976

4 488 1000

5 488 1488

6 24 1976

7 68 2000

n Example Host A is on LAN 1 and host B is on LAN 2.
The two LANs are interconnected by a router. The MTU of

the two LANs are 1000B and 500B, respectively. Suppose

an application on host A executes 5000 writes to an appli-

-

tions. How many packets from host A to host B traverse

n Answer: Each IP packet has 20B of header and 980B of
payload.

The first fragment will be 500B long, with 20B of header
and 480B of payload. The second fragment will have the
same header/payload sizes. This leaves 20B of payload left,
which will go into the final fragment, making the fragment
size 40B. In all, there will be 15,000 packets on LAN 2.

n Example Suppose that a TCP message that contains
1964 bytes of data and 20 bytes of TCP header is passed to IP
for delivery across three networks of the Internet (i.e. from
the source host to a first router to a second router to the des-
tination host). The first network uses 14-byte headers and
has an MTU (maximum transmission unit) of 1024 bytes;
the second uses 8-bytes headers with an MTU of 512 bytes;
the third uses 16-bytes headers with an MTU of 4500 bytes.
Each network’s MTU gives the total packet size that may be
sent, including the network header. Give the sizes and offsets
of the sequences of fragments delivered to the network layer
at the destination host. Assume all IP headers are 20 bytes.

n Answer:

bytes

First network:
MTU = 1024 = link header + IP header + payload = 14
bytes + 20 bytes + TCP data TCP data = 990 bytes but
990 is not in multiples of 8. TCP data fragment must be 984
which is in multiples of 8. Therefore the first network gen-
erates three fragments (size, offset) = (984, 0), (984, 123)

Second network:
MTU = 512 = link header + IP header + payload = 8 bytes +
20 bytes + TCP data TCP data = 484 bytes but 990 is not
in multiples of 8. TCP data fragment must be 480 that is in
multiples of 8. Therefore the second network generates 6
fragments (size, offset) = (480, 0), (480, 60), (24, 120), (480,
123), (480, 183), (24, 243)

Third network:
The third network only forwards 6 fragments (size, offset)

that is larger than the size of incoming packets.

n Example The diagram below shows a network with 3
routers (shown as hexagons) connected by an Ethernet
switch. The routing table for the left-hand router is shown.
Complete the routing table for the right-hand router, so
that packets will be delivered appropriately (use no more
than 5 route table entries).

n Answer:

1.2.2.8 1.2.2.1

1.2.5.2

1.2.5.3

1.2.3.8

1.2.5.4

1.2.3.9 1.2.1.9

1.2.3.2 1.2.1.2

1.2.3.1

1 2
R
3

1

3
R 2

1.2.1.8

1.2.5.4

1.2.1.1

1.2.5.1
1

2
R

3

1.2.2.9 1.2.2.2

next hop

outputprefix ip

1.2.2.0/24 2 1.2.5.2

1.2.5.11.2.1.0/24 2

1.2.5.0/24 2

1.2.3.0/29 3

1.2.3.8/29 1

1.2.2.0/24

1.2.3.0/24

1.2.5.0/24

1.2.1.0/29

1.2.1.8/29

next hop

outputprefix ip

Right hand side routers, routing table looks like:

prefix

next hop

output ip

1

1

1 –

3 –

–

7.60 Computer Science & Information Technology for GATE

a. If a switch was inserted between the host with IP address
1.2.3.2 and its router, how many hosts could be added to
that switch, without having to change the routing table en-
tries? What IP addresses would those hosts use?

n Answer: A /29 prefix contains 8 addresses. Since 2 are al-
ready in use, so this leaves addresses 1.2.3.0, 1.2.3.3, 1.2.3.4,
1.2.3.5, 1.2.3.6 and 1.2.3.7. So 6 hosts could be added. This
is actually not quite right, since there is a special rule for
subnets. The first address in any subnet range (the address
defined by all zeros) is generally interpreted as the “subnet
address” and is not supposed to be used by any host. In ad-
dition, the last address in any subnet range (the address de-
fined by all ones) is the “broadcast address” for the subnet
and should not be assigned to a host. This rule effectively
eliminates hosts 1.2.3.0 and 1.2.3.7, so technically; only 4
hosts can be added.

n Example

radio range

A B C D

t1
t3

tim
e

t2

t0

data

t4

RTS

CTS CTS

RTS

Consider the scenario shown in the figure above in which
the lines at the top of the figure show the radio range (e.g.,
so A is heard by B only, and B is heard by A and C but not
D). Node D sends an RTS to node C at t0. Node C sends a
CTS (which is heard by nodes B and D) in accordance with
802.11 protocol, and node D begins the transmission of its
message at t2. In the meantime, node A sends an RTS mes-
sage to B at time t1.
(a) If node A were to begin transmitting to node B at some
point after t3, would A’s transmission interfere with the on-
going DATA transmission from D-to-C?

n Answer: No, since A can not reach C.

(b) At t3, can B respond to A’s RTS message with a CTS
message? Why or why not?

n Answer: No, since B has received a CTS and will have
to defer all transmission until after data is sent and ACK
is heard.

(c) In the 801.11 protocol, what will node C do at t4, at the
end of the receipt of data from node D?

n Answer: C will send an ACK (actually after deferring a
bit, but that’s not important).

(d) If A were to begin transmitting to node B at some point

after t3, would A’s transmission be successfully received at

B? Justify/discuss your answer in a few sentences.

n Answer: It could interfere with the later ACK transmis-
sion from C.

n Example In modern packet-switched networks the
source hosts segments long application-layer messages (for
example, an image or a music file) into smaller packets and
sends the packets into the network. The receiver then reas-
sembles the packet back into the original message. We refer
to this process as message segmentation the given figure il-
lustrates the end-to-end transport of a message with and
without message segmentation. Consider a message that is
8*106 bits long that is to be sent from source to destination.
Suppose each link has a maximum capacity of 2Mbps. Ig-
nore propagation, queuing, and processing delays.

a. Consider sending the message from source to desti-
nation without message segmentation. How long does
it take to move the message from the source host to
the first packet switch? Keeping in mind that each
switch uses store-and-forward packet switching what
is the total time to move the message from source host
to destination host?

b. Now suppose that the message is segmented into 4,000
packets, with each packet being 2,000 bits long. How
long does it take to move the first packet from source
host to the first switch? When the first packet is be-
ing sent from the first switch to the second switch, the
second packet is being sent from the source to the first
switch. At what time will the second packet be fully
received at the first switch?

c. How log does it take to move the file from source host
to destination host when message segmentation is
used? Compare this result with your answer in part
(a) and comment.

d. Discuss the drawbacks of message segmentation.

Source A Packet Switch Packet Switch Destination

n Answer:

a. Time to send packet from source A to first packet
switch=8x106/2x106=4sec. As the packet needs to
take 3 hops to reach destination and all links are of
same capacity and length, it needs 3x4=12sec for
packet to reach destination.

b. Time needed to send small 2000 bit packet from
source to first packet switch = 2000/2x106=1ms.
While first 2000 bit packet is sent from packet
switch 1 to 2, packet switch 1 will be receiving next
packet from source. At the end of 2ms, this gets
completed.

Computer Networks 7.61

c. Small packet of 2000bits needs 3ms to reach destina-
tion. After that for every 1ms one 2000bit packet will
be arriving. As the file size is 4000 packets in total, we
will be needing 3999ms + 3ms = 4002ms = 4.002ms

d. Packets need to arranged at destination and control
overhead is more.

n Example Suppose within your Web browser you click
on a link to obtain a Web page. The IP address for the as-
sociated URL is not cached in your local host, so a DNS
lookup is necessary to obtain the IP address. Suppose that
n DNS servers are visited before your host receives the IP
address from DNS; the successive visits incur an RTT of
RTT1, …, RTTn. Further suppose that the Web page asso-
ciated with the link contains exactly one object, consisting
of a small amount of HTML text. Let RTT0 denote the RTT
between the local host and the server containing the ob-
ject. a. Assuming zero transmission time of the object, how
much time elapses from when the client clicks on the link
until the client receives the object? Now suppose the HTML
file references eight very small objects on the same server.
Neglecting transmission times, how much time elapses
with b. Non-‐persistent HTTP with no parallel TCP con-
nections? c. Non-persistent HTTP with browser configured
for 5 parallel connections? d. Persistent HTTP?

n Answer:

a. The total amount of time to get the IP address is
RTT1+RTT2+….+RTTn. Once the IP address is
known, RTT0 elapses to set up the TCP connec-
tion and another elapses to request and receive the
small object. The total response time is=2RTT0+
RTT1+RTT2+….+RTTn.

b. RTT1+…..+RTTn+2RTT0+8.2RTT0=18RTT0+RTT
1+RTT2+…RTTn

c. RTT1+…..+RTTn+2RTT0+2.2RTT0=6RTT0+RTT1
+RTT2+…RTTn

d. RTT1+…..+RTTn+2RTT0+RTT0=3RTT0+RTT1+R
TT2+…RTTn

n Example Consider sending a large file from a host to
another over a TCP connection that has no loss. a. Sup-
pose TCP uses AIMD for its congestion control without
slow start. Assuming congestion window increases by 1
MSS every time a batch of ACKs is received and assuming
approximately constant round-‐trip times, how long does
it take for congestion window to increase from 5 MSS to
11 MSS (assuming no loss events)? b. What is the average
throughput (in terms of MSS and RTT) for this connection
up through time = 6 RTT?

n Answer: a. It takes 1 RTT to increase CongWin to 6
MSS; 2 RTTs to increase to 7 MSS; 3 RTTs to increase to 8
MSS; 4 RTTs to increase to 9 MSS; 5 RTTs to increase to 10
MSS; and 6 RTTs to increase to 11 MSS.

b. In the first RTT 5 MSS was sent; in the second RTT 6
MSS was sent; in the third RTT 7 MSS was sent; in the forth
RTT 8 MSS was sent; in the fifth RTT, 9 MSS was sent; and
in the sixth RTT, 10 MSS was sent. Thus, up to time 6 RTT,
5+6+7+8+9+10 = 45 MSS were sent (and acknowledged).
Thus, we can say that the average throughput up to time 6
RTT was (45 MSS)/(6 RTT) = 7.5 MSS/RTT.

n Example Suppose Client A initiates an HTTP session
with web server S. At about the same time, Client B also
initiates an HTTP session with web server S. Provide pos-
sible source and destination port numbers for:

a. The segments sent from A to S.

b. The segments sent from B to S.

c. The segments sent from S to A.

d. The segments sent from S to B.

e. If A and B are different hosts, is it possible that the
source port number in the segments from A to S is the
same as that from B to S?

n Answer:

source port numbers destination port numbers

(a) A Æ S 467 23

(b) B Æ S 513 23

(c) S Æ A 23 467

(d) S Æ B 23 513

n Example Consider the scenario in the given shown in
which a server is connected to a router by a 100Mbps link
with a 50ms propagation delay. Initially this router is also
connected to two routers, each over a 25Mbps link with a
200ms propagation delay. A 1Gbps link connects a host and
a cache (if present) to each of these routers and we assume
that this link has 0 propagation delay. All packets in the net-
work are 20,000 bits long.

Cache

25 Mbps
200 ms

100 Mbps
50 ms

CacheClient Client

Server

1 Gbps
0 ms

7.62 Computer Science & Information Technology for GATE

a. What is the end-to‐end delay from when a packet is
transmitted by the server to when it is received by the cli-
ent? In this case, we assume there are no caches, there’s no
queuing delay at the routers, and the packet processing de-
lays at routers and nodes are all 0.

n Answer: If all packets are 20,000 bits long it takes 200
usec to send the packet over the 100Mbps link, 800 usec
to send over the 25Mbps link, and 20 usec to send over
the 1Gbps link. Sum of the three‐link transmission is 1020
usec. Thus, the total end‐to‐end delay is 251.02 msec.

b. Here we assume that client hosts send requests for files
directly to the server (caches are not used or off in this
case). What is the maximum rate at which the server can
deliver data to a single client if we assume no other clients
are making requests?

n Answer: Server can send at the max of the bottleneck
link: 25Mbps.

c. Again we assume only one active client but in this case
the caches are on and behave like HTTP caches. A client’s
HTTP GET is always first directed to its local cache. 60% of
the requests can be satisfied by the local cache. What is the
average rate at which the client can receive data in this case?

n Answer: We assume that requests are serially satisfied.
40% of the requests can be delivered at 25Mbps and 60% at
1Gbps. So the average rate is 610Mbps.

n Example Suppose two nodes, A and B, are attached to
opposite ends of an 1200m cable, and that they each have
one frame of 1,500 bits (including all headers and pream-
bles) to send to each other. Both nodes attempt to transmit
at time t=0. Suppose there are four repeaters between A and
B, each inserting a 40‐bit delay. Assume the transmission
rate is 100 Mbp, and CSMA/CD with backoff intervals of
multiples of 512 bits times is used. After the collision, A
draws K=0 and B draws K=1 in the exponential backoff
protocol. Ignore the jam signal in this case.
a. What is the one--way propagation delay (including re-

peater delays) between 8 A and B in seconds? Assume the

Answer: 1200m/2x108m/sec + 4* 40bits/100x106bps
=7.6μsec

b. At what time (in seconds) is A’s packet completely deliv-
ered at B?

n Answer: First note, the transmission time of a single
frame is given by 1500/(100Mbps)=15 micro sec, longer

and B transmit.
At time t = 7.6μ sec, both A and B detect a collision, and

then abort.
At time t =15.2μ sec last bit of B ‘s aborted transmission

arrives at A.
At time t = 22.8μ sec first bit of A ‘s retransmis-

sion frame arrives at B. 1500bits At time t = 22.8μ
+1500bits/100x106bps= 37.8μ sec A ‘s packet is completely
delivered at B.

c. Now suppose that only A has a packet to send and that
the repeaters are replaced with switches. Suppose that each
switch has a 20‐bit processing delay in addition to a store‐
and‐forward delay. At what time, in seconds, is A’s packet
delivered at B?

n Answer: The line is divided into 5 segments by the switch-
es, so the propagation delay between switches or between a
switch and a host is given by 1200m/2x108m/sec = 1. 2mi-
crosec. The delay from Host A to the first switch is given by
15micosec (transmission delay), longer than propagation
delay. Thus, the first switch will wait 16.4=15+1.2+0.2 (note,
0.2 is processing delay) till it is ready to send the frame to
the second switch. Note that the store-and-forward delay
at a switch is 15 microsec. Similarly, each of the other 3
switches will wait for 16.4 microsec before ready for trans-
mitting the frame. The total delay is: 16.4*4 + 15+0.8=81.4
micro sec.

n Example Where and why does packet loss occur within
a router?

n Answer: packet loss occurs in buffer in either the input
or output line cards, because the memory in the buffer is
finite, and the input rate to the buffer exceed the output rate
of the buffer over some period of time.

n Example Consider LAN shown in the given figure with
its routers and switches.

A C

B D

111.111.111.111
74-29-9C-E8-FF-55

222.222.222.222
49-BD-D2-C7-56-2A

111.111.111.112
CC-49-DE-D0-AB-7D

222.222.222.221
88-B2-2F-54-1A-0F

???.???.???.???
E6-E9-00-00-17-BB-4B

222.222.222.220
1A-23-F9-CD-06-9B

R

Computer Networks 7.63

Now answer each question briefly

(a) Assign an IP address to the leftmost interface of the
router, given that the subnet part of IP addresses are 24 bits.

n Answer: Any address starting with 111.111.111.* is fine
(except for * being 111 and 112).

(b) Suppose A wants to send an IP datagram to B and
knows B’s IP address. Must A also know B’s MAC address
to send the datagram to B? If so, how does A get this info?
If not, explain why not.

n Answer: Yes, since B is on the same subnet, it will need
to know B’s MAC address. This will be done through the
ARP protocol.

(c) Suppose A wants to send an IP datagram to C and
knows C’s IP address. Must A also know C’s MAC address
to send the datagram to C? If so, how does A get this info?
If not, explain why not.

n Answer: No, A will forward the frame to the router, and
the router will then de-capsulate the datagram and then
re-encapsulate the datagram in a frame to be sent over the
right subnet. R will need to run ARP in this case to get C’s
MAC address, but A will not).

(d) Suppose that R has a datagram (that was originally sent
by A) to send to C. What are the MAC addresses on the
frame that is sent from R to C? What are the IP addresses in
the IP datagram encapsulated within this frame?

n Answer: Source IP: 111.111.111.111, dest IP:
222.222.222.222. source MAC: 1A-23-F9-CD-06-9B (right
interface of R), dest MAC: 49-BD-D2-C7-56-2A (node C).

(e) Suppose the switches above are learning switches and
suppose that the switch has just been turned on. Suppose
now A send an Ethernet frame to B.

a. On how many outgoing switch interfaces will this first
frame be carried?

 Answer: Two interface (to B and to router)

b. Now suppose that B replies to A and A sends a second
frame to B. On how many outgoing switch interfaces
will this second frame be carried?

 Answer:
 one interface (to B) since switch has learned where B is.
 Suppose now (for the two questions below) that the

router is removed from the scenario above

(f) Can the nodes keep their IP addresses the same as shown
in the picture above? Explain in one or two sentences.

n Answer: If the subnet is /24 or actually anything except
no network bits, then the answer is NO, since nodes on the
same subnet need to have the same network part of their
address.
(g) Suppose that the network manager wants to assign A
and C to the same VLAN and B and D to a different VLAN.
When a frame is forwarded between switches, how does

the receiving switch know which VLAN the frame is des-
tined to?

n Answer: It’s contained in the VLAN tag in the Ethernet
frame header.

n Example: A TCP machine is sending windows of 65,535
bytes over a 1-Gbps channel that has a 10-msec one way
delay. What is the maximum throughput achievable? What
is the line efficiency?

n Answer: Transmission time for the sending window size,
tw = window size / channel speed = (65,535 × 8 bits) / 109

bps = 0.52428 msec.
Propagation delay, tp = RTT/2 = 10 msec.
An ACK packet is sent only when the last bit of the data

in the sending window is received. For simplicity, we as-
sume that ACK packets are extremely small (so that we can
ignore the transmission time). Then the time for sending an
ACK message is tp. Thus total time for sending data in the
sending window with TCP,

T = tw + tp + tp = = tw + 2 × tp = 20.52428 msec.
The throughput for the TCP machine,
U = the amount of data sent / total time to send data (T)

= (65,535 × 8 bits) / 0.02052428 sec
Mbps.

n Example Suppose there are 5 users whose traffic is
being multiplexed over a single link with a capacity of 1

Mbps.

(a) Suppose each user generates 100 kbps when busy, but
is only busy (i.e., has data to send) 10% of the time. Would
circuit-switching or packet-switching be preferable in this
scenario? Why?

n Answer: Here, circuit switching is preferable since each
of the users will each get a dedicated allocation of 100 kbps.

(b) Now suppose that the link capacity is still 1 Mbps, but
the amount of traffic each user has to send when busy is
increased to 1 Mbps, and that each of the 5 users still only
has data to send 10% of the time. Would circuit-switching
or packet-switching be preferable in this scenario? Why?

n Answer: Here, packet switching is preferable. We cannot
allocate 1Mbps per user in circuit switching mode. Packet
switching will work well since the aggregate average traffic
rate is 0.5 Mbps and the link is a 1 Mbps link

n Example Suppose a TCP SYN message is sent from a
client with IP address 128.119.40.186 and client port num-
ber 5345 to a server with IP address 41.123.7.94 and server
port number 80 (HTTP)
(a) Once the TCP connection has been established, what
will be the client-side IP address, client-side port number,
server-side IP address and server-side port number of the
TCP segment carrying the HTTP GET message.

7.64 Computer Science & Information Technology for GATE

n Answer: Exactly as specified in the problem statement.

or two sentences.

n Answer: No. The GET will be directed to the new
socket that was created when the TCP SYN messages was
accepted (i.e., the socket returned from the wait on the.
accept() on the welcoming socket). Note that the TCP
SYN and the GET will both be addressed to port 80 on the
server, however.

n Example In network-assisted congestion control, how
is congestion in the network signaled to the sender?

n Answer: The routers may set bits in passing packets, and
may send messages to the source or destination to indicated
congestion.

n Example Name one protocol that uses a network-as-
sisted approach.

n Answer: ATM ABR uses a network-assisted approach.

n Example In end-end congestion control, how is con-
gestion in the network signaled to the sender?

n Answer: Congestion is inferred at the end hosts (sender
or receiver, either as a the result of packet loss or increased
delay).

n Example Name one protocol that uses an end-end ap-
proach.

n Answer: TCP uses an end-end approach.

n Example
caching is used in the DNS.

n Answer: A host will maintain a cache of recent DNS-
translated address/name pairs. If a name is found in the
cache, the DNS system will not be consulted to perform the
mapping.

n Example Are values returned from a DNS cache always
guaranteed to be up to date? Explain.

n Answer: No. Cached values have a time-to-live value and
will remain in the cache until they time out. If the name/ad-
dress pair is changed in the DNS, the cached value will not
change, and the current mapping will only become known
after the old mapping times out of the cache, and a new
mapping is retrieved from the DNS.

n Example Does the Internet checksum always detect

a sentence or two.

n Answer: No. For example if two 16-bit word values are

swapped, this would not be detected since the sum is un-

changed.

n Example What is meant by demultiplexing a protocol
data unit up to an upper-level protocol?

n Answer: this refers to passing the decapsulated data unit
up to the appropriate higher level protocol. This is done by
looking at the upper-layer protocol field.

n Example

cache

25 Mbps
200 ms prop.

100 Mbps
100 ms prop.

cachehost

Server

host

1 Gbps
0 prop. delay

Consider the scenario in the figure above in which a
server is connected to a router by a 100 Mbps link, with a
100 ms propagation delay. That router in turn is connect-
ed to two routers, each over a 25 Mbps link with a 200 ms
propagation delay. A Gbps link connects a host and a cache
(when present) to each of these routers; this link, being a lo-
cal area network, has a propagation delay that is essentially
zero. All packets in the network are 10,000 bits long.
(a) What is the end-to-end delay from when a packet is
transmitted by the server to when it is received at a host?
Assume that there are no caches, that there is no queueing
delay at a link, and that the node (router) packet-processing
delays are also zero.

n Answer: If all packets at 10,000 bits long, it takes 100 usec
to send the packet over a 100Mbps link, 400 usec to send
over a 25Mbps link, and 10 usec to send over a gigabit link.
The sum of the three link transmission times is thus 510
usec. The sum of the propagation delays is 200+100=300
msec. Thus the total end-end delay is 300.510 msec.

(b) First assume that client hosts send requests for files
directly to the server (i.e., the caches are off). What is the
maximum rate at which the server can deliver data to a sin-
gle client, assuming no other clients are making requests.

n Answer: 25 Mbps, the bottleneck link speed.

(c) Again assume that only one client is active, but now
suppose the caches are HTTP caches and are turned on. A
client HTTP GET is always first directed to its local cache.
50% of the requests can be satisfied by the local cache. What
is the maximum rate at which this client can receive data in
this scenario?

Computer Networks 7.65

n Answer: We assume that requests are serially satisfied.
50% of the requests can be delivered at 25Mbps and 50% of
the requests can be delivered at 1 Gbps. So the average rate
is 512.5 Mbps.

(d) Now suppose that the clients in both LANs are active
and the HTTP caches are on, as in c) above. 50% of the
requests can be satisfied by the local cache. What is the
maximum rate at which each client can receive data, in this
scenario?

n Answer: The 25 Mbps remains the bottleneck link, which
is not shared between clients. So the answer is the same as
(c) above. Note that we assume that the 100Mbps is shared
at a fine grain, so that each client can get up to 50Mbps over
that link.

(e) Now suppose the 100 Mbps link is replaced by a 25
Mbps link. Repeat question d) above in this new scenario.

n Answer: The two clients must now share the 25Mbps
bottleneck link, each getting 12.5 Mbps. 50% of the re-
quests from a client are delivered at 12.5 Mbps and 50% of
the requests can be delivers a 1 Gbps. So the average rate is
506.25 Mbps.

n Example (a) What is the purpose of the receiver-adver-
tised window in TCP?

n Answer: This allows the receiver to tell the sender how
much unacknowledged data can be in flight.

(b) Consider two TCP sessions that must share a link’s
bandwidth. One of the TCP connections has been running
for quite some time and has built up a large TCP sending
window. The second connection then starts up with
an initially small window. Long term, what will be the
relative throughput achieved by these two TCP sessions?
Explain.

n Answer: We saw that TCP will cause two senders to
eventually fairly share the links bandwidth, so each will
eventually have the same size window (assuming their RTT
is the same).

(d) Consider a TCP session and a UDP session that must
share a link’s bandwidth. Of course, both sessions would
ideally like to send as fast as they can. Long term, what will
be the relative throughput achieved by these two sessions?
Explain.

n Answer: Since UDP can send as fast as it wants, it can use
all of the bandwidth (e.g., in the limit that it sends infinitely
fast, as soon as buffer space becomes free in a router, that
buffer will be filled by a UDP segment. TCP segments will
always be lost, causing TCP to keeps its window at 1 seg-
ment, which when sent is always lost.

(e) Suppose we want to modify TCP so that it counts the
number of segments that are lost in transit. What are the
difficulties of doing this in TCP?

n Answer: The key complications here are (i) that ACKs are
cumulative (and so the sender may never see some packets
individually acked); (ii) premature timeouts result in seg-
ments being resent that were never lost in the first place,
and (with acks being cumulative) one can’t tell how many
of the retransmitted segments are lost.

• Because ACKs are cumulative, if the sender gets no
ACK for x but gets an ACK for x+1, it doesn’t know
if x was received and the ack for x was lost, or if x was
lost but a later retransmission of x was received.

• A lack of an ACK for x could just mean that the
ACK for x is delayed. Suppose x is retransmitted. The
sender may never see an ACK for the retransmitted
x because of cumulative ACKs for segments with a
higher sequence number than x.

• Because of the ACK-every-other segment behavior
of TCP receivers, an ACK may never be generated
for x is x+1 is received soon after x.

n Example Design a reliable byte-stream protocol that
uses a sliding window (like TCP). This protocol will run
over a 100-Mbps network. The RTT of the network is 80
ms, and the maximum segment lifetime is 300 seconds.
How many bits would you include in the AdvertisedWin-
dow and SequenceNum fields of your protocol header?

n Answer: Bandwidth = 100 Mbps, RTT = 80 ms, MSL =
300 seconds

Advertised Window Size = BW * RTT

= 100Mbps * 80 ms= 220 Bytes

Therefore, Advertised Window Size = 20 bits
Now considering the maximum segment lifetime,
Size = BW * MSL

= 100 Mbps * 300sec = 3750 MB < 4GB = 232 B

Therefore, we need 32 bits in the Sequence Number Field.

n Example Suppose host A sends two TCP segment
back to back to host B over TCP connection. The first seg-
ment has sequence number 90; the second has sequence
number 110.

(i) How much data is in the first segment?

(ii) Suppose that the first segment is lost but the second
segment arrives at B. In the Acknowledgement that
host B sends to host A, what will be the acknowledge-
ment number?

n Answer:

i. Data Size in the First Segment: 110 –90 = 20 bytes

ii. Acknowledgement Number = 90

n Example Consider the scenario in the given figure, in
which (from the bottom up) three hosts and a local logging
server (that stores information that is sent to it) are con-
nected to a router and to each other by a 100 Mbps link,

7.66 Computer Science & Information Technology for GATE

with a near-zero ms propagation delay. That router in turn
is connected to another router over a 30 Mbps link with a
50 ms propagation delay, and that latter router is connected
to two remote logging servers, each over a 20 Mbps link
with a10 ms propagation delay.

20 Mbps
10 ms prop. delay

100 Mbps
0 ms prop. delay

30 Mbps
50 ms prop. delay

(a) Suppose a host sends a logging message directly to one
of the remote logging servers. The logging message is 10K
bits long. What is the end-to-end delay from when the log-
ging message is first transmitted by the host to when it is
received at the remote server? Assume that the request goes
directly to the server, that there are no queueing delays, and
that node (router) packet-processing delays are also zero.

n Answer: Given the 10K bit packet, it takes.0005 secs to
send this packet over a 20 Mbps link. 0.000333 secs to send
over a 30 Mbps link, and.0001 secs over the 100 Mbps link.
The total transmission time end-to-end is this .0009333
secs. The total propagation delay is 60 ms. Therefore the to-
tal end-end delay is .0609333 secs.
(b) Assume that each of the three hosts generate logging
messages at the same rate; each host is equally like to send
a logging message to either of the two remote servers. No
traffic is directed to the local logging server. What is the
maximum rate at which the clients can send logging mes-
sages to the remote servers?

n Answer: The link between routers is the bottleneck
link, allowing 30 Mbps to be delivered to the two servers
combined, or 15 Mbps to be delivered to each server. Since
each message is 10K bits, this is 1.5K logging messages per
second.

(c) Now assume that the local logging server is ON and
only one host is active (generating) logging messages and
that host is only sending messages to one of the remote log-
ging servers. Suppose that 50% of the logging messages are
directed locally and the other 50% directed to this remote

server. What is the maximum rate at which this host can
generate and send logging messages (both local and re-
mote combined, given there is a 50/50 ratio of local/remote
transmissions) in this scenario?

n Answer: The maximum rate at which the host can gen-
erate remote logging messages is 20 Mbps or 2K logging
messages per second. Local messages can be generated that
the same rate, so the overall rate is 40 Mbps or 4K logging
messages per second.

n Example Consider a router with N input lines, each
with input link rate R and an internal switching fabric
that is 2N times faster than R. Where packet queue will be
formed in this router? Explain your answer.

n Answer: Queueing will only occur at the output ports.
Since the switch is more than N times fast than the input
rate, all arriving packets in a slot can be move from input
port to output port in that slot.

n Example Suppose BGP router A sends a BGP path vec-
tor to BGP peer router B. BGP peer B is connected to BGP
peer C. Must B advertise that path to C?

n Answer: No. It is up to B’s internal policy about what
routes to advertise to others. An ISP will generally only
carry traffic to/from its customers, and not carry transit
traffic (i.e., traffic that is both sources and destined in non-
customer networks).

n Example In IP forwarding, it’s possible for two packets
to take different paths from a common router to the same
destination, based on their source IP address.

n Answer: False.

n Example In MPLS (multi-protocol label switching)
forwarding, it’s possible for two packets to take different
paths from a common router to the same destination, based
on their source IP address.

n Answer: True.

n Example Briefly describe how Ethernet’s exponential
backoff works. What is onereason why Ethernet’s exponen-
tial backoff might be better than randomizing retransmis-
sion attempts over a fixed-length time interval?

n Answer: Ethernet maintains an interval of time T over
which is will randomize when it will attempt a retransmis-
sion. After each collision for the same packet, it doubles the
length of T up to some fixed max. This is better than just
a single, fixed value of T since when there are a lot of col-
lisions the interval over which randomization is done will
be large, allowing just one node to successfully being trans-
mitting. When there are only a small number of colliding
nodes, the retransmission will be randomized initially over
a small T, allowing a node to transmit more quickly.

n Example Consider four Internet hosts, each with a
TCP session. These four TCP sessions share a common

Computer Networks 7.67

bottleneck link – all packet loss on the end-to-end paths for
these four sessions occurs at just this one link. The bottle-
neck link has a transmission rate of R. The round trip times,
RTT, for all fours hosts to their destinations are approxi-
mately the same. No other sessions are currently using this
link. The four sessions have been running for a long time.
(a) What is the approximate throughput of each of these
four TCP sessions? Explain.

n Answer: R/4 since TCP shares bandwidth fairly.

(b) What is the approximate size of the TCP window at
each of these hosts? Explain briefly how you arrived at this
answer.

n Answer: You know that

throughput = W/RTT or W = throughput * RTT = R*RTT/4.

(c) Suppose that one of the sessions terminates. What is
the new throughput achieved by each of the three remain-
ing sessions? Briefly describe how this new throughput is
reached (i.e., what do the TCPs in the remaining three hosts
do that results in this new throughput being achieved).

n Answer: R/3 since TCP shares bandwidth fairly

(d) Now suppose that one of the three hosts starts a second
session that also crosses this bottleneck link. What is the
throughput achieved (in aggregate) by the one host with two
sessions, and by each of the two hosts with one session each?

n Answer: Each session will again get R/4, so the one host
with two sessions will get R/2 in aggregate and the other
two hosts will each get R/4.

n Example: Consider the following network with routers,
hosts.

(1)

(2)

A

(3)

BB:89:34E7:01:38AA:12:F3:5C:01:BC

20:FF:3A:BC:01:4E 10:D4:E1:A8:97:F0

B

(a) Assign IP address ranges to the subnets containing hosts
A and B, and assign IP addresses in these ranges to hosts A
and B. (You don’t have to assign IP addresses to any hosts
except A and B, but you do need to specify the address
range being used by each subnet). Your subnet addressing
should use the smallest amount of address space possible.

n Answer: Because there are less than eight but more
than 4 nodes in each subnet, we’ll need three address bits
for each subnet. So let’s assign the left subnet XX.YY.

ZZ.xxxx0***/29, where the XX.YY.ZZ are 8 bit numbers.
Each x is a bit and the three *’s correspond to the three
address bits for this network. For the right subnet, well
use XX.YY.ZZ.xxxx1***/29. A will have an IP address
of XX.YY.ZZ.xxxx0000 and B will have an IP address of
XX.YY.ZZ.xxxx1000.

(b) What IP address range can the router advertise to the
outside for all of the hosts reachable in these two subnets?
Again, you should choose your answer in a) above so that
the minimum-size address space is advertised here.

n Answer: XX.YY.ZZ.xxxx/28

(c) Does the router interface with link-layer address
20:FF:3A:BC:01:4E have an IP address? If so, what is the
role of the IP address of the router’s IP interface in forward-
ing datagrams through the router.

n Answer: Yes. That’s the address that a host in the left net-
work will use to determine the MAC address to send frames
to, containing datagrams that need to be routed through
the router. The router address however, won’t appear in the
IP datagram.

(d) Consider an IP datagram being sent from A to B using
Ethernet as the link layer protocol in all links in the fig-
ure above. What are the (i) Ethernet source and destination
addresses and (ii) IP source and destination addresses of
the IP datagram encapsulated within the Ethernet frame at
points (1), (2), and (3) in the above example for a datagram
going from A to B.

n Answer:

(1): ETH source: aa:12;F3:5C:01:BC, ETH dest:
20:FF:3A:BC:01:4E

IP source: XX.YY.ZZ.xxxx0000; IP dest: XX.YY.
ZZ.xxxx1000 see (a) above

(2) same as (1)

(3) ETH source: 10:D4:E1:A*:97:FO, ETH dest:
BB:89:34:E7:01:3B

IP source: XX.YY.ZZ.xxxx0000; IP dest: XX.YY.
ZZ.xxxx1000 same as (1) above

(e) Suppose all switches in the above example are learning
switches. Consider the datagram being sent from A to B;
neither A nor B have sent any frames or datagrams in the
network before. How many of the 11 hosts in the network
receive the frame containing the datagram sent by A? Ex-
plain your answer briefly.

n Answer: All 11, since no switch knows where B is locat-
ed (since B hasn’t sent anything), all switches will broad-
cast the frame containing the IP datagram from A. Note
that different frames are broadcast on the left and right
subnets (e.g., the frames have different source and desti-
nation MAC addresses, see above), but both contain the
datagram from A.

7.68 Computer Science & Information Technology for GATE

Suppose the server in the upper part of the left network
sends a datagram to A shortly after the A-to-B datagram is
sent. How many of the 11 hosts in the network receive the
frame containing the datagram sent by this server? Explain
your answer briefly.

n Answer: Only A will receive that, since all of the switches
know the outgoing port leading to A, as a result of learning
where A is, as a result of the initial A-to-B transmission.

(f) Suppose A sends out an ARP request, and this ARP
request is in the very first frame sent in the network above
(i.e., even before the original A-to-B datagram). How many
of the 11 hosts in the network receive the frame containing
this ARP request? Explain your answer briefly.

n Answer: ARP broadcasts are restricted to a subnet and
generally do not pass through the router, so all 5 other hosts
in the left network will receive the ARP broadcast (as will
the leftmost interface on the router).

n Example Assume we have a 1 kilometer fiber optic link
between A and B with bandwidth 1 megabit per second.
Information on this link travels at the speed of light, which
is 3*108 meters per second. A sends a 1 kilobyte packet to B.
a. Give an expression for the propagation delay.

n Answer: 1000 meters/(3*108 meters/second) = 3.33μs

b. Give an expression for the transmission delay.

n Answer: Transmission delay=propagation delay + frame
time=3.33 μs + 1000x8/106=8003.33 μs

n Example Answer the following questions about TCP
with short answers.
a. What is the purpose of the receive window? That is, ex-
plain what problem it is aimed toward fixing?

n Answer: Flow control, that is the receiver buffer should
not overflow.
b. Who sets the receiver window, the sender or the receiver?

n Answer: Receiver

c. How does the other entity respond to this setting of the
receive window?

n Answer: The sender makes sure that the number of sent
but unacknowledged bytes is at most the receive window.

n Example Consider the TCP Reno protocol.
a. What are the two possible loss events for TCP Reno?

Answer: Time-out and triplicate ACK

b. How does TCP Reno change the congestion window in
response to each of these types of loss events? Assume that
the congestion window is of size X segments just prior to
the loss event at time t. Assume X is quite large. Give the size
of the congestion window at times t, t + RTT, t + 2RTT, for
each possible loss event. Here RTT is the round trip time.

n Answer: After a time-out: 1, 2, 4
After a triplicate ACK: X/2, X/2+1, X/2 +2

n Example Assume that a TCP process A first measures
the actual round trip time to another TCP process to be 30
ms, and A thus sets its estimated round trip time to be 30
ms. The next actual round trip time that A sees is 90 ms. In
response A increases its estimated round trip to 70 ms. The
next actual round trip time that A sees is 50 ms. What is the
next estimated round trip computed by A?

n Answer:
70= alpha * 30 + (1-alpha)90
Thus alpha=1/3
Then next estimated round trip is (1/3)70 + (2/3)50=56.7

n Example Consider that a browser on host A wants
to retrieve a html document D, and an embedded image
I, on a host B. Assume that A does not initially know the
IP address of B, but A’s local name server S does know B’s
IP address. Assume that the browser on A uses HTTP/1.0.
Show the chronological sequence of transport layer seg-
ments (TCP, or UDP) sent and the application layer data
type (DNS or HTTP) included by filling in the following
table. Also state when any of the SYN, FIN and/or ACK bits
in the TCP header are set.

n Answer:

Source Destination Transport
Layer Protocol

Application
Layer Protocol

A S UDP DNS

S A UDP DNS

A B TCP SYN=1

B A TCP SYN=ACK=1

A B TCP ACK=1 HTTP

B A TCP HTTP

A B TCP FIN=1

B A TCP FIN=ACK=1

A B TCP ACK=1

A B TCP SYN=1

B A TCP SYN=ACK=1

A B TCP ACK=1 HTTP

B A TCP HTTP

A B TCP FIN=1

B A TCP FIN=ACK=1

A B TCP ACK=1

n Example Consider TCP congestion control. Assume
we have a round trip time RTT of 4 seconds. Assume that
the segment size is 3 kilobyte. Assume that the bandwidth
of the connection is 500 kilobits per second. What is the
smallest window size for which there will be no stalling?

n Answer:
WS/R > RTT + S/R. By substitution,

W * 3 * 8/500 > 3*8/500 + 4.

Solving for W gives W = 84 segments

Computer Networks 7.69

n Example Here we consider TCP Reno connections
through a bottleneck router. Assume that capacity of the
router measured in TCP segments is R, where R is quite large.
a. Assume that you have only one TCP connection. What
will be the approximate average long term throughput for
this connection as a function of R?

n Answer: 3R/4

b. Assume that you have 2 TCP connections with equal
round trip times. What will be the approximate average
long term throughput for each connection?
n Answer: (R/2)(3/4)

c. You have 3 TCP connections A, B, and C with round trip
times 1, 2, and 3 respectively. What will be the approximate
average long term throughput for each connection?

n Answer: Let X be A’s share of the bandwidth. Then B’s
share is X/2 and C’s share is X/3. Hence X + X/2 + X/3 =
R. Therefore X=6R/11. Now taking multiplicative decrease
into account, we get an answer of (3/4)(6R/11)

n Example Consider sending a file of F Kbytes in the fol-
lowing settings.

Setting 1 consists of two computers A and B, each
equipped with a modem that is capable of sending/receiv-
ing at 33.3 kbps. For A to send a file to B, it must first
establish a dial-up connection with B, which takes 30 sec-
onds. It can then send the file in 128-byte packets, with a
1 byte checksum attached to each packet. The propagation
delay of the phone line is negligible. Assume that A and
B are directly connected, i.e., there are no intermediate
routers.

Setting 2 consists of two computers C and D, connected
by an established wireless connection that can transmit at 8
kbps through a satellite, with a 0.25s total propagation delay
from C to D. In setting 2, files are transmitted without be-
ing split into packets. You may assume there are no errors
during each transmission and you may ignore acknowl-
edgments, i.e., consider only bits flowing from the sending
computer to the receiving computer.

If F = 16, how long does it take to send the file from A
to B?

n Answer: Total number of bytes transmitted = size of file
+ number of checksum bytes
= 16K + 16K/128 = 16.125K bytes
Total Time = time for connection setup + time for tx
= 30s + (16.125K * 8bits)/33.3k (note that kbps is kilo bits
per sec) = 33.97 sec
How long does it take to send the file from C to D?

n Answer: Total Time = propagation delay + time for
transfer

= 0.25 sec + (16K*8bits)/8k sec= 16.634sec

n Example Why is it difficult to implement persistent con-
nections for CGI scripts and dynamic content in general?

n Answer: In persistent http, the client must be able to tell
different objects apart from each other. For this to happen,
the server must include the size of the content in the head-
er. However, the output size of the CGI scripts and the size
of the dynamic content cannot be determined in advance.

n Example Suppose you are downloading a page with m
large objects, m > n, and a large number of small objects.
Assume the client requests the objects in the order it finds
them in the page. What problem does the above persistent
connections scheme pose in this situation?

n Answer: Since the large objects will take a lot of time to
download, the user will not see any content for a long time
and get an impression that the server is not responding. So
he will refresh the page and the same thing will start over
again.

Describe a simple client side (i.e., in the browser) solu-
tion to address this problem and improve the overall re-
sponse time for the Web page.

The client can reserve one connection for large objects
and use the rest for small objects. The client can use the
HEAD method of http and request the meta-data of the ob-
jects (here images) including the size of the object. Then it
can use the GET method to retrieve the large-sized images
on one connection and the smaller objects on the other
connections.

n Example Suppose you are designing a sliding window
protocol for a 1Mbps point-to-point link to the Moon,
which has a one way latency of 1.25s. Assuming that each
frame carries 1KB of data, what is the minimum number of
bits you need for the sequence number?

n Answer: RTT=Round Trip Time = 1.25 * 2 = 2.5 s
Total packet out = 2.5 * 1M bps / 1KB + 1 = 305
Therefore, we need log2(305)+1= 9 bits

n Example Assume that two hosts are trying to com-
municate over a 100Mbps Ethernet segment. Many other
hosts also connected to this segment. The hosts wish to
exchange a 40B IP packet (including IP, TCP and applica-
tion headers and payload). What is the minimum number
of padding bytes that the sending host’s Ethernet adaptor
will add? Assume that electromagnetic signals travel at the
speed of 108 m/s over 100Mbps Ethernet cable. Also as-
sume that the maximum allowed segment size is 1000m.
Suppose nodes A and B are on the same 10Mbps Ethernet
segment. Say the propagation delay between them is 250
bit times.

n Answer: For a collision to be effectively detected, in this
case, the sending packet should be able to last for at least
1000 / 108 * 2 = 2*10-5 s
Thus, it should be at least
100 * 106 * 2*10-5 = 1000 bits = 250 byte => Need to pad
250 – 40 = 210 bytes

7.70 Computer Science & Information Technology for GATE

Suppose at time t = 0, B starts to transmit a frame. Sup-
pose A also transmits at t = x, but before completing its
transmission, it receives bits from B (hence, a collision oc-
curs at A). Assuming node A follows the CSMA/CD proto-
col, what is the maximum value of x?

n Answer: Node A senses empty channel from t=0 to t =
250, so A can transmit at any time during this interval. At
time t=250, A senses a busy channel and will refrain from
transmitting. So x=249 bit times and is equivalent to 24.9
microseconds.

Suppose at time t = 0, both nodes start to transmit a
frame. At what time do they detect a collision? Assuming
both nodes transmit a 48-bit jam signal after detecting a
collision, at what time (in bit times) do A and and B sense
an idle channel? How many seconds is this for 100Mbps
Ethernet?

n Answer: Both nodes detect a collision at t=250. At
t=250+48, both nodes stop transmitting their jam sig-
nals. The last bit of jam signal from B arrives at A at
t=298+250=548 bit times. Similarly, the last bit of A’s jam
signal arrives at B at 548 bit times. This is when both nodes
sense an idle channel. At 100Mbps, 548 bit times is equiva-
lent to 5.48 microseconds.

n Example Video applications typically run over UDP
rather than TCP because they cannot tolerate retransmis-
sion delays. However, this means video applications are not
constrained by TCP’s congestion control algorithms.
(a) What impact does this have on TCP traffic? Be specific
about the consequences.

n Answer: Since UDP does not have congestion control,
thus they could not lower the transmission rate when con-
gestion occurred. On the other hand, TCP would lower
its transmission rate. In this case, most of the bandwidth
would be occupied by UDP, which would significantly
worsen the TCP performance.
(b) Assume these video applications uses RTP, which re-
sults in RTCP “receiver reports” being sent from the sink
back to the source. These reports are sent periodically (e.g.
once a second) and include the percentage of packets suc-
cessfully received in the last reporting period. Describe
how the source might use this information to adjust its rate
in a TCP compatible way.

n Answer: The percentage of successful received packets
gives the source the indication of current network conges-
tion conditions. When the percentage is low, the source
should lower its sending rate accordingly, and when the
percentage is high, it can steadily increase its sending rate
until the percentage starts dropping. This mechanism is
very similar to that used in TCP like AIMD.

n Example Calculate the buffering needed to ensure that
TCP fully utilises a link if:

(a) TCP were to change its multiplicative decrease to de-
crease the window 3/4th the size after a loss.

n Answer: To fully utilize the link, we need to ensure that
the average transfer amount equals bandwidth-delay prod-
uct (BDP). Therefore, with ¾ multiplicative decreasing,
the buffer size should satisfy 3(BDP+Q)/4>=BDP, thus the
minimum buffer size is BDP/3.
(b) TCP were to change its additive increase to 2 packets
per RTT

n Answer: If the additive increase is 2 packets per RTT, and
multiplicative decrease is still ½, then the buffer size needed
would be BDP as in normal case. Essentially, the buffer size
needed only relates to the multiplicative decreasing rate re-
gardless the additive increasing rate.

n Example Consider 10 flows with arrival rates of 1, 2,...,
10 Mbps that traverse a link of 50Mbps. Compute the max-
min fair share on this link. What is the fair share if the link
capacity is 60 Mbps?

n Answer: Since, the total bandwidth is 50Mbps, originally
each flow will be allocated 5Mbps. Thus the first five flows
will be allocated 1Mbps, 2Mbps, 3Mbps, 4Mbps, and 5Mbps
respectively, since they do not exceeds the limit. Then there
would be 35Mbps left for 5 flows. Thus 6th and 7th flow
can also be guaranteed. After that 22Mbps will be evenly
allocated by the other 3 flows. So the final result would be

No. 1 2 3 4 5 6 7 8 9 10

Size(Mbps) 1 2 3 4 5 6 7 7.33 7.33 7.33

If the total bandwidth increases to 60Mbps, in the simi-
lar manner, we can calculate that the allocation would be
like the following table:

No. 1 2 3 4 5 6 7 8 9 10

Size(Mbps) 1 2 3 4 5 6 7 8 9 10

which makes sense because currently the resource is
enough for all the users.

n Example Two flows A and B arrive at a router with a
WFQ (weighted fair queue) scheduling policy. The WFQ
scheduling is modeled after GPS. Flow A has reserved 1/3
of the bandwidth on the outgoing link. Flow B has reversed
2/3 of the bandwidth on the outgoing link. Flow A’s packets
are one third the size of flow B’s packets. What are the first
6 packets to leave the link?

n Answer: Suppose we have constant and equal flows for
both A and B, and they arrived at the same time, but A was
served first. Therefore, based on the WFQ policy, the first 6
packets would be A, B, A,B, A, A or A, B, A, A, B, A.

n Example

(1) Consider the arrangement of learning bridges
shown in the following figure. Assuming all are
initially empty, give the forwarding tables for each

Computer Networks 7.71

of the bridges B1-B4 after the following transmis-
sions: D sends to C; A sends to D; C sends to A

B3 C

B2B1A

B4 D

n Answer: When D sends to C, all bridges see the packet
and learn where D is. That is, B4 sends packet to B2. B2
sends the same to both B1 and B3 (other than the line from
which packet is arrived). Thus, all the bridges will be learn-
ing about D. However, when A sends to D, the packet is
routed directly to D and B3 does not learn where A is. That
is, packet from A arrives to B1 which already knows where
D is, so it sends packet to B2. B2 knows D can be reached
via B4, it will send packet to B4 only; not to B3. Similarly,
when C sends to A, the packet is routed by B2 towards B1
only, and B4 does not learn where C is. After these three
transmissions, what every bridge know about other bridges
is summarised below.

The forwarding table for Bridge B1

Destination Next Hop

A A-Interface

C B2-Interface

D B2-Interface

The forwarding table for Bridge B2

Destination Next Hop

A B1-Interface

C B3-Interface

D B4-Interface

The forwarding table for Bridge B3

Destination Next Hop

C C-Interface

D B2-Interface

The forwarding table for Bridge B4

Destination Next Hop

A B2-Interface

D D-Interface

n Example Consider hosts X, Y, Z, W, U and learning
bridges B1, B2, B3, B4 with initially empty forwarding
tables, connected in the following manner:

X B1

U

B2

Y W

B4

B3

Z

a. Assuming B1 has the lowest bridge identifier, and
B4 the highest, show the spanning tree for the above
network.

 Answer:

X B1

U

B2

Y W

B4

B3

Z

b. Say B4 is connected to U, B2, B3 and Z via its ports 1,
2, 3 and 4, respectively. Assuming no failures, which
of these ports will B4 never forward on (i.e. which
ports are blocked)?

 Answer: 3, 4

c. Suppose X sends its first packet to Z. Which bridges
learn where X is? Does Y’s network interface see this
packet?

 Answer: All bridges will learn. Yes, Y’s interface will
see this packet.

d. Suppose Z now sends its first packet to X. Which
bridges learn where Z is? Does Y’s network interface
see this packet?

 Answer: B1, B2, B3 will learn. Y will not see this
packet.

e. Suppose Y now sends to X. Which bridges learn where
Y is? Does Z’s network interface see this packet?

 Answer: B1, B2 will learn. Z will not see this packet.

n Example Explain about longest prefix match algorithm.

n Answer: Longest prefix match (also called Maximum
prefix length match) refers to an algorithm used by routers
in Internet Protocol (IP) networking to select an entry from
a routing table. Each entry in a routing table may specify
a network, one destination address may match more than
one routing table entry. The most specific table entry is the
one with the highest subnet mask. Thus is called as the
longest prefix match because it is the entry where the larg-
est number of leading address bits in the table entry match
those of the destination address.

A router has 3 interfaces: 172.21.10.237/28, 172.21.
10.66/27, and 172.21.10.193/29. Find out which interface is
selected if the destination address of a packet that is arrive
is 172.21.10.68?

We apply longest prefix matching algorithm for the giv-
en address and the gives three interface addresses as shown
below.

7.72 Computer Science & Information Technology for GATE

1010 1100.0001 0101.0000 1010.0100 0100 172.21.10.68

1010 1100.0001 0101.0000 1010.1110 1101 172.21.10.237

1010 1100.0001 0101.0000 1010.0100 0100 172.21.10.68

1010 1100.0001 0101.0000 1010.0100 0010 172.21.10.66

1010 1100.0001 0101.0000 1010.0100 0100 172.21.10.68

1010 1100.0001 0101.0000 1010.1100 0001 172.21.10.193

We found that the given address is having largest num-
ber of prefix bits matching with 172.21.10.66. Thus, this is
selected.

n Example The following table is a routing table using
CIDR. Address bytes are in hexadecimal.

Net/MaskLength Next hop

C4.50.0.0/12 A

C4.5E.10.0/20 B

C4.60.0.0/12 C

C4.68.0.0/14 D

80.0.0.0/1 E

40.0.0.0/2 F

00.0.0.0/2 G

State to what next hop the following will be delivered.
(A) C4.5E.20.87 (B) C4.5E.1A.09

(C) C3.41.80.02 (D) C4.6D.31.2A

(E) C4.6B.31.2B

n Answer:

The following table illustrates the interfaces and their pre-
fix bits.

Net/MaskLength Next hop Binary Address

C4.50.0.0/12 A 1100.0100.0101

C4.5E.10.0/20 B 1100.0100.0101.1110.0001

C4.60.0.0/12 C 1100.0100.0110

C4.68.0.0/14 D 1100.0100.0110.10

80.0.0.0/1 E 1

40.0.0.0/2 F 01

00.0.0.0/2 G 00

The following are the binary versions of given addresses.
We choose the address with longest match in the addresses
of routing table.

Binary Address Next Hop No. of Bits Match

C4.5E.20.87 = 11000100.01011110.00100000.10000111 => A; 12

C4.5E.1A.09 = 11000100.01011110.00011010.00001001 => B; 20

C3.41.80.02 = 11000011.01000001.10000000.00000010 => E; 1

C4.6D.31.2A = 11000100.01101101.00110001.00101010 => C; 12

C4.6B.31.2B = 11000100.01101011.00110001.00101011 => D; 14

n Example An organisation has a class C network
196.10.10 and wants to form subnets for five departments,
which host as follows:

(A) 55 hosts

(B) 50 hosts

(C) 45 hosts

(D) 25 hosts

(E) 20 hosts

There are 195 hosts in all. Design a possible arrange-
ment of subnets to make each department in a different
subnet. For each subnet, give subnet mask and range of IP
addresses.

n Answer: Class C network: 196.10.10 indicates, we can
have at most 254 hosts only in total. Our total, 195 is less
than 254, we can easily achieve the required subnetting. In
principle, we can have many solutions. The following is one
of them.

Department Subnet Mask Subnet ID Range of Address

A: 55 Hosts 255.255.255.192 196.10.10.0 196.10.10.0 – 196.10.10.63

B: 50 Hosts 255.255.255.192 196.10.10.64 196.10.10.64 – 196.10.10.127

C: 45 Hosts 255.255.255.192 196.10.10.128 196.10.10.128 – 196.10.10.191

D: 25 Hosts 255.255.255.224 196.10.10.192 196.10.10.192 – 196.10.10.223

E: 20 Hosts 255.255.255.224 196.10.10.224 196.10.10.224 – 196.10.10.255

Computer Networks 7.73

n Example Which of the following prefixes are contained
in the CIDR prefix 201.10.0.0/21?

a. 201.10.4.0/24
b. 201.10.8.0/23
c. 201.10.24.0/22
d. 201.10.6.0/23

n Answer: Binary code of the given IP address:1100 1001
0000 1010 0000 0000 0000 0000. We will check most sig-
nificant 21 bits of each of given address with the most sig-
nificant 21 bits given CIDR address, 1100 1001 0000 1010
0000 0 as shown here:

(a) 201.10.4.0/24------1100 1001 0000 1010 0000 0100 0000 0000 Matching

(b) 201.10.8.0/23------1100 1001 0000 1010 0000 1000 0000 0000

(c) 201.10.24.0/22---- 1100 1001 0000 1010 0001 1000 0000 0000
(d) 201.10.6.0/23----- 1100 1001 00001010 00000110 0000 0000 Matching

n Example All router activities related to TTL decrement
are always handled in the fast path of the router (i.e., in
special purpose silicon chips on the input ports) and the
slow path of the router (i.e. the router processor) is never
involved.

n Answer: No. When TTL goes to zero, CPU must generate
ICMP error.

n Example Does copies of router forwarding table are
kept at all input ports?

n Answer: Yes. This enables fast distributed look-ups
and prevents route processor from becoming a central
bottleneck.

n Example Does IP address lookup in a router takes
fewer clock cycles than Ethernet MAC address lookup in
a switch (assume that the lookup tables have the same total
number of entries).

n Answer: True. For the same length tables, IP address
lookup will take lesser time since IP addresses are hierar-
chical. This is despite the fact that IP lookup needs longest
prefix match, masking etc. Also, the fact that Ethernet ad-
dresses are long and require an exact match makes Ethernet
address lookup cumbersome.

n Example Explain about multihomed hosts? Explain
above routing in them.

n Answer: If a host is attached to multiple subnets it is
called as multihomed. Typically end-user machines are not
multihomed. However servers are multihomed for the fol-
lowing reasons:

• The ability to connect the server to as many different
client subnets as possible

• The ability to provide redundant connectivity. The
server will still be able to maintain connectivity with
the rest of the network even when one of its inter-
faces fails.

Note that a multihomed server will not typically forward
traffic among its interfaces. It must participate in routing
in order to be able to forward traffic among its interfaces.
The standard IP Forwarding procedure is used with minor
changes. We will understand this with a simple example.

At initialisation time, the server will apply the bitwise
logical AND operation to each of its interfaces. It will store
the subnet prefix and the mask of each of its interfaces. For
example.
interface E1: 172.21.11.199/25 (mask: 255.255.255.128 in
the dotted-decimal notation)
interface E2: 172.21.11.62/26 (mask: 255.255.255.192 in the
dotted-decimal notation)
interface E3: 172.21.13.3/23 (mask: 255.255.254.0 in the
dotted-decimal notation)
Default Gateway: 172.21.11.129

interface E1:

1 0 1 0 1 1 0 0. 0 0 0 1 0 1 0 1. 0 0 0 0 1 0 1 1. 1 1 0 0 0 1 1 1 172.21.11.199

1 1 1 1 1 1 1 1. 1 1 1 1 1 1 1 1. 1 1 1 1 1 1 1 1. 1 0 0 0 0 0 0 0 255.255.255.128

1 0 1 0 1 1 0 0. 0 0 0 1 0 1 0 1. 0 0 0 0 1 0 1 1. 1 0 0 0 0 0 0 0 172.21.11.128

The subnet prefix of interface E1 is: 172.21.11.128

interface E2:

1 0 1 0 1 1 0 0. 0 0 0 1 0 1 0 1. 0 0 0 0 1 0 1 1. 0 0 1 1 1 1 1 0 172.21.11.62

1 1 1 1 1 1 1 1. 1 1 1 1 1 1 1 1. 1 1 1 1 1 1 1 1. 1 1 0 0 0 0 0 0 255.255.255.192

1 0 1 0 1 1 0 0. 0 0 0 1 0 1 0 1. 0 0 0 0 1 0 1 1. 0 0 0 0 0 0 0 0 172.21.11.0

The subnet prefix of interface E2 is: 172.21.11.0

interface E3:

1 0 1 0 1 1 0 0. 0 0 0 1 0 1 0 1. 0 0 0 0 1 1 0 1. 0 0 0 0 0 0 1 1 172.21.13.3

1 1 1 1 1 1 1 1. 1 1 1 1 1 1 1 1. 1 1 1 1 1 1 1 0. 0 0 0 0 0 0 0 0 255.255.254.0

1 0 1 0 1 1 0 0. 0 0 0 1 0 1 0 1. 0 0 0 0 1 1 0 0. 0 0 0 0 0 0 0 0 172.21.12.0

The subnet prefix of interface E3 is: 172.21.12.0

7.74 Computer Science & Information Technology for GATE

Packet Forwarding Changes:

The server must still determine which outgoing interface
to use when it has a packet to forward. When sending the
packet, the server will put the IP address of the interface
over which the packet will be forwarded in the source ad-
dress of the IP packet.

• If the destination address of the IP packet to be
forwarded is within the subnet prefix of inter-
face E1 (172.21.11.128/25, i.e., address range from
172.21.11.128 to 172.21.11.255), then the packet is
sent from interface E1. When sending the packet,
the server puts interface E1 IP address in the source
address field.

• If the destination address of the IP packet to be for-
warded is within the subnet prefix of interface E2
(172.21.11.0/26, i.e., address range from 172.21.11.0
to 172.21.11.63), then the packet is sent from inter-
face E2. When sending the packet, the server puts
interface E2 IP address in the source address field.

• If the destination address of the IP packet to be for-
warded is within the subnet prefix of interface E3
(172.21.12/23, i.e., address range from 172.21.12.0 to
172.21.13.255), then the packet is sent from interface
E3. When sending the packet, the server puts inter-
face E3 IP address in the source address field.

• If the destination address of the IP packet to be for-
warded is not within the subnet prefix of one of its
interfaces: E1, E2 or E3, the packet is sent to the de-
fault gateway. Again the server has only a single de-
fault gateway, which has an IP address assigned to
it from the interface E1 subnet. When sending the
packet, the server puts interface E1 IP address in the
source address field.

n Example A company has a network as shown in figure

128.96.34.130

128.96.34.140

H1 R1

128.96.34.240

128.96.34.240 128.96.34.240

H2

R2

128.96.33.1

H3

128.96.33.14

The hosts H1, H2, H3 has the subnet masks 255.255.255.192,
255.255.255.192, and 255.255.255.0 respectively.

a. What network class does this network belong to?
What is network id of this network?

b. How many subnets does this network have? What are
subnet Ids?

c. H1 has a routing table. Fill in the entries of routing
table as follows:

Subnet Number Subnet Mask Next hop (router)

Interface 0

R1

R1

(d) R1 has a routing table. Fill in the entries of routing
table as follows:

Subnet Number Subnet Mask Next hop (router)

Interface 0

Interface 1

R2

n Answer:

(a) 1. Class B because the first two bits of 128.96.34.240
are “10”

2. Network id is 128.96.

(b)

1. 3 subnets

3. Subnet Ids are 128.96.34.128 (H1), 128.96.34.192
(H2), 128.96.33.0 (H3)

(c)

Subnet Number Subnet Mask Next hop (router)

128.96.34.128 255.255.255.192 Interface 0

128.96.34.192 255.255.255.192 R1

128.96.33 255.255.255. R1

(d)

Subnet Number Subnet Mask Next hop (router)

128.96.34.128 255.255.255.192 Interface 0

128.96.34.192 255.255.255.192 Interface 1

128.96.33.0 255.255.255.0 R2

n Example What is the network prefix of an IP address
128.130.4.150/22?

n Answer: The network prefix is 128.130.0.0/22

n Example What is an IP address prefix? How many IP
addresses will match the address prefix 10.0.0.0/23? How
many IP addresses will match the address prefix 0.0.0.0./0?

n Answer: An IP address prefix is used to specify a range
of IP addresses who have the same prefix bits of a certain
length.

29 = 512 IP adddresses match the prefix 10.0.0.0/23.
All IP addresses, i.e. 232 addresses, match the prefix

0.0.0.0/0.

Computer Networks 7.75

n Example The host Mint and Basil are connected by
a router R as shown in the following figure. R has turned
on the proxy ARP. The figure also shows the IP addresses
and the Ethernet addresses of Mint, Basil, and the router
R. Mint and Basil have R configured as their default router.
Answer the following questions.

224.20.3.79/24

Mint

MAC_mint
eth0 eth0

224.20.3.1/24

MAC_eth1
MAC_eth2

224.20.0.1/16
MAC_basil

224.20.152.36/16

Basil

Ethernet 1 Ethernet 2

R

a. Suppose the ARP caches on both PCs and the router are
empty. A command “ping-c 1 224.20.152.36” is issued at
Mint. Is Mint going to send an ARP request? If yes, what is the
source and destination Ethernet address of the ARP request?
What is the content of the ARP request? For all questions
asking the content of an ARP message, specify the source
hardware address, source protocol address, target hardware
address, and target protocol address of the ARP message.

n Answer: Yes, Mint will send an ARP request.
The source Ethernet address of the ARP requst is MAC

mint, the destination Ethernet address is ff.ff.ff.ff.ff.ff
The source hardware address of the ARP request is MAC

mint, the destination hardware address is 00.00.00.00.00.00,
The source target address is 224.20.3.79,
The destination target address is 224.20.3.1.

b. Who will send an ARP reply to Mint? What is the source
and destination Ethernet address of the ARP reply? What is
the content of the ARP reply?

n Answer: Router R will send an ARP reply to Mint.
The source hardware address of the ARP reply is MAC

eth1, the destination hardware address is MAC mint, the
source target address is 224.20.3.1, the destination target
address is 224.20.3.79.

c. After Mint receives the ARP reply, what is the content of
Mint’s ARP cache? What is the content of R’s ARP cache?

n Answer: Mint’s ARP cache is: 224.20.3.1 is at MAC eth1;

R’s ARP cache is: 224.20.3.79 is at MAC mint;

d. After Mint receives the ARP reply, it sends the ping mes-
sage. What type of message does ping send?

n Answer: It sends an ICMP echo request message

e. On Ethernet 1, what are the source and destination Eth-
ernet address of the ping message? What are the source and
destination IP address of the ping message?

n Answer: Source Ethernet address: MAC mint;
destination Ethernet address: MAC eth1;

source IP address: 224.20.3.79;
destination IP address: 224.20.152.36.

f. When the router R receives the ping message, how does
it decide via which interface to forward the ping message?

n Answer: R looks up its routing table and uses the longest
prefix match to forward the ping packet to the destination
through interface MAC eth2.

g. Is R going to send an ARP request? If so, what’s the con-
tent of the ARP request?

n Answer: Yes, R will send an ARP request.
The source hardware address of the ARP request is MAC

eth2; the destination hardware address is 00.00.00.00.00.00;
the source protocol address is 224.20.0.1; the destination
protocol address is 224.20.152.36.

h. What are the source and destination Ethernet address of
the ping message on Ethernet 2?

n Answer: The source Ethernet address: MAC eth2; the
destination Ethernet address: MAC basil.

i. When Basil receives the ping message, it will send a reply.
Is Basil going to send an ARP request? If so, what is the
content of the ARP request?

n Answer: Yes, Basil will send an ARP request.
The source hardware address of the ARP request is MAC
basil;
the destination hardware address is 00.00.00.00.00.00;
the source protocol address is 224.20.152.36;
the destination protocol address is 224.20.3.79.

j. Who is going to reply to the ARP request? What’s the
content of the ARP reply? Note proxy-arp is turned on at R.

n Answer: The router R is going to reply to the ARP request.
The source hardware address of the ARP reply is MAC eth2;
the destination hardware address is MAC basil;
the source protocol address is 224.20.3.79;
the destination protocol address is 224.20.152.36.

k. A second command “ping -c 2 224.20.152.36” is issued
right after the first one terminates. Is Mint going to send an
ARP request this time? Explain why?

n Answer: No, Mint will not send an ARP request this time,
because it already has in its ARP cache the Ethernet address
of the router R’s interface with the IP address 224.20.3.1.

n Example Ali works in a company whose network topol-
ogy is shown in the following figure. The company’s net-
work has three LANs. Router 2 is the border router of the
company that connects directly to an ISP. Ali has to config-
ure the network.
a. LAN0 has at most 200 hosts; LAN1 and LAN2 each has
at most 100 hosts. Ali needs to obtain a block of addresses
from ARIN so that she can assign IP addresses to hosts. A
block of addresses are succinctly represented by an address
prefix address/n, where n is the number of prefix bits all

7.76 Computer Science & Information Technology for GATE

addresses in the block share in common. What is the length
of the longest address prefix Ali needs?

n Answer: 23
Since the network has 200 + 100 + 100 = 400 hosts, it re-
quires at least 9 bits to denote host ID, which can represent
29 = 512 hosts. Therefore, the length of the longest address
prefix Ali needs is 32 – 9 = 23.

b. Suppose Ali has obtained the longest address prefix.
Next, Ali needs to assign addresses to hosts. Specify the
maximum length of the network prefix of each LAN.

n Answer: The maximum length of the network prefix of
LAN0 is 24; the maximum length of the network prefix of
both LAN1 and LAN2 is 25.

PC2

PC1
LAN 2

eth2

eth0 eth1

eth0

Router1

Router2
eth0 18.26.0.1

LAN0 LAN1

PC0

224.0.0.1

224.0.0.2

Router3

ISP

c. Suppose Ali has assigned the longest possible network
prefix to each LAN. She then assigns IP addresses to hosts
and routers on each LAN. As shown in the figure, the IP
address she assigns to the eth0 interface of Router 2 is
18.26.0.1. What is the network prefix Ali assigns to LAN0?

n Answer: 18.26.0.1/24.

d. What is the address prefix Ali obtains from ARIN?

n Answer: 18.26.0.0/23.

e. Assign network prefixes to LAN1 and LAN2, and as-
sign IP addresses and network masks to the three interfaces
of Router 1, PC0, PC1 and PC2. Your assignment must be
consistent with what is already assigned to Router 2.

n Answer:

Network prefix of LAN1: 18.26.1.0/25
Network prefix of LAN2: 18.26.1.128/25;

Interface IP Address Netmask

Router1 - eth0 18.26.0.2 225.225.255.0

-eth1 18.26.1.1 255.255.255.128

-eth2 18.26.1.129 255.255.255.128

PC0 - eth0 18.26.0.3 255.255.255.0

PC1 - eth0 18.26.1.2 255.255.255.128

PC2 - eth0 18.26.1.130 255.255.255.128

n Example What is route aggregation?

n Answer For a group of subnets, one interface is se-
lected at the router for forwarding packets. This is called
as route aggregation. Route aggregation, if not configured
properly, may result in routing loops.

To avoid looping, we usually configure a static route
pointing to the aggregate route, with destination a Null
interface on the Router. Any packet going to the Null in-
terface is discarded. The Null interface acts as a Pit Bucket.
So a packet with destination within an address prefix in the
aggregate that does not have a route, will be routed using
the static route to the Null interface.

n Example A certain router B in a network receives the
following link state updates from other nodes in the same
network. Show the network topology, with nodes, edges
and link costs, as constructed by B after it receives the
above link state packets.

Update from Sequence# Neighbour/cost

C 5 B/8, A/4

A 20 B/2, C/4, G/10

C 10 B/10, A/4

F 50 B/1, G/6

G 100 F/6, A/10

n Answer From the given information, we find that for
station C, we consider most recent sequence number re-
lated delay. That is, 10 as the delay to C from B. Similarly,
for B to A as 4. In the case of F, delay is 1(from link state
information from F with sequence number 50). Like this,
station B updates its details as shown below.

C F

A G

B

4 2 6

10

110

Suppose that the A—B link goes down. Say, A and B
quickly re-compute shortest paths to other network nodes,
but their link state updates are yet to reach their neigh-
bours. Is there a possibility of packets looping in the net-
work? Why?

Computer Networks 7.77

n Answer: Yes. There is a possibility of looping. After A and
B do the re-computation, the shortest A—B path is through
C, but C still thinks that the shortest C—B path is through
A. So packet will be transiently stuck in an A—C—A…
loop.

n Example Consider a LAN with a maximum distance of
2 km. At what bandwidth would propagation delay (at a
speed of 2 x 108 m/s) equal transmit delay (insertion delay)
for 512 byte packets? What about 2000 byte packets?

n Answer: Case (a): Packet Size = 512 bytes

Maximum Distance = 2 km

Speed of Light = 2 x 108 m/s

Propagation = Distance / Speed of Light

= 2000 m / 2 x 108 m/s

Transmit = Size / Bandwidth

= 512 x 8 bits / Bandwidth

Equating both,

Distance / Speed of Light = Size / Bandwidth

Bandwidth = Size x Speed of Light / Distance

= (512 x 8) bits x 2 x 108 m/s / 2000 m

= 409.6 Mbits/sec=409.6Mbps

Case (b): Packet Size = 2000 bytes

Bandwidth = Size x Speed of Light / Distance

= (2000 x 8) bits x 2 x 108 m/s / 2000 m

= 1600 Mbits/sec=1600Mbps

n Example Suppose a 100-Mbps point-to-point link is
being set up between the earth a new lunar colony. The dis-
tant from the moon to the earth is approximately 385,000
km, and data travels over the link at the speed of light – 3
x 108 m/s.

n Answer:

(a) Calculate the minimum RTT for the link
Minimum RTT = 2 x Propagation
Propagation = Distance / Speed of Light

= 2 x 385000 km / 3 x 108 m/s = 2.57 sec
(b) Using the RTT as the delay, calculate the delay x band-
width product for the link.

n Answer: Delay x Bandwidth = 2.57 sec x 100 Mbits/sec

= 32MB
(c) What is the significance of the delay x bandwidth prod-
uct computed in (b)?

n Answer: This represents the amount of data the sender
can send before it would be possible to receive a response.

(d) A camera on the lunar base takes pictures of the earth
and saves them in digital format to disk. Suppose Mission
Control on earth wishes to download the most current im-
ages, which is 30MB. What is the minimum amount of time
that will elapse between the request for the data goes out
and the transfer is finished?

n Answer: We require at least one RTT before the picture
could begin arriving at the ground (TCP would take two
RTTs). Assuming bandwidth delay only, it would then take
= 30MB/100Mbps = 2.4 sec to finish sending,

Thus, for a total time of 2.4 + 2.57 = 4.97 sec until the last
picture bit arrives on earth.

n Example Hosts A and B are connected to a switch (S)
via 10-Mbps separate links(A----S----B). The propagation
delay on each link is 40μs. S is a store-and-forward device;
it begins retransmitting a received packet 20μs after it has
finished received it. Calculate the total time required to
transmit 10,000 bits from A to B

(a) as a single packet

(b) as two 5,000-bit packets sent one right after the other.

n Answer: Case (a): as a single packet

Per link Transmit Delay = Size / Bandwidth
=104 bits / 10 x 106 bits/sec
= 1000 μs

Total Transmission Time = (2 x 1000 + 2 x 40 + 20) μs =
(2000 + 80 + 20) μs = 2100 μs

Case (b): as two 5,000-bit packets sent one right after the

other

Transmit delay for 5000bit packet = 5000 bits/ 10 x 106 bits/
sec = 500μs

When sending as two packets, here is the possible se-
quence of events in accordance with time.
T=0 start

T=500μs A finishes sending packet 1, starts packet 2

T=540μs packet 1 finishes arriving at S

T=560μs packet 1 departs for B

T=1000μs A finishes sending packet 2

T=1060μs packet 2 departs for B

T=1100μs bit 1 of packet 2 arrives at B

T=1600μs last bit of packet 2 arrives at B
Total Transmit time = (3 x 500 + 2 x 40 + 1 x 20) μs

= (1500 + 80 + 20) μs = 1600 μs

n Example A bit string, 0111101111101111110, needs to
be transmitted at the data link layer. What is the string actu-
ally transmitted after bit stuffing?

n Answer:

01111011111 0 011111 0 10

(data) (Inserted 0) (data) (Inserted 0) (data)

When five consecutive 1s have been transmitted from
the body of the message, the sender inserts a 0 (as shown
above) before transmitting the next bit.

n Example Draw a timeline diagram (up to frame 7) that
for the sliding window algorithm with SWS=4 frames and
RWS=3 frames, when the third frame (frame 2) is lost. The

7.78 Computer Science & Information Technology for GATE

receiver use cumulative ACKs. Use a timeout interval of
about 2 x RTT. Assuming that the transmit time (insertion
delay) of a frame is equal to 0.25 RTT and the frames can
be processed instantaneously if they arrive in order. On
each data frame and ACK frame, you need to indicate the
sequence number (start from 0). In addition, you need to
indicate what action is taken by the receiver when it is re-
ceived, for example, processed, buffered, and discarded.

n Answer:

1 RTT

Timeout
for

Frame 2

Processed

Processed

Buffered

Buffered

Discarded

Frame 1

Frame 0

Frame 2
Frame 3

Frame 4

Frame 5

X

Frame 2

Frame 4

Frame 5

ACK 5

ACK 0

ACK 1

7.7 Objective Questions

1. What is the one service/guarantee that UDP provides
to application layer protocols?

A. Error detection

B. Security

C. Connection oriented service

D Piggybacking

2. Packetisation of messages

A. Is an encryption mechanism that enforces net-
work security

B. Helps prevent a single sender from monopoliz-
ing a shared communication link for an arbirtary
amount of time

C. Is an algorithm for data encoding in the physical
layer

3. The traditional phone network is

A. Circuit switched

B. Datagram packet switched

C. Neither of the above

4. The layered network architecture

A. Refers to a type of network hardware

B. Defines an interconnection topology of multiple
communication networks

C. Is a way of creating multiple levels of communi-
cation abstractions

5. The Internet is large and heterogeneous. However, it
has a few invariables that define its architecture, such
as

A. The used hardware platform

B. The used addressing scheme

C. The used physical layer protocol

6. Circuit switching has the advantage of

A. Requiring a signalling phase

B. Very efficient allocation of shared resources

C. Offering guaranteed connection bandwidth if
needed

7. “Store and forward” most commonly refers to

A. A congestion control algorithm

B. A way of handling packets at network nodes

C. A signalling protocol in virtual circuit packet
switched networks

8. In network terminology, ATM most generally refers to

A. A type of network adaptor

B. A set of standards that define a network architecture

C. A physical communication medium

9. The Internet is predominantly

A. Circuit switched

B. Datagram packet switched

C. Neither of the above

10. Which of the following is generally NOT a function of
the network layer?

A. Forwarding messages from source to destination

B. Interpretting destination addresses for routing
purposes

C. Ensuring that every packet is received reliably

11. What option below about “Store-and-Forward” tech-
nology is correct?

A. The host(s) is used to store and forward the packets

B. There is a dedicated path maintained in a net-
work for this purpose

C. It is mainly used in a packed switching network

D. It is mainly used in a circuit switching network

E. The major reason to use this technique is for net-
work security.

12. Which of the following issues about STDM and FDM
are true?

Computer Networks 7.79

A. Both are the techniques used for network routing
purposes

B. The max number of network flow is adjustable
and resizable

C. The data flow for these two techniques are subject
to under utilization

D. STDM is used for circuit switching and FDM is
used in VC networking

E. STDM and FDM’s data flow is transferring on de-
mand.

13. Which option below about digital encoding could be
a potential problem?

A. Encode makes 0 as low signal and 1 as high signal

B. Encode is to modulate electromagnetic waves

C. Signals propagate over a physical medium

D. Low signal (0) may be interpreted as no signal

E. There could be alternative encoding methods

14. Which option below about representing network as
graph is wrong?

A. Nodes are part of the components of the graph

B. Node costs is used to represent values related to
physical distance, capacity, delay, etc

C. Routers is used to support the protocols and algo-
rithm in the dynamic approach

D. The assumption of edge cost in dynamic ap-
proach is known.

E. The distance vector algorithm maintaining the
next hop value for every destination.

15. Which of the following option about ATM is wrong?

A. ATM is a connection-oriented packet-switched
network

B. The Cells in ATM network are variable length

C. ATM used in both WAN and LAN settings

D. Different ATM AAL (ATM Adaptation Layer)
provides different services for network applications

E. Segmentation and Reassembly (SAR) are neces-
sary processes in ATM

16. Which one below about limitation of a Learning
Bridge is wrong?

A. Learning Bridge uses Spanning Tree Algorithm
to remove loops

B. There is limited scalability capability for Learning
Bridge

C. There could be a transparency problem for Learn-
ing Bridge

D. Learning Bridge use VLAN to support scalability

E. It is easy for different types of network structures
can be interconnected using Learning Bridge.

17. Which one below about Datagram Switching Net-
work is wrong?

A. Connection setup phase is needed

B. Every packet contains the complete destination
address

C. This is sometimes called connectionless model

D. Each Switch maintains a routing table for packets

E. Source host has no way of knowing if the network
is capable of delivering a packet or if the destina-
tion host is even up

18. Which one below about VC (Virtual Circuit) Net-
work is wrong?

A. Typically wait full RTT for connection setup be-
fore sending first data packet.

B. If a switch or a link in a connection fails, the
connection is broken and a new one needs to be
established.

C. Each data packet contains only a small identifier

D. Include only Outgoing Interface for packets
transfer

E. It contains connection setup and data transfer
phases

19. Which one below about Network Channels is wrong?

A. Request/reply (client/server) channel used by the
file transfer and digital library application

B. Message Stream channel could be used by both
video-on-demand and videoconferencing appli-
cations

C. Request/reply (client/server) channel has no need
to guarantee all messages are delivered

D. Message Stream channel support both one or
two-way traffic and delay properties

E. Message Stream channel needs to ensure that
messages are delivered arrives in the same order
in which they were sent.

20. Which one below is NOT a network function?

A. Provide Connectivity

B. Addressing

C. Resource Sharing

D. Switching and Data Forwarding

E. Server Application Supports

21. Four hosts (H1, H2, H3 and H4) are connected to
one hub. H1’s IP address is 192.168.7.33/24; H2’s
IP address is 192.168.120.7/16; H3’s IP address is
192.168.7.43/16; H4’s IP address is 192.1.168.7/28.
Mark all pairs that can ping each other.

A. H1-H2 B. H1-H3

C. H1-H4 D. H2-H3

E. H2-H4 F. H3-H4

7.80 Computer Science & Information Technology for GATE

22. A hub that enables us to gather network performance
information is

A. Hub B. Intelligent hub

C. Bridge D. Gracious hub

23. Correct point about spanning tree algorithm is

A. Calculates shortest distance between links

B. Ensure frames are not transmitted in an endless
loop.

C. Forward frames along the most efficient route

D. None

24. __________is used for compressed audio and video
where the data rate depends on the level of compres-
sion that can be achieved.

A. Constant Bit Rate (CBR) service

B. Variable Bit Rate (VBR) service

C. Available Bit Rate (ABR) service

D. None of the given

25. A form of addressing; in which a set of computers is
assigned one address.

A. Broadcast B. Multicast

C. Packet Switch D. CRC

E. Bandwidth

26. _____ Program sends a message to a remote comput-
er and reports whether the computer responds.

A. Ping B. Traceroute

C. ICMP D. None of the above

27. A Bridge can

A. Filter a frame B. Forward a frame

C. Extend a LAN D. Do all the above

28. A network with throughput T and delay D has a total
of ________ bit in transit at any time.

A. T / D B. T x D

C. T + D D. None of the given

29. ___________ is used for audio and video, since these
have predefined maximum data rates.

A. Constant Bit Rate (CBR) service

B. Variable Bit Rate (VBR) service

C. Available Bit Rate (ABR) service

D. None of the given

30. Most NICs contain _______________ circuitry that
allows the NIC to operate independent of the CPU.

A. DMA(Direct Memory Access)

B. Multiplexer

C. Transceiver

D. None of the given

31. If the ASCII character G is sent and the character D is
received, what type of error is this?

A. Single-bit B. Multiple-bit

C. Burst D. Recoverable

32. Computers attached to an ether use ____ in which a
computer waits for the ether to be idle before trans-
mitting a frame.

A. CSMA/CD B. CSMA/CA

C. TOKEN PASSING D. None of the given

33. The maximum size of an Ethernet segment is________

A. 250 meters B. 500 meters

C. 700 meters D. None of the given

34. In Direct point to point communication adding the
Nth computer requires___________ new connections.

A. N2 B. N-1

C. (N2 –N)/2 C. None of the given

35. The number of connections needed for N computer in
direct point to point communication is equal to

A. (N2-N)/2 B. N (N-1)

C. N2 D. None of the given

36. Hardware that calculates a CRC uses two simple com-
ponents.

A. AND unit and XOR unit

B. Shift register and XOR unit

C. Shift register and AND unit

D. None of the given

37. One repeater _______two repeaters ________ the
maximum cable length limitation.

A. Doubles, cancel

B. Doubles, triple

C. Square roots, cude roots

D. And, triple

38. A Bridge forwards or filters a frame by comparing the
information in its address table to the frame’s

A. Layer 2 source address

B. Source node’s physical address

C. Layer 2 destination address

D. Layer 3 destination address

39. ATM assigns each VC a _____________ identifier
that is divided two parts to produce a hierarchy.

A. 21-bit B. 22-bit

C. 23-bit D. 24-bit

40. Basic LAN technologies such as Ethernet, Token
Ring, and FDDI use a

A. Connectionless service paradigm

B. Connection-oriented service paradigm

C. Both Connectionless and Connection-oriented
service paradigm

D. None of the given

Computer Networks 7.81

41. The operation of subnet is controlled by

A. Network Layer B. Data Link Layer

C. Data Layer D. Transport Layer

42. Multiplexing and Demultiplexing of Network con-
nections is by ________Layer.

A. Network Layer B. Data Layer

C. Data Link Layer D. Transport Layer

43. In a network with 25 computers, which topology
would require the most extensive cabling.

A. Bus B. Mesh

C. Star D. Tree

44. A cable break in a ________________ topology stops
all transmissions.

A. Bus B. Mesh

C. Star D. Primary

45. Which topology requires a central controller or hub?

A. Mesh B. Star

C. Bus D. Ring

46. Which topology requires a multipoint connection?

A. Mesh B. Star

C. Bus D. Ring

47. In ____________ transmission, the channel capacity
is shared by both communicating devices at all times.

A. Simplex B. Half-duplex

C. Full-duplex D. Automatic

48. A configuration of N LANs is linearly connected by 4
bridges. By the time we reach the Nth LAN how many
discovery frames will be circulating?

A. N4 B. 4

C. 4N D. N

49. In ___________ all frames are given to the computer,
not to those addressed.

A. Promiscuous mode B. Miscues mode

C. Normal mode D. Special Mode

50. In transparent bridges the failures are handled
by________.

A. Host B. Bridge

C. Network layer D. Router

51. ___________bridge operates in promiscuous mode.

A. Transparent bridge B. Selective flooding

C. Source routing D. Remote bridges

52. Source routing bridges in the same LANs must have
____________ bridge number.

A. Same B. Different

C. Source D. Destination

53. Which type of switching uses the entire capacity of a
dedicated link?

A. Circuit switching

B. Datagram packet switching

C. Virtual circuit packet switching

D. Message switching

54. The channel efficiency of bit-map protocol at low load
is __________.

A. d/(N+d)

B. d/(d+1)

C. d/(d+log2N)

D. N/(d+log2d)

55. The channel efficiency of bit-map protocol at high
load is _________.

A. d/(N+d) B. d/(d+1)

C. d/(d+log2N) D. N/(d+log2d)

56. The channel efficiency of binary-countdown protocol
is ___________.

A. d/(N+d) B. d/(d+1)

C. d/(d+log2N) D. N/(d+log2d)

57. The first collision free protocol is ___________.

A. Binary countdown B. Basic bitmap

C. Reservation protocol D. SAP

58. The problem of a station not being able to detect a po-
tential competitor for the medium because it thinks
that there is activity between them is called

A. Exposed Station Problem

B. Collision Avoidance Problem

C. Hidden Station Problem

D. Access Grant Problem

59. You have determined that there is network congestion
caused by the portion of your organisation’s network
that is used by research engineers. What device can
help you reduce the congestion between the research
engineers’ network and the rest of the organisation’s
network?

A. A router B. A bridge

C. A speed filter D. A bandwidth filter

60. Which of the following are protocol stacks?

A. TCP/IP B. 802.3

C. 100BASET D. FTP

E. AppleTalk

61. Traditional LANs eg: Ethernet Bus, Token Ring use

A. Circuit Switching B. Packet Switching

C. Frame Relay D. Packet Broadcast

62. Collision Detection in Baseband Ethernet Bus CSMA/
CD (IEEE 802.3) LANs is based on

A. voltage threshold, voltage on (passive) bus ex-
ceeds a certain level

7.82 Computer Science & Information Technology for GATE

B. Different frequencies, as in case of human com-
munication in a group

C. CD stands for Code Division (multiplexing)
hence no collision detection

D. Logic using active circuits, than amplitude (volt-
age), as in Star Networks.

63. In LAN terminology, 10 Base 5 signifies

A. Ethernet Bus 10 metre long, digital, 5Mbps

B. Ethernet Bus 10 Mbps, digital, 500 metre

C. Token Bus 10 Mbps, digital, 500 metre

D. Ethernet or Token Bus, 10 Mbps, digital,
500 metre

64. Wavelength Division Multiplexing (WDM) optical
networks is based on

A. Asynchronous Time Division Multiplexing, fixed
time slots, anyone can transmit

B. Synchronous Time Division Multiplexing, fixed
time slots, all slots reserved

C. Space Division Multiplexing—Each physical link
carries only one wavelength

D. Same principle as frequency division multiplex-
ing different colours on same link

65. CRC(cyclic redundancy check) is good for serial lines

A. For byte oriented transmissions only (each char-
acter has start stop, parity bits)

B. For checksum purposes, it is checksum of the in-
formation eg: WDRL $50

C. For bit serial transmissions only

D. For Quadrature Phase Shift Keying (QPSK) ana-
log transmission, using polynomials

66. A carrier with the frequency of 1200 khz carries mod-
ulating sine wave of 100 khz. The resultant spectrum of
AM SSB (upper sideband) with transmitted carrier is

A. 1100 khz, 1200 khz, 1300 khz

B. 1100 khz, 1200 khz

C. 1300 khz

D. 1200 khz, 1300 khz

67. LRC (Longitudinal Redundancy Check) is good

A. For byte oriented transmissions only (each char-
acter has start stop, parity bits)

B. For checksum purposes, it is checksum of the in-
formation

C. For bit serial transmissions only

D. For parallel lines

68. In LAN terminology, 10 Base 5 signifies

A. Ethernet Bus 10 metres long, digital, 5Mbps

B. Token Bus, 10 Mbps, digital, 500 metres

C. Ethernet Bus 10 Mbps, analog, 500 metres

D. Ethernet Bus 10 Mbps, digital, 500 metres

69. A Token Ring LAN uses the following type of encoding

A. Differential Manchester

B. Manchester

C. NRZ-I

D. Bipolar-AMI

70. In regards to Statistical Time Division Multiplexing,
which statement is true?

A. Multiple signals may be transmitted simultane-
ously

B. Time slots may be wasted when a particular
source has nothing to send

C. Additional addressing information is included in
each time slot

D. Time slots are divided equally amongst users/
sources

71. Identify the class of the following IP address 5.5.6.7

A. CLASS A B. CLASS B

C. CLASS C D. CLASS D

72. Identify the class of the following IP address 229.1.2.3.

A. CLASS A B. CLASS B

C. CLASS C D. CLASS D

73. Identify the following IP address 169.5.0.0.

A. Host IP address

B. Direct broadcast address

C. Limited broadcast address

D. Network address

74. Identify the following IP address 160.5.255.255.

A. Host IP address

B. Direct broadcast address

C. Limited broadcast address

D. Network address

75. A device has two IP addresses. This device can be

A. A computer B. A router

C. A gateway D. All

76. A device has two IP addresses. One address is
192.123.46.219. The other address can be

A. 192.123.46.220 B. 192.123.46.0

C. 192.123.47.219 D. None

77. A private network with 300 computers wants to use a
netid. What is a good choice?

A. 10.0.0 B. 172.16

C. 192.68.0 D. None

78. IP address is

A. 32 bits B. 48 bits

C. 16 bits D. None

Computer Networks 7.83

79. Socket is

A. 16 bits B. 32 bits

C. 48 bits D. None

80. Why are packets divided?

A. To take care of noise

B. For not to monopolize channel

C. To manage with less buffer overheads

D. All

81. In a 3-bit sequence number field (eg: I frame -Ns, Nr,
2^3 =8; S = W +1), the size of the _transmit_ window
in Go-Back-N protocol is

A. 3 B. 8

C. 7 D. 1

82. 10 Base 2 means:

A. Ethernet BUs(CSMA/CD) 10 metres, digital, 2
Mbps

B. Token Ring 10 Mbps, digital, 200 metres (actually
185m)

C. Ethernet Bus or Token Bus:10 Mbps, digital, 200
metres (actually 185m)

D. Ethernet Bus (only) 10 Mbps, digital, 200 metres
(actually 185m)

83. Digital and Analog signal representations are handled
at the following layer

A. Data Link B. Physical

C. Network D. Applications

84. Layer dynamically monitors traffic situation, and in-
creases/decreases end-end credits (admittance con-
trol, number of packets into network)

A. Transport B. (Intra-)Network

C. Inter-network D. Data Link

85. Layer’s role is dialogue management-usually half du-
plex, your turn etc., synchronisation, error recovery

A. Transport B. Session

C. Presentation D. Application

86. The physical layer is concerned with the transmission
of ___ over physical medium.

A. Programs B. Dialogs

C. Protocols D. Bits

87. As a data packet moves from the lower to the upper
layers, headers are ____.

A. Added B. Subtracted

C. Rearranged D. Modified

88. When data is transmitted from device A to B, the
header from A’s layer 5 is read by B’s __ layer.

A. Physical B. Transport

C. Session D. Presentation

89. Which layer functions as a liaison between user sup-
port layers and network support layers?

A. Network layer B. Physical

C. Transport D. Session

90. What is the main function of the transport layer?

A. Node-to-node delivery

B. Process-to-process message delivery

C. Synchronisation

D. Updating routing tables

91. Session layer check points

A. Allow just a portion of a file to be resent.

B. Detect and recover errors.

C. Control the addition of headers.

D Are involved in dialog control.

92. Which of the following are application layer service?

A. Network virtual terminal

B. File transfer, access and management

C. Mail service

D. All

93. When a host on network A sends a message to a host
on network B which address does the router look at?

A. Port B. IP

C. Physical D. None

94. To deliver a message to the correct application pro-
gram running on a host, the __ address must be speci-
fied?

A. Port B. IP

C. Physical D. Both A & B

95. IPV6 has ___ bit address.

A. 16 B. 32

C. 128 D. Variable

96. ICMPV6 includes

A. IGMP B. ARP

C. RARP C. Both A & B

97. In a noisy environment the best transmission medi-
um is

A. Twisted pair B. Coaxial cable

C. Optica fibre D. The atmosphere

98. What protects the coaxial cable from noise?

A. Inner conductor

B. Diameter of the cable

C. Outer conductor

D. Insulating material

99. The inner core of an optical fiber is ___ in composition.

A. Glass or plastic B. Copper

D. Bimetallic D. Liquid

7.84 Computer Science & Information Technology for GATE

100. Radio communication

A. 3KHz to 300KHz B. 300KHz to 3 GHz

C. 3KHz to 300 GHz D. 3 KHz to 3000 GHZ

101. 10Base2 uses ___ cable while 10Base5 uses

A. Thick coaxial, thin coaxial

B. Twisted pair, thick coaxial

C. Thin coaxial, thick coaxial

D. Fibre optic, thin coaxial

102. ___ specifies a star topology featuring a central hub
and unshielded twisted pair wire as the medium.

A. 10Base5 B. 10Base 2

C. 10BaseT D. None

103. The __ houses the switches in token ring.

A. NIC B. MAU

C. 9-pin connector D. Transreceiver

104. A station in a token ring

A. Examines destination address

B. Regeneration of the frame

C. Passes the frame to next station

D. All

105. FDDI is more efficient than a regular ring as

A. No times are needed

B. The node that has the token can send more than
one frame

C. The AC field is eliminated

D. The added priority and reservation option

106. Which is suitable for a dedicated link for best results?

A. Circuit switching

B. Datagram approach to packet switching

C. VC approach for packet switching

D. Message switching

107. In which of the following all the datagrams of a mes-
sage follow the same route?

A. Datagram approach to packet switching

B. VC approach for packet switching

C. Both A & B

D. None

108. X.25 uses ___ for end-to-end transmission.

A. Message switching

B. Circuit switching

C. The datagram approach to packet switching

D. The VC approach to packet switching

109. The physical layer protocol used in X.25 protocol is

A. RS-232 B. X.21

C. DB-15 D. DB-37

110. X.25 requires error checking at ___ layer.

A. Physical B. Data link

C. Network D. Both B & C

111. Frame relay needs error checking at __ layer.

A. Physical B. Data link

C. Network D. None

112. Why is so much error checking is needed in X.25?

A. X.25 uses large bandwidth

B. When X.25 is started medium was very unreli-
able

C. When X.25 is started the switching is very unreli-
able

D. When X.25 is started the multiplexing was not
available

113. In frame relay __ bit in the address filed is set to sig-
nify the last address byte?

A. DE B. EA

C. C/R D. FECN

114. In X.25 Permanent VC address is

A. EA B. FECN/BBCN

C. DE D. DLCI

115. ATM uses

A. Twisted pair B. Coaxial cable

C. Fibre D. Atmosphere

116. As ATM is ____, cells do usually arrive out of order
because the cells follow the same path.

A. Asynchronous B. Synchronous

C. Multiplexed D. A network

E. Connection oriented

117. ___ layer in ATM has 53-byte cells as an end product.

A. Physical

B. ATM

C. Application adaptation

D. Cell transformation

118. Which application adaptation layer type can process a
data stream having a non constant bit rate?

A. AAL1 B. AAL2

C. AAL3/4 D. AAL5

119. ___ support constant bit rate.

A. AAL1 B. AAL2

C. AAL3/4 D. AAL5

120. The end product of the AAL5 SAR is a data packet
that is

A. Variable length B. 48 bytes

C. 44 to 48 bytes D. > 48 bytes

121. ____ field in a cell header in ATM determines wheth-
er the cell can be dropped or not.

Computer Networks 7.85

A. VPI B. VCI

C. CLP D. GFC

122. Find odd one out

A. Bridge B. Transceiver

C. Router D. Repeater

123. Gateway

A. Protocol conversion B. Packet re-sizing

C. Data rate adjustment D. All

124. Gateways function in which OSI layer?

A. Lower 3 B. Upper 3

C All 7 D. None

125. A bridge has access to the ___ address of a station on
the same network.

A. Physical B. Network

C. SAP D. All

126. A packet from an Ethernet requires a ___ before it can
be routed to an FDDI network.

A. Repeater B. Bridge

C. Router D. Gateway

127. Piggybacking

A. Physical layer B. Data link layer

C. Network layer D. Transport layer

128. Find odd-one out

A. Network layer B. Physical

C. Datalink D. Transport

129. Flow control is in

A. Transport B. Datalink

C. Physical D. Application

130. Why framing has to be done at a DLL connected to a
link?

A. Such that no user service monopolizes the link

B. Buffer requirements reduces

C. To have data transfer even on the erroneous
channel with some error rate

D. All

131. Repeaters are

A. SW entities B. HW entities

C. In physical layer D. Both B & C

132. Baud and bit rates of a channel are same if the number
of symbols used are equal to

A. 1 B. 2

B. 4 D. None

133. Find odd one out

A. Data link B. Transport

C. Network C. None

134. Parity bit stuffing is

A. Error detection

B. Error correction

C. Both A & B

D. None

135. Application layer

A. Frame

B. Packet

C. Message

D. None

136. A 10V 2khz user sine signal is modulating a 30V 200
khz carrier sine signal. The resultant fourier spectrum
under a Double Side Band with Transmitted Carrier
(DSBTC) is

A. 10V 2 khz, 40V 200 khz

B. 10V 198 khz, 30V 200 khz, 10V 202 khz

C. 5V 198 khz, (0V) nothing at 200 khz, 5V 202 khz

D. 5V 198 khz, 30V 200 khz 5V 202 khz

137. The above data (in Q51) under a DSB SC (suppressed
Carrier) is

A. 10V 2 khz, 40V 200 khz

B. 10V 198 khz, 30V 200 khz, 10V 202 khz

C. 5V 198 khz, (0V) nothing at 200 khz, 5V 202 khz

D. 5V 198 khz, 30V 200 khz 5V 202 khz

138. The data in Q51, using Single Sideband (SSB) Trans-
mitted Carrier, Upper Sideband is

A. 5V 198 khz,

B. 5V 198 khz, 30V 200 khz

C. 30V 200 khz, 5V 202 khz

D. 5V 202 khz

139. The data in Q51, using Single Sideband (SSB) Sup-
pressed Carrier, Lower Sideband is

A. 5V 198 khz,

B. 5V 198 khz, 30V 200 khz

C. 30V 200 khz, 5V 202 khz

D. 5V 202 khz

140. Data in Q1 with minor modification (user signal =
cosine):- A 10V 2khz user cosine signal is modulat-
ing a 30V 200 khz carrier sine signal. The resultant
fourier spectrum under a Double Side Band with
Transmitted Carrier (DSBTC) is

A. -5V 198 khz, 30V 200 khz, 5V 202 khz

B. 5V 198 khz, 30V 200 khz, -5V 202 khz

C. -5V 198 khz, 30V 200 khz, -5V 202 khz

D. 5V 198 khz, 30V 200 khz, 5V 202 khz

141. A QPSK 16 levels modem is currently at +90 degrees
2V. The next group of data is 0111 (5V, + 135 degrees).
The output is

7.86 Computer Science & Information Technology for GATE

A. 7V, +225 degrees B. 5V, +225 degrees

C. 5V, +135 degrees D. 7V, +135 degrees

142. The encoding scheme for the bits 00000 under NRZ-L
is

A. Low, 0V

B. A transition at the beginning of interval for each 0

C. High, 5V

D. For each bit 0, alternates between high +5V, and
low -5V, returning to 0V after each bit 0.

143. The encoding scheme for the bits 00000 under NRZ-I,
intially, at high 5V s

A. Low, 0V

B. A transition at the beginning of interval for each 0

C. High, 5V

D. For each bit 0, alternates between high +5V, and
low -5V, returning to 0V after each bit 0.

144. The encoding scheme for the bits 1111 under NRZ-I,
intially, at high 5V is

A. High, high, low, low B. Low, high, low, high

C. Low, low, high, high D. High, low, high, low

145. Manchester encoding is used in disks over NRZ-I or
NRZ-L due to

A. Manchester code has less transitions rate than
NRZ’s

B. Manchester code has transition in the middle for
each 0 or 1, hence this makes it self-clocking

C. Manchester code has transition in the middle for
each 0 or 1, hence this allows collison detection,
on voltage threshold

D. The transitions in Manchester encoding alternate
for 0’s and 1’s hence this makes it suitable for al-
ternating current (AC)

146. Bi-polar AMI signals have

A. More transitions than NRZ-L, NRZ-I, more
power than Manchester

B. Less transitions than NRZ-L, NRZ-I, more power
than Manchester

C. Less transitions than NRZ-L, NRZ-I, less power
than Manchester

D. Least average power, due to each bit 1 alternating
between +5V, -5V (cancellation effect in average
amplitude)

147. Traditional LANs such as Token Ring, Ethernet Bus
use

A. Circuit Switching

B. Packet Switching

C. Radio Frequency (RF) wireless

D. Packet Broadcasting

148. Traditional LANs such as Token Ring (IEEE 802.5),
Ethernet Bus (IEEE 802.3) use

A. NRZ-I

B. Bi-polar AMI

C. Manchester

D. Differential Manchester

149. Ethernet Bus is based on

A. Reservation bus

B. Collision bus--collision detect, random backoff,
LWT

C. Collision avoidance (CA) bus-using tokens

D. Collision avoidance (CA) bus-allocated (fixed)
time slots

150. Collision detection in IEEE 802.3 (CSMA/CD) is
based on

A. Frequency --bus detects 2 different frequencies of
users

B. Clocking -- bus detects clock transitions for 2 sta-
tions

C. Logic -- bus uses logic to detect to detect 2 sta-
tions are active

D. Amplitude--voltage level exceeds a threhold.

151. Coding method in IEEE 802.3 (CSMA/CD) -Ethernet
Bus is based on

A. NRZ-I

B. Bi-polar AMI

C. Manchester

D. Differential Manchester

152. Manchester encoding in IEEE 802.5 Token Ring is
based on

A. Minimum transitions

B. Clocking -- stations are kept in synchronisation
due to self-clock

C. Logic--stations use the self-clocking info to de-
cide who has token

D. Amplitude--each 0 or 1 has a high, hence voltage
threshold can be used for collision detection.

153. WDM is based on

A. Time Division Multiplexing(TDM)

B. Space Division Multiplexing (SDM)

C. Wavelength Division Multiplexing--principle
same as FDM, different colours (optical-easier to
represent as wavelengths, than frequency)

D. Frequency Division Multiplexing (FDM)--in
the Radio Frequency Frequency Modulation eg:
101.1 Mhz range

154. Collision Avoidance is NOT done in

Computer Networks 7.87

A. Ethernet Bus (CSMA/CD) IEEE 802.3

B. Token Ring IEEE 802.5

C. FDDI (optical, dual-ring, one ring normal, other
backup)

D. Token Bus IEEE 802.4

155. Collision Avoidance in a bus topology is used in

A. Ethernet Bus (CSMA/CD) IEEE 802.3

B. Token Ring IEEE 802.5

C. FDDI (optical, dual-ring, one ring normal, other
backup)

D. Token Bus IEEE 802.4

156. LLC/MAC layers in LANs are finer subdivisions at the
following layer

A. Physical B. Data Link

C. Network D. Transport

157. LANs do not have

A. Physical B. Data Link

C. Network D. Transport

158. LLC (Logical Link Layer)

A. is independent of MAC. LLC is same for Ether-
net bus, token ring. LLC is a layer below MAC
and LLC interfaces to PL.

B. is unique to each MAC

C. is grouped for bus, ring, wireless LAN’s. That is,
all bus MAC’s use one type of LLC, all ring MAC’s
use another LLC.

D. is independent of MAC. Same LLC is emploted in
Ethernet bus, token ring.

159. A 16 levels extended QPSK modem uses a 2400 hz
carrier(W) on the telephony network. The bit rate is

A. 20Kbps B. 19.2Kbps

C. 1Mbps D. None

160. A channel uses a 2400 hz carrier. The signal to noise
ratio snr = 30db. The max bit rate

A. 2400 B. 24000

C. 24Mbps D. None

161. A Stop and Wait protocol has the following data:
Frame size (L)= 1000 bits; Transmission Speed (R) =
1 Mps Distance (D) = 10 kms; Velocity of Propagation
(V) = 2*10^8 m/sec. Calculate the utilization of the
link, ignoring effects of ACK, and CPU.

A. 1 B. 0.9

C. 0.5 D. None

162. Calculate the utilisation of the above link(Q86), prob-
ability of error, P=0.2.

A. 0.9 B. 1.0

C. 0.72 D. None

163. Calculate the utilisation of the link in Q86, under a Se-
lective Repeat Protocol, Window, W=7, with no errors.

A. 0.9 B. 1.0

C. 0.72 D. None

164. Calculate the utilisation of the link in Q86, under a
Selective Repeat Protocol, Window, W=7, with prob-
ability of error, P =0.2.

A. 1.0 B. 0.9

C. 0.8 D. None

165. An 8 level extended QPSK modem has a bit rate (C) =
12,000 bps. Calculate the analog signalling frequency.

A. 2000 B. 4000

C. 8000 D. None

166. For the analog frequency in Q90, with signal to noise
ratio snr = 20db. Calculate the theoretical maximum
bit rate.

A. 2000 B. 10000

C. 13400 D. None

167. A Stop and Wait protocol has the following data:
Frame size (L)= 1000 bits; Transmission Speed (R) =
10 Mps ACK frame size (Lack) = 100 bits. Distance
(D) = 100 kms; Velocity of Propagation (V) = 2*10^8
m/sec. Calculate the utilisation of the link, ignoring
effects of CPU.

A. 1.0 B. 0.9

C. 0.09 D. None

168. Calculate the utilisation of the above link(92), prob-
ability of error, P=0.2

A. 1.0 B. 0.09

C. 0.072 D. None

169. Calculate the utilisation of the link in Q92, under a
Selective Repeat Protocol, Window, W=7, with no
errors.

A. 1.0 B. 0.09

C. 0.054 C. 0.072

170. Number of frames sent at a time in ARQ are

A. 1 B. w

C. 3 D. None

171. Time slot width in pure Aloha is

A. One B. Half

C. Frame time D. None

172. Ethernet addresses are

A. 2 bytes B. 6 bytes

C. Both A & B D. None

173. Padding

A. Ethernet B. IEEE 802.5

C. IEEE 802.6 D. None

7.88 Computer Science & Information Technology for GATE

174. Priority

A. IEEE 802.4 B. IEEE 802.5

C. Both A & B D. None

175. Minimum Frame size limitation is in

A. IEEE 802.3 B. IEEE 802.4

C. IEEE 802.5 D. All

176. Frame time in T1 carrier

A. 1Micro second B. 125 micro seconds

C. 100 ms D. None

177. Number of bits for common channel signalling in T1
carrier is

A. 1 B. 24

C. 25 D. None

178. Number of bits for common channel signalling in E1
carrier is

A. 16 B. 32

C. 48 D. None

179. Number of bits for channel associated signaling in E1
carrier are

A. 16 B. 32

C. 48 D. None

180. Date rate of E2 carrier

A. 1.054 Mbps B. 1.554 Mbps

C. 2.048 Mbps D. 8.848 Mbps

181. Why frame time in T1 carrier should be 125 micro
seconds?

A. To support real time digital voice

B. It is design parameter

C. To have delay

D. None

182. Charging in circuit switching

A. Based on connection time

B. Based on number of connections

C. Based on amount of data transferred

D. None

183. A TSI switch is having memory with 100 ns access
time. How many lines it can support?

A. 100 B. 625

C. 1024 D. None

184. Propagation delay is more in

A. Twisted pair

B. Coaxial cable

C. Satellite channels

D. Fibre

185. ATM data rate

A. 1.554 Mbps B. 2.048 Mbps

C. 622.08 Mbps D. 155.52 Mbps

D. Both C and D

186. In Q51 A 10V 2khz user signal is modulating a 30V
200 khz carrier signal. The fourier spectrum under a
frequency modulated (FM) is most likely

A. 5V 198 khz, 30V 200 khz 5V 202 khz

B. A triangle centred at 40V 200khz, dropping to 0V
at 198,202 khz

C. Rectangle, centred at 40V 200khz, ending at 198,
202 khz (40V)

D. Rectangle, centred at 30V 200khz; end frequen-
cies, (symmetric) of rectangle depends on how
user signal signal amplitude modulates carrier
frequency (width of rectangle has no relevance to
user frequency)

187. Routing of actual IP packets is done through

A. Network address B. Socket address

C. IP address D. None

188. Netid in class C type of networks occupies __ bits (ex-
cluding class type bits)

A. 7 B. 21

C. 14 C. None

189. Number of hosts which class A type of network can
support

A. 16777216 B. 16777116

C. 16000000 D. None

190. Practically how many class A type networks are pos-
sible?

A. 256 B. 126

C. 100 D. None

191. The two left most bits of class B network are

A. 00 B. 10

C. 01 D. 11

192. If the first number of an IP address represented in
dotted decimal is 193 then network is

A. Class A B. Class B

C. Class C D. Class D

E. Class E

193. In an IP packet

A. Hostid part in source address can not be 0’s

B. Hostid part in destination address can not be 0’s

C. Hostid part in source address can not be 1’s

D. Hosted part in destination address can be all 1’s

E. All are valid

194. Destination address of an IP packet which is to be
broadcasted in local LAN from which the IP packet
originated is

Computer Networks 7.89

A. All 1’s in hostid B. All 1’s in netid

C. All 0’s in hostid D. All 0’s in netid

E. All 32 bits to be 1’s

195. Destination address of an IP packet which is to be
broadcasted in remote LAN

A. All 1’s in hostid B. All 1’s in netid

C. All 0’s in hostid D. All 0’s in netid

E. All 32 bits to be 1’s

196. Loopback addresses

A. 127.x.x.x

B. To test the software on the machine without re-
ally having physical network

C. Class A type address

D. Can be used as a destination address only

197. All 32 bits are 0’s in an IP address

A. Is used by diskless machines

B. Class A type address

C. Can be only source address

D. Can be recognised by bootstrap server

E. All

198. What destination address can be used to send a pack-
et from a host with IP address 189.1.1.2 to all hosts on
the same network?

A. 189.0.0.0 B.. 189.255.255.255

C. 255.255.255.255 D. None

199. What is the netmask for class C type network?

A. 255.0.0.0

B. 11111111111111110000000000000000

C. 11111111111111111111111100000000

D. 255.255.255.255

E. 255.255.255.0

200. Which is true about the following IP address 242.1.2.4?

A. Netid is 241 B. Class E

C. Hostid is 1.2.4 D. None

201. A host with an IP address of 144.2.2.1 needs to test
internal software. What is the destination address in
the packet?

A. 127.1.1.1 B. 144.0.0.0

C. 144.255.255.255 D. 127.0.0.0

E. Both A & D

202. Unguided media is

A. Coaxial cable B. Twisted pair

C. Fiber D. Microwave

203. Frequency limiting

A. Is the property of the medium

B. Is used by using filter to limit the amount of
bandwidth available to customer

C. A & B

D. None

204. Baud is a

A. Signaling speed

B. Rate is same as bit rate for binary valued channel

C. Is voltage transitions for unit time

D. All

205. Limiting the bandwidth limits the data rate

A. For noisy channels B. For perfect channels

C. Both A & B D. None

206. Voice grade line is

A. 3-4KHz B. 3-4MHz

C. 5-6MHz D. None

207. Bandwidth of a coaxial cable

A. Is proportional to its inner core diameter

B. Is proportional to outer mesh spacing

C. Depends on the length of the cable

D. None

208. Error rates in fiber is

A. 1 in 1000 B. 1 in 10000

C. 1 in 100 D. Almost zero

209. Fiber has

A. Huge bandwidth B Less error rate

C. Fast D. Uni-directional

E. All

210. Fiber is preferred over copper wire as

A. Bandwidth is higher

B. Low attenuation

C. No of repeaters required will be scarce

D. Security against wiretapping is better

E. All

211. Propagation delay is more in

A. Twisted pair B. Coaxial cable

C. Fiber D. Satellites

E. None

212. V.32 bis data rate is

A. 9600 B. 2400

C. 14400 D. None

213. V.32 modem data rate is

A. 9600 B. 2400

C. 14400 D. None

214. Constellation diagram of V32 bis contains ___ no. of
points.

A. 16 B. 32

C. 64 D. None

7.90 Computer Science & Information Technology for GATE

215. 28800 bps is

A. V.34 B. V.32

C. V.32bis D. None

216. ___is prone to noise very much.

A. Frequency B. Amplitude

C. Wavelength D. Phase

E. None

217. Current day modems employs

A. Ascii coding B. Ebcdic coding

C. Trellis coding D. Differential pulse code

E. None

218. Null modem will have ___ circuits.

A. 1 B. 2

C. 3 D. None

219. Codec is

A. Used in end office

B. Coder-decoder

C. Works on multiple channels

D. Does A/D and D/A conversion

E. All

220. Overhead in T1 carrier is

A. 193 bits B. 25 bits

C. 1 bit D. None

221. Out-of-band signaling bits in T1 carrier are

A. 193 B. 25

C. 1 D. 24

E. None

222. Why frame time in T1 carrier is 125 micro seconds?

A. It is standard

B. Users interest

C. For realtime digital voice commuinication

223. E1 carrier data rate is

A. 1.544Mbps B. 2.048Mbps

C. 6.468Mbps D. None

224. Circuit switching

A. Charging is based on connection time

B. Every packet traverse in the same route

C. No need of packet buffering & congestion control

D. All

225. For realtime performance ____ is preferred.

A. Circuit switching B. Packet switching

C. Both D. Message switching

226. Physical copper path is created in

A. Circuit switching B. Packet switching

C. Message switching D. Both A & C

E. None

227. Store-and-forward network uses

A. Circuit switching B. Packet switching

C. Message switching D. None

228. Telegrams uses (in olden days)

A. Circuit switching B. Message switching

C. Packet switching D. None

229. ___ suitable for interactive traffic.

A. Circuit switching B. Packet switching

C. Message switching D. None

230. Packets reach in same order in

A. Circuit switching B. Message switching

C. Packet switching C. None

231. Bandwidth utilisation is better in

A. Circuit switching B. Message switching

C. Packet switching D. None

232. For real time traffic ___ is suitable.

A. Circuit switching B. Message switching

C. Packet switching D. None

233. Main drawback of message switching is

A. Cost

B. Delays because of monopolisation of channel by
one application

C. Complexity

D. None

234. A TSI switch is used which is equipped with RAM
of 100 nano seconds. Frame period is 125 micro sec-
onds. Then no. of lines which it can support is

A. 100 B. 500

C. 625 D. None

235. ATM uses

A. Circuit switching B. Message switching

C. Packet switching D. None

236. PSTN and N-ISDN uses ___

A. Circuit switching B. Message switching

C. Packet switching D. None

237. Virtual circuits

A. Actual service is offered through packet switching

B. Actual service is offered through circuit switching

C. Are either permanent or switched

D. None

238. Setup is not needed in

A. Circuit switching

B. Permanent virtual circuit

C. Switched virtual circuit

D. None

239. In ATM cells

Computer Networks 7.91

A. Not necessarily come from alternate sources

B. 53 bytes size

C. Empty data cells are acceptable

D. All

240. Does ATM requires only fiber?

A. Yes B. No

241. Television channels are 8MHz wide. How many bps
can be sent if four-level digital signals are used. As-
sume channel is ideal.

A. 32Mbps B. 32MB/s

C. 16Mbps C. 16MB/s

242. Responsibilities of data link layer is

A. Framing

B. Deframing

C. Acknowledgement management

D. Piggybacking

E. All

243. No. of frames sent at a time in ARQ protocol.

A. 1 B. 2

C. 3 D. Many

244. Does sequence numbers are necessary in ARQ?

A. Yes B. No

245. _____is error correction technique.

A. Bit stuffing B. CRC

C. Single parity bits D. None

246. Flow control has

A. Data Link layer B. Physical layer

C. Network layer D. Transport layer

247. Routing is done at

A. Data Link layer B. Physical layer

C. Network layer D. Transport layer

248. If the timer is set to a small value in DLL then

A. It expires too frequently thus retransmissions will
takes place frequently

B. Bandwidth gets wasted

C. Both A & B

D. Both

249. The data bits are 1101011011, generator polynomial
is 10111 then checksum is

A. 1001 B. 1110

C. 0000 D. None

250. The data bits are 11010110111110, generator polyno-
mial is 10111 then checksum is

A. 1001 B. 1110

C. 0000 C. None

251. Do we require any protocol if the channel is ideal, sta-
tions are powerful, having infinite buffer space?

A. Yes B. No

252. Sliding window protocols are

A. Also known as pipelining

B. Useful in satellite networks

C. Needed where propogation delay is very high

E. All

253. Size of the acknowledgment frame when piggyback-
ing is used is

A. Very small

B. No ack at all

C. Only out bound traffic is not existing ack is sent

D. Both B & C

E. None

254. Nak frames are seen in

A. ARQ B. PAR

C. Goback n D. Selective repeat

E. None

255. If the bit string 0111001111001 is bit stuffed then
stuffed string is

256. Error-correcting codes

A. ASCII B. Hamming

C. EBCDIC D. DPCM

257. A code has following code words then the distance
is __ 0000000000, 0000011111, 1111100000, and
1111111111.

A. 2 B. 5

C. 4 D. None

258. The above code can correct ___ errors.

A. Single B. Five

C. Double D. None

259. HDLC uses

A. Information frame B. Supervisory frame

C. Unnumbered frame D. All

260. Address field in HDLC bit oriented frame is

A. 8 bytes B. 32 bits

C. 8 bits D. None

261. HDLC uses

A. ARQ B. PAR

C. Sliding window D. None

262. HDLC uses ___ sequence number.

A. 3 bit B. 1 bit

C. n bit D. None

263. In Shell account

A. www browsing is not possible

B. Mail can be sent

C. Character user interface only supported

D. All

7.92 Computer Science & Information Technology for GATE

264. A channel has a bit rate of 4kbps and propagation
delay of 20msec. For what range of frame sizes does
stop-and-wait protocol can give an efficiency of 50%?

265. A 100km long cable runs at T1 data rate. The propaga-
tion speed in the cable is 2/3 the speed of light. How
many bits can fit into the cable ?

266. Frames of 1000bits are sent over a 1-Mbps satellite
channel using ARQ protocol. Acknowledgments are
always piggybacked. The headers are very short. Cal-
culate channel utilisation.

267. Maximum efficiency of pure ALOHA is

A. 0.18 B. 0.36

C. 1 D. None

268. Maximum efficiency of slotted ALOHA is

A. 0.18 B. 0.36

C. 1 D. None

269. The expected number of transmission of a slotted
ALOHA with offered load G is

A. eG B. e–G

C. e2G D. None

270. If the offered load G is 1 then probability of success in
slotted ALOHA is

A. 26% B. 37%

C. 74% D. None

271. If the offered load is G is 1 then number slots involve
in collision in slotted ALOHA are

A. 26% B. 37%

C. 74% D. None

272. Find odd one out

A. ALOHA B. Slotted ALOHA

C. Bit-map D. CSMA/CD

273. Binary countdown algorithm is used in

A. IEEE 802.3 B. CSMA/CD

C. IEEE 802.4 D. Slotted ALOHA

274. IEEE 802.3 is

A. 1-persistent B. p-persistent

C. Persistent D. None

275. Thin Ethernet is

A. 10Base2 B. 10Base5

C. 10BaseF D. None

276. In IEEE 802.3 address field to be made as ___ for
broadcast.

A. All 0’s B. All 1’s

C. Nulls D. None

277. In IEEE 802.3 minimum frame size should have

A. Frame time = propogation delay

B. Frame time= round trip propagation delay

C. Frame time can be any thing

D. None

278. For a 10Mbps IEEE 802.3 LAN with maximum of
length 2500 m the minimum allowed frame is

A. 51.2 micro second B. 100 micro seconds

C. 120 micro second D. None

279. For a 1Gbps IEEE 802.3 LAN with maximum length
of 250 m should have frame size of atleast

A. 6400 bytes B. 640 bytes

C. 64 bytes D. None

280. Priority is supported in

A. IEEE 802.3 B. IEEE 802.4

C. IEEE 802.5 D. Both B & C

281. Beacon frame is used in

A. IEEE 802.3 B. IEEE 802.4

C. IEEE 802.5 D. Both B & C

282. ____collision free.

A. IEEE 802.3 B. IEEE 802.4

C. IEEE 802.5 D. Both B & C

E. None

283. Acknowledgment is available in

A. IEEE 802.3 B. IEEE 802.4

C. IEEE 802.5 D. Both B & C

E. None

284. Monitor

A. IEEE 802.3 B. IEEE 802.4

C. IEEE 802.5 D. Both B & C

E. None

285. Padding

A. IEEE 802.3 B. IEEE 802.4

C. IEEE 802.5 D. Both B & C

E. None

286. Monitor

A. Generates token

B. Takes care orphan frames

C. Checks breaks in ring

D. All

287. Ethernet data rates ___ Mbps

A. 1 B. 10

C. 100 D. All above

E. None

288. Smallest possible Ethernet packet size (assume ad-
dresses are 6 bytes long) is

A. 72 bytes B. 1526

C. 1500 D. None

289. Largest possible Ethernet packet size (assume address-
es are 6 bytes long) is

Computer Networks 7.93

A. 72 bytes B. 1526

C. 1500 D. None

290. Largest possible padding bytes in Ethernet (assume
addresses are 6 bytes long) is

A. 26 B. 56

C. 72 D. 46

E. None

291. CRC polynomial used in Ethernet is

A. CRC-12 B. CRC-16

C. CRC-32 D None

292. Imagine that the length of a 10Base5 LAN cable
length is 2500m and it is working at 1Gbps. In worst
case how many padding bits are needed? (assume ad-
dresses are 6 bytes long)

A. 46 B. 614

C. 6474 D. None

293. Fast Ethernet is

A. 100base-T4 B. STP (two pairs)

C. Two pairs of UTP D. 100Base-XF

E. All

294. Fast Ethernet differs with simple Ethernet in

A. Speed (data rate) B. Collision domain

C. Both A & B D. None

295. Multiple access of stations

A. IEEE 802.3 B. IEEE 802.4

C. IEEE 802.5 D. None

296. Token ring supports __ data rates.

A. 4Mbps B. 16Mbps

C. B & C D. None

297. CDDI is

A. Copper version of FDDI

B. Other version of Ethernet

C. Fast Ethernet

D. None

298. A seven-bit code can generate ___ possible characters.

A. 7 B. 128

C. 256 D. None

299. Each asynchronous character is preceeded by a __ bit
which has the opposite polarity to the idel condition.

A. Start B. Stop

C. Neutral D. None

300. Statistical mutiplexers may also be classed as

A. TDM B. Concentrators

C. FDM D. None

301. All communication satellites are

A. Geosynchronous

B. Geostationery

C. at about 36000Km orbit

D. Both A & C

E. Both B & C

302. ___ is used in high speed modems.

A. AM B. FM

C. QAM D. PSK

303. At physical level of IEEE 802.3 ___ code is used.

A. Binary B. Bipolar binary

C. NRZ D. Manchester

304. Effectiveness of Error detection codes are usually
measured in ___distance.

A. Euclidian B. Chessboard

C. Hamming D. None

305. Sliding window protocols are ___ protocol.

A. Flow control B. Congestion

C. MAC D. None

306. In pure ALOHA the frames are of ___ length.

A. Fixed B. Variable

C. Protocol dependent D. None

307. The maximum number of repeaters that can be con-
nected for the largest configuration of Ethernet is

A. 1 B. 2

C. 3 D. 4

E. None

308. Using repeaters the maximum cable length in Ether-
net can be ___ Km.

A. 1 B. 2.5

C. 1.2 D. 10

309. X.25 normally assumes the use of ___ as the physical
layer standard.

A. X.25 B. X.21

C. PPP D. SLIP

310. In X.25, packet transferred across DTE/DCE interface
begins with a __ header.

A. 26 bytes B. 3 bytes

C. 4 bytes IP address D. None

311. For the 2.048 Mbps the ISDN channel structure will
have___no. of B channels and one 64Kbps D channel.

A. 32 B. 24

C. 30 D. None

312. The light accepting capability of an optical fiber is
measured in

A. Reflectance

B. Refraction IFOV

C. Numerical aperture

313. Which of the following is not guided transmission
line?

7.94 Computer Science & Information Technology for GATE

A. Pair of wires B. Waveguides

C. Laser beam D. Fiber optic channel

314. In twisted pair cables the mode of communication is

A. FDM B. TDM

C. CDMA D. TDMA

315. Which of the following is a balanced interface?

A. RS-232C B. RS-449

C. RS-423 D. RS-422

316. Data networks are

A. Simplex B. Half duplex

C. Full duplex D. None

317. Double bit errors can be identified through

A. LRC B. VRC

C. CRC D. None

318. Which of the following requires higher bandwidth?

A. Speech B. Digital speech

C. CD quality audio D. None

319. Which of the following requires higher bandwidth?

A. Speech B. Facsimile

C. Video D. Music

320. An example for base band communication is

A. Radio B. TV

C. Telephone D. Satellite links

321. A twisted wire can not be suitable for

A. Analog voice B. Digital voice

C. Analog video D. None

322. When an analog signal is bandlimited to 5KHz and
is to be transmitted using a 8-bit PCM encoder, the
minimum data rate required is

A. 8Kbps B. 16Kbps

C. 32Kbps D. 64Kbps

323. The downlink and uplink channels of a satellite are
separated in

A. Time B. Space

C. Frequency D. None

324. In digitized voice with 8000 samples/sec ___ frequen-
cies are lossed.

A. Below 20Hz B. Above 4KHz

C. Above 2KHz D. None

325. CD quality audio bandwidth

A. 4KHz B. 10KHz

C. 22.05KHz D. None

326. CD quality audio (stereo) bandwidth

A. 64Kbps B. 705.6Kbps

C. 1.411Mbps D. None

327. Does a T1 carrier adequate to carry a single CD qual-
ity audio channels?

A. Yes B. No

328. MIDI

A. Supports 127 instruments

B. Reduces the bandwidth requirement to play
sound on an instrument

C. Employs codes

D. All

329. In JPEC ___ transform is used.

A. DCT B. FFT

C. Fourier D. Hadamand

330. To route packets to destination LAN ___ addresses
are needed.

A. IP addresses B. Subnet

C. Data link addresses D. Network card addresses

331. Physical address

A. Subnet address

B. IP address

C. Network card address

D. Socket address

332. ____ address is more related to a process.

A. Subnet B. IP

C. Network card D. Socket

333. Jumbograms

A. Data link layer B. IPV4

C. IPV6 D. None

334. IPV4 suffers

A. Wastes addresses

B. No encryption & authentication is provided

C. Unavailability of resource reservation for real
time audio & video

D. All

335. IPV6 supports

A. Larger address space

B. More security

C. Resource reservation freedom

D. Better header format

E. All

336. IPV6 supports

A. Unicast B. Anycast

C. Multicast D. All

337. Node identifier in IPV6 is

A. 48 bits B. 8 bits

C. 16 bits D. 32 bits

Computer Networks 7.95

338. Subnet address in IPV6 is

A. 48 bits B. 8 bits

C. 16 bits D. 32 bits

339. Internet provider address in actual address part of
IPV4 occupies

A. 48 bits B. 8 bits

C. 16 bits D. 32 bits

E. None

340. Loopback addresses in IPV6

A. Not supported

B. All 0’s followed by 1 at the end

C. Starts with 127

D. None

341. Find odd one out

A. INTERNIC B. RIPNIC

C. NIC D. APNIC

342. Reserved addresses in IPV6 starts with

A. 1 B. 0

C. 00000000 D. None

343. In IPV6, link local addresses starts with

A. 00000000 B. 11111111

C. 11111110

344. In IPV6 hop limit is used. It’s equavalent in IPV4 is

A. TTL filed B. Priority

C. Flow label D. None

345. Does header checksum is needed in IPV6?

A. Yes B. No

346. Record rout option is

A. Supported in IPV4 B. Supported in IPV6

C. Both A & C D. None

347. Which of the following is a necessary part of IPV6
datagram?

A. Base header

B. Extension header

C. Data packet from the upper layer

D. Both A & C

348. The ___ field in the base header of IPV6 restricts the
lifetime of a datagram.

A. Version B. Priority

C. Next header D. Hop limit

349. In IPV6 When a datagram needs to be discarded in
a congested network the decision is based on the __
field of base header.

A. Version B. Priority

C. Next header D. Hop limit

350. In IPV6, the___ field in the base header and sender IP
address combine to indicate a unique path identifier
for a specific flow of data.

A. Version B. Priority

C. Next header D. Hop limit

351. The source address in the base header always contains
the address of the __.

A. Last router B. Next router

C. Original sender D. Any of the above

352. For IPV6, for a maximum number of hops, set the
hop limit field to decimal___.

A. 16 B. 15

C. 42 D. 0

353. For IPV6 for time sensitive data, assign the priority
field a value of decimal ___.

A. 0 B. 7

C. 8 to 15 D. 16

354. A datagram in IPV6 with a priority of ___ will be dis-
carded before a datagram with a priority of 12.

A. 11 B. 7

C. 0 D. Any of the above

355. A 6000-byte packet needs to routed through an Eth-
ernet LAN, what extension header must be used in
IPV6?

A. Source routing B. Fragmentation

C. Authentication D. Destination option

356. An IP datagram in IPV6 is 80000bytes. What exten-
sion header must be used?

A. Hop-by-hop B. Fragmentation

C. Authentication D. Destination option

357. The maximum size for an IPV6 datagram is __ bytes.

A. 65535 B. 65575

C. 232 D. 232+40

358. When the hop count field reaches zero and the des-
tination has not been reached, a __ error message is
sent.

A. Destination unreachable

B. Time exceeded

C. Parameter problem

D. Packet too-big

359. When all fragments of a message have not been re-
ceived with the designated amount of time, a __ error
message is sent.

A. Destination unreachable

B. Time exceeded

C. Parameter problem

D. Packet too-big

360. The __ field in the socket structure is usually set to 0
for a process using the services of TCP or UDP.

A. Family B. Type

7.96 Computer Science & Information Technology for GATE

C. Protocol D. Local socket address

361. The field ___ in the socket structure defines the pro-
tocol group.

A. Family B. Type

C. Protocol D. Local socket address

362. The ___ socket I sued with a connectionless protocol.

A. Stream B. Datagram

C. Raw D. Remote

363. The ___ socket is sued with a protocol that directly
uses the services of IP.

A Stream B. datagram

C. Raw D. Remote

364. On an IBM mainframe computer the starting address
in memory for the IP address 7.8.9.11 contains

A. 00000111 B. 00001000

C. 00001001 D. 00001011

365. On a PC the starting address in memory for the IP
address 7.8.9.11 contains

A. 00000111 B. 00001000

C. 00001001 D. 00001011

366. The___function provides information about the host.

A. Hostent B. Hostname

C. Gethostbyname D. Getnameofhost

367. A connectionless process issues the ___ system call to
receive, from the incoming queue, the datagrams sent
by a remote process.

A. Listen B. Receive

C. Bind D. Recvfrom

368. The ___ system call converts a socket into a passive
socket.

A. Convert B. Listen

C. Socket D. Bind

369. In TCP/IP suite port numbers are

A. 16 bit numbers

B. 0 to 65535

C. Used to map onto running processes

D. All

370. In TCP/IP well known ports are the one’s at which
popular services available

A. 0-1023 B. Both A & B

C. None

371. Telnet uses port

A. 23 B. 11

C. 21 D. 19

372. ___ is responsible for delivery of the message to the
appropriate application program.

A. TCP B. DLL

C. PL D. Computer network

E. Network layer

373. TCP

A. Connection oriented

B. Reliable

C. Adds the above features to services of IP

D. Connection establishment, managment

E. All

374. Find odd one out

A. IP delivers packets to destination computer

B. IP requires IP addresses

C. TCP delivers packets to respective process on the
destination machine

D. IP packets contains socket address in their desti-
nation fields

375. HTTP service

A. 80 B. 20

C. 21 D. 23

376. Socket address

A. IP address B. Port number

C. Both A & B D. None

377. TCP services

A. Stream data service B. Full duplex service

C. Reliable service D. None

378. Find odd one out

A. Diskless machine B. Bootp

C. Rarp D. 67

E. None

379. Find odd one out in terms of padding

A. IP B. TCP

C. Ethernet D. None

380. Sliding window protocol is used in

A. X.25 B. DLL

C. TCP flow control D. All

381. Find odd one out

A. Urgent data

B. Out of band data

C. URG bit

D. Urgent data is dealt seperately

E. All

382. The ___ address uniquely identifies a running program

A. IP address B. Host

C. NIC C. Socket

383. Find odd one out

Computer Networks 7.97

A. IBM mainframe

B. Apple Macintosh (Motorla based)

C. Sun sparc

D. IBM PC

384. What is the maximum no. of no-operation options in
one 32-bit word?

A. 1 B. 2

C. 3 D. 4

385. In ___, data is sent or processes at a very inefficient
rate such as one byte at a time.

A. Nagles syndrome

B. Silly window syndrome

C. Sliding window syndrome

D. Delayed acknowledgement

386. Which option define the maximum number of bytes
in a TCP segment?

A. Maximum segment size

B. Window scale factor

C. Timestamp

D. No operation

387. Any mobile agent can get service from LAN by pre-
senting its identification. (Y/N)

388. Monitor cannot

A. Generate token

B. Handle orphan frames

C. Allow others to become monitor while it is active

D. Support priority

E. Introduce delays

389 Which of the following is connecting device in DLL?

A. Transponder B. Transciever

C. Codec D. Bridge

E. Router

390. Find odd man with respect to calculating checksum.

A. UDP B. TCP

C. IP D. Ethernet

391. The worst case padding required for a 10Mbps Ether-
net protocol with round trip propagation delay 51.2
micro second is _____ (Assume 6 byte addresses).

392. Find odd one out

A. ICMP B. RARP

C. BOOTP D. ARP

E. DHCP

393. Find odd one out

A. TCP is reliable service

B. IP provides only best-effort connection less packet
transfer

C. TCP is connection oriented service

D. Gateways may discard packets when they
encounter congestion

E. IP guarantees for QoS

394. Padding is not needed in

A. Ethernet data frame B. IP header

C. UDP header D. Token ring

395. DF bit is set then the IP packet then it may be coming
from _________ and traversing to ______

396. A packet arrives at a router and is forwarded to a net-
work with MTU value of 576 bytes. The IP header of
the packet is 20 bytes and data is 1484 bytes. What
should be the fragment offset of second fragment if
the first fragment is at its maximum possible size.

397. Find odd one out

A. Source quench B. Parameter problem

C. Time exceeded D. Timestamp reply

E. NAK

398. Pushed data and urgency data are same. (Y/N)

399. The default maximum segment size in TCP is

A. 536 bytes B. 65536

C. 576 D. 65495

400. Find odd one out

A. In TCP segment urgent pointer is set

B. The value of the urgent pointer field added to get
the last byte of urgent data

C. The start of the urgent data is not defined explic-
itly

D. Urgent data is handled by IP

E. Urgent pointer is 16 bit field

401. If the URG bit is set and sequence number is 2048 and
urgent pointer value is 0000000000000101 then total
size of the urgent data is

402. A token ring working at 4Mbps with 20 stations each
separated by 100m with delays b=2.5bits and signal
propagation speed is 200000000 m/sec. What will be
the efficiency of the ring if frame size 400 bits. Also
calculate the efficiency assuming b=1bit. Calculate
the same for a ring working at 16Mbps.

403. Suppose the IP header consists of (11111111 11111111
11111111 00000000 11110000 11110000 11000000
11000000) then the Internet checksum is ________.

404. Socket is

A. 48 bit address

B. 32 bit address

C. 16 bit address

D. A file

E. A stream

7.98 Computer Science & Information Technology for GATE

405. Efficiency of the token ring is (find odd man out)

A. More if heavily loaded

B. Very less load is less

C. Less because of walk time

D. More because of delays at interface units

E. Less because of contention during ring initialisation

406. Padding is needed in Ethernet as _____________

407. Entire message cannot be sent as a single communica-
tion data unit as

A. One may monopolize channel

B. Utilisation may become poor

C. Buffer requirements increases

D. All

E. None

408. If we happened to manufacture a noise less channel,
do we still need link control protocols? (Y/N)

409. Why checksum field in Ethernet is 4 bytes?

410. Required S/N value of the channel with 4Khz band-
width which carry digital voice in real time is _____

411. Can we go on send frames if the channel is ideal chan-
nel such as super conductor? (Y/N)

412. Data Link layer responsibility does not include

A. Framing & de-framing

B. Error correction & detection

C. Delivery of data from source machine to destina-
tion machine

D. Piggybacking

E. Flow control

413. Efficiency of a stop-and-wait protocol is at least 0.5 if

A. Frame time is G (propagation delay)

B. Frame time is 2G (round trip propagation delay)

C. Frame time is at least 2G (round trip propagation
delay) & error rate is 1 in 2GC, where C is data
rate

D. Never

E. None

414. CD quality audio bandwidth

A. 4Khz B. 8Khz

C. 23KHz d. 300Khz

E. None

415. Layer in TCP/IP which synchronises after communi-
cation failures is

A. Data link B. Transport

C. Session D. Network

416. What is wrong about a station in CSMA/CD (Ethernet
LAN)

A. It gets blocked

B. It can sense channel

C. It can identify collision

D. It supports exigency (priority) service

E. Calculates checksum

417. What is true about IEEE 802.3 LAN?

A. Stations concludes a frame is sent if it did not see
collision before transmitting last bit of the frame

B. A station sends more than one frame at a time

C. 6 byte addresses used as IPV6 addresses

D. Acknowledgements are used

E. Amount of padding increases with reduce in net-
work spread

418. Min frame size for Ethernet LAN with 250m spread
and 51.2micro sec (round trip propagation delay) and
working at 10Mbps is

A. 64 bytes B. 6.5 bytes

C. 640 bytes D. 6400 bytes

E. None

419. Hamming distance for the code book with code words
01100001, 11000001, 11110111, and 00001011 is

A. 2 B. 3

C. 4 D. 5

420. Stop-and-Wait is not efficient on optical fiber lines as

A. Propagation delay is very less

B. Propagation delay is very large

C. Data rate is very high

D. Both A & C

D. Both B & C

421. Frames sent in a Go back n protocol which employ
3 bit sequence numbers are 4,5,6,7,0,1,2 then next
frames that will be sent if frame 7 gets spoiled is

A. 3,4,5,6,7,0,1 B. 0,1,2,3,4,5,6

C. 7,0,1,2,3,4,5 D. None

422. Number of bits in a frame in T1 carrier are

A. 1 B. 25

C. 193 D. None

423. End of the frame is indicated by

A. By sending special bit sequence

B. By sending special character sequences

C. By violating physical layer protocols by not having
any transition in the middle of clock cycle

D. All

424. What bandwidth is required to multiplex (TDM) 24
CD quality audio channels. Assume 12 bit samples are
employed.

Computer Networks 7.99

A N S W E R K E Y

1. A 2. B 3. A 4. C

5. C 6. C 7. B 8. B

9. B 10. C 11. C 12. C

13. D 14. B 15. B 16. E

17. A 18. D 19. C 20. E

21. B,D 22. B 23. B,C 24. B

25. A 26. A 27. D 28. B

29. A 30. A 31. C 32. A

33. B 34. B 35. A 36. B

37. B 38. C 39. D 40. A

41. A 42. D 43. B 44. A

45. B 46. C 47. C 48. B

49. A 50. B 51. A 52. B

53. A 54. D 55. B 56. C

57. B 58. A 59. A 60. A

61. D 62. A 63. B 64. D

65. C 66. D 67. A 68. B

69. A 70. B 71. A 72. D

73. D 74. B 75. D 76. B,C

77. B 78. A 79. D 80. D

81. C 82. B 83. B 84. A

85. B 86. D 87. B 88. C

89. C 90. B 91. A 92. D

93. B 94. D 95. C 96. D

97. C 98. C 99. A 100. C

101. C 102. C 103. B 104. D

105. B 106. A 107. B 108. C

109. D 110. B 111. D 112. B

113. B 114. D 115. C 116. D

117. B 118. B 119. A 120. B

121. C 122. B 123. D 124. C

125. A 126. D 127. B

128. D(Peer to Peer) 129. B 130. D

131. D 132. B 133. C 134. C

135. C 136. D 137. C 138. C

139. A 140. D 141. B 142. C

143. C 144. B 145. B 146. D

147. D 148. C 149. B 150. D

151. C 152. B 153. C 154. A

155. D 156. B 157. C 158. D

159. B 160. B 161. B 162. C

163. D 164. C 165. B 166. D

167. C 168. C 169. N.A 170. A

171. D 172. C 173. A 174. C

175. A 176. B 177. A 178. B

179. B 180. D 181. A 182. A

183. B 184. C 185. E 186. D

187. A 188. A 189. B 190. B

191. B 192. C 193. E 194. E

195. A 196. All 197. E 198. C

199. A 200. B 201. E 202. D

203. C 204. D 205. C 206. A

207. A 208. D 209. E 210. E

211. D 212. C 213. A 214. A

215. A 216. B 217. C 218. C

219. E 220. B 221. C 222. C

223. B 224. D 225. B 226. A

227. C 228. B 229. B 230. A

231. C 232. C 233. B 234. C

235. C 236. A 237. A,C 238. B

239. D 240. B 241. A 242. E

243. A 244. A 245. A 246. A

247. C 248. C 249. B 250. C

251. A 252. C 253. D 254. D

255. 010011100011110101 256. B

257. B 258. C 259. D 260. C

261. C 262. A 263. D

264. 160bits(refer Page 7.17)

265. 777bits(refer Page 7.17)

266. 1/501 267. A 268. B

269. A 270. B 271. A 272. C

273. C 274. A 275. A 276. B

277. B 278. A 279. B 280. D

281. C 282. D 283. C 284. C

285. A 286. D 287. D 288. A

289. B 290. D 291. C 292. B

293. E 294. C 295. A 296. C

297. A 298. B 299. A 300. B

301. E 302. C 303. D 304. C

305. A 306. A 307. A 308. B

309. B 310. B 311. C 312. C

313. B 314. D 315. D 316. C

317. C 318. C 319. C 320. C

321. C 322. E 323. C 324. B

325. C 326. C 327. B 328. A

329. A 330. B 331. C 332. D

333. C 334. D 335. E 336. D

337. A 338. D 339. C 340. B

341. C 342. C 343. C 344. A

7.100 Computer Science & Information Technology for GATE

345. B 346. A 347. C 348. D

349. B 350. C 351. C 352. C

353. C 354. D 355. B 356. A

357. B 358. A 359. B 360. C

361. A 362. B 363. C 364. A

365. D 366. C 367. B 368. B

369. D 370. C 371. A 372. A

373. A 374. C 375. A 376. C

377. C 378. E 379. C 380. D

381. D 382. D 383. D 384. D

385. B 386. A 387. N 388. E

389. D 390. D(Uses CRC) 391. 38

392. A 393. B 394. D

395. Bootp Server, Bootp Client 396. 472

397. B 398. N 399. A 400. D

401. 5 402. Refer 7.3.4.4.2

403. Refer page 7.38 404. E 405. A

406. Collision is required to be seen by the source

407. A 408. Y 409. Refer 7.3.4.1

410. 43dB 411. N 412. C 413. B

414. C 415. C 416. A 417. A

418. Refer Page 7.19 419. A 420. D

421. C 422. C 423. C

424. 24x23000x2x12bits

7.8 Matching Examples

For Exercises 1-6, match the word or acronym with the
definition or the appropriate blank.

A. LAN B. WAN

C. Gateway D. Bus topology

E. Ethernet F. Internet

1. The Internet is a _________

2. The industry standard for LANs

3. A node that handles communication between its LAN
and other networks

4. A network that connects other networks.

5. Star technology is a ______ configuration.

6. Ethernet uses __________.

For Exercises 7 - 15, match the word or acronym with the
definition or the appropriate blank.

A. DLS B. TCP/IP

C. UDP D. IP

E. TCP F. Boradband

7. _________ and voice communication can use the
same phone line.

8. DLS and cable modems are_________ connections.

9. An Internet connection made using a digital signal on
regular phone lines.

10. Network technologies that generally provide data
transfer speeds greater than 128I bps.

11. The network protocol that breaks messages into pack-
ets, reassembles the packets at the destination, and
takes care of errors.

12. The suite of protocols and programs that supports
low-level network communication.

13. An alternative to TCP that achieves higher transmis-
sion speeds.

14. Software that deals with the routing of packets.

15. _________ has more reliability than UDP.

For Exercises 15 -20, match the protocol or standard with
what it specifies or defines.

A. SMTP B. FTP

C. Telnet D. HTTP

E. MIME type

16. Transfer of electronic mail.

17. Log into a remote computer system.

18. Transfer files to and from another computer.

19. Format of email attachments.

20. Exchange of World Wide Web documents.

For Exercises 21-25, mark the answers true and false as fol-
lows:

A. True B. False

21. A port is a numeric designation that corresponds to a
particular high-level protocol.

22. A firewall protects a local-area network from physical
damage.

23. Each company can establish its own access control
policy.

24. Some top-level domains are based on the country in
which the registering organisation is based.

25. Two organisations cannot have the same name for a
computer.

A N S W E R K E Y

1. B 2. E 3. C 4. B

5. A 6. D 7. A 8. F

9. A 10. F 11. E 12. B

13. C 14. D 15. E 16. A

17. C 18. B 19. E 20. D

21. A 22. B 23. A 24. A

25. B

Computer Networks 7.101

7.9 True or False Questions

1. If stored video is streamed directly from a Web server
to a media player, then TCP is used as the underlying
transport protocol.

2. In an RTP/UDP streaming scenario, UDP segments
are carried inside RTP packets.

3. When using RTP, it is possible for a sender to change
encoding in the middle of a session.

4. RTP does not provide mechanisms to ensure timely
delivery of data.

5. For a given digital modulation scheme, the higher the
Signal-to-Noise Ratio (SNR), the higher the Bit Error
Rate (BER).

6. The IEEE 802.11 wireless LAN uses CSMA/CD as the
random access protocol.

7. An 802.11 frame header contains 4 address fields,
each of which can hold a 6-byte MAC address.

8. Consider a mobile node in the Internet. In case of di-
rect routing, a correspondent node (sender) needs to
first query the home agent of the mobile node to learn
the mobile node’s care-of-address (COA).

9. Assume Alice and Bob want to communicate secure-
ly. Alice can use her private key to sign a message.

10. Alice can use her public key to encrypt a message
such that only Bob can decrypt it.

11. An application that runs on a given host needs to use
unique source port numbers for each of its TCP con-
nections.

12. Congestion can be overcome if we have an unlimited
amount of storage (for buffering packets) in routers.

13. When using RTP in conjuction with RTCP, it is pos-
sible for a sender to change encoding in the middle of
a session.

14. The IP header checksum is recomputed at every hop.

15. It is possible that a router implements several types of
link layers.

16. A router decides on a route for an IP packet based on
its source and destination address.

17. The TTL (time to live) field, which is decremented at
every hop in the network to avoid packet forwarding
loops, is part of the TCP header.

18. The IEEE 802.11 wireless LAN uses CSMA/CD (Col-
lusion Detection) as the random access protocol.

19. Alice can use her public key to encrypt a message
such that only Bob can decrypt it.

20. In public key encryption, the public keys of Alice and
Bob must be unknown to Trudy the intruder.

21. A network layer packet is encapsulated within a link
layer packet.

22. In IPV6, when an IP layer packet is larger than what
the link is designed to carry, the packet is fragmented.
These fragments are reassembled at the destination
host IP layer.

23. Both hubs and switches use store-and-forward trans-
mission.

24. A client program is a program running on one end
system that requests a service from a server program
running on another end system.

25. All the routers in an autonomous system use the same
forwarding table.

26. UDP is the preferred transport layer protocol for de-
livering e-mail.

27. A Web cache is both a client and a server.

28. Assume that a file of size F is to be distributed to N
clients in client-server architecture. If the upload rate
of the server’s access link is us, then the time to dis-
tribute the file to N clients is equal to NF = us.

29. TCP socket is identified by a four-tuple: source IP,
destination IP, source port number and destination
port number.

30. If two UDP packets have different source IP addresses
and source port numbers, then the two packets will be
directed to different destination processes.

31. TCP does not compute a SampleRTT for segments
that have been retransmitted.

32. In TCP, 3 duplicate ACKs are interpreted as a sign of
network congestion.

33. In Network Address Translation (NAT), the source IP
address field of a datagram leaving the local network
is equal to the IP address of the local host that origi-
nally created it.

34. Real-Time Transport Protocol (RTP) packets are in-
terpreted by routers for improved multimedia Quality
of Service (QoS).

35. Real Time Streaming Protocol (RTSP) defines how
audio/video is encapsulated for streaming over net-
work.

36. Reliable transport services may be needed from the
transport layer even if the data link transport is reli-
able along the end-to-end path.

37. In mobility via direct routing, communication from
the correspondent host to the mobile host goes
through the home agent of the mobile.

38. In mobility via direct routing, assume that the mobile
initially visits a foreign network with foreign agent
FA0 and then keeps moving across other foreign

7.102 Computer Science & Information Technology for GATE

networks. Wherever the mobile goes, the data from
the correspondent is always forwarded to the mobile
through FA0.

39. The IEEE 802.11 wireless LAN uses CSMA/CD as the
random access protocol.

40. A laptop computer may implement several types of
link layers.

41. CRC can both correct and detect errors.

42. 2-d parity can detect all 2-bit errors and correct all
1-bit errors.

43. 4B/5B encoding solves the problem of long sequences
of zeroes but still has issues with long sequences of 1s.

 Answer: 4B/5B uses NRZI to get over the issue of a
long series of 1s.

44. When bandwidth is plenty and errors are rare, error
checking may actually add unnecessary overhead.

45. The transmission rate of a link is measured in bits/
second.

46. End systems, packet switches and other pieces of the
Internet run protocols that control the sending and
receiving of information within the Internet.

47. Tier-1 ISPs are also known as Internet backbone net-
works.

48. The total nodal delay for a router is a sum of pro-
cessing delay, queuing delay, transmission delay, and
propagation delay.

49. A transport-layer packet is called a segment. A net-
work-layer packet is called a datagram. A link-layer
packet is called a frame.

50. The application architecture dictates how the applica-
tion is structured over various end systems. There are
two predominant architectural styles used in practice:
client-server architecture and P2P architecture.

52. A process sends/receives messages to/from the net-
work through a software interface called a socket.

53. A web page consists of objects, which are addressable
by URLs. These are simply files such as an HTML file,
a JPEG image, a Java applet or a video clip.

54. Because an HTTP server maintains no information
about the clients, an HTTP server is said to be state-
less.

55. Because FTP uses a separate control connection, FTP
is said to send its control information out-of-band.

56. A reliable data transfer protocol may send multiple
packets without waiting for acknowledgements, rath-
er than operating in a stop-and-wait manner. This
technique is called pipelining.

57. In P2P file sharing (e.g. Gnutella), a TCP connection
between two peers X and Y is visualised as an edge
between X and Y in the overlay network graph.

58. The three sources of signal impairments on a physical
link are i)attenuation, ii)distortion, and iii)noise.

59. For a given network throughput, real-time networked
multimedia applications are delay and jitter sensitive.
They are, however, loss tolerant.

60. For networked multimedia applications, client-side
buffering and playout delay can compensate for net-
work delay and delay-jitter.

61. A host can dynamically get an IP address from a serv-
er (IP pool) using the DHCP protocol.

62. When a host sends a packet with destination IP ad-
dress 255.255.255.255, the message is delivered to all
hosts in the same subnet.

63. A switch/hub/bridge does not implement Internet
protocol stack layers above the link layer.

64. The IEEE 802.11 wireless LAN uses CSMA/CA as the
random access protocol.

A N S W E R K E Y

1. T 2. F 3. T 4. T

5. F 6. F 7. T 8. T

9. T 10. F 11. F 12. F

13. T 14. T 15. T 16. F

17. F 18. F 19. F 20. F

21. T 22. F 23. F 24. T

25. F 26. F 27. T 28. F

29. T 30. F 31. T 32. F

33. F 34. F 35. F 36. T

37. F 38. T 39. F 40. T

41. F 42. T 43. F 44. T

45. T 46. T 47. Y 48. Y

49. T 50. T 51. T 52. T

53. T 54. T 55. T 56. T

57. T 58. T 59. T 60. T

61. T 62. T 63. T 64. T

Previous Years’ GATE Questions

1. The transport layer protocols that are used for real
time multimedia, file transfer, DNS and email are

(GATE 2013)

A. TCP, UDP, UDP, and TCP

B. UDP,TCP, TCP and UDP

C. UDP, TCP, UDP and TCP

D. TCP, UDP, TCP and UDP

Computer Networks 7.103

2. Using public key encryption, X adds a digital sig-
nature σ to a message M, encrypts <M, σ>, and sends
it to Y, where it is decrypted. Which one the following
sequence of keys are used for the operations?

(GATE 2013)

A. Encryption: X’s private key followed by Y’s pri-
vate key; Decryption: X’s public key followed Y’s
public key

B. Encryption: X’s private key followed by Y’s pub-
lic key; Decryption: X’s public key followed Y’s
private key

C. Encryption: X’s public key followed by Y’s pri-
vate key; Decryption: Y’s public key followed X’s
private key

D. Encryption: X’s private key followed by Y’s pub-
lic key; Decryption: Y’s private key followed Y’s
public key

3. Assume that source S and destination D are connect-
ed through two intermediate routers labeled R. De-
termine how many times each packet has to visit the
network layer and data link layer during a transmis-
sion from S to D. (GATE 2013)

S R R D

A. Network Layer-4 times and Data link layer-4
times

B. Network Layer-4 times and Data link layer-3
times

C. Network Layer-4 times and Data link layer-6
times

D. Network Layer-2 times and Data link layer-6
times

 Explanation: See the following diagram which ex-
plains the data flow in the given network.

S R R D

AL

TL

NL

DLL DLL

PL PL

DLL

PL

NL

AL

TL

NL

DLLDLL

PLPL

DLL

PL

NL

AL: Application Layer
TL: Transport Layer
NL: Network Layer
DLL: Data Link Layer
PL: Physical Layer

4. Determine the maximum length of the cable (in Km)
for transmitting data at a rate of 500Mbps in an Eth-
ernet LAN with frames of size 10,000bits. Assume the
signal speed in the cable to be 2,00,000Km/s.

(GATE 2013)

A. 1 B. 2

C. 2.5 D. 5

 Explanation: In Ethernet, minimum frame time is
two times of propagation delay. Consider x be the
length of the cable. Frame time=10000/500x106.
Therefore,

 10000/500x106=2*x/200000

 1/50000=x/100000

 Therefore, x= 100000/50000=2KM

5. In an PIv4 datagram, the M bit is 0, the value of HLEN
is 10, the value of total length is 400 and the fragment
offset value is 300. The position of the datagram, the
sequence numbers of the first and the last bytes of the
payload, respectively are (GATE 2013)

A. Last segment, 2400, and 2789

B. First segment, 2400 and 2759

C. Last fragment, 2400 and 2759

D. Middle fragment, 300 and 689

6. The protocol data unit (PDU) for the application layer
in the Internet stack is (GATE 2012)

A. Segment B. Datagram

C. Message D. Frame

7. Which of the following transport layer protocols is
used to support electronic mail? (GATE 2012)

A. SMTP B. IP

C. TCP D. UDP

8. In the IPv4 addressing format, the number of net-
works allowed under Class C addresses is

(GATE 2012)

A. 214 B. 27

C. 221 D. 224

9. An Internet Service Provider (ISP) has the following
chunk of CIDR-based IP addresses available with it:
245.248.128.0/20. The ISP wants to give half of this
chunk of addresses to Organisation A, and a quarter
to Organisation B, while retaining the remaining with
itself. Which of the following is a valid allocation of
addresses to A and B? (GATE 2012)

A. 245.248.136.0/21 and 245.248.128.0/22

B. 245.248.128.0/21 and 245.248.128.0/22

C. 245.248.132.0/22 and 245.248.132.0/21

D. 245.248.136.0/24 and 245.248.132.0/21

7.104 Computer Science & Information Technology for GATE

 Explanation: Given IP address, we can understand 20
bits for network ID and 12 for host ID. Which indi-
cates the network can have 212 hosts, half of it means
211 for A and 210 for B.

 From given IP address, probable address ranges for A
and B

 Option 1:

 Network A

 245.248.1000 0000 0000 0000 245.248.128.0

 245.248.1000 0111 1111 1111 245.248.135.255

 Network B

 245.248.1000 1000 0000 0000 245.248.136.0

 245.248.1000 1011 1111 1111 245.248.139.255

 Option 2:

 Network B

 245.248.1000 0000 0000 0000 245.248.120.0

 245.248.1000 0011 1111 1111 245.248.131.255

 Network A

 245.248.1000 1000 0000 0000 245.248.136.0

 245.248.1000 1111 1111 1111 245.248.143.255

 So, option A is valid.

10. Consider a source computer (S) transmitting a file
of size 106 bits to a destination computer (D) over a
network of two routers (R1 and R2) and three links
(L1, L2, and L3). L1 connects S to R1; L2 connects R1
to R2; and L3 connects R2 to D. Let each link be of
length 100 km. Assume signals travel over each link
at a speed of 108 meters per second. Assume that the
link bandwidth on each link is 1Mbps. Let the file be
broken down into 1000 packets each of size 1000 bits.
Find the total sum of transmission and propagation
delays in transmitting the file from S to D?

(GATE 2012)

A. 1005 ms B. 1010 ms

C. 3000 ms D. 3003 ms

 Explanation: Propagation Delay=100Km/108=1ms

 Packet Transmission time=1000bits/106=1ms

 No more assumptions are given. Thus, we assume it
works like pipelining. Source S goes on sends packets
and intermediate routers will behave store and for-
ward style. Thus,

 First packet first bit starts 0th time which reaches R1
after 1ms

 First packet last bit ends 1st ms which reaches R1 after
2ms

 Like this it reaches D after 6th ms.

 In the mean time, S will be continuing to pump pack-
ets. After first packet, for every 1ms one packet will be
emerging at D. Thus, total time=999+6=1005ms

11. Consider an instance of TCP’s Additive Increase Mul-
tiplicative Decrease (AIMD) algorithm where the
window size at the start of the slow start phase is 2
MSS and the threshold at the start of the first trans-
mission is 8 MSS. Assume that a timeout occurs dur-
ing the fifth transmission. Find the congestion win-
dow size at the end of the tenth transmission.

(GATE 2012)

A. 8 MSS B. 14 MSS

C. 7 MSS D. 12 MSS

 Answer: 8 or 7 is most optimal solutions.

 Explanation for AIMD examples, see the notes.

12. A layer-4 firewall (a device that can look at all proto-
col headers up to the transport layer) cannot

(GATE 2011)

A. Block entire HTTP traffic during 9:00PM and
5:00AM

B. Block all ICMP traffic

C. Stop incoming traffic from a specific IP address
but allow outgoing traffic to the same IP address

D. Block TCP traffic from a specific user on a multi-
user system during 9:00PM and 5:00AM

 Explanation: Since it is a layer 4 firewall it cannot
block application layer protocol like HTTP.

13. Consider different activities related to email.

(GATE 2011)

 m1: Send an email from a mail client to a mail server

 m2: Download an email from mailbox server to a
mail client

 m3: Checking email in a web browser

 Which is the application level protocol used in each
activity?

A. m1:HTTP m2:SMTP m3:POP

B. m1:SMTP m2:FTP m3:HTTP

C. m1: SMTP m2: POP m3: HTTP

D. m1: POP m2: SMTP m3:IMAP

 Explanation: Sending an email will be done through
user agent and message transfer agent by SMTP,
downloading an email from mail box is done through
POP, checking email in a web browser is done through
HTTP

14. HTML (Hyper Text Markup Language) has language
elements which permit certain actions other than de-
scribing the structure of the web document. Which
one of the following actions is NOT supported by
pure HTML (without any server or client side script-
ing) pages? (GATE 2011)

A. Embed web objects from different sites into the
same page

Computer Networks 7.105

B. Refresh the page automatically after a specified
interval

C. Automatically redirect to another page upon
download

D. Display the client time as part of the page

15. Consider a network with five nodes, N1 to N5, as
shown below (GATE 2011)

N5 N2

N4 N3

4 6

2

3

N1

The net work uses a Distance Vector Routing proto-
col. Once the routes have stabilised, the distance vec-
tors at different nodes are as following.

 N1: (0,1,7,8,4) N2 : (1,0,6,7,3)

 N3: (7,6,0,2,6) N4 : (8,7,2,0,4)

 N5 : (4,3,6, 4,0)

 Each distance vector is the distance of the best
known path at that instance to nodes, N1 to N5, where
the distance to itself is 0. Also, all links are symmet-
ric and the cost is identical in both directions. In each
round, all nodes exchange their distance vectors with
their respective neighbours. Then all nodes update their
distance vectors. In between two rounds, any change
in cost of a link will cause the two incident nodes to
change only that entry in their distance vectors.

 The cost of link N2-N3 reduces to 2 in (both direc-
tions). After the next round of updates, what will be
the new distance vector at node, N3? (GATE 2011)

A. (3. 2, 0, 2, 5) B. (3, 2, 0, 2, 6)

C. (7, 2, 0, 2, 5) D. (7, 2, 0, 2, 6)

 Explanation: N3 tries to update its vector from the
vectors of its neighbours N2 and N4 and its own vector.

Vector

of N2

Vector

of N3

Vector

of N4

Minimum Via station

of out-

going line

Now add

current

delays of

via stations

1 7 8 1 N2 1+2=3

0 6 7 0 N2 0+2=2

6 0 2 0 N3 0

7 2 0 0 N4 0+2=2

3 6 4 3 N2 3+2=5

16. After the update in the previous question, the link
N1-N2 goes down. N2 will reflect this change im-
mediately in its distance vector as cost, ∞. After the
NEXT ROUND of update, what will be the cost to N1
in the distance vector of N3? (GATE 2011)

A. 3 B. 9

C. 10 D. •

 Explanation:

 N3 has neighbors N2 and N4

 N2 has made entry ∞

 N4 has the distance of 8 to N1

 N3 has the distance of 2 to N4

 So 2 + 8 = 10

17. One of the header fields in an IP datagram is the Time
to Live (TTL) field. Which of the following statements
best explains the need for this field? (GATE 2010)

A. It can be used to prioritize packets

B. It can be used to reduce delays

C. It can be used to optimize throughput

D. It can be used to prevent packet looping

18. Which one of the following is not a client server ap-
plication? (GATE 2010)

A. Internet chat B. Web browsing

C. E-mail D. Ping

19. Suppose computers A and B have IP addresses
10.105.1.113 and 10.105.1.91 respectively and they
both use the same net mask N. Which of the values of
N given below should not be used if A and B should
belong to the same network? (GATE 2010)

A. 255.255.255.0 B. 255.255.255.128

C 255.255.255.192 D 255.255.255.224

 Explanation: A: 10.105.1.113= 10.105.1. 0111 0001

 B: 10.105.1.91 = 10.105.1. 0101 1011

 If we apply bitwise AND with netmask, we will be get-
ting netID. Except for option D, for all remaining we
are getting same netID for both A and B. The follow-
ing table shows last byte for the sake of brevity.

Bitwise AND with A BitWise AND with B

255.255.255.0 10.105.1.0000 0000 10.105.1.0000 0000

255.255.255.128 10.105.1.0000 0000 10.105.1.0000 0000

255.255.255.192 10.105.1.0100 0000 10.105.1.0100 0000

255.255.255.224 10.105.1.0110 0000 10.105.1.0100 0000

20. Consider a network with 6 routers R1 to R6 connect-
ed with links having weights as shown in the follow-
ing diagram (GATE 2010)

 All the routers use the distance vector based routing
algorithm to update their routing tables. Each router

7.106 Computer Science & Information Technology for GATE

starts with its routing table initialized to contain an
entry for each neighbour with the weight of the re-
spective connecting link. After all the routing tables
stabilize, how many links in the network will never be
used for carrying any data?

R2 R4

R3 R5

2 1

7

9

R1 R6

6

3

8

4

A. 4 B. 3

C. 2 D. 1

21. Suppose the weights of all unused links in the previ-
ous question are changed to 2 and the distance vector
algorithm is used again until all routing tables stabi-
lize. How many links will now remain unused?

(GATE 2010)

A. 0 B. 1

C. 2 D. 3

22. While opening a TCP connection, the initial sequence
number is to be derived using a time-of-day (ToD)
clock that keeps running even when the host is down.
The low order 32 bits of the counter of the ToD clock
is to be used for the initial sequence numbers. The
clock counter increments once per millisecond. The
maximum packet lifetime is given to be 64s. Which
one of the choices given below is closest to the mini-
mum permissible rate at which sequence numbers
used for packets of a connection can increase?

(GATE 2009)

A. 0.015/s B. 0.064/s

C. 0.135/s D. 0.327/s

23. Let G(x) be the generator polynomial used for CRC
checking. What is the condition that should be satis-
fied by G(x) to detect odd number of bits in error?

(GATE 2009)

A. G(x) contains more than two terms

B. G(x) does not divide 1 + xk, for any knot exceed-
ing the frame length

C. 1 + x is a factor of G(x)

D. G(x) has an odd number of terms

 Frames of 1000 bits are sent over a 10^6 bps duplex
link between two hosts. The propagation time is
25ms. Frames are to be transmitted into this link to
maximally pack them in transit (within the link).

24. What is the minimum number of bits I that will be re-
quired to represent the sequence numbers distinctly?

Assume that no time gap need to be given between
transmission of two frames.

A. l=2 B. l=3

C. l=4 D. l=5

 Explanation:

 Transmission delay for 1 frame = 1000/(10^6) = 1 ms

 Propogation time = 25 ms

 The sender can atmost transfer 25 frames before the
first frame reaches the destination.

 The number of bits needed for representing 25 differ-
ent frames = 5

25. Suppose that the sliding window protocol is used with
the sender window size of 21, where 1 is the number
of bits identified in the earlier part and acknowl-
edgements are always piggy backed. After sending 21

frames, what is the minimum time, the sender will
have to wait before starting transmission of the next
frame? (Identify the closest choice ignoring the frame
processing time.) (GATE 2009)

A. 16ms B. 18ms

C. 20ms D. 22ms

Explanation:

 Size of sliding window = 2^5 = 32

 Transmission time for a frame = 1ms

 Total time taken for 32 frames = 32ms

 The sender cannot receive acknowledgement before
round trip time which is 50ms.

 After sending 32 frames, the minimum time the send-
er will have to wait before starting transmission of the
next frame = 50 – 32 = 18

26. What is the maximum size of data that the application
layer can pass on to the TCP layer below?

(GATE 2005)

A. Any size

B. 2^16 bytes-size of TCP header

C. 2^16 bytes

D. 1500 bytes

27. Which of the following system calls results in the
sending of SYN packets? (GATE 2005)

A. Socket B. Bind

C. Listen D. Connect

28. In the slow start phase of the TCP congestion control
algorithm, the size of the congestion window

(GATE 2005)

A. Does not increase

B. Increases linearly

C. Increases quadratically

D. Increases exponentially

Computer Networks 7.107

 Explanation: Although the name is slow start, dur-
ing the slow start phase, window size is increased by
the number of segments acknowledged, which means
window size grows exponentially. This happens un-
til either an acknowledgment is not received for
some segment or a predetermined threshold value is
reached. See this for more details.

29. If a class B network on the Internet has a subnet mask
of 255.255.248.0, what is the maximum number of
hosts per subnet? (GATE 2005)

A. 1022 B. 1023

C. 2046 D. 2047

 Explanation: The binary representation of subnet
mask is 11111111.11111111.11111000.00000000.
There are 21 bits set in subnet. So 11 (32-21) bits are
left for host ids. Total possible values of host ids is
2^11 = 2048. Out of these 2048 values, 2 addresses are
reserved. The address with all bits as 1 is reserved as
broadcast address and address with all host id bits as
0 is used as network address of subnet.

 In general, the number of addresses usable for ad-
dressing specific hosts in each network is always 2^N
– 2 where N is the number of bits for host id.

30. An organisation has a class B network and wishes to
form subnets for 64 departments. The subnet mask
would be (GATE 2005)

A. 255.255.0.0 B. 255.255.64.0

C. 255.255.128.0 D. 255.255.252.0

 Explanation: The size of network ID is 16 bit in class
B networks. So bits after 16th bit must be used to cre-
ate 64 departments. Total 6 bits are needed to identify
64 different departments. Therefore, subnet mask will
be 255.255.252.0.

31. Suppose the round trip propagation delay for a 10
Mbps Ethernet having 48-bit jamming signal is 46.4
ms. The minimum frame size is (GATE 2008)

A. 94 B. 416

C. 464 D. 512

 Explanation:

 Transmission Speed = 10Mbps.

 Round trip propagation delay = 46.4 ms

 The minimum frame size = (Round Trip Propagation
Delay) * (Transmission Speed) = 10*(10^6)*46.4*(10^–
3) = 464 * 10^3 = 464 Kbit

32. Packets of the same session may be routed through
different paths in (GATE 2006)

A. TCP, but not UDP B. TCP and UDP

C. UDP, but not TCP D. Neither TCP nor UDP

33. The maximum window size for data transmission us-
ing the selective reject protocol with n-bit frame se-
quence numbers is (GATE 2006)

A. 2^n B. 2^(n–1)

C. 2^n – 1 D. 2^(n–2)

34. The address resolution protocol (ARP) is used for

(GATE 2006)

A. Finding the IP address from the DNS

B. Finding the IP address of the default gateway

C. Finding the IP address that corresponds to an
MAC address

D. Finding the MAC address that corresponds to an
IP address

 Explanation: Address Resolution Protocol (ARP) is a
request and reply protocol used to find MAC address
from IP address.

35. In a network of LANs connected by bridges, packets
are sent from one LAN to another through interme-
diate bridges. Since more than one path may exist
between two LANs, packets may have to be routed
through multiple bridges. Why is the spanning tree
algorithm used for bridge-routing? (GATE 2006)

A. For shortest path routing between LANs

B. For avoiding loops in the routing paths

C. For fault tolerance

D. For minimising collisions

A N S W E R K E Y

1. C 2. D 3. C 4. B

5. C 6. C 7. C & D 8. C

9. A 10. A 11. Incomplete question

12. A 13. C 14. D 15. A

16. C 17. D 18. D 19. D

20. D 21. A 22. A 23. C

24. D 25. B 26. A 27. D

28. D 29. C 30. D 31. C

32. B 33. B 34. D 35. B

8C H A P T E R E I G H T

Introduction to HTML, XML and

Client Server Programming

8.1 Introduction

Internet and browsing the World Wide Web (WWW) have become common in everyone’s daily life. Internet is a col-
lection of computers, connected through various inter-connecting devices such as bridges, routers, gateways; whereas
WWW is a collection of web pages or hyper documents. Hyper documents are ones which may contain text in different
size, colours, audio, video, pictures and hyper links. We can create hyper documents using many languages such as HTML,

DHTML, XML, JSP, ASP, Java, Perl, PHP, etc. Out of them, HTML based pages are very simple to create.

8.1.1 What is HTML?

• HTML is a language for describing web pages.

• HTML stands for Hyper Text Markup Language.

• HTML is not a programming language, it is a markup language.

• A markup language is a collection of markup tags.

• HTML uses markup tags to describe web page content.

8.1.2 HTML Tags

HTML markup tags are usually called HTML tags and are surrounded by angle brackets like <html>. HTML tags nor-
mally come in pairs like and . The first tag in a pair is the start tag, the second tag is the end tag. Start and end
tags are also called opening tags and closing tags. HTML tags are not case sensitive: <P> means the same as <p>. Plenty
of web sites use uppercase HTML tags in their pages. W3Schools use lowercase tags because the World Wide Web Consor-
tium (W3C) recommends lowercase in HTML 4, and demands lowercase tags in future versions of ((X)HTML). A web
browser (like Internet Explorer, Netscape Navigator, Chrome, or Firefox) is used to read HTML documents and display
them as web pages. The browser does not display the HTML tags, but uses the tags to interpret the content of the page.

8.1.3 My First Web Page

Suppose that we want to create a simple html page. Write the following statements in a file with the name “first.htm” or
“first.html” using any editor such as notepad. Now, open Internet Explorer (or any other browser) and open this “first.htm”
file through OPEN (and browse) option under File menu item.

8.2 Computer Science & Information Technology for GATE

<html>
<body>

Welcome for Learning to succeed GATE CSE/IT.

</body>
</html>

Here,
• The text between <html> and </html> describes the web page.

• The text between <body> and </body> is the visible page content.

The following is the output in Internet Explorer when it is opened (Figure 8.1).

Figure 8.1 A simple HTML page

Unlike program files (such as C, C++, Java), HTML pages are not translated. Rather they will be interpreted by the browsers.
Browsers take the responsibility of displaying (playing) text/others according to the given tags. Browsers will not display
any errors if the web page contains erroneous tags or erroneous combination of tags or wrongly spelt tags. They simply
display with some default behaviour. One may be wondering if we say that we can even open a simple text file (without
any HTML tags) also using a Web browser!

n Exercise Try opening the above “first.htm” file after removing HTML tags.

8.1.4 <body> Tag

This is where we will begin writing our document and placing our HTML codes. We can use many options with body. The
following can be used to specify background colour or background image for our page by changing body tag as:

<body bgcolor=“red”> To assign red as the background colour.

<body background=“image.jpg”> To make image file image.jpg as the background image.

8.1.5 <head> Tag

This tag contains information about the page such as the TITLE, META tags for proper Search Engine indexing, STYLE
tags, which determine the page layout, and JavaScript coding for special effects.

8.1.5.1 Meta Tags

Meta tags are inserted in the <head> region of our web page and the same is not viewable in the browser. Meta tags in
general “work behind the scenes” and a human visitor will not care too much about them. They are usually used to help
increase search engine rankings by including relevant information about the page. Of course, if we want to be ranked #1
in a search engine like Google, meta tags alone will not help us as search engines use a different algorithm in site ranking.
Good content will make more people link to our page, thus driving up the site ranking. Here is an example of a with web
page with some meta tags.

<head>

 </title> Indian student world </title>

Introduction to HTML, XML and Client Server Programming 8.3

 <meta name = “description” content = “All of you who want to know about Indian students, who thrive

for marks rather than knowledge.”>

 <meta name = “keywords” content = “Indian students, marks, knowledge”>

 <meta name = “robots” content = “noindex”>

 </head>

In the above page, we have described three things using meta tags.

Description– Brief statement describing the page. This will be displayed in response to a search. That is, if a search engine
selects this page as having the keywords entered by the user, it displays this description as the results of the search.

Keywords– What a user would type into a search engine to find this page.

Robots – Should web spiders be allowed to index this page? (we can control whether our page should be indexed by the
search engines or not With this tag).

Evidently, meta tags do not have an end tag. Another useful meta tag is REFRESH. For instance, use the following little
snippet of code for redirecting to another site.

 <meta http-equiv=“refresh”

 content=“5;url=http://www.site.com/”>

The number 5 inside the content indicates the number of seconds before the browser will attempt to redirect you before
jumping to another page.

Also, the following Content-type tells the browser what sort of character set (iso-8869-1) is to be used.

 <meta http-equiv=“Content-Type” content=“text/html; charset=iso-8869-1” >

In addition, for adding Favorites Icon, we can put the following code inside the <head> tag to link it to the required icon
favicon.ico:
 <link REL=“SHORTCUTAICON”
 HREF= http://www.site.com/favicon.ico >

8.1.6 How to title a Page?

We can have the required title to appear in the title bar with the help of <title> and </title> options. For example, take the
following simple html file (title.htm) and view through IE.
 <html>

 <title>

 This is My Second Web Page

 </title>

 <body>

 I wish I will succeed in my GATE. I pray all mighty for the same.

 </body>

 </html>

When we open the html file with the above content through IE, we get a screen as shown below (Figure 8.2) . Observe the
circled portion which is called as the title portion.

Figure 8.2 Web page with title

8.4 Computer Science & Information Technology for GATE

8.1.7 How to make Lines (horizontal rules)?

Making a horizontal rule is probably the easiest thing to write in HTML. (This is the command (or tag) for having a hori-

zontal rule in our web page. Do note that we don’t need any end tag for this tag.) <hr>
We will see a horizontal line in our page which stretches across whole page as shown below.

8.1.8 Empty HTML Elements (Line Breaks)

HTML elements without content are called empty elements. Empty elements can be built-in the start tag.

 is an empty element without a closing tag (it defines a line break).
In XHTML, XML, and future versions of HTML, all elements must be closed. Adding a slash to the start tag, like
,
is the proper way of closing empty elements, accepted by HTML, XHTML and XML. Even if
 works in all browsers,
writing
 instead is more future proof.

8.1.9 How to make text in different Colours?

Changing the colour of the text is also very simple. Here is the tag .

(Here is where you write your text.)

You can change the font size to make it bigger or smaller. In between the “”should you, put the code of whichever colour
you, wish to use. The following are the colour codes of various colours.

Basic Colors

White rgb=#FFFFFF Brown rgb=#A62A2A

Black rgb=#000000 Bronze rgb=#8C7853

Red rgb=#FF0000 Bronze II rgb=#A67D3D

Green rgb=#00FF00 Cadet Blue rgb=#5F9F9F

Blue rgb=#0000FF Cool Copper rgb=#D98719

Magenta rgb=#FF00FF Copper rgb=#B87333

Cyan rgb=#00FFFF Coral rgb=#FF7F00

Yellow rgb=#FFFF00 Corn Flower rbg=#42426F

Aquamarine rgb=#70DB93 Dark Brown rgb=#5C4033

Baker’s Chocolate rgb=#5C3317 Dark Green rgb=#2F4F2F

Blue Violet rgb=#9F5F9F Dark Green Copper rgb=#4A766E

Brass rgb=#B5A642 Dark Olive Green rgb=#4F4F2F

Bright Gold rgb=#D9D919 Dark Orchid rgb=#9932CD

Dark Purple rgb=#871F78 Midnight Blue rgb=#2F2F4F

Dark Slate Blue rgb=#6B238E Navy Blue rgb=#23238E

Dark Slate Grey rgb=#2F4F4F Neon Blue rgb=#4D4DFF

Dark Tan rgb=#97694F Neon Pink rgb=#FF6EC7

Dark Turquoise rgb=#7093DB New Midnight Blue rgb=#00009C

Dark Wood rgb=#855E42 New Tan rgb=#EBC79E

Dim Grey rgb=#545454 Old Gold rgb=#CFB53B

Dusty Rose rgb=#856363 Orange rgb=#FF7F00

Feldspar rgb=#D19275 Orange Red rgb=#FF2400

Introduction to HTML, XML and Client Server Programming 8.5

Firebrick rgb=#8E2323 Orchid rgb=#DB70DB

Forest Green rgb=#238E23 Pale Green rgb=#8FBC8F

Gold rgb=#CD7F32 Pink rgb=#BC8F8F

Goldenrod rgb=#DBDB70 Plum rgb=#EAADEA

Grey rgb=#C0C0C0 Quartz rgb=#D9D9F3

Green Copper rgb=#527F76 Rich Blue rgb=#5959AB

Green Yellow rgb=#93DB70 Salmon rgb=#6F4242

Hunter Green rgb=#215E21 Scarlet rgb=#8C1717

Indian Red rgb=#4E2F2F Sea Green rgb=#238E68

Khaki rgb=#9F9F5F Semi-Sweet Chocolate rgb=#6B4226

Light Blue rgb=#C0D9D9 Sienna rgb=#8E6B23

Light Grey rgb=#A8A8A8 Silver rgb=#E6E8FA

Light Steel Blue rgb=#8F8FBD Sky Blue rgb=#3299CC

Light Wood rgb=#E9C2A6 Slate Blue rgb=#007FFF

Lime Green rgb=#32CD32 Spicy Pink rgb=#FF1CAE

Mandarian Orange rgb=#E47833 Spring Green rgb=#00FF7F

Maroon rgb=#8E236B Steel Blue rgb=#236B8E

Medium Aquamarine rgb=#32CD99 Summer Sky rgb=#38B0DE

Medium Blue rgb=#3232CD Tan rgb=#DB9370

Medium Forest Green rgb=#6B8E23 Thistle rgb=#D8BFD8

Medium Goldenrod rgb=#EAEAAE Turquoise rgb=#ADEAEA

Medium Orchid rgb=#9370DB Very Dark Brown rgb=#5C4033

Medium Sea Green rgb=#426F42 Very Light Grey rgb=#CDCDCD

Medium Slate Blue rgb=#7F00FF Violet rgb=#4F2F4F

Medium Spring Green rgb=#7FFF00 Violet Red rgb=#CC3299

Medium Turquoise rgb=#70DBDB Wheat rgb=#D8D8BF

Medium Violet Red rgb=#DB7093 Yellow Green rgb=#99CC32

Medium Wood rgb=#A68064

Figure 8.3 Web page Having text with colours

8.6 Computer Science & Information Technology for GATE

The following html file (“second. htm”) with font tags will show the web page as shown above (Figure 8.3). As usual, we
run IE and open second.htm file.

 <html>

 <body>

 This is text with size 4 and color Red.

 This is text with size 5 and color Cyan.

 This is text with size 6 and color Blue.

 This is text with size 7 and color Yellow.

 This is text with size 7 and color Yellow.

 </body>

 </html>

8.1.10 How to make text in different Sizes

In HTML, there exist two ways to display text in different sizes. The first way is using tag which is explained above
in section 8.1.9. How to make text in (different Colours. This is slighthy complicated. The approach which is shown below
is very simple and we can display the text in 7 different sizes.

We put text between the <h#> tags to change the size; with <h1> being the biggest and <h7> being the smallest size. Do

remember to end the tags with </h#>.
See the following file “third.htm” with the above tags. When
we open this html file using the IE, the web page looks like the
following Figure (Figure 8.4).

 <html>

 <body>

 <h1>This is text with size 1.</h1>

 <h2>This is text with size 2.</h2>

 <h3>This is text with size 3.</h3>

 <h4>This is text with size 4.</h4>

 <h5>This is text with size 5.</h5>

 <h6>This is text with size 6.</h6>

 <h7>This is text with size 7.</h7>

 </body>

 </html>

8.1.11 Let us enjoy the fonts in a variety of Styles

We can also use the following tags for displaying a variety of font
styles. Figure 8.4 A web page Having text with different sizes

Introduction to HTML, XML and Client Server Programming 8.7

 For bold text.

<u> For Underlined text

<i> For Italic text

<strike> To struck some text.

 For Emphasized text

<tt> For teletype type text.

<big> For big sized text.

<small> For Small text.

<blink> For blinking text.

We can combine the above tags with text size tags such as <h1>, <h2>, etc. For example, the following html file (fourth.
htm) shows the use of the same. The effect of these tags is shown in the following Figure (Figure 8.5).
 <html>

 <body>

 <i>The Tata McGrawHill Co.
 </i>

 <u> N.B. Venkateswarlu
</u>

 This is an example bold text.

 <strike>This is an example striked text.
</strike>

 <h1><i><u><strike>

 Best of Luck for your GATE examination

 </h1></i></u></strike>

 </body>

 </html>

Figure 8.5 A web page Having text in variety of styles

8.8 Computer Science & Information Technology for GATE

Also, we can use , , <dfn>, <code>, <samp>, <kbd>, <var>, and <cite> tags for formatting the text. Their
use is illustrated in the following table.

Tag Description

 Renders as emphasized text

 Renders as strong emphasized text

<dfn> Defines a definition term

<code> Defines computer code text

<samp> Defines sample computer code

<kbd> Defines keyboard text

<var> Defines a variable part of a text

<cite> Defines a citation

8.1.12 How to make scrolling Text?

We can display a message to be scrolled in our HTML page with <MARQUEE> tag. The following code will scroll the
message “Hello How are you my dear?”. We can change the SCROLLDELAY and other parameters.

 <MARQUEE behavior=alternate SCROLLDELAY=“10” SCROLLAMOUNT=“1”> Hello How are you my dear?

 </MARQUEE>

 <MARQUEE behavior=alternate SCROLLDELAY=“10” SCROLLAMOUNT=“1”>

 <img src=“

 </MARQUEE>

We can also make an image to scroll using the following tag.

8.1.13 How to make “freestyle” Text?

Making “freestyle” text (in other words, text “as is”) is as easy as making it bold or italic. We use <pre> tag for this purpose.

This feature is very useful to display programs, etc., in the html page. Consider the following html file (fifth.htm) which

contains <pre> tags. Output looks like the following figure, when opened through IE (Figure 8.6). We may observe the
empty lines, spaces, etc., which are shown as it is (verbatim).

<html><body>

<pre>

int main()

{

 printf(“Hello Welcome to HTML\n”);

}

</pre>

</body></html>

Introduction to HTML, XML and Client Server Programming 8.9

Figure 8.6 A Web page that displays verbatim output

8.1.14 To link to your e-mail ID

We can create a link to our email ID from our page by using the following tag. Here, we are using a URL (uniform resource

locator) that uses mailto protocol.

 Contact me!

8.1.15 HTML attributes

With HTML tags, we can use different attributes.

Attribute Value Description

class class_rule or style_rule The class of the element

id id_name A unique id for the element

style style_definition An inline style definition

title tooltip_text A text to display in a tool tip

The attributes listed below are standard, and are supported by all HTML and XHTML tags, with a few exceptions.

8.1.15.1 Core Attributes

Not valid in base, head, html, meta, param, script, style, and title elements.

Attribute Value Description

class classname Specifies a classname for an element

id id Specifies a unique id for an element

style style_definition Specifies an inline style for an element

title text Specifies extra information about an element

8.10 Computer Science & Information Technology for GATE

8.1.15.2 Language Attributes

Not valid in base, br, frame, frameset, hr, iframe, param, and script elements.

Attribute Value Description

dir
ltr
rtl

Specifies the text direction for the content in an element

lang language_code Specifies a language code for the content in an element. Language code reference

xml:lang language_code
Specifies a language code for the content in an element, in XHTML documents.

Language code reference

8.1.15.3 Keyboard Attributes

Attribute Value Description

accesskey character Specifies a keyboard shortcut to access an element

tabindex number Specifies the tab order of an element

Comments are written like this: <!-- This is a comment -->

8.1.15.4 Some more HTML Text Formatting Tags

Tag Description

 Defines bold text

<big> Defines big text

 Defines emphasized text

<i> Defines italic text

<small> Defines small text

 Defines strong text

<sub> Defines subscripted text

<sup> Defines superscripted text

<ins> Defines inserted text

 Defines deleted text

<s> Deprecated. Use instead

<strike> Deprecated. Use instead

<u> Deprecated. Use styles instead

8.1.15.5 “Computer Output” Tags

Tag Description

<code> Defines computer code text

<kbd> Defines keyboard text

<samp> Defines sample computer code

<tt> Defines teletype text

Introduction to HTML, XML and Client Server Programming 8.11

Tag Description

<var> Defines a variable

<pre> Defines preformatted text

<listing> Deprecated. Use <pre> instead

<plaintext> Deprecated. Use <pre> instead

<xmp> Deprecated. Use <pre> instead

8.1.15.6 Citations, Quotations and Definition Tags

Tag Description

<abbr> Defines an abbreviation

<acronym> Defines an acronym

<address> Defines an address element

<bdo> Defines the text direction

<blockquote> Defines a long quotation

<q> Defines a short quotation

<cite> Defines a citation

<dfn> Defines a definition term

8.1.15.7 HTML Styles

We can specify HTML Style such as:
 style=“background-color:yellow”

 style=“font-size:10px”

 style=“font-family:Times”

 style=“text-align:center”

8.1.15.8 Font Family, Color and Size

 <p style=“font-family:courier new; color:red; font-size:20px”>

8.1.15.9 Text Alignment

<h1 style=“text-align:center”>

8.1.16 How to make an Image as Background?

We have some control on the behavior of the total page. This is achieved through body tag. For example, body tag can be

used for changing the colours of the background, the links, etc., as shown below:

<body bgcolor=“” text=“” alink =“” link=“” vlink=“”>

In between all the “”s, we have to add the required colour codes. Here, alink indicates active links, link indicates links,
vlink indicate visited links. We can specify the required colours for these links. To make our background into a pattern or
a picture, we should first upload a pattern or picture into our directory as a (JPG or gif) image or know the URL of a good
background image. For example:

 <body background=“http://www.what.com/what.gif” text=“#000000” link=“#000000” vlink=“#000000”>

This would make our background into what.gif image. It would make the writing, the links, and the visited links all black.
Also, text attribute is used to specify the colour of the text in the document. In this case, we are specifying the text also as
black.

8.12 Computer Science & Information Technology for GATE

8.1.17 How to make Lists (Ordered and

Un-Ordered) lists

We can create lists (also referred as bullets) in HTML. We can have ordered and un-ordered lists. Ordered lists can be cre-
ated using and tags; while un-ordered lists can be created through and . In both the lists, items are
specified with and tags. See the following demonstration html file (list.htm), whose output in the IE will be as
shown in figure 8.7. In the following html page we have shown sub-lists also. However, look and feel of these lists depends
on the browser. We do not have much control on them. In addition, we can maintain anything such as text, images, text
boxes, etc., as lists.

<html><body>

These are ordered Lists

 One

 Two

 Three

<hr>

These are Un-ordered Lists

 One

 Two

 Three

<hr>

These are ordered and with

sub-ordered list. Lists

 One

 One

Figure 8.7 A Web page with Lists

8.1.17.1 Definition Lists

A definition list is not a list of single items. It is a list of items (terms), with a description of each item (term). A definition
list starts with a <dl> tag (definition list). Each term starts with a <dt> tag (definition term). Each description starts with
a <dd> tag (definition description).

Introduction to HTML, XML and Client Server Programming 8.13

<dl>

<dt>Coffee</dt>

<dd>Black hot drink</dd>

<dt>Milk</dt>

<dd>White cold drink</dd>

</dl>

Here is how it looks in a browser:

 Coffee

 Black hot drink

 Milk

 White cold drink

Inside <dd> tag, we can put paragraphs, line breaks, images, links, other lists.
List Tags

Tag Description

 Defines an ordered list

 Defines an un-ordered list

 Defines a list item

<dl> Defines a definition list

<dt> Defines a term (an item) in a definition list

<dd> Defines a description of a term in a definition list

<dir> Deprecated. Use instead

<menu> Deprecated. Use instead

8.1.18 How to make a Link to another Page (Hyper Links)?

We know that WWW is collection of hyper documents in which a group of words in a document are linked to other

documents situated elsewhere in the Internet. In this section, we shall learn how to create links (hyper links or Uniform

Resource Locators (URLs)) in our web page. Making links is VERY easy. Here is the format of link creation tag or anchor

tag <a>:

For example, to make a link on our page to here it would look like this:

This will make a link but we won’t be able to see it or use it. To make it work, we have to put some text in between the
<a> and. We have to include the tag at the end of every link or the rest of our page will be the link. See the following
html file (link.htm) which creates three hyper links with the help of anchor tags <a> and . If we view this file in IE, we
will get output as shown in the figure 8.8. When we place mouse on any of the links, we will see that the cursor (pointer)
changes to a hand-like icon. If we click on this link, we will get the corresponding web page. Thus, these words of current
html document are logically connected to a file on another machine.

 <html><body>

 Select the Email Providers You Like

 Yahoo

 Gmail

 Hotmail

 </body> </html>

8.14 Computer Science & Information Technology for GATE

Figure 8.8 A web page with Hyper links

We can use target attributes with anchor tags to indicates where the linked document has to be opened. For example, the
code below will open the document in a new browser window:

 Visit W3Schools!

We also have named anchors which are explained in detail in the following section. Named anchors are not displayed in
any special way. They are invisible to the reader.
Named anchor syntax: Any content
The link syntax to a named anchor: Any content

The # in the href attribute defines a link to a named anchor.

8.1.19 How to make a Link to Another Page in the Same Directory?

Making a link to a page in the same directory as your intitial page is VERY VERY easy. Here is the script to do it. <a href=
“ address of page”>

For Example, here is how we made a link from this page to the page that shows you colours:

How To Make Links in the Same Page. Sometimes we often require to move from one location to another location in a
web page. This is achieved by defining local anchor tags. The following html file (intrapagelink.htm) shows how to use the
same.

 <html> <body>

 Section 1

 Section 2

 Section 3

 Section 4

 <h1>Section1</h1>

 <h1>Section2</h2>

Introduction to HTML, XML and Client Server Programming 8.15

 This section is the Second one.

 <h1>Section3</h1>

 This section is the Third one.

 <h1>Section4</h1>

 This section is the Fourth one.

 </body></html>

In the above html page, we have defined 4 local anchor tags with the name sec1, sec2, etc. When the above page is opened
through IE, we will get display as shown in Figure 8.9 (a) If we click, section3, we get the display as shown in Figure 8.9 (b).
That is, we have moved to section3 of the same page. Thus, we can move from one area to another area of the same web
page using local anchor tags.

Figure 8.9 (a) A web page with local anchors Figure 8.9 (b) A web page after clicking local anchor

8.1.20 How to display or insert an Image in our Web Page?

This is also an extremely simple command. It’s basically a link but a little different. Here is the script:

We can specify the local images also. If the images are in the same directory of the web page, then we only have to write
their names.

8.1.21 How to make Images as Hyper Links?

Making images into links is easy as it involves combining both the anchor and img tags as shown below:

We must make sure that the actual link reference comes before the image. Also the link closing tag must come last as
shown above.

8.1.22 How to control the size of our Images?

To do this all we have to do is to add this into our image tags:

width=whatever height=whatever
For example,

8.16 Computer Science & Information Technology for GATE

8.1.23 How to make Text appear beside an Image?

Have you ever noticed that when you type beside an image the text only starts at the bottom of the picture and we end up
with a big empty space? Well, this little addition to the image command will solve that problem:
 align=right or align=left

For example,

8.1.24 How to make a portion of an Image Clickable?

With the help of <map> and </map> tags we can make an image clickable. Rather, we can define some portion of the im-
age as clickable. That is, when we click in the defined portion of the image, some page will be loaded. To achieve this, first
we have to load an image with tag with usemap attribute as shown below. Also, we have to define the clickable areas
as shown below. To define the clickable areas in the image, we will be using <area> and </area> tags.

 <html> <body>

 <p>Click on the sun or on one of the planets to watch it closer:</p>

 <map name=“planetmap”>

 <area shape=“rect” coords=“0,0,82,126” alt=“Sun” href=“sun.htm” />

 <area shape=“circle” coords=“90,58,3” alt=“Mercury” href=“mercur.htm” />

 <area shape=“circle” coords=“124,58,8” alt=“Venus” href=“venus.htm” />

 </map>

 </body> </html>

Based on the location of our click in the image that is displayed in the current web page, the correspondings web pages
will load according to the areas defined above (Figure 8.10).

Figure 8.10 A web page with images as links

Introduction to HTML, XML and Client Server Programming 8.17

The following table explains the use of tags used in the above page.

Tag Description

 Defines an image

<map> Defines an image map

<area> Defines a clickable area inside an image map

8.1.24.1 The Alt Attribute with Images

The alt attribute is used to define an “alternate text” for an image. That is, when we place mouse on the image, this text
will be displayed. Sometimes when the image does not load properly, we get an error icon (X mark). To know the name
of the image that did not load, scroll the mouse pointer on the image. Of course, the value of the alt attribute is an author-
defined text.

8.1.25 How to make a Link that opens a New Browser Window?

This is as easy as adding a command at the end of the link command. Here is the command : target=body
For example,

This will open a new window when we click a link, especially useful when making links during chatting, etc. Possible val-
ues for target attributes are given in the following table.

Value Description

_blank Open the linked document in a new window

_self Open the linked document in the same frame as it was clicked (this is the default value)

_parent Open the linked document in the parent frameset

_top Open the linked document in the full body of the window

framename Open the linked document in a named frame

The <base> tag is used to specify a default URL and a default target for all links on a page. The <base> tag specifies the base

URL/target for all relative URLs in a document.

 <head>

 <base href=“http://www.w3schools

 com/images/” target=“_blank” />

 </head>

The <base> tag must go inside the <head> element. In HTML, the <base> tag has no end tag. Whereas in XHTML the
<base> tag must be properly closed. It also contains href and target attributes.

8.1.26 How to make a Table?

Tables are a more complicated command than most of the ones here. To create a table we have to use <table> and </table>
tags. We have to define each row with <tr> and </tr> tags. In each row, we can maintain fields with <td> and </td> fields.
In the following html file (“table.htm”), we are creating a simple table with border. Also, last table uses <th> and </th> tags
to specify table headings. If we open this html file from IE, we will see the display as shown in Figure 8.11.
 <html><body>

 A Simple Table with borders

 <table border=4>

 <tr>

8.18 Computer Science & Information Technology for GATE

 <td>S.No</td>

 <td>Name</td>

 </tr>

 <tr><td>1</td><td>

 Prof NB Venkateswarlu</td></tr>

 <tr><td>2</td><td>

 Dr. G.V. Saradamba</td></tr>

 </table>

 A Simple Table without borders.

 <table>

 <tr>

 <td>S.No</td>

 <td>Name</td>

 </tr>

 <tr><td>1</td><td>

 Prof NB Venkateswarlu</td></tr>

 <tr><td>2</td><td>

 Dr. G.V. Saradamba</td></tr>

 </table>

 A Simple Table with header

 <table border=4>

 <tr>

 <th>S.No</th>

 <th>Name</th>

 </tr>

 <tr><td>1</td><td>

 Prof NB Venkateswarlu</td></tr>

 <tr><td>2</td><td>

 Dr. G.V. Saradamba</td></tr>

 </table>

 </body>

 </html>

8.1.26.1 Table Tags

The following table lists all the possible tags that can be used in creating tables.

Tag Description

<table> Defines a table

<th> Defines a table header

<tr> Defines a table row

<td> Defines a table cell

<caption> Defines a table caption

<colgroup> Defines groups of table columns

Figure 8.11 A web page tables

Introduction to HTML, XML and Client Server Programming 8.19

Tag Description

<col> Defines the attribute values for one or more columns in a table

<thead> Defines a table head

<tbody> Defines a table body

<tfoot> Defines a table footer

8.1.27 How to make Forms?

We are often required to create pages which viewers are required to fill. For this purpose forms are used. A form is an area
that can contain form elements or fields. We have fields such as text field, text area, password field, submit/reset button
etc., in addition to combo box. A typical form is defined with the <form> tag.

<form>

.

input elements

.

</form>

8.1.27.1 Input

The most used form tag is the <input> tag. The type of input is specified with the type attribute. The most commonly used
input types are explained below.

8.1.27.2 Text Fields

Text fields are used when we want the user to type letters, numbers, etc. in a form.

<form>

First name:

Last name:

<input type=“text” name=“lastname” />

</form>

The above code generates a page in a browser that looks like:

First name :

Last name :

Note that the form itself is not visible. Also note that in most browsers, the width of the text field is 20 characters by default.
We can change the size by size attribute of input tag.

8.1.27.3 Radio Buttons

Radio Buttons are used when we want the user to select one of a limited number of choices.

<form>

<input type=“radio” name=“sex” value=“male” /> Male

<input type=“radio” name=“sex” value=“female” /> Female

</form>

How it looks in a browser:

Note that only one option can be chosen.

8.20 Computer Science & Information Technology for GATE

8.1.27.4 Checkboxes

Checkboxes are used when we want the user to select one or more options of a limited number of choices.

<form>

I have a bike:

<input type=“checkbox” name=“vehicle” value=“Bike” />

I have a car:

<input type=“checkbox” name=“vehicle” value=“Car” />

I have an airplane:

<input type=“checkbox” name=“vehicle” value=“Airplane” />

</form>

8.1.27.5 The Form’s Action Attribute and the Submit Button

When the user clicks on the “Submit” button, the content of the form is sent to the web server. The form’s action attribute
defines the name of the program to which we have to send the filled content. The file defined in the action attribute usually

does something with the received input.
<form name=“input” action=“html_form_submit.asp” method=“get”>

Username:

<input type=“text” name=“user” />

<input type=“submit” value=“Submit” />

</form>

Figure 8.12 A web page with Form Fields

Introduction to HTML, XML and Client Server Programming 8.21

If we type some characters in the text field above, and click the “Submit” button, the browser will send our input to a page

called “html_form_submit.asp”. The page will show us the received input.
The following sample.html file with <form> and </form> tags will give a form as shown in the following Figure (Figire 8.12).

<html><body>

<form>

Last Name: <input name=“last” type=“text” size=12>

Password: <input name=“password” type=“password” size=12>

Email Address: <input name=“address” type= “text”size=30>

Comments:

<textarea name=“whatever” rows=5 cols=30></textarea>

<select name=“whatever” size=4> <option>Windows

<option>DOS <option>Linux <option>VMS <option>Unix

</select>

<input type=“Submit” value=“Send”> <input type=“reset” value=“reset”>

</form>

</body></html>

We can fill the fields as shown in Figure 8.13. If we press reset button, whatever we have typed will be cleared. If we press
SEND button (submit button), the screen looks like Figure 8.14.

Figure 8.13 A web page with Filled Fields

The form data is usually used by either applets or server side program such as servlets, perl scripts, PHP scripts etc. The
browser supplies it to the respective program like variable=value pairs separated by & See the encircled portion of the fol-
lowing Figure (Figure 8.14). Here, the variable is the one which is defined as name=“” in form element fields. For example,
in the above web page we have defined text field for First Name as “first”, Last Name as “last”, etc. Thus, once we press the
submit button (Send button in this case), this variable and the value typed in the field are sent to the server side programs.
More about these concepts can be found in any book on server side scripts.

8.22 Computer Science & Information Technology for GATE

Figure 8.14 A web page that shows effect of submit button

8.1.28 How to make a TOC (Table of Contents)?

To have TOC, first we have to have sections all over our web page. To display TOC:

the name of your table of contents goes here

We can also specify the TOC location, at the top or the bottom. To make a link back to the TOC, we can write:

To the top

The rest of the sections follow the same pattern:

go to section one

That is a link to a place called “sec1”, which can be created as :

This is section one

To sum it all, sections can be created by using the & tags. Links to them can be created by making & tags.

8.1.29 How to make Frames?

If we want to display more than one web page on the screen, we use frames. Making frames is slightly complicated but not
quite as difficult as making forms. When we make a page with frames we actually don’t have anything on that page. It’s a
kind of a reference page.
Here, we use FRAMESET tag which is a frame container for dividing a window into rectangular sub-spaces called frames.
The FRAMESET element contains one or more FRAMESET or FRAME elements, along with an optional NOFRAMES
element to provide alternate content for browsers that do not support frames or have frames disabled. A meaningful
NOFRAMES element should always be provided and should at the very least contain links to the main frame or frames.

Introduction to HTML, XML and Client Server Programming 8.23

The ROWS and COLS attributes of frameset tag define the dimensions of each frame in the set. Each attribute takes a
comma-separated list of lengths, specified in pixels, as a percentage, or as a relative length. A relative length is expressed
as i* where i is an integer. For example, a frameset defined with ROWS=“4*,*” (* is equivalent to 1*) will have its first row
allotted four times the height of the second row. The values specified for the ROWS attribute give the height of each row,
from top to bottom. The COLS attribute gives the width of each column from left to right. If ROWS or COLS is omitted,
the implied value for the attribute is 100%. If both attributes are specified, a grid is defined and filled left-to-right then
top-to-bottom.

The following example sets up a grid with two rows and three columns:
<FRAMESET ROWS=“70%,30%” COLS=“33%,33%,34%”>
The next example features nested FRAMESET elements to define two frames in the first row and one frame in the second
row. Second row is of 100 pixels width while the remaining is for the first row. The first row is divided into two columns
such that 40% of the column is for the first frame and remaining for the second frame.
 <FRAMESET ROWS=“*,100”>

 <FRAMESET COLS=“40%,*”>

Here is an example:
<FRAMESET>

<FRAMESET COLS=“50%,50%”>

<frameset rows=“50%,50%”>

<FRAME SRC=“http://www.ritchcenter.com/index.htm “>

<FRAME SRC=“http://www.ritchcenter.com/index.htm “>

</frameset>

<frameset rows=50%,50%”>

<frame src=“http://www.ritchcenter.com/index.htm”>

<frame src=“http://www.ritchcenter.com/index.htm ”>

</FRAMESET>

</FRAMESET>

The first half up to the first </frameset> tag defines what goes on the left side and everything after that defines what is

on the right side. The <frame src=“”> tags tell what is in each frame. In this example, there are 4 frames so there are four

<frame src=“”> tags. In the <frame src=“”> tags, we would fill in whatever the URL is of what we want in that frame. The

page created with these frames is actually four different documents of HTML. If we open the above html file, we will get

a page which looks like Figure 8.15.

Do remember that HTML5.0 does not support framesets.

Figure 8.15 A web page with Four Frames

8.24 Computer Science & Information Technology for GATE

8.1.30 How to make Background Music to Play?

To add background music to our site, we can use:

<CENTER><DD><EMBED SRC=“blah.mid” WIDTH=0 HEIGHT=0 AUTOSTART=TRUE>

<HR width=“100%”></DD></CENTER>

The sound files can be midi type, au type or wav type. If they are available in the same directory of the html file, we can
simply enter their names in place of blah.mid. If the sound file is on another machine, we can use URL of that sound file.
We can also achieve the same using the following tag.

8.1.31 The APPLET HTML Tag

In many front-end applications, Java applets are included on web pages using the <APPLET> tag. The <APPLET> tag is
most similar to the tag. Like tag, <APPLET> tag needs to reference a source file that is not part of the
HTML page on which it is embedded. IMG’s do this with the SRC= parameter. APPLET’s do this with the CODE= pa-
rameter. The CODE parameter tells the browser where to look for the compiled Java.class file. It is relative to the location
of the source document. Thus if we are browsing http://metalab.unc.edu/javafaq/index.html and that page references an
applet with CODE=animation.class, then the animation.class file needs to be at http://metalab.unc.edu/javafaq/anima-
tion.class.

For reasons that remain a mystery to HTML authors everywhere, but possibly has something to do with packages and
classpaths, if the applet resides somewhere other than the same directory as the page it lives on, then we don’t have to give a
URL to its location. Rather, we point at the directory from where the .class file is using the CODEBASE parameter. We still
have to use CODE to give the name of the .class file. Also like tag, <APPLET> tag has several parameters to define
how it is positioned on the page. HEIGHT and WIDTH parameters work exactly as they do with , specifying how
big a rectangle the browser should leave for the applet. These numbers are specified in pixels. ALIGN attribute also works
exactly as for images (in those browsers that support ALIGN) defining how the applet’s rectangle is placed on the page
relative to other elements. Possible values include LEFT, RIGHT, TOP, TEXTTOP, MIDDLE, ABSMIDDLE, BASELINE,
BOTTOM and ABSBOTTOM. Finally as with IMG you can specify an HSPACE and a VSPACE in pixels to set the amount
of blank space between an applet and the surrounding text.

QUESTIONS

1. Is the output of the following <pre> block and <code>
block same?

 <pre>

#include<stdio.h>

int main()

{

return 0;

 }

 </pre>

 <code>

 #include<stdio.h>

 int main()

 {

 return 0;

 }

 </code>

 Answer: No. The <code> block gives a single line out-
put in the browser.

2. It stdio.h displayed in the browser?

<pre>

#include<stdio.h>

</pre>

 Answer: No

3. Is the output of the following <samp> block and
<code> block same?

<samp>

#include<stdio.h>

int main()

{

return 0;

}

</samp>

<code>

#include<stdio.h>

int main()

{

Introduction to HTML, XML and Client Server Programming 8.25

return 0;

}

</code>

Answer: Yes. Both give a single line output in the
browser.

OBJECTIVE TYPE QUESTIONS

1. Is HTML language a compiled languages? (Y/N)

2. The browser displays elements according to HTML
tags. (Y/N)

3. One can make a portion of an image to be ready for
click using maptag. (Y/N)

4. The browser can open a plain text file also. (Y/N)

5. When we open a Java language source file using a Web
browser, it runs. (Y/N)

6. When we open a Java Applet Class file using a HTML
file (using APPLET tag), the program runs. (Y/N)

7. Browsers can send HTTP requests to Web servers.
(Y/N)

8. The <pre> tag can be used to display verbatim. (Y/N)

9. Java applications (program with main method) have
to be executed using browsers only. (Y/N)

10. We cannot change page look dynamically using static
HTML tags. (Y/N)

11. __ attribute is used to specify text field width

A. length B. size

C. len D. None

12. Paragraph tag

A. <para>

B. <format align=“justified”>

C. <p>

D. None

13. Find the odd man out

A. B.

C. D. <du>

14. First tag in a typical HTML document

A. <body> B. <title>

C. <html> D. <head>

15. A tag unrelated to <td>

A. <table> B. <du>

C. <tr> D. <th>

16. Tag related to largest size heading

A. B. <h1>

C. <h7> D. <large-font>

17. To specify the background color of a page

A. <background>“Yellow”</background>

B. <bg>”Yellow</bg>

C. <body background=“yellow”>

D. <body bgcolor=“yellow”>

18. Find the odd man out

A. http B. html C. ftp D. mailto

19. We cannot create an URL with

A. http B. html C. ftp D. mailto

20. The tag which is used to display verbatim

A. <pr> B. <p>

C. <caption> D. <pre>

21. Is it possible to have multiple <body> tags?(Y/N)

22. The tag specifies the base URL/target for all relative
URLs in a document.

A. <rel> B. <link>

C. <base> D. <relative-link>

23. The <base> tag goes inside the ___ tag.

A. <title> B. <head>

C. <body> D. <document>

24. The base URL should be an absolute URL. (Y/N)

25. The tag that makes a portion of an image ready for
click is

A. <click> B. <clickedimage>

C. D. <map>

26. The tags that are mostly associated with <form>

A. <post> B. <get>

C. <both> D. <action>

27. With which tag multiple is used

A. <list> B. <menu>

C. <select> D. <none>

28. ___ attribute is used to specify number of visible op-
tions

A. size B. one

C. two D. multiple

29. Drop down list related tag

A. <list> B.

C. <select> D.

30. It is not possible to have subscripts and superscripts in
HTML. (Y/N)

31. Find the tag related to <tbody>, <tfoot>, <thead>

A. <table> B. <column>

C. <row> D. <body>

32. Find the odd man out of the following in relation to
scrollable tables

A. <tbody> B. <tfoot>

C. <thead> D. <head>

8.26 Computer Science & Information Technology for GATE

33. Both <area> and <textarea> are related to font. (Y/N)

34. To create an e-mail in our contact details

A. <mail:nbv@xyz.com>

B.

C. <mailto:nbv@xyz.com>

D. None

35. Find the odd man out

A. _self B. _blank

C. _parent D. None

36. To specify the relationship between the current docu-
ment and the linked document in anchor tag

A. Rev B. Rel

C. Relative D. None

37. HTML enables us to manage web document’s

A. Presentation

B. Content

C. Both presentation and content

D. Neither presentation nor content

38. The class attribute in HTML is used

A. to a apply some style to some elements
B. to embed some program into HTML
C. to specify the quality of a document
D. None

A N S W E R K E Y

1. N 2. Y 3. Y 4. Y

5. N 6. Y 7. Y 8. Y

9. N 10. Y 11. B 12. C

13. D 14. D 15. B 16. B

17. D 18. B 19. B 20. A

21. Y 22. C 23. B 24. N

25. D 26. D 27. C 28. A

29. C 30. N 31. A 32. D

33. Y 34. B 35. D 36. B

37. C 38. A

8.2 Cascading Style Sheets (CSS): Introduction

HTML tags were originally designed to define the content of a document. They are basically designed to say “This is a
header”, “This is a paragraph”, “This is a table”, by using tags like <h1>, <p>, <table>, and so on. The layout of the document
was supposed to be taken care by the browser, without using any formatting tags. Thus, the look and feel of pages devel-
oped using HTML used to be different in different browsers. It became more and more difficult to create web sites where
the content of HTML documents was clearly separated from the document’s presentation layout. To solve this problem,
the World Wide Web Consortium (W3C, a non-profit, standard setting consortium, responsible for standardizing HTML)
created STYLES (Cascading Style Sheets) in addition to HTML. As of now, all major browsers support Cascading Style
Sheets.
Main attraction of CSS is that the Style Sheets can save a lot of our labor. Styles sheets define how HTML elements are
to be displayed, just like the font tag and the color attribute in HTML. Styles sheets enable us to change the appearance
and layout of all the pages in our site, just by editing one single CSS document.

8.2.1 Why do we use Style Sheets?

• Much better control over font face, font size, colors, backgrounds, and many other elements of pages.

• Ability to make changes in one location that can apply to many, possibly hundreds of pages in a site.

• Less code, smaller pages, faster downloads.

8.2.2 Why can’t we do that in HTML?

• HTML is not designed to control appearance, but for the overall structure of a web page.

• Later versions of HTML added some formatting elements such as font tags, color, size, etc. However, people identi-
fied the need for separation of style from display.

8.2.3 Separation of Content and Style

• HTML documents contain the structure of the document.

• CSS contains all information related to how the document displays in browser.

• Separation is desirable for maintenance reasons, Search engines, and display of same content on different platforms.

Introduction to HTML, XML and Client Server Programming 8.27

8.2.4 What is a Style Sheet?

• Text file with style definitions.

8.2.5 How is Style applied?

• Web page is made of elements (paragraphs, headings, links, div’s, images, etc.).

• Style is applied to elements.

• Individual elements, pagewide elements, or classes of elements.

8.2.6 Brief Introduction to CSS

Cascading Style Sheets (CSS) allow the web page designer to define HTML elements. This amount of control over the

rendering of the page allows a great deal of freedom in determining what our page will look like. For example, take a tag

<h1> and give it new attributes like highlighting text with red. Whenever we want text to be highlighted red, all we have to

do is use the <h1> tag instead of using . Since CSS allows the designer to separate style from

content, this saves a lot of time when editing pages and makes HTML code easier to read.

8.2.6.1 Syntax

CSS syntax is easy to remember: selector, property and value. The selector is the HTML tag which we want to modify,
property is an attribute which we want to modify with a required value.

n Example

p {font-family: “verdana, arial, helvetica”}

Here, p indicates that the <p> tag is our selector, “font-family” is the property that will be modified by the value “verdana,

arial, helvetica” . The property and value are separated by a colon, and surrounded by curly braces. For example, the fol-

lowing makes the body black.

body {color: black}

Usually value is assigned directly. If the value is multiple words, put quotes around the value like “verdana, arial, helvetica”.

If we wish to specify more than one property, we must separate each property with a semicolon. The example below shows

how to define a center aligned paragraph, with a red text color:

p {text-align:center;color:red}

We can also make style definitions easier to read by spacing them out and writing each property on a different line:

span

{

color:red

font-style: italic

}

When modifying fonts using CSS, there are units and values that should be kept in mind:

body { font-size:10px }

8.28 Computer Science & Information Technology for GATE

8.2.6.2 Grouping

We can group selectors. Separate each selector with a comma. In the example below we have grouped all the header ele-
ments. All header elements will be displayed in green text color:

h1,h2,h3,h4,h5,h6

{

color: green

}

8.2.6.3 Custom Selectors

Besides selecting HTML elements to apply styles to, we can also create our own custom element names to apply to any

element. Custom styles take two forms, CLASS and ID.

8.2.6.4 When should I use ID or CLASS?

• CLASS styles can be attached to multiple elements

• ID styles can only be attached to one element.

• Use ID when there is only ONE instance. Use Class when there are multiple instances.

The syntax for both is as follows:
CLASS

.somename { color:green }

ID

#someothername { color:red }

ID must be preceeded by a hash “#”.

p#ID1 { background-color:blue }

CLASS must be preceded by a period.

p.redpen {color:red}

p.greenpen {color:green}

Whenever we want to “highlight” text in a certain color:

<p class = “redpen”>

This text is in red.

</p>

<p class = “greenpen”>

The text is in green.

</p>

8.2.6.5 The Class Selector

With the class selector, we can define different styles for the same type of HTML element.
For example, if we would like to have two types of paragraphs in our document: one right-aligned paragraph, and one
center-aligned paragraph. Here is how we can do it with styles:

p.right {text-align: right}

p.center {text-align: center}

We have to use the class attribute in our HTML document:

<p class=“right”>

This paragraph will be right-aligned.

</p>

<p class=“center”>

Introduction to HTML, XML and Client Server Programming 8.29

This paragraph will be center-aligned.

</p>

class. In the example below, all HTML elements with class=“center” will be center-aligned:

.center {text-align: center}

In the code below both the h1 element and the p element have class=“center”. This means that both elements will follow
the rules in the “.center” selector:

<h1 class=“center”>

This heading will be center-aligned

</h1>

<p class=“center”>

This paragraph will also be center-aligned.

</p>

8.2.6.6 The id Selector

We can also define styles for HTML elements with the id selector. The id selector is defined as a #. The style rule below will
match the element that has an id attribute with a value of “green”:

#green {color: green}

The style rule below will match the p element that has an id with a value of “para1”: p#para1

{

text-align: center;

color: red

}

8.2.6.7 CSS Comments

Comments are used to explain our code, and may help us when we edit the source code at a later date. A comment will be

ignored by browsers. Like C language comment, a CSS comment begins with “/*”, and ends with “*/”, like this:

/* This is a comment */

p

{

text-align: center;

/* This is another comment */

color: black;

font-family: arial

}

8.2.7 Adding to a HTML Page

There are 3 ways to use CSS with our HTML pages. They are: external, internal, inline.

8.2.7.1 External

This is the most common implementation of styles. The CSS code is kept in a separate file with “.css” extension. A snippet
is added to the <head> section of the HTML file specifying where the style sheet is. For example, if we have a style sheet
called main.css in our styles folder under our web directory, our HTML pages <head> block is written as:

8.30 Computer Science & Information Technology for GATE

<head>

<link rel=“stylesheet” type=“text/css” href=“./styles/main.css” />

</head>

For example, if we want to set the background color of our pages to yellow, the CSS file main.css should have the following
line.

body {background-color: yellow}

Using external style sheets, it is easy to apply the style sheet to multiple pages. Any changes we make to the source style
sheet, cascades and updates the styling of all our web pages.

8.2.7.2 Internal/Embedded

Let us assume that we plan to apply an external style sheet to our whole set of web pages, except one page with blue back-
ground. This can be done by including the page specific CSS code within the <head> section of that page which overrides
an internal CSS instructions. While other styles of our external style sheet come through, the background color style of
the external sheet will be overridden by the internal style sheet in the page. Evidently, the CSS code needs to be wrapped
with special <STYLE> tags in that HTML page.

<head>

<style type=“text/css”>

<!-- body { background-color: blue;}-->

</style>

</head>

The use of comments within the style tag is to hide the code from someone viewing the page with a really old browser.

8.2.7.3 Inline

Inline uses of CSS is generally not recommended and is slowly being faded out. Inline CSS is where we stick the style di-
rectly inside a HTML tag. For example:

<p style=“color:green”>

The text in this paragraph would then be green.

</p>

The only time we should use Inline CSS is if we need one instance of CSS, say highlighting a sentence or something that
would be difficult to do with other HTML methods. We can use more than one of these implementations. When they
conflict, the order of precedence is:

1. Inline styles

2. Internal styles

3. External styles

8.2.8 Div and Span

The <div> tag is used to divide portions of a web page and allows us to define a style section. <div> to </div> is used to
indicate the beginning to the end of a paragraph. Remember that we cannot have a <div> within a <div>
 is used to tell the browser to apply formatting. The big difference between <div> and is <div>’s ability to
create paragraph breaks (line break before and after.) elements only affect a small chunk of text in a line.
 can be nested within a <div>.

<div class=“blueback”>

Sit around in center!

Other text

</div>

The width of a <div> can be set, and the importance of this will be discussed later.

.box {width = 10px;}

Introduction to HTML, XML and Client Server Programming 8.31

8.2.8.1 Links Color Change

A fun thing to do is to make our web links change to a different color when the mouse cursors hover over the link. In this
example, “a” is the “a” in (anchor tag) and we can apply the following style changes:

a:link { text-decoration: none; color: #33CCFF; }

a:visited { text-decoration: none; color: #33CCFF; }

a:hover { text-decoration: underline; color: #FF0000; }

Now, the link should be displayed in light blue and once the user hovers over the link, it becomes underlined and in red

font.

8.2.9 Building a Site without Tables

The ability to just “layout” a page without tables is one of CSS’s strongest points. There is no need to keep track of millions
of nested tables and tags.

8.2.9.1 Position

This property allows the coder to determine where a block of text will go in the page.

 .somewhere {position: absolute; top: 50px; right: 100px; }

 (This places the block of text 50 pixels from the top, and 100 pixels from the right)

 .shift {position: relative; top: 12px; right: 10px; }

8.2.9.2 Border

This is the standard property that allows us to draw lines around blocks of text. There are many border styles, ranging from
solid to hidden.

.a1 {border-style: solid; } /* Your standard black border */

.a2 {border-style: double; } /* Double border*/

.a3 {border-style: hidden; } /* Hidden! */

.a4 {border-style: inset; } /* Creates an indented border */

.a5 {border-style: outset; } /* Creates a raised border */

.a6 {border-style: groove; } /* Creates a grooved border */

For the ubiquitous thin border, we can use this code:

border: 1px solid #000000;

Up to this point, a simple two-column page can be created using the following code:

#navbar { position: absolute;

 top: 10px;

left: 2px;

 width: 200px;

 border: 1px solid #000000;

}

#maintext { position: absolute;

 top: 10px;

 left: 210px;

 border: 1px solid #000000;}

 }

8.32 Computer Science & Information Technology for GATE

Adding a third column is very easy, just create a new ID with the position of the third area. Use the <div> tags in the
<body> region of the HTML code (remember that <div> tags are like blocks of text) and you’re done!

8.2.9.3 Float

This property “floats” a block of text or image in a direction (left or right or nowhere.)

Multiple blocks with the same float direction will appear alongside each other. To create the effect of blocks stacked on

top of each other, but still floating towards a direction, use the CLEAR property.

Without clear:

clear:right; }

With clear:

n Exercise Explain what happens if we have external and internal style sheets for the h2 selector as given below.
An external style sheet has these properties for the h2 selector:

h2

{

color: red;

text-align: left;

font-size: 8pt

}

and an internal style sheet has these properties for the h2 selector:

h2

{

text-align: right;

font-size: 20pt

}

n Answer: If some properties have been set for the same selector in different style sheets, the values will be inherited from
the more specific style sheet. The color is inherited from the external style sheet and the text-alignment and the font-size
is replaced by the internal style sheet.
Thus, the properties for h2 will be:

color: red;

text-align: right;

font-size: 20pt

Introduction to HTML, XML and Client Server Programming 8.33

1. What will be the implication of the following CSS
elements?

TABLE.main { margin-left:-5px; margin-top:-

10px;}

TH { font-size:16px; font-style:bold; font-

weight:bold; font-family:

helvetica, sans-serif,serif; }

TD { font-size:16px; font-family: helvetica,

sans-serif,serif; }

n Answer: It defines table properties such as left and top
margins; Specifies the table heading as 16 points bold Hel-
vetica font while table data items as simple Helvetica font.

2. What will be the effect of the CSS elements?

A { text-decoration: none; }

A:link { color: green; }

A:visited { color: brown; }

A:hover { color: red; }

n Answer: This CSS element uses anchor tag. It indicates
the anchor tag (links) to be underlined and in green
colour. When we place the mouse over the links, color to
be changed to red. While the visited links to be shown in
brown color.

3. What will be the effect of the CSS element?

ul {

 list-style: square;

 margin-top: 40px;

 margin-left: 40px;

}

n Answer: This defines characteristics of unordered lists as
square type, and top and left margins as 40 pixels.

OBJECTIVE TYPE QUESTIONS

1. External css can be referred in a HTML document by
using

A. <stylesheet>nbv.css</stylesheet>

B. <style src=“nbv.css”>

C. <link rel=“stylesheet” type=“text/css” href=“nbv.
css”>

D. None

2. In which section of a HTML document css file is spec-
ified

A. head B. title

C. body D. None

3. _______ tag is used to specify internal style sheet in a
HTML document.

A. link B. style

C. css D. None

4. Correct way of specifying body color as black in CSS
file is_______

A. bodycolor=black

B. bgcolor=black

C. body{color:black}

D. None

5. To add background color for all h1 type elements

A. h1.all{background=#FFFAB}

B. all.h1{background=#FFFFAB}

C. h1{background=#FFFFAB}

D. h1{background-color=#FFFFAB}

6. To change text color, ___ tag can be used in CSS.

A. text-color B. text color

C. color D. None

7. __ is used to control text size.

A. text-size B. textsize

C. font-size D. None

8. To make paragraphs as bold,

A. <p style=“text-color=bold”>

B. <p style=“font-size=bold”>

C. <p style=“font-size:bold”>

D. None

9. What is the use of CSS element

A:visited { color: brown; }?

A. To change the paragraph color when mouse is po-
sitioned

B. To change the visited links as brown

C. To change hyper links to brown

D. None

A N S W E R K E Y

1. C 2. A 3. B 4. C

5. C 6. C 7. C 8. C

9. B

QUESTIONS

8.34 Computer Science & Information Technology for GATE

8.3 A Simple Introduction to XML

In the real world, computer systems and databases contain data in incompatible formats. One of the most time-consuming
challenges for developers is how to exchange data between such systems over the Internet. Converting the data to XML
(Extensible Markup Language) can greatly reduce this complexity and create data that can be read by many different
types of applications.

XML, like HTML, is also a markup language that provides access to structured content. XML documents can be shared

Thus, XML is a cross-platform, software and hardware

independent tool for transmitting information. HTML

giving display instructions to a browser. Instead, XML

is required to be shared across variety of platforms.

On what platforms XML can be used?

Some of them include PCs, PDAs, cell phones, WebTV, and many emerging technologies. Applications include spread-
sheets, PHP, and, ASP, and PDF.

How does XML relate to HTML?

It augments HTML by focusing on what the data is. HTML is a markup language that dictates how the text looks in the
browser (thus for formatting and layout). XML describes the data, and how it is organized. Like HTML, the XML source
is hidden the computer knows what the data means:

HTMLÆ <i>Lord Balaj</i>

XMLÆ <mydata>

 <name>Lord Balaji</name>

<city>Tirupathi</city>

 </mydata>

Evidently, HTML has a finite set of pre-defined tags; whereas in XML, we can create our own tags. Therefore, it describes
the data like fields in a database.

XML Separates Data from HTML

If we need to display dynamic data in our HTML document, it demands lot of efforts to edit the HTML each time the data
changes. With XML, data can be stored in separate XML files. This way one can concentrate on using HTML for layout
and display, and be sure that changes in the underlying data will not require any changes to the HTML document. With a
few lines of JavaScript, we can read an external XML file and update the data content of our HTML.

XML does not do Anything

Maybe it is a little hard to digest, but XML does not do anything. XML is created to structure, store, and transport infor-
mation. The following example is a note to Venkat from Sarada, stored as XML:

<?xml version = “1.0” ?>

<note>

<to>Venkat</to>

<from>Sarada</from>

<heading>Reminder</heading>

<body>Don’t forget our meeting next weekend!</body>

</note>

The note above is quite self descriptive. It has sender and receiver information; it also has a heading and a message body.

But still, this XML document does not DO anything. It is just information wrapped in tags. Someone must write a piece

of software to send, receive or display it.

Introduction to HTML, XML and Client Server Programming 8.35

XML Simplifies Data Sharing

In the real world, computer systems and databases contain data in incompatible formats. XML data is stored in plain text

format. This provides a software- and hardware-independent way of storing data. This makes it much easier to create data

that different applications can share.

XML Simplifies Data Transport

With XML, data can easily be exchanged between incompatible systems.

XML Tools

An XML parser is an application that can read and interpret both the data and processing instructions in an XML docu-
ment.

• One can view XML files using the MSXML Parser (version 2.0) built into Internet Explorer.

• XML documents can be used by other types of applications such as Window Forms. These applications access the
data in the XML document using the XML Document Object Model (DOM) and the Simple API for XML (SAX).

We can create the XML pages using:

• simple text editor such as Notepad, wordpad, etc.

• HTML/XML editor provided by Visual Studio.NET

• Microsoft XML NotePad called xmlpad.exe

In general, file extensions for XML related pages are summarized as:

• Generally saved with the file extension .xml.

• Some applications allow us to save a set of data from a database as an XML document with the file extension .XSD.

8.3.1 XML Coding Hints

An XML document must be well-formed. A well-formed document follows XML standards and can therefore be read by
any XML parser.

• There should be only one root element under which all other elements have to be nested.

• Cannot mix nesting elements like the following

 Welcome to <i>Tara Store</i>

• Enclose the values of properties within double quotation marks.

• XML is case sensitive. The case for the opening and closing tags of an element must match.

We can validate our XML code to ensure that it is well-formed. There are many online tools available to helf you. For
instance, Microsoft has a free validation tool located at http://Msdn.Microsoft.com/downloads/samples/Internet/xml/
xml_validator/sample.asp.

An XML document has two parts: Prologue and Body

8.3.1.1 The Prologue

This section contains global information such as the XML version, formatting information, and schema definitions. For
instance, see the following simple prologue statement.

<?xml version=“1.0” encoding=“utf-8” ?>

The question mark indicates that this tag, XML, is a processing instruction and therefore does not contain data. Character

encoding property describes any coding algorithms that are used within the page such as UTF-8 or UTF-16.

We can add a reference to a CSS style sheet in an XML document to an external Cascading Style Sheet (CSS) or an XSL file
to format the XML document. We can also use an Extensible Style Language (XSL) style sheet to process & format XML
documents. XSLT is a form of XSL that transforms the XML data using processing rules in the XSLT style sheet. The fol-
lowing is a sample prologue that indicates the use of style sheets.

<?xml:stylesheet type=“text/css” href=“taragifts.css”>

8.36 Computer Science & Information Technology for GATE

8.3.1.2 The Body

The XML document complies with the XML DOM standards. The XML DOM was influenced by the document object
models that were used by browsers. The XML DOM states that XML documents must have a logical structure.

∑ The body of the XML file contains the elements, attributes, and data in the XML document.

∑ The root container element (node) must nest all the elements and data.

 The root node can contain many other elements.

 All tags must be nested within the root node (or root tag).

∑ A container element is an element that can nest other elements.

 The root node is a container element because all elements must be nested within the root element in an XML
document.

Comparison with an HTML document

• In an HTML page, the HTML tag is the root element.

• The HTML element is a container element because it contains child elements such as <head></head> and
<body></body>.

• In this case, the HTML element is also the parent element for the head and body tags.

• In an HTML page, the <title> tag is nested within the <head> tag. The <head> tag is a container element,
and the parent element for the <title> tag.

• The head and body tags are referred to as the child elements.

In the sample code below, productlist is the root node. In this sample, the productlist node contains two product nodes.

<productlist>

<product></product>

<product></product>

</productlist>

We can create elements that are containers for other elements.

• productlist element is the root element.

• product elements contained within the productlist root element.

• product element is a container element for code, name, price, category, image, and rating elements.

<productlist>

<product>

<code>1221-2212-22</code>

<name>Wipro</name>

<price>99.00</price>

</product>

<product>

<code>1221-22-122-21</code>

<name>Birla </name>

<price>59.00</price>

</product>

</productlist>

The following is a sample XML file with the name A.xml which when opened in IE browser, will display as shown in
Figure 8.16.

<?xml version=‘1.0’ ?>

Introduction to HTML, XML and Client Server Programming 8.37

<document>

<body>

<warning>Beware of Compiling Errors.</warning>

However,

<tip> See the error messages keenly for tips </tip>

and <resource>use resources in Internet for help</resource>

</body>

</document>

Figure 8.16 A simple XML output

8.3.1.3 Unicode

Like Java, XML uses Unicode to code for character data. There are a number of different versions of Unicode, but all

8.3.1.4 Declarations

XML documents do not require a declaration at the top, but it is always a good idea to put one there. The simplest declara-
tion is the one used in A. XML:

<?xml version = “1.0” ?>

To this we can add two attributes. These are encoding and standalone. The result might be

 <?xml version=“1.0” encoding=“UTF-8” standalone =“no”?>

The meaning of encoding was given above (refer to 8.3.1.3 Unicode). Standalone refers to whether or not the document
has a DTD (Document Type Definition) included in-line.

There are many predefined declarations in use. The one that follows has been provided by the Apache Tomcat project
to be used in configuring the web application deployment descriptor, web.xml. The encoding here is ISO-8859-1, known
as Latin-1. ISO stands for International Standards Organization. The 8859 standard contains a number of encodings.
Latin-1 is the only one that is the same as UTF-8 in the first 256 characters.

<?xml version=“1.0” encoding=“ISO-8859-1”?>

<!DOCTYPE web-app PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN”

 “http://java.sun.com/dtd/web-app_2_3.dtd”>

8.38 Computer Science & Information Technology for GATE

The DOCTYPE declaration is similar to the one used in xhtml. But this one refers to a DTD that has been created for
Tomcat, version 4. This is the only content of the web.xml file, stored in the WEB-INF folder. A somewhat longer version
of web.xml is included with Tomcat version 5. It uses an XML Schema. Both DTDs and Schema will be discussed later.

We can also specify other media such as images, sound, Braille, etc. with the @media directive. For example, a style sheet
could have this coding:

@media aural{

note[type=“tip”] {volume:medium; voice-family:FriendlyAdvice;}

8.3.1.5 All XML Elements must have a Closing Tag

In HTML some elements do not necesserily have a closing tag. The following code is legal in HTML:

<p>This is a paragraph

In XML all elements must have a closing tag like this:
<p>This is a paragraph</p>

8.3.1.6 XML Tags are Case Sensitive

XML tags are case sensitive. The tag <Letter> is different from the tag <letter>. Opening and closing tags must therefore
be written with the same case:

<Message>This is incorrect</message>

 <Message>This is correct</Message>

8.3.1.7 All XML Elements must be properly Nested

In HTML some elements can be improperly nested within each other like this:

<i>This text is bold and italic</i>

In XML all elements must be properly nested within each other like this:

<i>This text is bold and italic</i>

8.3.1.8 All XML Documents must have a Root Tag

All XML documents must contain a single tag pair to define the root element. All other elements must be nested within
the root element. All elements can have sub (children) elements. Sub elements must be in pairs and correctly nested within
their parent element:

<root>

 <child>

 <subchild>

 </subchild>

 </child>

</root>

8.3.2 Tree Structure

An XML document exhibits a tree structure. The tree is a general ordered tree. There is a first child, a next sibling, etc.
Nodes have parents and children. There are leaf nodes at the bottom of the tree. The declaration at the top is not part of the
tree, but the rest of the document is. Consider the following XML document and the related tree.

<?xml version = “1.0” ?>

<address>

<name>

Introduction to HTML, XML and Client Server Programming 8.39

 <last>Gandhi</last>

 </name>

<email>ntr@aol.com</email>

<phone>011-29219292</phone>

<birthday>

 <year>1903</year>

 <month>07</month>

 <day>15</day>

</birthday>

</address>

Notice that <name> has two children and <birthday> has three. Most processing on the tree is done with a pre-order
traversal.

daymonthyear

birthdayphoneemail

first last

name

address

8.3.2.1 Entities

As in html, certain characters are not allowed in the data. The most obvious ones are the less than signs and quotation
marks. Also, ampersands are used to start the escape string, so they too have a substitution. The following are some special

characters with their substitutions used in XML data.
< <

> >

& &

“ "

‘ '

8.3.2.2 Attributes

As in html, tags can have attributes. These are name-value pairs such as width = “300”. We have seen these in applet and
image tags. They can be used in XML and are required in some places.

An example from the preceding might be

<name first = “Alice” last = “Lee” />

However this is not very useful for data. It makes it harder to see the structure of the document.

There are places where attributes are necessary. One that we will be using in the future is for giving a reference to the
location of a stylesheet.

<link rel=“stylesheet” type=“text/css” href=“address.css” />

8.3.2.3 Attribute Values must always be Quoted

In XML, the attribute value must always be quoted. Study the two XML documents below. The first one is incorrect, the

second is correct:

8.40 Computer Science & Information Technology for GATE

<?xml version=“1.0”?>

<note date=12/11/99>

<to>Venkat</to>

<from>Sarada</from>

<heading>Reminder</heading>

<body>Don’t forget me this weekend!</body>

</note>

<?xml version=“1.0”?>

<note date=“12/11/99”>

<to>Venkat</to>

<from>Sarada</from>

<heading>Reminder</heading>

<body>Don’t forget me this weekend!</body>

</note>

8.3.2.4 Use of Elements vs. Attributes

Take a look at these examples:

Using an Attribute for sex:

<person sex=“female”>

 <lastname>Sarada</lastname>

</person>

Using an Element for sex:

<person>

 <sex>female</sex>

 <lastname>Sarada</lastname>

</person>

In the first example sex is an attribute. In the last example sex is an element. Both examples provide the same information

to the reader. There are no fixed rules about when to use attributes to describe data, and when to use elements. In XML, it

is recommended to avoid attributes as long as the same information can be expressed using elements.

8.3.3 Why one should avoid using Attributes in XML?

These are some of the problems in using attributes.

• Attributes cannot contain multiple values (elements can)

• Attributes are not expandable (for future changes)

• Attributes cannot describe structures (like child elements can)

• Attributes are more difficult to manipulate by program code

• Attribute values are not easy to test against a DTD

Introduction to HTML, XML and Client Server Programming 8.41

If we start using attributes as containers for XML data, we might end up with documents that are both difficult to maintain
and to manipulate. We should use elements to describe our data. Use attributes only to provide information that is not
relevant to the reader.

8.3.3.1 Some Exceptions to the Attribute rule

Rules always have exceptions. There are exceptions to using attributes; for example:
One can assign ID references to elements in XML documents. These ID references can be used to access XML element in
much the same way as the NAME or ID attributes in HTML. This example demonstrates this:

<?xml version=“1.0”?>

<messages>

 <note ID=“501”>

 <to>Venkat</to>

 <from>Sarada</from>

 <heading>Reminder</heading>

 <body>Don’t forget me this weekend!</body>

 </note>

 <note ID=“502”>

 <to>Sarada</to>

 <from>Venkat</from>

 <heading>Re: Reminder</heading>

 <body>I will not!. Go to Hell.</body>

 </note>

</messages>

The ID in these examples is just a counter, or a unique identifier, to identify the different notes in the XML file.

8.3.3.2 CDATA Sections

CDATA stands for character data. XML can have sections that contain characters of any kind that are not parsed. This
means that they will be ignored by the XML parser that is used to put the document into a tree. These sections are similar

to the pre sections in HTML. The browser simply displays them unchanged.

CDATA sections begin with <![CDATA[and end with]]>. An example might be an equation like the following:

<![CDATA[

 x + 2*y = 3

]]>

8.3.3.3 PCDATA

PCDATA means parsed character data. i.e. if we have a character data element declared as PCDATA then all characters or
text or data inside the XML tags will be parsed by the XML parser. In this type of data, if we place a character like “<” or
“&” inside an XML element, it will generate an error because the parser interprets it as the start of a new element. We can-
not write something like this “if salary < 1000 then”. It will fire an error. To avoid this, we have to replace the “<” character
with an entity reference, like this, “if salary < 1000 then”.

8.3.3.4 Styling XML

XML file just describes data in plain text. However, we need to have a way to present the data. Using a style sheet is a
method of displaying XML data in a meaningful way. Cascading Style Sheet (CSS) is a rule-based language consisting of
two sections:

8.42 Computer Science & Information Technology for GATE

• A pattern matching section, which expresses the association between an element and some action

• An action section, which specifies the action to be taken upon the specified section.

This means, we have to specify an element and then define how (a style) it has to be displayed. This can be done for each

element we define. To add the link to the CSS, we need to add a reference to the CSS file within the XML file.

The following example explains how to create a simple XML file with a style sheet. We have replaced the prologue line with

the following line in the XML file A.xml which is used earlier.

<?xml-stylesheet type=“text/css” href=“note1.css”?>

The style sheet in the file note1.css contains the following lines which indicates the display attributes of each element in

the XML file.

tip {background-color:green;}

resource {background-color:yellow;}

warning {background-color:red;}

When we open the A.xml file along with the above style sheet information in IE browser, the page will look like the fol-
lowing figure (Figure 8.17).

Figure 8.17 A web page illustrating effect of CSS

8.3.3.5 XML, DTD, and XML Schema

Extensible Markup Language (XML) is a markup language generally regarded as the universal format for structured docu-
ments and data on the Web. Like HTML, XML contains element tags and attributes that define data. Unlike HTML, XML
element tags and attributes are not based on a predefined, static set of elements and attributes. Every XML file can have a
different set of tags and attributes. Document Type Definition (DTD) files and XML schema files define the elements and
attribute that can be used and the structure within which they fit in an XML file. DTD and XML schema files specify the
structure and content of XML files in different ways. A DTD file defines the names of elements, the number of times they
occur, and how they fit together. The XML schema file provides the same information plus the data types of the elements.

8.3.3.6 DTD

The purpose of a DTD is to define the legal building blocks of an XML document. It defines the document structure with
a list of legal elements. A DTD can be declared inline in your XML document, or as an external reference.

Introduction to HTML, XML and Client Server Programming 8.43

The DTD file contains only metadata. It contains the description of the structure and the definition of the elements and
attributes that can be found in the associated XML file. It does not contain any data.

A sample DTD looks like this:

<!ELEMENT employees (companyname, employee) >

<!ELEMENT companyname (id, name) >

<!ELEMENT employee (emp+) >

<!ELEMENT emp (id, info) >

<!ELEMENT info (name, age, sex, job, sal) >

<!ELEMENT created-date (format, timestamp) >

<!ELEMENT id (#PCDATA) >

<!ELEMENT name (#PCDATA) >

<!ELEMENT format (#PCDATA) >

<!ELEMENT timestamp (#PCDATA) >

eg:

<employees>

 < companyname >

 <id>01</id>

 <name>RITCH CENTER</name>

 </ companyname >

 < employee >

 <emp>

 <id>91000</id>

 <info>

 <name>Venkat</name>

 <age>25</age>

 <sex>Male</sex>

 <job>Tech Lead</job>

 <sal>20000</sal>

 </info>

 </emp>

 </employee>

</employees>

8.3.4 XML Schema

The XML schema file, like the DTD file, contains only metadata. In addition to the definition and structure of elements
and attributes, an XML schema contains a description of the type of elements and attributes found in the associated XML

file.

A sample XML Schema file looks like this:

<xs:element name=“NBV”>

<xs:complexType>

<xs:sequence>

 <xs:element ref=“NBV_object”/>

8.44 Computer Science & Information Technology for GATE

 <xs:element ref=“ NBN_object “ minOccurs=“0” maxOccurs=“n”/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=“NBV_object”>

<xs:complexType>

<xs:sequence>

 <xs:element name=“number” type=“xs:string”/>

 <xs:element name=“summary” type=“xs:string”/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=“NBN_object”>

<xs:complexType>

<xs:sequence>

 <xs:element name=“number” type=“xs:string”/>

 <xs:element name=“summary” type=“xs:string”/>

</xs:sequence>

</xs:complexType>

</xs:element>

E.g.,

<NBV>

<NBV_object>

<number>00996</number>

<summary>Testing</summary>

</NBV_object>

<NBN_object>

<number>00896</number>

<summary>Test</summary>

</NBN_object>

</NBV>

8.3.4.1 Cardinality in XML

Declaring only one occurrence of the same element (only once)

<!ELEMENT companyname (id, name) >(For DTD)

<xs:element name=“number” type=“xs:string”/>(For Schema file)

Declaring minimum one occurrence of the same element (one or more)

<!ELEMENT employee (emp+) >(For DTD)

or

Declaring zero or more occurrences of the same element (zero or more)

<!ELEMENT employee (emp*) >

or

Introduction to HTML, XML and Client Server Programming 8.45

Declaring zero or one occurrences of the same element (zero or one)

<!ELEMENT employee (emp?) >

8.3.4.2 Displaying XML with XSLT

XSLT is the recommended style sheet language of XML. XSLT (eXtensible Stylesheet Language Transformations) is far

more sophisticated than CSS. One way to use XSLT is to transform XML into HTML before it is displayed by the browser.:

8.3.4.3 Loading XML with Microsoft’s XML Parser

Microsoft’s XML parser is built into Internet Explorer 5 and higher.

The following JavaScript fragment loads an XML document (“note.xml”) into the parser:

var xmlDoc=new ActiveXObject(“Microsoft.XMLDOM”);

xmlDoc.async=“false”;

xmlDoc.load(“note.xml”);

• The first line of the script above creates an empty Microsoft XML document object.

• The second line turns off asynchronized loading, to make sure that the parser will not continue execution of the
script before the document is fully loaded.

• The third line tells the parser to load an XML document called “note.xml”.

The following JavaScript fragment loads a string called txt into the parser:

var xmlDoc=new ActiveXObject(“Microsoft.XMLDOM”);

xmlDoc.async=“false”;

xmlDoc.loadXML(txt);

Note: The loadXML() method is used for loading strings (text), load() is used for loading files.
In the following examples, we will see how an XML file can analyze/capture data at different levels. We will use a simple
JavaScript to display the properties and values.

Create a file F.xml with the following lines.

<?xml version=“1.0”?>

<root>

<demoelement demoattribute=“things”>the PCDATA (parsed character) is here</demoelement>

</root>

Also, create another file F.html with the following contents.

<html>

<head>

<script language=“javascript”>

var objDOM

objDOM=new ActiveXObject(“MSXML.DOMDocument”);

objDOM.async=false;

objDOM.load(“f.xml”);

var objMainNode;

8.46 Computer Science & Information Technology for GATE

alert(objMainNode.nodeName);

</script>

</head>

<body>

This is a demo - example F

</body>

</html>

When we open F.html using the browser (IE) we will get an alert “demoelement” which is the name of the main node.
MSIE has a parser called “msxml.” The statement creates a new instance of the MS object and assigns it to the variable
objDOM.

Now, open F.html in our editor and save it as F3.html. Edit the code as follows

objMainNode=objDOM.selectSingleNode (“/root/demoelement”);

When we open F3.html in our browser, the alert will be “#text”, which is the type of value.

Now, open F3.html in our editor and save it as F4.html. Edit the code as follows:

When you open F4.html in your browser, the alert will be “the PCDATA(parsed character) is here”.

The whole point of these examples is to show that data can be pulled into HTML files from XML files at various points.
As explained earlier, the MainNode and firstChild refer to the hierarchical, or tree-like structure of XML. It starts with

the root and branches to child elements.
Do remember that some of the DOM objects include properties like documentElement, firstChild, lastChild, nextSib-

ling, etc. The methods include removeChild, load, appendChild, etc. The events include onDataAvailable, and onTrans-
formNode.

In the following example, we will continue analyzing XML Nodes with JavaScript. In a new file, type the following XML
file, and save it as G2.xml

<?xml version=“1.0” ?>

<book>

<title>C and Data Structures: A snap shot oriented treatise with live examples from Science and

Engineering</title>

<date>16.06.2001</date>

<author>

 <fname> Venkateswarlu</fname>

<lname>Nagasuri</lname>

</author>

<abstract> C language is explained with table driven approach</abstract>

<teaser> Data Structures is more complicated, but don’t let that put you off.

</teaser>

</book>

<html>

<body>

<script type= “text/javascript” language= “JavaScript”>

var xmlDocument= new ActiveXObject(“Microsoft.XMLDOM”);

Introduction to HTML, XML and Client Server Programming 8.47

xmlDocument.load(“G2.xml”);

var element = xmlDocument.documentElement;

document.write(“<p>The name of the root node in the XML document is: “);

document.write(“” + element.nodeName + “”);

</script>

</body>

</html>

Now, add the following code before </script> tag.

document.write(“
The following are its child elements:”);

document.write(“</p>”);

for (i = 0; i<element.childNodes.length; i++)

{

var getNode=element.childNodes.item(i);

document.write(“” + getNode.nodeName+ “”);

}

document.write(“”);

document.write (“
whose next sibling is:”);

var nextSib = currentNode.nextSibling;

document.write(nextSib.nodeName);

document.write(“
Value of “ + nextSib.nodeName + “element is:”);

document.write(value.nodeValue);

The documentElement corresponds to the document’s root element. In the for loop, length is the number of child nodes.

In this manner, we can traverse the elements of a XML tree or document.

8.3.5 Introduction to XPath

Three languages, XQuery, XPath and XSLT are structured XML query languages. XQuery is the most capable and pow-

erful while XPath is simple and efficient; on the other hand XSLT is a full featured language. XSLT is a transformation

language of XML, it stands for eXtensible Stylesheet Language Transformation; which means converting XML document

into another type of document, including XML, XHTML, HTML and text. It is a functional programming language and

uses the same syntax as XML.

XPath is a set of syntax rules for defining parts of an XML document. The idea of XPath is derived from the path expres-

sion of an object database, OQL (object query language). The data model in XPath views a document as a tree. In XPath,

there are seven kinds of nodes: element, attribute, text, namespace, processing-instruction, comment, and document

nodes. XML documents are treated as trees of nodes. The topmost element of the tree is called the root element. Absolute
and relative operators are used to traverse the tree; and will return a collection of nodes from the tree. Following is an
XPath data model tree (Figure 8.18); it is an example of Products.xml from W3Schools.com.

8.48 Computer Science & Information Technology for GATE

Products.xml

dataroot

Comment

Attribute
Products

Attribute

Discounted
Reorder

Level
UnitsOn
Order

UnitsIn
Stock

Unit
Price

Quality
Per Unit

Category
ID

Supplier
ID

Product
Name

Product
ID

8 Northwoods... 3 2 12 40 6 0 0 0

Legend: Root Element Attribute Text Comment

Products

Root

Figure 8.18 XPath Document Tree (Courtesy : W3Schools)

8.3.5.1 What is XPath?

• XPath is a syntax for defining parts of an XML document

• XPath uses paths to define XML elements

• XPath defines a library of standard functions

• XPath is a major element in XSLT

• XPath is not written in XML

• XPath is a W3C Standard

8.3.5.2 XPath is Used in XSLT

XPath is a major element of the XSLT standard. Without XPath knowledge you will not be able to create XSLT documents.

8.3.5.3 XPath is a W3C Standard

XPath was released as a W3C Recommendation 16. November 1999 as a language for addressing parts of an XML docu-
ment.
XPath was designed to be used by XSLT, XPointer and other XML parsing software.
XPath uses path expressions to locate nodes within XML documents.

8.3.5.4 XPath is akin to Traditional File Paths

We will be using absolute and relative approaches in referring files in a file system. If we specify the path with respect to
the top most directory (which is called as root directory), it is called as absolute path. If we refer with respect to current
working directory, it is called as relative path of the file. For example, C:\windows\systems32\notepad.exe is the absolute
path. If the current directory is C:\windows then system32\notepad.exe is the relative path. Xpath also uses the same style.
XPath uses path expressions to identify nodes in an XML document.

Let us Learn XPath through an example. We assume file name is “cinimacatalog.xml” with the following content.

Introduction to HTML, XML and Client Server Programming 8.49

<?xml version=“1.0” encoding=“utf-8”?>

<cinimacatalog>

 <cd country=“India”>

 <title>Dukudu</title>

 <artist>Mahesh</artist>

 <price>900</price>

 </cd>

 <cd country=“India”>

 <title>Pokiri</title>

 <artist>Mahesh</artist>

 <price>800</price>

 </cd>

</cinimacatalog>

Here, nodes can be:

<cinimacatalog> Root Node

<title>Dukudu</title>

As explained earlier, child, grandchild, parent relationships are assumed to be available among the nodes. Essentially,
XPath illustrates the selection of nodes based on some criterion. Detailed description is beyond the scope of this book.
Thus, I will explain the use of XPath with some examples.
The XPath expression below selects the ROOT element cinimacatalog:

/cinimacatalog

The XPath expression below selects all the cd elements of the cinimacatalog element:

/cinimacatalog/cd

The XPath expression below selects all the price elements of all the cd elements of the cinimacatalog element:

/cinimacatalog/cd/price

If the path starts with a slash (/) it represents an absolute path to an element. Otherwise, it is relative.

The following table illustrates how elements of the catalogue in Figure 1 can be represented in XPath.

XPath Expression Example Mean

/data/Products/Unit Price Returns the collection of references to the nodes that correspond to the UnitPrice
elements

CategoryID or ./CategoryID If current position is Products, it will return the node that correspond to the same
CategoryID elements

/dataroot/Products/Product Name/text() The Collection of content of ProductName element

/dataroot/Products/@ProductID The collection of values of ProductID attribute

/dataroot/Products [1]/CategoryID[1] Values of first Products node and first Category node will be returned

//CategoryID All CategoryID elements in the tree (descendant-or-self)

Products/* All element children of the Products children of the current node

/dataroot/Products [search_expression] All dataroot nodes which match the expressions

8.50 Computer Science & Information Technology for GATE

8.3.5.5 Use of XPath Library of Standard Functions

XPath defines a library of standard functions for working with strings, numbers and Boolean expressions. For instance,

the XPath expression below selects all the cd elements that have a price element with a value larger than 800:

/cinimacatalog/cd[price>800]

If the path starts with two slashes (//) then all elements in the document that fulfill the criteria will be selected (even if

they are at different levels in the XML tree). The following XPath expression selects all the cd elements in the document:

//cd

8.3.5.6 Selecting Unknown Elements

Wildcards (*) can be used to select unknown XML elements. The following XPath expression selects all the child ele-
ments of all the cd elements of the cinimacatalog element:

/cinimacatalog/cd/*

The following XPath expression selects all the price elements that are grandchild elements of the cinimacatalog element:

/cinimacatalog/*/price

The following XPath expression selects all price elements which have 2 ancestors:

/*/*/price

The following XPath expression selects all elements in the document:

//*

8.3.5.7 Selecting Branches

By using square brackets in an XPath expression, we can specify an element further.
The following XPath expression selects the first cd child element of the cinimacatalog element:

/cinimacatalog/cd[1]

The following XPath expression selects the last cd child element of the cinimacatalog element (Note: There is no function
named first()):

/cinimacatalog/cd[last()]

The following XPath expression selects all the cd elements of the cinimacatalog element that have a price element:

/cinimacatalog/cd[price]

The following XPath expression selects all the cd elements of the cinimacatalog element that have a price element with a
value of 900:

/cinimacatalog/cd[price=900]

The following XPath expression selects all the price elements of all the cd elements of the cinimacatalog element that have
a price element with a value of 900:

/cinimacatalog/cd[price=900]/price

8.3.5.8 Selecting Several Paths

By using the | operator in an XPath expression, we can select several paths. The following XPath expression selects all the
title and artist elements of the cd element of the cinimacatalog element:

/cinimacatalog/cd/title|/cinimacatalog/cd/artist

The following XPath expression selects all the title and artist elements in the document:

//title|//artist

The following XPath expression selects all the title, artist and price elements in the document:

//title|//artist|//price

Introduction to HTML, XML and Client Server Programming 8.51

The following XPath expression selects all the title elements of the cd element of the cinimacatalog element, and all the
artist elements in the document:

/cinimacatalog/cd/title|//artist

8.3.5.9 Selecting Attributes

In XPath all attributes are specified by the @ prefix. This XPath expression selects all attributes named country:

//@country

This XPath expression selects all cd elements which have an attribute named country:

//cd[@country]

This XPath expression selects all cd elements which have any attribute:

//cd[@*]

This XPath expression selects all cd elements which have an attribute named country with a value of ‘India’:

//cd[@country=‘India’]

8.3.5.10 XPath Location Paths

A location path expression results in a node-set.

8.3.5.11 Location Path Expression

A location path can be absolute or relative. An absolute location path starts with a slash (/) and a relative location path
does not. In both cases the location path consists of one or more location steps, each separated by a slash:

An absolute location path:

/step/step/...

A relative location path:

step/step/...

The location steps are evaluated in order, one at a time, from left to right. Each step is evaluated against the nodes in the
current node-set. If the location path is absolute, the current node-set consists of the root node. If the location path is rela-
tive, the current node-set consists of the node where the expression is being used. Location steps consist of :

• an axis (specifies the tree relationship between the nodes selected by the location step and the current node)

• a node test (specifies the node type and expanded-name of the nodes selected by the location step)

• zero or more predicates (uses expressions to further refine the set of nodes selected by the location step)

The syntax for a location step is:

axisname::nodetest[predicate]

Example:

child::price[price=9.90]

8.3.5.12 Axes and Node Tests

An axis defines a node-set relative to the current node. A node test is used to identify a node within an axis. We can per-
form a node test by name or by type.

AxisName Description

ancestor Contains all ancestors (parent, grandparent, etc.) of the current node
Note: This axis will always include the root node, unless the current node is the root node

ancestor-or-self Contains the current node plus all its ancestors (parent, grandparent, etc.)

attribute Contains all attributes of the current node

child Contains all children of the current node

8.52 Computer Science & Information Technology for GATE

AxisName Description

descendant Contains all descendants (children, grandchildren, etc.) of the current node
Note: This axis never contains attribute or namespace nodes

descendant-or-self Contains the current node plus all its descendants (children, grandchildren, etc.)

following Contains everything in the document after the closing tag of the current node

following-
sibling

Contains all siblings after the current node
Note: If the current node is an attribute node or namespace node, this axis will be empty

namespace Contains all namespace nodes of the current node

parent Contains the parent of the current node

preceding Contains everything in the document that is before the starting tag of the current node

preceding-
sibling

Contains all siblings before the current node
Note: If the current node is an attribute node or namespace node, this axis will be empty

self Contains the current node

8.3.5.13 Examples

Example Result

child::cd Selects all cd elements that are children of the current node (if the current node has no cd children, it will
select an empty node-set)

attribute::src Selects the src attribute of the current node (if the current node has no src attribute, it will select an empty
node-set)

child::* Selects all child elements of the current node

attribute::* Selects all attributes of the current node

child::text() Selects the text node children of the current node

child::node() Selects all the children of the current node

descendant::cd Selects all the cd element descendants of the current node

ancestor::cd Selects all cd ancestors of the current node

ancestor-or-self::cd Selects all cd ancestors of the current node and, if the current node is a cd element, the current node as
well

child::*/child::price Selects all price grandchildren of the current node

/ Selects the document root

8.3.5.14 Predicates

A predicate filters a node-set into a new node-set. A predicate is placed inside square brackets ([]).
Examples

Example Result

child::price [price=9.90] Selects all price elements that are children of the current node with a price element that
equals 9.90

child::cd[position()=1] Selects the first cd child of the current node

child::cd[position()=last()] Selects the last cd child of the current node

child::cd[position()=last()-1] Selects the last but one cd child of the current node

child::cd[position()<6] Selects the first five cd children of the current node

/descendant::cd[position()=7] Selects the seventh cd element in the document

child::cd[attribute::type=“classic”] Selects all cd children of the current node that have a type attribute with the value “classic”.

Introduction to HTML, XML and Client Server Programming 8.53

8.3.5.15 Location Path Abbreviated Syntax

Abbreviations can be used when describing a location path. The most important abbreviation is that child:: can be omitted
from a location step.

Abbr Meaning Example

none child:: cd is short for child::cd

@ attribute:: cd[@type=“classic”] is short for
child::cd[attribute::type=“classic”]

. self::node() .//cd is short for
self::node()/descendant-or-self::node()/child::cd

.. parent::node() ../cd is short for
parent::node()/child::cd

// /descendant-or-self::node()/ //cd is short for
/descendant-or-self::node()/child::cd

8.3.5.16 Examples

Example Result

cd Selects all the cd elements that are children of the current node

* Selects all child elements of the current node

text() Selects all text node children of the current node

@src Selects the src attribute of the current node

@* Selects all the attributes of the current node

cd[1] Selects the first cd child of the current node

cd[last()] Selects the last cd child of the current node

*/cd Selects all cd grandchildren of the current node

/book/chapter [3] /para[1] Selects the first para of the third chapter of the book

//cd Selects all the cd descendants of the document root and thus selects all cd elements in
the same document as the current node

. Selects the current node

.//cd Selects the cd element descendants of the current node

.. Selects the parent of the current node

../@src Selects the src attribute of the parent of the current node

cd[@type =“classic”] Selects all cd children of the current node that have a type attribute with value “classic”

cd[@type =“classic”][5] Selects the fifth cd child of the current node that has a type attribute with value “classic”

cd[5][@type =“classic”] Selects the fifth cd child of the current node if that child has a type attribute with value
“classic”

cd[@type and @country] Selects all the cd children of the current node that have both a type attribute and a
country attribute

8.3.5.17 XPath Expressions

XPath supports numerical, equality, relational, and Boolean expressions.

8.54 Computer Science & Information Technology for GATE

8.3.5.18 Numerical Expressions

Numerical expressions are used to perform arithmetic operations on numbers.

Operator Description Example Result

+ Addition 6 + 4 10

- Subtraction 6 - 4 2

* Multiplication 6 * 4 24

div Division 8 div 4 2

mod Modulus (division remainder) 5 mod 2 1

XPath always converts each operand to a number before performing an arithmetic expression.

8.3.5.19 Equality Expressions

Equality expressions are used to test the equality between two values.

Operator Description Example Result

= Like (equal) price=9.70 true (if price is 9.70)

!= Not like (not equal) price!=9.70 false

8.3.5.20 Testing against a Node-Set

If the test value is tested for equality against a node-set, the result is true if the node-set contains any node with a value
that matches the test value.

If the test value is tested for not equal against a node-set, the result is true if the node-set contains any node with a value
that is different from the test value.

The result is that the node-set can be equal and not equal at the same time !

8.3.5.21 Relational Expressions

Relational expressions are used to compare two values.

Operator Description Example Result

< Less than price<9.70 false (if price is 9.70)

<= Less or equal price<=9.70 true

> Greater than price>9.70 false

>= Greater or equal price>=9.70 true

XPath always converts each operand to a number before performing the evaluation.

8.3.5.22 Boolean Expressions

Boolean expressions are used to compare two values.

Operator Description Example Result

or or price=9.70 or
price=9.60

true (if price is 9.70)

and and price<=9.70 and
price=9.60

false (if price is 9.70)

XPath Functions
XPath contains a function library for converting data.

Introduction to HTML, XML and Client Server Programming 8.55

XPath Examples
We will use the CD cinimacatalog to demonstrate some more XPath examples.

Selecting Nodes

We can select nodes from the XML document by using the selectNodes function in Internet Explorer. This function takes
a location path expression as an argument:

xmlobject.selectNodes(XPath expression)

The following example selects all the cd nodes from the CD cinimacatalog:

xmlDoc.selectNodes(“/cinimacatalog/cd”)

Selecting the First cd Node

The following example selects only the first cd node from the CD cinimacatalog:

xmlDoc.selectNodes(“/cinimacatalog/cd[0]”)

Selecting price Nodes

The following example selects all the price nodes from the CD cinimacatalog:

xmlDoc.selectNodes(“/cinimacatalog/cd/price”)

Selecting price Text Nodes

The following example selects only the text from the price nodes:

xmlDoc.selectNodes(“/cinimacatalog/cd/price/text()”)

Selecting cd Nodes with Price>10.80

The following example selects all the cd nodes with a price>10.80:

xmlDoc.selectNodes(“/cinimacatalog/cd[price>10.80]”)

Selecting price Nodes with Price>10.80

The following example selects all the price nodes with a price>10.80:

xmlDoc.selectNodes(“/cinimacatalog/cd[price>10.80]/price”)

8.3.6 Introduction to XQuery

XQuery is designed to query XML data in XML files (also anything that can appear as XML, including XML databases).
We can say that XQuery is for XML which is akin to SQL for databases.

8.3.6.1 What is XQuery?

• XQuery is the language for querying XML data

• XQuery for XML is like SQL for databases

• XQuery is built on XPath expressions

• XQuery is supported by all the major database engines (IBM, Oracle, Microsoft, etc.)

XQuery 1.0 and XPath 2.0 share the same data model and support the same functions and operators. If we have already
studied XPath we will have no problems in understanding XQuery.

8.3.6.2 How to select Nodes from “cinimacatalog.xml” ?

Functions
XQuery uses an extensive set of functions to extract data from XML documents. For instance, the doc() function is used
to open the “cinimacatalog.xml” file:

doc(“cinimacatalog.xml”)

8.3.6.3 Path Expressions

XQuery uses an path expressions to navigate through elements in an XML document. The following path expression is
used to select all the title elements in the “cinimacatalog.xml” file:

doc(“cinimacatalog.xml”)/cinimacatalog/cd/title

8.56 Computer Science & Information Technology for GATE

The XQuery above will extract the following:

<title>Dukudu</title>

<title>Pokiri</title>

8.3.6.4 Predicates

XQuery uses predicates to limit the extracted data from XML documents. The following predicate is used to select all the
book elements under the cd element that have a price element with a value that is more than 800:

doc(“cinimacatalog.xml”)/cinimacatalog/cd[price>800]

8.3.6.5 XQuery FLWOR Expressions

FLWOR is an acronym for “For, Let, Where, Order by, Return”. The expression below will select all the title elements under
the cd elements that are under the cinimacatalog element that have a price element with a value that is higher than 300.

doc(“cinimacatalog.xml”)/cinimacatalog/cd[price>300]/title

The following FLWOR expression will select exactly the same as the path expression above:

for $Y in doc(“cinimacatalog.xml”)/cinimacatalog/cd

where $Y/price>300

return $Y/title

With the following FLWOR expression, we can sort the result:

for $Y in doc(“cinimacatalog.xml”)/cinimacatalog/cd

where $Y/price>30

order by $Y/title

return $Y/title

Here, the for clause selects all cd elements under the cinimacatlog element into a variable called $Y. The where clause
selects only the cd elements with a price element with a value greater than 300. The order by clause defines the sort-order
(Here it is sorted by the title element). The return -

ments.

8.3.6.6 XQuery FLWOR + HTML

Now, if we want to list all the titles as an HTML list. We can add and tags to the FLWOR expression:

{

for $x in doc(“cinimacatalog.xml”)/cinimacatalog/cd/title

order by $x

return {$x}

}

Now if we want to eliminate the title element, and show only the data (titles names) inside each of the the title elements,
then the following can be used.

{

for $x in doc(“cinimacatalog.xml”)/cinimacatalog/cd/title

order by $x

return {data($x)}

}

Introduction to HTML, XML and Client Server Programming 8.57

8.3.6.7 XQuery Conditional Expressions

“If-Then-Else” expressions are allowed in XQuery. Assume that we want to display those cd’s in which “Mahesh” is the
artist.

for $x in doc(“cinimacatalog.xml”)/cinimacatalog/cd

return if ($x/@actor=“Mahesh”)

then {data($x/title)}

 else().

8.3.6.8 XQuery Comparisons

In XQuery there are two ways of comparing values.

1. General comparisons: =, !=, <, <=, >, >=

2. Value comparisons: eq, ne, lt, le, gt, ge

The difference between the two comparison methods are shown below.
Look at the following XQuery expressions:

$cinimacatalog//cd/@q > 10

The expression above is true if any q attributes have values greater than 10.

$cinimacatalog//cd/@q gt 10

The expression above is true if there is only one q attribute returned by the expression, and its value is greater than 10. If
more than one q is returned, an error occurs.

8.3.6.9 The For Clause

The FOR clause binds a variable to each item returned by the (in expression). The FOR clause results in iteration. There
can be multiple For clauses in the same FLWOR expression.

To loop a specific number of times in a FOR clause, you may use the to keyword:

for $x in (1 to 5)

return <test>{$x}</test>

Result :

<test>1</test>

<test>2</test>

<test>3</test>

<test>4</test>

<test>5</test>

The at keyword can be used to count the iteration:

for $x at $i in doc(“cinimacatalog.xml”)/cinimacatalog/cd/title

return <cd>{$i}. {data($x)}</cd>

Result:

<cd>1. Dukudu</cd>

<cd>2. Pokiri</cd>

It is also allowed with more than one in expression in the for clause. Use comma to separate each in expression:

for $x in (10,20), $y in (100,200)

return <test>x={$x} and y={$y}</test>

Result:

<test>x=10 and y=100</test>

<test>x=10 and y=200</test>

8.58 Computer Science & Information Technology for GATE

<test>x=20 and y=100</test>

<test>x=20 and y=200</test>

8.3.6.10 The let Clause

The let clause allows variable assignments and it avoids repeating the same expression many times. The let clause does not
result in iteration.

let $x := (1 to 9)

return <test>{$x}</test>

Result:

<test>1 2 3 4 5 6 7 8 9</test>

QUESTIONS

1. What is complement to CDATA in XML?

 Answer: PCDATA, which is required to be parsed by
the XML parser.

2. What is the output of the following XML docu-
ment?

<?xml version=“1.0”?>

<staff>

 <employee id=“45”>

 <name>PN Rao</name>

 <salary>Rs.100,000</salary>

 </employee>

</staff>

<xsl:stylesheet version=“1.0” xmlns:xsl=“http://

www.w3.org/1999/XSL/Transform”>

 <xsl:template match=“/”>

 <xsl:if test=“employee/name = ‘PN Rao’”>

 true

 </xsl:if>

 </xsl:template>

</xsl:stylesheet>

 Answer: Nothing

3. What is the output of the following XSL statement?

<xsl:text disable-output-escaping=“yes”>

<!-- hello -->

</xsl:text>

 Answer: Nothing

4. Which XPath query is needed to select bids whose
item number is 1? Consider the following XML
document.

<auctions>

<items>

<item itemno=“1” description=“Sitara” reserve-

price=“1000”></item>

<item itemno=“2” description=“Guitar” reserve-

price=“20000”></item>

<item itemno=“3” description=“Drums” reserve-

price=“8000”></item>

</items>

<bids>

<bid username=“PN Rao” bidprice=“200” item-

no=“1”></bid>

<bid username=“S.N. Rahu” bidprice=“800” item-

no=“1”></bid>

<bid username=“PN Rao” bidprice=“6500” item-

no=“3”></bid>

</bids>

</auctions>

 Answer: /auction/bids/bid[@itemno = “A”]

5. What is the XPath query needed to display all
claims in the following XML document?

<policies>

<policy type=“electronics goods”>

<policy-holder>PN Rao </policy-holder>

<claims>

<claim>

<year>2002</year>

<description>TV</description>

</claim>

</claims>

</policy>

<policy-holder> PN Rao </policy-holder>

<claims>

<claim>

Introduction to HTML, XML and Client Server Programming 8.59

<year>2007</year>

<description>Front Room</description>

</claim>

</claims>

</policy>

</policies>

 Answer:

//claim

/policies/policy/claims/*

/policies/policy/claims/claim

6. Consider the following XML file. Answer the ques-
tions following the XML file description.

<addressBook>

<address>

<surname>PP</surname>

<email>ppr@world.org</email>

<tel type=“work”>9822332334</tel>

</address>

<address>

<surname>PN </surname>

<email>PNrao@yahoo.com</email>

<tel type=“home”>9823334444</tel>

</address>

<address>

<surname>Kakarla</surname>

<email>sk@rock.com</email>

</address>

</addressBook>

 What is the expression to display the first names of all
the people?

 /addressBook/address/firstName/text()

 What is the expression to display email IDs of all the
people?

 /addressBook/address/email/text()

 What is the expression to display work telephones of
all the people?

 /addressBook/address/tel[@type=“work”]

 What is the expression to display work telephones of
all the people?

 /addressBook/address/tel[@type=“work”]/text()

 The above displays only work telephone numbers.
Not all the elements.

OBJECTIVE TYPE QUESTIONS

1. How is XML data described?

A. XML uses a description node to describe data.

B. XML uses a DTD to describe data.

C. XML uses XSL to describe data.

2. Correct syntax of the declaration that defines the
XML version is

A. <?xml version=“1.0” />

B. <xml version=“1.0” />

C. <?xml version=“1.0”?>

3. The valid statement about XML

A. All XML elements must be properly closed

B. All XML elements must be in lower case

C. All XML documents must have a DTD

D. All the statements are true

4. Correct name for an XML element

A. <h1>

B. <Note>

C. <1dollar>

D. All the above names are incorrect

5. Correct way of referring to a stylesheet called “my-
style.xsl”

A. <stylesheet type=“text/xsl” href=“mystyle.xsl” />

B. <?xml-stylesheet type=“text/xsl” href=“mystyle.
xsl” ?>

C. <link type=“text/xsl” href=“mystyle.xsl” />

6. An XML document exhibits ______ structure

A. Style B. Linear

C. Tree D. Linked

7. ___ character is used to, start an escape string.

A. \ B. .

C. / D. &

8. XML supported character data does not use ___

A. 12 bytes B. 8 bits

C. 16 bits D. 4 bytes

9. In the following XML document, the root element is

<?xml version = “1.0” ?>

<address>

 <name>NB Venkat</name>

<email>nbv@yahoo.com</email>

<phone>08913098705</phone>

<birthday>15-08-1963</birthday>

</address>

8.60 Computer Science & Information Technology for GATE

A. name B. email

C. address D. None

10. Processing XML tree is normally carried out in __
fashion.

A. Level by level B. Level order

C. In order D. Pre-order

11. Find the correct XML statement.

A. <![CDATA[x + 2*y = 3]]>

B. <[CDATA[x + 2*y = 3]]>

C. <[[CDATA[x + 2*y = 3]]>

D. <![CDATA[x + 2*y = 3]!>

12. The tag element equivalent to <pre> of HTML

A. <pre> B. <No Format>

C. CDATA D. <No Parsing>

13. Structure and content of an XML file is specified
through

A. an XML file B. a DTD file

C. an XML schema file D. an HTML file

14. Not a valid XPath

A. ancestor B. attribute

C. following D. followed

15. To find a specific node ___ are used.

A. ancestor B. predicate

C. attribute D. //$

16. In valid character with respect to XPath

A. / B. @

C. // D. $

17. ____ node is also called as “root”.

A. comment B. element

C. document D. namespace

18. XPath is a

A. Compiler B. Parser

C. Debugger D. Assembler

19. Which is valid?

A. <xsl:variable name=“$hisName” select=“’Syd’”/>

B. <xsl:variable name=“hisName” select=“Syd”/>

C. <xsl:variable name=“hisName” select=“’Syd’”/>

D. <xsl:variable name=“$hisName” select=“Syd”/>

20. ___ XPath function gives you back the largest number
of a sequence that we pass to it.

A. max() B. largest()

C. highest() D. top()

21. Imagine you have a list of names, and many of them
occur several times in the list. What function would
you use to get a reduced list, with no duplicates in it?

A. distinct-values() B. starts-with()

C. string-join() D. remove-duplicates()

22. Invalid Xpath function

A. string() B. string-length()

C. string-concat() D. None

23. In XPath, the following axis contains:

A. all descendants of the node

B. all the children of the node

C. all the nodes that appear after the current node is
opened

D. all the nodes that appear after the current node is
closed

24. Consider the following XML document, what will be
the output of count(//*)?

 <?xml version=“1.0” encoding=“UTF-8”?>

 <root>

 <employee id=“45”>

 <name>Rao PN</name>

 <salary>Rs.100,000</salary>

 </employee>

 </root>

A. 2 B. 3

C. 4 D. 6

25. In XPath, the descendant-or-self axis contains the
context node and the descendants of the context
node. (y/n)

26. ______ XPath query returns all items with a quantity
of 10.

A. //item

B. //item/quantity=5

C. //item[quantity=“5”]

D. //item[@quantitiy=“5”]

27. xsl:for-each is used

A. To select the elements whole document of the

B. To select a single node

C. To iterate over the nodes of a XML document

D. None

28. Xquery uses ___ syntax to address parts of the XML
document.

A. XSL B. XSLT

C. XPath D. XML

29. XQuery language extracts elements and attributes
from ____

A. Text files B. XML documents

C. Databases D. Database tables

30. Find the wrong statement.

A. XQuery can be used for generating summary res-
ports.

B. XQuery can be used for transforming XML data
to XHTML.

Introduction to HTML, XML and Client Server Programming 8.61

C. XQuery can be used to search web documents for
required information.

D. None

31. __ is used in XQuery language to open a XML docu-
ment.

A. open() B. fopen()

C. fileopen() D. doc()

32. Invalid XQuery node

A. root B. attribute

C. number D. namespace

33. Nodes that have the same parent are

A. Children B. Siblings

C. Successors D. None

A N S W E R K E Y

1. B 2. C 3. C 4. D

5. B 6. C 7. A 8. A

9. C 10. D 11. A 12. C

13. B,C 14. D 15. B 16. D

17. C 18. B 19. C 20. A

21. A 22. C 23. D 24. C

25. N 26. D 27. C 28. C

29. B 30. D 31. D 32. C

33. B

8.4 Client/Server Computing

Client/server computing is the result of years of computing research which is one of the central ideas of network comput-
ing. Undoubtedly, all of today’s business applications use the client/server model. For example, to check our bank account,
a client program in our computer forwards our request to a server program at the bank. That program may in turn send
results to the client software in our personal computer, which displays the information for us. The following is a brief
recapitulation of the chronological developments in computing that lead to the development of client/server computing.

1970s Mainframes with users accessing mainframe via dumb terminals

1980s PC with data residing in mainframes (manual extraction)

1980s PC with data residence on mainframes (intelligent terminal extraction)

 (Proliferation of Snapshots of mainframe database)

1990s Networks of heterogeneous computers. Data access without regard to the data location, data model, or commu-
nication characteristics of the other computers in the network (software and hardware independence).

Today Modern end users use intelligent computers, GUIs, user friendly systems, and data analysis tools to effectively
increase their productivity. In addition, cloud computing is expected to inundate the IT services.

8.4.1 By the way what is Client/Server?

Client/server is a computational architecture that involves client processes requesting service from server processes. In the
client/server model, these processes are generally maintained on different pieces of hardware. But it is important to re-
member that the client and server are both SOFTWARE processes! Although many generally call hardware boxes ‘serv-
ers’ or ‘clients’, the clients or servers are actually the software processes run by these computers. Evidently, even though
the client and server processes are separated, a Client/server application gives the impression of a single application to the
user. Client-Server computing assumes that separation of a huge program into its constituent parts (“modules”) can create
the possibility for further modification, easier development and better maintainability. In Client-Server Computing, all
large modules need not be executed within the same memory space. With this architecture, the calling module becomes
the client (requesting service) and the called module becomes the server (providing service). Clients and Servers are run
separately on appropriate hardware and software platforms for their functions. For example, database management sys-
tem servers run on platforms specially designed and configured to perform queries, or file servers run on platforms with
special elements for managing files.

8.4.1.1 The CLIENT

The client is a process (program) that sends a message to a server process (program), requesting the server to perform a
task (service). Client programs usually manage the user-interface portion of the application, validate data entered by the
user, dispatch requests to server programs, and sometimes execute business logic. The client process contains solution-

8.62 Computer Science & Information Technology for GATE

specific logic and provides the interface between the user and the rest of the application system. The client process also
manages the local resources that the user interacts with such as the monitor, keyboard, workstation CPU and peripherals.
Evidently, graphical user interface (GUI) is one of the prominent features of modern client processes.

8.4.1.2 The SERVER

The server is also a process (program) that is developed to fulfill the client requests by performing the tasks requested. For
instance, a Servlet based Server program may receive requests from a client program (may be java applet), executes a SQL
query to retrieve a record from the database and dispatches the same as a response to the client requests. Very often, a
server process acts as a software engine that manages shared resources such as databases, printers, communication links,
or high powered-processors. Rather, we can say that the server process performs the back-end tasks. Thus, server related
software development is also called as back-end development while client related software development as front-end
development.

8.4.1.3 Internet: A good example of Client/Server Computing Model

The Internet services including e-mail, newsgroups, file transfer, remote login, and the Web are organised according to
a client/server architecture. Client programs, such as Web browsers and file transfer programs, create connections to
servers, such as Web and FTP servers. The clients make requests of the server, and the server responds to the requests by
providing the service requested by the client. Here, Web browsers are the clients and Web servers are the servers. Brows-
ers request HTML files from Web servers on our behalf by establishing a connection with a Web server and submitting
file requests to the server. The server receives the file requests, retrieves the files, and sends them to the browser over the
established connection. The browser receives the files and displays them on our browser window (see Figure 8.19).

Your machine
running a Web

browser

The server sends
back the requested

page.

Your browser
connects to a server
and requests a page.

Server machine
running a

Web server

Figure 8.19 A simple web server

8.4.2 Sockets and Client/Server Communication

In practice, clients and servers establish connections and communicate via sockets, which are communication links that
are created over the Internet using TCP (or UDP). Sockets are the endpoints (Figure 8.20) of Internet communication
stream or channel (logical). Clients create client sockets and connect them to server sockets. Sockets are associated with a
host address and a port address. The host address is the IP address of the host where the client or server program is located.
The port address is the communication port used by the client or server program. Server programs use the well-known
port number associated with their application protocol. A client communicates with a server by establishing a connection
to the socket of the server. The client and server then exchange data over the connection.

8.4.2.1 Sockets

The socket is the software abstraction used to represent the “terminals” of a connection between two machines. For a given
connection, there’s a socket on each machine, and we can imagine a hypothetical “cable” running between the two ma-
chines with each end of the “cable” plugged into a socket. Of course, the physical hardware and cabling between machines
is completely unknown. The whole point of the abstraction is that we don’t have to know more than is necessary.

Introduction to HTML, XML and Client Server Programming 8.63

Socket

Error free stream of data

Socket

P1

P2

Figure 8.20 Sockets are means of communication

If two processes wish to communicate they must each create a socket. Once created, the socket must then be bound to
a specific network address. One process must initiate the connection (This process is called the client). The other process
must wait for a connection request (This process is the server). This delegation of responsibilities is highlighted in Figure
8.20 and 8.21. The client starts by trying to establish a connection with the listening socket at a server. If the server accepts
the communication request then the connection is established and communication can start. If a connection cannot be
established then the client process must recover from this situation. It can do this either by trying to re-connect to the
same server or by choosing to connect to a different server that offers the same services. Once the communication has
ended the sockets must be closed.

Create
Socket

HostB, Port 12

HostA, Port 25

HostB, port 36

Message

Message

Create
Socket

Accept
Connection

Read msg

Do task

Send msg

Process BProcess A

Figure 8.21 Communication oriented client-server communication

The client process needs to know the Internet address and the port number of the server process in order to initiate
the connection. If the client simply knows the servers Internet address as a string such as “www.ritchcenter.com” then it
must first use a lookup service to obtain the true 32 bit internet address of the server. When the client knows the serv-
ers real address, it sends a connection request packet containing its own Internet address and port number to the server
process where required service will be available. If the server process accepts the connection request from the client, it
creates a new socket bound to a new port number for use by the client and sends this information back to the client as
an acknowledgement. Once the client receives a positive acknowledgment from the server it re-binds its socket to the
new port number supplied by the server and at this point a connection has been established. Both processes now know
the Internet address and port number of the process at the other end of the connection and therefore bi-directional com-
munication can begin (Figure 8.21).

8.64 Computer Science & Information Technology for GATE

8.4.3 Characteristics of Client-Server Architecture

Basic characteristics of Client-Server Architecture can be summarised as:

• Client portion interacts with the user while a server or back-end portion interacts with the shared resource.

• The front-end task and back-end task have fundamentally different requirements for computing resources such as
processor speeds, memory, disk speeds and capacities, and input/output devices.

• The environment can be heterogeneous and multivendor. That is, hardware platform and operating systems of client
and server systems are not necessarily same. Client and server processes communicate through a well-defined set of
standard application program interfaces (API’s) and RPC’s (remote procedure calls).

• Scalability, both horizontally and vertically, is an important characteristic of client-server systems. Horizontal scal-
ing means adding or removing client workstations will have only a slight performance impact on the total system.

Vertical scaling means migrating to a larger and faster server machine or multiple servers.

8.4.4 Some Goals of Client/Server Systems

Main goals include development of systems that are independent of hardware or software (cross boundaries) to optimise
processing resources. Evidently, Client/server development is based on a very complex technology that generates its own
set of management problems but goals focus on

• applications development and implementation costs

• advantages of scalability and portability (modular and flexible)

• system operations costs

• change of function from development to end user support (user productivity)

8.4.5 Types of Servers

Disk and File Servers

The simplest forms of servers are disk servers and file servers. In a file server, the client passes requests for files or file re-
cords over a network to the file server.

Database, Transaction and Application Servers

The more advanced forms of servers are Database servers, Transaction servers and Application servers.

In database servers, client process pass SQL (Structured Query Language) requests as messages to the server while the
results of the query are returned over the network by the server.

In transaction servers, clients invoke remote procedures that reside in the servers with a database engine. There are pro-
cedural statements on the server to execute a group of SQL statements (transactions) which either all succeed or fail as a
unit.

Application servers are not necessarily database centered but are used to serve user needs, such as regulating an elec-
tronic mail process, etc. Basing resources on a server, users are allowed to share data.

8.4.6 Reasons for employing Client-Server Technology in Business

Client/server computing has arisen because of a change in business needs. Businesses today need integrated, flexible, re-
sponsive and comprehensive applications to support the complete range of business processes. Problems with yesterday’s
systems include:

• Applications were developed to model vertical applications

• Applications were built in isolation

• Applications were implemented as monolithic systems

• Applications were complex

• The supporting technology was based on a centralised control model

The development and implementation of client/server computing is more complex, more difficult and more expensive

Introduction to HTML, XML and Client Server Programming 8.65

than traditional, single process applications. The only answer to the question “why build client/server applications?” is
because the business demands the increased benefits.

8.4.7 Business Benefits From Client-Server Computing

Tremendous benefits for implementing Client/Server Technology in Business. Below are just a few of it.

• Vendor independence as compared to the traditional mainframe computing. This includes application development
methodologies, programming paradigms, products and architectures.

• Organisation might have changed from steep hierarchies to flattened hierarchies. Decision making is carried out by
many lower ranked managers across the organisation rather than performed only by CEOs in the past.

• Network management is replacing vertical management.

• Faster response and flexibility to changing environment of business world outside.

• The customer has a single point of contact for all business with the organisation.

• The time required to complete the work will be minimised.

• Better sharing of critical database resources and other application software’s among clients through the network.

• Companies can cut costs on maintenance in employing Client/Server Computing since servers are usually cheaper
than mainframe (1/10 of mainframe) and the performance of servers and mainframe are nearly identical.

• Networked webs of small, powerful machines. If one machine goes down, the organisation can still function prop-
erly.

• Systems grow easily. It is easy to update and modernise systems both hardware and software as the companies evolve
and have new requirements.

• We can mix and match computer platforms to suit the needs of individual departments and users (Individual client).

8.4.8 Business Drivers for Client / Server Computing

• Downsising from ‘big iron’ (mainframe) environments

• Movement from vertical ‘stovepipe’ applications to enterprise-wide systems

• Organisations have changed from steep hierarchies to flattened hierarchies

• Network management is replacing vertical management

• There is a change to team based management

• The user will perform as much processing as possible during customer contact time

• Multi-skilled and multi-function teams need access to multiple applications

8.4.9 Client/Server Architecture

Client/Server architecture is based on a set of principles. These are:

• Hardware and Software Independence

• Open Access to Services

• Process Distribution

• Standards

Components of a client/server system

• Client

• Server

• Communications channel

Some systems include middleware as a separate component since middleware (software that is used to manage client/
server interactions) is critical to management of the communications channel. Middleware provides services to insulate
the client from the details of network protocols and server processes. The client/server network infrastructure includes
network cabling, network topology, network type, communication devices, and network protocols. But, network proto-

8.66 Computer Science & Information Technology for GATE

cols constitute the core of the network infrastructure. Network protocols determine how messages between computers
are sent, interpreted and processed.

8.4.10 Categories of Component Processes in the Client/Server Model

Three categories of processes are:

• The User Interface (UI): How the application is presented to the user

• The Business Logic (BL): The processing rules that are used in the C/S application; for example, a payroll application
will have business rules different from that of a trading floor application.

• Data Management (DM): The storage of the data used by the application which implements the information model

These three components can be divided among the client and server processes in several ways as shown in the table below.

8.4.10.1 Types of Client/Server Computing

The Gartner Group came out with five ways of describing the different client/server styles based on how they split the
three components of any application: user interface, business or application logic, data management. The five styles are
distributed presentation, remote presentation, distributed function, remote data management, and distributed data man-
agement. (Note: This is an arbitrary classification and others may do it differently).

Types of Client/Server Computing

C/S Type
Distributed Presenta-

tion
Remote Presenta-

tion
Distributed

Logic
Remote Data
Management

Distributed
Database

Functions on
Server Side

Data Mgt.
Business Logic
User Interface

Data Mgt.
Business Logic

Data Mgt.
Business Logic

Data Mgt. Data Mgt.

Network over which the processes communicate

Functions on
Client Side

User Interface User Interface
Business Logic
User Interface

Business Logic
User Interface

Data Mgt.
Business Logic
User Interface

‘Thinnest’ Client --- ‘Fattest’ Client

Courtesy of Datamation, 4/1/95

Remote Data Management: In remote data management, the entire application resides on the client and the data man-
agement is located on a remote server/host. Remote Data Management is relatively easy to program as there is just one
application program.
Distributed Logic (Distributed Application Logic): Here, the split occurs in the application functionality, one part goes
to the client and the other to the server. Here, two separately compiled application programs must be developed. Devel-
opers first analyse where each function should reside and what type of dialog must occur between the two programs. The
underlying communications facilities may implement either a message-based or remote procedure call (RPC) mechanism
for transfer of dialog and data.
Distributed presentation: Evidently, for people whose roots are in the IBM mainframe world, client-server is essentially
distributed or remote presentation. This style maps a workstation Graphical User Interface (GUI) front end onto an exist-
ing application’s text-based screen. In Distributed Presentation, we are generally looking at a system which uses a dumb
terminal at the client side. This is the extreme of the ‘thin’ client model (discussed below). Distributed presentation is the
first step in migration of legacy applications to a GUI. In a nutshell, a distributed presentation model characterises:
Presentation management function shared between client and server, everything else remains on the server.
Remote Presentation: Here, presentation manager entirely lies in client while presentation logic, data logic and data
manager lies in the server. Usually, X window system (X client or X terminals) is used as windows manager which takes
care of GUI aspects.
Distributed Database: Here, data management and application functions occur at both the client and server. In this in-
stance, data management at the client would include referential, read-only data. Data frequently updated or accessed by
many users would reside on the server. This is the extreme of the ‘fat’ client model. The following figure 8.22 illustrates
where the network activity takes place in various models described above.

Introduction to HTML, XML and Client Server Programming 8.67

Presentation layer is the one through which the user can submit operations and obtain a result.
Application logic: This establishes what operations can be performed and how they take place. It enforces business
rules and establishes business processes.
Resource manager: This deals with storage, indexing, and retrieval of data necessary to support the application logic.

Distributed
GUI

Remote
Presentation

Distributed
Application

Remote
Data

Distributed
Data

Data

Application

GUI

GUI

Data

Application

GUI

Data

Application

GUI

Data

GUI

Data

Data

GUI

Application Application Application

Network

Network

Client/Server Network Placement

Figure 8.22 Client server Models and network activity

8.4.10.2 Fat Clients vs. Thin Clients

Fat Clients: These are fully loaded PC’s or laptops equipped with a full suite of PC operating system, Windows, PC ap-
plications and network connectivity software. These systems are ready to run all types of processes such as user interface,
business logic, and data management. Thus, they are costly and are complex to manage. These are not very scalable and
hence larger systems cannot be developed easily. If application becomes complex, the client becomes fatter. Often, the cli-
ent hardware thus must become increasingly powerful in order to be able to support it. As a result, the cost of adequate
client technology can become rather prohibitive. It may in fact defeat the affordability of the application. What is more, the
footprint of the network utilising the fat clients is incredibly large, (think Bigfoot here), so there is an inevitable reduction
of the network’s bandwidth as well as the number of users who can use the network in an effective manner.

Another approach often invoked in Two-tier architecture is the thin client and fat server configuration. In this configu-

ration, the user will invoke procedures that are stored at the database server. The fat server model gains performance in a

more effective fashion, as the network footprint, while heavy, is still a lot lighter than the fat client method.
Thin Clients: These are machines that will download what they need to run from a network server. They attach to a server
and provide a graphical interface on a terminal that is optimised for network-centric computing. Thin clients cost a frac-
tion of the price of a fat client. Thin clients can readily access the internet, network based applications and other host based
systems. These devices are designed to take the complexity out of managing them. They are managed like dumb terminals;
there are no local data storage and no disk drives to worry about, yet users are able to select applications from various
operating systems connected to the network simultaneously.

Fat Client:
Advantages:

• More flexibility for the user.

• As the client does most of the processing, the server need not to be very powerful.

Disadvantages:

• Because the server has to deliver more data for the client to process, there are large data sets going through the net-
work, leading to greater network congestion;

• Machines capable of running fat client processes are more expensive, because they require more processing power,
more RAM, and more secondary storage;

8.68 Computer Science & Information Technology for GATE

• Fat clients increase managerial costs; changes to business logic have to be distributed to all of the individual clients;
there is much more user training involved; fat clients have a variety of software that must be supported;

• The annual cost of ownership of each fat client is relatively more which includes all the real costs of hardware and
software, plus all the hidden costs of software upgrades, managing the machines, and training the users for all the

different client processes they are using.

Thin Client:
Advantages:

• The server only delivers the results of client queries, not entire data sets. Because of this the server sends much less
data through the network. Thus there is generally less congestion on the network;

• Machines that run only thin client processes do not need as much processing power, RAM, or secondary storage.
Because of this, these thin client machines are less expensive;

• Thin clients minimise some managerial costs; most changes can be made at the server level, eliminating the need to
distribute changes to each client machine.

Disadvantages:

• Less flexibility for the user;

• As the server handles most of the processing, the server machine has to be very powerful;

8.4.11 Two-tier and Three-tier Architectures

8.4.11.1 Two-tier Architecture

The three components of an application (user interface, business logic, and data management) are split into only two tiers,
that is as the client and the server. In a two-tier architecture, a client talks directly to a server, with no intervening server.
It is typically used in small environments (less than 50 users). A common error in client/server development is prototyp-
ing an application in a small, two-tier environment, and then scaling up by simply adding more users to the server. This
approach will usually result in an ineffective system, as the server becomes over-loaded. To properly scale to hundreds or
thousands of users, it is usually necessary to move to three-tier architecture.

8.4.11.2 Three-tier Architecture

Three-tier architecture splits three parts of an application (user interface, business logic, and data management) into three
tiers, and introduces a server (or an “agent” or a middle man) between the client and the server. This agent can be made
to function in a variety of ways. It can provide translation services (as in adapting a legacy application on a mainframe to
a client/server environment), or intelligent agent services (as in mapping a request to a number of different servers, collat-
ing the results, and returning a single response to the client), or metering services (as in acting as a transaction monitor to
limit the number of simultaneous requests to a given server). This three-tier solution allows the client process to empha-
sise on the user interface, and the server side to emphasise on data management.

Types of Middleware
Database middleware provides the link between client and server when the client application that accesses data in
the server’s database is designed to use only one database type.
Remote procedure calls (RPC) middleware is a more general-purpose solution to client/server computing than da-
tabase middleware which is used to access a wide variety of data resources for use in a single application.
Messaging middleware is an extension to RPC to address failures in the client/server systems. It provides synchronous
or asynchronous connectivity between client and server, so that messages can be either delivered instantly or stored
and forwarded as needed.
Object middleware is based on object-oriented technology in the name of object request brokers (ORB) model.
ORBs package and manage distributed objects through which middleware activities are extended.
Transaction-processing (TP) monitors have evolved into a middleware technology that can provide a single API for
writing distributed applications. TP monitors generally come with a robust set of management tools that add main-
frame like controls to open distributed environments.

Introduction to HTML, XML and Client Server Programming 8.69

8.4.11.3 An Example: Two-tier Client/Server Database Systems

In two-tier architecture the application logic is with the User Interface in the client or within the database in the server

or both. User interface is usually located in the user’s desktop environment while the database management services

can be in a server which is a more powerful machine that can serve many clients. That is, two-tier Client/server sys-

tems are constructed so that the database can reside on a central computer, known as a server, and is shared among the

several users. Users access the server through a client or server application. If the client application runs both business

logic and the code to display output to the user, it is called as a thick client. This model of having data stored and man-

aged in a central location offers several advantages:

• Each data item is stored in a central location where all users can work with it. As separate copies of the item are not
stored on each client, every user sees the same thing.

• Business and security rules can be defined and enforced equally among all users. This is carried out through the use
of a database constraints, stored procedures, and triggers.

• A relational database server optimises network traffic by returning only the data an application needs.

 For example, if an application working with a file server needs to display a list of the names of Heads of departments
of university, it must retrieve the entire employee file. If the application is working with a relational database server,
it sends this command:

SELECT first_name, last_name

FROM employees

WHERE emp_title = ‘HOD’ ;

 The relational database sends back only the names of heads of departments, not all the information about all employ-
ees of the University.

• Hardware costs can be minimised. As the data is not stored in each client, clients do not have to dedicate disk space
for storing data. The clients are not required to spare their power for managing data while server is not required
to spare its efforts for displaying data. Evidently, the server can be configured to optimise the disk I/O capacities
needed to retrieve data, and clients can be configured to optimise the formatting and display of data retrieved from
the server.

• Maintenance tasks such as backup and restoring data are simplified because they can focus on the central server.

8.4.11.4 Three-tier Architecture

In three-tier architecture the application logic or process lives in the middle-tier, it is separated from the data and the

user interface (see Figure 8.23). Three-tier systems are more scalable, robust and flexible. In addition, they can inte-

grate data from multiple sources. In three-tier architecture, a middle tier was added between the user system interface

client environment and the database management server environment. There are a variety of ways of implementing

this middle tier, such as transaction processing monitors, message servers, or application servers. The middle tier can

perform queuing, application execution, and database staging. For example, if the middle tier provides queuing, the

client can deliver its request to the middle layer and disengage because the middle tier will access the data and return

the answer to the client. The most basic type of three-tier architecture has a middle layer consisting of Transaction Pro-

cessing (TP) Monitor Technology. The TP Monitor Technology is a type of message queuing, transaction scheduling,

and prioritisation service where the client connects to the TP monitor (middle tier) instead of the database server. The

transaction is accepted by the monitor, which queues it and then takes responsibility for managing it to completion,

thus freeing up the client.

8.70 Computer Science & Information Technology for GATE

Presentation tier

Logic tier

The top-most level of the application
is the user interface. The main function
of the interface is to translate
tasks and results to something
the user can understand.

This layer coordinates the application,
processes commands, makes logical
decisions and evaluations, and
performs calculations. It also moves
and processes data between the two
surrounding layers.

Data tier

Here information is stored and retrieved from a
database of file system. The information is then
passed back to the logic tier for processing, and
then eventually back to the user.

GET LIST OF ALL
SALES MADE
LAST YEAR

ADD ALL SALES
TOGETHER

SALE 1
SALE 2
SALE 3
SALE 4

QUERY

Storage

Database

>GET SALES
TOTAL

4 TOTAL SALES

>GET SALES
TOTAL

Figure 8.23 A Three-tier Model

8.4.12 JavaScript and Client-side Scripting

JavaScript is a widely used Client-side Scripting Language that runs inside a browser. Inside a normal Web page, we
can place some JavaScript code. When the browser loads the page, the browser has a built-in interpreter that reads the
JavaScript code in the page and runs it. One of the most common uses of Java Script is to do field validation in a form.
For example, the programmer might validate that a person’s age entered into a form falls between 1 and 120.

8.4.13 Server-side Scripting

Server-side scripting is a web server technology in which a user’s request is verified by running a script directly on the web
server to generate dynamic web pages. It is usually used to provide interactive web sites that act as interface to databases
or other data stores. This is different from client-side scripting where scripts are run by the viewing web browser, usually
in JavaScript. The primary advantage to server-side scripting is the ability to highly customise the response based on the
user’s requirements, access rights, or queries into data stores. When the server serves data in a commonly used manner,
for example according to the HTTP or FTP protocols, users may have their choice of a number of client programs (most
modern web browsers can request and receive data using both of those protocols).

8.4.13.1 PHP and Server-side Scripting

PHP is a general-purpose server-side scripting language originally designed for web development to produce dynamic
web pages. It is among one of the first developed server-side scripting languages that is embedded into a HTML source
document, rather than calling an external file to process data. Ultimately, the code is interpreted by a web server with a
PHP processor module which generates the resulting web page. It can also be used as a command-line interface capability
and can be used in standalone graphical applications. PHP can be deployed on most web servers and also as a standalone
shell on almost every operating system and platform free of charge.

Introduction to HTML, XML and Client Server Programming 8.71

QUESTIONS

1. What is middleware and what does it do?

 Answer: Middleware sits between the application
software on the client and the application software on
the server. The two functions of middleware are (1)
to provide a standard way of communicating that can
translate between software from different vendors,
and (2) to manage the message transfer between cli-
ents and servers so that clients do not need to “know”
which server contains the application’s data.

2. How does a “thin” client differ from a “fat” client?

 Answer: Evidently, “thin” client architecture has little
or no application logic in the client at all. A “fat” cli-
ent approach places all or almost all of the application
logic in the client. “Thin” clients are easier to manage.
If an application changes, only the server with the ap-
plication logic needs to be updated.

3. How does a two-tier client server network differ
from a n-tier client server network?

 Answer: In a two-tiered architecture, the server is re-
sponsible for the data and the client handles the ap-
plication and presentation. An n-tiered architecture
uses more than three sets of computers. In this case,
the client is responsible for presentation, a database
server(s) is responsible for the data access logic and
data storage, and the application logic is spread across
two or more different sets of servers.

4. Compare two-tier and three-tier in terms of scal-
ability.

 Answer: The primary advantage of a three-tiered
client-server architecture compared to a two-tiered
architecture is that it separates out the processing that
occurs to better balance the load on the different serv-
ers; it is more “scalable.”

5. What is meant by Horizontal and Vertical scaling?

 Answer: Horizontal scaling means adding or remov-
ing client workstations with only a slight performance
impact. Vertical scaling means migrating to a larger
and faster server machine or multi-servers.

6. What are the functions of the typical server pro-
gram?

 Answer:

• It waits for client-initiated requests.

• Executes many requests at the same time.

• Takes care of VIP clients first.

• Initiates and runs background task activity.

• Keeps running.

• Can be grown bigger and faster.

7. What are Super servers?

 Answer: These are fully-loaded machines which in-
clude multiprocessors, high-speed disk arrays for in-
terleaved I/O and fault tolerant features.

8. Compare two-tier and three-tier architecture.

Characteristics two-tier three-tier

System Administration Complex Less Complex

Security Low High

Encapsulation of data Low High

Performance Poor Good

Scale Poor Excellent

Application reuse Poor Excellent

Ease of development High Getting Better

Server to server infrastructure No Yes

Legacy application Integration No Yes

Internet support Poor Excellent

Heterogeneous database support No Yes

Rich communication scale No Yes

Hardware architecture flexibility Limited Excellent

Availability Poor Excellent

9. What are the advantages of component based ap-
plication?

 Answer:

• You can develop big applications in small steps.

• You can reuse components.

• Clients can access data and function easily and safely.

• Custom application can incorporate off the self com-
ponents.

10. When should you use three-tier?

 Answer:

• Many application services or classes.

• Applications programmed in different languages or
written by different organisations.

• Two or More heterogeneous data sources-such as two
different DBMS or one DBMS and a file system.

• An application life that is longer than 3 years.

• A high volume workload—more than 50,000 trans-
actions per day or more than 300 concurrent users on
the same system accessing the same database.

• Significant inter–application communication-includ-
ing inter–enterprise communication such as EDI.

• The expectation that the above conditions will be met
soon and then the application will have to be scaled.

8.72 Computer Science & Information Technology for GATE

11. What is the role of Client?

 Answer:

• Handle the user interface.

• Translate the user’s request into the desired protocol.

• Send the request to the server.

• Wait for the server’s response.

• Translate the response into “human-readable” results.

• Present the results to the user.

OBJECTIVE TYPE QUESTIONS

1. A centralised system is one in which the components
of an information system are located on multiple loca-
tions that are connected through a computer network.
(Y/N)

2. A thin client is a personal computer that does not
have to be very powerful (or expensive) in terms of
processor speed and memory because it is supposed
to present only the interface (screens) to the user.
(Y/N)

3. A fat client is more powerful (in terms of processor
speed, memory, and storage capacity) than a thin cli-
ent, thus it is used as a server. (Y/N)

4. A fat client is more powerful (in terms of processor
speed, memory, and storage capacity) than a thin cli-
ent, thus it is used in two-tier C/S systems. (Y/N)

5. An application server hosts application logic and ser-
vices and communicates with the clients (for presen-
tation) and at the back end with database servers for
data access and update. (Y/N)

6. In a distributed presentation client/server system ap-
plication logic, data manipulation and data layers are

A. in server B. in client

C. in middleware D. None

7. In contrast to file server systems, in distributed data
client/server systems server executes all data manipu-
lation commands to create, read, update and delete
records on a server. (Y/N)

8. In distributed data and application client/server sys-
tem, application logic is available in __.

A. Server B. Fat client

C. Thin client D. None

9. Clients in three-tier will be fatter than clients in two-
tier. (Y/N)

10. Data replication, duplication and partitioning are the
same. (Y/N)

11. Middleware products force the programmers to be
aware of the underlying communication protocols.
(Y/N)

12. Presentation middleware is for

A. Dumb terminal

B. Client

C. Desktop GUI or web browser

D. None

13. Application middleware which is essential in multi-
tier applications enables two programmer-written
processes on different processors to communicate
with one another in whatever way is best suited to the
overall application. (Y/N)

14. A multi-user computer that hosts all the components
of an information system is a

A. Distributed system

B. Communication system

C. Enterprise resource system

D. Centralised system

E. None of these

15. _________ layer actually gives actual user interface.

A. Presentation

B. Presentation logic

C. The data

D. Application

16. _________ layer that implements processing that
must be done to generate the user interface.

A. Presentation B. Presentation logic

C. The data D. Application

17. The data and data manipulation layers are for the
same purpose. (Y/N)

18. Distributed presentation C/S is the one in which the
presentation and presentation logic layers are shifted
from the server of a legacy system to the client. (Y/N)

19. Data partitioning distributes rows and columns of a
relational database to specific database servers with
no duplication between servers. (Y/N)

20. Find the odd man out with respect to datastore.

A. Database table

B. A database

C. A computer file

D. A transport protocol

E. None

21. Find the odd man out.

A. XML B. HTML

C. ODBC D. CSS

Introduction to HTML, XML and Client Server Programming 8.73

22. A “fat” client approach places most of the application
logic on the client. (Y/N)

23. The one which does not have any hard disk.

A. Mainframe

B. Cluster

C. Network computer

D. Mini-computer

24. If the client is a thin client then the server becomes a
fat a server while if the client becomes a fat client then
the server becomes a thin server. (Y/N)

A N S W E R K E Y

1. N 2. Y 3. Y 4. N

5. Y 6. A 7. Y 8. A

9. N 10. N 11. N 12. C

13. Y 14. D 15. A 16. B

17. N 18. Y 19. Y 20. D

21. C 22. Y 23. C 24. Y

8.5 Introduction to J2EE

Because of its excellent cross platform support, Java language became the language of choice for middleware development;

however there were issues in the development of middleware as there was no consistent standard for the development

of services among the vendors. In addition, each vendor provided a different set of services for the applications. Thus, in

1999, Java Development Kit (JDK) was split into: Java 2 Standard Edition (J2SE), Java 2 Enterprise Edition (J2EE), and the

Java 2 Micro Edition (J2ME). J2EE is built on the J2SE and includes a number of APIs; the most important and the ones

most frequently associated with J2EE staudard are EJBs (Enterprise JavaBeans), JSPs (Java Server Pages), and Servlets.

The APIs or packages that are commonly used are identified in the Table and explained in the following sections. A J2EE

application may use additional APIs or tools to create a distributed application.

8.5.1 Core J2EE Packages

API Description

JDBC Provides connectivity to relational databases.

JNDI Provides Java access to naming services (LDAP, Windows Registry).

XML Processing (JAXP) Provides for manipulation of XML documents.

Web Services (JAXM) Provides the ability to send and receive XML messages using protocols such as
SOAP.

JSSE Allows secure SSL communications both as a server and a client.

JCE Allows common encryption techniques to be used with Java applications.

RMI Allows Java objects to be invoked remotely using the Remote Method Invocation
(RMI) protocol.

Servlets Provides a Web tier component using the HTTP protocol.

JMS The Java Messaging Service provides access to message queues and topics both
as a client and a server.

JSPs Provides a scripting language for insertion into HTML documents.

Java-IDL Allows Java applications to interact with CORBA servers.

EJBs Allows the use of business tier components operating within an abstract con-
tainer that provides a number of services.

JavaMail Allows access to email servers using common protocols such as POP3 and IMAP.

8.5.1.1 JDBC

Java Database Connectivity (JDBC) API is an important part of J2EE applications that provides an open, vendor-indepen-
dent API for accessing relational databases.

8.74 Computer Science & Information Technology for GATE

8.5.1.2 Java Naming and Directory Interface (JNDI)

This package provides consistent access to a variety of naming services that provide for storage and access of various ob-
jects. They are effectively lightweight databases with very specific uses.

8.5.1.3 JAXP

The JAXP package contains a number of classes that provide parsers and transformation services for Java applications.
The Extensible Markup Language (XML) has become the de facto standard for information interchange. This allows data
to be stored in a simple text file using tags that are easy to read and understand. Parsers and transformers are used to read
XML documents and transform them into other formats. This allows the development of service components that create
XML documents for a number of different clients. The client application can access the XML document and transform it
in the format they want.

8.5.1.4 JAXM

The Java for XML Messaging (JAXM) package contains classes and interfaces that provide access to Web Services. For in-
stance, this package allows us to develop SOAP clients and servers. Web services combine the data interchange capabilities
of XML and the openness of the HTTP protocol to create a service delivered over the Web.

8.5.1.5 RMI

The RMI (Remote Method Invocation) package allows an object to be created which exposes specific methods to remote
clients and also provides for client access to these remote methods. A number of J2EE application servers provide access to
their EJB components via RMI. RMI also allows a client to provide access to its methods as a call back service to the server.

8.5.1.6 Java Servlets and JSPs

The Servlet was the original Java Web component and is a Java class implementation that is invoked and run within a con-
tainer. The container (operating in a Web server) provides various services for the servlet, such as lifecycle management
and security, whereas JSPs are used for Web page scripting, allowing Java code fragments to be embedded in an HTML
page. The JSP is converted into a servlet and runs within the servlet container.

8.5.1.7 JavaMail

JavaEmail package is used by Java applications for a variety of purposes: for example, to send a warning message to an
administrator or user or to transmit data to another application. JavaEmail supports common protocols, such as POP3
and IMAP.

8.5.1.8 JMS

The JMS package provides access to asynchronous messaging services.

8.5.1.9 EJB

The EJB (Enterprise Java Beans) is the middleware component of J2EE. This component also runs in a container like serv-
let. The services for the EJB are provided by the application server and are often significant. Application servers are usually,
but not always, used for applications that expect a high usage load and/or must be highly available with very little down-
time. EJBs provide a development paradigm that isolates business logic into easily accessible components, which can be
accessed by Web tier components, such as JSPs or servlets, or even directly by client tier components such as a Swing GUI.

8.5.1.10 Java-IDL

Java-IDL provides the ability for Java applications to interact with Common Object Request Broker Architecture (COR-
BA) components written in any language. Applications using Java-IDL can invoke operations on remote services using the
OMG IDL (Object Management Group’s Interface Definition Language).

Introduction to HTML, XML and Client Server Programming 8.75

8.5.2 Why to use J2EE

8.5.2.1 Low level services are already implemented

An enterprise application needs to implement very complex services to be successful. Some of those services are transac-
tion and state management, resource pooling and multi-threading. J2EE architecture separates low level services from the
application logic.

8.5.2.2 J2EE is well documented and understood

J2EE is developed by a consortium formed by several major companies in the industry. For more information on this
consortium you can search for “Java Community Process”.

8.5.2.3 J2EE is a standardised and reliable software architecture

Using standardised and reliable software architecture in your development will most likely decrease your future costs and
ensure longevity of your applications.

8.5.2.4 J2EE gives you a lot of flexibility

We can deploy J2EE application wherever (in any application server) we want.

8.5.2.5 APIs used in J2EE are well documented

Several APIs are used to implement low level details of enterprise applications. As those APIs are already written and well
documented, this will save our time.

8.5.3 J2EE Platform Architecture

Application
Client

Application
Client

Client Tier
Client
Machine

J2EE Server
Machine

Web Tier

Business Tier

Database
Database Server
Machine

Enterprise
Bean

Enterprise
Bean

Database Database

JSP

Figure 8.24 J2EE platform Architecture

8.5.3.1 Client tier

In the client tier, Web components, such as Servlets and JavaServer Pages (JSPs), or standalone Java applications provide
a dynamic interface to the middle tier.

8.76 Computer Science & Information Technology for GATE

Client tier can have two types of components: web client or application client.
Web clients access the components in the web tier namely servlets or java server pages (jsp). Web browsers as a web client
are generally used to access web tier components.
Application clients are standalone applications that do not run in browsers (e.g. swing application). They directly access
the components in the business tier (Figure 8.25).

8.5.3.2 Middle tier

In the server tier, or middle tier, enterprise beans and Web Services encapsulate reusable, distributable business logic for
the application. These server-tier components are contained on a J2EE Application Server, which provides the platform
for these components to perform actions and store data.

8.5.3.3 Enterprise data tier

In the data tier, the enterprise’s data is stored and persisted, typically in a relational database.

Web Browser
Applet

Application Client

Client J2EE Server

Web Tier

Business Tier

Figure 8.25 Interaction between Client, Web and Business Tiers in J2EE

J2EE applications comprise of components, containers, and services.

COMPONENTS are application-level components.

8.5.4 J2EE Components

J2EE applications are made up of components where a component refers to a self-contained functional software unit that

is assembled into a J2EE application with its related classes and files and communicates with other components. The J2EE

specification defines the following J2EE components:

• Application clients and applets are client components.

• Java Servlet and Java Server Pages (JSP) technology components are web components.

• Enterprise JavaBeans (EJB) components (enterprise beans) are business components.

Evidently, J2EE components are written in the Java programming language and compiled. These J2EE components are

assembled into a J2EE application, verified that they are well-formed and in compliance with the J2EE specification, and

deployed to production where they are run and managed by the J2EE server.

8.5.4.1 Client Components

We can have a J2EE application can be web-based or non-web-based. An application client executes on the client machine

for a non-web-based J2EE application, while a web browser downloads web pages and applets to the client machine for a

web-based J2EE application.

8.5.4.2 Application Clients

An application client runs on a client machine and provides a way for users to handle tasks such as J2EE system or applica-

tion administration. Application clients directly access enterprise beans running in the business tier. However, if the J2EE

application client requirements warrant it, an application client can open an HTTP connection to establish communica-

tion with a servlet running in the web tier.

Introduction to HTML, XML and Client Server Programming 8.77

8.5.4.3 Web Browsers

The user’s web browser downloads static or dynamic Hypertext Markup Language (HTML), Wireless Markup Language
(WML), or Extensible Markup Language (XML) web pages from the web tier. Dynamic web pages are generated by serv-
lets or JSP pages running in the web tier.

8.5.4.4 Enterprise Application Components

These components provide a top-level structure which contains any number of other J2EE components (except other J2EE
Enterprise Applications). The JAR file holding an enterprise application has the suffix .ear, so Enterprise Applications are
frequently referred to as EARs.

8.5.4.5 Web Application Components

These J2EE components may contain Servlets, Java ServerPages, Tag Library Definitions and plain Java classes or re-
sources as required for proper operation. The documents and Java classes of Web Applications frequently create markup
language (HTML, WML, XML, etc.) responses to requests from web browsers or business applications. The JAR file hold-
ing a Web application has the suffix .war, so WebApps are frequently referred to as WARs.

8.5.4.6 Enterprise JavaBean Application Components

These components hold server-side business logic packaged within Enterprise JavaBeans.

8.5.4.7 Resource Application Components

These J2EE components hold Java classes that act as drivers or communication gateways to Enterprise Information Sys-
tems (EISs). It is highly likely that the manufacturer of an EIS packages its driver into a J2EE resource archive (RAR).
CONTAINERS are the interface between a component and the low-level platform-specific functionality that supports the
component. The container also manages non-configurable services such as enterprise bean and servlet life cycles, data-
base connection resource pooling, data persistence, and access to the J2EE platform APIs.
Container Types
J2EE server is the runtime portion of a J2EE product. A J2EE server provides EJB and web containers (Figure 8.26).

Application
Client

Container

Client Machine

J2EE Server

Web Container

JSP PageServlet

Enterprise
Bean

Enterprise
Bean

EJB Container

Database
Application

Client

Browser

Figure 8.26 J2EE system with EJB

Enterprise JavaBeans (EJB) container manages the execution of enterprise beans for J2EE applications. Enterprise beans
and their container run on the J2EE server.
Web container manages the execution of JSP page and servlet components for J2EE applications. Web components and
their container run on the J2EE server.
Application client container manages the execution of application client components. Application clients and their con-
tainer run on the client.

8.78 Computer Science & Information Technology for GATE

Applet container manages the execution of applets. This consists of a web browser and Java Plug-in running on the client

together.

8.5.6 J2EE Standard Services

The J2EE standard services J2EE actually provided by J2SE. Some of the J2EE services are HTTP, Java IDL, JDBC, JMS,
JNDI, JavaMail, JAXP.

8.5.7 J2EE Platform Benefits

The J2EE platform offers several benefits:

• Simplified architecture and development

• Scalability to meet demand variations

• Integration with existing information systems

• Choice of servers, tools, components

• Flexible security model

8.5.8 Model-View-Controller (MVC)

MVC is an architectural pattern used in software engineering. In complex computer applications that present a large
amount of data to the user, a developer often wishes to separate data (model) and user interface (view) concerns, so that
changes to the user interface will not affect data handling, and that the data can be reorganised without changing the user
interface. The model-view-controller solves this problem by decoupling data access and business logic from data presenta-
tion and user interaction, by introducing an intermediate component: the controller.

Controller

View Model

Figure 8.27 MVC Architecture

A simple diagram that depicts the relationship between the Model, View, and Controller is given above (Figure 8.27). Note
that the solid lines indicate a direct association, and the dashed lines indicate an indirect association. This pattern was first
described in 1979 by Trygve Reenskaug, then working on Smalltalk at Xerox research labs.

8.5.8.1 Pattern Description

It is common to split an application into separate layers: presentation (UI), domain logic, and data access. In MVC the
presentation layer is further separated into view and controller. MVC encompasses more of the architecture of an applica-
tion than is typical for a design pattern.

8.5.8.2 Model

This contains the domain-specific representation of the information that the application operates. Domain logic adds
meaning to raw data (e.g., calculating whether today is the user’s birthday, or the totals, taxes, and shipping charges for
shopping cart items). Many applications use a persistent storage mechanism (such as a database) to store data. MVC does
not specifically mention the data access layer because it is understood to be underneath or encapsulated by the Model.

Introduction to HTML, XML and Client Server Programming 8.79

8.5.8.3 View

View renders the model into a form suitable for interaction, typically a user interface element. Multiple views can exist for
a single model for different purposes.

8.5.8.4 Controller

Controller processes and responds to events, typically user actions, and may invoke changes on the model.

MVC is often seen in web applications, where the view is the actual HTML page, and the controller is the code that gathers
dynamic data and generates the content within the HTML. Finally, the model is represented by the actual content, usually
stored in a database or XML files. Though MVC comes in different flavors, control flow generally works as follows:

The user interacts with the user interface in some way (e.g., presses a button).

A controller handles the input event from the user interface, often via a registered handler or callback.

The controller accesses the model, possibly updating it in a way appropriate to the user’s action (e.g., controller updates
user’s shopping cart).

A view uses the model (indirectly) to generate an appropriate user interface (e.g., the view produces a screen listing the
shopping cart contents). The view gets its own data from the model.

The model has no direct knowledge of the view.

The user interface waits for further user interactions, which begins the cycle anew.

By decoupling models and views, MVC helps to reduce the complexity in architectural design, and to increase flexibility
and reuse.

Exemplary MVC implementations in selected languages includes Java Enterprise Edition (Java EE)

8.5.9 Java Enterprise Edition (Java EE)

Unlike the other frameworks, Java EE defines a pattern for model objects.

8.5.9.1 Model

The model is commonly represented by entity beans, although the model can be created by a servlet using a business
object framework such as Spring.

8.5.9.2 View

The view in a Java EE application may be represented by a Java Server Page, which may be currently implemented using
JavaServer Faces Technology (JSF). Alternately, the code to generate the view may be part of a servlet.

8.5.9.3 Controller

The controller in a Java EE application may be represented by a servlet.

8.5.9.4 MVC Benefits

• MVC separates design concerns (data persistence and behavior, presentation, and control), decreasing code dupli-
cation, centralising control, and making the application more easily modifiable.

• MVC also helps developers with different skill sets to focus on their core skills and collaborate through clearly de-
fined interfaces. For example, a J2EE application project may include developers of custom tags, views, application
logic, database functionality, and networking.

• An MVC design can centralise control of application facilities such as security, logging, and screen flow.

• New data sources are easy to add to an MVC application by creating code that adapts the new data source to the view
API. Similarly, new client types are easy to add by adapting the new client type to operate as an MVC view.

• MVC clearly defines the responsibilities of participating classes, making bugs easier to track down and eliminate.

8.80 Computer Science & Information Technology for GATE

QUESTIONS

1. What is a thin-client application?

 Answer: A thin client does not process data, but in-
stead sends the data to an enterprise bean for process-
ing.

2. What is a J2EE component?

 Answer: A J2EE component is a self-contained, func-
tional software unit that is assembled into a J2EE ap-
plication and interfaces with other application com-
ponents. The J2EE specification defines the following
application components:

• Application client components

• Enterprise JavaBeans components

• Servlets and JavaServer Pages components (also
called Web components)

• Applets

3. What advantage does an entity bean have over a ses-
sion bean?

 Answer: Entity bean data is persistent because it sur-
vives crashes. If a crash occurs while the data in an
entity bean is being updated, the entity bean data is
automatically restored to the state of the last commit-
ted database transaction. If the crash occurs in the
middle of a database transaction, the transaction is
backed out to prevent a partial commit from corrupt-
ing the data.

4. When would you use a session bean?

 Answer: You would use a session bean to process
non-persistent data that represents a transient con-
versation with a client.

5. Why would you design a J2EE application so user
data is entered by way of a JSP page and managed
by an underlying JavaBeans class?

 Answer: Separating how the data is presented from
how the data is managed makes an application much
easier to update, maintain, and manage. For example,
the person who maintains the JSP page does not have
to know Java programming language, and the person
who maintains the JavaBean code does not have to
understand user interface design.

6. Why is XML a good way to transfer text-based data
from one program or tool to another ?

 Answer: XML tags represent and describe data. Any
tool or program that can read the tags, can handle
the data based on what the tags mean. For example, a
company might use XML to produce reports so differ-
ent parties who receive the reports can handle the data

in a way that best suits their needs. One party might
put the XML data through a program to translate the
XML to HTML so it can post the reports to the web;
another party might put the XML data through a tool
to produce a stockholder booklet; and yet another
party might put the XML data through a tool to create
a marketing presentation. These highly flexible and
cost-effective capabilities are available through XML
tags, Document Type Definitions (DTDs) also known
as XML schemas, and XML APIs.

7. What part of the J2EE platform handles data stor-
age and retrieval on behalf of an entity bean?

 Answer: The container handles data storage and re-
trieval on behalf of a container-managed entity bean.
This is called container-managed persistence, and
means that you do not have to write any SQL code
to send data to or retrieve data from the database be-
cause the container handles all of this for you.

8. What is bean-managed persistence?

 Answer: Bean-managed persistence is when you
override container-managed persistence and imple-
ment entity or session bean methods to use the SQL
commands you provide. Bean-managed persistence
can be useful if you need to improve performance or
map data in multiple beans to one row in a database
table.

9. How are life cycle methods called?

 Answer: A bean’s container calls its life cycle meth-
ods. The container is the interface between a bean and
the low-level platform-specific functionality that sup-
ports the bean.

10. In a multi-tiered application, which tier is the
browser in?

 Answer: The browser (or thin client) is in the first tier
of a multi-tiered application.

OBJECTIVE TYPE QUESTIONS

1. Which language is used for middleware development?

A. XML B. Java

C. C# D. C++

2. JDBC provides open, vendor independent API for
accessing relational databases in J2EE development.
(Y/N)

3. JAXM and JAXP are both used for XML processing.
(Y/N)

Introduction to HTML, XML and Client Server Programming 8.81

4. Middleware component of J2EE

A. Java B. EJB

C. Servlet D. None

5. Related to Web tier

A. Java B. JSP

C. EJB D. Applet

8.6 Introduction to JSP

Java Server Pages (JSP) is Java based technology for the development of dynamic web sites. Evidently, JSP files are
also HTML files with special tags containing Java source code that extends the dynamic content. The Web server
that supports JSP files may be connected to a database also. In a nutshell, JSP source code runs in the web server
in the JSP Servlet Engine which in turn dynamically generates the HTML and sends the HTML output to the client’s
web browser.

Main reasons for using JSP

• Multi platform functionality

• Component reuse by using Java beans and EJB. We can continue to enjoy the advantages of Java.

• We can take one JSP file and move it to another platform, web server or JSP Servlet engine. This means we are not

locked with one vendor or platform.

HTML and graphics displayed in the web browser are classed as the presentation layer. The Java code (JSP) on the server

is classed as the implementation layer. By having a separation of presentation and implementation, web designers will be

made to work only on the presentation aspects while Java developers will be made to concentrate on implementing the

application.

8.6.1 JSP ARCHITECTURE

JSPs are essentially special tags embedded in HTML pages. These JSP tags can contain Java code. The JSP file extension

is .jsp rather than .htm or .html. The JSP engine parses the .jsp and creates a Java Servlet source file. It then compiles the

source file into a class file, which is only done the first time and that is why the JSP is probably slower during the first time

it is accessed. Any time after this, the special compiled servlet is executed and is thus faster.

Steps required for a JSP request:

1. The user goes to a web site made using JSP. The user goes to a JSP page (whose file name is ending with .jsp). The web
browser makes the request via the Internet.

2. The JSP request is sent to the Web server.

3. The Web server recognises that the file required is special (.jsp), therefore it passes the JSP file to the JSP Servlet
Engine.

4. If the JSP file has been called the first time, the JSP file is parsed, otherwise goes to step 7.

5. A special Servlet is generated from the JSP file. All the HTML statements that are required are converted to println
statements.

6. The Servlet source code is compiled into a class.

7. The Servlet is instantiated, calling the init and service methods.

8. HTML form, the Servlet output is sent via the Internet.

9. HTML results are displayed on the user’s web browser.

Figure 8.28 demonstrates the actions involved with JSP. JSP’s life cycle can be grouped into following phases.

A N S W E R K E Y

1. B 2. Y 3. N 4. B

5. B

8.82 Computer Science & Information Technology for GATE

Web Browser

INTERNET

Web Server

JSP
File

3. Sent to JSP Servlet Engine

JSP Servlet Engine

4. Parse JSP file

5. Generate Servlet
source code

6. Compile servlet
source code into class

7. Instaritiate servlet

8. HTML (servlet output)

1. Web browser Request 2. JSP request sent to Web server

9. HTML sent to brower

Figure 8.28 Working of JSP based web service

1. JSP Page Translation: A java servlet file is generated from the JSP source file. This is the first step in its tedious mul-
tiple phase life cycle. In the translation phase, the container validates the syntactic correctness of the JSP pages and
tag files. The container interprets the standard directives and actions, and the custom actions referencing tag libraries
used in the page.

2. JSP Page Compilation: The generated java servlet file is compiled into a java servlet class.
3. Class Loading: The java servlet class that was compiled from the JSP source is loaded into the container.
4. Execution phase: In the execution phase the container manages one or more instances of this class in response to

requests and other events. The interface JSP Page contains jspInit() and jspDestroy(). The JSP specification has pro-
vided a special interface HttpJspPage for JSP pages serving HTTP requests and this interface contains _jspService().

5. Initialisation: jspInit() method is called immediately after the instance is created. It is called only once during JSP
life cycle.

6. _jspService() execution: This method is called for every request of a JSP during its life cycle. This is where it serves
the purpose of creation. Of course, it has to pass through all the above steps to reach this phase. It passes the request
and the response objects. This method cannot be overridden.

7. jspDestroy() execution: This method is called when this JSP is destroyed. With this call the servlet serves its purpose
and submits itself to heaven (garbage collection). This is the end of jsp life cycle. The jspInit(), _jspService() and

jspDestroy() are called the life cycle methods of the JSP.
As explained above, when someone visits a JSP page, the HTML web page is generated and sent back to the visitor. In order
to explain the conceptual difference between static HTML pages and dynamic JSP pages, consider the following HTML
source code and its output “The date today is”. In order for a static web page to show today’s date, we need to edit the
web page every day and upload to the web server. This is very time consuming for such a simple task. This is where the
dynamic generation of web pages shows their usefulness. In the JSP code, special syntax is used to signify that the current
date needs to be displayed. This special syntax is processed on the web server and sent back to the visitor as a normal
(html) web page.

HTML
today.htm

Output

<HTML>
<BODY>
The date today is :
<BODY>
<HTML>

The date today is :

JSP
today.htm

Output

<HTML>
<BODY>
The date today is :
<%= new java, util.Date()%>
<BODY>
<HTML>

The date today is : Sun Sep 30
15:05:35 BST 2006

Introduction to HTML, XML and Client Server Programming 8.83

Creating first JSP page

<html>

<head>

</head>

<body>

<%@ page language=“java” %>

<% out.println(“Hello World”); %>

</body>

</html>

We can type the above code into a text file with the name say helloworld.jsp and place this in the correct directory of our
JSP web server and invoke it via our browser.

8.6.2 Using JSP Tags

There are five main tags that are used in JSP. They are given as:

1. Declaration tag

2. Expression tag

3. Directive tag

4. Scriptlet tag

5. Action tag

We shall learn about these JSP tags with suitable examples in the following pages. However, the use of each tag is
summarised below.

1. Directives: In the directives we can import packages, define error handling pages or the session information of the
JSP page.

2. Declarations: This tag is used for defining the functions and variables to be used in JSP.

3. Scriplets: In this tag we can insert any amount of valid java code and these codes are placed in _jspService method
by the JSP engine.

4. Expressions: We can use this tag to output any data on the generated page. These data are automatically converted
to string and printed on the output stream.

5. Action Tag: There are three main roles of action tags :

• To enable the use of server side Javabeans

• To transfer control between pages

• For browser independent support for applets.

8.6.2.1 Directive Tags

Syntax of JSP directive tags are given as:

<%@directive attribute=“value” %>

Where directive can be:

1. page: page is used to provide the information about it.

n Example <%@page language=“java” %>

2. include: include is used to include a file in the JSP page.

n Example

3. taglib: taglib is used to use the custom tags in the JSP pages (custom tags allow us to define our own tags).

n Example
and attribute can be:

8.84 Computer Science & Information Technology for GATE

1. language=“java”. This tells the server that the page is using the java language.

n Example <%@page language=“java” %>

2. extends=“mypackage.myclass”. This attribute is used when we want to extend any class. We can use comma(,) to

import more than one package.

n Example <%@page language=“java” import=“java.sql.*,nbvpackage.myclass” %>

3. session=“true”. When this value is true, session data is available to the JSP page otherwise not. By default this

value is true.

n Example <%@page language=“java” session=“true” %>

4. errorPage=“error.jsp”. This is used to handle the un-handled exceptions in the page.

n Example <%@page language=“java” session=“true” errorPage=“error.jsp” %>

5. contentType=“text/html;charset=ISO-8859-1”. We have to use this attribute to set the mime type and character

set of the JSP.

n Example <%@page language=“java” session=“true” contentType=“text/html;charset=ISO-8859-1”%>

More about Page directive

This directive has the following optional attributes (refer to Table below) that provide the JSP Engine with special process-
ing information.

Attribute Description Example

language Which language the file uses. <%@ page language = “java” %>

extends Superclass used by the JSP engine for the translated Servlet. <%@ page extends = “com.taglib... %>

import Import all the classes in a java package into the current JSP page. This
allows the JSP page to use other java classes.

<%@ page import = “java.util.*” %>

session Does the page make use of sessions. By default all JSP pages have
session data available. There are performance benefits to switching
session to false.

Default is set to true.

buffer Controls the use of buffered output for a JSP page. Default is 8kb <%@ page buffer = “none” %>

autoFlush Flush output buffer when full. <%@ page autoFlush = “true” %>

isThreadSafe Can the generated Servlet deal with multiple requests? If true a new
thread is started so requests are handled simultaneously.

info Developer uses info attribute to add information/document for a
page. Typically used to add author, version, copyright and date info.

<%@ page info = “visualbuilder.com test
page,copyright 2001. “ %>

errorPage Different page to deal with errors. Must be URL to error page. <%@ page errorPage = “/error/error.jsp” %>

IsErrorPage This flag is set to true to make a JSP page a special Error Page. This
page has access to the implicit object exception (see later).

contentType Set the mime type and character set of the JSP.

More about Include directive

With the help of include directive, a JSP developer can include contents of a file inside another. Typically include files are
used for navigation, tables, headers and footers that are common to multiple pages. For example, the following includes
privacy.html found in the include directory into the current jsp page.

More about Tag Lib directive

A tag lib is a collection of custom tags that can be used by the page. Custom tags were introduced in JSP 1.1 and allow JSP
developers to hide complex server side code from web designers.

Introduction to HTML, XML and Client Server Programming 8.85

8.6.2.2 Declarative Tags

Syntax of JSP Declaratives are given as:

 <%!

//java code

%>

JSP Declaratives begins with <%! and ends with %> .We can embed any amount of java code in the JSP Declaratives.
Variables and functions defined in the declaratives are class level and can be used anywhere in the JSP page. Code placed
in this tag must always end with a semicolon (;). Declarations do not generate output so are used with JSP expressions or
scriptlets.

n Example The following code declares a variable counter and a method setAccount.

<%!

 private int counter = 0 ;

 private String setAccount (int accountNo);

%>

8.6.2.3 Scriplet Tags

Syntax of JSP Scriptles is as follows.

 <% //java code %>

We can embed any amount of java code in the JSP Scriptlets. JSP Engine places this code in the _jspService() method.
Variables available to the JSP Scriptlets are:

request: request represents the clients request and is a subclass of HttpServletRequest. We can use this variable to
retrieve the data submitted along with the request.

n Example

 <%

 //java code

 String userName=null;

 userName=request.getParameter(“userName”);

 %>

response: response is subclass of HttpServletResponse.

session: session represents the HTTP session object associated with the request.

out: out is an object of output stream and is used to send any output to the client.

Other variables available to the scriptlets are

The scriplet code can access any variable or bean that has been declared. For example, to print a variable.

<%

 String username = “visualbuilder”;

out.println (username) ;

 %>

8.6.2.4 Expression Tags

Syntax of the JSP Expressions are:

 <%= “Anything” %>

That is, anything between <%, and %> is considered as an expression and the same will be converted into a String which
will be displayed.

8.86 Computer Science & Information Technology for GATE

n Example

 <%=“Hello JSP World!” %>

Above code will display ‘Hello JSP World!’.
Expression tag behaves as System.out.println(). A semicolon (;) does not appear at the end of the code inside the tag. For
example, to show the current date and time.

 Date : <%= new java.util.Date() %>

8.6.2.5 Action tags

Action tags are mainly used :

(1) to enable the use of server side Javabeans

(2) to transfer control between pages

(3) to have browser independent support for applets.

The following are some of the action tags:

• jsp:include This action works as a subroutine; the Java servlet temporarily passes the request and response to the
specified JSP/Servlet. Control is then returned back to the current JSP page.

• jsp:param This action is used to add the specific parameter to current request. This tag can be used inside a
jsp:include, jsp:forward or jsp:params blocks.

• jsp:forward This tag is used to hand off the request and response to another JSP or servlet. Do remember that the
request never returns to the calling JSP page.

• jsp:plugin This tag actually generates the appropriate HTML code to embed the Applets correctly. With older
browsers this may be needed.

• jsp:fallback This tag is used to specify what message is to be shown on the browser if the applet is not supported

by the browser.

n Example

<jsp:fallback>

<p>Sorry Unable to load applet</p>

</jsp:fallback>

jsp:getProperty This action

jsp:setProperty This tag is used to set a property in the JavaBean object.

jsp:useBean This tag is used to instantiate an object of Java Bean or it can re-use existing java bean object.

8.6.3 Javabeans

A Javabean is a special type of class that has a number of methods which a JSP page can call. For example, to make a feed-
back form that automatically sends emails to visitors, create a JSP page with a form. When the visitor presses the submit
button the browser sends the details to a Javabean that sends out the email. This way there would be no code in the JSP
page dealing with sending emails (JavaMail API) and our Javabean could be used in another page (promoting reuse). To

use a Javabean in a JSP page use the following syntax:

<jsp : usebean id = “” scope = “application” class = “com...” />

The following is a list of Javabean scopes:

page - valid until page completes.

request - bean instance lasts for the client request

session - bean lasts for the client session

application - bean instance created and lasts until application ends.

Introduction to HTML, XML and Client Server Programming 8.87

8.6.4 Simple JSP Examples

8.6.4.1 Creating a Second JSP Page

This example is used to illustrate how to declare variables in JSP page. Here, two variable are used, one string and an in-
teger x that displays HAPPY NEW YEAR a number of times when the page is accessed.

<HTML> <HEAD>

<!-- Ex2 -->

<TITLE> JSP loop</TITLE>

</HEAD>

<BODY>

JSP loop

<%!

public String writeThis(int x)

{ String myText=“”;

 for (int i = 1; i < x; i++)

 myText = myText “HAPPY NEW YEAR
” ;

 return myText; } %>

This is a loop example from the

<%= writeThis(8) %>

 </BODY> </HTML>

8.6.4.2 Implicit Objects

These objects are automatically available in JSP. The implicit objects are:

Variable Of type

Request Javax.servlet.http.httpservletrequest

Response Javax.servlet.http. httpservletresponse

Out Javax.servlet.jsp.JspWriter

Session Javax.servlet.http.httpsession

PageContent Javax.servlet.jsp.pagecontext

Application Javax.servlet.http.ServletContext

Config Javax.servlet.http.ServletConfig

Page Java.lang.Object

Page object Represents the JSP page and is used to call any methods defined by the servlet class.

Config object Stores the Servlet configuration data.

Request object Access to information associated with a request. This object is normally used in looking up parameter
values and cookies.

<% String devStr = request.getParameter(“dev”); %>

Development language = <%= devStr %>

This code snippet stores the parameter “dev” in the string devStr.

8.88 Computer Science & Information Technology for GATE

8.6.4.3 Creating a Form

Let us learn how to create a form and process an html form. Copy the code below and place in a file named: myform.jsp.
Go to myform.jsp in our browser. You will see the form you just created.

<html> <head>

<!—Ex3 -->

<title>Sample form </title>

</head><body>

Enter in a website name:

<input type=“text” name=“website”>

<input type=“submit” name=“submit”>

</form></body></html>

8.6.4.4 Processing a Form

Now, we show how to process the html form that is just created. Copy the code below and place in a file named: myform-
confirm.jsp. Go. to myform.jsp. Fill in some details and submit the form. We should see the results of our submission

<html> <head>

<!—Ex4-->

<title>Form processing </title>

</head> <body>

Your info has been received:

<% String sName = request.getParameter(“website”);

out.print(sName); %>

 </body> </html>

This example shows how to create and process more form elements. Copy the code below and place in a file named: full-
form.jsp

<html>

<head>

<!-- Ex5 -->

</head>

<body>

<h1>

Website submission form

</h1>

Introduction to HTML, XML and Client Server Programming 8.89

Enter in the website name:

<input type=“text” name=“website”>

 Enter in the url:

<input type=“text” name=“url”>

 category:

<select name=“category” size=“1”>

<option selected value=“java”>java</option>

<option value=“ejb”>ejb</option>

<option value=“servlet”>servlet</option>

<option value=“jsp”>jsp</option>

<option value=“jdbc”>jdbc</option>

</select>

 Description:

<textarea rows=“4” cols=’42’ name=“desc”></textarea>

 Search engines:

<input type=“checkbox” name=“yahoo” value=“T”>Yahoo

<input type=“checkbox” name=“google” value=“T” CHECKED>Google

<input type=“checkbox” name=“altavista” value=“T”>Altavista

<input type=“submit” name=“submit” value=“Go”>

</form>

</body> </html>

Now, we have to process the field data from the above page. Copy the code below and place in a file named: fullformcon-
firm.jsp. Go to fullform.jsp. Fill in some details and submit the form. You should see the results of your submission

<html> <head>

<!-- Example4 -->

</head> <body>

 Thank you for your submission,it has been successfully received:

<% String sName = request.getParameter (“website”);

String sUrl = request.getParameter(“url”);

String sCategory = request.getParameter (“category”);

String sDesc = request.getParameter(“desc”);

String sGoogle = request.getParameter(“google”);

String sYahoo = request.getParameter(“yahoo”);

String sAltavista = request.getParameter (“altavista”); %>

Name:<%=sName%>

Url:<%=sUrl%>
 Desc:<%=sDesc%>

8.90 Computer Science & Information Technology for GATE

Category:<%=sCategory%>
 Desc:<%=sDesc%>

Google:<%=sGoogle%>

Yahoo:<%=sYahoo%>

Altavista:<%=sAltavista%>

 </body> </html>

8.6.4.5 Getting Client Info

We can get information about a clients computer. Copy the code below and place in a file named: clientinfo.jsp. Run it
from our browser. You should see the results of your submission.

<html>

<head>

<!—Ex6 -->

<title>Client Info </title>

</head>

<body>

Client computer details:

Ip address:

<%=request.getRemoteAddr()%>

Computer name:

<%=request.getRemoteHost()%>

</body>

</html>

8.6.5 Advantages and Disadvantages of JSP

8.6.5.1 Advantages

• Simple to understand and develop initially

8.6.5.2 Disadvantages of JSP

• The JSP page is very difficult to maintain. It contains HTML and Java code with queries to the database. The busi-
ness logic should not be in the JSP; otherwise many pages will have to be changed every time business requirements
change.

• Need to have data connectivity code in every JSP page.

• Does not scale up very well.

• Security issues - If a hacker gains access to the web server, all the confidential business logic can be read by opening
the JSP files.

Introduction to HTML, XML and Client Server Programming 8.91

QUESTIONS

1. What are the benefits of using J2EE?

 Answer: There are several reasons for using the J2EE
set of technologies:

• Extensibility and maintainability

• Division of work along skill lines

• Scalability, portability, availability

• Code reuse

• Interoperability – legacy integration

• Focus on implementing business logic

• Separation of code with differing rates of change.

2. What makes J2EE suitable for distributed multi-
tiered Applications?

 Answer: The J2EE platform uses a multi-tiered dis-
tributed application model. Application logic is di-
vided into components according to function, and the
various application components that make up a J2EE
application are installed on different machines de-
pending on the tier in the multi-tiered J2EE environ-
ment to which the application component belongs.
The J2EE application parts are:

• Client-tier components run on the client machine.

• Web-tier components run on the J2EE server.

• Business-tier components run on the J2EE server.

• Enterprise information system (EIS)-tier software
runs on the EIS server.

3. What is J2EE?

 Answer: J2EE is an environment for developing and
deploying enterprise applications. The J2EE platform
consists of a set of services, application programming
interfaces (APIs), and protocols that provide the
functionality for developing multi-tiered, web-based
applications.

4. What are the components of J2EE application?

 Answer: A J2EE component is a self-contained func-
tional software unit that is assembled into a J2EE ap-
plication with its related classes and files and commu-
nicates with other components. The J2EE specification
defines the following J2EE components:

• Application clients and applets are client components

• Java Servlet and JavaServer Pages technology compo-
nents are web components

• Enterprise JavaBeans components (enterprise beans)
are business components

• Resource adapter components provided by EIS and
tool vendors

5. What do Enterprise JavaBeans components con-
tain?

 Answer: Enterprise JavaBeans components contain
Business code, which is logic that solves or meets the
needs of a particular business domain such as bank-
ing, retail, or finance, and is handled by enterprise
beans running in the business tier. All the business
code is contained inside an Enterprise Bean which
receives data from client programs, processes it (if
necessary), and sends it to the enterprise informa-
tion system tier for storage. An enterprise bean also
retrieves data from storage, processes it (if necessary),
and sends it back to the client program.

6. Does J2EE application sell only a web-based appli-
cation?

 Answer: No, It depends on the type of application
that the client wants. A J2EE application can be web-
based or non-web-based. If an application client ex-
ecutes it on the client machine, it is a non-web-based
J2EE application. The J2EE application can provide a
way for users to handle tasks such as J2EE system or
application administration. It typically has a graphical
user interface created from Swing or AWT APIs, or a
command-line interface. When user requests, it can
open an HTTP connection to establish communica-
tion with a servlet running in the web tier.

7. Are JavaBeans J2EE components?

 Answer: No. JavaBeans components are not con-
sidered J2EE components by the J2EE specification.
They are written to manage the data flow between
an application client or applet and components run-
ning on the J2EE server or between server compo-
nents and a database. JavaBeans components written
for the J2EE platform have instance variables and get
and set methods for accessing the data in the instance
variables. JavaBeans components used in this way are
typically simple in design and implementation, but
should conform to the naming and design conven-
tions outlined in the JavaBeans component architec-
ture.

8. Is HTML page a web component?

 Answer: No. Static HTML pages and applets are bun-
dled with web components during application assem-
bly, but are not considered web components by the
J2EE specification. Even the server-side utility classes
are not considered as web components.

9. What can be considered as a web component?

 Answer: J2EE Web components can be either servlets
or JSP pages. Servlets are Java programming language
classes that dynamically process requests and con-
struct responses. JSP pages are text-based documents

8.92 Computer Science & Information Technology for GATE

that execute as servlets but allow a more natural ap-
proach to creating static content.

10. What are containers?

 Answer: Containers are the interface between a com-
ponent and the low-level platform specific function-
ality that supports the component. Before a Web, en-
terprise bean, or application client component can be
executed, it must be assembled into a J2EE applica-
tion and deployed into its container.

11. What are container services?

 Answer: A container is a runtime support of a sys-
tem-level entity. Containers provide components with
services such as lifecycle management, security, de-
ployment, and threading.

12. What is a web container?

 Answer: Servlet and JSP containers are collectively
referred to as Web containers. It manages the execu-
tion of JSP page and servlet components for J2EE ap-
plications. Web components and their container run
on the J2EE server.

13. What is Enterprise JavaBeans (EJB) container?

 Answer: It manages the execution of enterprise beans
for J2EE applications. Enterprise beans and their con-
tainer run on the J2EE server.

14. What is Applet container?

 Answer: It manages the execution of applets. It con-
sists of a Web browser and Java Plugin simultaneously
running on the client.

15. How do we package J2EE components?

 Answer: J2EE components are packaged separately
and bundled into a J2EE application for deploy-
ment. Each component, its related files such as GIF
and HTML files or server-side utility classes, and a
deployment descriptor are assembled into a module
and added to the J2EE application. A J2EE application
is composed of one or more enterprise bean,Web, or
application client component modules. The final en-
terprise solution can use one J2EE application or be
made up of two or more J2EE applications, depending
on design requirements. A J2EE application and each
of its modules has its own deployment descriptor. A
deployment descriptor is an XML document with an
.xml extension that describes a component’s deploy-
ment settings.

16. What are the types of J2EE clients?

 Answer: Following are the types of J2EE clients:

• Applets

• Application clients

• Java Web Start-enabled rich clients, powered by Java
Web Start technology.

• Wireless clients, based on Mobile Information De-
vice Profile (MIDP) technology.

17. What is deployment descriptor?

 Answer: A deployment descriptor is an Extensible
Markup Language (XML) text-based file with an .xml
extension that describes a component’s deployment
settings. A J2EE application and each of its modules
has its own deployment descriptor. Because deploy-
ment descriptor information is declarative, it can be
changed without modifying the bean source code. At
run time, the J2EE server reads the deployment de-
scriptor and acts upon the component accordingly.

18. What is an EAR file?

 Answer: An EAR file is a standard JAR file with an
.ear extension, named from Enterprise ARchive file.
A J2EE application with all of its modules is delivered
in EAR file.

19. What is JTA and JTS?

 Answer: JTA is the abbreviation for the Java Transac-
tion API. JTS is the abbreviation for the Jave Transac-
tion Service. JTA provides a standard interface and al-
lows you to demarcate transactions in a manner that is
independent of the transaction manager implementa-
tion. The J2EE SDK implements the transaction man-
ager with JTS. The code doesn’t call the JTS methods
directly. Instead, it invokes the JTA methods, which
then call the lower-level JTS routines. Therefore, JTA
is a high level transaction interface that the applica-
tion uses to control transaction. And JTS is a low level
transaction interface that Enterprise JavaBeans use
behind the scenes (client code doesn’t directly inter-
act with JTS. It is based on Object Transaction Service
(OTS) which is part of CORBA.

20. What is JAXP?

 Answer: JAXP stands for Java API for XML. XML is
a language for representing and describing text-based
data which can be read and handled by any program
or tool that uses XML APIs. It provides standard ser-
vices to determine the type of an arbitrary piece of
data, encapsulate access to it, discover the operations
available on it, and create the appropriate JavaBeans
component to perform those operations.

21. What is J2EE Connector?

 Answer: The J2EE Connector API is used by J2EE
tools vendors and system integrators to create re-
source adapters that support access to enterprise in-
formation systems that can be plugged into any J2EE
product. Each type of database or EIS has a different
resource adapter.

 NOTE: A resource adapter is a software component
that allows J2EE application components to access

Introduction to HTML, XML and Client Server Programming 8.93

and interact with the underlying resource manager.
Because a resource adapter is specific to its resource
manager, there is typically a different resource adapter
for each type of database or enterprise information
system.

22. What is JAAP?

 Answer: The Java Authentication and Authorisation
Service (JAAS) provides a way for a J2EE application
to authenticate and authorise a specific user or group
of users to run it. It is a standard Pluggable Authen-
tication Module (PAM) framework that extends the
Java 2 platform security architecture to support user-
based authorisation.

23. What is Java Naming and Directory Service?

 Answer: The JNDI provides naming and directory
functionality. It provides applications with methods
for performing standard directory operations, such
as associating attributes with objects and searching
for objects using their attributes. Using JNDI, a J2EE
application can store and retrieve any type of named
Java object. Because JNDI is independent of any spe-
cific implementations, applications can use JNDI to
access multiple naming and directory services, in-
cluding existing naming and directory services such
as LDAP, NDS, DNS, and NIS.

24. What is Struts?

 Answer: Struts is a Web page development frame-
work. Struts combines Java Servlets, Java Server Pag-
es, custom tags, and message resources into a unified
framework. It is a cooperative, synergistic platform,
suitable for development teams, independent devel-
opers, and everyone between.

25. How is the MVC design pattern used in Struts
framework?

 Answer: In the MVC design pattern, application flow
is mediated by a central Controller. The Controller
delegates requests to an appropriate handler. The han-
dlers are tied to a Model, and each handler acts as an
adapter between the request and the Model. The Mod-
el represents, or encapsulates, an application’s busi-
ness logic or state. Control is usually then forwarded
back through the Controller to the appropriate View.
The forwarding can be determined by consulting a set
of mappings, usually loaded from a database or con-
figuration file. This provides a loose coupling between
the View and Model, which can make an application
significantly easier to create and maintain.

 Controller: Servlet controller is supplied by Struts it-
self; View: what you can see on the screen, a JSP page
and presentation components; Model: System state
and business logic JavaBeans.

26. What is a benefit of using JavaBeans to separate
business logic from presentation markup within
the JSP environment ?

 Answer: It provides the developer with full access to
the Java 2 Platform Enterprise Edition (J2EE), which
is unavailable from outside the JavaBean environ-
ment.

27. What type of scriptlet code is better-suited to being
factored forward into a servlet ?

 Answer: Code that deals with logic and that common

across requests.

OBJECTIVE TYPE QUESTIONS

1. Web server serves only static pages. (Y/N)

2. Apache is an application server. (Y/N)

3. Web-logic server is an application server. (Y/N)

4. JSPs are built on servlet semantics and all JSPs are
compiled to servlets for runtime usage. (Y/N)

5. Actions cannot be used with scriplets. (Y/N)

6. When a JSP page is compiled, it becomes as a servlet.

(Y/N)

A N S W E R K E Y

1. Y 2. N 3. Y 4. Y

5. Y 6. Y

Previous Years’ GATE Questions

1. Which of the following statements is FALSE?

(GATE 2004)

A. HTTP runs over TCP

B. HTTP describes the structure of web pages

C. HTTP allows information to be stored in a URL

D. HTPP can be used to test the validity of a hyper-
text link.

2. Which of the following objects can be used in expres-
sions and scriplets in JSP (Java Server Pages) without
explicitly declaring them? (GATE 2004)

A. Session and request only

B. Request and response only

C. Response and session only

D. Session, request and response

8.94 Computer Science & Information Technology for GATE

3. Consider the following statements (GATE 2004)

(I) Telnet, ftp and http are application layer protocols.

(II) EJB (Enterprise Java Beans) components can be
deployed in a J2EE (Java2 Enterprise Edition) ap-
plication server.

(III) If two languages conform to the common lan-
guage specification (CLS) of the Microsoft .NET
framework, then a class defined in any one of
them may be inherited in the other.

 Which statements are true?

A. I and II only B. II and III only

C. I and III only D. I, II and III

4. An HTML form is to be described to enable purchase
of office stationeries. Required items are to be selected
(checked). Credit card details are to be entered and
then the submit button is to be pressed. Which one
of the following options would be appropriate for
sending the data to the server? Assume that security
is handled in a way that is transparent to the form
design. (GATE 2005)

A. Only GET B. Only POST

C. Either GET or POST D. Neither GET nor POST

5. Given below is an excerpt of an xml specification.

 <!DOCTYPE library SYSTEM “library.dtd”>

 <Book>

 <title>GATE 2005</title>

 <type value=“BROCHURE”/>

 <accno>10237623786</accno>

 </Book>

 <Book>

 <type value=“FICTION”/>

 <accno>0024154807</accno>

 Given below are several possible excerpts from “li-
brary.dtd”. For which excerpt would the above specifi-
cation be valid? (GATE 2005)

A. <!ELEMENT Book (title+, type, accno)>

 <!ELEMENT title (#PCDATA)>

 <!ELEMENT type EMPTY>

 <!ATTLIST type value(BROCHURE FICTION/
TECHNICAL)>

 <!ELEMENT accno(#PCDATA)>

B. <!ELEMENT Book(title?, type, accno)>

 <!ELEMENT title(#PCDATA)>

 <!ELEMENT type ATTLIST>

 <!ATTLIST type value(BROCHURE/FICTION/
TECHNICAL)>

 <!ATTLIST accno(#PCDATA)>

C. <!ELEMENT Book(title*, type, accno)>

 <!ELEMENT title(#PCDATA)>

 <!ELEMENT type ATTLIST>

 <!ATTLIST type value(BROCHURE/FICTION/
TECHNICAL)>

 <!ELEMENT accno(#PCDATA)>

D. <!ELEMENT Book(title?, type, accno)>

 <!ELEMENT title(#PCDATA)>

 <!ELEMENT type EMPTY>

 <!ATTLIST type value(BROCHURE/FICTION/
TECHNICAL)>

 <!ELEMENT accno (#PCDATA)>

6. Consider the following XML DTD describing course
information in a university.

<!ELEMENT Univ(Course+, Prof+)>

<!ELEMENT Course(Title, Eval*)>

<!ATTLIST Course Number ID #REQUIRED In-
structor IDREF #IMPLIED)>

<!ELEMENT Title(#PCDATA)>

<!ELEMENT Eval(#PCDATA)>

<!ATTLIST Eval Score CDATA #REQUIRED>

<!ELEMENT Prof EMPTY>

<!ATTLIST Prof Name ID#REQUIRED Teaches
IDREF#IMPLIED>

What is returned by the following XQuery?

(GATE 2006)

let $as :=//@Score

for $c in /Univ/Course[Eval]

let $cs :=$c/Eval?@Score

where min($cs)>avg($as)

return $c

A. The professor with the lowest course evaluation

B. Professors who have all their course evaluations
above the university average

C. The course with the lowest evaluation

D. Courses with all evaluations above the university
average

7. Given below are some HTML lines.

<img src=“pict.jpg” width=“256” height=“256” bor-
der=“0” usemap=“#map”/>

<map name=“map”>

<area shape=“poly” cords=“50,50,50,100,100,100,75,
75,100,50” href=“f1.html”>

<area shape=“circle” cords=“100,75,5” href=“../cgi-
bin/f2.pl?v1=ask abc’s age”>

<area shape=“default” href=“fd.html”>

</map>

Introduction to HTML, XML and Client Server Programming 8.95

With reference to the HTML lines given above, con-
sider the following statements.

(I) Clicking on the point <80,75> does not have any
effect.

(II) The web browser can identify the area applicable
to the mouse-click within the image and the sub-
sequent action to be taken without additional re-
sponses from the web server.

(III) The dots in the cgi-bin URL will be resolved by the
web browser before it is sent to the web server.

(IV) The “fd.html” request when sent to the web server
will result in a GET request.

 Exactly how many of the statements given above are
correct? (GATE 2007)

A. 0 B. 1

C. 2 D. 3

8. Consider the XML document fragment given below.

<Book>

<title> GATE 2K7 Example</title>

<Content>

One of many lines

</Content>

<TOC>

One of many content entries

</TOC>

</Book>

Consider the XPath expression:

*{not (self)::TOC}

 What would be the result of the given XPath expres-
sion when the current node is Book? (GATE 2007)

A. The Title and Content elements

B. The Content and TOC elements

C. The Title and TOC elements

D. The Title Content and TOC elements

9. Which of the following is TRUE only of XML but not
HTML? (GATE 2008)

A. It is derived from SGML.

B. It describes content and layout.

C. It allows user defined tags.

D. It is restricted only to be used with the browsers.

A N S W E R K E Y

1. B 2. A 3. A 4. C

5. A 6. D 7. D 8. D

9. C

9C H A P T E R N I N E

Engineering Mathematics

9.1 The Foundations: Logic and Proofs

9.1.1 Propositional Logic

Propositions – a declarative sentence – either true or false

e.g., (i) “Today is Monday.”

(ii) “Two is less than four.”

(iii) “What day is today?’

(iv) “n is less than four.” Not propositions

Proposition variables – letters representing propositions,
e.g., “p” “q” “r” …
Note that proposition itself contains no variables. Predicate
has.
Truth value – e.g., If today is Monday, then (i) is T “true;”
otherwise, (i) is F “false.”
Truth value is a reflection of the domain of discourse.
Compound propositions – new propositions formed from
existing propositions using the following logical operators:

Negation – “¬p” “ p ” “not p”

 (i) (“Today is not Monday.”)

Conjunction – “p Ÿ q” “p and q”

 (ii) Ÿ “2 is greater than 1”

Disjunction – “p ⁄ q” “p or q”

 (i) “Today is Tuesday” ⁄

Exclusive or – “p ≈ q”

 (i) ≈ “It is raining today.”

“⁄” – Inclusive or
What are the truth values of these compound propositions?

Conditional Statements –

“p Æ q” “if p, then q” “implication” p ⁄ q

p q p Æ q

T T T

T F F

F T T

F F T

p: hypothesis
(antecedent,
premise)
q : conclusion
(consequence)

p q ¬p ⁄ q

T T T

T F F

F T T

F F T

n Example How to express “If today is Monday or
Wednesday then we have class”?

 p1: Today is Monday;

 p2: Today is Wednesday;

 q: We have class

n Answer: (p1 ⁄ p2) Æ q

Converse of “p Æ q” – “q Æ p”

 Note: “q Æ p” is NOT equivalent to “p Æ q”

Inverse of “p Æ q” – “¬p Æ ¬q”

 Note: “¬p Æ ¬q” is NOT equivalent to “p Æ q”

Contrapositive of “p Æ q” – “¬q Æ ¬p”

 Note: “¬q Æ ¬p” is equivalent to “p Æ q”

Biconditional statement – “p ´ q” “(p Æ q) Ÿ (q Æ p)”

p q p ´ q

T T T

T F F

F T F

F F T

9.2 Computer Science & Information Technology for GATE

Precedence of Logical Operators

Operator Precedence

¬ 1

Ÿ 2

≈ ?

⁄ 3

4

´ 5

Note that p Ÿ q ⁄ r means (p Ÿ q) ⁄ r; but p ⁄ q Ÿ r means p
⁄ (q Ÿ r)

9.1.2 Propositional Equivalences

Tautology – a proposition its truth val-
ues is always true.

e.g., p ⁄ ¬p

Contradiction – a proposition its truth
values is always false.

e.g., p Ÿ ¬p

Contingency – neither tautology nor
contradiction

e.g., p, q

Logically Equivalent – “p ∫ q” “p ¤ q” If p ´ q is a
tautology, then p ∫ q

De Morgan’s Laws

¬(p Ÿ q) ∫ ¬p ⁄ ¬q

¬(p ⁄ q) ∫ ¬p Ÿ ¬q

For example, Use truth tables to show that the above logical
equivalent relations.

Extensions of De Morgan’s Laws

¬(p Ÿ q Ÿ r Ÿ …) ∫ ¬p ⁄ ¬q ⁄ ¬r ⁄ …

¬(p ⁄ q ⁄ r ⁄ …) ∫ ¬p Ÿ ¬q Ÿ ¬r Ÿ …

A truth table with n propositional variables requires 2n rows

Logical equivalences

p Ÿ T ∫ p
p ⁄ F ∫ p

Identity laws

p ⁄ T ∫ T

p Ÿ F ∫ F

Domination laws

p Ÿ p ∫ p
p ⁄ p ∫ p

Idempotent laws

¬(¬p) ∫ p Double negation law

p ⁄ q ∫ q ⁄ p
p Ÿ q ∫ q Ÿ p

Commutative laws

(p ⁄ q) ⁄ r ∫ p ⁄ (q ⁄ r)
(p Ÿ q) Ÿ r ∫ p Ÿ (q Ÿ r)

Associative laws

p ⁄ (q Ÿ r) ∫ (p ⁄ q) Ÿ (p ⁄ r)
p Ÿ (q ⁄ r) ∫ (p Ÿ q) ⁄ (p Ÿ r)

Distributive laws

¬(p Ÿ q) ∫ ¬p ⁄ ¬q
¬(p ⁄ q) ∫ ¬p Ÿ ¬q

De Morgan’s laws

p ⁄ (p Ÿ q) ∫ p
p Ÿ (p ⁄ q) ∫ p

Absorption laws

p ⁄ ¬p ∫ T
p Ÿ ¬p ∫ F

Negation laws

p Æ q ∫ ¬p ⁄ q

p Æ q ∫ ¬ q Æ ¬p

p ⁄ q ∫ ¬p Æ q

p Ÿ q ∫ ¬(p Æ ¬q)

¬(p Æ q) ∫ p Ÿ ¬q

(p Æ q) Ÿ (p Æ r) ∫ p Æ (q Ÿ r)

(p Æ r) Ÿ (q Æ r) ∫ (p ⁄ q) Æ r

(p Æ q) ⁄ (p Æ r) ∫ p Æ (q ⁄ r)

(p Æ r) ⁄ (q Æ r) ∫ (p Ÿ q) Æ r

p ´ q ∫ (p Æ q) Ÿ (q Æ p)

p ´ q ∫ ¬ p ´ ¬q

p ´ q ∫ (p Ÿ q) ⁄ (¬p Ÿ ¬q)

¬(p ´ q) ∫ p ´ ¬q

9.1.3 Predicates and Quantifiers

Predicates – Statements (propositions) with variables

P(x), Q(x, y)

The truth value of a predicate depends on what value the
variable takes.

e.g., “A month with less than 30 days”

P: Less-than-30-days. x: month month is a variable

P(x): Less-than-30-days(month)

P(February) – T

The predicate is true if the month takes the value “Febru-
ary.”

Note that the truth value of a proposition is determined by
the domain of discourse, no variable.
e.g., “February has less than 30 days.” – T. “March has less
than 30 days.” – F
e.g., How to express/find “Who is taller than James”

(1) Let P: taller-than-James x: Who P(x)

(2) Let P: taller-than x: Who P(x, James)

Answers to the question are the values of x that make the
predicate true.

Quantifiers

Universal quantifier: " – “for all” “for every”

Existential quantifier: $ – “there exist”

Engineering Mathematics 9.3

e.g., " × Greater-than-3(x); “Every x that is greater
than 3.” " × Greater-than(x, 3);

$ × Greater-than-3(x); “Every x that is greater than
3.” $ × Greater-than(x, 3);

Note that $ × Greater-than(x, 3) is true

" x Greater-than(x, 3) could be true or false, depending on
domain of discourse

is false if the domain of discourse is all integers

is true if the domain of discourse is a set {4, 5, 6, …}

Counter example

It is often hard to find if " predicate is true; but easier to
find it is false. Why?

It is often hard to find if a $ predicate is false; but easier to
find it is true. Why?

Uniqueness quantifier: $! – “there exist a unique”

 e.g., $!x(x = x) This predicate is true because only

“1” satisfy x = x.

 $! × (x2 = 4) This predicate is false because both “2”
and “–2” satisfy x2 = 4.

Quantifiers with Restricted Domains

e.g., "x<0(x2 > 0) This predicate is true.

"x<0(x2 > x) – T? F?

$!x>0(x2 = 4) This predicate is true because only “2” sat-
isfy x> 0 and x2=4.

Note: x<0(x2 > 0) ∫ "x(x<0 Æ x2 > 0)

$x>0(x2 = x) ∫ $ x (x > 0 Ÿ x2 = x)

Precedence of Quantifiers

Operator Precedence

, $

¬ 1

2

?

3

4

5

Note: “∫” is not an operator. It is a notation.

e.g., $x P(x) Ÿ Q(x) ∫ ($xP(x)) Ÿ Q(x)

NOT∫ $ × (P(x) Ÿ Q(x))

e.g., $x"y (x + y > y)

Binding Variables
e.g., $xP(x) Ÿ Q(x) the x in P(x) is bound, the x in

Q(x) is NOT bound - free.
e.g., $x"y (x + y > y) both x and y are bound.

Logical Equivalences Involving Quantifiers

If and only if they have the same truth table.

Negating Quantified Expressions

Negation Equivalent Meaning

¬$xP(x) "x¬P(x) There exist NO x that makes P(x)
true

¬"xP(x) $x¬P(x) NOT all x makes P(x) true

DeMorgan’s laws for quantifiers

¬$x(P1(x) Ÿ P2(x) Ÿ … Ÿ Pn(x)) ∫ "x(¬P1(x) ⁄ ¬P2(x) ⁄ …
⁄ ¬Pn(x))

¬$x(P1(x) ⁄ P2(x) ⁄ … ⁄ Pn(x)) ∫ "x(¬P1(x) Ÿ ¬P2(x) Ÿ …
Ÿ ¬Pn(x))

¬ x(P1(x) Ÿ P2(x) Ÿ … Ÿ Pn(x)) ∫ $x(¬P1(x) ⁄ ¬P2(x) ⁄ …
⁄ ¬Pn(x))

¬ x(P1(x) ⁄ P2(x) ⁄ … ⁄ Pn(x)) ∫ $x(¬P1(x) Ÿ ¬P2(x) Ÿ …
Ÿ ¬Pn(x))

9.1.4 Nested Quantifiers

Translating from Nested Quantifiers into English
e.g., "x $y(x + y = 2 Ÿ 2x – y = 1)
For every x there exists a y such that x + y = 2 and 2x – y = 1
This predicate is false in real domain (for x and y being real
numbers)
 $x $y(x + y = 2 Ÿ 2x – y = 1)
There exists an x and there exists a y such that x + y = 2 and
2x – y = 1
This predicate is true. x = y = 1

Translating English Sentences into Logical Expressions
e.g., “Some students in this class have solved every ex-
ercise in this book.”
Let: x – student, P(x) – student x is in this class.
 y – exercise, Q(x, y) – exercise y in this book solved

by a student x.
$x "y(P(x) Ÿ Q(x, y))

“No student in this class can pass this course without doing
lots of exercises.”

x – student, P(x) – student x passes this class
#e(x) – number of exercises done by x Note that

#e(x) is NOT a predicate n – a large number
¬$x (P(x) Ÿ #e(x) < n) Note #e(x) < n is a predicate
∫ "x(¬P(x) ⁄ ¬(#e(x) < n)) ∫ "x(P(x) Æ ¬(#e(x) < n))
∫ "x(P(x) Æ (#e(x) ≥ n))

9.1.5 Rules of Inference

Basis of inference
(p Æ q) Ÿ p Æ q modus ponens (a rule of inference), or
law of detachment
e.g., p: student in CS major; q: must take CSCI 2030

class

9.4 Computer Science & Information Technology for GATE

(1) p Æ q If a student is in CS major, then he/she
must take CSCI 2030 class

(2) p ____“a student in CS major” is true

(3) \ q therefore he/she must take CSCI 2030
class.

In practice, we have

x(P(x) Æ Q(x)) x – a variable representing any student
in CS major

P(J) J – a specific student in CS major
Q(J) J must take CSCI 2030 class

Syllogism – “All men are mortal. Socrates is a man, there-
fore Socrates is mortal.”

(1) p Æ q premise

(2) p premise

(3) \ q conclusion

If the premises are all true, then the conclusion becomes
true. – a valid argument

Note: (1) For an argument form of {premises: (p1, p2, …,
pn), conclusion: q} to be valid, the compound predicate p1

Ÿ p2 Ÿ… Ÿ pn Æ q must be a tautology.
(p Æ q) Ÿ p Æ q is a tautology because
(p Æ q) Ÿ p Æ q ∫ (¬p ⁄ q) Ÿ p Æ q ∫ (¬p Ÿ p) ⁄ (q Ÿ p) Æ q
∫ (F ⁄ (q Ÿ p)) Æ q ∫ (q Ÿ p) Æ q ∫ ¬(q Ÿ p) ⁄ q ∫ ¬q ⁄ ¬p
⁄ q ∫ T

Note that (2) If the premises are not all true, then the con-
clusion could be false, even the argument form is valid.

Rules of Inferences

Tautology Name

[(p Æ q) Ÿ p] Æ q Modus ponens

[(p Æ q) Ÿ ¬q] Æ ¬p Modus tollens

[(p Æ q) Ÿ (q Æ r)] Æ (p Æ r) Hypothetical syllogism

[(p ⁄ q) Ÿ ¬p] Æ q Disjunctive syllogism

p Æ (p ⁄ q) Addition

(p Ÿ q) Æ p Simplification

[(p) Ÿ (q)] Æ (p Ÿ q) Conjunction

[(p ⁄ q) Ÿ (¬p ⁄ r)] Æ (q ⁄ r) Resolution

Rules of Inference for Quantified Statements

Name Tautology Meaning

Universal
instantiation

"xP(x)
\ P(C)

P is true for any x in the
domain, so P is true for a
member C in the domain

Universal
generalization

P(C) for an
arbitrary C

\"xP(x)

P is true for an arbitrary
member C in the domain,
so P is true for any x in the
domain

Existential in-
stantiation

$xP(x)
\ P(C) for
some C

There are x that make P
true, so P is true for some
member C in the domain

Existential gen-
eralization

P(C) for some C
\ $xP(x)

P is true for some member
C in the domain, so there
exist x that make P true

Name Tautology Method

Universal instantiation xP(x)
\ P(C)

Deduction

Universal generalization P(C) for an arbitrary C
\ xP(x)

Induction

Existential instantiation $xP(x)
\ P(C) for some C

Deduction

Existential generaliza-
tion

P(C) for some C
\ $xP(x)

Induction

Combining Rules of Inference for Propositions and
Quantified Statements

x(P(x) Æ Q(x)) x – a variable representing any student
in CS major

P(J) J – a specific student in CS major

Q(J) J must take CSCI 2030 class

9.1.6 Introduction to Proofs

Proof – A valid argument that demonstrates a theorem is
true (or false)
Some Terminology

Theorem – a statement that can be shown to be true

Axiom – a statement that is assumed to be true

Lemma – a theorem (less important or easier to
prove) used to prove other theorem

Corollary – a consequent proposition of a theorem
that has just been proved

Conjecture – a statement proposed to be true, but
has not been proved

Proof by Contraposition
Note: p Æ q ∫ ¬q Æ ¬p

Method:
First argument: Assume that ¬q is true.
Middle arguments: Apply a sequence of inference

rules.
Final argument: Show that ¬p must be true.
e.g., “if m and n are integers and mn is even, then m is
even or n is even”

Here, p is “mn is even” and q is “m is even or n is even”
First: Assume ¬q true: ¬q = ¬(m is even or n is even)

= (m is odd) Ÿ (n is odd)
i.e, m = 2km + 1, n = 2kn + 1

Engineering Mathematics 9.5

Middle:

(1) Let x be the product, x = mn

(2) Replace m and n by their definition: x = mn

 = (2km + 1)(2kn + 1)

 = 4kmkn + 2km + 2kn + 1 = 2(2kmkn + km + kn) + 1

(3) According to definitions of even/odd integers, x = mn
is odd

 (let k = 2kmkn + km + kn, x = mn = 2k + 1)

Final: Therefore mn is odd, i.e., ¬p must be true
Proof is done.

Proofs by Contradiction
Apply to p Æ q

Method:
First argument: Assume that p and ¬q are true.
Middle arguments: Apply a sequence of inference

rules.
Final argument: Show that q must be true, which

contradicts ¬q.

e.g., The pigeonhole problem (or pigeonhole principle)

“If k is a positive integer and k + 1 or more objects are
placed into k boxes, then there is at least one box contain-
ing two or more of the objects.”

Here: p – “k + 1 or more objects are placed into k boxes”

q – “at least one box containing two or more of the
objects”

First: Assume that p and ¬q are true.
Based on the above definition of q we have
¬q – “NO box containing two or more of the objects”

Middle:
Based on p

(1) Place one object into each of the k boxes, that is, k
objects are placed.

(2) We have k + 1 or more objects to be placed, that is,
there is at least one box that should contain more than
one object.

Final: Therefore q is true, which contradicts with our as-
sumption that ¬q is true.
Proof is done.

If we try to prove that “Suppose none of the k boxes con-
tains more than one object (¬q), then the total number of
objects would be at most k (¬p),” then it is a proof by con-
traposition.

Exhaustive Proof

Making arguments on all (finite number of) possible cases
of the domain
e.g., “Prove that there are no positive perfect cubes less
than 1000 that are the sum of the cubes of two positive in-
tegers.”

(1) There are nine positive perfect cubes less than 1000

 13=1, 23=8, 33=27, 43=64, 53=125, 63=216, 73=343,
83=512, 93=729

(2) Check each of them (actually, we start with 33=27)
with the pair of cubes at left

 The maximum number of pair that needs to be
checked is for 93=729, which is C(2, 8) = 28. But we
only need to check three pairs only (why?)

(3) No such cube exists among the 9, so the theorem is
proved.

9.2 Basic Structures: Sets, Functions,

Sequences and Sums

9.2.1 Sets

Definition: A set is an unordered collection of objects
(called elements or members).
Often, objects placed in a set have some similar properties.

e.g., A = {a, b, c, …, z}; B = {0, 1};

C = {“T”, “F”}; D = {0, 1, 2, …, 9}

X = {x | x is a positive integer};

Y = {y | y = }

Notations:
∑ “Œ” membership: “a member of,” “belongs to”

e.g., a Œ A; “T” Œ C; (0 Œ B) Ÿ (0 Œ D)

Let Z = {–•, …, -1, 0, 1, 2, …, •}; i.e., a set of all inte-
gers, then we can have

Z+ = {x | (x Œ Z) Ÿ (x > 0)} all positive integers
Do remember that “Œ” is a logical operator, i.e., it leads to a
result of either “true” or “false”
∑ “œ” not a membership: “not a member of,” “not be-
longs to”
e.g., a œ A is “false” and 0 œ Z+ is “true” according to the
definitions above
Here, “œ” is also a logical operator, i.e., it leads to a result of
either “true” or “false”
∑ “Õ ” subset A Õ B: "x(x Œ A Æ x Œ B)
All members of set A are members of set B
e.g., B Õ D; A Õ E; Z+ Õ Z; in above examples
Note: A Õ A; B Õ B; Any set is a subset of itself.
Also, “Õ” is a logical operator, i.e., it leads to a result of ei-
ther “true” or “false”
 “=” equal A = B: "x(x Œ A ´ x Œ B)

All members of A are Members of B, and vice versa

Note: (A = B) Æ [(A Õ B) Ÿ (B Õ A)]
Here, “=” is a logical operator, i.e., it leads to a result of ei-
ther “true” or “false”
 “Ã” proper subset A Ã B: "x(x Œ A Æ x Œ B) Ÿ $x(x
Œ B Ÿ x œ A)

9.6 Computer Science & Information Technology for GATE

All members of A are Members of B, but NOT vice versa

Here,“Ã” is also a logical operator, i.e., it leads to a result of
either “true” or “false”
∑ “Δ” “{}” empty set
Note: {Δ} is NOT an empty set It is a singleton set
singleton set: A set with one element. e.g., G = {x | x +

3 = 0}
For any set S: (i) Δ Õ S and (ii) S Õ S.

Empty set is a subset of any set. Any set is a subset of it-
self.

∑ “|S|” cardinality number of distinct ele-
ments in a set

e.g., |Δ| = 0; |A| = 26; |B| = 2; |E| = 4. (38? 40?)
The set Z (and Z+) is infinite. An infinite set could be count-
able or uncountable.

Venn Diagrams: To show the relationships between sets
and their members
The Power Set: P(S) - The set of all subsets of S

e.g., P({0, 1}) = {Δ, {0}, {1}, {0, 1}}

Note: P({0, 1}) ≠ {Δ, 0, 1, {0, 1}} (why?)

|P(S)| = 2|S|

P(Δ) = {Δ}; P({Δ}) = {Δ, {Δ}}

9.2.1.1 Cartesian Product

Given two sets A and B,

A × B = {(a, b) | a ŒA Ÿ b Œ B}

Given sets A, B, and C,

A × B × C = {(a, b, c) | a ŒA Ÿ b Œ B Ÿ c Œ C}

Given sets A1, A2, …, An,

A1 × A2 × … × An = {(a1, a2, …, an) | ai ŒAi; i = 1, 2, …, n}

e.g., A = {a, b, c, …, z}; B = {0, 1}; C = {“T”, “F”}

 A × B = {(a, 0), (b, 0), …, (z, 0), (a, 1), (b, 1), …...,
(z, 1)}

A × B × C = {(a, 0, “T”), (a, 0, “F”), (b, 0, “T”), …, (z, 0, “F”),
(a, 1. “T”), (b, 1, “T”), …, (z, 1, “F”)}

Note: A × Δ = Δ × A = Δ; B × {Δ} = {(0, Δ), (1, Δ)}

|A × B| = |A| |B| |A1 × A2 × … × An | = | |Ai
i

n

=
’

1

Relation
A relation R between the elements of set A and set B is a
subset of A × B
R Õ A × B

e.g., X = {Jane, Jim, June}

Y = (CS1620, CS 1840, CS 2030}

Rxy = {(Jane, CS1620), (Jane, CS 2030), (Jim, CS
1840), (June, CS 2030)}

Using Set Notation with Quantifiers
Set notation often helps to clearly define the domain of the
quantifiers.
e.g., "x(x2 > 0) is false in mathematics generally, be-

cause if x = -1
"x R(x2 > 0) is true. R – set of all real numbers

Truth Sets of Quantifiers
The truth set of a predicate P is the set of elements x in do-
main D for which P(x) is true.
e.g., in above example, R is the truth set for the P of x2 > 0.

9.2.1.2 Set Operations

“»” union: A » B = {x | x Œ A ⁄ x Œ B}

e.g., B = (0, 1); C = {“T”, “F”}; B » C = {0, 1, “T”, “F”}

B = (0, 1); D = {0, 1, 2, …, 9}; B » D = {0, 1, 2, …, 9}

“«” intersection: A « B = {x | x ŒA Ÿ x Œ B

e.g., B = (0, 1); D = {0, 1, 2, …, 9}; B « D = {0, 1}

|A » B| = |A| + |B| – |A « B|

(A « B = Δ) Æ Disjoint(A, B) Sets A and B are dis-

joint.

e.g., B = (0, 1); C = {“T”, “F”}; B « C = Δ

 “–” difference: A – B = {x | x Œ A Ÿ x œ B}

e.g., B = (0, 1); D = {0, 1, 2, …, 9}; B – D = Δ
D – B = {2, 3, …, 9}
B = (0, 1); C = {“T”, “F”}; B – C = {0, 1} = B

“ A ” complement: A = U – A = {x | x œ A}

U – universal set A Õ U

e.g., Let U be the D = {0, 1, 2, …, 9}, and B = (0, 1);

 B = {2, 3, …, 9}

Let U be Z+ » {0}, then B = {x | x Œ Z+ Ÿ x > 1}

Note: (A) = A; A » A ∫ U; A « A ∫ Δ

Set Identities

A » Δ ∫ A
A « U ∫ A

Identity laws

A » U ∫ U
A « Δ ∫ Δ

Domination laws

A » A ∫ A
A « A ∫ A

Idempotent laws

(A) ∫ A
Complementation law

A » B ∫ B » A
A « B ∫ B « A

Commutative laws

(A » B) » C ∫ A » (B » C)
(A « B) « C ∫ A « (B « C)

Associative laws

A « (B » C) ∫ (A « B) » (A « C)
A » (B « C) ∫ (A » B) « (A » C)

Distributive laws

Engineering Mathematics 9.7

A (B ∫ A « B

A (B ∫ A » B

De Morgan’s laws

A » (A « B) ∫ A
A « (A » B) ∫ A

Absorption laws

A » A ∫ U

A « A ∫ Δ

Complement laws

Generalised Unions and Intersections

Union: A1 » A2 » … » An = Ai
i

n

=1
∪ = {ai | $i(ai ŒAi);

i = 1, 2, …, n}

Intersection: A1 « A2 « … « An = Aii

n

=1∩ = {ai |

i(ai ŒAi); i = 1, 2, …, n}

e.g., Let Ai = {…, –2, –1, 0, 1, …, i}. Find (p.131, Ex # 46)

 Ai
i

n

=1
∪ = {…, –2, –1, 0, 1, …, n}

 Aii

n

=1∩ = {…, –2, –1, 0, 1}

9.2.1.3 Functions

f: A Æ B A function f from set A to set B.
An assignment of exactly one element of B to each element
of A
(Not necessary exactly one element of A)
Also called mapping or transformation

f(a) = b the unique element b of B is assigned to ele-
ment a of A.

 ∫ f maps a of A to b of B.

e.g., f(4) = 2. f is a square root function that maps 4 of
set A to 2 of set B.

2 of set B is assigned by 4 of set A.

Expressed in variable: f(x) = x .

Two functions are equal if their domain, range and map-
ping are all the same.

e.g., f(x) = x2; x ŒZ and f(x) = x2; x Œ R do not equal

f(x) = x2; x ŒZ and f(x) = x2; x Œ Z+ do not equal

A relation could be a function, or may not be a function.

e.g., A = {a, b, c}; B = {0, 1}

R = {(a, 0), (b, 0), (c, 1)} defines a function f: A Æ B.

R = {(a, 0), (a, 1), (b, 0), (c, 1)} is not a function.

Why?

Function Addition and Multiplication:
For f1: A Æ R and f2: A Æ R

(f1 + f2)(x) = f1(x) + f2(x) function addition

(f1 f2)(x) = f1(x) f2(x) function multiplication

Let S be a subset of A, i.e., S Õ A. f(S) then is a
subset of B, such that

f(S) = {t | $s Œ S (t = f(s)) } f(S) Õ B

One-to-One and Onto Functions

One-to-One (injective) f: A Æ B

"a"b(f(a) = f(b) Æ a = b or "a"b(a ≠ b Æ f(a) ≠ f(b))

Increasing / Decreasing f: R Æ R

Increasing: "x R "y R(x < y Æ f(x) ≤ f(y))

Strictly increasing: "x R "y R(x < y Æ f(x) < f(y))

Decreasing: "x R "y R(x > y Æ f(x) ≥ f(y))

Strictly decreasing: "x R "y R(x > y Æ f(x) > f(y))

Onto (surjective) f: A Æ B
"bŒB $aŒA(f(a) = b)
e.g., Multiprocessor CPU (B) to job assignment (A).

One-to-One correspondence (bijection) f: A Æ B
Both One-to-One and Onto
"bŒB[$aŒA(f(a) = b) Ÿ "a(f(a) = f(b) Æ a = b)]

Identity function lA: A Æ A
One-to-One and Onto
lA(x) = x A self mapping

Inverse Functions and Compositions of Functions
Let f: A Æ B be a one-to-one onto function with f(a) = b
The inverse function of f is denoted by f −1: B Æ A with
f−1(b) = a.

Note: Inverse function can only be defined on a one-to-

one onto function.
A one-to-one onto function is invertible; otherwise, not
invertible.

e.g., f(x) = x2 and g(x) = x are invertible if (x R Ÿ x>0)

f −1(x) = g(x) and g −1(x) = f(x)

Note: if (x R) f(x) = x2 and g(x) = x are not invertible

Compositions of Functions
Let f: A Æ B and g: B Æ C
The composition of f and g, denoted by f ° g,

f ° g(a) = f(g(a))

e.g., f(x) = x2 and g(x) = x + 1

f ° g(x) = f(g(x)) = (x + 1)2 = x2 + 2x + 1

g ° f(x) = g(f(x)) = (x2) + 1 = x2 + 1 f ° g π g ° f in general

Note: for f(x) = x2 and g(x) = x with (x R Ÿ x>0)

f ° g(x) = f(g(x)) = (x)2 = x an identity function

g ° f(x) = g(f(x)) = x2 = x f ° g = g ° f because f −1 = g

i.e., f ° f −1(x) = lA and (f −1)−1 = f

9.8 Computer Science & Information Technology for GATE

Some Important Functions
floor function “Îx˚”

fÎx˚ : R Æ Z; "x R $n Z [(f Îx˚ (x) = n) ´ (n ≤ x < n +
1)]

ceiling function “Èx˘”

f Èx˘: R Æ Z; "x R $n Z [(fÈx˘(x) = n) ´ (n –1 < x £
n)]

Note: "x>0"y>0[Îx + y˚ ≥ (Îx˚ + Îy˚)] "x>0"y>0[Èx + y˘
≤ (Èx˘ + Èy˘)]

The Îx˚ and Èx˘ are useful for converting real numbers to
integers
e.g., Calculation of memory location

factorial function “!”

f!: N Æ Z+; f!(n) = n! = n(n–1)! = i
i

n

=
’

1

f!(0) = 0! = 1
Relationship of (1) relation, (2) function, (3) proposition,
and (4) predicate is shown in Fig. 9.1.

(1) relation – ordered n-tuples in general, ordered pairs
in particular.

(2) function – a mapping of objects from domain to range
with or without variables.

(3) proposition- a function of truth value without vari-
able.

(4) predicate – a function of truth value with variables.

Relations

Functions

Propositions

Predicates

Figure 9.1

Cardinality
The sets A and B have the same cardinality if and only if
there is a one-to-one correspondence from A to B.
The set Z+ is often used as the A to measure the cardinality
of B.

Countable set – (1) is finite, or (2) has the same car-
dinality as Z+

Uncountable set – not countable

“¿0” – “aleph null”

The cardinality of an infinite set S if it is countable, that is,
|S| = ¿0

e.g., The set 1
1

2

1

4

1

8

1

16

1

32
, , , , , , { } is countable, i.e.,

| 1
1

2

1

4

1

8

1

16

1

32
, , , , , , { } | = ¿0

 So is for any {axn} The set {(–1)n} is also countable

 Any other countable infinite set?

Set of prime numbers

Fibonacci numbers

The set of all real numbers is not countable.

Any other uncountable set?

An infinite set of random numbers

The set of people’s names

9.2.2 Relations

Definition Let A and B be sets. A binary relation from A
to B is a subset of A × B.

e.g, A = {T, F} B = {0, 1}

A × B = {(T, 0), (F, 0), (T, 1), (F, 1)}

R = {(F, 0), (T, 1)}

 Set R defines a relation from A to B

 (F, 0) Œ R, (T, 1) Œ R; or (F R 0), (T R 1)

 (F, 1) Œ/ R, (T, 0) Œ/ R; or (F R/ 0), (T R/ 1)

Functions as Relations

Relations

Functions

Predicates

Major difference between relations and functions:

OK

f

A

Domain Codomain
Range

NOT OK

f

A

Domain Codomain
Range

B B

Figure 9.2 Functions as Relations

Both are OK with relations

Only left is OK with functions

Engineering Mathematics 9.9

Relations on a Set
A relation can be defined on a set itself R Õ A × A

e.g., A = Z+; R = {(1, 1), (2, 4), (3, 8), (4, 16), …, (n, n2)
Square relation

9.2.2.1 Properties of Relations

Reflective a((a, a) Œ R)

e.g., A = {a, b} R = {(a, a) (a, b) (b, b)} is reflective

The equal, divide, greater-than-or-equal relations on inte-
gers are reflective

Symmetric a b((a, b) Œ R Æ (b, a) Œ R)

Antisymmetric a b((a, b) Œ R Ÿ (b, a) Œ R Æ (a = b))

Symmetric only on reflective ones – Not
really symmetric

e.g., A = {a, b}

R = {(a, a) (a, b) (b, b)} is antisymmetric, not symmetric

R = {(a, a) (a, b) (b, a)} is symmetric, not antisymmetric

R = {(a, a) (b, b)} is both antisemmetric and symmetric

R = {(a, b)} is also antisemmetric, not symmetric

The equal, divide, greater-than-or-equal relations on inte-
gers are antisymmetric.
The friend, classmate relations on people are symmetric.
The transpose relation on matrices is symmetric.
Transitive a b c(((a, b) Œ R Ÿ (b, c) Œ R) Æ (a, c)

Œ R)

e.g., A = {a, b, c} R = {(a, a) (a, b) (b, b)} is transitive

R = {(a, a) (a, b) (b, a)} is not transitive

R = {(a, a) (a, b) (a, c) (b, b) (b, c)} is transitive

R = {(a, a) (a, b), (b, a) (b, b), (b, c), (c, b)} is not
transitive

The equal, divide, greater-than-or-equal relations on inte-
gers are transitive
The friend, classmate relations on people may be transitive,
maybe not.
Note: How may total relations can be defined on two sets A
and B with |A|= |B| = n?

 It equals to the total number of subsets on A× B,

which is 2
2n

 |A×B| = n2. |Subsets of A×B| = |1 element sets| + |2
element sets| + … = 2|A×B|

Combining Relations using “»”, “«”, “–”

e.g., R1 = {(a, a) (a, b) (b, b)}

R2 = {(a, a) (a, b) (a, c) (b, b) (b, c)}

R1 » R2 = {(a, a) (a, b) (a, c) (b, b) (b, c)}

R1 « R2 = {(a, a) (a, b) (b, b)}

R1 – R2 = Δ

R2 – R1 = {(a, c) (b, c)}

Composite “ º”

S ° R = {(a, c) | a b c((a, b) Œ R Ÿ (b, c) Œ S)

e.g., R = {(a, a) (a, b) (b, b)}

S = {(a, a) (a, b) (a, c) (b, b) (b, c)}

S ° R = {(a, a) (a, b) (a, c) (b, b) (b, c)}

Powers “Rn”

R1 = R, R2 = R1 ° R, … Rn+1 = Rn ° R

e.g., R = {(a, a) (a, b) (b, b)}

R2 = {(a, a) (a, b) (b, b)} = R3 = … Rn

S = {(a, a) (a, b) (a, c) (b, b) (b, c)}

S2 = {(a, a) (a, b) (a, c) (b, c)}

S3 = {(a, a) (a, b) (a, c)}

S4 = {(a, a) (a, b) (a, c)} = … Sn

The relation R on a set A is transitive if and only if Rn Õ R
for n = 1, 2, 3, …

The S and R above are transitive

9.2.2.2 n-ary Relations and Their Applications

Let A1, A1, …, An be sets. An n-ary relation is a subset of A1

× A2 × … × A1 ´ An

i.e, R Õ A1 ´ A2 ´ … ´ A1 ´ An

The set A1, A1, …, An is called the domain of the relation,
and n is called its degree.

9.2.2.2.1 Operations on n-ary Relations

Selection operator SC

Find all records (n-tuples) from R that satisfy the condition
C.
Projection operator Pi i im1 2◊ -

A new table is formed by including the fields i1, i2, …, im;
but excluding the other n-m fields from a table of n fields.

Join operator JP(R, S)

Combine two tables into one.

Let R Õ A1 × A2 × … × Am and S Õ B1 × B2 × … × Bn; that
is, (a1, a2, …, am) Œ R and (b1, b2, …, bn) Œ S.

A join JP(R, S) consists of (m + n – p) tuples (a1, a2, …, am–p,
c1, c2, …, cp, b1, b2, …, bn-p); where p £ m and p £ n, and
(a1, a2, …, am–p, c1, c2, …, cp) Œ R and (c1, c2, …, cp, b1, b2,
…, bn–p) Œ S.

9.10 Computer Science & Information Technology for GATE

9.2.2.3 Representing Relations Using Matrices

Let A = {a1, a2, …, am}, B = {b1, b2, …, bn},

R = {(ai, bj) | (ai, bj) Œ A × B}

MR =

b b b

a

a

a

1

1

1 2 n

1

2

m

mij =
1 if a , b R

0 if a , b (R
i j

i j

() Œ

()
Ï
Ì
Ó

e.g., R1 = {(ai, bj) | (ai, bj) ŒA × B and i ≥ j}

Zero-One Matrix

R2 = {(ai, bj) | (ai, bj) ŒA × B Ÿ i ≠ j}

MR1 =

1 0 0 0 0

1 1 0 0 0

1 1 0 0

1 1 1 0

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

A = B = {a, b, c}

MR2 =

0 1 1 1 1

1 0 1 1 1

1 1 1 1

1 1 1 1

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

R = {(a, a) (a, b), (b, a) (b, b), (b, c), (c, b)}

MR =

a b c
a

b

c

1 1 0

1 1 1

0 1 0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Matrices of Reflexive Symmetric Antisymmetric Rs

1

1 1

0

1

0

0

1 0

0

1

1

0

1

0

0

1

1

0

0 0

1

0

0

0

1

Boolean operations on Matrices of Relations

“⁄” Join: MR1»R2 = MR1 ⁄ MR2

“Ÿ” Meet: MR1«R2 = MR1 Ÿ MR2

“ ” Boolean product: MR1°R2 = MR1 MR2

∑ “[r]” Boolean power MR
n = MR

n[]
= MR MR …

 MR

n Example

MR =

1 0 1

1 1 0

0 0 0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

MS =

0 1 0

0 0 1

1 0 1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

MR°S = MR MS =

1 1 1

0 1 1

0 0 0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

How the numbers are obtained

m11 = =

1 0 1 0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= (1 Ÿ 0) ⁄ (0 Ÿ 0) ⁄ (1 Ÿ 1) = 1

m12 = =

1 0 1 1

0

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= (1 Ÿ 1) ⁄ (0 Ÿ 0) ⁄ (1 Ÿ 0) = 1

m21 = =

1 1 0 0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= (1 Ÿ 0) ⁄ (1 Ÿ 0) ⁄ (0 Ÿ 1) = 0

n Example

MR =

0 1 0

0 1 1

1 0 0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

MR2 = MR
[2] = MR MR

=

0 1 0

0 1 1

1 0 0

0 1 0

0 1 1

1 0 0

0 1 1

1 1 1

0 0 0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙

˙̇

9.2.2.4 Representing Relations Using Digraphs

Digraph - Directed graph:- (V, E)
V: a set of vertices (or nodes)

e.g., V = {a, b, c, …}
E: a set of edges (or arcs)

e.g., E = {(x, y) | x V Ÿ y V}
For an edge (a, b)

a: initial vertex; b: terminal vertex

edge (a, a) called loop

Engineering Mathematics 9.11

e.g., A = B = {a, b, c}
R = {(a, a) (a, b), (b, a) (b, b), (b, c), (c, b)}

a b

c

9.2.2.5 Closures of Relations

Closures:

 A closure of relation R with respect to a property P is
a relation S such that
(i) S is a subset of every relation with the property P,

(ii) S contains R i.e., R Õ S

Reflective closure

The set S that contains all reflective relations R could have

e.g., A = {a, b, c}

R = {(a, a) (a, b), (b, a) (b, b), (b, c), (c, b)}

The Reflective closure of R is S = {(a, a) (a, b), (b, a) (b, b),
(b, c), (c, b), (c, c)}
 Which adds the reflective relation (c, c) to R

Note that the reflective relations (a, a) and (b, b)
are already in R.

Symmetric closure

The set S that contains all symmetric relations that R does
not have

e.g., A = {a, b, c}

R = {(a, a) (a, b), (b, a) (b, b), (b, c), (c, b)}

 R is a symmetric closure of itself

Because for every relation in R, the symmetric pair is also
contained

Such as (a, b) ¤ (b, a), (b, c) ¤ (c, b)
The symmetric closure S of relation R can be constructed by
making S = R » R–1

Where R–1 = {(b, a) | (a, b) Œ R}
Transitive closure

A set S is a transitive closure of R if for every pair of relations
(a, b) and (b, c) in R, the set S contains the relation (a, c) in
addition to (a, b) and (b, c).

e.g., A = {a, b, c}

R = {(a, a) (a, b), (b, a) (b, b), (b, c), (c, b)}

The transitive closure of R is S = {(a, a) (a, b), (b, a) (b, b),
(b, c), (c, b), (a, c)}
Which adds the reflective relation (a, c) to R

9.2.2.6 Equivalence Relations

A relation R on a set A is called an equivalence relation if it
is reflexive, symmetric, and transitive.
Equivalent: “~” a ~b: Elements a and b are related by an
equivalent relation.
e.g., Obviously, the “equal” relation on integer and real
numbers is an equivalence relation.
Equivalence Classes: “[a]” Let R Õ A×A be an equivalence
relation. The set of all elements that are related to an ele-
ment a of A is called the equivalence class of a, denoted as
[a]R, or [a].
[a]R = {s | (a, s) Œ R}
If b Œ [a]R, then b is a representative of the equivalence class.

Equivalence Classes and Partitions

Let R Õ A × A be an equivalence relation. These state-
ments for elements a and b of A are equivalent:
(i) aRb (ii) [a] = [b]

(iii) [a] [b] π Δ

Let R Õ S S be an equivalence relation. The equiva-
lent classes of R form a partition of S.

o Conversely, given a partition {Ai | i Œ I} of the set
S, there is an equivalence relation R that has the
set Ai, i Œ I, as its equivalence classes.

e.g., “Bit strings that have the first three bits the same.” is
an equivalence relation

 There are 8 equivalence classes: [000…], [001…],
[010…], [100…], …

 The set of bit strings with 3 or more bits in each of its
elements is partitioned by these 8 equivalence classes
into 8 partitions.

9.2.2.7 Partial Orderings

A relation R on a set S is called a partial ordering or partial
order if it is reflexive, antisymmetric, and transitive.
Partially ordering: “≺”

a ≺ b: denotes two elements a and b of S are in
partial ordering

a ≺ b: denotes a ≺ b but a π b

Poset: A set S together with a partial ordering R is called
a partially ordered set, or poset, and is denoted by (S, R).

Members of S are called elements of the poset.

e.g., “≥”, “≤” on integer set Z, “Õ” on a power set P, is a
poset.

 We write (Z, ≥), (Z, £), and (P, Õ)

Comparable: The elements a and b of a poset (S ≺) are
called comparable if either a ≺ b or b ≺ a.

When a and b are elements of S such that neither a ≺ b nor

9.12 Computer Science & Information Technology for GATE

b ≺ a, a and b are called incomparable

: ≺ b: a ≺ b: b: a ≺ b: “~” a ~b: Elements a and b are
related by an equivalent relation.

Totally ordered set: If (S ≺) is a poset and every elements
of S are comparable, S is called a totally ordered or linearly
ordered set, and ≺ is called a totally order or linear order.

A totally ordered set is also called a chain.

Well-ordered set: (S ≺) is a well-ordered set if it is a poset
such that ≺ is a totally ordering and every nonempty subset
of S has a least element.

Principle of Well-ordered Induction: Suppose that S is a
well-ordered set.

Then P(x) is true for all x Œ S, if

INDUCTIVE STEP: For every y Œ S, if P(x) is true for all x
Œ S with x ≺ y, then P(y) is true.

Lexicographic Order: (a1, b1) ≺ (a2, b2) if a1 ≺1 a2 or (a1
= a2) and (a2 ≺2 b2)

e.g., (3, 5) ≺ (4, 8) (4, 5) ≺ (4, 8) (1, 3, 5) ≺ (2, 3, 5)

(a, b, c) ≺ (b, c, d) (a) ≺ (b) (abc) ≺ (abd)

discreet ≺ discrete discrete ≺ discretion

Hasse Diagram:

{a, b, c}

{b, c}

{b}

{a, b}

{c}

Δ

{a, c}

{a}

Figure 9.3 (a) Hasse Diagram of {P({a, b, c}), }

g

g

b

f

e

c

a

h j

Figure 9.3 (b) Hasse Diagram of a poset

Maximal and Minimal Elements

An element a is maximal in a poset (S, ≺) if there is no
b Œ S such that a ≺ b.

An element a is miniimal in a poset (S, ≺) if there is
no b Œ S such that b ≺ a.

e.g., {a, b, c} is the maximal of all the posets in Hasse dia-
gram (a)

 g is the maximal of poset {a, b, d, g} of diagram (b)

 h is the maximal of poset {a, b, d, g, h}, {a, c, e, f ,
h} of diagram (a)

 j is the maximal of poset {a, c, e, f, j} of diagram (b)

An element a is the greatest element of a poset (S, ≺) if
b ≺ a for all b Œ S.

An element a is the least element of a poset (S, ≺) if a
≺ b for all b Œ S.

e.g., {a, b, c} is the greatest element of all the posets in
Hasse diagram (a) above.

Δ is the least element of all the posets in Hasse
diagram (a)

 h is the greatest element of poset {a, b, d, g, h}, {a,
c, e, f , h} of diagram (b)

 a is the least element of poset {a, b, d, g, h}, {a, c, e,
f, j} of diagram (b)

An element u of S is an upper bound of subset A of
poset (S, ≺) if a ≺ u for all a Œ A.

An element l of S is a lower bound of subset A of poset
(S, ≺) if l ≺ a for all a Œ A.

e.g., {a, b, c} is the upper bound of all the subsets in Hasse
diagram (a)

Δ is the lower bound of all the subsets in Hasse
diagram (a)

 h is the upper bound of subset {a, b, d, g, h} or {a,
c, e, f , h} of diagram (a)

 a is the lower bound of subset {a, b, d, g, h} or, {a,
c, e, f, j} of diagram (a)

An element x of S is a least upper bound of subset A
of poset (S, ≺) if x is an upper bound that is less than
every other upper bound of A.

An element y of S is a greatest lower bound of subset A
of poset (S, ≺) if y is a lower bound that is greater than
every other lower bound of A.

e.g., g is the least upper bound of subset {b, d, g} of
diagram (a)

 Because between the two upper bounds g and h of
{b, d, g}, g is less.

 b is the greatest lower bound of subset {b, d, g} of
diagram (b)

 Because between the two lower bounds a and b of
{b, d, g}, b is greater.

Engineering Mathematics 9.13

9.2.3 Lattices

A partially ordered set in which every pair of elements has
both a least upper bound and a greatest lower bound is
called a lattice.
e.g., The Hasse diagram (a) above is a lattice.
 Actually, it is one of the most widely used lattice
 The Hasse diagram (b) above is not a lattice

Because h and j both are upper bounds of elements e and f,
so element pair e and f has no least upper bound.

9.2.4 Groups, Rings and Fields

A group G, sometimes denoted by {G, ∑ }, is a set of ele-
ments with a binary operation, denoted by ∑ , that associ-
ates to each ordered pair (a,b) of elements in G an element
(a ∑ b) in G, such that the following axioms are obeyed:

(A1) Closure: If a and belong to G, then a ∑ b is also in
G

(A2) Associative: a ∑ (b ∑ c)= (a ∑ b) ∑ c for all a,b,c in G
(A3) Identity element: There is an element e in G such

that a ∑ e= e ∑ a=a for all a in G
(A4) Inverse element: For each a in G there is an ele-

ment a¢ in G such that a ∑ a¢ = a¢ ∑ a = e

n Example set SN of permutations on the set {1, 2, .., N}
with operation ∑ - composition of permutations is a group
with e = (1, 2, .., N). For N = 3, (123) ∑ (321) = (321); (213)
∑ (132) = (312)
If a group has a finite number of elements, it is referred to
as a finite group, and the order of the group is equal to the
number of elements in the group. Otherwise, the group is
infinite group.
A group is said to be abelian if it satisfies the following ad-
ditional condition:

(A5) Commutative: a ∑ b = b ∑ a for all a, b in G
The set of integers (positive, negative, and 0) under addi-
tion is an abelian group. The set of real numbers under mul-
tiplication is an abelian group.
The set SN of permutations is not an abelian group.
When the group operation is addition, the identity element
is 0; the inverse element of a is –a; and the subtraction is
defined as: a – b = a + (–b).
Exponentiation within a group is defined as repeated appli-
cation of the group operation, so that a3 = a a a. We de-
fine also a3 = 0, the identity element, and a–n = (a¢)n, where
a¢ is inverse element for a. A group G is cyclic if every ele-
ment of G is a power ak (k – integer) of a fixed element a
ŒG. The element a is said to generate the group G, or to be
a generator of G. A cyclic group is always abelian, and may
be finite or infinite.

A ring R, sometimes denoted by {R,+, × }, is a set of ele-
ments with two binary operations, called addition and mul-
tiplication, such that for all a, b, c in R the following axioms
are obeyed:

(A1-A5) R is an abelian group with respect to addition; that
is, R satisfies axioms A1 through A5, For this case of an
additive group we denote the identity element as 0 and the
inverse of a as –a.

(M1) Closure under multiplication: If a and b belong to R,
then ab is also in R (multiplication, as usually, is shown by
concatenation of its operands)

(M2) Associativity of multiplication: a(bc) = (ab)c

(M3) Distributive laws: a(b + c) = ab + ac

 (a + b)c = ac + bc

With respect to addition and multiplication, the set of all
n-square matrices over the real numbers is a ring R.

The ring is said to be commutative if it satisfies the follow-
ing additional condition:

(M4) Commutativity of multiplication: ab = ba

Let S be the set of all even integers under the usual opera-
tions of addition and multiplication. S is a commutative
ring. The set of all n-square matrices over the real numbers
is not a commutative ring.

We define integral domain, which is commutative ring that
obeys the following axioms:

(M5) Multiplicative identity: There is an element 1 such
that a1=1a=a for all a in R

(M6) No zero divisors: If a,b in R and ab=0, then, either
a=0 or b=0.

Let S be the set of integers, positive, negative, and 0, under
the usual operations of addition and multiplication. S is an
integral domain.

A field F, sometimes denoted by {F, +, ×}, is a set of elements
with two operations, called addition and multiplication,
such that for all a, b, c in F the following axioms are obeyed:

(A1-M6) F is an integral domain; that is, F satisfies axioms
A1 through A5 and M1 through M6.

(M7) Multiplicative inverse: For each a in F, except 0, there
is an element a–1 in F, such that a–1 = a–1 a = 1

In essence, a field is a set in which we can do addition, sub-
traction, multiplication and division without leaving the
set. Division is defined as: a/b = a(b–1).

n Examples

1. Do the natural numbers with addition form a group?
No. Not all natural numbers have additive inverses.
In fact, only 0 has an additive inverse. Thus (N, +)
does not form a group.

9.14 Computer Science & Information Technology for GATE

2. The integers with addition form a group. As we have
already seen, Z is closed under addition and all in-
tegers have additive inverses. Furthermore, 0 is the
additive identity and addition is associative and com-
mutative on Z. Thus, the integers with addition form
an Albelian group.

3. The rationals and addition form an Albelian group.
Definition: A field is a set S with two operations, often
called addition (+) and multiplication (x), with the follow-
ing properties:

1. S is closed under both + and x
2. The operations + and x are both associative and com-

mutative on S
3. There exists a + identity element, (we’ll call it e+) and

ax identity element, (we’ll call it ex) such that b + e+ =
e+ + b = b, and b × ex = ex × b = b for all elements b in
S.

4. For each element in S, there is an additive inverse.
That is to say, for each b in S, there is a (–b) such that
b + (–b) = (–b) + b = e+

5. For each element in S, except e+, there is a multiplica-
tive inverse. That is to say, for each b π e+ there is a b–1

such that b × b–1 = b–1 × b = ex.
6. x is distributive over +

Note

The first 5 properties are equivalent to saying S and + form
an Albelian group, and the set S without the additive identi-
ty element, with x form an Albelian group. In other words,
a field is basically a set that forms a commutative (or Albe-
lian) group with two different operations, and one of those
operations distributes over the other.

n Examples

1. Do the integers with addition and multiplication form
a field? No. While the integers from an Albelian group
under addition, the non-zero integers do not form an
Albelian group under multiplication since there are
not multiplicative inverses for all non-zero integers.

2. The rationals with addition and multiplication do
form a field. We have already seen that Q with addi-
tion is an Albelian group. In addition, Q is closed un-
der multiplication. Multiplication is associative and
commutative on Q. 1 is the multiplicative identity.
All non-zero rationals have a multiplicative inverse
(namely, b/a is the inverse of a/b). Thus the non-zero
rationals form an Albelian group with multiplication.
And multiplication distributes over addition. Thus
the rationals with + and x form a group.

Table 9.1 (a) and (b)

a b c d e

a a b c d e

b b c d e a

c c d e a b

d d e a b c

e e a b c d

a b c d e

a a a a a a

b a b c d e

c a c e b d

d a d b e c

e a e d c b

Yes. All entries in both tables are in the set {a, b, c, d, e},
thus the set is closed under both operations. Furthermore
the ijth entry always equals the jitb

commutative on the set {a, b, c, d, e}. Examining the tables
you should be able to convince yourselves that the opera-

9.3 Number Theory and Combinatorics

9.3.1 Integer Division

“a | b” a divides b i.e., b = ac, or c = b/a;
 a, b, c: integers, a π 0

a: factor; b: multiple
“a |/ b” a does not divide b no integer c exists such

that b = ac, or c = b/a.
 ¬$c(b = ac)

n Example How many positive integers not exceeding n
are divisible by d?

i.e., how many k’s exist, such that 0 < dk ≤ n

n Answer: În/d˚
Division properties: a. b. c are integers

(i) if a | b and a | c, then a | (b + c);
(ii) if a | b, then a | bc;

(iii) if a | b and b | c, then a | c;

(iv) if a | b and a | c, then a | mb + nc; m and n are
integers

Engineering Mathematics 9.15

9.3.1.1 Modular Arithmetic

Congruent: a ∫ b (mod m)
a is congruent to b modulo m if (a–b)/m=0; a Z, b Z, and
m Z+

e.g., a = 131 and b = 29 are congruent to modulo 2; also
modulo to 3, 6, 12, …

 since a–b = 131–29 = 102 is dividable by 2, 3, 6,
12, 18, 24, …

Not Congruent: a ∫/ b (mod m)

Properties of modular arithmetic:
 [a ∫ b (mod m)] ´ [a mod m = b mod m]
 [a ∫ b (mod m)] ´ [$k(a = b +km)]
 [a ∫ b (mod m) Ÿ c ∫ d (mod m)] Æ [a+c ∫ b+d (mod m))
Ÿ ac ∫ bd (mod m)]
 (a + b) (mod m) = (a (mod m) + (b mod m)) mod m
ab mod m = ((a mod m) (b mod m)) mod m

Applications of Congruence

Hashing Functions
Pseudorandom Numbers

Cryptology
Primes: p Œ Z+ and p is dividable by 1 and p only.
Composite: p Œ Z+ and p is not a prime.

9.3.1.2 The Fundamental Theorem of Arithmetic

Every positive integer greater than 1 can be written unique-
ly as a prime or as the product of two or more primes where
the prime factors are written in order of non-decreasing
size.
If n is a composite integer, then n has a prime divisor less

than or equal to n

Mersenne prime – of form 2p–1 method to find large
prime numbers
The Prime Number Theorem The ratio of the number of
primes not exceeding x and x/lnx approaches 1 as x grows
without bound.
Meaning: The number of primes less than x is approxi-
mately x/ln(x)

e.g.,x = 10, # of primes < 10 ~ 10/ln10 = 4.3 (actually 3

 x = 100, # of primes < 100 ~ 100/ln100 = 21.7

(actually 25)

 x = 1000, # of primes < 1000 ~ 1000/ln1000 =
144.76

Note that the approximation should be getting more accu-
rate when x grows bigger.
This theorem gives the odds = 1/lnx that a randomly cho-
sen number is prime.

Goldbach’ Conjecture –“Every even integer greater than 2
is the sum of two primes.”
The Twin Prime Conjecture –“There are infinitely many
twin primes”

e.g., (3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43),
(59, 61), (71, 73)

Greatest Common Divisors and Least Common Mul-
tiples
If gcd(a, b) = 1, a and b are relatively prime

 Why “relatively prime?’ - Because, could be both, one of
them, or none

e.g., both: (2, 3), (3, 5), …
one: (2, 9), (4, 11), …
none: (4, 9), (22, 39), …

If gcd(ai, aj) = 1; 1 £ i £ j £ n, a1, a2, …, an are pairwise rela-
tively prime

e.g., (2, 3, 5 11), (3, 4, 10, 13)

Do remember that the term is “pairwise,” nothing to do
with “twin prime”
Using prime factorisations to find gcd(a, b) and lcm(a, b)

a = p p pa a
n
an

1 2
2 2 … and b = p p pb b

n
bn

1 2
2 2 …

 1 £ i £ n(ai, bi Œ Z+ {0})

 gcd(a, b) = = p p p
a b a b

n
a bn n

1 2
min(,) min(,) min(,)1 1 2 2 …

 lcm(a, b) = = p p p
a b a b

n
a bn n

1 2
max(,) max(,) max(,)1 1 2 2 …

9.3.1.3 Modular Exponentiation

Calculate bn mod m
N is in binary expansion: n = (ak–1ak–2 …a1 a0)2

Thus, bn = ba a ak k- - -1 2 1 02
 = b

a ak
k

-
- + +1

1
1 02 2...

= b b ba a ak
k

-
-

1
1

1 02 2

Algorithm for Modular Exponentiation

procedure modular exponentiation(b: integers, n = (ak–1
ak–2…a1a0)2, m: positive integer)

x := 1

power := b mod m

for i := 0 to k–1

begin

if ai = 1 then x := (x power) mod m

power := (power power) mod m

end

{x equals bn mod m }

9.16 Computer Science & Information Technology for GATE

9.3.1.4 Mathematical Induction

Principle
Two steps to prove P(n) is true for all positive integers n,

1. Basis Step: verify that P(1) is true
2. Inductive Step: show that P(k) Æ P(k+1) is true

k Z

 [P(1) Ÿ k(P(k) Æ P(k+1))] Æ n(P(n))

n Example Prove P(n): n! < nn, n>1
1. Basis Step: P(2) is true 2! = 2 < 22 = 4
2. Inductive Step:

Assume P(k) is true, that is k! < kk

 (k+1)! = (k+1) k! (k+1)(k+1) = (k+1)k(k+1) > kk(k+1)
Since we assumed k! < kk,
(k+1)! = (k+1) k! < kk(k+1) < (k+1)k(k+1) = (k+1)(k+1).
Hence Proved.

9.3.1.5 Recursive Algorithms

Modular Exponential: bn mod m; (b, n, m Œ Z) Ÿ (m ≥ 2)
Ÿ (n ≥ 0) Ÿ (1 ≤ b < m)
Algorithm Recursive Modular Exponentiation
procedure mpower(b, n, m: integers with m ≥ 2, n ≥ 0)
if n = 0 then mpower(b, n, m) := 1
else if n is even then mpower(b, n, m) := mpower(b, n/2,
m)2 mod m
else
mpower(b, n, m) := mpower(b, În/2˚, m)2 mod m × b mod
m) mod m
Algorithm A Recursive Algorithm for Computing gcd
(a, b)
procedure gcd(a, b: nonnegative integers with a < b)
if n = 0 then gcd(a, b) := b
else gcd(n) := gcd (b mod a, a)

9.3.2 Counting

9.3.2.1 The Basics of Counting

Basic Counting Principles
Product rule “sequent choices”

Total number of ways = number of ways at 1st place × num-
ber of ways at 2nd place
In general: Total number of ways

= number of ways at placeth

=1

i
i

n

’

e.g., How many ways to select two people out of a
group of 9? 9 · 8 = 72

 Auto license plates: three letters (26) followed by 3 digits
(10):

26 · 26 · 26 · 10 · 10 · 10 = 17,576,000
Similarly, number of passwords, addresses, variable names,
…

Sum rule “either choices”
Total number of ways = number of ways at 1st place +

number of ways at 2nd place
In general: Total number of ways

= number of ways at placethi
i

n

=1
Â

e.g., How many ways to select one people from a
group of 9 teachers or 8 students?

 9 + 8 = 17

n Example 13 What is the final value of k?
2k
k := 0
for i1 = 0 to n1
k := k + 1
for i2 = 0 to n2
k := k + 1

Number of elements in a union of two disjoint finite sets
|A1 » A2| = |A1| + |A2|

More Complex Counting Problems
Password of (1) 6 to 8 characters long, (2) at least one digit
P: total number of password;
P6, P7, P8: number of password with 6, 7, 8 characters, re-
spectively.

P6 = number of password with digitsi
i=1

6

Â = ?+?+?+?+?+?

= # with either letters of digits – # without digit
= 366 – 266

The same for P7 and P8

P = P6 + P7 + P8 = (366 – 266) + (367 – 267) + (368 –
268) = 2, 684, 483, 063, 360

The Inclusion-Exclusion Principle (subtraction principle)

e.g., P6 = number of password with digitsi
i=1

6

Â

= ?+?+?+?+?+?
= # with either letters of digits – # without digit

= 366 – 266

Number of elements in a union of two non-disjoint finite

sets

|A1 » A2| = |A1| + |A2| – |A1 « A2|

e.g., A1 = {a, b, c, d, e}, A2 = {c, d, e, f, g}; |A1 » A2| = 5 +
5 – 3 = 7

|A1 » A2 » A3| = |A1| + |A2| + |A3| – |A1 « A2| – |A1 « A3|
– |A2 « A3| + |A1 « A2 « A3|

Engineering Mathematics 9.17

In general

|A1 » A2 » … » An| = (|A1| + |A2| + … + |An|)

– (|A1 « A2| + |A1 « A3| + … + |An-1 « An|)

+ (|A1 « A2 « A3| + |A1 « A2 « A4| + … + |An–2 « An–1 «

An|)
– …

+ (-1)n–1(|A1 « A2 « … « An|)

9.3.3 The Pigeonhole Principle

If k is a positive integer and k + 1 or more objects are placed
into k boxes, then there is at least one box containing two
or more of the objects.
How many people in a group would have the same birth-
day?

For a group of 367 peoples, the probability that there
are two peoples having the same birthday is equal to
1.
For a group of over 183 peoples, the probability that
there are two peoples having the same birthday is
greater than or equal to 0.5.

(In fact, the minimum number of people needed for two
people among them having the same birthday is 23.

n Example

e.g., n = 2, the multiple: 5n = 10
n = 3, the multiple: 37n = 111
n = 4, the multiple: 25n = 100

(These are just some instances. The textbook gives a formal
proof)
A function f from a set with k + 1 or more elements to a set
with k elements is not one-to-one.
The Generalised Pigeonhole Principle

If N objects are placed into k boxes, then there is at least one
box containing at least ÈN/k˘ objects.
e.g., Let (xi, yi), i = 1, 2, 3, 4, 5, be a set of five distinct points

with integer coordinates in the xy plane. Show that
the midpoint of the line joining at least one pair of
these points has integer coordinates.

(1) For a line lab that joins points (xa, ya) and (xb, yb), a,
b Œ {1, 2, 3, 4, 5} to have integer coordinates at mid-
point, it requires that the parity (even or odd) of the
(xa, ya) and (xb, yb) must be the same. (i.e., both xa and
xb are even (or odd), e.g., if xa = 12 and xb = 28, then
xmid = 20; if if xa = 11 and xb = 27, then xmid = 19. The
same for ya and yb)

(2) There are four possible parity cases (combinations)
for the (xi, yi)’s: (i) [even, even], (ii) [Even, odd], (iii)
[odd, even], and (iv) [odd, odd].

(3) We have five points, i = 1, 2, 3, 4, 5. According to the
Pigeonhole principle, there must be at least two points
with the same parity. So there must be at least one line
joining a pair of these pints with integer coordinate
midpoint.

Some Elegant Applications of the Pigeonhole Principle
Every sequence of n2 + 1 distinct real numbers con-
tains a subsequence of length n + 1 that is either
strictly increasing or strictly decreasing

Ramsey Theory

 “How many elements of some structure must there be
to guarantee that a particular property will hold?”

Ramsey number R(m, n)

 “The minimum number of guests R(m, n) that must
be invited so that at least m will know each other or at
least n will not know each other.”

Ramsey numbers

m n R(m, n)

3 3 6

3 4 9

3 5 14

3 6 18

3 7 23

3 8 28

3 9 36

3 10 [40, 43]

3 11 [46, 51]

3 12 [52, 59]

9.3.4 Permutations and Combinations

Permutations

r-permutation An ordered arrangement of r el-
ements of a set (n elements, r ≤ n)

 P(n, r) = n (n – 1) (n – 2) … (n – r + 1)

 Note: r multiplying terms

 P(n, r) =
n

n r

!
!-()

 Note: P(n, 0) = 1 P(n, n) = n! 0! = 1; 1! = 1; 2! =
2; 3! = 6; …

n Example How many ways are there for 10 women and
six men to stand in a line so that no two men stand next to
each other? [Hint: First position the women and then con-
sider possible positions for the men.]

(1) First, line 10 women (Note: each has a different iden-
tity – so it is a permutation problem), we have P(10,
10) ways. P(10, 10) = 10! = 3,628,800

9.18 Computer Science & Information Technology for GATE

(2) To make no two men standing next to each other, we
should line them individually, that is each man should
line between any two women, except the left-most
and right-most position, where one woman is next.

There are 11 such positions after the 10 women are lined.
That is the men can be lined in P(11, 6) = (11 10 · 9 · 8 · 7 ·
6 · 5 · 4 3 2 1)/(5 · 4 3 2 1) = 332,640

(3) Since each way of woman’s lining up leads to the P(11,
6) ways of man’s lining up, the total ways of lining the
women and men = P(10, 10) P(11, 6)

 = 1,207,084,032,000
Combinations

r-combination An unordered selection of r ele-
ments of a set (n elements, r £ n)

C(n, r) = (n (n – 1) (n – 2)…(n – r + 1))/(r (r – 1) … 1)

Note: r multiplying terms on both numerator and denomi-
nator

C(n, r) =
n

r n r

n n n n r

r

!
! !

() () ()
!-()

=
- - - +1 2 1

Note: C(n, 0) = C(n, n) = 1

 C(n, r) = C(n, n–r)

n Example How many bit strings of length 10 have (a)
exactly three 0s? (b) more 0s than 1s? (c) at least seven 1s?
(d) at least three 1s?
n Answer:

(a) exactly three 0s?

C(10, 3) = (10·9·8)/(3·2·1) = 120

 Note: this is not a permutation because the “0”s
are indistinct. So is “1”s.

(b) more 0s than 1s? C(10, 6) + C(10, 7) + C(10, 8) +
C(10, 9) + C(10, 10) = (10·9·8·7·6·5)/(6·5·4 3 2 1) +
(10·9·8·7·6·5·4)/(7·6·5·4 3 2 1) + (10·9·8·7·6·5·4 3)/
(8·7·6·5·4 3 2 1) + (10·9·8·7·6·5·4 3 2)/(9·8·7·6·5·4
3 2 1) + (10·9·8·7·6·5·4 3 2 1)/(10 9·8·7·6·5·4 3 2 1)

 = 210 + 120 + 45 + 10 + 1 = 387

 Could be easier to compute ‘less 1s than 0s” C(10,0) +
C(10,1) + C(10, 2) + C(10, 3) + C(10,4)

 = 1 + 10/1 + (10·9)/(2 1) + (10·9·8)/(3 2 1) + (10·9·8·7)/
(4 3 2 1)

 = 1 + 10 + 45 + 120 + 210 = 386

(c) at least seven 1s? C(10, 7) + C(10, 8) + C(10,
9) + C(10, 10)

 From (b) above, we know that it would be easier if we
compute “at most three 0s”

 C(10,0) +C(10,1)+C(10, 2)+C(10, 3) = 1 + 10/1 +
(10·9)/(2 1) + (10·9·8)/(3 2 1)

 = 1 + 10 + 45 + 120 = 176

(d) at least three 1s?

 It would need to compute C i
i

10
3

10

,()
=
Â

 Again from (b) and (c) above, we know that it
would be easier if we compute “at most two 1s”

 C(10,0) +C(10,1)+C(10, 2) = 1 + 10/1 + (10·9)/
(2 1) = 1 + 10 + 45 = 56

 The answer for “at least three 1s” = Total possibili-
ties – “at most two 1s”

 = 210 – 56 = 1024 – 56 = 968

9.3.5 Recurrence Relations

an = f(a0, a1, ..., an-1) for a sequence {an}, n ≥ n0 Z+

Let a sequence {an} = {a0, a1, ..., an-1, an}. The sequence has a
recurrence relation if the an can be expressed by an equation
defined on {a0, a1, ..., an-1 }.

Some most familiar examples are:

Sequence Recurrence
relation

Initial
conditions

Non-recurrent
express

Fibonacci
numbers

an = an–1 + an-2 a0 = 0, a1 = 1 ??? (to be seen
later)

Factorial an = n an–1 a0 = 1 an = n!

Exponential an = a an–1 a0 = 1, a1 = a an = an

n Example Give the sequence represented by the recur-
rence: an = nan–1 + (an–2)2, a0 = –1, a1 = 0.

n Answer: Sequence: –1, 0, 1, 3, 13, 74, 613, …
The Inclusion-Exclusion Principle (subtraction principle)

e.g., P6 = number of password with digitsi
i=1

6

Â

= ?+?+?+?+?+?
= # with either letters of digits – # without digit

= 366 – 266

|A1 » A2| = |A1| + |A2| - |A1 « A2|
e.g., Number of elements in a union of two non-disjoint

finite sets

 A1 = {a, b, c, d, e}, A2 = {c, d, e, f, g};

 |A1 » A2| = 5 + 5 – 3 = 7

 |A1 » A2 » A3| = |A1| + |A2| + |A3| – |A1 « A2| – |A1 « A3|
– |A2 « A3| + |A1 « A2 « A3|

In general
|A1 » A2 » … » An| = (|A1| + |A2| + … + |An|)
– (|A1 « A2| + |A1 « A3| + … + |An-1 « An|)

Engineering Mathematics 9.19

+ (|A1 « A2 « A3| + |A1 « A2 « A4| + … + |An-2 « An-1 «
An|)

– …
+ (-1)n-1(|A1 « A2 « … « An|)
 Formally, the Principle of Inclusion-Exclusion can be

represented as:

|A1 » A2 » … » An| = | |Ai
i n1£ £
Â – | |A Ai j

i j n

«
£ £ £
Â

1
 +

| |A A Ai j k
i j k n

« «
£ £ £ £

Â
1

–…+(–1)n–1(|A1 « A2 « … «

An|)

n Example How many permutations of the 26 letters of
the English alphabet do not contain any of the strings fish,
cat, or dog?

n Answer :

Let A be the set of strings of all 26 letters
 A1 be the set of strings containing fish

 A2 be the set of strings containing cat

 A3 be the set of strings containing dog

We have
 |A| = 26!
 |A1| = 23! Consider placing the four letter f, i, s, h,

together taking one space of the permutation, then
count the permutations of it with the other 22 letters.

 |A2| = 24!
 |A3| = 24!
 |A1 « A2| = 21! Consider the two words fish and

cat taking two spaces of the permutation, along with
the other 19 letters.

 |A1 « A3| = 21!
 |A2 « A3| = 22!
 |A1 « A2 « A3| = 19!

The solution is
 |A| – |A1 » A2 » A3| = |A| – (|A1| + |A2| + |A3| – |A1 «

A2| – |A1 « A3| – |A2 « A3| + |A1 « A2 « A3|)
 = 26! – (23! + 24! + 24! – 21! – 21! -22! + 19!)
 = 4.02025938 × 1026

n Example How many permutations of the 26 letters of
the English alphabet do not contain the strings fish, rat, or
bird?
n Hint: The sets Afish « Abird, Arat « Abird, and Afish « Arat «
Abird are empty.
 |A| – |A1 » A2 » A3| = |A| – (|A1| + |A2| + |A3| – |A1 «

A2| – |A1 « A3| – |A2 « A3| + |A1 « A2 « A3|)
 = 26! – (23! + 24! + 23! – 21!)
 = 4.02024763 × 1026

9.4 Graph Theory

Important Points

1. In-degree of a node is no. of edges coming into the
node.

2. Out-degree of a node is no. of edges going out of the
node.

3. Degree of a node is sum of in and out degrees.
4. Self Loops are the ones in which there exists an edge

for a node from itself. If u is a node and (u,u) is ele-
ment of edge set E. A self-loop is a cycle of length 1.

5. If (u,v) is an edge then it is said to be incident from or
leaves vertex u and is incident to or enters vertex v.

6. A path is simple if it contains distinct nodes.
7. Two paths (v0,v1,v2,…,vk–1,vo), and (v0

1,v1
1,…,vk–1

1, v0
1)

form the same cycle if there exists an integer j such
that vi

1 =vi+j mod k for k=0,1,…k-1.
8. A undirected graph is connected if every pair of ver-

tices are connected by a path.
9. Connected components of a graph are vertices under

“ is reachable from” relation.
10. A directed graph is strongly connected if every two

vertices are reachable from others.
11. A directed graph is strongly connected then it will

have only one strongly connected component.
12. Two graphs are isomorphic if there exists bijection f:

V Æ V1 such that a edge in G also in G1 only labels
may change.

13. If two graphs are isomorphic then their degrees are
same.

14. A complete graph is an undirected graph in which
every pair of vertices is adjacent.

15. In a complete graph max path (possible) length is 1.
16. Forest is acyclic, undirected graph.
17. Tree is an acyclic, connected, undirected graph.
18. Multigraph is an undirected graph with multiple edg-

es between vertices and with self-loops.
19. Hypergraph is undirected with hyperedges connect-

ing subset of vertices.
20. In an undirected graph the length of a cycle must be at

least 3.
21. In a directed graph if there is a cycle then it contains

simple cycle.
22. In any connected undirected graph G(V,E) |E|>=|V|–1

is valid.
23. In a complete graph with N nodes there will be

N(N –1)/2 edges.
24. A graph is weekly connected if we suppress direction

and resulting undirected graph is connected.

9.20 Computer Science & Information Technology for GATE

25. A graph is regular if every vertex has valence (order)
that it is adjacent to same no. of other vertices.

26. The diameter of a graph is largest of all shortest path
distances in the tree.

27. A path is said to be simple if all the vertices are dis-
tinct except the first and the last.

28. A cycle in a directed graph is a path of at least 1 and
the path with length 1 is simple path.

29. The sum of the degrees of the vertices of a un-directed
graph G is equal to twice the no. of edges in G.

30. In the case of undirected graphs the edges should be
distinct. The path u,v,u in an undirected graph can
not be a cycle.

31. Adjacency matrix of an undirected graph is symmet-
ric about its main diagonal. In undirected graphs self
loops are not allowed. Thus, the adjacency matrix
contains diagonal elements as zeros.

32. Independent of what is the type of the graph, a graph
with V vertices will requires Q(V2) memory locations
to store in adjacency matrix.

33. A graph with E directed edges will be having the sum
of the lengths of the adjacency lists as E, whereas un-
directed graph with the same no. of edges (E) will be
having 2E.

34. In order to find the existence of an edge between two
stations v, u requires Q(1) time in adjacency matrix
representation whereas in adjacency matrix represen-
tation it needs O(E).

35. Adjacency matrix of a graph (with nodes N) con-
tains only 1’s in principal diagonal, then we can say
that there are N connected components or N isolated
points with self cycles.

36. Adjacency matrix of a graph (with nodes N) contains
all zeros, then we can say that there are N connected
components or N isolated points with no self cycles.

37. Adjacency matrix of a graph with N nodes contains
all 1’s in I’th row (except I’th element) and all zeros in
I’th column then I’th station can be called as source.

38. Adjacency matrix of a graph with N nodes contains
all 0’s in I’th row (except I’th element) and all ones in
I’th column then I’th station can be called as sink.

39. Adjacency matrix of a graph with N nodes contains
all 1’s in I’th row (except I’th element) and all zeros
all over then the graph can be said as star shaped with
I’th station as center and directed edge for all other
stations.

40. For the above type of graph, path matrix is same as
adjacency matrix. Moreover, if A is adjacency matrix,
then A2, A3, … AN will be having all zeros.

41. Adjacency matrix of a graph with N nodes contains
all 1’s in I’th row (except I’th element) and all 1’s in I’th
column (except I’th element) and zeros all over then
the graph can be said as star shaped with I’th station
as center and un-directed edges for all other stations.

42. For the above type of graph, path matrix will be hav-
ing all 1’s. If A is adjacency matrix, I is the center node
index the value of (I, I) element in A2 will be N–1.

43. Regular graph will have its vertexes with same degree.
For example, a graph is K-regular if and only if every
vertex of it is of k-degree. A 0-regular graph is an iso-
lated point (which can be also called as degenerate
tree). A complete graph V-1 regular, where V is no. of
vertexes.

44. The connected 2-regular graph with n vertices is the
graph which contains a single n-cycle.

45. 3-regular graphs must have an even number of verti-
ces.

46. A graph G is said to be complete of every vertex in
G is connected to every other vertex. Thus, obviously
a complete graph is connected. Its adjacency matrix
will have 0’s in diagonal and all other elements will
be 1’s. If A is such an adjacency matrix then A2 will
have all its off diagonal elements as 1’s and where as
diagonal elements as V-1, where V is no. of vertexes.

0 1 1 2 1 1
A = 1 0 1 A2 = 1 2 1

1 1 0 1 1 2
P

Q R

47. The following adjacency matrices pattern indicates
that all the nodes in the respective graphs are in a
cycle (directed), max cycle length is N.

01000 00001
00100 00010
00010 00100
00001 01000
01000 00001

Engineering Mathematics 9.21

48. The weight of minimal spanning tree is unique but the
minimal spanning tree itself is not because of two or
more edges having same weight.

49. A planar graph is the one which can be drawn in the
plane so that its edges do not cross.

50. Eulers’s Formula: V–E+R=2, where V, E, R are num-
ber of vertices, edges and regions.

51. In order to apply Eulers formula the underlying graph
should be of connected type.

52. If G is a connected planar graph with p vertices and q
edges, where p>=3, then q<=3p-6.

53. Kuratowski Theorem: A graph is nonplanar if and
only if it contains a subgraph homeomorphic to K3,3
or K5, where K3,3 is bipatrite graph with vertexes of
degree 3 in both sets and K5 is the complete graph
with all vertexes of order 4 with 5 nodes.

54. Vertex colouring or colouring of graph is the process of
assigning a color to each vertex such that no two adja-
cent vertexes are going to have same colour. The mini-
mum number of colors needed to colour the graph is
known as the chromatic number of that graph.

55. For a complete graph with n nodes requires n colours
to colour it. Thus chromatic number is n.

56. A planar graph is 5-colourable (vertex colouring).
57. A planar graph is 4-colourable (Appel and Hasken).

Here, regions are assumed to be coloured.
58. A bipartite graph is 2-colourable.
59. A graph G is having all cycles with even length is

2-colourable.
60. An undirected graph with a path from every node to

another node is called as connected. A directed graph
with this property is called as Directed Acyclic Graph
(DAG) and is also called as strongly connected. If a
di-graph is not strongly connected, but the underly-
ing graph (without the directions to the arcs) is con-
nected, then the graph is called as weakly connected.

61. Adjacency matrix representation needs Q(|V2|) mem-
ory locations and is preferred if the graph is dense.
Otherwise, adjacency list representation is preferable.
The space requirements will be O(|V|+|E|), where V is
no. of nodes, E is no. of edges.

62. Topological ordering is applicable to only directed
acyclic graphs only. That is, graphs without cycles.
Further, the ordering is not necessarily unique; any
leagal ordering will do.

63. A simple algorithm to find a topological ordering is
first find any vertex with no incoming edges and print
the same and remove it along with its edges from the
graph. Then we apply this same strategy to the rest of
the graph.

Void toposort1(Graph G)

{

Vetex V, W;

For(int counter=1; counter <=No_of_vertices;

count++)

{ V=FIND_Vetex_with_zero_indegree();

If(V is not null)

{ Error(“Graph has a cycle”);

return;

}

else

{

print V

for each W adjacent to V reduce indegree value

by one

}

}

Because finding a node with zero in-degree is a sim-
ple scan of the an array having in-degrees, each call it
takes O(V). Since, there are V such calls, the running
time of the algorithm will be O(V2).

Toposort2(Graph G)

{

int counter=1; Vertex V, W; Queue Q;

for each vertex V push into Q if their in-degree is zero.

While(Q is not empty)

{

 V=Q.dequeue();

Counter++;

For each adjacent vertex W of V decrease in-

degree by one and if it becomes zero push into Q

}

if(counter<=no of vertexes) printf(“Graph has

a cycle);

}

64. Finding un-weighted shortest paths
a. Select some vertex, s, and set path length to 0.
b. Look for all adjacent vertices of s and having path

length of 1.
c. Look for all vertices which are having path length

of 2.
d. Repeat till all vertices are calculated

9.22 Computer Science & Information Technology for GATE

 This algorithm behaves similar to breadth-first. The
vertices closest to a node are evaluated first, and the
most distant vertices are evaluated last. Once a ver-
tex is processed, no other cheaper path will be found
later.

 void unweighted(Graph g){

 Vertex V, W;

For(curr_dist=0;curr_dist<N; curr_dist++)

 { for each vertex V

 if(V is not known and V’s distance is

curr_dist

 { set V is known

 for each adjacent vertex W of V

 {

 set W’s distance as

curr_dist+1;

 W’s path is via V;

 }

 }

 }

 PS:- A node is known or unknown can be decided by
having one bit. Known means its distance is calculat-
ed and is not going to change.

 The running time of this algorithm also O(V2). How-
ever, using Queue the same can be modified to have
cost of O(E+V).

65. In the absence of negative-cost cycle, the shortest
path from s to s is zero.

66. Normally, finding shortest path from a node s to other
node necessitates finding the path from s to all verti-
ces.

67. Dijkstra’s algorithms running time is O(E+V2)=O(V2).
If the graph is dense, with |E|=Q(V2), this algorithm
runs in linear time in the number of edges. In the case
of sparse case |E|=Q(V), this algorithm is too slow.

68. Some efficient implementations of Dijkstra’s algo-
rithms are available with O(E log V) for sparse graphs
which employs priority queues.

69. Some efficient implementations of Dijkstra’s algo-
rithms are available with O(E + V log V) for sparse
graphs which employs Fibnocci heaps.

70. A graph of V vertices can have VV-2 minimum span-
ning trees.

71. Bipartite Graph A bipartite graph, G(V,E), is a graph
such that V can be partitioned into two subsets V1,
V2, and no edge has both its vertices in the same sub-
set.

72. An algorithm to find the minimum number of edges
that need to be removed from an undirected graph
so that the resulting graph is acyclic is a NP-complete
problem.

73. A planar graph is a graph that can be drawn in a plane
without any two edges intersecting.

74. A multigraph is a graph in which multiple edges are
allowed between pairs of vertices.

75. When we traverse an undirected graph using depth
first search we may get tree and back edges only.
Whereas, if you traverse a directed graph forward and
cross edges my be seen.

76. A necessary and sufficient condition for determining
if an undirected graph is acyclic is that when running
DFS() on it, one back edges are encountered.

77. PRIMS ALGORITHM (undirected weighted graph
G=(V,E))

 T=null (start with empty tree)

 For each v Œ V do

 Key[v]= •

 Key[r]=0 where r is a arbitrary vertex

 MakepriorityQueue(P,V) // initialise P to contain
the elements of V

 While Empty(P) = false do

 u=deleteMin(P)

 Min_wt = •

 For each v e adjacent[u] do

 If w(u,v) < key[v] then

 DecreaseKey(P,v,w(u,v))

 If w(u,v) < Min_wt then

 Min_wt = w(u,v)

 Vmin=v

 T=T » {(u,Vmin)} // add edge (u,vmin) to T
 Return T
 Initialisation, i.e creation of priority heap takes Q(V)

if binary heap is used
 DeleteMin operation takes O(log V); so he total time

taken by DeleteMin is O(V log V).
 DecreaseKey operation takes O(log V). At most one

decreasekey operation is done per edge, thus it re-
quires O(E log V).

 Therefore, total running time of Prims algorithm is
O(V log V + E log V), i.e O(E log V)

Engineering Mathematics 9.23

78. Algorithm to find the minimum number of edges that
need to be removed from a directed graph so that the
resulting graph is acyclic is an NP-complete problem.

79. Bi-connected components of a graph G is a partition
of the edges into the sets such that the graph formed
by each set of edges is bi-connected.

80. A directed graph has an Euler circuit if and only if it
is strongly connected and every vertex has equal in-
degree and out-degree.

81. A multigraph is said to be finite if it has a finite num-
ber of vertices and a finite number of edges. The finite
graph with one vertex and no edges, i.e., a single point
is called as trivial graph.

82. A vertex v in G is called as cutpoint or articulation
point if G-v is disconnected. That is, if we remove ver-
tex v and all edges of it the graph becomes discon-
nected. Similarly, an edge e of G is said to be a bridge
if if G-e is disconnected.

83. A multigraph is said to be traversable if it can be
drawn without any breaks in the curve and without
repeating any edges. Thus, clearly traversable multi-
graph must be finite and fully connected.

84. A finite connected graph is Eulerian if and only if each
vertex has even degree.

85. Any finite connected graph with two odd vertices is
traversable. A traversable trail may begin at either odd
vertex and will end at the other odd vertex.

86. Hamiltonian circuit traverses every vertex exactly once
and my repeat the edges. Where as Eulerian circuit tra-
verses every edge exactly once but may repeat vertices.

87. A quiver or "multidigraph" is a directed graph which
may have more than one arrow from a given source to
a given target. A quiver may also have directed loops
in it.

88. A simple graph is an undirected graph that has no
loops (edges connected at both ends to the same ver-
tex) and no more than one edge between any two
different vertices. In a simple graph the edges of the
graph form a set (rather than a multiset) and each
edge is a distinct pair of vertices. In a simple graph
with n vertices every vertex has a degree that is less
than n (the converse, however, is not true — there ex-
ist non-simple graphs with n vertices in which every
vertex has a degree smaller than n).

89. A regular graph is a graph where each vertex has the
same number of neighbours, i.e., every vertex has the
same degree or valency. A regular graph with vertices
of degree k is called a k-regular graph or regular graph
of degree k.

90. Complete graphs have the feature that each pair of
vertices has an edge connecting them.

91. A graph is called k-vertex-connected or k-edge-con-
nected if no set of k-1 vertices (respectively, edges)
exists that, when removed, disconnects the graph.
A k-vertex-connected graph is often called simply k-
connected.

92. A directed graph is called weakly connected if replac-
ing all of its directed edges with undirected edges pro-
duces a connected (undirected) graph. It is strongly
connected or strong if it contains a directed path
from u to v and a directed path from v to u for every
pair of vertices u, v.

93. If every component of a graph is bipartite, then the
graph is bipartite.

94. If u is a vertex of odd degree in a graph, then there
exists a path from u to another vertex v of the graph
where v also has odd degree.

95. If the distance d(u; v) between two vertices u and v
that can be connected by a path in a graph is defined
to be the length of the shortest path connecting them,
then the distance function satisfies the triangle in-
equality: d(u, v) + d(v, w) >=d(u,w).

96. Any graph where the degree of every vertex is even
has an Eulerian cycle.

97. In a directed graph where every vertex has the same
number of incoming as outgoing paths there exists an
Eulerian path for the graph.

98. Any tree with at least two vertices is bipartite.
99. An n-cube is a cube in n dimensions. A cube in one

dimension is a line segment; in two dimensions, it’s
a square, in three, a normal cube, and in general, to
go to the next dimension, a copy of the cube is made
and all corresponding vertices are connected. If we
consider the cube to be composed of the vertices and
edges then every n-cube has a Hamiltonian circuit.

100. Every closed odd walk in a graph contains an odd
cycle.

101. Every 2-connected graph contains at least one cycle.
102. If A is the adjacency matrix for the graph G, show that

the (j, j) entry of A2 is the degree of vj .
103. If u and v are adjacent vertices in a graph, prove that

their eccentricities differ by at most one.
104. The handshaking theorem states that the sum of the

degrees of an undirected graph is twice the number of
edges of the graph.

n Example How do you make an undirected graph as a
directed graph using (1) adjacency list (2) adjacency ma-
trix?
n Answer :
Adjacency Matrix: If A is adjacency matrix traverse A and
if A(i,j) is 1 set A(j,i) as 1.

9.24 Computer Science & Information Technology for GATE

Adjacency List: Traverse adjacency list node by node if a
node Vj is in adjacency list of Vi and then keep Vi in adja-
cency list of Vj.

n Example In a party every member gave shake hand to
every other. Find out in total how many shake hands took
place?
Assuming each member as a node and shaking with other
one as an edge, then no. of shake hands which took place
given as

Sum of degree values of all nodes. That is 2 times of |E|
where E is edge set.

n Example Apply topological ordering and display the
results for the following figure

V1 V2

V3 V4 V5

V6 V7

n Answer : v1,v2,v5,v4,v3,v7,v6 and v1,v2,v5,v4,v7,v3,v6
are both topological orderings.

n Example If T is a trail from vertex x to vertex y in a
simple graph G (recall that a trail may repeat vertices but
does not repeat edges), then prove that there exists a path P
(with no vertices repeated) from x to y formed by a subset
of vertices and edges of T.

n Answer: Start along trail and let v be the first vertex that
is repeated. Remove edges on trail between first and second
visit to v. Now go back to the start of the shortened trail
and repeat the process again and again until no repeated
vertices exist.

n Example List strongly connected components of the
graph.

a b

c d

fe

g

n Answer: {a}, {g}, {b,c,d,e,f}

n Example What is cut vertex?. Find out cut vertices in
the following graph.

a b

c

d

e

f

n Answer:
A cut vertex is a vertex the removal of which would discon-
nect the remaining graph. The cut vertices are b,d.

n Example What are the cut edges of the following graph?

a c

b

d g

e f

h

n Answer: { (c,d), (e,d), (e,f) }

n Example Does the following graph contains Euler cir-
cuit or Euler path?

a b

h g

d

f

e
c

n Answer : No. Four vertices are having degree 3.
n Example Does the following graph have Euler circuit,
Euler path?

b c d

h

a

g e

f

n Answer: Yes. All vertices are of degree 2 or 4.

n Example Does the following graph contain Hamilton
circuit?

a b

g

c

f

d

e

n Answer: No. It contains 2 pendant vertices.

n Example Does the following graph contain Hamilton
path?

a b

g

c

f

d

e

n Answer: Yes. e Æ f Æ d Æ c Æ g Æ b Æ a

Engineering Mathematics 9.25

n Example Does the following graph contains Hamil-
ton circuit, Hamilton path?

p o

d

a b

e f

m i

L kn

c g

h

j

n Answer: Yes. Hamilton circuit is: a Æ b Æ m Æ j Æ c Æ d
Æ e Æ f Æ g Æ h Æ i Æ k Æ l Æ n Æ o Æ p Æ a. Hamilton
circuit implies Hamilton path, so Hamilton path also exists.

n Example Does the existence of a Hamilton circuit im-
ply that a Hamilton path exists?

n Answer : YES

9.5 Matrices

A matrix is a rectangular organisation of set of elements .
The elements in a horizontal line are called rows. The ele-
ments in a vertical line are called columns. The dimension
of the matrix is determined by the number of rows and the
number of columns.

A square matrix is one in which the number of rows
equals the number of columns. If a matrix is comprised of
a single column, i.e. its dimensions are m × 1, we call it a
column vector. If a matrix is comprised of a single row, i.e.
its dimensions are 1 × n, we call it a row vector.

Transpose Matrix is obtained by switching (exchang-
ing) the rows and columns of the matrix. That is, a matrix
which has the rows of matrix A as its columns, and the col-
umns of matrix A as its rows, is called the transpose of A,
and is denoted as A’ (or AT). It follows that if the dimension
of A is m x n, then the dimension of AT is n x m.

Properties of transpose:

 (AT)T = A

 (kA)T = k(AT)

 (A + B)T = AT + BT

 (A B)T = BT AT and (A B C)T = CT BT AT

Symmetric Matrix: Any matrix A with the property that
A = AT is a symmetric matrix. Hence, all identity matrices
are also symmetric. Furthermore, notice that a necessary
condition for a matrix to be symmetric is that the matrix
must be square.
Identity (Unity) Matrix: A special symmetric matrix is the
IDENTITY MATRIX, in which only diagonal elements are
1’s and all remaining elements are zeros as shown below. It
is often referred with I.

Properties of Identity matrix:

For any matrix A, AI = A, and IA = A. (Where we use
In of suitable dimension to make the multiplication
possible).
Inverse of an Identity matrix is identity matrix itself.
That is, I–1=I

In
2 = I.

Determinant of any Identity matrix is 1.
Inverse of a matrix: B is the inverse of A if A B = B A
= I. If B is the inverse of A, then A is also the inverse
of B. Both matrices are invertible.

 A A–1 = A–1 A = I

 (A–1) –1 = A

Diagonal Matrix: Diagonal Matrix is the one in which only
diagonal elements are meaningful while others are zeros as
shown below. The identity matrix is also a type of Diagonal
Matrix.
Inverse of a diagonal matrix A, is the matrix whose diago-
nal elements are reciprocals of diagonal elements of A. Of
course, inverse of a diagonal matrix is again diagonal.
Tridiagonal Matrix: A tridiagonal matrix is a square ma-
trix in which all elements not on the following are zero –
the major diagonal, the diagonal above the major diagonal,
and the diagonal below the major diagonal.

n Example Does non-square matrices will have diagonal
entries?

n Answer : Yes, for a m × n matrix A, the diagonal entries
are a11, a22 ..., ak – 1, k –1, akk where k=min {m,n}.

Diagonally Dominant Matrix : A n × n square matrix A is
a diagonally dominant matrix if

a aii ij
j
i j

n

≥
=
π

Â
1

 for all i =1, 2, …, n and

a aii ij
j
i j

n

>
=
π

Â
1

 for at least one i,

that is, for each row, the absolute value of the diagonal
element is greater than or equal to the sum of the absolute
values of the rest of the elements of that row, and that
the inequality is strictly greater than for at least one row.
Diagonally dominant matrices are important in ensuring
convergence in iterative schemes of solving simultaneous
linear equations. For example,

[A] =

15 6 7

2 4 2

3 2 6

- -
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

is a diagonally dominant matrix as

9.26 Computer Science & Information Technology for GATE

|a11| = |15| = 15 ≥ |a12| + |a13| = |6| + |7| = 13

|a22| = |–4| = 4 ≥ |a21| + |a23| = |2| + |2| = 4

|a33| = |6| = 6 ≥ |a31| + |a32| = |3| + |2| = 5

and for at least one row, that is Rows 1 and 3 in this case, the
inequality is a strictly greater than inequality. Also,

[A] =

-
-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

15 6 9

2 4 2

3 2 5 001.

is a diagonally dominant matrix as

|a11| = |–15| = 15 ≥ |a12| + |a13| = |6| + |9| = 15

|a22| = |–4| = 4 ≥ |a21| + |a23| = |2| + |2| = 4

|a33| = |5.001| = 5.001 ≥ |a31| + |a32| = |3| + |–2| = 5

The inequalities are satisfied for all rows and it is satisfied
strictly greater than for at least one row (in this case it is
Row 3).

[A] =

25 5 1

64 8 1

144 12 1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

is not diagonally dominant as

|a22| = |8| = 8 £ |a21| + |a23| = |64| + |1| = 65

Null Matrix: A null matrix is a matrix in which every ele-
ment of the matrix equals 0. It can be of any dimension. Ad-
dition and subtraction of a null matrix leaves the original
matrix unchanged, multiplication with a null matrix results
in another null matrix.

Sparse Matrix : It contains very less number of meaningful
elements (not more than 1% of the total elements) while all
others are zeros.

Lower, Upper Triangular and Band Matrices: These ma-
trices contain meaningful elements in a particular part of
the matrix. For example, in the following, first matrix is up-
per triangular, second is lower triangular while the third
one is band matrix with meaningful elements along the
principal diagonal. It is possible that the meaningful ele-
ments can be along the other diagonal.

Lower Triangular =
d

t d

t t d

1

1 2

2 3 3

0 0

0
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Upper Triangular =
d t t

d t

d

1 1 2

2 3

3

0

0 0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

|UT| = |LT| = d1d2d3

Triangular Matrix: Inverses of triangular matrices are tri-
angular. For example, for Lower Triangular matrices:

x

y z

0 1
Ê
ËÁ

ˆ
¯̃

-

=

1
0

1
x
y

x z z

-
◊()

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x

w y

v u z

0 0

0

1
Ê

Ë

Á
Á

ˆ

¯

˜
˜

-

=

1
0 0

1
0

1

x
w

x y y

w u y v

x y z

u

y z z

-
◊()

◊ ◊- ◊
◊ ◊()

-
◊()

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

For Upper Triangular matrices:

x y

z0

1
Ê
ËÁ

ˆ
¯̃

-

=

1

0
1

x
-
◊()

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

y

x z

z

x w v

y u

z

0

0 0

1
Ê

Ë

Á
Á

ˆ

¯

˜
˜

-

=

1

0
1

0 0
1

x

w

x y

w u y v

x y z

y

u

y z

z

-
◊()

◊ ◊- ◊
◊ ◊()
-
◊()

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

Skew Symmetric Matrix: Skew symmetric matrix: AT = –A
(Note: aij = -aji fi The diagonal elements = 0). An example:

0 3 2

3 0 5

2 5 0

-
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

T

= -
-

- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

0 3 2

3 0 5

2 5 0

Idempotent Matrix: Any square matrix A is idempotent
if AA = A. Hence, the identity matrix is an example of an
idempotent matrix.

A =
0 4 0 8

0 3 0 6

. .

. .
È
ÎÍ

˘
˚̇

Addition and Subtraction of Matrices: Addition (or sub-
traction) of matrices, A + B (or A – B) requires that the
matrices A and B be of equal dimension. Each element of
matrix B is then added to (or subtracted from) the corre-
sponding element of A.

Properties:

 Additions and subtractions are performed on
each elements of the matrix.

Engineering Mathematics 9.27

 The order of the matrices must be the same (they
are conformable).

 A + B = B +A (Commutative)
 A + B + C = (A + B) + C = A + (B + C) (Associa-

tive)
 A + 0 = 0 + A = A
 A – B = A + (–B)
 (A + B)T=AT + BT

 (A – B)T=AT – BT

Matrix Multiplication
Multiplication With Scalar: To multiply a matrix by a
number (or ‘scalar’), we multiply every element in the ma-
trix by the number.

Multiplication with a Matrix:Matrix multiplication is sim-
ply an extension of vector multiplication. Let A be an m x n
matrix, and B be a j × k matrix. Then the matrix product AB

exists only if the dimensions of A and B allow for multipli-
cation, i.e. only if j = n. If the dimensions do indeed allow
for multiplication, then the matrix product, AB, will be an
m x k matrix. The product of matrices A and B, denoted
AB, is itself a matrix. We obtain AB by using the rules of
vector multiplication described below. Let AB = C. Then
c11 = the vector product of row 1 in A with column 1 in B.
Similarly, cij = the vector product of row i in A with column
j in B.

A = (m × p) B = (p × n)

C = AB = (m × n)

cij = a bik kj
k

p

=
Â

1

Matrix Multiplications properties

AB π BA (in general)

kA =Ak (for scalar multiplication)

If (XY)Z exists, then (XY)Z = X(YZ)

If A(B + C) exists, then A(B + C) = AB + AC

(AT)T = A

(A + B)T = AT + BT

(kA)T = k AT , where k is some scalar constant

(AB)T = BTAT

For A = B both matrices must be of the same size and
aij = bij

Two forms of matrix multiplication are given as: (assuming
A and B are two conformable matrices).
C = AB A premultiplies B

C = BA A postmultiplies B

In general
AB π BA

except when
Both matrices are diagonal
Scalar multiplication
When one matrix is an identity matrix

For multiplication, the DISTRIBUTIVE law holds

A(B + C) = AB + AC

As does the associative law

A(BC) = (AB)C

The CANCELLATION law does not hold
If AB = 0, then it does not follow that A or B or both are 0

A =
1 2

3 6
È
ÎÍ

˘
˚̇

B =
2 4

1 2

-
-

È
ÎÍ

˘
˚̇

The Transpose of a Product

(AB)T = BTAT

If A = AT and B = BT then (AB)T = BTAT = BA does not
necessarily = AB

If A is symmetric but B is not note that BTAB is symmetric
since (BTAB)T = BTATB = BTAB

If A = I then BTB is symmetric.

Let Ar × c be a r × c matrix. Then, both AAt and AtA are
symmetric since

(AAt)t = (At)t At = AAt and (AtA)t = At (At)t = AtA.

At is a r × r symmetric matrix while At A is a c × c sym-
metric matrix.

For instance, let

A =
1 2 1

3 0 1

-È
ÎÍ

˘
˚̇

 and At =

1

2

1

3

0

1-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

.

Then,

AAt = [col1(A) col2 (A) col3 (A)]

row A

row A

row A

t

t

t

1

2

3

()

()

()

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 [col1 (A) col2 (A) col3 (A)]

col A

col A

col A

t

t

t

1

2

3

()

()

()

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

col A col A col A col A col A col At t t
1 1 2 32 3
() () + () () + () ()

=
1

3
1 3

2

0
2 0

1

1
1 1

È

Î
Í

˘

˚
˙[]+

È

Î
Í

˘

˚
˙[]+

-È

Î
Í

˘

˚
˙ -[]

=
1 3

3 9

4 0

0 0

1 1

1 1

6 2

2 10
È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙ +

-
-

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

9.28 Computer Science & Information Technology for GATE

In addition,

AtA = row A row A row A row At t
1 1 2 2() () + () ()

=

1

2

1

1 2 1

3

0

1

3 0 1

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-[]+
È

Î

Í
Í
Í

˘

˚

˙
˙
˙
[]

=

1 2 1

2 4 2

1 2 1

9 0 3

0 0 0

3 0 1

10 2 2

2 4 2

2 2 2

-
-

- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= -
-

È

Î

ÍÍ
Í
Í

˘

˚

˙
˙
˙

Note: If A and B are symmetric matrices, then AB is not
necessarily equal to (AB) = (BA)T. That is, AB might not be
a symmetric matrix.

n Example

A =
1 2

2 3
È

Î
Í

˘

˚
˙ and B =

3 7

7 6
È

Î
Í

˘

˚
˙ .

Then,

AB =
17 19

27 32

17 27

19 32
È

Î
Í

˘

˚
˙ π =

È

Î
Í

˘

˚
˙BA .

Properties of At and At A:
(a) At A = 0 fi A = 0

tr (At A) = 0 fi A = 0
(b) PAAt = QAAt fi PA = QA

Properties of idempotent matrices:

1. K r = K for r being a positive integer.
2. I – K is idempotent.
3. If K1 and K2 are idempotent matrices and K1 K2 = K2

K1. Then, K1 K2 is idempotent.

n Example

Let Ar × c be an r × c matrix. Then,

K = A (At A)–1 A is an idempotent matrix since

KK = A (At A)–1 At A (At A)–1 A = AI (At A)–1 At = A (At

A)–1 A = K.

Note

A matrix A satisfying A2 = 0 is called nilpotent, and that for
which A2 = I could be called unipotent.

n Example

A =

1 2 5

2 4 10

1 2 5- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

fi A2 = 0 fi A is nilpotent.

B =
1 3

0 1-
È

Î
Í

˘

˚
˙ fi B2 =

1 0

0 1
È

Î
Í

˘

˚
˙ fi B is unipotent.

Note

K is a idempotent matrix. Then, K – I might not be idem-
potent.

Matrix Division: For simple numbers, division can be re-
duced to multiplication by the reciprocal of the divider: 32
divided by 4 is the same as 32 multiplied by 1/4 , or mul-
tiplied by 4–1, where 4–1 is defined by the general equality
a–1 a = 1. When working with matrices, we shall adopt the
latter idea, and therefore not use the term division at all;
instead we take the multiplication by an inverse matrix as
the equivalent of division. That is, A % B = AB–1

Trace of a Matrix :The trace of a matrix is the sum of the
diagonal elements. That is, Trace of a matrix tr(A) = a11 +
a22 + …. + ann. It is defined for square matrices only.

Useful Points

 tr(AT) = tr(A)
 tr(kA) = ktr(A)
 tr(In) = n
 If A and B are square tr(A + B) = tr(A) + tr(B)
 tr(AB) = tr(BA)
 tr(ABC) = tr(BCA) = tr(CAB)

9.5.1 Determinant of a Matrix

The Determinant of a matrix is scalar and is referred as det
A or |A|. This is also defined for square matrices. For ex-
ample, determinant of 2 × 2 and 3 × 3 matrices are given as:

A =
a a

a a
11 12

21 22

È

Î
Í

˘

˚
˙

|A| = a11 a22 – a12 a21

A =

a a a

a a a

a a a

11 12 13

21 22 23

31 32 33

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

|A| = + - +a
a a

a a
a

a a

a a

a a

a a11
22 23

32 33
12

21 23

31 33

21 22

31 32

That is, a11(a22a33–a23a32) – a12(a21a33–a23a31) + a13

(a21a32–a22a31)

Where, (a22a33-a23a32) is called the minor of a11 and is usu-
ally denoted |Aij| – in this case |A11|

A =

3 5 4

6 9 7

2 8 1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

|A| = + - +3
9 7

8 1
5

6 7

2 1
4

6 9

2 8

Engineering Mathematics 9.29

= 3(9 – 56) – 5(6 – 14) + 4(48 – 18)

= –141 + 40 + 120 = 19

The COFACTOR of the elements of aij denoted by cij is

cij = (–1)i+j|Aij|

Where Aij is the sub-matrix of size n–1 by n–1 which is
formed by removing ith row and jth column of matrix A.
Determinant is calculated by selecting any row (any value
for i) or any column (any value for j) using the following
generalised equation.

|A| = a c a cij ij
j

n

ij ij
i

n

=
Â Â=

1

Note:

Minor: Any square sub-matrix A is called a minor of
A.
 Principal minors:

a a a

a a a

a

a a a

a a a

a a a

11 12 13

21 22 23

31 32 33

11 12 13

21 22 23

31
aa a

a a a

a a a

a a a
32 33

11 12 13

21 22 23

31 32 33

 Leading principal minors:

a
a a

a a

a a a

a a a

a a a
11

11 12

21 22

11 12 13

21 22 23

31 32 33

È
ÎÍ

˘
˚̇

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Properties of Determinants

1. |AT|= |A|
2. If we multiply all the elements of a column with k,

then the determinant of the matrix gets multiplied by
k. For example:

a ka

a ka
ka

a a

a a
11 12

21 22

11 12

21 22
= =

3. If A is (n x n) then |kA| = kn |A|
4. If a square matrix has two equal rows or columns its

determinant is zero
5. If any row (or column) is the multiple of any other

row (or column) then its determinant is zero
6. The value of a determinant is unchanged if a multiple

of one row (or column) is added to another row (or
column)

7. If A is a diagonal matrix of order n then its determi-
nant is a11a22 …. ann

8. If A is a triangular matrix of order n then its determi-
nant is a11a22 …. ann

9. If B is the matrix obtained from a square matrix A by
interchanging any two rows (or columns) then det B
= -det A

10. If A and B are square matrices of the same order
then |AB| = |A| |B|

11. If A1, A2 , …. , As are square matrices then |diag(A1, A2
, …. , As)| = |A1| |A2| … |As|

12. In general |A + B| does not equal |A| + |B|
13. Determinant of Product of Matrices is prod-

uct of individual matrices determinants. That is;
|ABC|=|A||B||C|.

For covariance and correlation matrices, the determinant
is a number that is sometimes used to express the “gener-
alised variance” of the matrix. That is, covariance matrices
with small determinants denote variables that are redun-
dant or highly correlated (this is something that is used in
factor analysis, or regression analysis). Matrices with large
determinants denote variables that are independent of one
another. The determinant has several very important prop-
erties for some multivariate stats (e.g., change in R2 in mul-
tiple regression can be expressed as a ratio of determinants).
It is obvious that the computation of the determinant is a
tedious business, so only fools calculate the determinant of
a large matrix by hand. We will try to avoid that, and have
the computer do it for us.

9.5.2 Rank of a Matrix

The Rank of a matrix is equal to the highest order non-zero
determinant that can be formed from its sub-matrices

A =

4 5 2 14

3 9 6 21

8 10 7 28

1 2 9 5

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

det A = 0
4 5 2

3 9 6

8 10 7

63=

Rank of A = 3
The rank of a matrix can also be measured by the maximum
number of linearly independent columns of A. This also
equals the maximum number of linearly independent rows

 1

4

3

8

1

1

5

9

10

2

0

2

6

7

9

1

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

+ -())

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

=

14

21

28

5

0

 c1a1 + c2a2 + c3a3 + c4a4 = 0
 Definition: A set of vectors {x1, x2, …, xm} in ¬nis lin-

early independent iff
 a1x1 + a2x2 +...+ am x m = 0 ¤ a1 = a2 =...= am = 0
 Examples:

x1 = [1 0]T and x2 = [1 2]T

α1(1) + α2(1) = 0 and α1(0) + α2(2) = 0
 fi 1 = α2 = 0

9.30 Computer Science & Information Technology for GATE

 fi they are linearly independent
x1 = [1 1]T and x2 = [2 2]T

 α1(1) + α2(2) = 0 and α1(1) + α2(2) = 0
fi α1 = –2α2

fi they are linearly dependent

A full column rank matrix has the same number of linearly
independent columns (rows) equal to the number of col-
umns

A full row rank matrix has the same number of linearly
independent rows (columns) equal to the number of rows

If A does not have full row and column rank it is singular
If A does have full row and column rank it is non-sin-

gular

rank (In) = n

rank (kA) = rank (A)

rank (AT) = rank (A)

If A is (m x n) then rank (A) is £ min {m, n}

rank AB £ min{rank (A), rank (B)}

9.5.3 Inverse of a Matrix

In scalar algebra, the inverse of a number is that number
which, when multiplied by the original number, gives a
product of 1. Hence, the inverse of x is simple 1/x. or, in
slightly different notation, x–1. In matrix algebra, the in-
verse of a matrix is that matrix which, when multiplied by
the original matrix, gives an identity matrix. The inverse of
a matrix is denoted by the superscript “–1”. Hence,

A–1A = AA–1 = I

A matrix must be square to have an inverse, but not all
square matrices have an inverse. In some cases, when the
determinant of the matrix is zero, the inverse does not ex-
ist. For covariance and correlation matrices, an inverse will
always exist, provided that there are more subjects than
there are variables and that every variable has a variance
greater than 0.

If A and B are matrices of order n such that AB = BA =
In then B is called the inverse of A.

A has an inverse iff it is of full column and row rank –
non-singular.

A–1 = CT / |A|
CT is the transpose of the matrix of co-factors which is also
called adjoint matrix.

A =
È

Î
Í

˘

˚
˙

1 2

3 4

|A| = 4 – 6 = –2

c11 = 4 c12 = –3 c21 = –2 c22 = 1

A–1 =
- -

-
È

Î
Í

˘

˚
˙

1
2

4 3

2 1

T

A–1 =
2 1

3 2 1 2/ /-
È

Î
Í

˘

˚
˙

Properties of Inverses

1. I –1 = I

2. (A–1)–1 = A

3. AB = I BA = I

4. If A is non-singular then A–1 non-singular
5. If A and B non-singular (AB)–1 = B–1A–1

The inverse of a product of two matrices is the swapped prod-
uct of the individual inverse matrices. Thus: (AB)–1 = B–1

A–1. Where it is assumed that A and B are square and that
A–1 and B–1 exist. The proof is straightforward. Let AB be
given, then we have

(AB) (AB)–1 = (AB) (B–1 A–1) = A (B B–1) A–1 = A I A–1

= A A–1 = I.

Left Inverse of a (m x n) matrix A is the (n x m) matrix B
such that BA = In

Right Inverse of a (m × n) matrix A is the (n × m) matrix C
such that AC = Im

(T × k) design matrix X which has rank k < T has an infinite
number of left inverses including (XTX)–1XT

Orthogonal Matrices: Two nx1 vectors u and v are said to
be orthogonal if

ut v = vtu = 0
A set of nx1 vectors {x1,x2,…xn} is said to be orthonormal
if
 x x x xi

t
i i

t
j= =1 0, , i π j, i, j = 1, 2,, n

Definition of orthogonal matrix:
A n x n square matrix P is said to be orthogonal if

PPt \ Pt P = In×m

Positive Definite Matrices
A symmetric n × n matrix A satisfying

 x A xn
t

n n n1 1 0¥ ¥ ¥ > for all x π 0,

is referred to as a positive definite (p.d.) matrix.

Intuition:
If ax2 > 0 for all real numbers x, x π 0 then the real number
a is positive. Similarly, as x is a n × 1 vector, A is a n × n
matrix and xt Ax > 0, then the matrix A is “positive”.

Note:
A symmetric n × n matrix A satisfying

 x A xn
t

n n n1 1 0¥ ¥ ¥ ≥ for all x π 0,

is referred to as a positive semi definite (p.d.) matrix.

Engineering Mathematics 9.31

Kronecker Product

A ƒ B

A =
1 3

2 0
È

Î
Í

˘

˚
˙

B =
2 2 0

1 0 3
È

Î
Í

˘

˚
˙

A ƒ B =

1
2 2 0

1 0 3
3

2 2 0

1 0 3

2
2 2 0

1 0 3
0

2 2 0

1 0 3

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

È

Î

Í
Í
Í
Í
ÍÍ

˘

˚

˙
˙
˙
˙
˙

=

2 2 0 6 6 0

1 0 3 3 0 9

4 4 0 0 0 0

2 0 6 0 0 0

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

9.5.4 Eigen Values and Vectors

Let A be a n × n matrix. The real number l is called an eigen
value of A if there exists a nonzero vector x in Rn such that

Ax = lx.

The nonzero vector x is called an eigenvector of A associ-
ated with the eigenvalue l.

n Example
Let

A =
3 0

0 2
È

Î
Í

˘

˚
˙ .

As x =
1

0
È

Î
Í

˘

˚
˙ , then Ax =

3 0

0 2

1

0

3

0
È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙ = 3x.

Thus, x =
1

0
È

Î
Í

˘

˚
˙ is the eigenvector of A associated with the

eigenvalue l = 3.

Similarly,

As x =
0

1
È

Î
Í

˘

˚
˙ , then

Ax =
3 0

0 2

0

1

0

2
È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙ = 2x.

Thus, x =
0

1
È

Î
Í

˘

˚
˙ is the eigenvector of A associated with the

eigenvalue l = 2.

Note: Let x be the eigenvector of A associated with some
eigenvalue l. Then, cx, x Œ R, c π 0, is also the eigenvector of
A associated with the same eigenvalue l since

A(cx) = cAx = clx = l(cx).

Computation of Eigenvalues and Eigenvectors:

n Example
Let

A =
1 1

2 4-
È

Î
Í

˘

˚
˙

Let x =
x

x
1

2

È

Î
Í

˘

˚
˙ be the eigenvector associated with the eigen-

value l. Then,

Ax =
1 1

2 4
1

2-
È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

x

x
 = lx = (lI)x ¤(lI)x – Ax

= (lI – A) x = 0.
Thus,

x =
x

x
1

2

È

Î
Í

˘

˚
˙ is the nonzero (nontrivial) solution of the homo-

geneous linear system (lI – A) x = 0. ¤ lI – A is singular
¤ det (lI – A) x = 0.
Therefore,

det (lI – A) x =
l

l

- -
-

1 1

2 4 = (l – 3) (l – 2) = 0

¤ l = 2 or 3.
1. As l = 2,

 Ax = 2x = 2Ix ¤ 2Ix – 2x

 = (2I – A) x =
1 1

2 2
1

2

-
-

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

x

x
= 0.

 ¤ x =
x

x
t t R

1

2

1

1
È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙ Œ, .

 ¤
1

1
È

Î
Í

˘

˚
˙t , t π 0, t Œ R, are the eigenvecto rs associated

with l = 2

2 As l = 3,
 Ax = 3x = 3Ix ¤ 3Ix – Ax

 = (3I – A) x =
2 1

2 1
1

2

-
-

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

x

x
= 0.

 ¤ x =
x

x
r r R

1

2

1 2

1
È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙ Œ

/
, .

 ¤
1 2

1

/È

Î
Í

˘

˚
˙r , r π 0, r Œ R, are the eigenvectors associated

with l = 3

9.32 Computer Science & Information Technology for GATE

Note

In the above example, the eigenvalues of A satisfy the
following equation

det (lI – A) = 0.

After finding the eigenvalues, we can further solve the as-
sociated homogeneous system to find the eigenvectors.
Definition of the characteristic polynomial

Let An × n = aijÍÎ ˙̊ . The determinant

f (l) = det (lI – A) =

l

l

l

- - -
- - -

- - -

a a a

a a a

a a a

n

n

n n nn

11 21 1

21 22 2

1 2

,

is called the characteristic polynomial of A.

f (l) =det (lI – A) = 0,
is called the characteristic equation of A.

Theorem:
A is singular if and only if 0 is an eigen value of A.

fi: .
A is singular fi Ax = 0 has non-trivial solution fi There ex-
ists a nonzero vector x such that

Ax = 0 = 0x.

fi x is the eigenvector of A associated with eigen value 0.
‹ :

0 is an eigen value of A fi There exists a nonzero vector x
such that

Ax = 0 = 0x.

fi The homogeneous system Ax = 0 has nontrivial (non-
zero) solution.
fi A is singular.

Theorem:
The eigen values of A are the real roots of the characteristic

polynomial of A.
fi:

Let l A associated with eigenvector u.

Also, let f (l) be the characteristic polynomial of A. Then,

Au = l u fi l u – Au = l Iu – Au = (l I – A) u = 0 fi

The homogeneous system has nontrivial (nonzero) solu-
tion x fi l I – A is singular fi

det (l I – A) = f (l

fi l f (l) = 0.
‹ :

Let lr be a real root of f (l) = 0 fi f (lr) = det (lrI – A) = 0 fi
lrI – A is a singular matrix fi There exists a nonzero vector
(nontrivial solution) v such that (lrI – A) v = 0 fi Av = lr v.
fi v is the eigenvector of A associated with the eigenvalue
lr.

Procedure of finding the eigenvalues and eigenvectors of
A:

1. Solve for the real roots of the characteristic equation
f (l) = 0. These real roots l1, l2, ... are the eigenvalues
of A.

2. Solve for the homogeneous system (A – li I)x = 0 or
(li I– A) x = 0, i = 1, 2,.... . The nontrivial (nonzero)
solutions are the eigenvectors associated with the ei-
genvalues li.

Theorem:
Let u1, u2,, uk be the eigenvectors of a n × n matrix A
associated with distinct eigenvalues l1, l2,, lk, respec-
tively, k £ n. Then, u1, u2,, uk are linearly independent.

Proof:
Assume u1, u2,, uk are linearly dependent. Then, suppose
the dimension of the vector space V generated by u1, u2,,
uk is j < k
(i.e. the dimension of V u u c u c R i ki k i

i

k

= Œ =
Ï
Ì
Ô

ÓÔ

¸
˝
Ô
Ǫ̂

∫
=
Â , , , ,,1 2

1

the vector space generated by u1, u2,, uk). There exists
j linearly independent vectors of u1, u2,, uk which also
generate V. Without loss of generality, let u1, u2,, uj be
the j linearly independent vectors which generate V (i.e., u1,
u2,, uj is a basis of V). Thus,

uj + 1 = a ui i
i

j

=
Â

1

,

a¢i s are some real numbers. Then,

Auj + 1 = A a ui i
i

k

=
Â

Ê

ËÁ
ˆ

¯̃1
 = a Aui i

i

j

=
Â

1

 = a ui i i
i

j

l
=
Â

1

Also,

Auj + 1 = lj + 1 uj + 1 = l j i i
i

j

a u+
=
Â1

1

 = a ui j i
i

j

l +
=
Â 1

1

Thus,

a ui i i
i

j

l
=
Â

1

 = a ui j i
i

j

l +
=
Â 1

1

¤ a ui i j
i

j

il l-()+
=
Â 1

1

 = 0

Since u1, u2,, uk are linearly independent,
a1 (lj+1 – l1) = a2 (lj+1 – l2) = aj (lj+1 – l1) = 0.

Furthermore,
l1, l2,, lj are distinct, lj+1 – l1 π 0, lj+1 – l2 π 0, ..., lj+1
– l1 π 0

fi a1 = a2 = = aj = 0 fi uj+1 – a ui i
i

j

=
Â

1

 = 0.

It is contradictory.

Corollary:
If a n × n matrix A has n distinct eigenvalues, then A has n
linearly independent eigenvectors.

Engineering Mathematics 9.33

Properties of Eigenvalues and Eissssgenvectors:

(a) Let u be the eigenvector of An×n associated with the
eigen value l. Then, the eigen value of ak Ak + ak–1 Ak–1

+ + a1 A + a0I, associated with the eigenvector u is
ak lk + ak–1 lk–1 + + a1 l + a0, where ak , ak–1,, a1,
a0 are real numbers and k is a positive integer.

Proof:

 (ak Ak + ak–1 Ak–1 + + a1 A + a0I)

u = ak Ak u + ak–1 Ak–1 u ++ a1 Au + a0 u

= ak lk u + ak–1 lk–1 u ++ a1 lu + a0 u

= (ak lk + ak–1 lk–1 u ++ a1 l + a0) u

since

Aju = Aj–1 (Au) = Aj–1 lu = lAj–1 u = lAj–2 (Au)

= l2 Aj–2 u = = lj–1 Au = lj u

n Example

A =
1 4

9 1
È

Î
Í

˘

˚
˙ ,

what is the eigen values of 2A100 + 4A – 12I.

n Solution The eigenvalues of A are –5 and 7. Thus, the
eigenvalues of A are

2(–5)100 + 4(–5) – 12 = 2.5100 – 32
and

2(7)100 + 4(7) – 12 = 2.7100 + 16

n Example Let l be the eigenvalue of A. Then, we denote

eA = I A
A A A

n

A

i

n
i

i+ + + + + + = =

μ

Â2 3
0

2 3! !
...

!
...

!

Then, eA has eigenvalue

eA = I
n i

n
i

i+ + + + + + = =

μ

Â
l

l l l
l2 3

0

2 3! !
...

!
...

!
.

Note:

Let u be the eigenvector of A associated with the eigenvalue
l. Then, u is the eigenvector of A–1associated with the eigen

value l
l

- =1 1
.

Proof:

A–1 u = A u A Au I u u- -() = () = =1 11 1 1 1
l

l l l l
.

Therefore, u is the eigenvector of A–1 associated with the

eigenvalue l
l

- =1 1
.

(b) Let l1, l2, , ln be the eigen values of A (l1, l2, ,
ln are not necessary to be distinct). Then,

 li
i

n

tr A
=
Â = ()

1

 and li
i

n

=
’

1

 = det (A) = |A|.

Proof:

f (l) = det (lI – A) = (l – l1) (l – l2) ... (l – ln)

Thus,

f (0) = det (– A) = (–1)n det (A) = (0– l1) (0–l2)
... (0 – ln)

= (–1)n l1 l2 ... ln = -()
=

’1
1

n
i

i

n

l

Therefore,

det (A) = li
i

n

=
’

1

.

Also, by diagonal expansion on the following determinant

f (l) =

- + - -
- - + -

- - - +

a a a

a a a

a a a

n

n

n n nn

11 12 1

21 22 2

1 2

l

l

l

= l l ln
ii

i

n
n n

i
i

n

a-
Ê

ËÁ
ˆ

¯̃
+ + -()

=

+

=
Â ’

1

1

1

1

and by the expansion of f (l) = (l – l1) (l – l2) ... (l – ln)

= l l l ln
i

i

n
n n

i
i

n

-
Ê

ËÁ
ˆ

¯̃
+ + -()

=

+

=
Â ’

1

1

1

1

therefore,

li
i

n

=
Â

1

 = aii
i

n

=
Â

1

 = tr (A).

Some important points about eigenvectors and eigenvalues
are:

1. The eigenvectors are scaled so that A is an orthogo-
nal matrix. Thus, At = A–1, and AAt = I. Thus, each
eigenvector is said to be orthogonal to all the other
eigenvectors.

2. The eigenvalues will all be greater than 0.0, providing
that the four conditions outlined above for C are true.

3. For a covariance matrix, the sum of the diagonal ele-
ments of the covariance matrix equals the sum of the
eigenvalues, or in math terms, tr(C) = tr(D). For a
correlation matrix, all the eigenvalues sum to n, the
number of variables. Furthermore, in case you have a
burning passion to know about it, the determinant of
C equals the product of the eigenvalues of C.

4. The decomposition of a matrix into its eigenvalues
and eigenvectors is a mathematical/geometric decom-

9.34 Computer Science & Information Technology for GATE

position. The decomposition literally rearranges the
dimensions in an n dimensional space (n being the
number of variables) in such a way that the axis (e.g.,
North-South, East-West) are all perpendicular. This
rearrangement may but is not guaranteed to uncover
an important psychological construct or even to have
a psychologically meaningful interpretation.

5. An eigenvalue tells us the proportion of total vari-
ability in a matrix associated with its corresponding
eigenvector. Consequently, the eigenvector that cor-
responds to the highest eigenvalue tells us the dimen-
sion (axis) that generates the maximum amount of
individual variability in the variables. The next eigen-
vector is a dimension perpendicular to the first that
accounts for the second largest amount of variability,
and so on.

9.5.5 Diagonalisation of a Matrix

A matrix A is diagonalisable if there exists a nonsingular
matrix P and a diagonal matrix D such that

D = P – 1 AP.

n Example
Let

A =
- -È

Î
Í

˘

˚
˙

4 6

3 5
.

Then,

A =
2 0

0 1-
È

Î
Í

˘

˚
˙

=
- -È

Î
Í

˘

˚
˙

- -È

Î
Í

˘

˚
˙

- -È

Î
Í

˘

˚
˙

-1 2

1 1

4 6

3 5

1 2

1 1

1

 = P–1 AP,

where

D =
2 0

0 1

1 2

1 1-
È
ÎÍ

˘
˚̇

=
- -È

ÎÍ
˘
˚̇

, P .

Theorem:
An n × n matrix A is diagonalisable if and only if it has n
linearly independent eigenvector.

Proof:
fi :
A is diagonalisable. Then, there exists a nonsingular matrix
P and a diagonal matrix

D =

l

l

l

1

2

0 0

0 0

0 0

 n

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

,

such that

D = P–1 AP ¤ AP = PD

¤ A = [col1 (P) col2 (P) ... coln (P)]

= [col1 (P) ... coln(P)]

l

l

l

1

2

0 0

0 0

0 0

 n

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

.

Then,
Acolj (P) = lj colj (P), j = 1, 2,, n.

That is,
col1, col2 (P),, coln(P)

are eigenvectors associated with the eigenvalues l1, l2,,
ln.
Since P is nonsingular, thus col1 (P) col2 (P) ... coln (P) are
linearly independent.

‹ :
Let x1, x2,, xn be n linearly independent eigenvectors of A
associated with the eigenvalues l1, l2,, ln. That is,

Axj = lj, xj, j = 1, 2,, n.

Thus, let

P = [x1 x2 xn] (i.e., colj (P) = xj)

and

D =

l

l

l

1

2

0 0

0 0

0 0

 n

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

.

Since Axj = lj xj,

AP = A[x1 x2 xn]

= x x xn

n

1 2

1

2

0 0

0 0

0 0

...ÈÎ ˘̊

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

l

l

l

= PD.

Thus,
P–1 AP = P–1 AP = D,

P–1 exists because x1 x2 xn are linearly independent and
thus P is nonsingular.

Important result:
An n × n matrix A is diagonalisable if all the roots of its

characteristic equation are real and distinct.

n Example
Let

A =
- -È

Î
Í

˘

˚
˙

4 6

3 5 .

Find the nonsingular matrix P and the diagonal matrix D
such that

D = P–1 AP

and find An, n is any positive integer.

Engineering Mathematics 9.35

n Solution
We need to find the eigenvalues and eigenvectors of A first.
The characteristic equation of A is

det (lI – A) =
l

l

+
- -

4 6

3 5
 = (l + 1) (l – 2) = 0.

fi l = –1 or 2.
By the above important result, A is diagonalisable. Then,

1. As l = 2,

 Ax = 2x ¤ (2I – A) x = 0 ¤ x = r r R
-È

Î
Í

˘

˚
˙ Œ

1

1
, .

2. As l = –1,

 Ax = –x ¤ (–I – A) x = 0 ¤ x = t
-È

Î
Í

˘

˚
˙

2

1 , t Œ R.

Thus,
-È

Î
Í

˘

˚
˙

1

1 and
-È

Î
Í

˘

˚
˙

2

1

are two linearly independent eigenvectors of A.

Let

P =
- -È

Î
Í

˘

˚
˙

1 2

1 1 and
2 0

0 1-
È

Î
Í

˘

˚
˙ .

Then, by the above theorem,
D = P–1 AP.

To find An,

Dn =
2 0

0 1

n

n-()

È

Î
Í
Í

˘

˚
˙
˙

 = (P–1 AP) (P–1 AP) ... (P–1

AP) = P–1 AnP

n times
Multiplied by P and P–1 on the both sides,

PDnP–1 = PP–1 An PP–1

= An =
- -È

Î
Í

˘

˚
˙ -()

È

Î
Í
Í

˘

˚
˙
˙

- -È

Î
Í

˘

˚
˙

-1 2

1 1

2 0

0 1

1 2

1 1

1n

n

=
- + ◊ -()[] - + ◊ -()[]

+ -() + -()

È

Î
Í
Í

+ + +

+ + +

2 2 1 2 2 1

2 1 2 1

1 1 1

1 1 1

n n n n

n n n n

˘̆

˚
˙
˙

Note:
For any n × n diagonalisable matrix A, D= P–1 AP then

Ak = PDk P–1, k = 1, 2,

where

Dk =

l

l

l

1

2

0 0

0 0

0 0

k

k

n
k

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

.

n Example

Is A =
5 3

3 1

-
-

È

Î
Í

˘

˚
˙ diagonalisable?

n Solution:

det (lI – A) =
l

l

-
- +

5 3

3 1
 = (l – 2)2 = 0.

Then, l = 2, 2.

As l = 2,

(2I – A) x = 0 ¤ x = t t R
1

1
È

Î
Í

˘

˚
˙ Œ, .

Therefore, all the eigenvectors are spanned by
1

1
È

Î
Í

˘

˚
˙ . There

does not exist two linearly independent eigenvectors. By the
previous theorem, A is not diagonalisable.

Note:
An n × n matrix may fail to be diagonalisable since

Not all roots of its characteristic equation are real
numbers.
It does not have n linearly independent eigenvectors.

Note:
The set Sj consisting of both all eigenvectors of an n × n
matrix A associated with eigenvalue lj and zero vector 0 is a
subspace of Rn. Sj is called the eigenspace associated with lj.

(b) Diagonalisation of symmetric matrix

Theorem:
If A is an n × n symmetric matrix, then the eigenvectors of
A associated with distinct eigenvalues are orthogonal.

Proof:

Let x1 =

a

a

an

1

2

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 and x2 =

b

b

bn

1

2

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 be eigenvectors of A associated

with distinct eigenvalues l1 and l2, respectively, i.e.,

Ax1 = l1 x1 and Ax2 = l2 x2.

Thus,

x Axt
1 2 = x Ax x x x xt t t

1 2 1 2 2 2 1 2() = =l l

and
x Ax x A x x A x Ax xt t t t t t

1 2 1 2 1 2 1 2= = () = ()

= l l1 1 2 1 1 2x x x xt t() =
Therefore,

x Ax x x x xt t t
1 2 2 1 2 1 1 2= =l l .

Since l1 = l2, x t
1 x2 = 0.

9.36 Computer Science & Information Technology for GATE

n Example
Let

A =

0 0 2

0 2 0

2 0 3

-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

.

A is a symmetric matrix. The characteristic equation is

det (lI – A) =

l

l

l

0 2

0 2 0

2 0 3

+
-

= (l + 2) (l – 4) (l + 1) = 0.

The eigenvalues of A are –2, 4, –1. The eigenvectors associ-
ated with these eigenvalues are

x1 =

0

1

0

2
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=()l , x2

1

0

2

4=
-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=()l , x3 =

2

0

1

1
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= -()l .

Thus,
x1, x2, x3 are orthogonal.

Important Result:

If A is an n × n symmetric matrix, then there exists an or-
thogonal matrix P such that

D = P–1 AP = Pt AP,

where col1 (P), col2 (P) , ..., coln (P) are n linearly indepen-
dent eigenvectors of A and the diagonal elements of D are
the eigenvalues of A associated with these eigenvectors.

n Example

Let

A =

0 2 2

2 0 2

2 2 0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

.

Find an orthogonal matrix P and a diagonal matrix D such
that D = Pt AP.
n Solution
We need to find the orthonormal eigenvectors of A and the
associated eigenvalues first. The characteristic equation is

f(l) = det (lI – A) =

l

l

l

- -
- -
- -

2 2

2 2

2 2

= (l + 2)2 (l – 4) = 0

Thus, l = –2, –2, 4.
1. As l = –2, solve for the homogeneous system

 (–2I – A) x = 0.

 The eigenvectors are

 t s

-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+
-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1

1

0

1

0

1

, t, s ŒR, t π 0 or s π 0

-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1

1

0

and

-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1

0

1

 are two eigenvectors of A. However, the

two eigenvectors are not orthogonal. We can obtain two
orthonormal eigenvectors via Gram-Schmidt process. The
orthogonal eigenvectors are

v v1 1

1

1

0

* = =
-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

v v
v v

v v
v2 2

2 1

1 1
1

1 2

1 2

1

*
*

* *
*= -

◊
◊

=
-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

/

/

Standardising these two eigenvectors results in

w1=
v

v
1

1

1 2

1 2

0

*

* =

-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

/

/

w2=
v

v
2

2

1 6

1 6

2 6

*

* =

-È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

/

/

/

2. As l = 4, solve for the homogeneous system
 (4I – A) x = 0.
 The eigenvectors are

 r

1

1

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

, r ŒR, r π 0.

 fi v3

1

1

1

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 is an eigenvector of A. Standardising the

eigenvector results in w3 =
v

v
3

3

1 3

1 3

1 3

=

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

/

/

/

.

 Thus,

 P = [w1 w2 w3] =

- -

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

1 2 1 6 1 3

1 2 1 6 1 3

0 2 6 1 3

/ / /

/ / /

/ /

Engineering Mathematics 9.37

 D =

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

2 0 0

0 2 0

0 0 4

 and D = Pt AP.

Note

For a set of vectors v1, v2,...., vn we can find a set of orthogo-

nal vectors v v vn1 2
* * *, , ... , via Gram-Schmidt process:

 v v1 1
* =

 v v
v v

v v
v2 2

2 1

1 1
1

*
*

* *
*= -

◊
◊

v v

v v

v v
v

v v

v v
vi i

i i
i

i i

i i
i1 1

1

1 1
1

2

2 2
2

* -
*

-
*

-
* -

* -
*

-
*

-
* -

*= -
◊
◊

-
◊
◊

- --
◊
◊

-
◊
◊

*

* *
*

*

* *
*v v

v v
v

v v

v v
vi n2

2 2
2

1

1 1
1

 v v
v v

v v
v

v v

v v
vn n

n n

n n
n

n n

n n
n

* -
*

-
*

-
* -

* -
*

-
*

-
* -

*= -
◊
◊

-
◊
◊

-

1

1 1
1

2

2 2
2

 --
◊
◊

-
◊
◊

*

* *
*

*

* *
*v v

v v
v

v v

v v
vn n2

2 2
2

1

1 1
1

Diagonal form and Jordan form: A square matrix A
can be transformed into a diagonal or block diagonal
form:

 Ă Q A Q= -1 where Q q q q
n

= ÈÎ ˘̊1 2
… and q q q

n1 2
…

are eigenvectors of A.

 Distinct real λs: All real diagonal elements, every
element corresponds to a l.

 Distinct complex s: All real/complex elements,
every element corresponds to a l. Additional
transform can remove the imaginary parts but
the transformed matrix becomes block diagonal
(modal form).

 Repeated s: If the s are not all distinct, the re-
sulting matrix may comprise upper triangular
blocks along the diagonal (Jordan form).

Norm of a matrix : magnification capability Am×n

 ||A||1 = Largest column absolute sum

 ||A||2 = Largest singular value

 ||A||• = Largest row absolute sum

 Matlab usages: norm (a, 1), norm (a, 2) = norm
(a), and norm (a, inf)

Singular-value Decomposition (SVD):

 Eigenvalues/vectors are defined for square matri-
ces only.

 Non-square matrices are important in linear sys-
tem analysis (controllability/observability)

 Foe an m × n matrix H, we can define a symmetric
matrix (n × n) M = HT H and the eigenvalues of M
are real and nonnegative (positive semi definite).

 The eigenvalues of M are called the singular values
of H.

 SVD: H can be decomposed into a product of 3
matrices.

H = R S QT

R RT = RT R = Im Q QT = QT Q = In

S is an m n matrix with the singular values of
H on the diagonal.

 Applications of SVD:

 Norm of a matrix: ||A||2 = s1 (Largest singular
value)

 Rank of a matrix: equal to the number of non-
zero singular values.

 Condition number = smax / smin: Indicates how
close a matrix is to rank deficiency (How much
numerical error is likely to be introduced by
computations involving the matrix). Large con-
dition numbers imply ill-conditioned systems
and small (close to 1) condition numbers imply
well-conditioned systems.

Lyapunov theorem

 The Lyapunov theorem provides an alternate
means to check the asymptotic stability of a sys-
tem.

 Lyapunov equation:

 A(M) = A M + M B = C

 A(M) = h M, where h’s are the eigenvalues of A
and they represent all possible sums of the eigen-
values of A and B.

 A symmetric matrix M is said to be positive defi-
nite (denoted by M > 0) if xTM x > 0 for nonzero
x.

 If M > 0, then xTM x = 0 iff x = 0.

 M > 0 iff any one of the following conditions
holds:

Every eigenvalue of M is positive.

All leading principal minors of M are positive.
 There exists an n n nonsingular matrix such

that M = NTN.

9.38 Computer Science & Information Technology for GATE

9.5.6 Linear Independence

Spanning Sets
Definition of linear combination:
Let v1, v2, ..., vk be vectors in a real vector space V. A vector v
in V is called a linear combination of v1, v2, ..., vk if

v = c1 v1 + c2 v2 + ... + ck vk,

where c1 c2,...,ck.

n Example
Let

e1 =

1

0

0

0

1

0

0

0

1

1

2

3
2 3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

, , ,e e v

˘̆

˚

˙
˙
˙

Since

v =

1

2

3

1

1

0

0

2

0

1

0

3

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= ◊
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+ ◊
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+ ◊
È

Î

Í
Í
Í

˘

˚

˙̇
˙
˙

 = 1e1 + 2e2 + 3e3

v is a linear combination of e1, e2, e3 .

n Example
Let

v1 =
0 2

1 0
È

Î
Í

˘

˚
˙ = v2 =

0 8

2 1
È

Î
Í

˘

˚
˙ ,

v3 =
-È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

2 0

1 3

0 8

2 1
, v

be vectors in the vector space consisting of all 2 × 2 matri-
ces. Then,

v =
0 8

2 1
È

Î
Í

˘

˚
˙

= 1
0 2

1 0
2

1 3

1 2
1

2 0

1 3
◊
È

Î
Í

˘

˚
˙ + ◊

-È

Î
Í

˘

˚
˙ + -()◊

-È

Î
Í

˘

˚
˙ = v1 + 2v2– v3.

That is, v is a linear combination of v1, v2, v3 .

n Example
For linear system

Ax =

1 0 1

2 1 0

3 2 1

1

1

1

1

2

3

-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
x

x

x

b

fi d =

2

3

1

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 is a solution for the above linear sys-

tem. Thus,

A

2

3

1

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 =

1 0 1

2 1 0

3 2 1

2

3

1

-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= 2

1

2

3

3

0

1

2

1

1

0

1

◊
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

- ◊
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+
-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= 2 col1 (A) – 3 col2 (A) + col1 (A) =

1

1

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 = b

That is, b is a linear combination of the column vectors of
A,

col1 (A), col2 (A) + col3 (A).

Note:
For a linear system Am×n x n×1 = bm×1, the linear system has
solution or solutions ¤ b is a linear combination of the col-
umn vectors of A,

col1 (A), col2 (A),, col3 (A).

For example, if c =

c

c

cn

1

2

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 is a solution of Am×n x n×1 = bm×1,

then c1 col1 (A) + c2 col2 (A) + ... + cn coln (A) = b

On the other hand, the linear system has no solution ¤ b is
not a linear combination of the column vectors of A

n Example

Is the vector v =

4

5

5

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 a linear combination of the vectors

v1 =

1

2

3

1

1

4

3

3

2
2 3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

, ,v v .

n Solution

We need to find the constants c1, c2, c3 such that

v =

4

5

5

1

2

3

1

1

4

3

3

2
1 2 3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+
-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+
È

Î

Í
Í
Í

˘
c c c

˚̊

˙
˙
˙

= c1 v1 + c2 v2 + c3 v3

¤ we need to solve for the linear system

A

c

c

c

1

2

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 =

1 1 3

2 1 3

3 4 2

1

2

3

-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

c

c

c

 =

4

5

5

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

.

The solutions are

c1 = 2t + 3, c2 = t –1, c3 = t, t Œ R.

Thus,

v = (–2t + 3) v1 + (t – 1) v2 + tv3, t Œ R.

v is a linear combination of v1, v2, v3 with infinite number
of expressions.

Engineering Mathematics 9.39

n Example

Is the vector v =

3

4

6

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 a linear combination of the vectors

v1 =

1

2

3

1

1

2

1

4

5
2 3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
-
-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

, ,v v .

n Solution
We need to find the constants c1, c2, c3 such that

v =

3

4

6

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 = c c c1 2 3

1

2

3

1

1

2

1

4

5

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+
-
-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= c1 v1 + c2 v2 + c3 v3

¤ we need to solve for the linear system

A = A

c

c

c

1

2

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 =

1 1 1

2 1 4

3 2 5

1

2

3

-
-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

c

c

c

 =

3

4

6

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

.

¤ The linear system has no solution.
¤ v is not a linear combination of v1, v2, v3

Note:

Let v1, v2,...., vm and v be vectors in Rn and let A be the ma-
trix with column vectors colj (A) = vj , j = 1, 2,, m . Thus,
Ax = v has solution or solutions ¤ v is a linear combination
of v1, v2,...., vm.
Ax = v has no solution ¤ v is not a linear combination of
v1, v2,...., vm.

Definition of spanning set:

Let S = {v1, v2,...., vk} be a set of vectors in a real vector space
V. Then, the span of S, denoted by span (S), is the set con-
sisting of all the vectors that are linear combinations of v1,
v2,...., vk. That is,

span (S) = {c1 v1 + c2 v2 + ... + ck vk| c1, c2, ..., ck ŒR}.

If span (S) = V, it is said that V is spanned by S or S spans V.

n Example
Let

e1 =

1

0

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

, e2 =

0

1

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

, e3 =

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 and S = {e1, e2, e3}

Then,

span (S) = c e c e c e

c

c

c

c c c R1 1 2 2 3 3

1

2

3

1 2 3+ + =
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Œ

Ï

Ì
Ô

Ó
Ô

¸

˝
Ô

˛
Ô

, = R3.

n Example

v1 =

1

2

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

, v2 =

1

0

2

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

, v3 =

1

1

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 and S = {v1, v2, v3}.

Does span (S) = R3?

n Solution

span (S) = R3 ¤ For any vector v =

a

b

c

R

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Œ 3 , there exist real

numbers c1, c2, c3 such that

v =

a

b

c

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 = c c c1 2 3

1

2

1

1

0

2

1

1

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= c1 v1 + c2 v2 + c3 v3

¤ we need to solve for the linear system

1 1 1

2 0 1

1 2 0

1

2

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

c

c

c

=

a

b

c

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

.

The solution is

c1 =
- + +2 2

3
a b c

, c2 =
a b c- +

3
,

c3 =
4 2

3
a b c- -

.

Thus,

v =
- + +Ê

Ë
ˆ
¯ +

+ +Ê
Ë

ˆ
¯ +

- -Ê
Ë

ˆ
¯

2 2
3 3

4 2
31 2 3

a b c
v

a b c
v

a b c
v .

That is, every vector in R3 can be a linear combination of
v1, v2, v3 .

Linear Independence
Motivation:

Let S = {v1, v2,...., vk} and span (S) = W. Is it possible to find
a smaller (or even smallest) set, for example, S = {v1, v2,....,
vk–1}, such that

span (S) = W = span (S*)?
To answer this question, we need to introduce the concept
of linear independence and linear dependence.
Definition of linear dependence and linear indepen-
dence:
The vectors v1, v2,...., vk in a vector space V are said to lin-
early dependent if there exist constants, c1, c2,...., ck, not all
0, such that

c1 v1 + c2 v2 + ... + ck vk = 0

v1, v2,...., vk are linearly independent if
c1 v1 + c2 v2 + ... + ck vk = 0 fi c1 = c2 = ... + ck = 0.

9.40 Computer Science & Information Technology for GATE

The procedure to determine if v1, v2,...., vk are linearly de-
pendent or linearly independent:

1. Form equation c1v1 + c2v2 + ... + ckvk = 0, which lead to
a homogeneous system.

2. If the homogeneous system has only the trivial solu-
tion, then the given vectors are linearly independent;
if it has a nontrivial solution, then the vectors are lin-
early dependent.

n Example

e1 =

1

0

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

, e2 =

0

1

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

, e3 =

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 and S = {e1, e2, e3}

Are e1, e2 and e3 linearly independent?

n Solution
c1 e1 + c2 e2 + ... + c3 e3

= c c c1 2 3

1

0

0

0

1

0

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 =

1 0 0

0 1 0

0 0 1

1

2

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

c

c

c

 = 0

fi

c

c

c

1

2

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 =

0

0

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

.

Therefore, e1 e2 and e3 are linearly independent.

n Example

v1 =

1

2

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

, v2 =

-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

2

1

1

, v3 =

8

6

10

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

. Are v1, v2 and

v3 linearly independent?

n Solution
c1 v1 + c2 v2 + ... + c3 v3

= c c c1 2 3

1

2

3

2

1

1

8

6

10

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+
-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 =

1 2 8

2 1 6

3 1 10

1

2

3

-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

c

c

c

 =0

fi

c

c

c

1

2

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 = t

4

2

1

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

, t Œ R.

Therefore, v1 v2 and v3 are linearly dependent.

n Example
Determine whether the following set of vectors in the vec-
tor space consisting of all 2 × 2 matrices is linearly indepen-
dent or linearly dependent.

S = {v1, v2, v3}
2 1

0 1

3 0

2 1

1 0

2 0
È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

Ï
Ì
ÓÔ

¸
˝
Ǫ̂

, , .

n Solution:

c1 v1 + c2 v2 + ... + c3 v3

= c c c1 2 3

2 1

0 1

3 0

2 1

1 0

2 0
È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙ =

0 0

0 0
È

Î
Í

˘

˚
˙ .

Thus,
2 3 0

0

2 2 0

0

1 2 3

1

2 3

1 2

c c c

c

c c

c c

+ + =
=

+ =
+ =

¤ c c c1 2 3

2

1

0

1

3

0

2

1

1

0

2

0

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 =

0

0

0

0

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

.

The homogeneous system is

2 3 1

1 0 0

0 2 2

1 1 0

1

2

3

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

c

c

c

=

0

0

0

0

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

.

The associated homogeneous system has only the trivial
solution

c

c

c

1

2

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

0

0

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

.

Therefore, v1 v2 and v3 are linearly independent.

Important result:
The nonzero vectors v1,v2,...., vk in a vector space V are lin-
early dependent if and only if one of the vectors vj, j ≥ 2, is
a linear combination of the preceding vectors v1,v2,...., vj–1.

Note

Every set of vectors containing the zero vector is linearly
dependent. That is, v1,v2,...., vk are k vectors in any vector
space and vi is the zero vector, then v1,v2,...., vk are linearly
dependent.

9.5.7 Zero-One Matrices

e.g., A =

1 0 1

0 0 1

1 1 1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

a zero-one matrix

Boolean operations on zero-one matrices

⁄” join A⁄B = [aij ⁄ bij] A: m n, B: m n

Ÿ” meet AŸB = [aij Ÿ bij] A: m n, B: m n

 ” Boolean product A B = V
q

k

iq qia b
=

È
ÎÍ

˘
˚̇1

()

A: m k, B: k n
[r]” Boolean power A[r] = A A A … A

r times A (r–1 ’s)

Engineering Mathematics 9.41

Algorithm : The Boolean Product
procedure Boolean product (A, B: zero-one matrices)
for i := 1 to m

for j := 1 to n

begin

cij := 0

for q := 1 to k

cij := cij ⁄ (aiq Ÿ bqj)

end

{C = [cij] is the Boolean product of A and B}

9.6 Numerical Methods

9.6.1 Linear Algebraic Equations

We will be given coefficients a11, …and b1, b2,…. Then
we are supposed to calculate x1, x2, such that the following
equalities are satisfied.

a11x1 + a12x2 + a13x3 + … + a1nxn = b1

a21x1 + a22x2 + a23x3 + … + a2nxn = b2

an1x1 + an2x2 + an3x3 + … + anxn = bn

The same thing in matrix form can be represented as:

a a a a

a a a a

a a a a

a a a a

n

n

n

n n n nn

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

È

Î

Í
Í
Í
ÍÍ
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

Ï

Ì

Ô
ÔÔ

Ó

Ô
Ô
Ô

¸

˝

Ô
ÔÔ

˛

Ô
Ô
Ô

x

x

x

xn

1

2

3

 =

b

b

b

bn

1

2

3

Ï

Ì

Ô
ÔÔ

Ó

Ô
Ô
Ô

¸

˝

Ô
ÔÔ

˛

Ô
Ô
Ô

 n x n n x 1 n x 1

or simply [A]{x} = {b}

LU Decomposition
In essence mathematically LU decomposition is explained
as:

[A]

[U]

{x} = {b}

[L]

[L] {d} = {b}

[U] {x} = {d}

{x}

(a) decomposition (A)
fi [L] [U]

(b) forward substitution
 [L | U] fi {d}

(c) backward substitution

U is just the upper triangular matrix from Gaussian elimi-
nation

[A | b] Æ [U | b¢]
[L] has one’s on the diagonal (i.e., it is a “unit lower trian-
gular matrix” and therefore can be denoted [L1]), and ele-
ments below diagonal are just the factors used to scale rows
when doing Gaussian elimination, e.g., i1 = ai1/a11 for i =
2, 3, …, n

[A] =

a a a a

a a a a

a a a a

a a a a

n

n

n

n n n nn

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

È

ÎÎ

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

=

1 0 0 0

1 0 0

1 0

1

21

31 32

1 2 3

11 1

 n n n

u uÈ

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

22 13 1

22 23 2

33 3

0

0 0

0 0 0

u u

u u u

u u

u

n

n

n

nn

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

then [L1] {d} = {b} fi [U] {x} = {d} in which {d} is
synonymous with {b¢}

9.6.2 Root Finding Methods

The following methods are used to find root of an algebraic
function f.

9.6.2.1 Bisection Method

Given lower and upper bounds, xl and xu which bracket the
root:

f(x1) f(xu) < 0

(1) Estimate the Root by midpoint: xr = x xu1

2
+

(2) Revise the bracket:

 f(xl) f(xr) < 0, xr –> xu,

 f(x1) f(xr) > 0, xr –> xl
(3) Repeat steps 1-2 until:

(a) | f(xr) | £ d

(b) ea < es , with ea

 =
x x

x
r
new

r
old

r
new

-
¥100%

(c) | xu – x1 | £ d

(d) maximum # of iterations is reached

Figure 9.4 illustrates the adjustment of root in the given do-
main.

9.42 Computer Science & Information Technology for GATE

Advantages:

1. Simple
2. Good estimate of maximum error

 E
x xu

max £
-1

2
3. Convergence guaranteed

 Ei
max
+1 £ 0.5 0 5. maxEi

Disadvantages:

1. Slow
2. Requires initial interval around root:

Use graph of function,
Incremental search, or

Trial & error

9.6.2.2 False-position Method

This is similar to bisection; but uses linear interpolation to
approximate root xr

(1) xr = x
f x x x

f x f x
u

u u

u

-
() -()
() - ()

1

1

(2) Revise the bracket:

 f(x1) f(xr) < 0, xr –> xu,
 f(x1) f(xr) > 0, xr –> x1

(3) Repeat steps 1-2 until:
(a) | f(xr) | £ d

(b) ea < es , with ea

 =
x x

x
r
new

r
old

r
new

-
¥100%

(c) |xu – x1 | £ d

(d) maximum # of iterations is reached

Figure 9.5 illustrates the adjustment of root in the given
domain.

Advantages

1. Simple
2. Brackets root
3. Gives maximum error

Disadvantages

1. Can be very slow
2. Like Bisection, needs an initial interval around the

root

xr = > x1
f(x)r

(x)u

xr =
x1 + xu

2

()x1

x

f (x)u

f()x1 f() > 0xr

f x()

f(x)1

f x()

()x1

f x1()

(x)u(x)r

f (x)u

x

f (x)r

Figure 9.4

f x()u ()x x1 - u

f x()

xr = xu
f x()1 - f ()xu

()x1

f x()1

f x()r

()xu x

s

f x()u

x1 = xr

f x f()1 () > 0xr

f x()

x1

(x)r

f ()xr

f ()x1

()xu

x

f ()xu

f x()

Figure 9.5

Engineering Mathematics 9.43

9.6.2.3 Newton-Raphson Method

Here, we solve for xr (root) to yield next guess xi+1

xr ª x i+1 = x
f x

f x
i

i

i

-
()
¢ ()

Newton-Raphson iteration:

x i+1 = x
f x

f x
i

i

i

-
()
¢ ()

Æ xi
new = xi+1

old

This iteration is repeated until:

1. f(x) ª 0, i.e., | f(xi+1) | £ k

2. ea =
x x

x
i i

i
s

+

+

-
¥ £1

1
100% e

3. Max. # iterations is reached

Figure 9.6 illustrates the root adjustment in this method.

9.6.2.4 Secant Method

Secant method solution: Approx. f¢(x) with backward
FDD:

f¢(xi) =
f x f x

x x
i i

i i

-

-

() - ()
-

1

1

Substitute this into the Newton-Raphson equation: xi+1 =

= x
f x

f x
i

i

i

-
()
¢ ()

 to obtain the iterative expression:

 xi+1 = x
f x x x

f x f x
i

i i i

i i

-
() -()
() - ()

-

-

1

1

(1) Requires two initial estimates:
 xi-1 and xi These do NOT have to bracket root !

(2) Maintains a strict sequence:

 xi+1 = x1 – x
f x x x

f x f x
i

i i i

i i

-
() -()
() - ()

-

-

1

1

Repeated until:

a. | f(xi+1) | £ k with k = small number

b. ea =
x x

x
i i

i

-

+

-1

1
 × 100% £ es

c. Max. # iterations reached (note no d)

f x() Tangent /slope = ()w f x¢ i

f x()i - 0
f x¢()1

xi - xi + 1

f x()i

f x()i + 1

xi + 1 xi x

x = xi i + 1

f x()i
xi + 1 = xi -

f x¢()i

f x()

f x()i - 0
f x¢()i

xi - xi + 1

f x()i

f x()i + 1

()xi x

xi + 1

Figure 9.6

f x()

f x x x()()i i i-1 -

f x¢()1

xi+1

f x()i - 1 - f ()xi

xi - 1 - x1

f i()x

f ()xi - 1

xi xi -1

f x f x() ()i i-1 -
x xi i+1 =

x xi i= +1

x

xi +1 xi xi -1

x

f x(i)
f x 1()i -

f x()

f x¢()i
f x()i - 1 - f ()xi

xi - 1 - xi

Figure 9.7

9.44 Computer Science & Information Technology for GATE

(3) If xi and xi+1 were chosen to bracket the root, this
would be the same as the False-Position Method.

9.6.3 Numerical Integration by Trapezoidal Rule

If y0,y1,y2,…..,yn are the function values of a function f
(curve) at x0, x1, …xn then area under the curve using

where h is the spacing between the x co-ordinates.

n Example Use the trapezium rule to obtain estimate for

the value of
x

x
dx

2

2

6

1-Ú using eight strips.

n Answer: Calculate function value at 9 points of the given
domain [2,6].

x 2 2.5 3 3.5 4 4.5 5 5.5 6

y =
-

x

x
dx

2

1
4 4.167 4.5 4.9 5.333 5.786 6.25 6.722 7.2

Substitute into the trapezium rule formula:

A
h

y y y y yn nª + + + + + -2
20 1 2 1[()]

Area ª

-Ê
Ë

ˆ
¯

6 2
8
2

 [4 + 7.2 + 2(4.167 + 4.5 + 4.9 +

5.333 + 5.786 + 6.25 + 6.722)] = 21.6 units2

Numerical Integration by Simpson’s Rules

If y0,y1,y2,…..,yn are the function values of a function f
(curve) at x0, x1, …xn then area under the curve using

y4+…), where h is the spacing between the x co-ordinates.

n Example Use Simpson’s Rule to approximate the area

under the curve y =
6

2x -
 between x = 3 and x – 7 using

four strips.

n Answer: Calculate function y value at five points in the
domain [3,7] which makes four strips.

x 3 4 5 6 7

y =
6

2x -
6 3 2 1.5 1.2

 A ª

-Ê
Ë

ˆ
¯

+ + + +

7 3
4
3

6 1 2 4 3 1 5 2 2[. (.) ()] = 9.73 units2

9.7 Introduction to Calculus

9.7.1 Theorems on Limits

Let f and g be functions of a variable x. Then, if the follow-
ing limits exist:

lim
x l

f
Æ

 = A, and lim
x l

g
Æ

 = B,

lim()
x l

f + g
Æ

 = A + B.

lim()
x l

f g
Æ

 = AB.

lim
x l

f

g

A

BÆ
= , if B is not 0.

In other words:
(1) The limit of a sum is equal to the sum of the limits.
(2) The limit of a product is equal to the product of the

limits.
(3) The limit of a quotient is equal to the quotient of the

limits, provided the limit of the denominator is not 0.

 Also, if c does not depend on x, if c is a constant, then
(4) lim

x l
c =c.

Æ

 For example, lim .5 5
x lÆ

=

 To see that, let x approach 4: e.g., 4
1
2

4
1
4

4
1
8

4
1

16
4

1
32

 ..., then the value of 5 or any constant does not change.
It is constant.

 When c is a constant factor, but f depends on x, then

(5) lim
x l

cf
Æ

 = c f
x l
lim

Æ

 A constant factor may pass through the limit sign.
(This follows from Theorems 2 and 4.) For example,

 lim
x l

x
Æ

8 3 = 8 3lim
x l

x
Æ

.

9.7.2 Continuous Function

We say that a function f(x) that is defined at x = c is continu-
ous at x = c if the limit of f(x) as x approaches c is equal to
the value of f(x) at x = c. In symbols, if

lim ()
x l

f x
Æ

 = f (c)

then, f(x) is continuous at x = c.
And so for a function to be continuous at x = c, the limit
must exist as x approaches c, that is, the left- and right-
hand limits must be equal. If a function is continuous at
every value in an interval, then we say that the function is
continuous in that interval. And if a function is continuous
in any interval, then we simply call it a continuous function.

Engineering Mathematics 9.45

9.7.3 Properties of Definite Integrals

Certain properties of the definite integral are useful in solv-
ing problems. Some of the often used properties are given
below. It is assumed throughout that f¢ (x) = f (x).

(1) f x dx
a

a
()Ú = 0

(2) f x dx
a

b
()Ú = -Ú f x dx

a

a
()

(3) k dx
a

b

Ú = k (b – a) where k is constant.

(4) k f x dx k f x dx
a

b

a

b
() ()Ú Ú=

(5) [() ()]f x g x dx
a

b
±Ú = f x dx g x dx

a

b

a

b
() ()Ú Ú±

(6) If f (x) ≥ 0 on [a, b], then f x dx
a

b
()Ú ≥ 0

(7) If f (x) £ 0 on [a, b], then f x dx
a

b
()Ú £ 0

(8) If f (x) ≥ g (x) on [a, b], then f x dx g x dx
a

b

a

b
() ()Ú Ú±

(9) If a < c < b in [a, b], then f x dx
a

b
()Ú

 = f x dx f x dx
a

c

c

b
() ()Ú Ú+

(10) f x dx
a

b
()Ú = f t dt

a

b
()Ú i.e. value of the

 integral is indepandent of the variable of integration.

(11) f x dx
a

()
0Ú = f a x dx

a
()-Ú0

(12) f x dx
a

b
()Ú = f a b x dx

a

b
()+ -Ú

(13) f x dx f x dx
a

a a
() ()

-

+

Ú Ú= 2
0

 if ‘f ’ is even = 0, if ‘f ’ is odd.

(14) f x dx
a

()
0

2

Ú = f x dx f a x dx
a a

() ()
0 0

2Ú Ú+ -

Corollary :

 If f (2a – x) = f (x), then f x dx f x dx
a a

() ()
0

2

0
2Ú Ú=

 and f (2a – x) = f (x), then f x dx
a

()
0

2

Ú

9.7.4 Mean Value Theorem

 Given a planar arc between two endpoints, there is at
least one point at which the tangent to the arc is parallel to
the secant through its endpoints.

y f x= ()

Tangent at c

Secant

a c b
x

y

The theorem is used to prove global statements about a
function on an interval starting from local hypotheses
about derivatives at points of the interval.

More precisely, if a function f is continuous on the closed
interval [a, b], where a < b, and differentiable on the open
interval (a, b), then there exists a point c in (a, b) such that

f ¢(c) =
f b f a

b a

() ()-
-

This theorem is the basis for finding maxima and minima
of functions.

n Example: Suppose that we know that f(x) is continuous
and differentiable in [6, 15]. Also, that f (6) = –2 and that
we know that f (x) £ 10. What is the largest possible value
for f (15)?

n Answer: From Mean Value Theorem,

f (15) – f (6) = f ¢(c) (15 – 6)

Plugging in for the known quantities and rewriting this a
little gives,

f (15) = f (6) + f ¢(c) (15 – 6) = – 2 + 9 f ¢ (c)

Now we know that f (x) £ 10 so in particular we know
that f (x) £ 10. This gives us the following,

f (15) = – 2 + 9 f ¢ (c)

= – 2 + 9 (9) 10 = 88
This we have achieved by replacing f ¢(c) with its largest pos-
sible value.
This means that the largest possible value for f (15) is 88.

This theorem can be also visualised like this. If y = f (x) is
given a function defined on [a, b], then the mean value of
the function denoted by y = f (c) is defined as y or f (c) =

1
b a

f x dx
a

b

- Ú () for some c Œ (a, b)

n Example Find the mean value of y = 3x2 + 2x over [0, 1]

n Answer: By applying mean value theorem

Mean value y or f (c) =
1

b a
f x dx

a

b

- Ú ()

 =
1

2 0
3 22

0

2

-
+Ú ()x x dx

9.46 Computer Science & Information Technology for GATE

 =
1
2

3 2
0
2

x x+[] = 6

Now f (c) = 3c2 + 2c = 6 fi 3c2 + 2c – 6 = 0

\ c =
- ± +4 4 72

6

 =
- ±4 76

6

c =
- ±4 2 19

6

\ c =
- ±2 19

3

Since c =
- ±2 19

3
ª 0.79 is in (0, 2)

The mean value theorem is also satisfied.

n Example Given that ()x dx3

1

6
1-Ú = 318. Find the

mean value of x3 – 1 and also find all ‘c’ values that satis-
fies the mean value theorem for this function on the closed
interval.

n Solution

Mean value y or f(c) =
1

b a
f x dx

a

b

- Ú ()

 =
1

6 1
318

-
()

 =
318

5

Now f (c)= c3 –1 =
318

5

\ c3 =
318

5
1

323
5

+ =

 \ c ª 4 is in the closed interval (1, 6)
 \ The mean-value theorem is satisfied.

9.7.5 Maxima and Minima Calculation

A value of x at which the function has either a maximum
or a minimum is called a critical value. Both at maximum
and minimum points derivative of a function f(x) known
as f¢(x) changes its sign; at a maximum, f¢(x) changes sign
from + to –, while at a minimum, f¢(x) changes sign from
− to + .

Theorem:
The function has a minimum value at x = a if f ¢(a) = 0 and
f ≤(a) = a positive number.

The function has a maximum value at x = a if f¢(a) = 0
and f ≤ (a) = a negative number.

n Example Calculate the critical values for the function
f(x) = x2– 6x + 5 if exists any.

n Answer: f¢ (x)=2x-6.Therefore, at x=3 the given function
will be having extreme value. To find whether it is maxi-
mum or minimum, we calculate f ≤ (x)=2. As f ≤ (x) value is
positive, the extreme value can be said as minimum.

9.7.6 Partial Derivatives

Partial derivatives are defined as derivatives of a function of
multiple variables when all but the variable of interest are
held fixed during the differentiation.

∂
∂

f

xm
 = lim

(, , , ,) (, , , ,)
x

m n m nf x x h x f x x x

hÆ•

+ -1 1… … … …

(1)

The above partial derivative is sometimes denoted fxm for
brevity.

Partial derivatives can also be taken with respect to mul-
tiple variables, as denoted for examples

∂
∂

2

2
f

x
= fxm (2)

∂
∂ ∂

2 f

x y
= fxy (3)

∂
∂ ∂

2

2
f

x y
= fxxy . (4)

Such partial derivatives involving more than one variable
are called mixed partial derivatives.

For a two-dimensional function f (x, y) (i.e., one
for which f, fx, fy, fxy, fyx exist and are continuous in
a neighbourhood (a, b), then

fxy (a, b) = fyx (a, b)

More generally, for functions, mixed partial derivatives
must be equal regardless of the order in which the differen-
tiation is performed, so it is also true that

f x x y = f x y x = fy x x

9.7.7 Total Derivatives

The total derivative is the derivative with respect to t of the
function y = f (t, u1,..., um) that depends on the variable
t not only directly but also via the intermediate variables
u1 = u1 (t, u1,..., um),, um = um (t, u1,..., um). It can be
calculated using the formula

∂
∂
y

t
 =

∂
∂

+
∂
∂

∂
∂

+ +
∂

∂
∂
∂

f

t

f

u

u

t

f

u

u

tm

m

1

1 .

Engineering Mathematics 9.47

9.8 Solved Questions

1. How many numbers are there between 1 and 10000,
which are either even, end in 0, or have the sum of its
digits divisible by 9?

 Answer: We will use inclusion/exclusion principle.
 Let E, Z and N denote the numbers between 1 and

10,000 which are even, end in 0, or have the sum of
their digits divisible by 9, respectively (not that N con-
sists of all multiples of 9. Then, (including the number
10,000 in our calculations), |E| = 5000, |Z| = 1000, |N|
= 1111, |E « Z| = 1000, |E « N| = 555, |Z « N| = 111,
|E « Z « N| = 111. Therefore, by the Inclusion/Exclu-
sion principle:

 |E » Z » N| = 5000 + 1000 + 1111 − 1000 − 555 − 111
+ 111 = 5556

2. Given ten points in the plane with no three collinear,
how many different segments joining two points are
there?

 Answer: 10C2=45
3. Given ten points in the plane with no three collinear,

how many ways are there to choose a directed path of
length two through three distinct points?

 Answer: We can choose a directed path of length two
uniquely by choosing the starting point, the middle
point, and the end point. There are 10 · 9 · 8 = 720
such paths

4. Given ten points in the plane with no three collinear,
how many different triangles are there?

 Answer: 10C3=120.
5. Given ten points in the plane with no three collinear,

how many ways are there to choose 4 segments?
 Answer: Number of segments joining two points =

10C2 = 45. Number of ways of selecting four segments
from 45 is = 45C4 = 148995.

6. Given ten points in the plane with no three collin-
ear, if you choose 4 segments at random, what is the
chance that some three form a triangle?

 Answer: Number of segments joining two points
= 10C2 = 45. Number of ways of selecting four seg-
ments from 45 is = 45C4 = 148995. Let us assume
that first we select three vertices that will form a
triangle and then we choose any one segment out
of the 42. Thus, the number of ways to choose four

The probability that we have picked such an arrange-
ment when picking four segments at random is there-
fore=5040/148995=3.38%.

7. Forty equally skilled teams play a tournament in
which every team plays every other team exactly

once, and there are no ties.
a. How many different games were played?
b. How many different possible outcomes for these

games are there?
c. How many different ways are there for each team

to win a different number of games?
 Answer:

a. 40C2=780 b. 2780 c. 40
8. How many passwords can be created in the form

[A–Z][a–z]9[0,1]6? (That is, a capital letter followed
by 9 lowercase letters followed by 6 bits).

 Answer: 26 · 269 · 26

9. How many ways are there to distribute eight balls into
six distinct boxes with at least one ball in each box if:

a. Balls are identical?
b. Balls are distinct?

 Answer:

(a) The balls are identical?
 Because the balls are identical, we can begin by

putting one ball in each box. Then, we can dis-
tribute the remaining two balls into the six boxes
arbitrarily. There are (6−1+2)C2=21 ways.

 (b) The balls are distinct?
 Since we must have at least one ball in each box,

there are only two possibilities: either there are
two boxes with two balls and four boxes with
one ball, or there is one box with three balls and
five boxes with two balls. In the former case, we
must choose which two boxes have two balls (6C2
ways), we must choose which balls go in each of
these boxes (8C26C2 ways), and we must arrange
the remaining four balls into the other four boxes
(4 ways). In the latter case, we must choose which
box has three balls (6C1), choose which three balls
go into this box (8C3), and arrange the remaining
five balls into the remaining five boxes (5!). The
total number of arrangements is therefore:

 6C28C26C24! +6C18C35 = 191, 520
10. There’s a new screen saver that displays a random

rectangular piece of an n by n checkerboard.
a. How many rectangles are there in a checkerboard

of size 1? 2? 3? 4?
b. How many squares are there in a checkerboard of

size 1? 2? 3? 4?
c. Guess a general formula for the number of squares

and rectangles. Put each in closed form in terms
of n.

 Answer:

(a) Size 1? 1. Size 2? 9. Size 3? 36. Size 4? 100.

9.48 Computer Science & Information Technology for GATE

(b) Size 1? 1. Size 2? 5. Size 3? 14. Size 4? 30.
(c) Number of squares in a checkerboard of size n:

 12 + 22 + 32 + + n2= i
i

n
2

1=
Â =

n n n()()+ +1 2 1

6

 Number of rectangles in a checkerboard of size n:

n +Ê
ËÁ

ˆ
¯̃

1

2

2

 =
()n n+1

4

2 2

11. An oil tank is to be drained for cleaning. There are V
gallons of oil left in the tank after t minutes of drain-
ing, where V = 50(40 − t)2.
(a) What is the average rate at which oil drains out of

the tank during the first 20 minutes?
 Answer :

 The average rate of draining AR is given by

AR =
V V

V

() ()20 0
20

-
-

 =
50 40 20 50 40 0

20

2 2() ()- - -

 = –3000

 The average rate of drainage during the first 20 min-
utes is 3,000 gallons per minute.
(b) What is the rate at which oil is flowing out of the

tank 20 minutes after draining begins?
 Answer :

 The instantaneous change in the amount of oil in the

tank at time t (for 0<= t <= 40) is
dV

dt
 = –100 (40 – t)

 At t = 20, the rate of change is –2,000 gallons per min-
ute; 2,000 gallons per minute are flowing out of the
tank.

12. What values of C the following matrix can not be LU
decomposed?

A=

1 2 4

2 7

0 1 3

c

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 Answer: If we subtract two times of first row from
second row, the resulting matrix becomes:

1 2 4

0 4 1

0 1 3

c - -
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 If c = 4 then we cannot transform this matrix to an up-
per triangular one without permuting last two rows.
So, there is not LU decomposition for this if c = 4.

13. If we have a matrix A of the following form, then its
determinant is:

A =
B

C

0

0
È

Î
Í

˘

˚
˙ .

 Answer:

14. Explain about pivot rows(columns) and free
rows(columns).

 Answer: The columns that contain a leading entry are
called pivot columns. The columns that do not con-
tain leading entries are called free columns. The rows
that are not entirely zeroes are pivot rows.

15. Define rank of a matrix?
 Answer: The rank of a matrix A is the number of pivot

columns (or rows) that it has when it is transformed
into reduced row echelon form.

16. Compute the ranks of the following matrices.

E =

1 2 0 5

2 3 1 4

1 1 1 1- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 F =

1 2 1

1 3 4

2 1 3

-
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

G =

1 2 1

0 3 1

2 1 4-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

H =

1 3

2 1

1 3

-
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 Answer:

(a) Two pivots so E has rank 2

1 2 0 5

2 3 1 4

1 1 1 1- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Æ

1 2 0 5

0 1 1 6

0 1 1 6

- -
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 Æ

1 2 0 5

0 1 1 6

0 0 0 0

- -
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

(b) Two pivots so F has rank 2

1 2 1

1 3 4

2 1 3

-
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Æ

1 2 1

0 5 5

0 5 5- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Æ

1 2 1

0 5 5

0 0 0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

(c) Three pivots, so G has rank 3

1 2 1

0 3 1

2 1 4-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Æ

1 2 1

0 3 1

0 5 6

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Æ

1 2 1

0 3 1

0 0 13

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

(d) Two pivots, so H has rank 2

1 3

2 1

1 3

-
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Æ

1 3

0 7

0 0

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

17. Suppose A is a 3 × 3 matrix with eigenvalue 1, 2 and
3. If v1 is an eigenvector for the eigenvalue 1, v2 for 2,
and v3 for 3, then what is A(v1 + v2 – v3) ?

Engineering Mathematics 9.49

 Answer:

A v v v1 2 3

+ -() = Av Av Av1 2 3

+ - = 1 2 31 2 3v v v

+ -
18. Explain about Row-Echelon Form

1. If a row does not consist entirely of zeros, then the
first nonzero element in the row is a 1 (called a
leading 1).

2. For any two successive nonzero rows, the leading
1 in the lower row is farther to the right than the
leading 1 in the higher row.

3. All the rows consisting entirely of zeros are at the
bottom of the matrix.

 If a fourth property is also satisfied, a matrix is said to
be in reduced row-echelon form:

4. Each column that contains a leading 1 has zeros
everywhere else.

19. If the product of the matrices BA is defined and A is
invertible, then rank (BA)= rank(B). Is it valid?

 Answer : Yes.
20. Prove that the sum of the degrees of the vertices of any

finite graph is even.
 Answer: Each edge ends at two vertices. If we begin

with just the vertices and no edges, every vertex has
degree zero, so the sum of those degrees is zero, an
even number. Now add edges one at a time, each of
which connects one vertex to another, or connects a
vertex to itself (if you allow that). Either the degree of
two vertices is increased by one (for a total of two) or
one vertex’s degree is increased by two. In either case,
the sum of the degrees is increased by two, so the sum
remains even.

21. Every simple finite graph has two vertices of the same
degree.

 Answer: Yes
22. If G is a graph of order n, what is the maximum num-

ber of edges in G?
 Answer: n(n-1)/2

23. Is it true that finite graphs having exactly two vertices
of odd degree must contain a path from one to the
other?

 Answer: Yes
24. If graphs G and H are isomorphic, then their comple-

ments G’ and H’ are also isomorphic. Is it valid?
 Answer: Yes.

25. For a directed graph, the absence of back edges with
respect to a BFS tree implies that the graph is acyclic.

 Answer: False. It is true that the absence of back edges
with respect to a DFS tree implies that the graph is
acyclic. However, the same is not true for a BFS tree.
There may be cross edges which go from one branch

of the BFS tree to a lower level of another branch of
the BFS tree. It is possible to construct a cycle using
such cross edges (which decrease the level) and using
forward edges (which increase the level).

26. Does the depth of any DFS tree rooted at a vertex is
at least as much as the depth of any BFS tree rooted at
the same vertex?

 Answer: Yes. Since BFS finds paths using the fewest
number of edges, the BFS depth of any vertex is at
least as small as the DFS depth of the same vertex.
Thus, the DFS tree has a greater or equal depth.

27. Is there any edge in an undirected graph that jumps
more than one level of any BFS tree of the graph?

 Answer: No. If such an edge existed, it would provide
a shorter path to some node than the path found by
BFS (in terms in the number of edges). This cannot
happen, as BFS always finds the path with the fewest
edges.

28. In an unweighted graph where the distance between
any two vertices is at most T, any BFS tree has depth
at most T, but a DFS tree might have larger depth.

 Answer: True. Since all vertices are connected by a
path with at most T edges, and since BFS always finds
the path with the fewest edges, the BFS tree will have
depth at most T. A DFS tree may have depth up to V
–1 (for example, in a complete graph).

29. If a graph contains Hamiltonian cycle then DFS tra-
versal tree height will be V–1, where V is the number
of vertexes.

 Answer: Yes.

30. Suppose det =

a b c

d e f

g h i

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

3. Find det

a d g

b e h

c f i

2 2 2
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

.

 Answer : det

a d g

b e h

c f i

2 2 2
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 = 2.det

a d g

b e h

c f i

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 = 2.det

a d g

b e h

c f i

T
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= 2.det

a b c

d e f

g h i

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 = 6.

31. Consider the following matrix A. If we assume a=bor
a=c, then what is its determinant? Does it have inverse
if a=b or a=c?

A =

1

1

1

a b c

b a c

c a b

+
+
+

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

9.50 Computer Science & Information Technology for GATE

Answer: No. If a = b or a = c then A will have two
identical rows and thus is row equivalent to a matrix
that has a row of zeros. In such cases, det(A) is 0 and
thus A is not invertible.

32. Is determinant of a matrix A is same as its transpose?
 Answer: Yes

33. Multiplying a row (whole) of matrix A with a scalar x
will gives a matrix whose determinant is x times of A.

 Answer: Y
34. Multiplying a matrix A(of size nxn) with a scalar x

A.
 Answer: Y

35. The following operations on a matrix A is carried out
such that resulting matrix U is observed to be up-
per triangular with its diagonal elements as 4,3, and 2.
What will be the determinant of A?

1. rows r1 and r2 are swapped

2. ten times of r2 is added to row r3.

3. row 1 is multiplied with 4.

 Answer: We know if rows are exchanged, determi-
nant gets opposite sign, that is gets multiplied by -1.

 Also, there will not be any change in determinant val-
ue of row operations.

 If row is multiplied by x, the determinant value also
gets multiplied by x.

 Thus, 4x1x-1x |A| =|U|

 -4|A|=(4x3x2).

 Therefore, |A|=-6.
36. Assume determinant of the following matrix A is 600,

calculate value of w.

A =

5 2 4

0 0 0

0 10 9 7

0 0 6 3

y

w

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 Answer: Consider sub matrix that is formed by re-
moving row and columns having w.

5 4

0 10 7

0 0 3

yÈ

Î

Í
Í
Í

˘

˚

˙
˙
˙

 The above matrix is upper triangular matrix. Thus,
determinant of this sub matrix becomes 5x10x3=150.

-
trix.

 Therefore, w= –600/150 = –4.

37. Is there any way to find value of y given determinant
of the following matrix A as 600?.

A =

5 2 4

0 0 0

0 10 9 7

0 0 6 3

y

w

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 Answer: No
38. If A is a matrix and determinant of AA is |A|x|A|. Is it

valid?
 Answer: Yes

39. If A, B are two matrices and |A| is 4 and |AB| is 8 then
what is the value of |B|, |BT|?

 Answer: 8/4=2. Also, |BT| value is 2.
40. If A, B are two matrices and |A| is 4 and |AB| is 8 then

what is the value of |A+B|?
 Answer: We cannot calculate.

41. Suppose A and B are both nxn matrices, |B |= 5, and
BABT = In. Determine the value of |A|.
Answer :

BAB = In fi | BABT| = |In|

fi | B| |A| |BT| = 1

fi (-5)| A| (–5) = 1

fi | A| =
1

25

OBJECTIVE TYPE QUESTIONS

1. Find odd one
A Multigraph with zero odd vertex is traversable
B. A multigraph with two odd vertices is traversable
C. A multigraph with more than two odd vertices are

not traversable
D. None

2. Hamiltonian circuit
A. Closed path
B. Visits every vertex exactly once
C. May repeat edges
D. No. of vertices should be >=3
E. All

3. Spanning tree
A. Connected graph
B. Does not contain cycles
C. Includes all vertices of the graph
D. Subgraph of graph
E. All

Engineering Mathematics 9.51

4. A map
A. Planar graph B. May be multigraph
C. Is connected if underlying mutligraph is connect-

ed
D. All

5. The sum of degrees equal to double the edges is valid
for
A. Graph B. Multigraph
C. Isolated graph D. All

6. Trivial graph
A. Multigraph B. A single graph
C. Finit graph D. Connected O-regular
E. All

7. A connected graph
A. Contains only one connected component
B. Contains path between any two of its vertices
C. May contain bridge
D. Will have path matrix with all 1’s
E. All

8. Traversible trail (find odd one out)
A. A path without using edges twice
B. A path with out cycles
C. A path includes all vertices
D. A & C

9. A Eulierian graph
A. Contains closed traversible trail
B. Finite connected graph
C. Each vertex has even degree
D. All

10. Find odd one out
A. If a graph contains two vertices of odd degree

then there must be a path joining them
B. The max degree of any vertex in a simple graph

with n vertices is n-1
C. The max no. of edges in a simple graph will n ver-

tices is n(n–1)/2
D. A simple graph with n vertices and k components

can have atmost (n–k)(n–k+1)/2 edges
E. None

11. Solve the traveling salesman problem

Station A B C D E

A • 13 19 16 15
B 14 • 18 15 16
C 14 18 • 14 13
D 13 17 16 • 18
E 19 17 16 17 •

A. CÆAÆBÆDÆE
B. CÆBÆAÆEÆD
C. BÆEÆAÆCÆD
D. None

12. Find odd one regarding the following graph
A. A,B,C,D,E,F B. A,B,C,D,F,E
C. B,A,C,D,E,F D. B,A,C,D,F,E
E. None

13. Find odd one out
A. The sum of the degrees of nodes equal to twice the

no. of edges
B. The no. of vertices odd degree in a undirected

graph is always even
C. Trivial graph contains 1 edge
D. A & C

14. Biconnected graph
A. Connected
B. Undirected
C. Contains no vertices whose removal disconnects

the rest of the graph
D. All

15. Articulation points in the following graph are

A B

C E F

D

A. C B. A
C. D D. A & C
E. None

16. Find odd man with respect to the following graph
A. ADEBCEF B. ADECBEF
C. ABECF D. None

A B C

D E F

17. Are the following equavalent of graph G?
A. G is 2-colourable
B. G is bipartite
C. Every cycle of G has even length
D. Contains two connected components

9.52 Computer Science & Information Technology for GATE

18. A planar graph is ___ colourable.
A. 2 B. 4 C. 3 D. 5
E. None

19. If path matrix contains all 1’s then graph is
A. Strongly connected
B. Unilaterally connected
C. Weakly connected
D. None

20. If a column in an adjacency matrix contains zero’s then
A. Respective column in path matrix also contains

all zeros
B. Respective vertex is non reachable
C. Respective vertex is a source
D. Respective column in path matrix contains all 1’s.

21. The number of different ways for n people to arrange
themselves in a straight line is n! (Y/N).

22. Power set P(A) will be having cardinality of 2|A|.
(Y/N)

23. A graph’s edges can be covered by n edge-disjoint
paths, but not n-1, if and only if the graph has n pairs
of odd-degree vertices. (Y/N)

24. A Hamiltonian cycle in a Hamiltonian graph of order
has
A. 12 edges B. 24 edges
C. 23 edges D. None

25. A simple graph with 13 vertices out of which 4 ver-
tices has degree 3, 3 vertices of degree 4 and 6 vertices
of degree 1. The graph G must be a tree
A. True
B. False

26. A spanning tree for a simple graph of order 24 has
A. 12 edges
B. 6 edges
C. 23 edges
D. None

27. The order of a forest, F, with17 vertices and 4 com-
ponents is
A. 17 B. 4 c. 16 D. None

28. The size of a forest, F, with17 vertices and 4 compo-
nents is
A. 17 B. 4 C. 16 D. 13

29. The number of different labeled trees of order n is
A. nn B. (n–2)n C. n(n–2) D. None

30. Consider a simple graph G with n vertices and n
edges(n>2). Then which of the following statements
are valid?
A. G has atleast one cycle.

B. G has no cycles
C. The graph obtained by removing any edge from G

is not connected.
D. G has atleast one cycle and the graph obtained by

removing any edge from G is not connected.
31. The number of distinct simple graphs with up to

three nodes is
A. 9 B. 7 C. 10 D. 15

32. Maximum number of edges in an n-node undirected
graph without self loops
A. n2 B. n/2 C. n! D. None

33. A graph which all nodes are of equal degree is known
as
A. Complete graph
B. Multi graph
C. Non regular graph
D. Regular graph

34. The minimum number of spanning trees in a con-
nected graph with n nodes is
A. n–1 B. n/2 C. 2 D. 1

35. The minimum number of edges in a connected cyclic
graph with n vertices is
A. n–1 B. n C. n+1 D. 2

36. Every directed acyclic graph has exactly one topologi-
cal ordering. (Y/N)

37. If a directed graph G is cyclic but can be made acyclic
by removing one edge, then a depth-first search in G
will encounter exactly one back edge. (Y/N)

38. If all edges in a graph have distinct weights, then the
shortest path between two vertices is unique(Y/N).

39. On matrix A, the following elementary row opera-
tions are applied one after another.

 R2:=R2−R1, R2´R3(row exchange), R3:=R3−3R2,

1 1 1

0 1 1

0 0 6

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 What is the determinant of A after the operations?
A. 6 B. 16 C. –6 D. None

 Answer: Original determinant of A=6. Because of
simple row operations (1st and last), determinant will
not change. However, because of the row exchange,
determinant gets multiplied by -1. Thus, determinant
at the end becomes –6.

40. The matrix A is given below. The following elemen-
tary row operations are applied on it in sequence.

 R2:=R2−3R1,R3:=R3+4R1,R2´R3,R2:=12R2,R4:=R4
−2R2,

Engineering Mathematics 9.53

What is the determinant of A after these row operations?

2 1 0 3

0 1 2 1

0 0 3 4

0 0 0 1

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

A. –3 B. 3 C. 12 D. None
41. After the following elementary row operations in the

sequence, a matrix A became the following matrix.
 R2:=R2−3R1,R3:=R3+4R1,R2´R3,R2:=12R2,R4:=R4

−2R2,
 What is the determinant of A(original matrix)?

2 1 0 3

0 1 2 1

0 0 3 4

0 0 0 1

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

A. –3 B. 3 C. 12 D. 12
42. Find correct statement out of the following.

A. det A–1 = –det A

B. det A–1 = –
1

det A

C.

a b c

d e f

g h i

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 =

a d g

b e h

c f i

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

D.

2 4 6

8 10 12

14 16 18

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 = 2

1 2 3

4 5 6

7 8 9

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 Answer: C. Determinant of a matrix and its transpose
are same.

A N S W E R K E Y

1. C 2. E 3. E 4. D
5. D 6. E 7. E 8. B
9. D 10. E 11. A 12. E

13. C 14. D 15. D 16. C
17. D 18. D 19. A 20. D
21. Y 22. Y 23. Y 24. B
25. False 26. C 27. A 28. D
29. C 30. A 31. D 32. D
33. D 34. D 35. B 36. N
37. N 38. N 39. C 40. A
41. A&D 42. C

Previous Years’ GATE Questions

1. A binary operation ≈

 on a set of integers is defined

as ≈

xy=x2+y2. Which one of the following state-

ments is TRUE about ≈

? (GATE 2013)

A. Commutative but not associative
B. Both commutative and associative
C. Associative but not commutative
D. Neither commutative not associative

2. Suppose p is the number of cars per minute passing
through a certain road junction between 5PM and
7PM, and p has the poisson distribution with mean
3. What is the probability of observing fewer than
three cars during any given minute in this interval?

(GATE 2013)

A. 8/(2e3) B. 9/(2e3)

C. 17/(2e3) D. 26/(2e3)

 Explanation:

 X is a Poisson variable with pdf:

 P (X = x) = e
x

x
-l l

!
, x = 0, 1,, •

 Here, l is given as 3. We need to calculate probabil-
ity of observing fewer than 3 cars. That is, we need
to calculate P(0)+P(1)+P(2)=e-3+e-3 3+e-332/2! = e-3

(1+3+3/2) =17/(2 e3)

3. Which one of the following is NOT equal to

1

1

1

2

2

2

x x

y y

z z

(GATE 2013)

A.

1 1 1

1 1 1

1 1 1

x x x

y y y

z z z

()

()

()

+ +
+ +
+ +

B.

1 1 1

1 1 1

1 1 1

2

2

2

x x

y y

z z

+ +

+ +

+ +

C.

0

0

1

2 2

2 2

2

x y x y

y z y z

z z

- -

- - D.

2

2

1

2 2

2 2

2

x y x y

y z y z

z z

+ +

+ +

4. Which one of the following statements is true?
 (GATE 2013)

1 The problem of determining whether there exists
a cycle in an undirected graph is in P.

9.54 Computer Science & Information Technology for GATE

2 The problem of determining whether there exists
a cycle in an undirected graph is in NP.

3 If a problem is NP-Complete, there exists a
non-deterministic polynomial time algorithm to
solve A.

A. 1,2 and 3 B. 1 and 2 only
C. 2 and 3 only D. 1 and 3 only

5. Which one of the following functions is continuous
at x=3? (GATE 2013)

A. f(x) =

2

1

3
3

,

,

,

if = 3

if > 3

if < 3

x

x

x

x

x

-
+

Ï

Ì

Ô
Ô

Ó

Ô
Ô

B. f(x) =
4

8

,

,

if = 3

if 3

x

x- π
Ï
Ì
Ó x

C. f(x) =
x

x

+ £
- >

Ï
Ì
Ó

3

4

if 3

if 3

x

x,

D. f(x) =
1

273x -
, if x π 3

6. The function f is known at the following points.
(GATE 2013)

x f(x)

Y0 0 0

Y1 0.3 0.09

Y2 0.6 0.36

Y3 0.9 0.81

Y4 1.2 1.44

Y5 1.5 2.25

Y6 1.8 3.24

Y7 2.1 4.41

Y8 2.4 5.76

Y9 2.7 7.29

Y10 3.0 9.00

 The value of xdx
x

0Ú computed using trapezoidal rule
is
A. 8.983 B. 9.003
C. 9.017 D. 9.045

 Explanation: h value = 0.3. Therefore, area = 0.3/2(0
+ 9 + 2(0.09 + 0.36 + 0.81 + 1.44 + 2.25 + 3.24 + 4.41
+ 5.76 + 7.29)] = 9.045

7. Consider an undirected random graph of eight ver-
tices. The probability that there is an edge between
two vertices is 1/2, what is the expected number of
unordered cycles of length three? (GATE 2013)

A. 1/8 B. 1 C. 7 D. 8
 Explanation: We can have total 8C3 ways to have a

unordered cycle of three vertices. The probability that
there is an edge between two vertices is 1/2. So, ex-
pected number of unordered cycles of length three =

3 = 7
8. Which of the following statements is/are TRUE for

undirected graphs? (GATE 2013)

 P: Number of odd degree vertices is even.
 Q: Sum of degrees of all vertices is even

A. P only B. Q only
C. Both P and Q D. Neither P nor Q

9. What is the logical translation of the following state-
ment? (GATE 2013)

 “None of my friends are perfect”.
A. $x (F (x) ^ÿ P(x)) B. $x (ÿ F (x) ^P(x))
C. $x (ÿ F (x) ^ ÿ P(x)) D. ÿ $x (F (x) ^P(x))

 Answer: D
10. Which one of the following is logical equivalent to

ÿ $x ("y (a) ^ "z (b))? (GATE 2013)

A. "x ($z (ÿ b) Æ "y (a))
B. "x ($z (b) Æ $y (ÿ a))
C. "x ("y (a) Æ $z (ÿb))
D. "x ($y (ÿ a) Æ $z (ÿb))

 Answer: A, D
11. Consider the following logical inferences.

(GATE 2012)

1. If it rains then the cricket match will not be played.
 The cricket match was played.
 Inference: There was no rain.

2. If it rains then the cricket match will not be played.
 It did not rain.
 Inference: The cricket match was played.
 Which of the following is TRUE?

A. Both 1 and 2 are correct inferences
B. 1 is correct but 2 is not a correct inference
C. 1 is not correct but 2 is a correct inference
D. Both 1 and 2 are not correct inferences

12. Consider the function f(x) = sin(x) in the interval x є
[p/4, 7p/4]. The number and location(s) of the local
minima of this function are (GATE 2012)

(A) One, at π/2
(B) One, at 3π/2

Engineering Mathematics 9.55

(C) Two, at p/2 and 3p/2
(D) Two, at p/4 and 3p/2

 Explanation: We can verify by calculating second de-
rivative, f ’’(x) at the given points.

13. Let A be the 2 × 2 matrix with elements a11 = a12 =
a21 = +1 and a22 = −1. Then the eigenvalues of the
matrix A19 are (GATE 2012)

 (A) 1024 and −1024

 (B) 1024√2 and −1024√2

 (C) 4√2 and −4√2

 (D) 512√2 and −512√2

 Explanation: Given matrix is:
1 1

1 1-
È

Î
Í

˘

˚
˙ . To calculate

eigenvalues,
l

l

- -
- +

1 1

1 1 =0. That is, eigenvalues be-

comes ÷2 and – ÷2. Therefore, eigenvalues of A19
becomes (÷2)19 and (÷2)19. Thus, D is the valid op-
tion.

14. What is the correct translation of the following state-
ment into mathematical logic?

 “Some real numbers are rational” (GATE 2012)

A. $ ⁄()x x xreal rational() ()

B. " Æ()x x xreal rational() ()

C. $ Ÿ()x x xreal rational() ()

D. $ Æ()x x xrational real() ()
15. Let G be a simple undirected planar graph on 10 ver-

tices with 15 edges. If G is a connected graph,then the
number of bounded faces in any embedding of G on
the plane is equal to (GATE 2012)

(A) 3 (B) 4 (C) 5 (D) 6
16. Consider a random variable X that takes values +1

and −1 with probability 0.5 each. The values of the
cumulative distribution function F(x) at x = −1 and
+1 are (GATE 2012)

A. 0 and 0.5
B. 0 and 1
C. 0.5 and 1
D. 0.25 and 0.75

 Explanation: Only two possibilities with equal prob-
ability of 0.5. Therefore, cdf becomes 0.5 and 1.

17. Which of the following problems are decidable?
 (GATE 2013)

1. Does a given program ever produce an output?
2. If L is a context-free language then, is L also con-

text-free?

3. If L is a regular-free language then, is L also regu-
lar?

4. If L is a recursive language then, is L also recur-
sive?

(A) 1, 2, 3, 4 (B) 1, 2
(C) 2, 3, 4 (D) 3, 4

18. Which of the following graphs is isomorphic to
(GATE 2012)

A.

B.

C.

D.

19. The bisection method is applied to compute a zero of
the function f(x) = x4 – x3 – x2 – 4 in the interval [1,9].
The method converges to a solution after ––––– itera-
tions. (GATE 2012)

A. 1 B. 3
C. 5 D. 7

20. How many onto (or surjective) functions are there
from an n-element (n 2) set to a 2-element set?

(GATE 2012)

A. 2n B. 2n − 1
C. 2n − 2 D. 2(2n – 2)

21. K4 and Q3 are graphs with the following structures.
(GATE 2011)

9.56 Computer Science & Information Technology for GATE

K4 Q3

 Which one of the following statements is True in rela-
tion to these graphs?
A. K4 is planar while Q3 is not
B. Both K4 and Q3 are planar
C. Q3 is planar while K4 is not
D. Neither K4 nor Q3 is planar

 Explanation:

 A graph can be said as planar if the nodes of the
graph can be re-arranged (without breaking or add-
ing the edges) such that no edge of the graph cross
each other. Given graphs also can be drawn in such
mannar. Thus, both are planar.

K4 Q3

22. If the difference between the expectation of the square
of random variable(E [X2])and the square of the ex-
pectation of the random variable (E[X2]) is denoted
by R then (GATE 2011)

A. R 0 B. R<0
C. R 0 D. R>0

 Explanation:

 Assuming x1, x2,………..xn, then expectation of the
series = mean=(x1+x2+….+xn)/n

 Expectation of squares of the values=(x12+x22+……
xn2)/n

 R= (x12+x22+……xn2)/n - ((x1+x2+….+xn)/n)2

 = (x12+x22+……xn2)/n - ((x12+x22+….+xn2 +
2x1x2+2x2x3+…..+xn-1xn)/n2)

 =(x12+x22+……xn2

..+xn–1xn)/n2

 We can verify that the above value will be >=0.
23. Consider the matrix as given below. (GATE 2011)

1 2 3

0 4 7

0 0 3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 Which one of the following provides the correct val-
ues of eigenvalues of the matrix?

A. 1,4,3 B. 3,7,3
C. 7,3,2 D. 1,2,3

 Explanation: Given matrix is upper triangular matrix
and thus its diagonal elements are its eigenvalues.

24. Given i = -1 , what will be the evaluation of the

definite integral
cos sin
cos sin

?
/

x i x

x i x
dx

+
-Ú

0

2p

(GATE 2011)

A. 0 B. 2 C. –1 D. i

 Explanation:
e

e
dx e dx

ix

ix
ix

-Ú Ú=
0

2
2

0

2p p/ /

= e

i i
e

ix
i

2

0

2

2
1
2

1
Ê
ËÁ

ˆ
¯̃

= -[]
p

p
/

=
1
2

1
i

icos sinp p- -[]

=
1
2

1 0 1
i

- + -[] =
-2
2i

 =
-

¥
1

i

i

i
 = -

-
i

1
 = i

25. Consider a finite sequence of random values X =
[x1,x2,...xn]. Let mx be the mean and sx be the stan-
dard deviation of X. Let another finite sequence Y of
equal length be derived from this as yi i + b,
where a and b are positive constants. Let μy be the
mean and σy be the standard deviation of this se-
quence. Which one of the following statements is In-
correct? (GATE 2011)

A. Index position of mode of X in X is the same as
the index position of mode of Y in Y.

B. Index position of median of X in X is the same as
the index position of median of Y in Y.

C. my = amx + b
D. sy s = asx + b

 Explanation:

 Assuming x1,x2,………xn are the values.
 mx =(x1+x2+….+xn)/n
 my

x + b
 Similarly,
 sx = sqrt((x12+x22+….xn2)/n – μx

2)
 Similary,
 σy

2 2 2)/n–
μy2)

 If one verifies the above equation, we can find that op-
tion D is not valid.

26. Let G=(V, E) be a graph. Define ξ (G) = id d
d

¥Â ,

where id is the number of vertices of degree d in G. If

Engineering Mathematics 9.57

S and T are two different trees with ξ (S) = ξ (T), then
(GATE 2010)

A. |S| = 2 |T| B. |S| = |T| –1
C. |S| = |T| D. |S| = |T| + 1

27. Newton-Raphson method is used to compute a root
of the equation x2 − 13 = 0 with 3.5 as the initial value.
The approximation after one iteration is

(GATE 2010)

A. 3.575 B. 3.676
C. 3.667 D. 3.607

 Explanation: f(3.5) = 3.52–13= – 0.75

 Therefore, xpred = 3.5- -0.75/7 = 3.607
 As, 3.5 is different from 3.607, initial value will be

taken as this.
28. What is the possible number of reflexive relations on

a set of 5 elements? (GATE 2010)

A. 210 B. 215

C. 220 D. 225

 Explanation: The total no. of reflexive relations on a
set A having n elements is 2n(n–1). Thus, the required
no. is 220.

29. Consider the set S = {1, w, w2}, where ω and ω2 are
-

(GATE 2010)

A. A group
B. A ring
C. An integral domain
D. A field

30. Consider the following matrix (GATE 2010)

A =
2 3

x y

È

Î
Í

˘

˚
˙

 If the eigenvalues of A are 4 and 8, then
A. x = 4, y = 10
B. x = 5, y = 8
C. x = −3, y = 9
D. x = −4, y = 10

 Explanation: We know trace of a matrix is same as
the sum of the eigenvalues. Thus,

 2+y=12
 Therefore, y=10.
 Similarly, product of eigen values will be same as the

determinant. That is,

 20 – 3x = 32
 x = –4
 Thus, option D is valid.

31. Suppose the predicate F(x, y, t) is used to represent the
statement that person x can fool person y at time t.
which one of the statements below expresses best the
meaning of the formula "xyt ÿF(x, y, t)?

(GATE 2009)

A. Everyone can fool some person at some time
B. No one can fool everyone all the time
C. Everyone cannot fool some all the time
D. No one can fool person at same time

32. Which one of the following in NOT necessarily a
property of a Group? (GATE 2009)

A. Commutativity
B. Associativity
C. Existence of inverse for every element
D. Existence of identity

 Explanation: It follows directly from the definition of
group.

33. What is the chromatic number of an n-vertex simple
connected graph which does not contain any odd
length cycle? Assume n>=2. (GATE 2009)

(A) 2 (B) 3
(C) n–1 (D) n

 Explanation: This is directly verified from the theory.
34. Which one of the following is TRUE for any simple

connected undirected graph with more than 2 verti-
ces? (GATE 2009)

A. No two vertices have the same degree.
B. At least two vertices have the same degree.
C. At least three vertices have the same degree.
D. All vertices have the same degree.

35. Consider the binary relation R = {(x,y), (x,z), (z,x),
(z,y)} on the set {x,y,z}. (GATE 2009)

 Which one of the following is true?
A. R is symmetric but not antisymmetric
B. R is not symmetric but antisymmetric
C. R is both symmetric and antisymmetric
D. R is neither symmetric nor antisymmetric

36. The binary operation T is defined as follows
(GATE 2009)

P Q P☐Q

T T T
T F T
F T T
F F F

 Which one of the following is equivalent to P v Q ?
A. ÿQ☐ÿP B. P☐ÿQ
C. ÿP☐Q D ÿP☐ÿQ

9.58 Computer Science & Information Technology for GATE

 Explanation: See the following table.

P Q P ν Q ¬Q P☐¬Q

T T T F T

T F T T T

F T T F T

F F F T F

37. (tan)/(tan)
/

1 1
0

4

- +Ú x x dx
p

 evaluates to

(GATE 2009)

A. 0 B. 1

C. ln 2 D.
1
2

 ln 2

38. Consider the following well-formed formulae:
(GATE 2009)

I. ¬"x (P (x)) II. ¬$x (P (x))
III. ¬$x (¬P (x)) IV. ¬$x (¬P (x))

 Which of the above are equivalent?
A. I and III B. I and IV
C. II and III D. II and IV

39. Let X, Y, Z be sets of sizes x, y and z respectively. Let
W = X × Y and E be the set of all subsets of W. The
number of functions form Z to E is : (GATE 2006)

A. Z2xy B. Z × 2xy

C. Z2x+y D. 2xyz

40. A relation R is defined on ordered pairs of integers as
follows :

 (x, y) R (u, v) if x < u and y > v. Then R is
(GATE 2006)

A. Neither a Partial Order nor an Equivalence Rela-
tion

B. A Partial Order but not a Total Order
C. A Total Order
D. An Equivalence Relation

41. We are given a set X = {x1,.....,xn} where xi= 2i. A sam-
ple S Õ X is drawn by selecting each xi independently

with probability pi = 1
2

. The expected value of the

smallest number in sample S is : (GATE 2006)

A.
1
n

B. 2

C. n D. n

A N S W E R K E Y

1. A 2. C 3. A 4. A

5. A 6. D 7. C 8. C

9. D 10. A & D 11. B 12. D

13. D 14. C 15. D 16. C

17. D 18. B 19. C 20. C

21. B 22. C 23. A 24. D

25. D 26. C 27. D 28. C

29. A 30. D 31. D 32. A

33. A 34. B 35. D 36. B

37. D 38. Incomplete question 39. D

40. A 41. B

10C H A P T E R T E N

Verbal Ability and

Numerical Reasoning

10.1 Verbal Ability (English Language Tips)

Noun: A noun is a word which is used to name items,
things, ideas, people, places, entities etc.

• Countable nouns (have singular and plural forms):
e.g. thoughts, children, etc.

• Uncountable nouns (do not have different singular
and plural forms): e.g. information, equipment, etc.

• Either countable or uncountable for different pur-
poses: e.g. university, climate, communication

Nouns usually come with ‘determiner’ words (articles)
which help to specify which particular items are being re-
ferred to:

• ‘a’ (indefinite): all, some, any, another, each, every, ei-
ther, neither, no, etc.

• ‘the’ (definite): this, that, these, those, my, your, his,
her, its, out, their, etc.

There can be only one determiner in a noun group.

• predeterminers :

– all, both, half, double, treble, quadruple, twice,
(before definite determiners)

– such and what (before indefinite determiners)

Articles

Type of
noun

Countable
Type of
article

Uncountable
Type of
article

singular
a/an

the

chair

indefinite

definite
(collective)

some

the

money

Type of
noun

Countable
Type of
article

Uncountable
Type of
article

Concrete

plural some

the

chairs generalised

definite

No plural

(but ‘bags of money’)

Singular
a/an

the

idea

(collective)

some

the

clarity
gener-

alised

Abstract

plural
some

the

ideas generalised
definite

No plural

(but degrees of

clarity)

Tips
• Use ‘the’ when the reader already knows what is re-

ferred to, or if an explanation comes immediately. It
can also be used in a collective sense—for example,
‘the chair’ represents all chairs.

• Use ‘a/an’ only with countable nouns.

• If it’s countable and singular, it must use either ‘a/
an’ or ‘the’. Deliberate omission of any article is only
possible when the noun is being generalised—for ex-
ample, ‘chairs’ (in general) or ‘money’ (in general).

10.2 Computer Science & Information Technology for GATE

Singular
indefinite
definite

Countable
A bucket of water was left on the road.
The bucket of water which was left on the road could have been a hazard.

Plural
generalised
indefinite
discriminating
definite

Buckets of water left on the road are usually hazardous
Some buckets of water were left on the road
The buckets of water which prove most hazardous are the ones that are left on the road.

Singular
Indefinite
generalised
definite

Uncountable
Some clarity in the argument would be welcomed.
Clarity in argument is very desirable.
The clarity of your argument is impressive.

Adjectives
Adjectives often accompany nouns, giving further descriptions of the item:
Single word adjective: green, hot, difficult, random etc.
Adjective phrase: (man) with no name, (sale) of the century
Adjective clause: which was left on the table, that I held in my hand

Pronouns
Pronouns are used to represent items and to avoid repetition of nouns:

Personal Objective possessive Reflexive determiner

Singular I me mine myself my

You You yours yourself your

he/she/it him/her/it his/hers himself/
herself/ itself

his/her/its

Plural we us ours ourselves our

you you yours yourselves your

they them theirs themselves their

Pronouns for reference

Personal
pronouns

Object
pronouns

Possessive
pronouns

Reflexive
pronouns

Possessive
determinants

Singular Plural Singular Plural Singular Plural Singular Plural Singular Plural

1st person I we me us mine ours myself ourselves my our

2nd person you you you you yours yours yourself yourselves your

3rd person he, she, it they him, her, it theirs his, hers theirs himself,
herself, itself

themselves his, her, its their

Verbs: to act, to be, to do, to have
A verb represents an action or state; it also shows who or what is associated with that action and when it occurred.

who/what
noun subject

did what to
verb = action/state

whom/what
noun/adjective = object

Active the cat bit the dog

Passive the dog was bitten by the cat

The important thing for good sentence construction is to know which noun did which verb, and when. This gives you the
correct agreement and tense.

Verbal Ability and Numerical Reasoning 10.3

Singular–plural agreement
It is absolutely vital that the number of subject(s) matches
the correct form of the verb:

• Blue and green are colours.

• It seems that Smith et al.(1988) were aware of the
fact.

• The equipment was prepared.

Subject–verb partnership
Each statement is built around the subject/verb partner-
ship. A sentence has various features according to the main
verb, and the associated noun, which can determine the
best word order and syntax for the sentence.

Verb forms
Each verb has three versions for use in forming tenses:

infinitive past simple past participle

to be
to look

to forget
to cut

I was
I looked
I forgot

I cut

I have been
I have looked

I have forgotten
I have cut

Verb tenses

simple present I am

present perfect I have been

simple past I was

simple future I will be

future perfect I will have been

Conditionality

Conditional

Active I would have
done if ...

I would do it ...
I would be doing
if ...

I would have been
doing if ...

passive I would have
heard if ...
I would have
been

I would be heard
if ...

Verb control
Aim to practice and familiarity with a variety of verb tenses.

Verb tenses

Verb Past perfect Simple past Present perfect Simple present Future perfect Simple future

To do I had done I did I have done I do I will have done I will do

I had been doing I was doing I have been doing I am doing I will have been doing I will be doing

I did do I do I am going to do

I used to do

To see I had seen I saw I have seen I see I will have seen I will see

I had been see-
ing

I was seeing I have been seeing I am seeing I will have been see-
ing

I will be seeing

I did see I do see I am going to see

I used to see

To have I had had I had I have had I have I will have had I will have

I had been hav-
ing

I was having I have been having I am having I will have been hav-
ing

I will be having

I did have I do have I am going to have

I used to have

To go I had gone I went I have gone I go

I did go I have been going I am going I will have gone I will go

I had been going I was going I do go I will have been going I will be going

I used to go I am going to go

10.4 Computer Science & Information Technology for GATE

Verb Past perfect Simple past Present perfect Simple present Future perfect Simple future

To plan it I had planned it I planned it I have planned it I plan it I will have planned it I will plan it

I had been plan-
ning it

I did plan it I have been plan-
ning it

I am planning it I will be planning it

I was planning it I do plan it I will have been I am going to plan it

I used to plan it planning it

To be
heard

I had been heard I was heard I have been heard I am heard I will have been heard I will be heard

I was being
heard

I am being
heard

I am going to be
heard

I used to be
heard

Adverbs
Adverbs often accompany verbs, giving further information about the action or state (e.g. when, where, how):

Single word adverb: wisely, overnight, adequately, seldom

Adverb phrase: (he spoke) with difficulty,

(she drove me) round the bend

Adverb clause: (call me) when you get there

(you will see) when the time comes

10.1.1 Vocabulary Builder

Word Meaning and sample usage

Abase Behave in a way that causes others to think less
of one
E.g.: He abased himself before the king.

Abate (of something bad)Become less severe or wide-
spread
E.g.: The doctor gave him some medicine to
abate the pain which he was suffering from
morning.

Abdicate 1. Give up the role of king or queen
2. Fail to carry out (a duty)
E.g.: Our king is abdicated by his brother.

Aberrant Not normal or acceptable
E.g.: Aberrant behaviour can be a sign of rabies
in a wild animal

Abeyance Temporarily not occurring or not in use
E.g.: The imposition of the new tax has been
held in abeyance, as the government wants
some more time to study its consequences.

Abjure Swear to give up (a belief or a claim)
E.g.: For nearly 21 years after his resignation
as Prime Minister in 1963, he abjured all titles,
preferring to remain just plain ‘Mr.’ (Time).

Word Meaning and sample usage

Abscond Leave quickly and secretly to escape from cus-
tody or avoid arrest
E.g.: A rigorous and wide search is under way
for the manager who absconded with company
funds.

Abstain Stop oneself from(doing something enjoyable)
E.g.: Members were also instructed to com-
pletely abstain from all drugs.

Abstemious Taking care to limit one’s intake of food or al-
cohol
E.g.: A Catholic Nun lives a very abstemious
lifestyle.

Abyss A very deep hole
E.g.: He fell into the dark abyss.

Accretion Growth or increase by a gradual build-up of
layers
E.g.: The phenomenon of “coastal squeeze” of
saltmarsh may be causing some net vertical ac-
cretion of mudflat surfaces.

Acidulous 1. Sharp-tasting or sour
2. (of person’s remarks)bitter or sour
E.g.: The drama critic made some acidulous
comments on the play.

Acme The highest point of achievement or excellence
E.g.: A baseball player usually reaches the acme
of his skill before he is thirty.

Verbal Ability and Numerical Reasoning 10.5

Word Meaning and sample usage

Acquiesce To comply or submit
E.g.: Though I wasn’t enthusiastic about Tom’s
plan to go fishing, I acquiesced in it because
there seemed nothing else to do.

Acrid Unpleasantly bitter or sharp
E.g.: The acrid odor of burnt gun powder filled
the air after the pistol had been fired.

Acrimonious Bitter and sharp in language or tone; rancorous
E.g.: I am watching an acrimonious debate be-
tween the two gubernatorial candidates.

Acute Keenly perceptive; sharp or severe
E.g.: I had an acute pain in my knees

Adamant Refusing to be persuaded or to change one’s
mind
E.g.: The student was adamant in his decision
to pursue a career in music.

Adequate Satisfactory or acceptable
E.g.: The student who arrived ten minutes late
did not have adequate time to finish the test.

Adulate Excessive admiration
E.g.: The singer raised his arms and basked in
the adulation of the audience.

Adulterate Make poorer in quality by adding another sub-
stance
E.g.: Hospitals take strict precautions to assure
that’s nothing adulterates the blood supply.

Advocate Publicly recommend or support
E.g.: Health authorities continue to advocate
immunisation for children.

Aerie A large nest of a bird of prey, esp. an eagle, typi-
cally built high in a tree or on a cliff.
E.g.: There in the tree an aerie is approached
up there.

Aesthetic 1. Concerned with beauty or appreciation of
beauty

2. Having a pleasant appearance
E.g.: Marjorie, having studied modernist paint-
ers, appreciated the aesthetic of the painting.

Affected False and designed to impress
E.g.: He was affected with the view that he
stopped and took out his camera.

Aggrandize Increase the power, status or wealth of
E.g.: Julius Caesar worked hard during his pe-
riod of ruling to aggrandize his empire.

Aggregate Formed or calculated by combining many sep-
arate items
E.g.:The pore of the allies’ aggregated together
was great, though individually some were quite
weak.

Word Meaning and sample usage

Alacrity Brisk eagerness or enthusiasm
E.g.: The elves in Santa’s workshop moved
about with obvious alacrity.

Alleviate Make (pain or difficulty) less severe
E.g.: I took an advil to alleviate my back pain.

Amalgamate Combine to form one organisation or structure
E.g.: In order to create a single entity from two
parts you must amalgamate them.

Ambiguous 1. Having more than meaning
2. Not clear or decided
E.g.: The results of the experiment were ambig-
uous, and no conclusions could be made.

Ambivalence Having mixed feelings about something or
someone
E.g.: The girl was feeling some ambivalence
when she had to choose between two very close
answers.

Ameliorate Make(something bad or unsatisfactory) better
E.g.: By expanding our non polluting energy
choices, we can ameliorate a variety of risks.

Amortize Gradually pay off(a debt)
E.g.: In order to pay off his large debts, John is
going to amortize the payments.

Amulet An ornament or small piece worn as protection
against evil
E.g.: Charlie the unicorn and his friends found
the amulet of wonder and took it to the banana
king.

Anachronism A thing belonging to a period other than the
one in which it exists
E.g.: It is an anachronism to say that William
Shakespeare typed his manuscripts.

Analgesia The inability to feel pain
E.g.: If you have severe pain you may be pre-
scribed stronger analgesics such as codeine.

Analogous Alike or comparable in some ways
E.g.: The attack on the world trade center was
exactly analogous to pearl harbor.

Anodyne 1. Unlikely to cause offence or disagreement;
bland

2. A pain killing drug or medicine
E.g.: An aspirin is an anodyne for a headache.

Anomalous Differing from what is standard or normal
E.g.: Sleep walking is an anomalous behavior
who’s causes are not well understood

Anomaly Something that departs what is standard or
normal
E.g.: A bird that cannot fly is an anomaly.

10.6 Computer Science & Information Technology for GATE

Word Meaning and sample usage

Antagonize Make(someone) hostile
E.g.: No candidate will want to antagonize or-
ganised labour in an election campaign.

Antipathy A strong feeling of dislike
E.g.: A guardian leader warns of growing an-
tipathy in politics.

Apathy Lack of interest or enthusiasm
E.g.: Only an apathy person can see suffering
without trying to relieve it.

Aperture An opening, hole or gap
E.g.: The audience enter a booth one at a time
to watch a three minute performance through a
small rectangular aperture.

Apocryphal Widely circulated but unlikely to be true
E.g.: She told an apocryphal story about the
pendant, but later the truth was discovered.

Apostate A person who abandons a belief or a principle
E.g.: Julian the Emperor of the Eastern Roman
Empire was titled ‘the apostate’ as he renounced
Christianity and attempted to revitalise Pagan-
ism.

Approbation Approval
E.g.: I was cheerfully received, and rejoiced that
I had merited the approbation of so many wor-
thy individuals.

Appropriate 1. Take for one’s own use without permission
2. Set aside (money) for special purpose
E.g.: I always appropriate my income so as to
meet emergency health problems.

Arbitrary Based on random choice or impulse

Arbitrate Act as an arbitrator to settle a dispute

Archaic Very old or old-fashioned
Belonging to former or ancient times

Ardor Enthusiasm or passion

Arduous Difficult and tiring

Arrogance Having too great a sense of one’s own impor-
tance or abilities

Arrogate Take or claim for oneself without justification

Articulate Fluent and clear in speech
E.g.: A baby cries and gurgles but does not use
articulate speech (or speak distinctly).

Ascetic Strictly self-disciplined and avoiding any plea-
sures or luxuries

Assail Attack violently
E.g.: The senators assailed the President on the
subject of the treaty between the two countries.

Assiduous Showing great care and thoroughness

Word Meaning and sample usage

Assuage Make(an unpleasant feeling) less intense

Attenuate Make weaker

Audacious Willing to take bold risks
E.g.: Risking serious injury, the outfielder made
an audacious leap against the concrete wall and
caught the powerfully hit ball.

Augment Make greater by adding
E.g.: The king augmented his pore by taking
over rights that had belonged to the nobles.

Augury A sign that shows what will happen in the fu-
ture

August Inspiring respect and admiration

Austere Severe or strict in appearance or manner
E.g.: Grandfather was an austere man; he used
to be silent and very strict to us.

Autonomous Self-governing or independent
E.g.: The Alumni Association is not under the
control of the school. It is a completely autono-
mous group.

Avarice Extreme greed for wealth or material things
E.g.: People who suffer from avarice spend
much less and save much more than they
should.

Axiom A statement regarded as obviously true
E.g.: Armstrong axioms are the basis for data-
base queries.

Banal Boring because not new or unusual
E.g.: Today, my lecture became too banal be-
cause of my quarrel with traffic police during
my arrival from home.

Belfry The place in a bell tower
E.g.: My child is still fond of belfry.

Belie Fail to give a true idea of
E.g.: The date of the bridge - 2000 AD - belies
the fact that the canal itself is almost 200 years
old!.

Beneficent Having a good effect
E.g.: Always expert lectures are beneficent to
young interns.

Bevy A large group
E.g.: Being a teacher I never get disturbed by a
bevy of students during ceremonial functions.

Bifurcate Divide into two branches or forks
E.g.: Government of AP bifurcated electricity
board to improve its performance.

Bilk Cheat or defraud
E.g.: The realtor tried to bilk the homeowner
out of his deposit.

Verbal Ability and Numerical Reasoning 10.7

Word Meaning and sample usage

Blight A plant disease especially one caused by fungi
E.g.: The overflowing trash can was a blight on
the otherwise beautiful park setting.

Blithe Without thought or care
E.g.: Independent of numerous obstacles from
her business opponents, Roja maintains a blithe
and bubbly attitude.

Bolster Support or strengthen
E.g.: I observed that a trail run of the game
Predator to be bolstering children’s intelligence.

Bombastic Ostentatiously lofty in style
E.g.: Since my childhood I hated my father’s
bombastic life style.

Bonhomie A good-natured friendliness
E.g.: My teachers bonhomie approachable
manners made him as this year’s best teacher.

Boor A rough and bad mannered person
E.g.: The professor was popular in his subject
classes but a terribly boor at social gatherings.

Burgeon Grow or increase rapidly
E.g.: My IT business burgeoned rapidly this
year though net profit has diminished.

Burnish Polish by rubbing
E.g.: My company hired me after seeing my
high-profile public relations in hopes of bur-
nishing recently tainted company image.

Cabal A secret political group
E.g.: The journalist uncovered evidence that a
cabal of power brokers was plotting to over-
throw the popular government.

Cacophony A harsh discordant mixture of sounds
E.g.: Even at the age of eighty I visit my village
every year only to hear cacophony of horns of
my fellow tribal childhood friends.

Cajole Persuade (someone) to do something using
flattery
E.g.: My first boy became too naughty because
of my mother’s consistent cajoling since his
birth.

Calumny The making of false and damaging statements
about someone
E.g.: During board meeting, my calumny
against the Chairman forced me to resign.

Canard An unfounded rumor or story
E.g.: The canard made everybody believe that I
and Roja are in a relation.

Candid Truthful and straightforward; frank
E.g.: The candid member of the meeting fre-
quently interrupted to state his bigoted opin-
ion.

Word Meaning and sample usage

Capitulate Give in to an opponent or an unwelcome de-
mand
E.g.: During my childhood I used to dislike
liver and onions but after my marriage my wife
forced me to eat it so I had no choice but to
capitulate.

Capricious Prone to sudden changes of mood or behavior
E.g.: My visit to USA is completely capricious,
yet my opponents followed me.

Cartography The science or practice of drawing maps
E.g.: Because of poor availability of cartography
maps of my native town, I cannot set automatic
navigation mode in my car.

Castigate Reprimand severely
E.g.: Our old warden reprimanded me many a
times for my naughty actions.

Catalyst A substance that increases the rate of a chemi-
cal reaction while remaining unchanged itself;
a person or thing that triggers an event

Cathartic Providing psychological relief through the ex-
pression of strong emotions; causing catharsis
E.g.: Our graduation ceremony was a cathartic
experience which I cannot forget in my life.

Catholic Including a wide variety of things: catholic
tastes.
E.g.: Her library collection was catholic; books
on many topics are available.

Caustic Able to burn through or wear away by chemi-
cal action.
E.g.: My client’s caustic warning regarding de-
livery deadline made me work during nights to
finish the job.

Chaos Complete disorder and confusion
E.g.: When he is elected as a Prime Minister
country is in utter chaos.

Chauvinist A person displaying extreme or unreasonable
support for their own country, cause, group or
sex
E.g.: Male chauvinism that is dominating in In-
dia lead to poor female, male ratio.

Chicanery The use of trickery to achieve one’s aims
E.g.: The peddler often used chicanery to con-
vince people that his goods were worth buying.

Circumspect Cautious or sensible
E.g.: It is better to be bold than to be too cir-
cumspect.

Clamor A loud and confused noise, esp. that of people
shouting vehemently
E.g.: They got frustrated and decided to clamor
for attention.

10.8 Computer Science & Information Technology for GATE

Word Meaning and sample usage

Cloy Disgusting or sickening because of excessive
sweet or sentiment
E.g.: I enjoy learning new things, but too much
studying cloys my desire to even go to school
anymore.

Coagulate Change to a solid or a semi solid state
E.g.: Allow the gelatin to almost coagulate be-
fore adding banana slices.

Coalesce Come or bring together to form a mass or
whole
E.g.: Only after interrogating house maid, the
various clues available with the detective began
to coalesce into a complete sequence of events.

Coffer A small chest for holding valuables
E.g.: I got a coffer as a prize during my tenth
class.

Cogent Clear, logical and convincing
E.g.: My solicitors cogent arguments, got me a
bail on the same day of my arrest.

Collusion Secret cooperation in order to cheat or to
deceive
E.g.: My wife’s collusion with my opponent
made to frustrate.

Compliant A reason for dissatisfaction
E.g.:My complaint to Goverment against the
municipality made them to release water
regularly.

Compunction A feeling of guilt that prevents or follows
wrongdoing
E.g.: Mohammad Ghazani did not show any
compunction for looting India several times.

Conciliatory Make calm and content
E.g.: After recent students unrest, Home
Ministry concentrated on conciliatory
measures to continue peace.

Condone Accept or forgive (an offence or wrongdoing).
E.g.: How can the teachers condone such a bad
behavior of the minister’s son?

Connoisseur An expert judge in matters of taste
E.g.: My frequent visits to the best restaurants
in France, made me a connoisseur of fine wines
that are available all over the globe.

Consensus General agreement
E.g.: I became successful in bringing consensus
in our apartment’s general body meeting.

Conspicuous Clearly visible; attracting notice
E.g.: Because of conspicuous errors in my
report, I did not get nomination.

Contentious Causing or likely to cause disagreement or con-
troversy
E.g.: That contentious child in the grocery store
gave me a headache.

Word Meaning and sample usage

Contrite Very sorry for having done wrong.
E.g.: His guilty face and apologetic tone showed
that he felt contrite.

Contumacious Stubbornly or willfully disobedient to authority
E.g.: Her contumacious attitude gave her deten-
tion for a week.

Conundrum A confusing or a difficult problem or a question
E.g.: I’m in a bit of a conundrum- I locked my
keys in the car.

Convoluted Extremely complex
E.g.: It is impossible to get any new laws passed
in that convoluted government bureaucracy.

Corpulent Fat
E.g.: Because of my corpulent body, I could not
join the army though I love it.

Cqorroborate Confirm or give support to a statement or a
theory
E.g.: I am always forced to corroborate my wife
because of her convincing explanations.

Cosset Care for and protect in an excessively soft-
hearted way
E.g.: The poor child wanted to feel cosset.

Coterie A small exclusive group of people with shared
interests or tastes
E.g.: Recent unrest in the capitol can be attrib-
uted to Prime Minister’s coterie.

Craven Cowardly
E.g.: A hero risks his life to help others while a
craven runs away from the scene.

Credulous Too ready to believe things
E.g.: A credulous rumor is spreading in the col-
lege about joining a new, strict principal who is
from military.

Crescendo A gradual increase in loudness in a piece of
music; a climax
E.g.: The crescendo in the orchestra excited the
audience at the end.

Crestfallen Sad and disappointed
E.g.: My wife was crestfallen when she saw the
bad rank of our daughter in JEE examination.

Cupidity Greed for money and possessions
E.g.: My father’s cupidity led him to problems
and in the end resulted in a prison sentence.

Curmudgeon A bad-tempered person
E.g.: My neighbor is widely viewed as a cur-
mudgeon who never had anything good to say
about his neighbors.

Daunt Cause to feel nervous or discouraged
E.g.: Because of my daunting answers during
the Interview, I was not selected for the coveted
post.

Verbal Ability and Numerical Reasoning 10.9

Word Meaning and sample usage

Debase Lower the value, quality or character of
E.g.: Recent debasing rules that are introduced
in the cricket game, many people lost interest
in it.

Debutante A young upper class woman making her first
appearance in the society
E.g.: The debutante’s photograph was at the
head of the society page.

Declivity A downward slope

Decorous In good taste; polite and restrained
E.g.: Members of the diplomatic corps are ex-
pected to behave in a decorous manner.

Decorum Polite and socially acceptable behavior

Deface Spoil the appearance of
E.g.: The ecliptic lover of my neighbors daugh-
ter defaced her with acid.

Deference Humble respect
E.g.: My beloved parents do not drink alcoholic
beverages, so in deference to their beliefs I have
not habituated to drink wine with my meal.

Deleterious Causing harm or damage
E.g.: Pollution has deleterious effects on our
environment.

Delineate Describe or indicate precisely
E.g.: At last, we have delineated the responsi-
bilities of new incumbent to our office.

Demagogue A political leader who appears to the desires
and prejudices of the public
E.g.: Hitler’s type of political leadership made
him something of a demagogue.

Demean Cause to suffer a loss of dignity or respect
E.g.: My father in law demeaned me by listen-
ing to the words of my wife.

Demur Show reluctance
E.g.: She thought the home was beautiful, but
she demurred at the price.

Demure (of a woman) reserved, modest and shy

Denunciation The action of denouncing
E.g.: The king’s denunciation leads to anarchy
in our country.

Deprecate Express disapproval of
E.g.: Do not deprecate their actions until you
know the whole story.

Deride Ridicule
E.g.: The teacher derided the student in front of
the entire class.

Derision Scornful ridicule or mockery
Eg: The matrix revolutions found itself on the
wrong end of more criticalderision than any
decent film in quite some time.

Word Meaning and sample usage

Derivative Something which is derived from other source
E.g.: Copycats are never as good as the original
and always feel derivative.

Desiccate Remove the moisture from
E.g.: Salts desiccate plants and can become tox-
ic to many plant species.

Desultory Lacking purpose or enthusiasm
E.g.: After some time his output of talk became
more desultory as he continued to fail to make
progress.

Detached Separate or disconnected
E.g.: He brought an essential element of sad-
ness to the role of a man always slightly de-
tached from the action.

Deterrent A thing that deters or intend to deter
E.g.: A border of at least a meter, filled with
thorny shrubs is a great burglar deterrent.

Detraction A petty disparagement
E.g.: The candidate responded sharply to the
long list of detractions concocted by his oppo-
nent

Diaphanous Light, Delicate and semi-transparent
E.g.: The stain glass window was very diapha-
nous I could almost clearly see the clouds out-
side.

Diatribe A harsh forceful verbal attack
E.g.: My mother’s lengthy and vehement dia-
tribe against my fiancé irritated me a lot.

Dichotomy A separation or contrast between two things
E.g.: There was both an increase in unemploy-
ment and an increase in consumer confidence,
creating an interesting economic dichotomy.

Dictum A short statement that expresses a general prin-
ciple
E.g.: Yesterday night, my father’s advice made
me to recall old dictum that “truth emerges
more readily from error than from confusion”.

Diffidence Lacking in self-confidence
E.g.: I failed in my interview because of my dif-
fidence.

Diffident Shy because lack of self confidence
E.g.: His diffident behavior forced board to
eliminate him from finals.

Diffusion The action of spreading over a wide area
E.g.: The diffusion of a rumor that a psycho
is moving in the area forced me to cancel my
journey.

Dilate Make or become wider, larger or more open.
E.g.: After listening patting words by my princi-
pal, my chest got dilated by two inches.

10.10 Computer Science & Information Technology for GATE

Word Meaning and sample usage

Dilatory Slow to act
E.g.: The workforce has become very dilatory
since the announcement of the low pay rise
agreement.

Dilettante A person who dabbles in a subject for enjoy-
ment but without serious study
E.g.: The dilettante felt that his superfi-
cial knowledge of art qualified him to judge
the artist work.

Diplomatic Having to do with diplomacy; tactful
E.g.: His diplomatic attitude made him as the
Director.

Dirge A lament for the dead
E.g.: At the end of the memorial service, a
mournful dirge was played on the bagpipes by
three pipers.

Disabuse Persuade (someone) that an idea or a belief is
mistaken
E.g.: He quickly disabused the notion that the
world was flat when he returned with evidence
that it was indeed round.

Discern Recognise or be aware of
E.g.: The reasons behind this sudden change in
my wife’s behavior are difficult to discern.

Discerning Having or showing good judgment
E.g.: His discerning nature made me as his
favourite.

Discombobu-
lated

Disconcert or confuse
E.g.: I am hesitant to forward him to my Man-
ager’s attention as I am sure he would discom-
bobulate him since he is easily confused.

Discomfited Making uneasy or embarrassed
E.g.: The young man was discomfited being the
only male in the play.

Discordant Not in harmony or agreement
E.g.: My marriage was discordant; I couldn’t
take another minute of such misery.

Discrepancy A difference between the things expected to be
the same
E.g.: A small discrepancy in his application
form forced us to eliminate him in finals.

Discrete Individually separate and distinct
E.g.: Because of his discrete attitude, his chil-
dren also left him.

Disingenuous Not sincere, especially in pretending ignorant
of something
E.g.: Politicians make disingenuous promises
during the election campaign knowing full well
that they could never fulfill them.

Word Meaning and sample usage

Disinterested Not influenced by personal feelings, impartial
E.g.: Once, he responded to a client’s request
with a bunch of pie charts that measured
his disinterest in the job.

Disjointed Lacking coherence, disconnected
E.g.: His disjointed answers made jury to send
him for mental checkup.

Disparage Speak of (someone or something) as being of
little worth
E.g.: His intent was to disparage his opponent.

Disparate Very different in kind
E.g.: The team achieved success despite the
many disparate personalities.

Dissemble Hide or disguise one’s motives or feelings
E.g.: In a television interview the politician
tended to dissemble rather than to answer
questions truthfully.

Disseminate Spread information widely
E.g.: Main motto of Internet is to disseminate
knowledge.

Dissonance Lacking harmony; discordant
E.g.: The cognitive dissonance that results from
smoking2 despite knowing that smoking is un-
healthy for you is massive.

Distaff A stick or spindle on to which wool or flax is
wound for spinning
E.g.: Could you please hold this distaff, whilst I
relieve myself in the toilet?

Distend Swell because of internal pressure
E.g.: The poor, malnourished child’s belly was
distended so far she couldn’t see her feet, al-
most as if she was pregnant.

Distill Extract the most important aspects of
E.g.: The essay would be much better if you
could distill the information and reduce the es-
say to half of its present length.

Dither Be indecisive
E.g.: The dithering old women needed help
from her nurse to function.

Diurnal Of or during the day time ; daily

Diverge Be different from
E.g.: My Mother and I have very divergent
ideas about how I dress for my marriage func-
tion.

Divine Having to do with God; excellent
E.g.: His divine character forced everyone to
accept him as our priest.

Doctrinaire Very strict in applying beliefs or principles
E.g.: His continued support of impractical the-
ories marked him as a doctrinaire.

Verbal Ability and Numerical Reasoning 10.11

Word Meaning and sample usage

Dogma A principle or principles laid down by author-
ity and is intended to accept without question
E.g.: The Catholic Church has endless dogmat-
ic beliefs.

Dormant Temporarily inactive
E.g.: In our country, one can find both active
and dormant volcanoes.

Droll Amusing in a strange or unexpected way
E.g.: He enjoyed their walk and thought she
had a droll sense of humor.

Dupe Deceive
E.g.: He duped me again in my recent trip by
his car.

Dyspeptic Relating to or suffering from dyspepsia; irri-
table
E.g.: I have been plagued with dyspepsia ever
since I took this job last year.

Ebullient Cheerful and full of energy
E.g.: I was attracted by my wife because of her
ebullient personality.

Eclectic Deriving ideas or style from a wide range of
sources
E.g.: I have an eclectic taste in music.

Edify Improve the mind or character of someone by
teaching
E.g.: A preacher’s responsibility is to edify his
pupil.

Efficacy The ability to produce an intended result
E.g.: His efficacy in all the projects raised him
to the coveted post of chairman.

Effigy A sculpture or a model of a person
E.g.: Chief Minister’s effigy was burnt by angry
mob.

Effrontery Insolence or impertinence
E.g.: He has the effrontery to accuse Kant of
barbarous jargon.

Effusive Expressing pleasure or approval in an unre-
strained way
E.g.: She was so effusive in describing her hus-
band that I felt drowned in words.

Elicit Produce or draw out a response or a reaction
E.g.: Her tears elicited great sympathy from her
audience.

Eloquent Clearly expressive
E.g.: Her eloquence was sufficient to persuade
her manager.

Embellish Make more attractive; decorative
E.g.: When I grow up, I do not want to live life
with my face held down, I want to embellish
life.

Word Meaning and sample usage

Empower Give authority or power to
E.g.: It is high time to empower newly recruited
teachers to meet 21st century needs.

Emulate Try to be equal or better than
E.g.: She emulates her mother and grandmoth-
er which made us to laugh a lot.

Encomium A speech or piece of writing expressing praise
E.g.: An encomium by the President greeted
the returning hero.

Endemic (of a disease or condition) regularly found
among particular people or a certain area
E.g.: Charminar is a memorial of people who
died of plague endemic in Hyderabad.

Enervate Cause to feel drained of energy
E.g.: Prolonged exposure to the sun and dehy-
dration enervated the shipwrecked crew, leav-
ing them almost too weak to hail the passing
vessel.

Engender Give rise to
E.g.: Continued interference by the West in the
affairs of Iran, could engender another war.

Enigma A mysterious or puzzling person or thing
E.g.: The crossword puzzle was nothing but an
enigma for the confused student.

Enmity Hostility
E.g.: Continued enmity of Pakistani people
with Indians pains me a lot.

Enumerate Mention one by one
E.g.: She has enumerated all the difficulties that
she is facing.

Ephemeral Lasting or living for a very short time
E.g.: Her ephemeral smile always amuses me.

Epicure A person who takes particular pleasure in good
food or drink
E.g.: I love going to parties at an epicure’s house
because they have the best food.

Equanimity Calmness
E.g.: My equanimity at the accident site where
my wife is dead raised doubts about my in-
volvement in the accident.

Equivocate Use language that can be understood in more
than one way to avoid the truth
E.g.: Her equivocal statements proved she is
best suitable for political career.

Erratic Not even or regular in pattern or movement
E.g.: His erratic behavior during first month of
his stay made me to think about his candida-
ture.

Ersatz Made as a poor quality substitute for some-
thing else
E.g.: When I brought home an ersatz diamond
ring, my fiancé threw me out.

10.12 Computer Science & Information Technology for GATE

Word Meaning and sample usage

Erudite Having or showing knowledge or learning
E.g.: His erudite speech made all of us to clap
continuously.

Eschew Deliberately avoid doing something
E.g.: I try to eschew answering questions like
these.

Esoteric Intended for or understood by only a small
number of people with special knowledge
E.g.: This is a compilation of esoteric philo-
sophical theories

Estimable Worthy of great respect
E.g.: He is one of the estimable young professor
of our university.

Ethos The characteristic spirit of a culture, era or a
community
E.g.: The free-love movement was typical of the
ethos of the late 1960’s.

Eulogy A speech or piece of writing that praises some-
one highly
E.g.: I was asked to give the eulogy at my best
friend’s funeral.

Euphemism A less direct word used instead something that
is harsh or blunt when referring to something
unpleasant or embarrassing

Euphony The quality of having a pleasant sound
E.g.: Her speaking ability was excellent and her
euphonious voice made all of us to listen to her
without murmuring a single word.

Euphoria A feeling of great happiness
E.g.: He was filled with euphoria when he heard
the news of the birth of his son.

Exacerbate Make a problem or bad situation worse
E.g.: My chairman’s vociferous speech exacer-
bated our company’s share values.

Exculpate Show or declare to be not guilty of wrongdoing
E.g.: The jury had to exculpate the defendant
due to lack of evidence.

Exigent Pressing
E.g.: I became more exigent over his pronun-
ciation.

Exonerate Officially declare free from blame
E.g.: This evidence in your hand will certainly
exonerate you; you can no longer be charged.

Explicit Clear and detailed.
E.g.: His explicit directions helped us to reach
quickly.

Exponent A person who does a particular thing skillfully
E.g.: Jim was an exponent of the idea that “god”
is a clown suit for the laws of physics.

Word Meaning and sample usage

Expurgate Remove matter seen as obscene or unsuitable
E.g.: The writings of the female Prophets were
expurgated from the old texts.

Extensive Covering a large area
E.g.: My extensive lawn area is covered with
Australian grass.

Extrapolation 1. To infer or estimate by extending or project-
ing known information

2. Mathematics To estimate (a value of a vari-
able outside a known range) from values
within a known range by assuming that the
estimated value follows logically from the
known values

E.g.: I am able to extrapolate after her long de-
scription of the incident.

Facetious Treating serious issues with inappropriate hu-
mor
E.g.: I was irritated with John’s facetious re-
marks about the game.

Facilitate Make easy or easier
E.g.: We were relieved after seeing John as we
were confident that he can facilitate us in all
unexpected situations during the proposed
tour.

Fallible Capable of making mistakes or being wrong
E.g.: Because of his fallible attitude, he missed
his selection.

Fallow 1. (of farmland) ploughed but left for a period
being planted with crops

2. when very little is done or achieved
E.g.: For many contract overseas workers there
is a cycle of good earnings followed by fallow
periods.

Fanatical A person filled with excessive enthusiasm for
an extreme political or a religious cause
E.g.: He is a fanatic.

Fatuous Silly and pointless
E.g.: Gamblers often fatuously lose their money
at casinos.

Fawn Try to gain favor by servile flattery or attentive
behavior
E.g.: It is so annoying how she fawns all over
him.

Fecund Highly fertile
E.g.: I have been working hard to make this soil
fecund.

Felicitous Well chosen or appropriate
E.g.: I have given felicitous answers in the inter-
view, thus chances are more for my selection.

Fervid Fervent; very passionate
E.g.: His fervid speech opposing child labor,
touched the hearts of the listeners.

Verbal Ability and Numerical Reasoning 10.13

Word Meaning and sample usage

Fervor Intense and passionate feeling
E.g.: The presidential candidates have much
fervor in their campaigns.

Fetid Smelling very unpleasant
E.g.: The fetid odor of spoiled sea bass wafted
from the fishing trawler.

Florid Having a red or flushed complexion
E.g.: The boy’s face was florid after he got caught
wearing his mother’s underwear.

Flout Openly fail to follow (a rule or a custom)
E.g.: She shouldn’t have flouted that red light.
You have flouted the laws of this institution and
for that you will be punished.

Foment Stir up(revolution or conflict)
E.g.: Fidel Castro fomented a coup de tat and
soon took over Cuba.

Forbearance Patient self-control
E.g.: I pleaded with my enemy to show fore-
bearance, but instead he overwhelmed me with
his hatred.

Ford A shallow piece in a river or a stream where it
can be crossed
E.g.: We are looking for a ford to cross easily.

Fortuitous Happening by chance, Lucky
E.g.: I am very fortuitous to receive this job of-
fer.

Fractious Bad tempered, Difficult to control
E.g.: My friend was particularly fractious when
it came to the topic of politics.

Frenetic Fast and energetic in a disorganized way
E.g.: Calm down and stop those frenetic move-
ments.

Frugality Sparing with money or food
E.g.: My mother is frugal when it comes to
spending for herself.

Fulminate Express strong protest
E.g.: Public officials across the political spec-
trum fulminated against the perceived security
threat.

Furtive Trying to avoid being noticed in a secretive or
in a guilty way
E.g.: The young convict made many furtive at-
tempts to escape from prison.

Gainsay Deny or contradict; speak against
E.g.: One cannot gainsay the fact that the pro-
liferation of contract positions in Ministries
and departments creates dissatisfaction among
those serving officers.

Gambol Run or jump about playfully
E.g.: We watched the lambs as they gamboled
in the field.

Word Meaning and sample usage

Garner Gather or collect
E.g.: When you have learned the definition of
garner, you will have garnered the knowledge
to use it in a sentence.

Garrulity The quality of being extremely talkative
E.g.: With the confidential garrulity of a man
who has dined too well, he plunged into his
darling topic, and I looked past him at the
clock.

Garrulous Extremely talkative
E.g.: She was unable to sleep on the flight be-
cause of the garrulous passenger sitting beside
her.

Gestation 1. The process of carrying or being carried in
the womb between conception and birth

2. Duration of pregnancy

Glib Able to express oneself well but not meaning
what one says
E.g.: The congress man found it easy to give glib
answers when asked a direct question.

Glower Have an angry or sullen look on one’s face
E.g.: The bad sport sat in a corner and decided
to glower at his opponents.

Gradation A scale of successive changes, stages or degrees
E.g.: Apples gradation takes place before any-
thing in jam factory.

Gratuitous Done without good reason or purpose
E.g.: I am a victim of a gratuitous Mother-in-
Law.

Gregarious 1. Fond of company(sociable)
2. (of animals) living flocks or colonies
E.g.: Her gregarious appearance made me to
love her at first meeting.

Grievous Serious physical injury inflicted on a person by
the action of another
E.g.: It was grievous to see in a short time how
poorly they lived.

Grovel Crouch or crawl on the ground
E.g.: My dog knew he was in trouble; he began
to grovel as soon as I came in and saw the mess
he had made.

Guile Sly or cunning intelligence
E.g.: He borrowed without guile, someone else’s
work as his own.

Guileless Very honest or sincere
E.g.: The guileless youth was no match for the
tricks of the street-smart hood.

Gullible Easily persuaded to believe something
E.g.: I am always worried about my young
daughter’s gullible nature.

10.14 Computer Science & Information Technology for GATE

Word Meaning and sample usage

Hamper Slow down or prevent the movement or prog-
ress of
E.g.: I don’t want your presence here because
my work gets hampered.

Hapless Unlucky
E.g.: I am hapless even after working hard and
spending money.

Harangue Criticize at length in an aggressive manner
E.g.: She delivered her harangue with much
venom, leaving her audience in shock.

Hegemony Leadership or dominance especially by one
country or social group
E.g.: I rendered my hegemony to the confound-
ed people of this country.

Hermetic (of a seal or a closure) complete air-tight
E.g.: When I bought new containers, they were
very hermetic.

Hoary 1. Having grey hair
2. Old and unoriginal
E.g.: Everything told of long use and quiet
slow decay; the very bell-rope in the porch was
frayed into a fringe, and hoary with old age.

Hyperbole Exaggerated statements that are not meant to
be taken in strict sense of words
E.g.: Was the car really as fast as a bullet, or is
that just hyperbole?

Iconoclast A person who attacks popular beliefs or estab-
lished values and practices
E.g.: I would never be an iconoclast because I
would never attack cherished beliefs.

Idiosyncrasy A person’s particular way of behaving or think-
ing
E.g.: My maternal uncle’s idiosyncrasy divided
our family.

Ignoble Not good or honest
E.g.: Getting someone else to do your home-
work for you is fairly ignoble.

Imbue Fill with a feeling or quality
E.g.: He was imbued with a desire for social
justice.

Imminent About to happen
E.g.: It is imminent to sack our president.

Immutable Unchangeable
E.g.: His immutable attitude made him as a best
karate trainer.

Impair Weaken or damage
E.g.: If I cut my fair hair it will be sure to impair.

Impasse A situation in which no progress is possible
E.g.: We have come to an impasse in our dis-
cussion.

Word Meaning and sample usage

Impassive Not feeling or showing emotion
E.g.: The doctor made his examination with
impassive face.

Impecunious Having little or no money
E.g.: Reddy was certainly not an impecunious
man.

Imperturbable Unable to be upset or excited
E.g.: We couldn’t believe that Rafael would be
that imperturbable in the midst of a riot.

Impervious Unable to be affected by
E.g.: After repeated application of this jelly, roof
becomes impervious to water.

Impetuous Acting or done quickly without thought or care
E.g.: He ducked impetuously under the ball.

Impious Not showing respect or reverence
E.g.: The church accused him of impiety and
had all his writings burned.

Implacable Unwilling to stop being hostile towards some-
one or something
E.g.: I am implacable in my opposition to your
proposal.

Implicit Suggested though not directly expressed
E.g.: It is implicit that he is not interested in my
project.

Imprecation A spoken curse
E.g.: The wizard muttered imprecations as he
worked.

Imprudent Not showing care for the consequences of an
action; rash
E.g.: Her majesty took a great dislike at the im-
prudent behavior of many of the ministers and
readers.

Impugn Express doubts about the truth or honesty of
E.g.: By not being honest, I fear that people will
impugn your motivations.

Incarnadine To make incarnadine, especially to redden.

Inchoate Just begun and not so fully formed or devel-
oped
E.g.: The project was still inchoate and far from
completion.

Inculcate Fix an idea or a habit in someone’s mind by rep-
etition
E.g.: A good teacher inculcates good practices
that are followed by the students.

Indiscriminate Done or acting without careful judgment
E.g.: Indiscriminate removal of trees increased
earth’s temparatures.

Indolence Lazy
E.g.: His indolence stopped him from going
farther in his job.

Verbal Ability and Numerical Reasoning 10.15

Word Meaning and sample usage

Inequity Lack of fairness or justice
E.g.: There was such inequality of positions in
the office that I just quit.

Inertia A tendency to do nothing or to remain un-
changed
E.g.: I decided to remove inertia in my elder
son such that he finds a job at the earliest.

Inexorable Impossible to stop or prevent
E.g.: The inexorable truth of the matter was, she
was not going to escape this penitentiary alive.

Ingenuous Innocent and unsuspecting
E.g.: His ingenuous reply made all of us to
laugh.

Ingrate An ungrateful person

Ingratiate Bring oneself into favor with someone by flat-
tering or trying to please them
E.g.: Please ingratiate my answer because I an-
swered this all I expect to get back is the best
answer.

Inherent Existing in something as a permanent, essential
or characteristic attribute
E.g.: His inherent characteristic of calmness
fetched this job.

Inimical Unfriendly; hostile
E.g.: The inimical police officer writes the guy
a ticket.

Iniquity Immoral or grossly unfair behavior

Innocuous Not harmful or offensive
E.g.: Mary was scared that the dog was going to
hurt her baby, but after a while she found that
the dog was innocuous.

Inquest An official inquiry to gather facts relating to an
incident
E.g.: The inquest was scareed when thrown be-
fore the judge.

Insensible Numb; without feeling

Insipid Lacking flavour. Lacking liveliness or interest
E.g.: Because of a his mothers bad health, Rao’s
disco function became too insipid.

Insurrection A violent uprising against an authority
E.g.: We hear that the country is full of insur-
rection as loyalists and rebels rise against each
other.

Inter 1. Place a dead body in a grave or in a tomb
2. Between

Interregnum A period between regimes when normal Gov-
ernment is suspended.

Intractable Hard to deal with
E.g.: His statements are intractable thus we
could not win the treasure hunt.

Word Meaning and sample usage

Intransigent Refusing to change one’s views or behavior
E.g.: A person who refuses to agree or compro-
mise can be described an intransigent.

Intrepid Fearless; adventurous
E.g.: Columbus was an intrepid explorer, show-
ing his endurance, resolute fearlessness and
fortitude.

Inundate Flood; overwhelm with things that are to be
dealt with
E.g.: River next to my town inundated my farm
house.

Inure Become used to something unpleasant
E.g.: By taking cold showers, a person can be-
come inured to short exposure to cold environ-
ments.

Invective Strongly abusive or critical language
E.g.: I thought his answer was quite invective; I
rushed to Principal.

Investiture The action of formally investing a person with
honors or rank
E.g.: The Federal government’s proposed inves-
titure of fifteen billions dollars may not be suf-
ficient to save the ailing big three automakers.

Invidious Unacceptable and unfair and likely to arouse
resentment or anger among other people
E.g.: Radha became jealous when her two best
friends began to forge a friendship of their
own, so she began to make invidious compari-
sons about each one behind the other’s back, in
an effort to split them up.

Irascible Hot-tempered; Irritable
E.g.: When I get irascible, I cursed and yelled.

Itinerant Travelling from place to place.

Itinerary A planned route or journey
E.g.: I always ask my office people to make my
itinerary ready before on month of my travel
date.

Jargon Words or expressions used by a particular
group that will be difficult for others to under-
stand
E.g.: The science student found it hard to un-
derstand the jargon of the astronomers.

Jettison Throw or drop from an aircraft or a ship

Jingoism Excessive support for one’s country

Jocular Humorous
E.g.: His jocular behavior eliminated him from
army selections.

Judicious Having or done with good judgment
E.g.: I expect judicious treatment for this pa-
tience.

10.16 Computer Science & Information Technology for GATE

Word Meaning and sample usage

Juncture A particular point of time
E.g.: At this juncture, I don’t want to withdraw
money from bank.

Keen Interested in
E.g.: A visiting team shown keen interest in my
project.

Kindle Light (a flame) or arouse (an emotion)
E.g.: My husband and I rekindled our love for
each other by sharing a cozy evening by the
kindling fire.

Knell The sound of a bell rung solemnly
E.g.: As the mourners gathered at the graveside,
they heard the solemn knell of the church bell.

Kudos Praise and honor
E.g.: John received some well-deserved kudos
for finishing at the top of his class.

Lachrymose Tearful and sad
E.g.: The death of her husband turned her into
a lachrymose woman, ready to cry at the drop
of a hat.

Laconic Using very few words
E.g.: All I received in response to my request
was the laconic reply, Wait.

Lament A passionate expression of grief
E.g.: The whole family was lamenting over their
uncle’s unexpected death.

Lampoon Publicly mock or ridicule
E.g.: The orator was lampooned in the editorial
pages for giving an ill conceived answer.

Languid Reluctant to exert oneself physically
E.g.: His lack of interest was apparent with the
languid manner in which he sulked across the
stage.

Lapidary Relating to the engraving , cutting or polishing
of stones or gems
E.g.: A lapidary artist creates beautiful jewelry
with the use of rocks and minerals.

Larceny Theft of personal property
E.g.: Once the trial ended, the man was charged
with the crime of larceny.

Largess 1. Generosity
2. Money or gifts given generously
E.g.: The vassal was able to make a secure living
thanks to the largess of the king.

Lascivious Feeling or showing open or offensive sexual
desire
E.g.: Lessica Rabbit is a most lascivious woman.

Lassitude Physical or mental weariness; lack of energy
E.g.: Mr. Marshall hated teaching during the
period following lunch, it was impossible to
overcome his students’ lassitude and capture
their attention.

Word Meaning and sample usage

Latent Existing but not yet developed, apparent or ac-
tive
E.g.: The employee saw a latent value of the
Egyptian lamp.

Laud Praise highly
E.g.: He always lauds my efforts which are my
main strength in passing examinations.

Laudatory Expressing praise and commendation
E.g.: For those who believe in and love God,
inherent in their expressions of God are lauda-
tory statements of Him.

Lavish Very rich, elaborate or luxurious
E.g.: These lavish arrangements for my mar-
riage are at the demand of my father.

Leery Cautious or wary
E.g.: She hesitated stepping into the friendly
crowd, because she was leery of strangers.

Legerdemain Trickery
E.g.: The magician’s legerdemain was quite evi-
dent in the complexity of his tricks.

Lethargic Lacking energy or enthusiasm
E.g.: I became lethargic after my poor perfor-
mance in mathematics.

Levity The treatment of a serious matter with humor
or lack of respect
E.g.: The only moment of levity during the con-
ference came when one speaker sang at the end
of her speech.

Liberal Given, used or giving in generous amounts
E.g.: My mathematics teacher is liberal in giv-
ing marks; so all of us are fans of her.

Libertine A man who behaves immorally
E.g.: His search for fun at the expense of others
clearly showed John’s libertine attitude towards
life.

Licentious Sexually immoral
E.g.: I have never met such a licentious slut in
my life.

Limpid Clear
E.g.: My limpid remarks made my son to realise
the facts.

Lionize Treat as a celebrity
E.g.: Today we will lionize her since its her
birthday.

Lissome Slim, supple and graceful
E.g.: The lissome actress’s dance training is ap-
parent in the way she moves on stage

Listless Lacking energy or enthusiasm
E.g.: Sometimes students have trouble paying
attention in summer school because the heat
makes them listless.

Verbal Ability and Numerical Reasoning 10.17

Word Meaning and sample usage

Livid Furiously angry
E.g.: I was livid when I found none in my class
who didn’t know what is the correct value of
2+3*4.

Loquacious Talkative
E.g.: I have this loquacious girl who sits behind
me in my class that is always getting me into
trouble.

Lucid Easy to understand; clear
E.g.: I love my Physics teacher because of her
lucid explanations.

Lugubrious Sad and dismal
E.g.: The widow was very lugubrious at her rich
dead husband’s funeral.

Lumber Relating to the lower back
E.g.: The Semi Truck lumbered up the hill with
it’s over sized load.

Luminous Bright or shining especially in the dark
E.g.: The luminous stars lit up the dark sky

Machination Plots and scheming
E.g.: To succeed in life, she made many risky
machinations.

Maelstrom A powerful whirlpool
E.g.: As I entered the store I was engulfed by a
maelstrom of holiday shoppers.

Magnanimity Generous or forgiving towards a rival or enemy
E.g.: My grandfathers magnanimity is well
known in my district.

Magnate A wealthy and influential businessman or busi-
nesswoman

Malediction A curse
E.g.: The poor boy couldn’t shake the maledic-
tion that was put upon him by the old witch.

Malevolent Wishing evil to others
E.g.: I was forced to suspend the services of my
personnel assistant because of her malevolent
behavior.

Malinger Pretend to be ill in order to avoid work
E.g.: Lazy students malinger, rather than pre-
pare, hence their low grades.

Malleable Easily influenced
E.g.: Usually mothers are malleable compared
to fathers.

Mannered Behaving in a specified way
E.g.: Because of my well mannered dress, I was
selected.

Mar Spoil the appearance or quality of
E.g.: He was careful not to mar the surface as he
carried the priceless antique up the stairs.

Martinet A person who enforces strict discipline
E.g.: I’m a martinet in the classroom because I
don’t believe in kids cheating on their homework
by having us write their sentences for them.

Word Meaning and sample usage

Maudlin Sentimental and full of self-pity
E.g.: I was joyful yet maudlin as I recalled my
childhood.

Maverick An unconventional or independent-minded
person
E.g.: The gambler was a real maverick, making
bets seemingly at random and without reason.

Mendacious Untruthful
E.g.: The feuding neighbors frequently called
the police to report mendacious complaints
about each other.

Mendicant Regularly engaged in begging
E.g.: The mendicant orders depend directly on
charity for their livelihood.

Mercurial Tending to change mood suddenly
E.g.: Everyone stayed away from John, his tem-
per was mercurial.

Meretricious Appearing attractive but in reality having no
value
E.g.: The plastic surgery that she had done had
made her appearance nothing but meretricious.

Metaphor A figure of speech in which a word or phrase is
used to represent or stand something else.

Meticulous Very careful and precise
E.g.: His meticulous plan avoided shut down of
our factory.

Militate Be a powerful or decisive factor
E.g.: There are several thing that militate against
a relationship.

Mirth Laughter
E.g.: The joke that the teacher told, left the
whole class in mirth, even when they thought
about what he had said they cracked up.

Misanthrope A person who dislikes and hates other people
E.g.: His misanthropic attitude forced the vil-
lage to throw him from the village.

Missive A letter
E.g.: I sent a missive to my mother while I re-
membered to do so.

Mitigate Make less severe, serious or painful
E.g.: I have been nominated by the president to
mitigate the situation in the eastern province.

Mollify Lessen the anger or anxiety of
E.g.: I have been nominated by the president to
mollify the people eastern province who is de-
manding separate state.

Molt Shed old feathers, hair, or skin, or an old shell,
to make way for a new growth
E.g.: My pet penguin is not molting, penguins
do not molt.

Monastic Relating to monks or nuns or their communities
E.g.: The pet detective lived a monastic life after
the death of a raccoon he was trying to save.

10.18 Computer Science & Information Technology for GATE

Word Meaning and sample usage

Monogamy The state of having only one life partner

Monotony Lack of variety and interest; tedious repetition
and routine
E.g.: After my wife’s death, I am suffering from
monotony.

Mores The customs and conventions of a community
E.g.: Pathetically, our educational mores have
it that the more A’s a student makes, the better
their education.

Multifarious Having great variety
E.g.: Leonardo da Vinci’s notebook reveals that
he was a man of multifarious interests.

Mundane Lacking interest or excitement
E.g.: He led a rather mundane life, thus he ad-
vised his children to plan for joyful life.

Mutinously Disposed to or in a state of mutiny
E.g.: The tide of undecipherable signatures of
mutinous adolescents which has washed over
and bitten into the facades of monuments and
the surface of public vehicles in the city where
I live.

Myopic Short sighted
E.g.: Mr. Jones sought a stronger prescription
for his myopic night driving.

Nadir The lowest or worst point

Nascent Just coming into existence and beginning to
develop
E.g.: The nascent theories of the creation of the
Universe seem not to agree with the Big Bang
theory.

Naive 1. Lacking experience, wisdom or judgment
2. Lacking sophistication
E.g.: His naïve solution fetched our company
huge returns.

Neologism A new word or expression
E.g.: I assume this is more of a problem with re-
gard to artificially coined neologisms than with
words from the spoken language.

Neophyte A person who is new to a subject , skill or belief
E.g.: He was a neophyte to the track team and
had the slowest times.

Nettle Annoy
E.g.: He was nettled by her mannerisms in the
board meeting.

Noisome Having a very unpleasant smell
E.g.: His table manners were little short of noi-
some.

Nominal In name but not in reality
E.g.: Teacher warned me and said this punish-
ment is nominal as this is first time I acted mis-
chievously.

Word Meaning and sample usage

Nuance A very slight difference in meaning, expression,
sound etc
E.g.: The nuances of red in her hair glistened in
the afternoon sun.

Numismatics The study or collection of coins, banknotes, etc

Obdurate Stubbornly refusing to change one’s mind
E.g.: Although all evidence was against her,
Radha was still obdurate in her conclusion that
the prisoner was innocent.

Obfuscate Make unclear or hard to understand
E.g.: Politicians keep obfuscating the national
issues, making the issues obscure, confusing,
and unclear.

Oblique At an angle; slanting

Obsequious Obedient or respectful to an excessive degree
E.g.: His sales pitch was so obsequious, I was
turned off, and I went across the street and
bought it from another store.

Obstinate Stubbornly refusing to change one’s mind
E.g.: My daughter and I are both obstinate.

Obviate Remove or prevent a need or difficulty
E.g.: I was nominated to obviate the problems
in the University.

Occlude Close up or block(an opening or a passage)

Officious Asserting authority in an overbearing way
E.g.: If you describe someone as officious, you
are critical of them because they are eager to
tell people what to do when you think they
should not.

Onerous Involving much effort and difficulty
E.g.: My father has left with me the onerous
task of arranging marriages of my three sisters.

Opine State as one’s opinion
E.g.: You might write an article about the vir-
tues of the macroeconomic theory of Keynes,
to which I would opine that Keynes was an id-
iot and that Friedman has already refuted him.

Opprobrium Harsh criticism
E.g.: Kanye West faced vast opprobrium after
interrupting Taylor Swift at the VMAs.

Orotund Deep and impressive
E.g.: The speaker has a deep, orotund voice that
projects to the farthest corners of the room.

Oscillate Move or swing back and forth at a regular rate

Ossify Turn into bone or bony tissue
E.g.: The cartilage was ossified when it was con-
verted into bone.

Ostensible Apparently true but not necessarily so
E.g.: Her ostensible purpose was borrowing
sugar, but she really wanted to see the new fur-
niture.

Verbal Ability and Numerical Reasoning 10.19

Word Meaning and sample usage

Ostentation Showy display which is intended to impress

Ostracize Exclude from a society or a group
E.g.: Due to his Constant questioning of the
Greek Political Figures, Socrates was Ostra-
cized, then eventually, sentenced to death by
drinking Hemlock-laced wine.

Overwrought Very worried or nervously excited
E.g.: I was overwrought when we were going to
the party.

Palatial Resembling a palace in being spacious and
splendid
E.g.: I have several 55” HD TVs in his palatial
home.

Palliate Make (a disease or its symptoms) less severe or
unpleasant without removing the cause. Allay
or moderate (fears or suspicions)
E.g.: The nurse provided palliative care to the
injured patient.

Pallid Pale, typically because of poor health
E.g.: I knew my kid wasn’t lying about being
sick. His skin was pallid so I let him stay home
from school

Panache Flamboyant confidence of style or manner
E.g.: Despite tripping on the way down the
stairs, the contestant continued her walk with
great panache.

Panegyric A public speech or published text in praise of
someone or something
E.g.: Tom is very panegyric while talking to his
co-workers.

Panoply A splendid display
E.g.: The knight wore his panoply during battle.

Panoramic bird’s-eye: as from an altitude or distance

Paradigm A typical example or pattern of something; a
model

Paradox A seemingly absurd or self-contradictory state-
ment or proposition that when investigated or
explained may prove to be well founded or true

Paragon A person or thing regarded as a perfect exam-
ple of a particular quality
E.g.: Einstein is a paragon for scientific research
community.

Pare Trim (something) by cutting away its outer
edges
E.g.: Please pare the peel from the apple.

Pariah An outcast
E.g.: The strange boy was viewed as a social pa-
riah by his entire student body.

Parley A conference between opposing sides in a dis-
pute, esp. a discussion of terms for an armistice
E.g.: The Night riders, and the Eagles had a par-
ley a week before the big game.

Word Meaning and sample usage

Parry Ward off (a weapon or attack), esp. with a coun-
termove
E.g.: Did I “parry” your question’s intent?

Parsimonious Unwilling to spend money or use resources;
stingy or frugal
E.g.: I always feel sorry for my father’s parsimo-
nious attitude though I am bearing the house
expenses.

Pastiche An artistic work in a style that imitates that of
another work, artist, or period
E.g.: The medley of hits was a pastiche of John-
ny Cash’s most popular songs.

Pathogenic Able to cause disease
E.g.: The air borne pathogens on the aircraft
made everyone ill.

Pathological Involving, caused by, or of the nature of a physi-
cal or mental disease

Peccadillo A small relatively unimportant offence or sin
E.g.: The politician hoped the voters would
overlook his peccadillos and focus on his long
service record.

Pedantic Of or like a pedant
E.g.: It is important to understand pedantic ter-
minology before beginning a lecture.

Pejorative Expressing contempt or disapproval
E.g.: The pejorative comment deepened the
dislike between the two families.

Penchant A strong or habitual liking for something or
tendency to do something
E.g.: Elizabeth Taylor has a penchant for hus-
bands.

Pendant A piece of jewelry that hangs from a chain
worn around the neck

Penury Extreme poverty
E.g.: I spent half of my life in penury, thus I
know the value of a penny.

Peregrinate Travel or wander around from place to place
E.g.: He brought back souvenirs and photos
from his peregrination abroad.

Perennial Lasting or existing for a long or apparently infi-
nite time; enduring
E.g.: Lack of medicines is a perennial problem
in our tribal areas.

Perfidious Deceitful and untrustworthy
E.g.: I trusted Tara but it turned out, that she
was perfidious.

Perfunctory Carried out with a minimum of effort or reflec-
tion
E.g.: One perfunctory answer is to use it care-
fully.

10.20 Computer Science & Information Technology for GATE

Word Meaning and sample usage

Peripatetic Traveling from place to place, esp. working or
based in various places for relatively short pe-
riods
E.g.: The peripatetic animal never stayed in one
place for too long.

Permeable (of a material or membrane) Allowing liquids
or gases to pass through it
E.g.: Only the small, non-polar molecules dif-
fused through the selectively permeable mem-
brane.

Permeate Spread throughout
E.g.: Focused ultrasound helps exogenous genes
permeate targeted cells’ outer membranes.

Perpetual Never ending or changing
E.g.: His perpetual spending made his chil-
dren’s as beggers.

Persistent Continuing firmly or obstinately in a course of
action in spite of difficulty or opposition
E.g.: My consistent persuasion made my elder
son to continue the discontinued course.

Perspicacious Having a ready insight into and understanding
of things
E.g.: He was a perspicacious student of human
nature, and knew how we would react.

Pervade Spread through and be perceived in every part
of
E.g.: Because of poor educations, AIDS per-
vaded the world very quickly.

Pervasive Spreading widely throughout an area or a
group of people
E.g.: There is a pervasive trend toward casual
dress in businesses.

Phalanx A body of troops or police officers, standing or
moving in close formation
E.g.: The phalanx defense used by the Spartans
helped them to defeat vast numbers of enemies.

Philanthropy The desire to promote the welfare of others, ex-
pressed especially by the generous donation of
money to good causes

Philistine A person who is hostile or indifferent to culture
and the arts, or who has no understanding of
them
E.g.: A philistine girl and her apprentice walked
down the streets near the Mediterranean sea.

Phlegmatic Having an unemotional and stolidly calm dis-
position
E.g.: He was phlegmatic in his attitude toward
work.

Pithy Concise and forcefully expressive
E.g.: Old Mr Brown was not known for talking
much, but what he did say was always pithy.
Pithy means that there is substance and wis-
dom in what is said.

Word Meaning and sample usage

Placate Make someone less angry or hostile
E.g.: I have placate my wife whenever he is an-
gry my elder son.

Platitude The quality of being dull, ordinary, or trite
E.g.: A common platitude is the greeting “How
are you?”

Plebeian A commoner
E.g.: The plebeian population ends up paying
the most taxes.

Plethora An excessive amount
E.g.: When I accepted his offer, he filled my
hose with plethora of druses.

Plucky Having or showing determined courage in the
face of difficulties
E.g.: Telling that bully to leave your brother
alone was a plucky thing to do, David. I am
proud of you.

Polemic A strong verbal or written attack on someone
or something
E.g.: Thus the Islamic polemic against Christi-
anity has centered on the doctrine of Trinity.

Politic (of an action) Seeming sensible and judicious
under the circumstances

Polyglot Knowing or using several languages

Posit Assume as a fact; put forward as a basis of argu-
ment
E.g.: Posits that immigrants with probable
mental on the public.

Potentate A monarch or ruler
E.g.: The king, despite his potentate ways hum-
bled himself like a servant.

Pragmatic Dealing with things sensibly and realistically
in a way that is based on practical rather than
theoretical considerations
E.g.: His pragmatic speeches lead Democrats
into white house.

Prattle Talk at length foolishly
E.g.: Johnny was a bad boy therefore he got the
prattle across the ass.

Precarious Not securely held or in position; dangerously
likely to fall or collapse
E.g.: His precarious treatment spoiled my
health.

Precipitate Cause (an event or situation, typically a bad
one) to happen suddenly, unexpectedly, or pre-
maturely
E.g.: Army is deputed with the fear that the
same problems may precipitate soon.

Precursor A person or thing that comes before another of
the same kind; a forerunner
E.g.: I applied for a loan as a precursor to pur-
chasing a car.

Verbal Ability and Numerical Reasoning 10.21

Word Meaning and sample usage

Predestined (of God) Destine (someone) for a particular
fate or purpose
E.g.: When John met Mary, he was immediately
sure that they were predestined for each other.

Preen (of a person) Devote effort to making oneself
look attractive and then admire one’s appear-
ance
E.g.: The contented cat sat preening himself by
the fire.

Prescient Having or showing knowledge of events before
they take place
E.g.: He had the prescience to realize a confron-
tation would be deadly.

Prestigious Inspiring respect and admiration; having high
status.

Presumptuous (of a person or their behaviour) Failing to ob-
serve the limits of what is permitted or appro-
priate
E.g.: It was presumptuous of her to join us for
dinner uninvited.

Pretentious Attempting to impress by affecting greater im-
portance, talent, culture, etc., than is actually
possessed
E.g.: It was pretentious to assume I would
change my whole schedule for his benefit.

Prevaricate Speak or act in an evasive way
E.g.: While trying to get to my destination, I
ended up on the wrong street, on the wrong
side of town, all thanks to the prevarication of
the stranger whom I asked directions of.

Pristine In its original condition; unspoiled
E.g.: The fresh snowfall, without tracks or
marks of any kind, looked as pristine as moth-
er’s white tablecloth pressed to perfection for
Thanksgiving Day.

Probity The quality of having strong moral principles;
honesty and decency
E.g.: His reputation is largely inherited from his
mother, revered for her probity.

Problematic Constituting or presenting a problem or diffi-
culty

Proclivity A tendency to choose or do something regu-
larly
E.g.: ‘Children have the proclivity to keep on
playing even when they can hardly keep their
eyes open.’

Prodigal Spending money or resources freely and reck-
lessly; wastefully extravagant
E.g.: The prodigal waste of money given to the
gambling industry is in the billions of dollars.

Word Meaning and sample usage

Prodigy A person, esp. a young one, endowed with ex-
ceptional abilities
E.g.: My mentoring to my grandson made him
as a young prodigy.

Profligate Recklessly extravagant or wasteful in the use of
resources
E.g.: The profligate prosecutor was laughed out
of the courtroom as the judge yelled at him for
constantly wasting her time with minor of-
fenses.

Proliferate (of a cell, structure, or organism) Reproduce
rapidly
E.g.: The bugs on the trail were so prolifer-
ate that many people decided to give up and go
home.

Prolific (of a plant, animal, or person) Producing much
fruit or foliage or many offspring
E.g.: He is such a prolific writer; I became his
favourite after reading his first novel.

Promiscuous (of a person) Having many sexual relation-
ships, esp. transient ones
E.g.: A promiscuous woman is called a slut,
while her male counterpart is called a stud.

Propensity An inclination or natural tendency to behave in
a particular way
E.g.: My friend has a real propensity for baking
great pies.

Propitiate Win or regain the favour of
E.g.: After offending his boss, John tried to pro-
pitiate him by inviting him to dinner.

Propriety The quality of behaving appropriate.

Prudence Acting with and showing care for the thought
and for the future
E.g.: Prudence is demonstrating wisdom based
on rational thinking.

Prudent Acting with and showing care for the thought
and for the future

Puerile Childishly silly
E.g.: You need to stop acting in such a puerile
manner and act your age.

Pugilism Boxing; fighting with the fists
E.g.: The sideways lean of his nose suggested a
pugilistic background.

Pulchritude Beauty
E.g.: When she was alive, Anna Nicole Smith
exemplified feminine pulchritude.

Pungency Having a sharply strong taste or smell

Pungent Having a sharply strong taste or smell
E.g.: By the time we returned from evening
walk, the pungent smell of the dog permeated
the entire room.

10.22 Computer Science & Information Technology for GATE

Word Meaning and sample usage

Pusillanimous Lacking courage
E.g.: The pusillanimous toddler, who had not
yet learned social protocol, barked at his moth-
er from an unsocial distance.

Qualified Meet the necessary standards or conditions to
be able to do or receive something

Querulous Complaining in an irritable way
E.g.: My neighbours querulous attitude irri-
tated me a lot.

Quiescent In a state or period of inactivity
E.g.: My quiescence at the dinner table prompt-
ed my mother to ask me about my day.

Quixotic High-minded and unselfish to an impractical
extent
E.g.: The villain’s plan of world domination was
obviously quixotic.

Quotidian Ordinary or every day
E.g.: The rules of quotidian face-to-face life are
suspended or even inverted.

Raconteur A person who tells stories in an interesting way
E.g.: We always loved to listen to my grandfa-
ther talk about life in the old country because
he was a great raconteur.

Rarefy Lessen the density or solidity of
E.g.: A shortage of calcium in the bones can
cause them to rarefy resulting in the disease of
osteoporosis.

Rebuke Criticize or reprimand sharply
E.g.: King rebuked at US invasion.

Recant Withdraw a former opinion or belief
E.g.: I would like to state that my answer to you
is positive, but then I would have to recant it to
make my intentions true.

Recrimination An accusation in response to one from some-
one else
E.g.: There was a period of bitter recrimination
in my house.

Redoubtable Worthy of respect or fear
E.g.: She is a redoubtable opponent; you must
respect and fear her at all times.

Redress Set right something unfair or wrong
E.g.: I have to redress my son for his bad behav-
ior in the class.

Refractory Stubborn or difficult to control
E.g.: Several people offered him really sound
advice on the matter but he’s an intensely re-
fractory individual and wouldn’t be swayed.

Refute Prove(a statement or a person to be wrong)
E.g.: I have to refute my colleagues in front of
my superiors.

Word Meaning and sample usage

Rejoinder A quick or witty reply
E.g.: The comedian’s witty rejoinder, delivered
with breathtaking celerity, silenced the heckler.

Render Provide a service or help
E.g.: I called a voluntary organisation in my city
and rendered my help on every Sunday.

Repast A meal
E.g.: Thanksgiving dinner is the most satisfying
repast of the year.

Repentant Feel or express regret or remorse
E.g.: The young boy was repentant for what he
had done to his friends.

Replete Filled or well –supplied with
E.g.: My old friends stay since one week deplet-
ed my stock, I have to replete the same.

Repose A state of calm or peace
E.g.: After a hard day at work, I took my repose
on the couch.

Reprobate A person who behaves in an immoral way
E.g.: Our family priest, a person with high level
of dignity, on Sundays you could always find
the old reprobate in his easy chair with a six
pack of cheap beer.

Repudiate Refuse to accept or be associated with
E.g.: I repudiate that argument.

Requite Make appropriate return for (a favour or ser-
vice); reward
E.g.: The man’s death penalty was requital given
the number of murders he committed.

Rescind Cancel a law or order or agreement
E.g.: It looks bad for me to rescind a promotion
I have already given you.

Restive Unable to keep still or silent
E.g.: It was difficult to tame the restive horse.

Reticent Not revealing one’s feelings or thoughts readily
E.g.: He was reticent to tell the truth for fear he
would be punished.

Reverent Showing reverence
E.g.: Yes, I can use the word reverence in a sen-
tence. I just did.

Rhetoric The art effective or persuasive speaking or writ-
ing
E.g.: I got swayed by her rhetoric into donating
all my savings to the charity.

Ribald Humorous in a coarse way
E.g.: The American radio host Howard Stern is
known for his ribald humor.

Verbal Ability and Numerical Reasoning 10.23

Word Meaning and sample usage

Rococo A style of art, especially architecture and deco-
rative art, that originated in France in the early
18th century and is marked by elaborate orna-
mentation, as with a profusion of scrolls, foli-
age, and animal forms
E.g.: The detailed rococo of the houses paint
and wall paper was amazing.

Rustic Having to do with life in the country
E.g.: My new bed has a rustic design in keeping
with my country style

Sacrosanct Seen as too important or too valuable to be
changed or questioned
E.g.: Julie did not let Buster enter her office be-
cause she considered it a sacrosanct space.

Sagacious Having good judgment ; wise
E.g.: Vivekananda is famous for his sagacity.

Salient Most important
E.g.: I have given salient details of the projects
such that the young team can start their work.

Salubrious Good for one’s health
E.g.: The salubrious mountain water has in-
spired many modern innovators to come up
with the idea of selling fresh bottled-water in
the market today.

Sanguine Cheerfully confident about the future
E.g.: The good news made her sanguine in
mood and she was very excited.

Sardonic Mocking
E.g.: His sardonic smile and tone of voice told
me he was jealous.

Satiate Give(someone) as much or more than they
want
E.g.: I tried my level best to satiate my in-laws
family at my wife’s request.

Saunter Walk in a slow, relaxed way
E.g.: I like saunter through the park during
winter season.

Savor A characteristic taste, flavour, or smell, espe-
cially. a pleasant one
E.g.: The resilient kitten was doing well in her
new home. Barbara savored the delicious wed-
ding cake.

Scintilla A tiny trace or amount
E.g.: The victim could be proven guilty in court
because he hadn’t left a scintilla of his crime.

Sedition Action or speech urging rebellion against the
authority of a state or a ruler
E.g.: She was arrested after making a speech
that the government considered to be seditious.

Word Meaning and sample usage

Sedulous Showing dedication and great care
E.g.: You must be a sedulous student, if you
want to understand vocabulary,

Sentient Able to perceive and feel things
E.g.: As they lifted the cover off the crashed
saucer, the groans of the alien pilot showed that
it was, indeed, a sentient being.

Seraphic A type of angel associated with light and purity
E.g.: He had a look of seraphic contentment on
his face.

Sinecure A job for which a holder is paid but which re-
quires no or little work
E.g.: Mowing that tiny lawn is a sinecure.

Sinewy A piece of tough fibrous tissue that joins muscle
to bone
E.g.: Relying on running instead of weightlift-
ing for his physical fitness, his build was more
sinewy than bulky.

Skeptic A person inclined to question or doubt all ac-
cepted opinions

Slake Satisfy (a desire, thirst etc)

Sobriquet A person’s nickname
E.g.: His mother always insisted in calling him
William and not by his friends sobriquet of Bill.

Solecism A grammatical mistake.

Sophistry The use of false arguments
E.g.: The senatorial candidate argued that his
opponent was using sophistry in an effort to
distort his plan for education reform.

Soporific Causing drowsiness or sleep
E.g.: The soporific lecture given by the profes-
sor caused everyone to yawn

Spartan Lacking in comfort or luxury
E.g.: Compared to the luxury suite at Hyder-
abad, the apartment in Vizag is rather spartan.

Specious Misleading in appearance
E.g.: The student had some good ideas, but
usually used specious arguments in his written
work.

Sporadic Occurring at irregular intervals or only at few
places
E.g.: His sporadic movements in the lawn of
Collector made police to suspect him.

Sportive Playful; light-hearted

Spurious False or fake
E.g.: His spurious remark made me mad.

Stasis A period or state where there is no change or
development.

10.24 Computer Science & Information Technology for GATE

Word Meaning and sample usage

Stentorian (of a person’s voice) loud and powerful
E.g.: I could no longer stand my mother-in-
law’s stentorian voice.

Stigma A mark or sign of disgrace
E.g.: The Senator’s racial remark will be a po-
litical stigma difficult to overlook in next year’s
election.

Stint Restrict how much can someone have of
(something)
E.g.: In these hard economic times, you can cut
corners here and there, but don’t stint when it
comes to your health.

Stipulate Demand or specify as part of an agreement

Stolid Calm, dependable and showing little emotion
E.g.: John was stolid in his opinion on who was
going to win the elections, I couldn’t budge
him.

Stratagem A plan or scheme intended to outwit an oppo-
nent
E.g.: The devised stratagem fooled the girl into
tripping and falling in the ditch.

Sublime Of very high quality and causing great admira-
tion
E.g.: if you make the room too hot you will sub-
lime the ice in this glass.

Subside Become less strong, violent or severe

Substantiate Provide evidence to prove the truth of
E.g.: The committee asked me to substantiate
my argument.

Sully Spoil the purity or cleanliness of
E.g.: You don’t want to sully something that was
meant to be great.

Superfluous Unnecessary because more than is needed
E.g.: We can save hungry in the world by shar-
ing our superfluous food.

Supplant Take the place of
E.g.: Ms. Gomez will supplant Mrs. Sprinkle for
a couple of months.

Supposition Assumption

Surfeit An excess
E.g.: Container showed great surfeit even after
he ate 25 sandwiches.

Surly Bad-tempered and unfriendly
E.g.: I can’t stand talking to surly teenagers.

Surrogate A person who stands in for another in a role
or office

Sybarite A person who is very fond of luxury or pleasure
E.g.: The lifelong sybarite was devastated when
she had to live in a homeless shelter after she
went bankrupt.

Word Meaning and sample usage

Sycophant A person who flatters someone important to
try to gain favor with them

Symbiosis A mutually beneficial relationship between dif-
ferent people or groups
E.g.: Elephants and the birds that eat bugs off
them use symbiosis, therefore, each benefit.

Syncopation The act of syncopating; the contraction of a
word by taking one or more letters or syllables
from the middle; syncope

Taboo Prohibited or restricted by custom

Tacit Understood or implied without being stated
E.g.: My wife and I are having tacit agreement
about utensil cleaning.

Taciturn Reserved or uncommunicative in speech; say-
ing little
E.g.: I was in a taciturn mood last night due to
the bad day that I had.

Tactual haptic: of or relating to or proceeding from the
sense of touch.

Talon 1. A claw, esp. one belonging to a bird of prey
2. The shoulder of a bolt against which the key

presses to slide it in a lock

Tangential 1. Of, relating to, or along a tangent
2. Diverging from a previous course or line;

erratic

Tawdry Showy but cheap and of poor quality
E.g.: Those people have a lot of money, but no
taste. Their gold toilet is so tawdry.

Tenacity Doggedness: persistent determination
E.g.: Although the job was difficult, he had the
tenacity to stay with it until it was completed.

Terrestrial An inhabitant of the earth

Tirade A long, angry speech of criticism or accusation
E.g.: The pope’s trading speech made me mad.

Toady Act in an obsequious way

Tome A book, esp. a large, heavy, scholarly one
E.g.: I opened the Bhagavad Gita and was in-
stantly enthralled by the ancient tome.

Torpor A state of physical or mental inactivity; lethargy
E.g.: He fell into a deep torpor after his son’s
death.

Tractable Easy to control or influence
E.g.: My tractable nature made many people to
use my help.

Transgression The act of transgressing; the violation of a law
or a duty or moral principle
E.g.: He commited a transgression of the law,
and has been sentenced to death.

Verbal Ability and Numerical Reasoning 10.25

Word Meaning and sample usage

Transitory Not permanent
E.g.: His transitory attitude makes my helpless.

Trenchant Vigorous or incisive in expression or style
E.g.: His most trenchant criticism is reserved
for the party leader, whom he describes as ‘the
most incompetent and ineffectual the party has
known.

Truculence Expressing bitter opposition; scathing
E.g.: He was not popular with his boss because
of his truculent attitude.

Turgid Swollen and distended or congested
E.g.: His sore knuckles and turgid lip led us to
believe that Billy had been in a fight earlier that
day.

Tyro A beginner or novice
E.g.: The girl next to my house is a tyro in Hin-
di.

Ubiquitous Present, appearing or found everywhere
E.g.: God is ubiquitous.

Umbrage Take offence or become annoyed
E.g.: I took umbrage to the large amount of
bank fees I was charged and promptly changed
my financial institution.

Unconscio-
nable

Not right or reasonable
E.g.: To Ram, it was unconscionable to use such
underhanded tactics to get ahead.

Unequivocal Leaving no doubt; clear in meaning
E.g.: His unequivocal statements about general
strike made us to reconsider his request.

Upbraid Scold or criticise
E.g.: The senator was upbraided by his peers for
being found guilty of a felony. He could lose his
senate seat because of this conviction.

Usury The practice of lending money at usually high
rates of interest
E.g.: I charge high usury to James because he
doesn’t usually pay in time.

Vacillate Waver between different opinions or actions
E.g.: Unable to decide on which restaurant to
enter, she vacillated for hours before opting for
Italian.

Vacillation Indecision in speech or action

Vacuous Showing a lack of thought or intelligence
E.g.: This movie is really completely vacuous.

Variegated Exhibiting different colors, esp. as irregular
patches or streaks
E.g.: The variegated rainbow’s colours were a
beautiful sight after the storm.

Venerable Greatly respected because of age, wisdom or
character
E.g.: He was a man of eternal self-sacrifice, and
that is always venerable.

Word Meaning and sample usage

Venerate Regard with great respect

Veracious Speaking or representing the truth
E.g.: The jury’s job is to determine whether or
not the claims of the defendant are veracious.

Veracity The quality of being true or accurate

Verbose Using more words than are needed

Verdant Green with grass or other lush vegetation
E.g.: The verdant grass was damp with dew.

Vernacular The language or a dialect spoken by the ordi-
nary people of county or a religion
E.g.: Even though she was a fluent Spanish
speaker she had learned the language in Mex-
ico and was completely thrown off by the ver-
nacular of Barcelona.

Vestige A remaining trace of something that once ex-
isted
E.g.: The mummy had decomposed so badly
that only vestiges of the cotton gauze could be
seen.

Vex Make annoyed or worried
E.g.: My father’s remarks on my spending vexed
me a lot.

Viable Capable of working successfully, feasible
E.g.: Banks always sees viability of a project.

Vicissitude Changes of circumstances or fortune
E.g.: Given the vicissitudes of life, it’s doubtful
that I will live here to the end of my life

Vim Energy; enthusiasm
E.g.: At the age of 90 also, my father did not
lost his vim.

Viscous Having a thick, sticky consistency between
solid and liquid

Vituperate Bitter and abusive language
E.g.: Each Sunday the stern old minister would
climb into the pulpit and vituperate the congre-
gation with a litany of vices.

Volatile Easily evaporated at normal temperature

Voluble Speaking easily and at length
E.g.: The minister was very voluble, but there
was little substance to what he said.

Wan Pale and appearing ill or exhausted
E.g.: Influenza had left her appearing wan,
which she remedied, before the party, with a
skillful application of makeup.

Wanton (of a cruel or violent action)deliberate and un-
provoked
E.g.: She was too wanton in her ways. The old
ladies of the town were shocked

Waver Be indecisive
E.g.: Realising the dangerous situation she was
in, Agent Ashby wavered between deciding to
jump or answering her cell.

10.26 Computer Science & Information Technology for GATE

Word Meaning and sample usage

Whimsical 1. Playfully old-fashioned or fanciful
2. Showing sudden changes of directions or

behavior
E.g.: She has a whimsical sense of humor

Wily Skilled at gaining an advantage especially de-
ceitfully
E.g.: The wily coyote built an elaborate trap to
catch the speedy road runner.

Winsome Attractive or appealing
E.g.: The evil little trickster won me over with
her winsome looks.

Wizened Shrivelled or wrinkled with age
E.g.: A wizened little man with gray hair.

Wraith A ghost or ghostly image of someone especially
one seen before or after their death
E.g.: Evan looked out over the cemetery and
was sure he saw a wraith rising from old Mr.
Saibaba’s grave.

Xenophobia Strong dislike or fear of people from other
countries

Yoke A wooden crosspiece that is fastened over the
necks of two animals and attached to the plow
or cart that they are to pull

Zeal Great energy or enthusiasm for a aim or a cause
E.g.: I have completed this project with great
zeal.

Zealot An excessively enthusiastic or strict follower of
a religion or policy
E.g.: The animal activist was sentenced to six
months in jail by the judge who described him
as a extreme zealot who solely cared about
causing mayhem and anarchy.

Zenith The point in the sky directly overhead

Zephyr A soft gentle breeze
E.g.: We were delighted to have zephyr in our
new house.

10.2 Numerical Reasoning and Interpretation

10.2.1 Sums and Sequence

Sequence: Sequence is an ordered set of numbers which
could be defined as a function whose domain (x-values)
consists of consecutive positive integers and the corre-
sponding value is the range (y-values) of the sequence.

Term number: Term number is an ordered set of numbers
which could be defined as a function whose domain (x-val-
ues) consists of consecutive positive integers.

Term: Term is the corresponding value (the range y-value)
of the sequence.

Finite: Finite is a sequence with a limited number of terms.
Infinite: Infinite is a sequence with an unlimited number
of terms.

Arithmetic sequence: It is a sequence in which a constant
d (common difference) can be added to each term to get
the next term.

Common difference: It is a constant difference, usually de-
noted as d.

Geometric Sequence: It is a sequence in which a constant r
can be multiplied by each term to get the next term.

Common ratio: It is a constant ratio, usually denoted by r.

10.2.1.1 Arithmetic Sequence

tn = t n d1 1+ -()

Sum of an Arithmetic series:

Sn =
n t tn()1

2

+
, or Sn =

n
t n d

2
2 11 + -[]()

Arithmetic Mean: It is an average between 2 numbers.

()a b+
2

10.2.1.2 Geometric Sequence

t t rn
n= ∑ -

1
1

Geometric Mean: It is the term between two given terms of
a geometric sequence as defined by the following formula:

ab

Sum of a geometric series:

Sn =
t r

r

n
1 1

1

()-
-

Infinite Geometric Series
Theorem: An infinite geometric series is convergent and
has a sum “S” if and only if its common ratio, r meets the
following condition: | r | < 1
If our infinite series is convergent (| r | < 1), we can calculate
its sum by the formula:

S =
t

r
1

1-

If the geometric series is defined as xk

k=

•

Â
0

, for –1 < x < 1

then

xk

k=

•

Â
0

=
1

1- x

A Geometric Series

– converges if | r | < 1, then the sum is as shown above.

– diverges if | r | ≥ 1, then the sum becomes infinite.

Verbal Ability and Numerical Reasoning 10.27

n Example Calculate

2
1

2

1

3
() -

=

•

Â
n

n

n Answer:

First term, t1 =2(1/2)3–1=1/2

Second term= t2 =2(1/2)4–1=1/4

Therefore, r = t2/t1=1/2

Therefore, sum of the series=t1/(1–r)=1/2/(1–1/2)=1

n Example Find the sum: 4 – 6 + 9 – 13.5 + ...

n Answer: If we observe the series, r, common ratio be-
comes –1.5 which is >1. Thus, becomes infinite sum. Also,
terms are increasing type.

n Example In the first month, 15 000 m3 of oil was pro-
duced from a well. Its production is dropping by 2.9% each
month. How much oil will be produced over the next year?
If the well works until it is dry, how much oil will be pro-
duced?
n Answer: r = 1–0.029 = 0.971

n = 12

S12 = a(1–rn)/(1–r)

= 15000*(1–0.97112)/(1–0.971)

= 153,892.33 m3

To answer next question, we assume n = •. Thus total oil
produced from the well

= a/(1–r) =15000/(1–0.971)

= 517,241.38m3

n Example A ball is dropped from 38.28 m. After hitting
the ground it raises to 60% of its previous height. What will
be the total vertical distance ball traverses before it comes
to stand still?

n Answer: Here, r =0.6. Therefore total vertical distance it
traverses before coming to stand still = 2*(38.28/(1–0.6))–
38.28 = 153.12m

(Note that the ball hits and goes up. Thus, we are taking two
times of the vertical heights. Also, we are subtracting 38.28
as ball is initially falling from that height.

n Example Assume that a bread piece is cut into four
equal parts, and give 3 people each one quarter of it. Then
take the left over piece, and cut it into quarters, and give
each of the same three people that part. Take the left over
piece, and continue this process.

(a) Write a series representing the amount of bread each
person gets after each cut.

(b) What will be the sum of the infinite sequence?
(c) Let’s repeat the process with 4 students and 5 pieces.

n Answer: What a person gets can be represented as:
1/4 + 1/42 +1/43 + ….

Here, r = 1/4

Sum= 1/4 /(1 – 1/4) = 1/3. That is, 1/3rd of the bread is
given to each person.

If 5 pieces are distributed among the 4 students, then the
resulting series what a student gets can be represented as:
1+ 1/5 + 1/52 + …
Harmonic Series
Given by

1

1 kk=

•

Â = 1
1

2

1

3

1

4
+ + + + ...

– Divergent series.

Hyperharmonic series (p-series)
Given by

1

1 k p
k=

•

Â = 1
1

2

1

3

1

4
+ + + +p p p ...

converges if p > 1 and diverges if 0 < p £ 1.

Alternating Series
Alternating Series are series containing alternately positive
and negative terms. General form:

() ...- = - + - ++

=

•

Â 1 1

1
1 2 3 4

k

k
ka a a a a

() ...- = - + - + -
=

•

Â 1
1

1 2 3 4
k

k
ka a a a a

where the ak’s are assumed to be positive.

Alternating Series Test
An alternating series converges if both of the following
conditions are satisfied:

(i) a1 > a2 > a3 >…> an >…(terms decreasing in magni-
tude)

(ii) lim ak = 0

Note

()- +

=

•

Â 1
11

1

k

k k
 is the alternating harmonic series. It con-

verges, whereas the harmonic series diverges.

10.2.1.3 Binomial Expansions and Powers of

Binomials

Binomial expansion: ()a b n+
The Binomial Theorem: for any binomial (a + b) and any

whole number n, then ()a b n+ =

n
n

n
n

n
n

n
n

n n
nC a C a b C a b C a b C b0 1

1
2

2 2
3

3 3+ + + + +- - - ...

10.28 Computer Science & Information Technology for GATE

To find the rth term of a binomial expansion raised to the
nth power, use the following formula:

n

r
a bn r r

-
Ê
ËÁ

ˆ
¯̃

- + -
1

1 1() ()

Which is the same as:

n r
n r rC a b-

- + -()1
1 1() ()

10.2.2 Probability: An Introduction

10.2.2.1 Terminology

Population – The greater body of the sample you are taking.
Sample – The people or things that you are actually study-
ing or performing on.
Random Sample – A group of subjects randomly chosen
from a defined population.
Frequency Distribution – It can be defined as the number
of times things occur in a sample.
Events
An event is defined as any outcome that can occur. There
are two main categories of events: Deterministic and
Probabilistic.
A deterministic event always has the same outcome and is
predictable 100% of the time.

• Distance traveled = time x velocity

• The speed of light

• The sun rising in the east

• James Bond winning the fight without a scratch

A probabilistic event is an event for which the exact out-
come is not predictable 100% of the time.

• The number of heads in ten tosses of a coin

• The winner of the World Series

• The number of games played in a World Series

• The number of defects in a batch of product

In a boxing match there may be three possible events.

• Fighter X wins

• Fighter Y wins

• Draw among X and Y

Basic Types of Events

• Mutually Exclusive Events: These are events that
cannot occur at the same time. The cause of mutu-
ally exclusive events could be a force of nature or a
man made law. Being twenty-five years old and also
becoming president of the United States are mutually
exclusive events because by law these two events can-
not occur at the same time.

• Complementary Events: These are events that have
two possible outcomes. The probability of event A
plus the probability of A’ equals one. P(A) + P(A’) = 1.

Any event A and its complementary event A’ are mu-
tually exclusive. Heads or tails in one toss of a coin are
complementary events.

• Independent Events: These are two or more events
for which the outcome of one does not affect the oth-
er. They are events that are not dependent on what
occurred previously. Each toss of a fair coin is an in-
dependent event.

• Conditional Events: These are events that are depen-
dent on what occurred previously. If five cards are
drawn from a deck of fifty-two cards, the likelihood
of the fifth card being an ace is dependent on the out-
come of the first four cards.

10.2.2.2 Probability

Probability is defined as the chance that an event will hap-
pen or the likelihood that an event will happen. The defini-
tion of probability is

Probability =
Number of favorable events

Number of total events

The favorable events are the events of interest. They are the
events that the question is addressing. The total events are
all possible events that can occur relevant to the question
asked. In this definition, favorable has nothing to do with
something being defective or non-defective.
What is the probability of a head occurring in one toss
of a coin?
The number of favorable events is 1 (one head) and the
number of total events is 2 (head or tail). In this case, the
probability formula verifies what is obvious.

Probability of a head =
Number of favorable events

Number of total events
=

1

2

Probability numbers always range from 0 to 1 in decimals
or from 0 to 100 in percentages.

Instead of writing out the whole question, the following
notation is used.

• What is the probability of event A occurring? = Prob-
ability (A) = P(A)

• What is the probability of events A and B occurring?
= P(A and B) = P(A) and P(B)

• What is the probability of events A or B occurring? =
P(A or B) = P(A) or P(B)

Probability in Terms of Areas
Probability may also be defined in terms of areas rather
than the number of events.

Probability =
Favorable area

Total area

n Example A plane drops a parachutist at random on a
seven by five mile field. The field contains a two by one mile

Verbal Ability and Numerical Reasoning 10.29

target as shown below. What is the probability that the par-
achutist will land in the target area? Assume that the para-
chutist drops randomly and does not steer the parachute.

Target

2 miles

5 miles

7
 m

ile

1
 m

ile
Probability of hitting target =

Favorable area

Total area
=

2

35
= .057

Methods to determine probability values
There are three major methods used to determine probabil-
ity values.

• Subjective Probability: This is a probability value
based on the best available knowledge or maybe an
educated guess. Examples are betting on horse races,
selecting stocks or making product-marketing deci-
sions.

• Priori Probability: This is a probability value that
can be determined prior to any experimentation or
trial. For example, the probability of obtaining a tail
in tossing a coin once is fifty percent. The coin is not
actually tossed to determine this probability. It is sim-
ply observed that there are two faces to the coin, one
of which is tails and that heads and tails are equally
likely.

• Empirical Probability: This is a probability value
that is determined by experimentation. An example
of this is a manufacturing process where after check-
ing one hundred parts, five are found defective. If the
sample of one hundred parts was representative of
the total population, then the probability of finding
a defective part is .05 (5/100). Here a question arise:
How is it known that this sample is representative of
the total population? If repeated trials average .05 de-
fective, with little variation between trials, then it can
be said that the empirical probability of a defective
part is .05.

10.2.2.2.1 Multiplication Theorem

The multiplication theorem is used to answer the following
questions:

• What is the probability of two or more events occur-
ring either simultaneously or in succession?

• For two events A and B: What is the probability of
event A and event B occurring?

The individual probability values are simply multiplied to
arrive at the answer. The word “and” is the key word that

indicates multiplication of the individual probabilities. The
multiplication theorem is applicable only if the events are
independent. It is not valid when dealing with conditional
events. The product of two or more probability values yields
the intersection or common area of the probabilities. The
intersection can be illustrated via common areas in Venn
diagrams. Mutually exclusive events do not have an inter-
section or common area in Venn diagrams. The probability
of two or more mutually exclusive events is always zero.

For mutually exclusive events:

• P(A) and P(B) = 0

For independent events:

• Probability (A and B) = P(A) and P(B) = P(A) X P(B)

For multiple independent events, the multiplication for-
mula is extended. The probability that five events A, B, C,
D and E occur is

P(A) and P(B) and P(C) and P(D) and P(E) = P(A) x P(B)
x P(C) x P(D) x P(E)

n Example What is the probability of getting a raise and
that the sun will shine tomorrow?

n Answer :

Given: Probability of getting a raise = P(r) = .10

 Probability of the sun shining = P(s) = .30

 The events are independent.

 P(raise) and P(sunshine) = P(r) x P(s) = .10 x
.30 = .03 or 3%

10.2.2.2.2 Addition Theorem

The addition theorem is used to answer the following ques-
tions:

• What is the probability of one event or another event
or both events occurring?

• What is the probability of event A or event B occur-
ring?

The word “or” indicates addition of the individual prob-
abilities. The answers to the above questions are different
depending on whether the events are mutually exclusive or
independent.

Mutually exclusive events do not have an intersection or
common area. The individual probabilities are simply add-
ed to arrive at the answer. For mutually exclusive events:

• P(A or B) = P(A) or P(B) = P(A) + P(B)

• P(A or B or C or D) = P(A) + P(B) + P(C) + P(D)

For two independent events, the intersecting or common
area must be subtracted or it will be included twice. (Refer
to the Venn diagram in section 11.0).

Probability (A or B) = P(A) or P(B) = P(A) + P(B) – P(A
X B)

10.30 Computer Science & Information Technology for GATE

For three independent events:

P(A or B or C) = P(A) + P(B) + P(C) – P(A X B) – P(A X
C) – P(B X C) + P(A X B X C)

n Example What is the probability of getting a raise or
that the sun will shine tomorrow?

n Answer :

Given: Probability of getting a raise = P(r) = .10

Probability of the sun shining = P(s) = .30

P(raise) or P(sunshine) = P(r) or P(s) = P(r or s)

 P(r or s) = P(r) + P(s) – [P(r) x P(s)] = .10 + .30
– [.10 X .30] = .40 – .03 = .37 or 37%

The word “and” is associated with the multiplication
theorem and the word “or” is associated with the addition
theorem.

10.2.2.2.3 Conditional Probability

Conditional probability is defined as the probability of
an event occurring if another has occurred or has been
specified to occur simultaneously, and the outcome of
the first event affects the probability of the second event.
Conditional events are not independent.

The probability of B occurring given that A has already
occurred is stated as P(B/A), where the symbol / means
“given that.”

The formulas for conditional probability are shown
below. These are known as Bayes Formulas.

P (B/A) =
P A&B

P A

()

()

P (A/B) =
P A&B

P B

()

()

Since the two formulas have a common term P(A & B), they
may be used together to solve many problems involving
conditional probability.

Conditional events are not independent so P(A & B) is
not equal to P(A) X P(B). From Bayes formulas:

P(A & B) = P(B/A) P(A)

P(A & B) = P(A/B) P(B)

10.2.2.2.4 Bayes Theorem

P (A/B) =
P A P B A

P B

() (|)

()

n Example A lot of fifteen items contains five defective
items. Two items are drawn at random. What is the prob-
ability that the second item drawn will be defective?

n Answer:

Let A = event that first item is defective

Let A¢ = event that first item is good

Let B = event that second item is defective

The question stated in probability terms: what is P(B) = ?

P(A) = 5/15, P(A¢) = 10/15

P(B) = P(A & B) or P(A¢ & B) = P(first item de-
fective & second item defective) or

P(first item good & second item defective)

P(B) = P(B/A) P(A) or P(B/A¢) P(A¢)

P(B) = P(B/A) P(A) + P(B/A¢) P(A¢)

P(B) = (4/14)(5/15) + (5/14)(10/15)

P(B) = (20/210) + (50/210) = 70/210 = .333

n Example It has been found that 10% of certain relays
have bent covers and will not work. If 40% have bent cov-
ers, what is the probability that a relay with a bent cover will
not work?

nAnswer :

A and B – bent AND will not work – 0.1

A = 0.4

Let A = event that relays have bent covers

Let B = event that relays will not work

Given: P(A & B) = .10, P(A) = .40

The first formula of the conditional probability formulas,
Bayes formulas, gives the following solution:

P (B/A) =
P

P A

Aand B()
()

= =
.

.
.

10

40
25

n Example Given Probability of Ramu to reach time giv-
en that it rains is 60%.
Probability of Ramu to reach time given that it doesn’t rain
is 80%.
Probability of rain is 40%.

n Answer:
A = Ramu on-time

B = raining

P (A/B) = 60%

P (A/ B) = 80%

What is the probability of Ramu going to school on time?

Tree Diagram

B 0.4

- B 0.6

A 0.6

- A 0.4

- A 0.2

A 0.8

0.24 AB

0.16 AB-

0.48 A B-

0.12 A B- -

Verbal Ability and Numerical Reasoning 10.31

B + A B ¨ probability of Ramu going to school on time

(mutually exclusive) 0.24 + 0.48 = 0.72
Given that he reached school on time, what is the probabil-
ity that it rained?

P (B\A) =
P B A

P A

()

()

.

.

«
= =

24

72

1

3

10.2.2.2.5 Reliability of a system: A prac-
tical Enginering Application

An engineering system can be broken down into subsys-
tems just containing elements in series or just containing
elements in parallel. We find the reliability of each of these
subsystems and find the reliability of whole system.
Series subsystem: in the diagram pi = probability that ele-
ment i fails, so 1 – pi = probability that it does not fail.

p1 p2 p3 pn

The system only works if all n elements work.
i.e., P(System does not fail) =
P(Element 1 doesn’t fail and Element 2 doesn’t fail and ...
and Element n doesn’t fail)
= P(Element 1 doesn’t fail)P(Element 2 doesn’t fail) ...
P(Element n doesn’t fail)
[Special multiplication rule; independence of failures]

= (1–p1)(1–p2) ... (1–pn) = 1
1

-()
=

’ pj
j

n

p1

p2

pn

Parallel subsystem: the subsystem only fails if all the ele-
ments fail.
i.e., P(System fails) = P(Element 1 fails and Element 2 fails
and ... and Element n fails)
= P(Element 1 fails)P(Element 2 fails) ... P(Element n fails)
[Independence of failures]

= p1p2 ... pn = pj
j

n

=
’

1

n Example What is the probability that the system does
not fail in the next year?

n Answer:

0.05 0.03

Subsystem 1:

P(Subsystem 1 doesn’t fail) = (1 – 0.05)(1 – 0.03)

= 0.09215

P(Subsystem 1 fails)= 0.0785

Subsystem 2:

0.0785

0.0785

P(Subsystem 2 fails) = 0.0785 × 0.0785 = 0.006162

0.1

0.1

Subsystem 3:
P(Subsystem 3 fails) = 0.1 × 0.1 = 0.01

0.02 0.006162 0.01

System (summarised):

P(System doesn’t fail) = (1 – 0.02)(1 – 0.006162)(1 – 0.01)

 = 0.964

n Example Find P(System does not fail and component
* does fail)

n Answer:
Let B = event that the system does not fail

Let C = event that component * does fail

We need to find P(B and C).

Now, P(C) = 0.1.

Also, P(B | C) = P(system does not fail given component *
has failed); now if component * has failed, Subsystem 3 has
probability of failing of 0.1 instead of 0.01, so that the final
reliability diagram becomes:

0.02 0.006162 0.1

 P(B | C) = (1 – 0.02) × (1 – 6.162 × 10–3)(1 – 0.1)

= 0.8766

 P(B and C) = P(B | C) P(C) = 0.8766 × 0.1

= 0.08766

n Example Find P(Component * has failed | System has
not failed)

n Answer: Using the previously introduced notation:

P(C | B) =
P B C P C

P B

| . .

.

() ()

()
=

¥0 8766 0 1

0 9642
 = 0.091

10.32 Computer Science & Information Technology for GATE

10.2.2.2.6 Counting Techniques: Permu-
tations and Combinations

Permutations and combinations are simply mathematical
tools used for counting. In many cases, it may be cumber-
some to count the number of favourable events or the num-
ber of total events when solving probability problems. Per-
mutations and combinations help simplify the task.

For a task with k steps, if there are n1 different ways to
perform the first step, n2 different ways to perform the sec-
ond step, ..., and finally nk different ways to perform the
k-th step, then there are n1 × n2 ×... × nk different ways to
accomplish the task.

n1

Step 1

A task
with k
steps

n11

2

1

2

n2

n2

Step 2

The proof is obvious by considering the tree diagram:

n Example r persons are distributed in n rooms random-
ly. How many possible outcomes are there?

n Answer: Consider all the r persons lined up. The first
person can enter any of the n rooms, so can the second,
third, ... r-th person. Hence by the fundamental principle of
counting there are a total of n.n.n...n = nr possibilities. Note
that the same problem can be messy if one tried to visualise
the n rooms being lined up, so choosing the right perspec-
tive is often crucial to an efficient solution to the problem.
Permutations
A permutation is an arrangement of things, objects or
events where the order is important. Telephone numbers
are special permutations of the numerals 0 to 9 where each
numeral may be used more than once. The order defines
each unique telephone number.

In the following example, it is assumed that each object
is unique and cannot be used more than once. The letters A,
B, and C may be arranged in the following ways:
ABC BAC CAB
ACB BCA CBA

This is an ordered arrangement, because ABC is differ-
ent than BCA. Since, the order of the letters makes a differ-
ence, each arrangement is a permutation. From the above
example, It is concluded that there are six permutations that
can be made from three objects. The general formula for
permutations is

nPr =
n

n r

!

!-()

n = The total objects to arrange

r = The number of objects taken from the to-
tal to be used in the arrangements

Permutations of n distinct objects is calculated using nPr

n Example Using the permutation formula and the three
letters A, B and C, how many permutations can be made
using all three letters?

n Answer :

3P3 =
3

3 3

3 2

0

6

1
6

!

! !-()
=

¥
= =

n Example How many permutations can be made by us-
ing two out of the three letters ?

n Answer :

3P2 =
3

3 2

3 2

1

6

1
6

!

! !-()
=

¥
= =

The permutations are

 AB BA BC

 AC CA CB

n Example There are three different assembly operations
to be performed in making a certain part. There are nine
people working on the floor. How many different assembly
crews can be formed?

n Answer : This may be stated as the number of permuta-
tions that can be made from nine objects used three at a
time.

9P3 =
9

9 3

9

6

9 8 7 6

6
504

!

!

!

!

!

!-()
= =

¥ ¥ ¥
=

n Example How many ways are there to arrange 7 people
in a row of 7 chairs?

n Answer: 7! = 5040

n Example Six men and four women took the same test,
and all got different scores.

(a) How many different rankings are possible?

(b) How many different rankings are possible if men and
women are ranked separately ?

n Answer:

(a) 10! = 3628800

(b) 6!4! = 17280

Permutations of n objects, some of which are indistin-
guishable
Suppose we wish to permute n objects, but n1 of them are
alike (i.e. indistinguishable from each other), n2 are alike
of another kind,, finally nk are alike of a k-th kind. For
example, among the 6 letters PEPPER, there are 3 indistin-
guishable Ps and 2 indistinguishable
n Example How many different permutations are there
in such cases?

Verbal Ability and Numerical Reasoning 10.33

n Answer: Let the correct answer be denoted by c. The trick
is to pretend we really had all distinguishable Ps (say P1, P2,
P3) and Es (E1 and E2, say), then, if there are c arrangements
in the indistinguishable case, each arrangement must be
further arranged in 3!2! different ways since everything
is distinguishable, resulting in a total number of arrange-
ments c 3! 2! which must equal (number of ways to permute

6 different objects) = 6!, hence c =
6

3 2

!

! ! . By the same rea-

soning, there are

n

n n nk

!

! !...... !1 2

 = ways to permute n objects, with ni be-
ing alike of the i-th kind

n Example How many distinct permutations can you
form from all the letters of each word:

(i) FAST,

(ii) NAKAMURA,

(iii) PROBABILISTICALLY?

n Answer:

(i) 4! = 24 since all 4 letters are distinct

(ii) 8!/3! = 6720 since there are 8 letters among which 3
A’s are indistinguishable

(iii) 17!/2!/2!/3!/3! = 2,470,051,584,000 since there are 17
letters among which 2 B’s, 2 A’s, 3 I’s and 3 L’s are iden-
tical.

Combinations
A combination is a grouping or arrangement of objects
where the order does not make a difference. The arrange-
ment of the letters ABC is the same as BCA. The number
of combinations that can be made by using three letters,
three at a time, is one. This can be expanded to state that
the number of combinations that can be made by using n
letters, n at a time, is one. A hand of five cards consisting
of a Jack, a Queen, a King, and two Aces is the same as a
Queen, two Aces, a Jack and a King. The order in which the
cards were received makes no difference. There is only one
combination that can be made by using five cards, five at a
time. The formula for combinations is

nCr=
n

r

n

n r r

P

!

!

! !
r =

-()

n = Total objects to arrange

r = Number of objects taken from the total to
be used in the arrangements

The symbol for number of combinations is often shown as

n

r
where

n

r
= Cn r

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

When the symbol appears in a formula, the number of
combinations is to be computed using the combination for-
mula.

n

r
Ê
ËÁ

ˆ
¯̃

 = n

n r r

!

! !-()

n Example From the three letters A, B and C, how many
combinations can be made by using two out of the three
letters?

3

2
Ê
ËÁ

ˆ
¯̃

 =
3

3 2 2

3 2 1

2 1 1
3

!

! !-()
=

¥ ¥
¥ ¥

=

The combinations are
AB AC BC

BA is the same as AB. We did not consider both in our
counting.

CA is the same as AC. We did not consider both in our
counting.

CB is the same as BC. We did not consider both in our
counting.

n Example Ten parts have been manufactured. Two parts
are to be inspected for a critical dimension. How many dif-
ferent sample arrangements can be made?

n Answer: If the parts are labeled 1 to 10, then parts 1 and 5
make one arrangement, parts 3 and 7 make another, 6 and 8
another, etc. The listing of the various arrangements can be
completed and total arrangements counted. The combina-
tion formula can perform this task and save a considerable
amount of time.
The total arrangements or combinations that can be made:

10

2
Ê
ËÁ

ˆ
¯̃

=
10

10 2 2

10

8 2

10 9 8

8 2 1
45

!

! !

!

! !

!

!-()
=

¥
=

¥ ¥
¥ ¥

=

n Example It is proposed to have a committee that con-
sists of 3 male professors and 2 female professors from 7
male professors and 5 female professors. How many ways
are possible?

n Answer: First, to choose 3 men out of 7 there are C(7,
3) ways. Next, to pick 2 women out of 5 there are C(5, 2)
ways. So this two-step process has (7.6.5)/(3.2.1) x (5.4)/
(2.1) ways of being accomplished.

n Example In surveying, the three-point resection meth-
od can be used to determine the coordinates of an unknown
point by observing from it three stations with known co-or-
dinates (Known as Triangulation which is used GPS also).
The unknown coordinates can then be calculated by a for-
mula (Tienstra’s). For better accuracy and to guard against
mistakes, a surveyor plans to observe 5 known stations,
apply Tienstra’s formula using 3 stations at a time until he
exhausts all possible combinations, and average the results
if they all agree well. How many sets of coordinates will he
need to calculate before averaging?

n Answer: To pick 3 out of 5 available stations for each cal-
culation, there are a total of 5!/3!/2! = 10 ways.

10.34 Computer Science & Information Technology for GATE

n Example A box contains 11 balls, numbered 1, 2, 3, …,
11. If 6 balls are drawn simultaneously at random, what is
the probability that the sum of the numbers on the balls
drawn is odd?

n Answer: Number of ways to choose 6 numbers out of

11 =
11

6
Ê
ËÁ

ˆ
¯̃

 = 462.

We have to count the number of these
11

6
Ê
ËÁ

ˆ
¯̃

 combinations

that sum to an odd number. There are 6 odd numbers to
pick from and 5 even ones. If the sum is to be odd, an odd
number of odd numbers must be chosen. Thus, either 1, 3
or 5 odd numbers is chosen. Add up the number of ways to
choose 6 numbers out of 11 in these three separate cases:

Number of ways to choose 1 odd and 5 even =
6

1

5

5
6

Ê
ËÁ

ˆ
¯̃

¥ Ê
ËÁ

ˆ
¯̃

= ,

we multiply these two since each choice of a set of odd
numbers can be paired up with each choice of a set of even
numbers. Using the same logic, we have:

Number of ways to choose 3 odd and 3 even

=
6

3

5

3
200

Ê
ËÁ

ˆ
¯̃

¥ Ê
ËÁ

ˆ
¯̃

= , and

Number of ways to choose 5 odd and 1 even =
6

5

5

1
30

Ê
ËÁ

ˆ
¯̃

¥ Ê
ËÁ

ˆ
¯̃

= ,

Thus, the desired probability is
6 200 30

462

118

231

+ +
=

n Example A box contains three shiny pennies and 4 dull
pennies. One by one, pennies are drawn at random from
the box and not replaced. What is the probability that it
will take more than four draws until the third shiny penny
appears?

n Answer: The sample space is
7

4 3
35

!

! !
= , the number of

permutations of the 3 shiny pennies and 4 dull pennies. Of
these 35, we want to find how many of them require more
than four draws to pull the third shiny penny. It’s easier to
use the subtraction principle here and simply count the
number of ways in which the 3 shiny pennies all get pulled
in four or less turns. We can enumerate these (SSSDDDD,
SSDSDDD, SDSSDDD, DSSSDDD) or reason that we must
choose 3 of the first four slots for shiny pennies, fixing the

last three slots do dull pennies. We can do this in
4

3
Ê
ËÁ

ˆ
¯̃

 = 4

ways. Thus, the probability it will take more than 4 draws to

pull the last shiny penny is
35 4

35

31

35

-
= .

n Example Six distinct integers are picked from the set
{1, 2, 3,…, 10}. What is the probability that among those
selected, the second smallest is 3?

n Answer: There are
10

6
Ê
ËÁ

ˆ
¯̃

 = 210 ways to pick 6 integers

out of 10. Of these, we must count how many of these com-
binations of 6 have 3 as the second smallest value. In order
for this to occur, we must choose 1 value from the set {1,2}
and 4 values from the set {4, 5, 6, 7, 8, 9, 10}. This can be

done in
2

1

7

4
70

Ê
ËÁ

ˆ
¯̃

¥ Ê
ËÁ

ˆ
¯̃

= ways. (We multiply because each

choice from the first set can be paired up with any of the
choices from the second set.) Thus, the desired probability

is
70

210

1

3
= .

n Example A non-zero digit is chosen in such a way that
the probability of choosing digit d is log10((d+1)/d). The
probability that 2 is chosen is exactly ½ the probability that
the digit chosen is in which of the following sets?

(A) {2,3} (B) {3,4}

(C) {5,6,7,8,9} (D) {4,5,6,7,8}

(E) {4,5,6,7,8,9}

n Answer: The probability that 2 is chosen is = log10

3

2
.

Thus, the set we must pick must have a probability of

2
3

2

3

2

9

4
10 10

2

10log log log= () = of having a number chosen

from it. Given a set {a, a+1, a+2, ..., b} the probability of

choosing a digit from that set is (log () log)10 101k k
k a

b

+ -
=
Â

= + - =
+

log () log log10 10 101
1

b a
b

a
, applying a telescoping

sum and the log difference rule.

Setting b+1 = 9 and a = 4, we find that a=4, b=8 and the
correct choice is D.

n Example Three balls marked 1, 2, and 3 are placed in
an urn. One ball is drawn, its number recorded, and then
the ball is returned to the urn. This process is repeated and
then repeated once more, and each ball is equally likely to
be drawn on each occasion. If the sum of the numbers re-
corded is 6, what is the probability that the ball numbered 2
was drawn all three times?

n Answer: Let x, y, and z represent the values of the first,
second and third ball pulled from the urn, respectively. The
sample space is all ordered triplets (x,y,z) such that x+y+z=6.
These ordered triplets are (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1),
(3, 1, 2), (3, 2, 1) and (2, 2, 2). Of these 7 possibilities, only

Verbal Ability and Numerical Reasoning 10.35

1 corresponds to drawing 2 all three times, thus the desired

probability is
1

7
.

n Example Let S be the set of permutations of the se-
quence 1,2,3,4,5 for which the first term is NOT 1. A per-
mutation is chosen randomly from S. What is the probabil-
ity that the second term is two?

n Answer: There are 5! = 120 permutations of 1, 2, 3, 4, 5
total. Of these, there are 4! = 24 where 1 is in the first posi-
tion. (We can determine this by fixing 1 in the first position
and then observing that there are 4! ways to permute 2, 3,
4, 5 amongst the remaining slots.) Thus, we have 5! - 4! = 96
permutations in the sample space.

Of these 96 permutations we must count how many of
them have 2 in the second position. For the first position,
we have three choices, 3, 4 or 5. Then for the remaining 3
positions, we are free to permute the remaining three items
in 3! = 6 ways. Thus, there are a total of 3x3! = 18 permuta-
tions in our sample space where 2 is in the second position.

The desired probability is
18

96

3

16
= .

n Example First a is chosen at random from the set {1, 2,
3,…, 100} and then b is chosen at random from the same
set. What is the probability that the units digit of 3a+7b has
a units digit of 8?

n Answer: Let’s make charts for the possible units digits of
3a and 7b in terms of a and b.

N units digit of 3n units digit of 7n

1 3 7

2 9 9

3 7 3

4 1 1

5 3 7

We can see that the unit’s digit for each column repeats ev-
ery 4 values. Thus, 3, 9, 7 and 1 appear exactly 25 times as
units digits in the list 31, 32, ..., 3100, and the list 71 72 ..., 7100.
In essence each has a probability of 1/4 of occurring as the
units digit of 3a and 7b. Let (x, y) be the ordered pair where
x is the units digit of 3a and y is the units digit of 7b. The
probability of getting the each of the ordered pairs (3, 7),
(3, 9), (3, 3), (3, 1), (9, 7), (9, 9), (9, 3), (9, 1), (7, 7), (7, 9),
(7, 3), (7, 1), (1, 7), (1, 9), (1, 3), and (1,1) is 1/16. Of these,
three sum to a units digit of 8: (1, 7), (7, 1) and (9, 9). Thus,

the desired probability is
3

16
.

n Example An unbiased die marked 1, 2, 2, 3, 3, 3 is
rolled three times. What is the probability of getting a total
score of 4?

n Answer: Let (x, y, z) be the ordered triplet where x is
the value of the first roll, y the value of the second roll and
z the value of the third roll. The possible ordered triplets
that correspond to a total score of 4 are (2, 1, 1), (1, 2, 1),
and (1, 1, 2). The probability of achieving each of these is

2

6

1

6

1

6

1

108
¥ ¥ = , since the probability of rolling a 2 on any

given roll is
2

6
, whereas the probability of rolling a 1 on any

given roll is
1

6
, and each roll is independent of the others.

Since the three ordered pairs are mutually exclusive the to-
tal probability is the sum of these three probabilities which

is 3
1

108

1

36
¥ = .

n Example If A and B are events and p(A) = 8/15, p(A
∩ B) = 1/3, p(A | B) = 4/7 calculate p(B), p(B|A) and p(B |
~A), where ~A is the complement of the event A. Are A and
B independent? Mutually exclusive?

n Answer:

p A B
p A B

p B p B
(|)

()

() ()
= =

«
=

4

7

1
3 , thus p B() = =

1
3

4
7

7

12
.

p B A
p A B

p A
(|)

()

()
=

«
= =

1
3

8
15

5

8

p B A
p A B

p A

p B P A B

p A
(|~)

(~)

(~)

() ()

()
=

«
=

- «
-1

=
7

12
1

3

1 8
15

1
4

7
15

15

28

-

-
= =

A and B aren’t independent, since p(B | A) π p(B) and p(A
| B) π p(A).
A and B aren’t mutually exclusive since p(A ∩ B) π 0.

n Example Edit distance or time warping distance be-
tween two strings a and b of equal length to be the mini-
mum number of letter substitutions needed to make in
string a in order to obtain string b. For example, the edit
distance between the strings “HELLO” and “JELLO” is 1,
since only ‘J’ must be substituted for ‘H’ in order to obtain
the second word from the first. Also, the edit distance be-
tween “HELLO” and “JELLY” is two, since in addition to
the first substitution described, a ‘Y’ must be substituted
for ‘O’. For all three parts of this question, assume that all
strings are case insensitive.

(a) How many alphabetic strings of length 5 have an edit
distance of 1 from the string “HELLO”?

(b) Let n be your answer to question a. One may argue
that the number of alphabetic strings of length 5 that

10.36 Computer Science & Information Technology for GATE

have an edit distance of 2 from the string “HELLO” is
n2. In essence, one would argue that in order to find a
string with an edit distance of 2 away from “HELLO”,
one must change one letter at random, and then re-
peat that operation on the intermediate string. (i.e.
“HELLO” Æ “JELLO” Æ “JELLY”) To count how
many ways this can be done, since the first operation
is independent of the second, we would simply use
the multiplication principle and multiply the number
of ways the first operation can be done by the num-
ber of ways the second operation can be done. Both
of these values are n, leading to a final answer of n2.
What is the flaw with this argument?

(c) Determine the actual number of alphabetic strings
of length 5 with an edit distance of 2 from the string
“HELLO”.

n Answer:

(a) We can choose one of the five locations in the string
to make a change. For each of these five choices, we
can change the letter to 25 other options. (It’s not 26
since we can’t change the letter to itself). Thus, using
the multiplication principle, there are 5×25 = 125 to-
tal strings with an edit distance of 1 from “HELLO”.

(b) Not all distinct ordered pairs of operations lead to
distinct strings. Consider the two following distinct
ordered pairs of operations:

 “HELLO” Æ “JELLO” Æ “JELLY” and

 “HELLO” Æ “HELLY” Æ “JELLY”

 In the n2 count, both of these two operations would be
counted for two different words with an edit distance
of 2 from “HELLO”. But, as we can see, they should
really only be counted as one word.

 One may actually say then, that we can simply divide
n2 by 2 to obtain our answer. But this also, is faulty.
This doesn’t take into account, the following type of
ordered pair of operations:

 “HELLO” Æ “JELLO” Æ “HELLO” or

 “HELLO” Æ “JELLO” Æ “MELLO”

 In spite of the fact that both operations are distinct,
they don’t result in a final string that is actually an edit
distance of 2 from “HELLO”.

(c) Out of the 5 characters, we must choose exactly 2 to

edit. This can be done in
5

2
10

Ê
ËÁ

ˆ
¯̃

= ways, since we are

choosing 2 characters out of 5. For each of the two
characters we change, we have exactly 25 possible
choices. The choice of one character is completely in-
dependent of the other, so, we can change the char-
acters in 25×25 = 625 ways. Using the multiplication

principle, multiply the choices of pairs of characters
to change with the number of ways to change them to
obtain 10×625 = 6250 as the final answer.

n Example

(a) How many four digit numbers (between 1000 and
9999, inclusive) do NOT contain any repeating digits?

(b) A number is defined as ascending if each of its digits
are in increasing numerical order. For example, 256
and 1278 are ascending numbers, but 1344 and 2687
are not. How many four digit numbers (between 1000
and 9999, inclusive) are ascending?

(c) A number is defined as descending if each of its digits
are in decreasing numerical order. For example, 652
and 8721 are descending numbers, but 4431 and 7862
are not. How many four digit numbers (between 1000
and 9999, inclusive) are descending?

n Answer:

(a) We can only choose 9 values for the first digit as 0 is
not permissible in the first digits place. Also, 9 digits
for the second digit place which includes 0 and ex-
cluding the digit used in the first digits place. Simi-
larly, 8 digits can be used (excluding first and second
place) for the third digit place; and 7 digits (excluding
first, second, and third digit places) for the last digit
using similar reasoning. Thus, the final answer is 9(9)
(8)(7) = 4536.

(b) Since the first digit cannot be 0, none of the digits can
be 0. For each combination of four digits from the set
{1, 2, 3, 4, 5, 6, 7, 8, 9} we can create exactly one as-
cending number. Thus, the total number of ascending

numbers is
9

4
126

Ê
ËÁ

ˆ
¯̃

= .

(c) A descending number can contain 0. Thus, for each
combination of four digits from the set {0, 1, 2, 3, 4, 5,
6, 7 ,8 9} we can create exactly one descending num-
ber. Thus, the total number of descending numbers is

10

4
210

Ê
ËÁ

ˆ
¯̃

= .

n Example

(a) A class has 8 girls and 4 boys. If the class contains 6
sets of identical twins, where each child is indistin-
guishable from their twin, how many different ways
can the class line up to go to recess? (Do not count
two configurations as distinct if the only difference
between the two is twins swapping spots in line.)

(b) Unfortunately, each day when the class (the same
class with 6 pairs of twins described in part A) lines
up to go to recess (this is done once a day), if two boys
are adjacent to each other in line, they always cause
problems. But, the kids also cause problems if they are

Verbal Ability and Numerical Reasoning 10.37

ever lined up the same way on two separate days. How
many possible orders can the class line up in without
having any problems?

n Answer:

(a) All that is important here is that there are 6 pairs of
twins, we are arranging 12 people in line, where 6
pairs are indistinguishable. This the exact same ques-
tion as computing the number of permutations of a 12
letter word comprised of 6 pairs of letters. Using the
formula for permutations with repetitions, we find
the answer to be 12!/(2!)6.

(b) First we will consider the possible orders of boys and
girls, and then we will consider the different valid per-
mutations while only interchanging boys with boys
and girls with girls.

 Consider laying out the girls with gaps in between as
follows:

 __ G __ G __ G __ G __ G __ G __ G __ G __

 We can choose any 4 of the 9 gap(___) locations for
the boys. This can be done in 9C4 ways.

 Now, let us consider the total number of orders for
the boys for each of these in 9C4 arrangements. There
are 4 boys, but 2 pairs of twins. Using the formula for
permutations with repetition, we get 4!/(2!)2 orders.
Now, consider the number of ways the girls can be
permuted for each of the 9C4 arrangements discussed
above. Here have 4 pairs of twins. Applying the same
formula, we get 8!/(2!)4 permutations.

 Multiply these three terms to get the final answer
(9C4)4!8!/26.

n Example Consider four boxes (R1, R2, R3, and R4)
containing marbles. The marbles are either red, or white, or
blue but are otherwise indistinguishable.

 R1: Has 10 red, 10 white, and 10 blue marbles.

 R2: Has 10 red marbles.

 R3: Has 10 white marbles.

 R4: Has 10 blue marbles.

Marbles are selected from the boxes and laid out in a row.
(Thus, the order in which the marbles are chosen makes a
difference. For example, RWWWBRR is a different order
than RRWWWB.) How many linear arrangements can be
created under the following circumstances?

(a) Seven marbles are chosen, all from R1.

(b) Ten marbles are chosen. The first marble chosen is
from R1. Then zero or more marbles are chosen from
R2, followed by zero or more marbles form R3, fol-
lowed by zero or more marbles from R4. The total
number of marbles chosen from these last three re-
ceptacles must be nine. (For example, WRRRBBBBBB
is permissible, while, WRRWRBBBBB is not.)

n Answer:

(a) There are 3 choices for each of 7 marbles. Using the
multiplication principle, that is 37 possible orders.

(b) There are three choices for the first marble.

 The following 9 choices are chosen out of three bins,
in that order.

 Let r be the number of marbles chosen from R2.

 Let w be the number of marbles chosen from R3.

 Let b be the number of marbles chosen from R4.

 We must find the total number of solutions to the
equation r + w + b = 9, where r, w, and b are all non-
negative integers.

 We are essentially distributing 9 marbles amongst 3

bins. This can be done in
9 3 1

3 1

11

2
55

+ -
-

Ê
ËÁ

ˆ
¯̃

= Ê
ËÁ

ˆ
¯̃

= ways.

 Using the product rule, we find a total of 3(55) = 165
permissible orders.

n Example Students A, B, C, D, E, F, G, H, I, and J must
sit in ten chairs lined up in a row. Answer the following
questions based on the restrictions given below. (Note that
each part is independent of the others, thus no restriction
given in part a applies to the rest of the parts, etc.)

(a) How many ways can the students sit if the two stu-
dents on the ends of the row have to be vowel-named
students?

(b) How many ways can the students sit if no two students
with vowel names can sit adjacent to each other?

(c) Given that students A, B, C, and D are male, and that
the rest of the students are female, how many ways
can the students can be arranged such that the aver-
age number of females adjacent to each male is 0.25?
(Note: to determine the average number of females
each male is adjacent to, sum up the total number of
females adjacent to each male and then divide by the
total number of males. For example, in the arrange-
ment AEBFCDGHIJ, each male is adjacent to 1.25
females, on average.)

n Answer:

(a) There are three choices for the student on the left, and
then 2 choices for the student on the right. Following
those two choices, we can arrange the rest of the 8 stu-
dents left in 8! ways. Thus, the total number of ways
the students can sit is (3)(2)(8!).

(b) Place all seven consonants like so (C designates an ar-
bitrary consonant):

 __ C __ C __ C __ C __ C __ C __ C __

 Now, the empty slots (___) represent possible loca-
tions for the vowels. There are P(8,3) = (8)(7)(6) ways

10.38 Computer Science & Information Technology for GATE

to place the vowels. The 7 consonants can be ordered
in 7! ways. Thus, there are (8)(7)(6)(7!) ways the stu-
dents can sit without any vowel-named students sit-
ting next to each other.

(c) Notice that the only ways in which the average num-
ber of females adjacent to males is 0.25 is when all
four males are at the left or right end of the row of
chairs. If this isn’t the case, then more than one female
will be adjacent to a male. If this occurs, then the aver-
age will be at least 0.5. Since the males and female can
sit an any arrangement amongst themselves, for both
cases, they can sit in (4!)(6!) ways. Adding both the
possibilities (males to the left, males to the right), the
total number of arrangements desired is (2)(4!)(6!).

n Example Consider a language with the following char-
acteristics:

(1) The alphabet is composed of three symbols: a, b, and
c.

(2) Each word in the language is a concatenation of four
of these symbols.

(3) Each command in the language is composed of three
words.

(a) How many distinct commands can be created if
words in a single command can be repeated and
two commands are identical only if the three
words AND the order in which the words appear
are identical? (Thus, the commands “aaca baaa
aaca” and “baaa aaca aaca” are two DIFFERENT
commands.)

(b) How many distinct commands can be created if
word position does not affect meaning and a giv-
en word may appear at most once in a single com-
mand? (Thus, “abca bbac abbb” and “bbac abbb
abca” should NOT count as different commands,
and “aaca baaa aaca” is an INVALID command.)

n Answer:

(a) Total of 12 symbols in a command. For each of these
symbols, we have 3 choices without any restrictions.
These choices are independent of one another, so the
total number of commands we have is 312.

(b) Since we are not allowed to repeat words and word
order doesn’t matter, we are essentially choosing three
words out of a possible number of words. Thus, we
must first figure out the possible number of words.
There are three choices for each of four symbols, us-
ing the multiplication principle as we did in part a, we
have 34 = 81 possible words. Of these, we can choose
three to make a valid command. Thus, the total num-
ber of possible commands here is 81C3 = (81)(80)
(79)/6 = 85320

n Example Consider six-digit numbers with all distinct
digits that do NOT start with 0. Answer the following ques-
tions about these numbers. Leave the answer in factorial
form.

(a) How many such numbers are there?

(b) How many of these numbers contain a 3 but not 6?

(c) How many of these numbers contain either 3 or 6 (or
both)?

n Answer:

(a) There are 9 choices for the first digit, and then 9 choic-
es for the second digit (0 has been added as a choice),
8 for the third, 7 for the fourth, 6 for the fifth, and 5
for the sixth. Total = (9)(9)(8)(7)(6)(5) = 9(9!)/4! =
136080.

(b) We need to separate the counting into two categories

(1) 3 is the first digit

(2) 3 is NOT the first digit

 For the first category, we have one choice for the first
digit, followed by 8 choices for the second digit (not
3 or 6), 7 choices for the third digit, 6 choices for the
fourth digit, 5 choices for the fifth digit and 4 choices
for the sixth digit.

 Total = (8)(7)(6)(5)(4) = 8!/3!

 For the second category, we have 7 choices for the first
digit (not 0, 3, or 6), now we must guarantee that a 3
is picked. There are five PLACES to place the 3. For
the remaining 4 digits, we have 7 choices, 6 choices,
5 choices and 4 choices, respectively for each of these.
(To see this, imagine the 3 was placed 2nd. Then for
the third digit you could choose any number except
for the first digit, 3 and 6. Similarly, no matter where
the 3 is placed, you always have 7 choices for the next
placed digit, then 6, etc.)

 Total = (7)(5)(7)(6)(5)(4) = 35(7!)/3!

 The total of both of these categories is 8!/3! + 35(7!)/3!
= 36120

(c) Count the number of numbers that contain neither:

 There are 7 choices for the first digit(not 0, 3 or 6), 7
choices for the second digit, 6 choices for the third
digit, 5 choices for the fourth digit, 4 choices for the
fifth digit and 3 choices for the sixth digit.

 Total = (7)(7)(6)(5)(4)(3) = 7(7!)/2!

 Now, the answer to the question given is the value
above subtracted from the answer in part a. Thus, this
answer is 9(9!)/4! - 7(7!)/2! = 118440.

n Example

(a) How many distinguishable ways are there to rear-
range the letters in the word COMBINATORICS?

(b) How many distinguishable arrangements are possible
with the restriction that all vowels (“A”, “I”, “O”) are
always grouped together to form a contiguous block?

Verbal Ability and Numerical Reasoning 10.39

(c) How many distinguishable arrangements are possible
with the restriction that all vowels are alphabetically
ordered and all consonants are alphabetically or-
dered? For example: BACICINOONRST is one such
arrangement.

n Answer:

(a) There are 13 letters in the word COMBINATORICS,
including three duplicates, two C’s, two O’s and two
I’s. So, the total number of arrangements is 13!/(2!)3.

(b) If all five vowels are consecutive, they form a single
block. Then first we need to count permutations of the
consonants and one block of vowels. Given eight con-
sonants with one duplicate (two C’s), we have 9!/2!.
But every arrangement of consonants and the block
of vowels can be combined with any permutation of
vowels inside the block. For five vowels including two
duplicates we have 5!/(2!)2 possible permutations in-
side the block. Then by the product rule we get the
answer: (9!×5!)/(2!)3.

(c) Any arrangement is completely defined by specifying
which 5 of 13 positions should be occupied by vowels
(or equivalently which 8 out of 13 should be occupied
by consonants). So we just need to count the number
of ways to select 5 positions out of 13 (or equivalently
8 positions out of 13), that is 13!/(8!5!). Given any
such selection, both consonants and vowels are dis-
tributed alphabetically into assigned slots.

n Example How many 6-letter words can be formed by
ordering the letters ABCDEF if A appears before C and E
appears before C?

n Answer: Under given restrictions there are two possible

arrangements for letters A, C and E between themselves: ei-

ther A appears before E , or E before A, i.e. AEC or EAC, so

we have two choices for this task. After that we can choose

3 slots to place letters A, C and E out of 6 possible slots in

a 6-letter word. If the order of A, C and E

C A,

C and E, we can make 3! permutations of the letters B, D

and F using remaining 3 slots. By the product rule the total

number of orderings will be 2.C(6, 3).3! = 2.6.5.4 = 240.

n Example

(a) How many permutations of the word FOUNDATION
are there?

(b) A valid password is 5 letters long and uses a selection
of the letters in the word FOUNDATION. (Thus, a
password may have at most 2 N’s, at most 2 O’s, and
at most 1 copy of each of the other letters {A, D, F, I,
U, T} in FOUNDATION). How many valid passwords
are there?

n Answer:

(a) 10!/(2!2!), since there are 10 letters total with two O’s
and two N’s.

(b) Split up the counting into three separate categories:

 (1) Passwords with 5 distinct letters

 (2) Passwords with 4 distinct letters

 (3) Passwords with 3 distinct letters

(1) We have 8 distinct letters to choose from and we
are choosing 5.

 There are P(8,5) = 8!/3! ways to do this.

(2) We first choose either two Ns or two Os. This can
be done in 2 ways. Then we choose three distinct
letters out of the 7 remaining. We can choose the
three letters in C(7,3) ways. Thus, we have C(7,3)
x2 = 70 ways to choose our letters. Each of these
choices give rise to 5!/2! = 60 permutations.

(3) We have to choose all Ns and Os, which leaves
us one choice out of the remaining 6 letters. We
can choose this letter is 6 ways. For each of these
choices, we can make 5!/(2!2!) = 30 permutations.
So there is a total of 180 permutations of this kind
to count.

Adding up, we get the total number of valid pass-
words to be:

 8!/3! + 70 × 60 + 180 = 6720 + 4200 + 180 = 11100.

n Example An ice cream shop lets its customers create
their orders. Each customer can choose up to four scoops of
ice cream from 10 different flavours. In addition, they can
add any combination of the 7 toppings to their ice cream.
(Note: Please leave your answer in factorials, combinations,
and powers.)

(a) If a customer is limited to at most two scoops of the
same flavour, how many possible orders with exactly 4
scoops and up to 5 toppings can the customer make?
(Assume each order has at least one topping.)

(b) Suzanne wants to make 7 separate orders for ice
cream. Each order will have exactly 1 scoop and 1 top-
ping. If no flavor or topping is requested more than
once, how many combinations of orders can Suzanne
make?

n Answer:

(a) If we ignore toppings initially, we have a problem of
combinations with repetition. We are choosing 4 items
from 10 possible items, allowing for repetition. This
can be done in C(4+10-1,4) = 715. But, here we are
counting choices that have 3 and 4 scoops of the same
flavour. We need to subtract these out. So, our next
sub-problem becomes to count the number of ways we
can order exactly 4 scoops with one flavour repeated at
least 3 times. Since only one flavour can be repeated at

10.40 Computer Science & Information Technology for GATE

least 3 times, pick this flavour. There are 10 choices for
it. Go ahead and pick 3 scoops of this flavor. Now you
are left with 1 scoop to pick out of the 10 total flavours.
This can be done in 10 ways as well. Thus, there are a
total of 10 × 10 = 100 combinations of scoops with one
flavour repeated at least 3 times. So we have 715 – 100
= 615 ways to choose the scoops of ice cream.

 Now, the choice of toppings is independent from
the scoops. There are total of 27 total combinations of
toppings we can receive without restrictions. BUT, we
are only allowed to get up to 5 toppings, but at least
one topping. Thus we just subtract out the number of
ways to get 0, 6 or 7 toppings. There is C(7,0) = 1 way
to get zero toppings, C(7, 6) = 7 ways to choose 6 top-
pings, and C(7, 7)=1 way to choose all 7 toppings. So
there are a total of 27 – 1 – 7 – 1 = 119 ways to choose
the toppings.

 This gives us a final answer of 615 × 119 = 73185 pos-
sible orders for the customer.

(b) This question is the same as how many injections are
there from a set of size 7 to a set of size 10. Imagine
the domain being the toppings. Since we are forced to
pick each topping exactly once, and none of the fla-
vors are repeated, we are mapping each topping to a
distinct element from the co-domain, the set of fla-
vors. We can do this is P(10,7) ways. P(10,7) = 10!/3!
= 604800.

n Example Suppose a shipyard produce and sell three
brands of motorboats. Define:

• Event A: sell a boat (brands: A1, A2, A3)

• Event B: repair a sold boat.

Suppose Selling Mix: A1 = 70%, A2 = 20% and A3 = 10%

• Likelihood to Repair Given Model A1 = 15%

• Likelihood to Repair Given Model A2 = 10%

• Likelihood to Repair Given Model A3 = 5%

a. Find the probability that a boat you sell will be
repaired (7%)

b. Find the posterior (conditional) probabilities
p(Ai given B), i =1, 2 and 3 (3% each)

n Answer:

a. p(A1) = 0.7 p(B/A1) = 0.15

 p(A2) = 0.2 p(B/A2) = 0.1

 p(A3) = 0.1 p(B/A3) = 0.05

 p(B) p(Ai) p(B/Ai)
i 1

3

= ◊
=
Â

= 0.7 · 0.15 + 0.2 · 0.1 + 0.1 · 0.05 = 1.13

b. p(A1/B)
p(A1 B)

p(B)

p(A1)p(B/A1)

p(B)
=

«
=

 =
◊

=
0 7 0 15

0 13

. .

.
0.8077

 p(A2/B)
p(A2 B)

p(B)

p(A2)p(B/A2)

p(B)
=

«
=

 =
◊

=
0 2 0 1

0 13

. .

.
0.1538

 p(A3/B)
p(A3 B)

p(B)

p(A3)p(B/A3)

p(B)
=

«
=

 =
◊

=
0 1 0 05

0 13

. .

.
0.0385

n Example Determine the overall system reliability (Rs)
of a Ship propulsion plant, consisting of two identical en-
gines (1 and 2 in parallel) in series with unit 3, the shafting
system, and unit 4, the propeller, if R1=R2=.975, R3=.990
and R4=.980. Keep enough decimal digits for good accu-
racy, since all units here are quite reliable, as are the main
engines, shafts and propellers on most merchant ships.

n Answer:

Rs = prob (system operates)

= prob [(1 OR 2) and 3 AND 4] =

= (R1 + R2 –R1*R2) *R3*R4

= 0.999375*0.99*0.98

= 0.96959

n Example A professor wishes to schedule an appoint-
ment with each of her eight teaching assistants, four men
and four women, to discuss her large introductory course.
Suppose all possible orderings of appointments are equally
likely to be selected.

(a) What is the probability that at least one female assis-
tant is among the first three with whom the professor
meets? (7%)

(b) What is the probability that after the first five appoint-
ments, she has met with all female assistants? (7%)

n Answer:

(a) P(at least one F among 1st 3) = 1 – P(no F’s among 1st

3) =1 –
4

1
24

336
1 0714 9286

◊ ◊
◊ ◊

= - = - =
3 2

8 7 6
. .

An alternative method to calculate P(no F’s among 1st

3) would be to choose none of the females and 3 of the
4 males, as follows:

4

0

4

3

8

3

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

 =
4

56
0714= . obviously producing the

same result.

Verbal Ability and Numerical Reasoning 10.41

(b) P(all F’s among 1st 5) =

4

4

4

1

8

5

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

 =
4

56
0714= .

10.2.2.3 Probability Distributions

Probability distributions and their associated formulas
and tables allow us to solve a wide variety of problems in
a logical manner. Probability distributions are classified as
discrete or continuous. Three discrete distributions will be
reviewed in this chapter. Continuous distributions are cov-
ered in the next chapter. Probability distributions are used
to generate sampling plans, predict yields, arrive at process
capabilities, determine the odds in games of chance and
many other applications.
The three discrete distributions that will be reviewed:

• The Hypergeometric Probability Distribution

• The Binomial Probability Distribution

• The Poisson Probability Distribution

One of the most difficult tasks for a beginning student in
probability is to know which distribution or formula to use
for a specific problem. A roadmap is given in section 10.0
of this chapter to assist in the task.

The quality engineer may be asked to calculate the prob-
ability of the number of defects or the number of defec-
tive units in a sample. There is a difference between the two
phrases. A defect is an individual failure to meet a require-
ment. A defective unit is a unit of product that contains one
or more defects. Many defects can occur on one defective
unit.

10.2.2.3.1 The Hypergeometric Probability
Distribution

The hypergeometric distribution is the basic distribution of
probability. The hypergeometric probability formula is sim-
ply the number of favorable events divided by the number
of total events. It can be described as the true basic prob-
ability distribution of attributes. To use the hypergeometric
formula, the following values must be known.

N = The total number of items in the population (lot
size)

n = The number of items to be selected from the
population (sample size)

A = The number in the population having a given
characteristic

B = The number in the population having another
characteristic

a = The number of A that is desired to occur

b = The number of B that is desired to occur

The hypergeometric probability formula is

P (a and b) =

A

a

B

b

N

n

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

n Example An urn contains fifteen balls, five red and ten
green. What is the probability of obtaining exactly two red
and three green balls in drawing five balls without replace-
ment?
This question may also be stated as:

• What is the probability of obtaining two red balls?

• What is the probability of obtaining three green balls?

 All three questions are the same. When setting up the
problem, all events must be considered regardless of
how the question is asked.

 In this case, the probability of a single event is not
constant from trial to trial. This is the same as sam-
pling without replacement. The outcome of the sec-
ond draw will be affected by what was obtained on
the first draw. The number of favorable events and the
number of total events must be computed.

The number of ways that red balls may be selected:

5

2

5

3 2

5 4 3 2 1

3 2 1 2 1
10

Ê
ËÁ

ˆ
¯̃

= =
¥ ¥ ¥ ¥
¥ ¥ ¥ ¥

=
!

! !

The number of ways that green balls may be selected:

10

3

10

7 3

10 9 8 7

7 3 2 1
120

Ê
ËÁ

ˆ
¯̃

= =
¥ ¥ ¥
¥ ¥ ¥

=
!

! !

!

!

The total number of ways to select a sample of five balls
from a population of fifteen balls:

15

5

15

10 5

15 14 13 12 11 10

10 5 4 3 2 1
3003

Ê
ËÁ

ˆ
¯̃

= =
¥ ¥ ¥ ¥ ¥

¥ ¥ ¥ ¥ ¥
=

!

! !

!

!

Then P (2r and 3g) =

5

2

10

3

15

5

10 120

3003
3996

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

=
¥

= .

This is a specific application of the hypergeometric proba-
bility formula. Many similar problems may be solved using
this method. To use the hypergeometric formula, the popu-
lation must be small enough so that the number of items
with the characteristics in question can be determined.

n Example A box contains ten assemblies of which two
are defective. A sample of three assemblies is selected at
random. What is the probability that the two defective parts
will be selected? (For this to occur there must be two defec-
tive parts and one good part in the sample.)

10.42 Computer Science & Information Technology for GATE

P(2 defective units) = P2 =

2

2

8

1

10

3

1 8

120
0667

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

=
¥

= .

10.2.2.3.2 The Binomial Probability
Distribution

The binomial probability formula is used when events are
classified in two ways such as good/defective, red/green,
go/no-go, etc. The prefix Bi means two. The events or trials
must be independent. When the binomial formula is used,
it is assumed that the lot size is infinite and the probability
of a single success is constant from trial to trial.

The binomial probability formula is be used to answer
the following question: What is the probability of x success-
es in n trials where the probability of a single success is p?.
The binomial formula is

P(x) =
n

x
p px n xÊ

ËÁ
ˆ
¯̃

() -() -1

n Example A coin is tossed five times. (This is the same as
a sample size of five). What is the probability of obtaining
exactly two heads in the five tosses?

It is known, by prior knowledge, that the probability of
a single success (probability of a head in one toss of a coin)
is fifty percent. The question is looking for two successes or
two heads in five tosses of a coin. A success is the outcome
that is desired to occur.
For this example:

• The number of trials = n = 5
• The probability of a single event = p = 1/2
• The number of successes that the question is seeking

(x = 2).
To arrive at the answer to the question the values are en-
tered in the binomial formula.

P (2Heads) =
5

2
1

2
2 1

2
3Ê

ËÁ
ˆ
¯̃

() () = 10 × 1/4 × 1/8

= .3125 or 31.25%

n Example In manufacturing screwdrivers, it was em-
pirically determined that the process yields, on average, 5%
defective product. What is the probability that in a sample
of ten screwdrivers there are exactly three defective units?

n = 10, p = .05, x = 3

P(3 defective units) =
10

3
05 953 7Ê

ËÁ
ˆ
¯̃

() (). .

= 120 × .000125 × .6983 = .0105 or 1.05%

n Example A company produces electronic chips by a
process that normally averages 2% defective products. A
sample of four chips is selected at random and the parts are
tested for certain characteristics.

a. What is the probability that exactly one chip is defec-
tive?

 P(1 defective chip) = P(1) =
4

1
02 981 3Ê

ËÁ
ˆ
¯̃

() (). .

= 4 (.02) (.9412) = .753

b. What is the probability that more than one chip is de-
fective?

 More than one defective chip in a sample of four
means two, three or four defective chips. The prob-
ability of each may be calculated using the binomial
formula.

 P(more than 1 defective chip) = P(2) or P(3) or P(4) =
P(2) + P(3) + P(4)

 In any trial or sample, the sum of the probabilities of
the individual events always equal one. In this prob-
lem: P(0) + P(1) + P(2) + P(3) + P(4) = 1

 P(more than 1 defective) = 1 – [P(0) + P(1)] = 1 –

[.9224 +.0753] = .0023

n Example A customer has approached a bank for a loan.
Without further information, the bank believes there is a
4% chance that the customer will default on the loan. The
bank can run a credit check on the customer. The check
will yield either a favourable or an unfavourable report.
From past experience, the bank believes that P(favourable
report being received | customer will default) = 0.03 and
P(favourable report being received | customer will not de-
fault) = 0.99.

(a) What is the probability that a favourable report will be
received?

(b) If a favourable report is received, what is the probabil-
ity that the customer will default on the loan?

n Answer : Let D be the event that the customer defaults on
the loan; ND is the event that the customer doesn’t default.
Let F be the event that the credit check yields a favourable
report; UF is the event that it doesn’t. We are given the
following probabilities:

P(D)=.04, P(ND)=.96, P(F | D) = 0.03, P(F | ND) = 0.99.

(a) We want to know P(F). Based on the total probability
rule:

 P(F) = P(D)×P(F | D) + P(ND)×P(F | ND) = (.04×.03)
+ (.96×.99) = .95

(b) We want to compute P(D | F). Based on the Bayes’
rule:

 P(D | F) = P(F | D) × P(D) / P(F) = 0.03 × 0.04 / 0.95
= 0.001

n Example Exactly two cab companies operate in Bel-
leville. The Blue Company has blue cabs, and the Green
Company has green cabs. Exactly 85% of the cabs are blue

Verbal Ability and Numerical Reasoning 10.43

and the other 15% are green. A cab was involved in a hit-
and-run accident at night. A witness, Wilbur, identified
the cab as a Green cab. Careful tests were done to ascertain
peoples’ ability to distinguish between blue and green cabs
at night. The tests showed that people were able to identify
the colour correctly 80% of the time, but they were wrong
20% of the time. What is the probability that the cab in-
volved in the accident was indeed a green cab, as Wilbur
says?

n Answer: P(G) = .15 This is the base rate of green cabs in
the city. It gives the prior probability that the cab in the ac-
cident is green. Similarly, P(B) = .85.

P(SG|G) = .80. This is the probability the witness will be
correct in saying green when the cab in fact is green, i.e.,
given that the cab really was green. Similarly, P(SB|B) = .80.
These are the probabilities that witnesses are correct, so by
the complement rule, the probabilities of misidentifications
are: P(SG|B) = .2 and P(SB|G) = .2 .

What we want to know is the probability that the cab re-
ally was green, given that Wilbur said it was green, i.e., we
want to know P(G|SG).
According to Bayes’ rule, this probability is given by:

P(G|SG) =P(G)×Pr(SG|G) / Pr(SG) .

We have the values for the two expressions in the numera-
tor: P(G) = .15 and P(SG|G) = .8, but we have to do a little
work to determine the value for the expression P(SG) in the
denominator. According to the total probability rule:

P(SG) = P(G) × P(SG|G) + P(B) × P(SG|B)

= (.15 × .80) + (.85 × .20) = .12 + .17 = .29

Finally, we substitute this number, .29, into the denomina-
tor of Bayes’ Rule:

P(G|SG) = P(G) × P(SG|G) / P(SG)

= 15×.80 / .29 = .414

So the probability that the witness was correct in saying the
cab was green is just a bit above .4—definitely less than fif-
ty/fifty—and (by the complement rule) the probability that
he is wrong is nearly .6. This is so even though witnesses
are pretty reliable. How can this be? The answer is that the
high base rate of blue cabs and the low base rate of green
cabs make it somewhat likely that the witness was wrong
in this case.

n Example Officials at an Electronics service center know
that 2% of their hotline calls are actually related to genuine
problem. A simple verbal test is proposed to help identify
genuine calls. She found that :

80% of the people who are having genuine problem will
have a positive score on this test; but only 5% of those
who are not having a genuine problem will have a posi-
tive score on this test.

If we get a positive identification from a caller on this test,
what is the probability that he would actually facing genu-
ine problem?

n Answer: Let S be the event that the caller will be having
genuine problem; NS that he will not. Let P be the event
that the caller has a positive score on the test; NP is the
event that the score is not positive. We are given the follow-
ing probabilities: P(S)=.02, P(NS)=.98, P(P | S) = 0.8, P(P |
NS) = 0.05.

We want to know P(S | P). First compute the probabil-
ity that a caller will have a positive score on the test, P(P).
Based on the total probability rule:

P(P) = P(S) × P(P | S) + P(NS)×P(P | NS)

= (.02 × .8) + (.98 × .05) = .065

Then based on the Bayes’ rule:

P(S | P) = P(P | S) × P(S) / P(P)

= 0.8 × 0.02 / 0.065 = 0.246

n Example Three manufacturing plants, say A, B and C,
produce 20, 30 and 50 percent of a company’s output, re-
spectively. The manager of plant C is very quality conscious
and only 1% of the items from that plant are defective. Plants
A and B have defective rates of 3% and 5% respectively.

(a) What is the probability that a randomly-chosen item
from the company’s warehouse is defective?

(b) An item is selected at random from the company’s
warehouse and found to be defective. Calculate the
probability it was manufactured in plant C.

n Answer: Let A, B and C be the events that a randomly-
chosen item is from plants A, B and C respectively. Let D be
the event that a randomly-chosen item is defective. We are
given the following probabilities: P(A) = .2, P(B) = .3, P(C)
= .5, P(D | A) = .03, P(D | B) = 0.05, P(D | C) = 0.01 .

(a) We want to compute P(D). Based on the total prob-
ability rule:

P(D) = P(A) × P(D | A) + P(B) × P(D | B) + P(C)
× P(D | C)

= (.2×.03) + (.3×.05) + (.5×.01) = .026

(b) We want to compute P(C | D). Based on the Bayes’
rule:

P(C | D) = P(D | C) × P(C) / P(D)

= 0.01 × 0.5 / 0.026 = 0.19

10.2.2.3.3 The Poisson Probability
Distribution

The Poisson distribution is the mathematical limit to the
binomial distribution and may be used to approximate bi-
nomial probabilities. The Poisson is also a distribution in its
own right when solving problems involving defects per unit
rather than fraction defectives.

10.44 Computer Science & Information Technology for GATE

The Poisson distribution is a discrete distribution. It is
often used as a model for the number of events (such as
the number of telephone calls at a business, number of cus-
tomers in waiting lines, number of defects in a given sur-
face area, airplane arrivals, or the number of accidents at
an intersection) in a specific time period. It is also useful
in ecological studies, e.g., to model the number of prairie
dogs found in a square mile of prairie. The major differ-
ence between Poisson and Binomial distributions is that the
Poisson does not have a fixed number of trials. Instead, it
uses the fixed interval of time or space in which the number
of successes is recorded.

If n is large and p is small so that n times p (np) is a
positive number less than five, then the Poisson is a good
approximation to the binomial. The value p and the ratio
n/N should be less than 0.10. Here, the terms n, x and p
are the same as in the binomial formula. The task is to cal-
culate the probability of x successes in n trials, where the
probability of a single success is p. Remember that p is a
fraction defective when used to approximate the binomial,
and p is defects per unit when counting the number of de-
fects instead of the number of defective units. In some cases
neither n nor p is given, but the product np may be given.
If p is a fraction defective then np is the average number of
defective units in the sample. If p is in terms of defects per
unit then np is the average number of defects in the sample.
The Poisson formula is

P(x) =
e (np)

x!

np x-

We can also represent the same assuming the mean is l.

p(x, l) =
e

x!

x-ll
for x = 0, 1, 2,

If we observe, l is the parameter which indicates the aver-
age number of events in the given time interval which is
same as n*p in the previous expression.

n Example In making switches, it has been determined
by empirical studies that there is, on average, one defect per
switch. What is the probability of selecting a sample of five
switches that contains zero defects?

n Answer: There are two methods to solve this problem.
The first method is to use the above formula where x = 0, n
= 5, and p = 1, therefore

np = 5 × 1 = 5.

P(0) =
e

0!

0- ()
=

5 5 00674

1

.
 = .00674 or .674%

n Example In a paper making operation it was found that
each 1000 foot roll contained, on average, one defect. One
roll is selected at random from the process.

a. What is the probability that this roll contains zero de-
fects?

n Answer: Use the Poisson table where x = 0 and np = 1.
The Poisson table value for P(0) = .368.

b. What is the probability that the roll contains exactly
three defects?

n Answer: The Poisson table value for P(3) = .061

c. What is the probability that this roll contains more
than one defect?

n Answer: P(more than one defect) = P(2) + P(3) + P(4) +
… + P(•)

 = 1 – [P(0) + P(1)]

 = 1 – [.368 + .368] = .264

1. If the expected value of a discrete random variable X
is E(X) = 5, then E(2X + 4) is 14.

2. Suppose that in the binomial probability mass func-
tion b(x; n, p), we let nÆ• and p Æ0 in such a way
that np approaches a value l > 0. Then the binomial
distribution approaches the Poisson.

3. If the random variable X has a Poisson distribution
with parameter l = 4, then the standard deviation of
X is half of 4, i.e., 2.

n Example In manufacturing the Que model car, a study
determined that on average there are three defects per car.
What is the probability of buying a Que with less than three
defects?

n Answer :

P(less than 3 defects) = P(0) + P(1) + P(2)

Use the Poisson tables and find P(0), P(1) and P(2)
where np = 3

P(less than 3 defects) = .049 + .149 + .224 = .422

n Example On an average Friday, a waitress gets no tip
from 5 customers. Find the probability that she will get no
tip from 7 customers this Friday.

n Answer : The waitress averages 5 customers that leave no
tip on Fridays: l = 5.
Random Variable : The number of customers that leave her
no tip this Friday.
We are interested in P(X = 7)=0.24

n Example During a typical football game, a coach can
expect 3.2 injuries. Find the probability that the team will
have at most 1 injury in this game.

n Answer : A coach can expect 3.2 injuries : l = 3.2.
Random Variable : The number of injuries the team has in
this game.
We are interested in P (X £ 1).

n Example A small life insurance company has deter-
mined that on the average it receives 6 death claims per
day. Find the probability that the company receives at least
seven death claims on a randomly selected day.

Verbal Ability and Numerical Reasoning 10.45

n Answer :
P(x ≥ 7) = 1 – P(x £ 6) = 0.393697

n Example The number of traffic accidents that occurs
on a particular stretch of road during a month follows a
Poisson distribution with a mean of 9.4. Find the probabil-
ity that less than two accidents will occur on this stretch of
road during a randomly selected month.

n Answer :

P(x < 2) = P(x = 0) + P(x = 1)

= 0.000860

n Example Textbook authors and publishers work very
hard to minimise the number of errors in a text. However,
some errors are unavoidable. Mr. J.A. Chapman, statistics
editor, reports that the mean number of errors per chapter
is 0.8. What is the probability that there are fewer than 2
errors in a particular chapter?1

n Answer: This is a Poisson problem, since it involves suc-
cesses per page. Let’s define ‘success’ as an error. The prob-
ability distribution function is as follows:

P(X) =
m mxe

x

-

!
,

Where, e = 2.7183

X = # of successes

m = average (mean) number of successes (0.8
in this case)

P X P X P X
e e

()
.

!

.

!

. .

< = =() + =() = +
- -

2 0 1
0 8

0

0 8

1

0 0 8 1 0 8

= 0.4493 + 0.3595

= 0.8088

n Example The number of road construction projects
that take place at any one time in a certain city follows a
Poisson distribution with a mean of 3. Find the probabil-
ity that exactly five road construction projects are currently
taking place in this city. (0.100819)

n Example The number of road construction projects
that take place at any one time in a certain city follows a
Poisson distribution with a mean of 7. Find the probability
that more than four road construction projects are current-
ly taking place in the city. (0.827008)

n Example The number of traffic accidents that occur on
a particular stretch of road during a month follows a Pois-
son distribution with a mean of 7.6. Find the probability
that less than three accidents will occur next month on this
stretch of road. (0.018757)

1From Lind et al. Basic Statistics for Business and Economics, 6th ed.

n Example The number of traffic accidents that occur
on a particular stretch of road during a month follows a
Poisson distribution with a mean of 7. Find the probability
of observing exactly three accidents on this stretch of road
next month. (0.052129)

n Example The number of traffic accidents that occur on
a particular stretch of road during a month follows a Pois-
son distribution with a mean of 6.8. Find the probability
that the next two months will both result in four accidents
each occurring on this stretch of road. (0.009846)

n Example Suppose the number of babies born during an
8-hour shift at a hospital’s maternity wing follows a Poisson
distribution with a mean of 6 an hour. Find the probability
that five babies are born during a particular 1-hour period
in this maternity wing. (0.160623)

n Example The university policy department must write,
on average, five tickets per day to keep department rev-
enues at budgeted levels. Suppose the number of tickets
written per day follows a Poisson distribution with a mean
of 8.8 tickets per day. Find the probability that less than six
tickets are written on a randomly selected day from this dis-
tribution. (0.128387)

n Example The number of goals scored at State College
hockey games follows a Poisson distribution with a mean
of 3 goals per game. Find the probability that each of four
randomly selected State College hockey games resulted in
six goals being scored. (.00000546)

n Example Suppose the number X of tornadoes observed
in Kansas during a 1-year period has a Poisson distribution
with l = 9.

a. Compute P(X £ 5) (3%)

b. Compute P(6 £ X £ 9) (6%)

c. Compute P(10 £ X) (3%)

d. How many tornadoes can be expected to be observed
during the 1-year period? What is the standard devia-
tion of the number of observed tornadoes? (4%)

n Answer:

a. P(X £ 5) = F(5; 9) = .116

b. P(6 £ X £ 9) = F(9; 9) – F(5; 9) = .587 – .116 = .471

c. P(X ≥ 10) = 1 – P(X £ 9) = 1 – F(9; 9)

 = 1 – 587 = .413

d. E(X) = l = 9, sr = l = 3

n Example A student has to answer 8 out of 10 questions
in an exam. (i) How many choices does he have? (ii) How
many if he must answer the first 3 questions?

n Answer:

(i) To pick 8 out of 10 questions, there are C(10, 8) =

(10.9)/(2.1) = 45 ways.

10.46 Computer Science & Information Technology for GATE

out of the remaining 7 and there are C(7, 5) = C(7, 2)

= (7 × 6)/(2 × 1) = 21 ways.

n Example Consider a one-dimensional array of N mag-
nets, in which each magnet can only point “up” or “down”.

(a) How many different configurations can the system
have?

(b) How many ways are there to have N≠ “up” magnets
(and thus NØ = N – N≠ “down” magnets)?

(c) If each “up” magnet carries a spin of +1 and each
“down” magnet has spin –1, what are the possible val-
ues of the total net spin, S, of the system?

(d) For a given S, in how many ways can the system have
the same total net spin S?

n Answer:

so can the second magnet, and so on, hence by the

fundamental principle of counting, there are 2 × 2 ×
2 × … × 2 = 2N different states that the system could

assume.

(b) One may label the magnets from 1 to N, so the prob-
lem is to pick N≠ out of N labels to be “up”, with the
rest being “down”. Hence the answer is

N

N N

!

! !≠ Ø

 (this result will be useful when we derive the binomial
distribution)

(c) S could be any integer between –N (“all-down”) and
+N (“all-up”). Note that

S = N≠ – NØ

(d) Since N = N≠ + NØ is fixed, specifying N≠ determines
NØ , and hence S, i.e. specifying N≠ “up” magnets en-
forces a particular net spin S (= N≠ – (N – N≠) = 2N≠
– N). So the answer is the same as that to (b), but re-
written in terms of S (and N), giving

N
N S N S

!

! !
+() -()2 2

n Example A subway train consists of N cars connected
in series, m of them being trailer units (TUs) while the rest
are electrical units (EUs) powered by the overhead wires.
To minimise the chances of immobility in case cars become
decoupled, it is required that no TUs are placed next to
each other. How many configurations are permissible? (The
driver car at each end of the train is ignored in this analysis)

n Answer: One way to tackle this problem is to line up all
the (N – m) EUs, reserving one car space between each pair
of EUs. The situation is indicated in the picture below:

Space 1 EU1 Space 2 EU2 ……
Space
(N–m)

EUN–m

Space
(N – m

+ 1)

It is seen that there are (N – m + 1) spaces where it is OK
to put in one (or zero) TU; in fact, we will only occupy m
of them. So we simply need the number of ways to pick m

out of (N – m + 1) available spaces, which is
N m

m

- +Ê
ËÁ

ˆ
¯̃

1
.

n Example A part fails in ten years out of 5,000,000 parts.
What is the probability three or more fail in ten years?
n Answer: Let X = number failing in ten years, out of
5,000,000.
X has approximately Poisson, l = np = 5000000×10sup = 5.0.
P(Three or more fail) = P(X ≥ 3) = 1 – P(X = 0) – P(X =
1) – P(X = 2)

= 1 –
e e e- - -

- -
5 0 5 1 5 25

0

5

1

5

2! ! !

= 1 – e–5 (1 + 5 + 12.5) = 0.875

n Example

(a) Find the probability of 5 messages arriving in a 2-sec
interval.

(b) For how long can the operation of the centre be inter-
rupted, if the probability of losing one or more mes-
sages is to be no more than 0.05?

n Answer: Times of arrivals form a Poisson process, rate n
= 1.2/sec.

(a) Let Y = number of messages arriving in a 2-sec inter-
val.

 Then Y ~ Poisson, l = nt = 1.2 × 2 = 2.4.

 P(Y = 5) =
e e- -

=
2 4 5 2 42 4

5

79 626

120

. ..

!

.
 = 0.060.

(b) Let the required time = t seconds.

 Let W = number of messages in t seconds, so that W
~ Poisson, l = 1.2 × t = 1.2t

 P(At least one message) = P(W ≥ 1) = 1 – P(W = 0)
= 1 – e–1.2t £ 0.05.

 \ e–1.2t ≥ 0.95

–1.2t ≥ ln(0.95) = –0.05129

t £ 0.043 seconds.

Mean (or expected value) of a distribution
For a random variable X taking values 0, 1, 2, ... , the mean
value of X is:

m = SkP (X = k) = 0 × P(X = 0) + 1 × P(X = 1)
+ 2 × P(X = 2) + ...

The mean is also called: population mean expected value
of X (or E(X)) expectation of X.

Verbal Ability and Numerical Reasoning 10.47

Intuitive idea: if X is observed in repeated independent ex-

periments and Xn is the sample mean after n observations

=Ê
ËÁ

ˆ
¯̃=

Â1

1n
Xi

i

n

, then as n gets bigger, Xn tends to m.

Variance and standard deviation of a distribution

m is a measure of the “average value” of a distribution.

The standard deviation, s, is a measure of how spread out
the distribution is.

Variance = s2 = var (X)

= S(k – m)2 P (X = k) (definition)

= S k2 P (X = k) – m2 (often easier to evalu-
ate in practice).

10.2.2.3.4 Normal Distribution

The continuous random variable X has the Normal distri-
bution with mean m and variance s2 if:

f(x) =
1

2 2

2

2

2

p s

m

se

- -()x

– • < x < •

The pdf is symmetric about m. X lies between m –1.96 m and
+ 1.96 s with probability 0.95 i.e., X lies within 2 standard
deviations of the mean approximately 95% of the time.

0.4

0.3

0.2

0.1

0.0

f x()

m s- 2 m m s+ 2

10.2.2.4 More Complicated Situations

Facts: there are

(1)
p

m

-
-

Ê
ËÁ

ˆ
¯̃

1

1 solutions to the equation

y y y p

y

m

i

1 2+ + + =Ï
Ì
Ó

...

all non-negative integers ;

 (2)
n m

m

+ -
-

Ê
ËÁ

ˆ
¯̃

1

1 solutions to the equation

x x x n

x

m

i

1 2+ + + =Ï
Ì
Ó

...

all non-negative integers
;

Proof:

For (1):
An equivalent problem is “if there are a total of p (indis-
tinguishable) balls, how many ways are there to distribute

them into m boxes, if each box must receive at least one
ball?”, which we solve as follows: line up all p balls, and, to
the right of each ball (except the very last one) there’s a slot
where one could insert a rod as a “separator” to signify the
start of the next box. Thus, there are a total of (p – 1) such
slots, as indicated by the shaded areas in the first row in the
picture below. However, we only need to insert (m – 1) rods
(shaded areas in second row) to separate the balls into m
groups.

Ball # 1 2 / 3 p – 1 / p

Rod #
no
rod

1
no
rod

....... m – 1

Hence there are
p

m

-
-

Ê
ËÁ

ˆ
¯̃

1

1
 ways to have the m boxes (each

non-empty) carry p balls.

For (2):

Take any one solution (y1, y2,, ym) from (1), and construct
the vector (x1, x2,, xm) where xi = yi – 1. Thus, the x’s add
up to (p – m), and are all non-negative integers. The un-

derlined problem has
p

m

-
-

Ê
ËÁ

ˆ
¯̃

1

1
 solutions; each is obtained

by reconstructing a solution from (1). Rewriting
p

m

-
-

Ê
ËÁ

ˆ
¯̃

1

1

as
()p m m

m

- + -
-

Ê
ËÁ

ˆ
¯̃

1

1
, we see that there are

n m

m

+ -
-

Ê
ËÁ

ˆ
¯̃

1

1
solu-

tions to the problem “add m non-negative integers together
to have a total of n”.

n Example Another way to solve the train problem: refer
to the picture below, in which all m TUs are lined up. The x’s
denote the number of EU(s) to connect. Since there must
be at least one EU between any two adjacent TUs, x2, x3, ... ,
xm are all positive integers. There can be zero (or more) EU
at each end, hence x1 ≥ 0, xm ≥ 0.

x1 TU1 x2 TU2 TUm–1 xm TUm xm + 1

Note that the x’s must add up to N – m (number of EUs).
Now let X1 = x1 + 1, Xm + 1 = xm + 1, and Xi = xi for i = 2...m,
so the (m + 1) X’s add up to (N – m) + 2 and are all positive
integers. This is the situation described by (1). Hence there

are
()

()

N m

m

- + -
+ -

Ê
ËÁ

ˆ
¯̃

2 1

1 1
=

N m

m

- +Ê
ËÁ

ˆ
¯̃

1
solutions, which is the

same answer as before.

n Example In a test for ESP (Extra Sensory Perception),
a subject is told that cards the experimenter can see, but
the subject cannot, contain either a star, a circle, a triangle,

10.48 Computer Science & Information Technology for GATE

a square, or three wavy lines. As the experimenter looks at
each of 40 cards in turn, the subject names the shape on the
card. A subject who is just guessing has probability 0.20 of
guessing correctly on each card.

a. The count of correct guesses in 40 cards has a bino-
mial distribution. What are n and p? n = 40, p = .2

b. What is the mean number of correct guesses in 40
repetitions? np = 8

c. What is the probability of exactly 5 correct guesses?
Binompdf (40,.2,5) = .854

d. What is the probability of 7 or fewer correct guesses?
Binomcdf (40,.2,7) = .437

e. What is the probability of getting the first card wrong,
but then the next two cards right? (.8)(.2)(.2) = .032.

n Example Suppose that a basketball player has a 78%
chance of making a free throw, and each free throw she
takes is independent of all the others. Suppose she ends up
taking 12 free throws over the course of a game.

a. What is the probability that she makes her first five
free throws? (.78)5 = .2887

b. What is the probability that the first free throw
she makes is her fourth attempted? = (.22)3(.78) =
geometpdf (.78,4) = .008305

c. What is the probability that she makes exactly 5 out of
the 12 free throws? It’s binompdf(12,.78,5) = .005704

d. What is the probability that she makes at least 8 of
the free throws? We do this by calculating 1-bi-
nomcdf(12,.78,7)=.8979

e. Let X be a random variable defined by the number of
points she scores shooting free throws in this game.
(Free throws are worth one point each.) The possible
values of X are 1, 2, 3, … , 12. Find the expected value
of points, E(X).

So there’s a long way and a short way. The long way is to do:

x binompdf x
x

◊ =
=
Â (,. ,)12 78

0

12

 0.binompdf (12,.78,0) + 1. binompdf (12,.78,1) + 2. bi-
nompdf (12,.78,2) + … 12. binompdf (12,.78,12) = 9.36

The easy way is to find the expected value of the number of
free throws she makes using what we know about the bino-
mial probability model: np = 12(.78) = 9.36

n Example A shipyard produces 3 standardized ships at
a cost of $50 million a ship. The ships will be sold at a price
of $100 million each. The scrapyards purchase any unsold
ships from the shipyard after a time period for $20 million
a ship. Let X be the # of ships sold at the end of the period.
You are given that P(x = 0,1,2,3) are 0.2, 0.3, 0.3 and 0.2,
respectively. Calculate the expected value and the variance
of the shipyard total profit (or loss).

n Answer:
X: Number of ships sold at the end of the period.

E X X p X[] ()= ◊ = ◊ + ◊ + ◊ + ◊ =Â 0 0 2 1 0 3 2 0 3 3 0 2 1 5
0

3

E X X p X[] () .2 2

0

3

3 3= ◊ =Â

Var X E X E X() [] [] . . .= - = - =2 2 23 3 1 5 1 05

Total Profit = 100X – 50*3 + (3 – X)*20 = 80X – 90
E[Total Profit] = E(80X – 90) = 80*E[X] – 90 = $30 m
Var(Total Profit) = Var(80X – 90) = 802 Var(X) = $26720 m

10.2.2.5 Pack of Cards – Simple Probability

Questions

What is the probability of choosing, at random one of the
following cards from a normal pack of 52 playing cards?

1. A red card 26//52 ½

2. A black card or ‘not a red
card’

26/52 ½

3. A spade 13/52 ¼

4. Not a spade 39/52 ¾

5. An ace 4/52 1/13

6. Not an ace 48/52 12/13

7. The ace of spades 1/52

8. A picture card 12/52 3/13

9. A number card or ‘not a
picture card’

40/52 10/13

10. A card that is either a heart
or a club

26/52 ½

11. A card that is neither a
heart or a club

26/52 ½

12. A 4 or 5 8/52 2/13

13. A 4 or 5 but not a spade 6/52 3/26

14. An even numbered card 20/52 5/13

15. A card that would be high-
er that a 3, Aces high

44/52 11/13

16. A card that would be high-
er that a 7, Aces high

28/52 7/13

17. A card that would be high-
er that a Jack, Aces high

12/52 3/13

18. A card that would match
or be higher than a 7, Aces
high

32/52 8/13

Verbal Ability and Numerical Reasoning 10.49

Dice – Simple Probability Questions

What is the probability of rolling from a normal 6 sided
die?

1. A 6 1/6

2. Higher than a 4 2/6 1/3

3. An odd number 3/6 ½

4. A factor of 24 (1, 2, 3, 4, 6) 5/6

What is the probability of rolling the following from a 4
sided die?

5. A4 ¼

6. An even number 2/4 ½

7. Higher than 3 ¼

8. A factor of 24 (1, 2, 3, 4) 1, certain

What is the probability of rolling the following from a 10
sided die?

9. A 10 1/10

10. A 6 or higher 5/10 ½

11. Less than a 5 4/10 2/5

12. A 5 or less 5/10 ½

13. A factor of 24 (1, 2, 3, 4, 6, 8) 6/10 3/5

14. A number that when spelt begins
with a ‘t’

3/10

What is the probability of rolling the following from a 12
sided die?

15. A 12 1/12

16. Higher than a 7 5/12

17. A factor of 24 (1, 2, 3, 4, 6, 8, 12) 7/12

18. A teen number 0

19. A number than when spelt with a ‘t’ 4/12 1/3

Solved Questions

(Including Previous Years’ GATE Questions)

1. We have two jars with equal volumes of a liquid and

water in each. A big sized table spoon full of liquid

The second jar content is thoroughly stirred and the

same table spoon is used to move one spoon full of

-

umes of both the jars? Also comment on the weights

of the liquids of both the jars.

 Answer: Volumes will be same. However, weights de-
pends on their relative specific gravities.

2.

many minimum number of cuts, we can divide this

horse shoe into pieces such that one piece contains

one whole.

First Cut

Rotate top piece by
90 degrees

Second cut

 Answer: With two vertical cuts we can solve this
problem. First we draw a vertical line as shown in the
figure and separate the top half. Rotate this top half
by 90 degrees and position as shown in the figure and
then make another vertical cut.

3. Egg-d

safe to drop eggs from.

a. An egg that survives a drop can be used again.

b. A broken egg cannot be used again.

c. The effect of a fall is the same for all eggs for all
floors. That is, we assume egg reaches the ground
with same speed, and other properties.

d. If an egg breaks when dropped from some floor, it
would break also if dropped from a higher floor.
This is very important assumption.

e. If an egg survives a fall when dropped from some
floor, it would survive also if dropped from a
lower floor. This is another important assumption
which is crucial in solving this puzzle.

f. There are no pre-existing assumptions concerning
when the egg will break. It is possible that a drop
from the first floor in the special container would
break an egg. It is also possible that a drop from
the 36th floor in the special container would not
break an egg.

 How do we find the floor from which the egg breaks if
we have only one egg?

 To obtain the required result, we may start by drop-
ping the egg from the first floor. If it breaks, we know
the answer. If it survives, we drop it from the second
floor and continue upward until the egg breaks. Thus,
the worst-case scenario would require 32 drops to de-
termine the egg-breaking floor.

10.50 Computer Science & Information Technology for GATE

 Assume that we have been given two eggs. Find out
minimalistic number of falls and from which floor
egg fails.

 Answer: We can follow divide and concur policy.
First, we may try from 16th floor. If it breaks, then
you can carry from 1st floor to 16th floor sequential
with the other egg. Otherwise, we have search in 16th

floor and above. Next, we try from the floor 24 with
the non-broken egg. If it breaks, then we have search
floors 17 to 23 in sequential manner. Otherwise you
have search 25-32 in a binary search fashion.

4. A person starts from a station X and reaches station Y
with the speed of 40KMPH. He returns immediately
from Y and reaches X with the speed of 60 KMPH.
What is his average speed during this journey?

 Answer: Assume the distance between X and Y as
SKM

 Time for X to Y = S/40

 Time needed for Y to X = S/60

 Therefore, average speed = (2 *S)/(S/40 + S/60))=(2*S)/
(100*S/240)= 2*240/100 = 48KMPH.

5. Two gas stoves are having two burners each. Each of
the stoves are equipped with gas cylinders which burn
a burner for one hour. The inmate got a phone call
to attend a meeting for which he has to start exactly
after 45 minutes and he does not have any means of
counting 45 minutes. He has decided to use gas stoves
and measured successfully 45 minutes. Explain how
he might have done?

 Answer: He burns both the burners of one stove and
only one burner of the other stove. After exactly half
an hour, first cylinder gets emptied and burners of first
stove stops burning. At that instance second burner
of the second sound will be lighten. When both the
burners of the second stove stops, he can consider
that instance as the 45th minute.

6. A person has small scale farming industry with 20
rabbits, 30 hens/chickens , 50 buffalos, and 40 bull-
ocks. He has the habit of calling bullocks as chickens?
How many chickens he has?

 Answer: 30

7. We have eight balls of same shape and colour. How-
ever, one of the balls is little heavy. You have been
given a old fashioned mechanical weighing scale with
two plates both sides. How many minimum number
of weighing’s are needed to separate out this ball from
others.

 Answer: Two. First, we place three balls in each side
of the scale. If both side weighs same, then the ball
is in the left over two balls. So, we can make another

weighing operation to identify the same. Otherwise,
ball can be either in the left three or right three. We
select the three balls which weighs more than other
three and carry second weighing operation in which
we place one ball in each side and keep the third one
away. I hope it is clear by now.

8. Yesterday there was a down pour. What will be the
chance of sunny day after three days from today.

 Answer: 0. No basis to predict.

9. After every 60 minutes hours and minutes indicators
of a watch are covering or crossing each other. Does
the watch work properly?

 Answer: No

10. After ____ minutes, hours and minutes indicators of a
correctly functioning clock crosses each other

A. 60 B. 58.22 C. 65.4545 D. None

 Explanation:

 Hours indicator rotational speed = 360/(12*60) = 1/2
Degrees per minute

 Minutes indicators rotational speed = 360/60 = 6 De-
grees per minute

 Consider a situation at which both hours and minutes
indicators are at 0 (or 12).

 Let after x minutes both will cross each other. Rather,
minutes indicator makes a full round and some more
angle (y) before crossing. That is, the angle y made
by hours indicator is same as the angle made by the
minutes indicator with x-60 minutes. Now, based on
this equality we have to solve for x. That is,

 (x – 60)*6 = x/2

 Therefore, x = 65.4545 minutes

11. After ____ seconds minutes and seconds indicators of
a correctly functioning clock crosses each other

A. 60 B. 61.0169 C. 65.4545 D. None

 Explanation:

 Minutes indicators rotational speed = 360/(60*60) =
1/10 Degrees per second

 Seconds indicators rotational speed = 360/60 = 6 De-
grees per Sec

 Consider a situation at which both seconds and min-
utes indicators are at 0 (or 12).

 Let after x seconds both will cross each other. Rather,
seconds indicator makes a full round and some more
angle y before crossing. That is, the angle y made by
minutes indicator is same as the angle made by the
seconds indicator with x-60 seconds. Now, based on
this equality we have to solve for x. That is,

 (x – 60)*6 = x/10

 Therefore, x=61.0169 seconds

Verbal Ability and Numerical Reasoning 10.51

12. There is a table on which a number of coins are placed. There are as many coins with Heads up as many coins with
Tails up. Divide the coins (number of coins is even) into two equal piles such that number of coins with Heads up
and Tails up in either piles be the same. Assume your eyes are covered with cloth such that you cannot determine the
sides (for sure) if you are blinded. Also, the head or tail cannot be decided by touch. (Microsoft Interviews)

 Answer: Divide the coins in half by quantity then, flip all the coins in one pile.

13. There are N doors in a row numbered from 1 to N. Initially all the doors are closed. We make N passes over all the
doors. In pass 1 we toggle all doors (1,2,3,4....) starting from the first door. In the second pass we toggle every second
door (2,4,6,8,...). In the third pass we toggle all third doors (3,6,9...). Similarly we make N passes. What is the state of
door k after N passes. (Amazon Interviews)

 Answer:

 We take a sample of 16 doors. Here, o means open and x means closed.

Door 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Initially x x x x x x x x x x x x x x x x

Pass 1 o o o o o o o o o o o o o o o o

Pass 2 x x x x x x x x

Pass 3 x o x o x

Pass 4 o 0 x 0

Pass 5 x o o

Pass 6 x o

Pass 7 x o

Pass 8 x x

Factors 1 1,2 1,3 1,2,4 1,5 1,2,
3,6

1,7 1,2,
4,8

1,3,9 1,2,
5,10

1,11 1,2,3,
4,12

1,13 1,2,
7,14

1,3,
5,15

1,2,4,
8,15

No of factors 1 2 2 3 2 4 2 4 3 4 2 5 2 4 4 5

 From the above table, we can find that the doors gets
flipped that many times as that of number of factors of
the door number including 1 and door number. That
is, for example door number 8 gets flipped 4 times
with 1, 2,4 and 8. Thus, its final status is closed. Rather
for kth door if the number factors (including 1 and k)
are even then its final status is closed else opened.

14. Assume that a corner of a cake got broken in a non-
linear fashion which you want to make into halves.
How would you do?

 Answer: Slice the cake horizontally along parallel to
its base.

15. Is it possible to place four points in a x-y plane such
that all the points are equidistant from other points?
What about if we assume 3-D system?

 Answer: It is not possible to place four points in 2D
plane. However, in 3D it is possible. We assume that
the points are four corners of a tetrahedron.

16. A person of height H enters into a room with an accu-

rate wrist watch. There is hanging incandescent bulb

which is hanging exactly from ceiling and just touch-

ing his head. He wants to find the height of room.

Unfortunately he doesn’t have scale. Of course, he

has successfully completed his 10+2 and undergone

simple pendulum based lab experiment and theory

behind it. Explain how he can calculate room height?

 Answer: If we find the length of wire (l) for which

bulb is attached then by adding this to H we can find

out the height of the room. He swings the bulb with

his head and calculates the average time period of

the oscillation with the help of his wrist watch. May

be he measures time for few number of oscillations

instead of single oscillation to avoid error in estima-

tion. Then, he calculates the wire height (l) using the

following formulae where g is the acceleration due to

gravity which he may take as 9.8.

 T
L

g
= 2p

17. How do you measure height of a building when you
are at the top of the building with a stone in your one
hand and wrist watch in the other hand?

10.52 Computer Science & Information Technology for GATE

 Answer: Drop the stone and find the time taken for
the stone to reach the ground. Find height using the
formula s = a + gt (s = height, a= initial velocity=0,
g=9.8m/s, t = time taken which is measured through
the wrist watch)

18. A racing court perimeter is 80KM. In the first run, a
participant drove with the speed of 40KMPH. During
his second trip he increased his speed. What is the ac-
ceptable or practically possible average speed of this
participant over these two rounds?

A. 55KMPH B. 100KMPH

C. 120KMPH D. 160KMPH

19. A person makes a random walk from a point. He
moves one mile east, half mile in north direction,
quarter mile in west direction and then one by eighth
mile in south direction. What is his displacement
from the starting point?

 Answer: Assuming (0, 0) as the starting points then
next points of his path can be given as: (1, 0), (1, 1/2),
(3/4, 1/2) and (3/4, 3/8). Therefore, displacement from
starting point can be given as: sqrt((3/4)2 + (3/8)2)

20. A set of numbers are organised in rows. A is the larg-
est out of the largest values of each row while B is the
smallest. Which is the largest out of A and B?

A. A B. B

C. Neither A nor B D. None

21. When a person started his journey by spending 1/3 of
the money what he has in his packet. He observed 1/5
of the remaining is spent on food during the travel.
He donated 1/5 of the remaining money to a beggar.
When he has reached the destination he has 100 Ru-
pees left in his packet. With how mach money has he
started his journey.

 Answer:

 Let the money in his packet in the beginning is x.

 Travel =x/3

 Food = (x-x/3)*1/5 =2x/15

 Donation= (x – x/3 -2x/15)1/5=8x/75

 Left over money=100= (x – x/3 – 2x/15 – 8x/75)

 = 32x/75

 Now solve for x.

 x = 234.4

22. When a person started his journey by spending 1/3 of
the money what he has in his packet. He observed 1/5
of the remaining is spent on food during the travel.
He donated 1/5 of the remaining money to a beggar.
When he has reached the destination he has 100 Ru-
pees left in his packet. With what money he has start-
ed his journey?

 Answer:

 Let the money in his packet in the beginning is x.

 Travel =x/3

 Food = (x-x/3)*1/5 =2x/15

 Donation= (x – x/3 -2x/15)1/5=8x/75

 Left over money=100= (x – x/3 – 2x/15 – 8x/75)

 = 32x/75

 Now solve for x.

 x=234.4

23. When a person started his journey by spending 1/3 of
the money what he has in his packet. He observed 1/5
of the remaining is spent on food during the travel.
He donated 100 rupees to a beggar which he under-
stood that it 1/5 of the remaining money in his packet.
With how much money has he started his journey?

 Answer:

 Let the money in his packet in the beginning is x.

 Travel =x/3

 Food = (x-x/3)*1/5 =2x/15

 Donation= (x – x/3 -2x/15)1/5=8x/75

 As donation is 100, i.e., 100=8x/75. Now solve for x.

 x=937.5

24. Three chains with number of with O type links are
proposed to be joined to make a single chain. Number
of links in each of the chains are: 3, 3, 1. How many
links have to be opened by the blocksmith to make a
single chain?

A. 1 B. 2

C. 3 D. None

25. A shooter made a single huge thundering shot at the
birds on a tree and 2 birds have fallen. How many
more birds does he gets for his second shot?

A. 1 B. 4 C. None

26. A big cube with all the sides painted is divided into
small cubes of side ¼ of the big cube. Then, the num-
ber of cubes which does not have their sides painted
are:

A. 16 B. 8 C. 2 D. 4

27. A big cube with all the sides painted is divided into
small cubes of side ¼ of the big cube. Then, the num-
ber of cubes which does have three of their sides
painted are:

A. 16 B. 8 C. 2 D. 4

28. A big cube with all the sides painted is divided into
small cubes of side ¼ of the big cube. Then, the num-
ber of cubes which does have two of their sides paint-
ed are:

A. 16 B. 8 C. 24 D. 4

Verbal Ability and Numerical Reasoning 10.53

29. A big cube with all the sides painted is divided into
small cubes of side ¼ of the big cube. Then, the num-
ber of cubes which does have one of their sides paint-
ed are:

A. 16 B. 8 C. 24 D. 4

30. A big cube with all the sides painted is divided into
small cubes of side ¼ of the big cube. Then,

A. Number of small cubes with no sides painted are
same in number with numbered cubes with three
sides painted

B. Number of small cubes with two sides painted are
same in number with numbered cubes with single
side painted

C. Number of small cubes with single sides painted
are same in number with numbered cubes with
three sides painted

D. A and B

31. A big cube with all the sides painted is divided into
small cubes of side ¼ of the big cube. Then, number
of small cubes with 0, 1, 2 and 3 sides painted are:

A. 8, 8, 24, 24 B. 8, 8, 8, 8

C. 8, 24, 24, 8 D. 8, 24, 8, 24

32. A 4-inch big cube with all the sides painted is divided
into small cubes of side ¼ of the big cube. Then, the
total areas of painted and un-painted sides of all the
cubes

A. 96,284 B. 8,8,8,8

C. 96,288 D. None

33. A 4-inch big cube with all the sides painted is divided
into small cubes of side ¼ of the big cube. It is de-
cided to apply paint to all the sides of small cubes also
wherever the sides are not painted. If x is the cost of
painting all the sides of the big, how much more we
have spend now?

A. 1000 Rupees B. 2x

C. 3x D. None

 Explanation: When we divide the big cube, we get
8 small cubes with 0 sides painted, 24 small cubes
with single side painted, 24 small cubes with double
sided coating, and 8 small cubes three sides paint-
ed. Therefore total area required to be painted =
8x6+24x5+24x4+8x3=288. Total painted area of the
original big cube is 6x4x4=96. We know x is the cost
of painting 96 units. Therefore, 288/96*x=3x is the ex-
tra cost needed for painting sides of smaller cubes.

34. A 4-inch big cube is divided into small cubes of side ¼
of the big cube. The ratio of total surface areas of small
cubes to big cube

A. 3.4 B. 2 C. 3 D. 4

35. If a unit cube painted on all sides is divided into
smaller cubes of sizes ½, ¼, 1/8, 1/16. Then, the num-
ber of cubes with no painted sides are:

A. 2, 4, 8 B. 0, 8, 63,143

C. 23,63,163 D. None

36. If a unit cube painted on all sides is divided into
smaller cubes of sizes ½, ¼, 1/8, 1/16. Then, the num-
ber of cubes with three painted sides are:

A. 2, 4, 8 B. 0, 8, 63,143

C. 8,63,163 D. 8,8,8,8, …..

37. If a unit cube painted on all sides is divided into
smaller cubes of sizes ½, ¼, 1/8, 1/16. Then, the num-
ber of cubes with two painted sides are:

A. 2, 14, 8,… B. 0, 24, 72, 168,…

C. 8,63,163 ,… D. 8,8,8,8, …..

38. If a unit cube painted on all sides is divided into
smaller cubes of sizes ½, ¼, 1/8, 1/16. Then, the num-
ber of cubes with one painted side are:

A. 2, 4, 8 B. 0, 24, 196, 1176,…..

C. 2,8,63,163 D. 0,0,8,8, …..

39. A unit cube is painted on all sides and divided into
smaller cubes of size 1/n, where n is a positive integer
which is in the integral power of 2. Then, number of
cubes with only two sides painted are:

A. 2n B. 12(n–2)

C. 6(n–2)2 D. None

40. A unit cube is painted on all sides and divided into
smaller cubes of size 1/n, where n is a positive integer
which is in the integral power of 2. Then, number of
cubes with only one side painted are:

A. 2n B. 12(n–2)

C. 6(n–2)2 D. None

41. A unit cube is painted on all sides and divided into
smaller cubes of size 1/n, where n is a positive integer
which is in the integral power of 2. Then, number of
cubes with only three sides painted are:

A. 2n B. 12(n–2)

C. 6(n–2)2 D. 8

42. A unit cube is painted on all sides and divided into
smaller cubes of size 1/n, where n is a positive integer
which is in the integral power of 2. Then, number of
cubes with only four sides painted are:

A. 8 B. 12(n–2) C. 6(n–2)2 D. 0

43. A unit cube is painted on all sides and divided into
smaller cubes of size 1/n, where n is a positive integer
which is in the integral power of 2. Then, number of
cubes with three, four, five, and six sides painted are:

A. 0,8,8,8 B. 0,0,0,0, C. 8,0,8,0 D. 8,0,0,0

10.54 Computer Science & Information Technology for GATE

44. A big cube with all the sides painted is divided into
small cubes of side ½ of the big cube. Then, number
of small cubes with 0, 1, 2 and 3 sides painted are:

A. 8,8,2,2 B. 8,8,8,8 C. 0,0,0,8 D. 8,24,8,24

45. Every day 20 ml of ethanol gets evaporated from a
100ml opened ethanol bottle. On a windy day, evapo-
ration rate gets doubled. What is the best and worst
estimation of days such that some ethanol is found in
the bottle after opening the bottle.

A. 5, 0 B. 0,5

C. 5, 2 and half days D. None

46. Every day 20 ml of ethanol gets evaporated from a
100ml opened ethanol bottle. On a windy day, evapo-
ration rate gets doubled. What is the best and worst
estimation of days such that some ethanol is found
in the bottle after opening the bottle. Assume every
alternative day is a windy day.

A. 5, 0

B. 3 and 3 and half days

C. 5, 2 and half days

D. None

 Explanation: If starting day is non-windy day, then
evaporation: 20,40,20,20 (3 and half days)

 If starting day is windy day, then evaporation:40,20,40
(Three days)

47. Every day 20 ml of ethanol gets evaporated from a
100ml opened ethanol bottle. On a windy day, evapo-
ration rate gets doubled. What is the best and worst
estimation of days such that some ethanol is found in
the bottle after opening the bottle. Probability of next
day being windy day is 0.9 if today is non-windy day.
Always, there will be a windy day after two consecu-
tive non-windy days. Also, a windy day follows non-
windy day.

A. 5, 0

B. 3 and 4

C. 5, 2 and half days

D. None

 Explanation: Notation: N-Non-Windy Day W-
Windy Day

 Possibilities:

 N – W – N –W = 20 + 40 + 20 + 20 = 3½ day

 N – N – W – N = 20 + 20 + 40 + 20 = 4 days

 N – W – N – N = 20 + 40 + 20 + 20 = 4 days

 W – N –W = 40 + 20 + 30 = 3 days

48. A ship left a port city and when it is y distance from
port a plain started from the same port city in the
same direction with n times speed of the ship x. Both
met after t time units. Then, acceptable relation

A. 10nt=y+nt B. y+nt=10nx

C. y+xt=nxt D. None

49. A ship when it is at y distance from a port city a plain
started from the same port city in the opposite direc-
tion with n times speed of the ship x. Both met after t
time units. Then, acceptable relation

A. 10nt=y+nt B. (n-1)xt=t

C. y+xt=nxt D. None

50. Evaporation of a liquid is proportional to the exposed
surface area to the air of the container. A liquid which
is in a 10m cubicle container with top open is shifted
to another cylindrical container of diameter 10m and
also top circular face opened. Then,

A. Evaporation reduces

B. Evaporation increased

C. Evaporation reduces by p/4 times

D. None

51. A person standing by the side of rail track observed
that it took 5 seconds for a train to cross him wholly.
After another 10 second another train approached in
opposite direction crossed him within 1.5 seconds.
What is the speed ratio of first and second trains?

A. 3 B. 5/1.5

C. 1.5

D. Insufficient information

52. A person standing by the side of rail track observed
that it took 5 seconds for a train to cross him wholly.
When the last guard bogie is about to cross him he
started walking opposite direction of the train. At the
same time, on another track a train of 200 m length
arrived in opposite direction of the first train and
along the direction of the person. After another 10
seconds when this person travelled 40 m, the last bo-
gie of the second train crossed him. What is the speed
of the second train?

A. 82.34KMPH B. 86.4

C. 87.84KMPH D. Insufficient information

 Explanation: Information about the first train is not
important here. From the given information, in order
to travel (200+40) m, second train took 10 seconds.
Therefore, the speed of the second train can be given
as: (240*3600)/(10*1000) = 86.4 KMPH

53. Usually in Indian rail track, along the track electric
poles are separated by 50m. A guard has observed a
200m long second train’s engine to cross him at an
electric pole. When he crosses fourth electric pole,
guard of the other trained waved him hello. What is
the speed ratio of first and second trains?

A. 3.122 B. 2.33 C. 3.33 D. None

Verbal Ability and Numerical Reasoning 10.55

54. A father brought some items to home and gave half of
them to his favorite child. Eight percent of the leftover
is taken by mother and kept 1 for herself and remain-
ing were given to her favorite child. Finally, left 2 were
taken by another child. How many items were really
available initially?

A. 21 B. 28 C. 40 D. 20

55. A small child has a habit to throw a 70ml cool drink
bottle when it still contains 10 ml of drink. Also, he
picks up the bottle only when it is full. One day, moth-
er found only the used bottles available in the hose,
not a single full bottle is available. How many bottles
with left liquid is required to be transferred to satisfy
the child’s requirement now?

A. 8 B. 6 C. 7 D. None

56. A person said that I have three children out of them
older ones are twins. Product of their ages is 36. The
children possible ages are:

A. 2,3,3 B. 3,3,4 C. 1,6,6 D. 2,2,9

57. A University conducts online examinations in its
computer laboratories with three slots per day
8-11AM, 11AM-2Noon, and 2Noon-5PM. Examina-
tions are conducted for 10 days in a semester and any
student can schedule his examinations within this 10
days period. A student has to appear for total 7 pa-
pers. Ram is weak in two papers for which he needs
full 2 days preparation. Whereas for other papers, he
can write on any day without any preparation. In how
many days Ram can schedule his examinations such
that he will be spending minimal number of days in
the examinations?

 Answer: 4 days. He will schedule one of the difficult
papers on the first day during first slot. On the third
day first slot he schedules the left over difficult paper.
Remaining papers will be faced till 4th day last slot
(including). Thus, four days he will be spending in ex-
aminations.

58. An elevator moves down 3 steps per second. In its un-
moving position, elevator is observed to be having 50
steps. A boy started climbing in the opposite direction
at the speed of 4 steps per second or per jump. Then,
time needed for the boy for climbing the next floor.

A. 60/2 B. 60/3 C. 50/1 D. 60/4

59. A family (father and mother) with two male and fe-
male children and police with a thief are supposed
to cross a river a small boat which can accommodate
two people only at a time. Only police, husband and
wife can drive the boat. Father dislikes female chil-
dren while mother hates male children. Thus, male
children can go only with father while female chil-
dren can go along with mother. Also, if police is not

around, thief may rob the others. Suggest the possible
schedules of the boat along with people such that all
people will be crossing the river.

 Schedule: One possible schedule is given below for
the situation in which boat can accommodate two
people only. We assume all the people are left bank of
the river. Arrows shows the movement.

Police + Thief ææææÆ Towards right

Towards left ¨ææææ Police

Police + boy ææææÆ Towards right

Towards left ¨ææææ Police+Thief

Father + boy ææææÆ Towards right

Towards left ¨ææææ Father

Father + Mother ææææÆ Towards right

Towards left ¨ææææ Mother

Police + thief ææææÆ Towards right

Towards left ¨ææææ Father

Father + Mother ææææÆ Towards right

Towards left ¨ææææ Mother

Mother + Girl ææææÆ Towards right

Towards left ¨ææææ Police +Thief

Police + girl ææææÆ Towards right

Towards left ¨ææææ Police

Police+Thief ææææÆ Towards right

 If boat accommodates three people:

Father + 2 Boys ææææÆ Towards right

Towards left ¨ææææ Father

Father + Mother ææææÆ Towards right

Toward left ¨ææææ Mother

Mother + Police + Thief ææææÆ Towards right

Towards left ¨ææææ Mother

Mother + 2 Girls ææææÆ Towards right

60. Which weighs more? A pound of rice or a pound of
gold?

 Answer: A pound of rice. While weighing rice, pound
contains 16 ounces while with gold pound contains 12
ounces.

61. A father distributed cash in his wallet to four of his
sons equally asking them to spend within a day. All
the four except the last one returned 400 rupees and
spent the remaining. The last one returned 100 rupees
less than other brothers. The eldest son likes the last
one, he gave 100 rupees to his last brother soon after
he got money from his father. Father observed that
the total money returned by all of his sons is half of
the money he has distributed initially. How much

10.56 Computer Science & Information Technology for GATE

money the father distributed? How much the last son
returned to his father? Out of all, which son spent
more and less?

 Answer: Let the money given to each son as x.

 Money returned: 400 + 400 + 400 + 300 = 2x

 X = 750

 Therefore, money distributed by the father = 4x =
4x750 = 3000

 The money spent by last son=750+100-300=550

 Money spent by each of the second and third sons=
750-400=350

 Money spent by first son = 750-400-100=250

 Eldest son spent less while youngest spent more.

62. A person in the last coach of 200m train started rush-
ing towards middle coaches as soon as he has seen
beginning of his stations 400m platform as foot over
bridge to cross towards other platforms is at the other
end of the platform. Speed of the train is 60KMPH
and it took 10sec for train to halt. He found he is com-
ing out from middle coach. Find out how much dis-
tance he has to walk to climb the foot over bridge.

 Answer:

 We may have to use physics equations related to ve-
locity, distance, acceleration.

 Initial velocity (u) =60KMPH= 60*5/18=16.67m/sec

 Therefore, deceleration = (from v = u + at formulae)=-
16.67/10=1.667m/sec2

 Distance travelled by the train during 10 sec= (s= ut
+ ½ * at2)= 16.67*10 – 0.5*1.667*10*10 = 83.35.

 As he has dropped from middle coach, he has dropped
at 100+83.35m from one end of the platform. There-
fore, he has to walk (400-183.35)m to climb the foot
over bridge.

63. A station contains a platform of length 200m with one
end foot over bridge. At what speed a train of length
200 m has to have when it approaches the other end
of platform such that exactly middle bogie will be at
the foot over bridge. It took 10 seconds for the train to
come to standstill.

 Answer:

 In order to achieve this, the train has to travel a dis-
tance of 300m after reaching the other end of plat-
form.

 Initial velocity u = –at

 Final velocity v=0

 Therefore 02 – (–at)2=2as

 –a2t2=2as

 a = 2s/t2 = -2*300/100=–6m/sec2

 u= –(–6*10) = 60m//sec = 216KMPH

64. Acceptable probability of an event

A. 0.8 B. –0.001 C. 1.0001 D. 0

E. 1

65. Ram has 6 hundred rupee notes and 5 fifty rupee
notes in his wallet. If he randomly grabs 2 notes, what
is the probability those notes being hundred and fifty?

A. ½ B. 1/6*1/5

C. 3/11 D. 6/11*5/10

66. In a shipment of notebooks, 1/50 of the pieces are de-
fective. What is the ratio of defective to non-defective
ones?

A. 1/200 B. 1/50 C. 1/49 D. 49/1

E. 50/1

67. A utensil contains oil that got evaporated 1/3 of the
volume on first day and 2/5 of the remaining in the
second day then the left over liquid in terms of origi-
nal liquid volume

A. 1/5 B. 2/6 C. 2/5 D. None

68. A political party orders an arch for the entrance to the
ground in which the annual convention is being held.
The profile of the arch follows the equation y=2x-
0.1x2 where y is the height of the arch in metre. The
maximum possible height of the arch is:

(GATE CSE 2012)

A. 8 metre B. 10 metre

C. 12 metre D. 14 metre

 Answer: Find out the first derivative of the profile and
equate the same to 0 to find for what value of x maxi-
mum height is possible.

 dy/dx = 2– 0.1*2*x =0

 x=1/0.1 = 10 m

 Maximum possible height = 2*10 – 0.1*102 = 10m

69. An automobile plant contracted to buy shock absorb-
ers from two suppliers X and Y. X supplies 60% and
Y supplies 40% of the shock absorbers. All shock ab-
sorbers are subjected to a quality test. The ones that
pass the quality test are considered reliable. Of X’s
shock absorbers, 96% are reliable. Of Ys shock ab-
sorbers, 72% are reliable. The probability that a ran-
domly chosen shock absorber, which is found to be
reliable, is made by Y is: (GATE CSE 2012)

A. 0.288 B. 0.334

C. 0.667 D. 0.720

70. Which of the following assertions are correct?

(GATE CSE 2012)

P: Adding 7 to each entry in a list adds 7 to the mean
of the list

Q: Adding 7 to each entry in a list adds 7 to the stan-
dard deviation of the list

Verbal Ability and Numerical Reasoning 10.57

R: Doubling each entry in a list doubles the mean of
the list.

S: Doubling each entry in a list leaves the standard
deviation of the list unchanged.

A. P,Q B. Q, R C. P, R D. R, S

71. Given the sequence of terms, AD, CG, FK and JP, the
next term is: (GATE CSE 2012)

A. OV B. OW C. PV D. PW

72. The cost function for a product in a firm is given by
5q2, where q is the amount of production. The firm
can sell the product at a market price of 50 rupees.
The number of units to be produced by the firm such
that the profit is maximised is: (GATE CSE 2012)

A. 5 B. 10 C. 15 D. 25

73. 25 persons are in a room.15 of them play hockey. 17
of them play football and 10 of them play both hockey
and football. Then the number of person playing nei-
ther hockey nor football is: (GATE CSE 2010)

A. 2 B. 17 C. 13 D. 3

74. If 137+276=435 how much is 731+672?

(GATE CSE 2010)

A. 534 B. 1403 C. 1623 D. 1513

75. Hari (H), Gita (G), Irfan (I) and Saira (S) are siblings
(i.e. brothers and sisters). All were born on 1st janu-
ary. The age difference between any two successive
siblings (that is born one after another) is less than 3
years. Given the following facts:

i. Hari’s age + Gita’s age > Irfan’s age + Saira’s age

ii. The age difference between Gita and Saira is 1
year. However Gita is not the oldest and Saira is
not the youngest.

iii. There are no twins.

 In what order were they born (oldest first)?

(GATE CSE 2010)

A. HSIG B. SGHI C. IGSH D. IHSG

 Explanation: Age difference between Gita and Saira
is 1, which means we look for GS or SG in the options.
Options, b, c, d will have this. However, as Gita is not
the oldest and Saira is not the youngest, options b and
d will get eliminated further. Now, Hari + Gita age will
be more than irfan + Sairas age as. G+1 = S.

 H+G >I + S

 H > I + S-G

 H>I+1

 This relation is not satisfied in option. Thus, possible
option is C.

76. 5 skilled workers can build a wall in 20 days: 8 semi-
skilled workers can build a wall in 25 days; 10 un-
skilled workers can build a wall in 30days. If a team

has 2 skilled, 6 semi-skilled and 5 unskilled workers,
how long will it take to build the wall?

A. 20 B. 18 C. 16 D. 15

 Explanation : In one day, fraction of work done by 2
skilled, 6 semi-skilled and 5 unskilled workers

 = 2*1/(5*20) + 6*1/(8*25) + 5*1/(10*30)

 = 40/600 = 1/15

 Therefore, number of days needed = 15

77. If Log(P) = (1/2)Log(Q) = (1/3)Log(R), then which of
the following options is true?

(GATE MECH 2011)

A. P2=Q3R2 B. Q2=PR

C. Q2=R3P D. R=P2Q2

 Explanation: From the relation, we can write P=Q1/2

= R1/3

 P = 1/Q2 = 1/R3

 P = Q2/R3

 Q2 = PR3

78. A container originally contains 10 litre of pure spirit.
From this container 1 litre of spirit is replaced with 1
litre of water. Subsequently, 1 liter of mixture is again
replaced with 1 litre of water and this process is re-
peated one more time. How much spirit is now left in
the container? (GATE MECH 2011)

A. 7.58 litre B. 7.84 litre

C. 7 litre D. 7.29 litre

 Explanation:

 After first with drawl of spirit left over = 9000ml Spirit
+ 1000 ml water

 After first with drawl of spirit left over = 8100ml Spirit
+ 1900 ml water

 After first with drawl of spirit left over = 7290ml Spirit
+ 2710 ml water

 Directly we can give as: 10*((10–1)/10)3 = 729/1000 =
7.29

79. The variable cost (V) of manufacturing a product var-
ies according to the equation V=4q, where q is the
quantity produced. The fixed cost (F) of production of
same product reduces with q according to the equa-
tion F=100/q. How many units should be produced to
minimise the total cost (V+F)? (GATE MECH 2011)

A. 5 B. 4 C. 7 D. 6

 Explanation:

 Total cost T=(V+F)= 4q+100/q is minimises when q
is 5

 We can also find by minimising the equation as:

 dT/dq= 4 + (–1)*100*q–2 = 0

 q2 = 25

 Therefore, q = 5

10.58 Computer Science & Information Technology for GATE

80. A transporter receives the same number of orders
each day. Currently, he has pending orders (backlog)
to be shipped. If he uses 7 trucks, then at the end of
the 4th day he can clear all the orders. Alternatively, if
he uses only 3 trucks, then all the orders are cleared
at the end of 10th day. What is the minimum number
of trucks required so that there will be no pending
orders at the end of the 5th day?(GATE MECH 2011)

A. 4 B. 5 C. 6 D. 7

 Explanation: Let y be the orders pending currently
and x be the number of orders per day. Therefore,
y+4x orders are shipped by 7 trucks for 4 days. Also,
y+10x orders are shipped by 3 trucks for 10 days.
From these two statements, number of orders which
are carried by a truck, assuming each truck carries
same number of orders

 (y+4x)/(4*7) = (y+10x)/(10*3)

 Therefore, y= 80x

 Also, one truck carries 3x orders approximately.

 Number of trucks needed for completing the within 5
days = (80x+5x)/(5*3x)=5.6 ~ 6 trucks

81. Two policemen, A and B, fire once each at the same
time at an escaping convict. The probability that A
hits the convict is three times the probability that B
hits the convict. If the probability of the convict not
getting injured is 0.5, the probability that B hits the
convict is: (GATE AE 2012)

A. 0.14 B. 0.22 C. 0.33 D. 0.40

 Explanation: Given Probability of the convict not
getting injured=0.5

 Let x is the probability of B hitting the convict. There-
fore (1-x) becomes probability of B not hitting the
convict. As probability of A hitting convict is three
times as that of B, the probability of A hitting con-
vict becomes 3x, while probability of A not hitting the
convict becomes (1-3x). Also, given the probability of
the convict not getting injured is 0.5, probability of
convict getting hit is 0.5; Therefore,

 x + 3x = 0.5

 x = 0.125

 As both are fired, probability of only B is hitting can
be said as= Probability of B hitting convict and Prob-
ability of A is not hitting.

82. The probability of three cards taken from a deck of
cards being aces

A. 1/13 B. 1/5525

C. 1/5233 D. 1/14

 Explanation: We know 4 ace’s will be available in a
deck. Therefore, all the three being ace’s can be given
as: 4/52 * 3/51 * 2/50= 1/5525

83. If 43% of people wear a seat belt while driving. If two
people are called out at random, from a room which
contains 100 people, what is the probability that both
of them wear a seat belt?

A. 0.43 B. 0.63 C. 0.18 D. None

84. In every shipment of computers of number 100, 5
computers are observed to be defective. A person pur-
chased one computer from current shipment for his
son and the second computer for his younger daugh-
ter. What is the probability of both being defective.

A. 2/100 B. 1/100 C. 1/400 D. None

 Answer: These are two independent events. There-
fore, both being defective = Probability of first one
being defective and Probability of second one being
defective= 5/100 * 5/100=1/400

85. Blocks Problem (Source ICPC Archive)

 The problem is to parse a series of commands that in-
struct a robot arm how to manipulate blocks that lie
on a flat table. Initially there are n blocks on the table
(numbered from 0 to n–1) with block bi adjacent to
block bi+1 for all 0 £ i < n – 1 as shown in the diagram
below:

0 1 2 3 4 n-1

 Figure: Initial Blocks World

 The valid commands for the robot arm that manipu-
lates blocks are:

∑ move a onto b

 where a and b are block numbers, puts block a onto
block b after returning any blocks that are stacked on
top of blocks a and b to their initial positions.

∑ move a over b

 where a and b are block numbers, puts block a onto
the top of the stack containing block b, after returning
any blocks that are stacked on top of block a to their
initial positions.

∑ pile a onto b

 where a and b are block numbers, moves the pile of
blocks consisting of block a, and any blocks that are
stacked above block a, onto block b. All blocks on top
of block b are moved to their initial positions prior
to the pile taking place. The blocks stacked above
block a retain their order when moved.

∑ pile a over b

 where a and b are block numbers, puts the pile of
blocks consisting of block a, and any blocks that are
stacked above block a, onto the top of the stack con-
taining block b. The blocks stacked above block a re-
tain their original order when moved.

Verbal Ability and Numerical Reasoning 10.59

∑ quit

 terminates manipulations in the block world.

 Any command in which a = b or in which a and b are
in the same stack of blocks is an illegal command. All
illegal commands should be ignored and should have
no affect on the configuration of blocks.

 Assume that the following sequence of instructions
are given with 10 blocks.

 move 9 onto 1

 move 8 over 1

 move 7 over 1

 move 6 over 1

 pile 8 over 6

 pile 8 over 5

 move 2 over 1

 move 4 over 9

 quit

 How many block stacks are having more than one
block?

A. 0 B. 1 C. 2 D. 4

86. How many block stacks are having exactly one block?

A. 0 B. 1 C. 2 D. 4

87. How many block stacks are having no blocks at all?

A. 0 B. 4 C. 6 D. 2

88. In which stack, block 3 is seen at the end?

A. 0 B. 3 C. 4 D. 2

89. How many blocks gets moved to stack 5 during the
instruction “pile 8 over 5”?

A. 2 B. 3 C. 4 D. None

90. Consider the following algorithm:

input n

 print n

 if n = 1 then STOP

 if n is odd then n=3n+1

 else n=n/2

 GOTO step 2

 Given the input 22, the following sequence of num-
bers will be printed 22 11 34 17 52 26 13 40 20 10 5 16
8 4 2 1. That is, total 16 numbers including 22 and 1
are printed. Here, 6s is called as the cycle-length of 22.
Assuming that we have tested the above algorithm
with all the natural numbers 1 to 10 (including). Larg-
est cycle size out of all the trials

A. 20 B. 10 C. 30 D. 6

91. We have six sided dice marked 0, 1, 2, 3, 4 and 5 on
each of their sides. What is the probability of total be-
ing six if two dice are thrown?

A. 18/36 B. 12/36 C. 7/36 D. 5/36

 Explanation: We will first write down the number of
ways the desired result six can occur. For example, if
you want to roll a six, you could achieve that result
five different ways: by rolling a one and a five, a two
and a four, a three and a three, a four and a two, or a
five and a one. We know in total 36 possibilities are
there with two dice. Thus, the probability of total be-
ing six is given as 5/36.

92. We have six sided dice marked 0, 1, 2, 3, 4 and 5 on
each of their sides. What is the probability of total be-
ing five if three dice are thrown?

A. 18/36 B. 18/216 C. 7/216 D. 5/36

93. Consider the following multiplication.

A * * * ×

B * =

C * * * *

 Where each of the figures of the three numbers A,B
and C (indicated by symbol *) can be only 3 or 5 or 7.
What are the three numbers A, B and C?

A. 155,5,775 B. 755,5,3775

C. 735,5,775 D. None

94. A set of three digit integers are framed by using the
digits from the set {1, 2, 3} exactly once. If they are
kept in ascending order then fourth number is

A. 123 B. 213 C. 231 D. 321

95. A total of 21 boxes are stacked like a pyramid with 6,
5, 4, 3, 2, 1 boxes from bottom to top. Assume that
in the bottom six boxes 12, 21, 7, 53, 49 and 35 are
stored. Value in any box can be calculated by adding
the values of two boxes beneath it and applying mod-
ulus operator with 100 for the total. However, for the
top most box value is calculated by multiplying the
values of the two boxes beneath it. What is the value
in the top box?

A. 9602 B. 9708

C. 9702 D. 9892

96. Siddhu must select three DVDs to record on an empty
DVD. The available DVDs are labeled as K, O, S, T, V
and W. Siddhu must follow the following conditions:

∑ K must be selected, S must be selected or both
must be selected.

∑ O or V must be selected, but neither V nor S could
be selected together with O.

 Which one is a valid DVD set to be recorded?

A. K, O and S B. K, S and T

C. K, S and V D. O, S and V

E. O, T and V

10.60 Computer Science & Information Technology for GATE

97. If K and O were chosen, which item shows a valid set
of DVD’s that Siddhu could choose without breaking
any condition?

A. S and V B. T and W

C. V and W D. S, W and T

E. V, W and T

98. If S is chosen, which DVD must not be chosen?

A. K B. O C. T D. V

E. W

99. If V was not chosen, which DVD pair must be cho-
sen?

A. K and O B. K and T

C. K and W D. O and T

E. O and W

100. Which DVD pair must not be chosen at the same
time?

A. K and O B. K and T

C. O and W D. T and W

E. V and W

101. A new colony has 4 north-south roads and 4 east-west
roads laid out in a 4 × 4 grid. A security guard who is
posted at the intersection of two roads can observe all
activity along the length of all the roads which he can
see. Minimum number of guards needed to make an
eye on all the road stretches is

A. 3 B. 4 C. 5 D. 8

102. Hexagonal card board patches of color red, blue, and
green are used to make a triangle shaped quilt. Each
hexagon and two beneath should of same color or else
all three should be of different colors. For instance,
the following figure contains valid and invalid organ-
isation of 5 card board pieces.

G

R

G

R G

B

G

RR

B R

B

 Find out how many blue patches are used in the fol-
lowing quilt.

R R R R G G

A. 2 B. 3

C. 4 D. 5

 Explanation:

R R R R G G

R R R G

RGRR

R B B

G B

R

B

103. Number of syllables in a word is approximated using
the following rules:

∑ Each word has at least one syllable

∑ A vowel or a consecutive sequence of vowels is
counted as one syllable. Vowels at the end of a
word are ignored.

 According to the above rules words “good”, “ask”,
“study”, “eerie” are considered to be having one syl-
lable while the word “morning” is considered to be
having two syllables. In the same fashion number of
vowels in “advance australia fair”?

A. 5 B. 6 C. 7 D. 8

 Explanation: See the underlined ones in “advance
australia fair”. Thus, five syllables are available in the
giving string.

104. Your school is preparing for its annual fire drill. Each
building in the school consists of a grid of classrooms,
with the top-left classroom left empty. Each time the
clock ticks another second, students may leave class-
rooms according to the following rules:

∑ If a classroom is adjacent to an empty room (or
possibly several empty rooms), one and only one
student may leave. This student leaves the build-
ing immediately (they do not spend any time
walking through the empty rooms).

∑ If a classroom is not adjacent to any empty rooms,
no students may leave.

 Note that you can never have several students leaving
a room at the same time (even if the room is adjacent
to several different empty rooms). Rooms are only ad-
jacent horizontally or vertically, not diagonally.

 An example of a 2×3 grid of classrooms is shown be-
low, with the initial numbers of students on the left
hand side. It can be seen that the entire building is
evacuated after four seconds.

0 1 3
Æ

0 0 3
Æ

0 0 2
Æ

0 0 1
Æ

0 0 0

1 2 1 0 2 1 0 1 1 0 0 1 0 0 0

 Your building is slightly larger — a 4×4 grid of class-
rooms, as illustrated below. How many seconds does
it take to evacuate your building?

Verbal Ability and Numerical Reasoning 10.61

0 2 5 3

1 4 3 2

4 2 5 4

3 1 4 2

A. 11 B. 13

C. 14 D. 15

E. 45

 Explanation: See the following workout.

0 2 5 3

1 4 3 2

4 2 5 4

3 1 4 2

 After First Second

0 1 5 3

0 4 3 2

4 2 5 4

3 1 4 2

 After Second Second

0 0 5 3

0 3 3 2

3 2 5 4

3 1 4 2

 After Third Second

0 0 4 3

0 2 3 2

2 2 5 4

3 1 4 2

 After Fourth Second

0 0 3 3

0 1 3 2

1 2 5 4

3 1 4 2

 After Fifth Second

0 0 2 3

0 0 3 2

0 2 5 4

3 1 4 2

 After Sixth Second

0 0 1 3

0 0 2 2

0 1 5 4

2 1 4 2

 After Seventh Second

0 0 0 3

0 0 1 2

0 0 5 4

1 1 4 2

 After Eighth Second

0 0 0 2

0 0 0 2

0 0 4 4

0 0 4 2

 After Ninth Second

0 0 0 1

0 0 0 1

0 0 3 4

0 0 3 2

 After Tenth Second

0 0 0 0

0 0 0 0

0 0 2 4

0 0 2 2

 After Eleventh Second

0 0 0 0

0 0 0 0

0 0 1 3

0 0 1 2

 After Twelth Second

0 0 0 0

0 0 0 0

0 0 0 2

0 0 0 2

 After Thirteenth Second

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 1

 After Fourteenth Second

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

105. A rising sequence is a list of numbers where each
number is greater than the sum of all the numbers be-
fore it. For example, 1;2;4;12;22 is a rising sequence
because 1 < 2, 1+2 < 4, 1+2+4 < 12 and 1+2+4+12 <

10.62 Computer Science & Information Technology for GATE

22. On the other hand, 1;2;4;6;17 is not a rising se-
quence because 1+2+4 6< 6. You are given the follow-
ing list of numbers: 3; 5; 8; 11; 25; 30; 45; 50; 60; 95:

 Your task is to form the longest possible rising se-
quence using numbers from this list. How many
numbers are in your rising sequence?

A. 4 B. 5 C. 6 D. 7

E. 8

 Explanation: 3, 5, 11, 25, 45, 95.

106. A token (marked ‘X’ in the diagram) is in a maze. You
may move the token around according to the follow-
ing rule: in each move the token may travel any dis-
tance either horizontally or vertically, but it cannot
pass over or stop on a shaded square.

X

 For example, from its starting position the token
could travel either one square left, one square right, or
one square down in a single move. To reach any other
square would require more than one move.

 What is the minimum number of moves that you
need to ensure that the token can reach any white
square from its starting position?

A. 9 B. 10 C. 11 D. 12

E. 15

 Explanation: See the figure which marks each white
cell with number of moves needed to reach it.

 We find that minimum of 11 moves are needed to
reach any cell.

3 4 4 8 8 7 8

3 4 10 9 7

3 X 11 5 6 6

2 2 1 3 4 7

7

7

7

7

8

8

88

9

4434

3

22

3

1 3

5

2 21

107. The escape has been planned but the prisoners have
the wrong instructions. The prisoner in cell 1 should
have instructions A, and the prisoner in cell 2 should
have instructions B, and so on. Each day there is an
opportunity for prisoners in adjacent cells to swap
instructions, but more than one swap per day would
be too risky. For instance if the instruction order was
CDBA, how many days of swapping are needed to get
correct order ABCD.

A. 4 B. 5 C. 7 D. 8

E. 6

 Explanation: First 2 and 3 exchange their instructions
D and B. Thus, current instructions become CBDA.
Now, 3 and 4 exchanges their instructions. Thus, cur-
rent instructions become CBAD. Now, 1 and 2 ex-
changes their instructions. Thus, current instructions
become BCAD. Now, 2 and 3 exchanges their instruc-
tions. Thus, current instructions become BACD. Now,
1 and 2 exchanges their instructions. Thus, current in-
structions become ABCD.

108. A circus is designing an act consisting of a tower of
people standing atop one another’s shoulders. For
practical and aesthetic reasons, each person must be
both shorter and lighter than the person below him/
her. Given the heights and weights of each person in
the circus, what is the largest possible number of peo-
ple in such a tower?

 (50,100) (65 100) (70 150) (56 90) (75 190) (60 95) (68
110)

A. 4 B. 5 C. 6 D. 3

 Explanation: The longest tower is length 6 and in-
cludes from top to bottom:

 (56,90) (60,95) (65,100) (68,110) (70,150) (75,190)

109. A department has n research students. An array A con-
tains when a student starts and stops on a day. That is,
the i-th student starts working at time A[i][1] and stops
working at time A[i][2]. Determine the greatest num-
ber of students that are working simultaneously. All
values of the array refers to hours over 0 to 24 scale.

2 8

1 3

5 7

2 4

3 6

1 4

3 8

2 5

2 8

6 9

9 10

Verbal Ability and Numerical Reasoning 10.63

A. 6 B. 8 C. 9 D. 7

110. Three friends divided some bullets equally. After all
of them shot 4 bullets the total number of bullets re-
maining is equal to the bullets each had after division.
Find the original number divided.

A. 15 B. 18 C. 9 D. None

111. There is a 50m long army platoon marching ahead. The
last person in the platoon wants to give a letter to the
first person leading the platoon. So while the platoon
is marching he runs ahead, reaches the first person
and hands over the letter to him and without stopping
he runs and comes back to his original position. In
the mean time the whole platoon has moved ahead by
50m. How much distance did the last person cover in
that time? Assume that he ran the whole distance with
uniform speed.

A. 100 B. 120.71 C. 130.71 D. None

112. There are 3 persons Ram, Ravi and Abhi. On some
day, Ram gave money to Ravi and Abhi as much as
they already had. After few days, Ravi gave three
times the money to Ram and Abhi as they already
have. After few days Abhi did the same thing as Ravi
did. At the end of this transaction each one of them
had 32. The money each originally had is

A. 2,43,433 B. 4,04,438

C. 4,93,710 D. None

113. A colony secretary ordered a workman to assign a
three digit unique numbers (001 to 100) for each of
the hundred houses. Which digit appears more often
over all?

A. 1 B. 2

C. 0

D. All occurs with same frequency

114. A colony secretary ordered a workman to assign a
three digit unique numbers (001 to 100) for each
of the hundred houses. The digit which appears 21
times is

A. 1 B. 2

C. 0

D. All occurs with same frequency

115. There are 22 gloves in a drawer: 5 pairs of red gloves,
4 pairs of yellow, and 2 pairs of green. You select the
gloves in the dark and can check them only after a
selection has been made. What is the smallest number
of gloves you need to select to have at least one
matching pair in the best case?

A. 2 B. 3 C. 4 D. 5

 Explanation: Do remember we are not asking the
probability. Thus, answer is 2.

116. There are 22 gloves in a drawer: 5 pairs of red gloves,
4 pairs of yellow, and 2 pairs of green. You select the
gloves in the dark and can check them only after a
selection has been made. What is the smallest number
of gloves you need to select to have at least one match-
ing pair in the worst case?

A. 2 B. 12 C. 10 D. None

 Explanation: In total 22 gloves are available. Do re-
member that gloves are different for each hand. In
total, we have 11 pairs of gloves. Thus, if we select 12
socks then there will be at least one pair in them. If we
take 11 gloves they can be all left hand type or right
hand type. Thus, zero pairs we may find in 11 gloves.

117. A mother has washed five distinct size socks of her
children and kept in a box. Two socks were taken away
by rats. How many children she can make ready with
socks in the best and worst cases. Do calculate the
probability of best case and worst case, respectively.

 Explanation: Best case 4 children and worst case 3
children. Best case occurs if both the missing socks
are of same pair. Thus, there will be 4 pairs left. So,
she can prepare 4 children’s. Now let us try to calcu-
late their probabilities. Probability of selecting 2 socks
from 10 is 10C2=45. As mentioned about best case
situation arises when the missing socks are of a pair.
As we have 5 pairs, then the best case may happen in
5 ways. Thus, probability of best case is 5/45=1/9. The
probability of worst case is 1–1/9=8/9.

118. The radius of a cylindrical memento is 1 centimetre
and the height is 2 centimetre. A fancy paper is pro-
posed to cover this memento along its curved surface.
The length of the rectangle sized paper needed. The
largest side length of the required rectangle shaped
paper sheet is:

A. 2p cm B. 4p cm C. p2 cm D. 2p2 cm

 Explanation: As we plan to cover only cylindrical
surface, perimeter of the cylinder (2p centimetre) and
height of the cylinder, i.e., 2 centimetre becomes the
dimensions of the paper sheet. Thus, answer is a.

119. See the following figure cleansers bottles availability
in the market. Which bottle of cleanser should a per-
son buy to get the best quality for the least amount of
money?

Regular

1 QT. 25C

Family
Size

1/2 GAL. 38C

Giant
Economy

Size

1 GAL. 60C

10.64 Computer Science & Information Technology for GATE

A. Regular size, 1 qt 25¢

B. Family size, ½ gal. 38¢

C. Giant economy size, 1 gal. 60¢

D. All cost the same per quart

 Explanation: There are 4 quarts in a gallon or 2 quarts
in a half-gallon, so the family size bottle at 38¢ costs
38¢ : 2 = 19¢ per quart. The giant economy size bottle
costs 60¢ : 4 = 15¢ per quart. Therefore the giant econo-
my size bottle is the buy that gets a person the greatest
amount for the least money.

120. The difference between one-half of a number and
one-fifth of it is 561. The number is:

A. 168 B. 2805 C. 1870 D. 5610

E. 187

121. The tv chart for the weather forecast shows:

30%

 What does a probability of 30% that it will be raining
tomorrow mean?

A. 30% of 12 hours is about 3½ hours, so we will
have 3½ hours of rain tomorrow.

B. 30% is less than ½, so we will have rain tomorrow
for less than half the day.

C. 30% is less than 50% so more likely than not we
will have a dry day tomorrow.

D. You cannot tell because the weather forecast is of-
ten wrong

122. A license plate has 3 letters and 4 digits (e.g. ABC 3456). How many different licenses can be formed if repetition of
letter or number is not allowed?

A. 782000 B. 7820000 C. 7824000 D. None

 Explanation: Let us apply the fundamental principle of counting,

Position Letter 1 Letter 2 Letter 3 Digit
1

Digit
2

Digit
3

Digit
4

number of
choices

26
(can pick any
letter)

25
(1 letter is
used already)

24
(can’t use any
of the previous
2 letters)

10 9
(can’t use any
of the previ-
ous digits)

8
(can’t use any
of the previ-
ous digits)

7
(can’t use any
of the previous
digits)

 Thus, We see that there are 26.25.24.10.9.8.7 = 7824000 possible outcomes.

123. If the Prob.(Student has Visa Card) = 0.8, and Prob.
(Student has MasterCard) = 0.15, and Prob.(Student
has Both Cards) = 0.1, then the probability that a stu-
dent does not have an MC is _____ and the probabil-
ity that a student has neither card is _____

A. 0.8, 0.2 B. 0.75, 0.25

C. 0.8, 0.8 D. 0.85, 0.15

124. The sum of the deviations from the mean; namely

(),x xi
i i

n

=
Â - has always the numerical value ______.

A. >0 B. <0 C. 0 D. None

125. A population consists of 500 elements. We want to
draw a simple random sample of 50 elements from
this population. On the first selection, the probability
of an element being selected is

A. 0.100 B. 0.010

C. 0.001 D. 0.002

126. Given the following guess what is ????

 2{38}3

 4{1524}5

 6{3548}7

 8{????}9

 Answer: 6380

 If we observe, we have in between curly braces first
number and last number squares after subtracting 1.

 A, B, and C are three numbers, Let

 @(A, B)= Average of A and B

 *(A, B)=Product of A and B

 /(A, B)=A divided by B

127. If A=2 and B=4 the value of @(/ (*(A,B),B),A) would
be

A. 2 B. 4 C. 6 D. 16

128. Sum of A and B is given by

A. *(@(A, B), 2) B. /(@(A,B),2)

C. @(*(A,B),2) D. @(/(A,B),2

129. Let x<0, 0<y<1, Z>1 which of the following is false:

A. (x2-z2)has to be positive.

B. yz can be less than one.

C. xy can never be zero

D. (y2-z2) is always negative

Verbal Ability and Numerical Reasoning 10.65

130. If A’s income is 25% less than B’s, by what % is B’s in-
come greater than that of A ?

A. 35% B. 25%

C. 30% D. None of these

131. Rama and Abhi have an 8-litre bottle completely filled
with Beer that they wish to divide equally between
them. They also have two empty bottles with capaci-
ties of 5 and 3 liters respectively. They want to divide
the beer equally in the fewest number of pours from
one bottle to another. (There are no volume marking
on the cans). How many minimum numbers of pours
are needed?

A. 3 B. 2 C. 4 D. None

 Explanation: You need more than 4 pourings.

132. It is given that the platoon and the last person moved
with uniform speed. Also, they both moved for the
identical amount of time. Hence, the ratio of the dis-
tance they covered—while person moving forward
and backword—are equal. Let’s assume that when
the last person reached the first person, the platoon
moved X metre forward. Thus, while moving forward
the last person moved (50+X) metre whereas the pla-
toon moved X metre.

 Similarly, while moving back the last person moved
[50-(50-X)] X metre whereas the platoon moved (50-
X) metre.

 Now, as the ratios are equal,

 (50+X)/X = X/(50-X)

 (50+X)*(50-X) = X*X

 Solving, X=35.355 metre

 Thus, total distance covered by the last person

 = (50+X) + X

 = 2*X + 50

 = 2*(35.355) + 50

 = 120.71 metre

 Note that at first glance, one might think that the total
distance covered by the last person is 100 metre, as he
ran the total length of the platoon (50 metre) twice.
true, but that’s the relative distance covered by the last
person i.e. assuming that the platoon is stationary.

 We can solve this problem by using simultaneous
equations also. However, we shall use back tracking to
solve the same. We know that at the end each of them
are having 32 each. That is, after Abhi giving three
times of the money what they have to Ram and Ravi,
their amounts became 32. Which indicates they will
be having 8 before Abhi paid. Thus, Abhi will be hav-
ing 32 + 2*24 = 80 be he paid. Similarly, before that
Ravi has paid to others. Thus, before Ravi paid they
might be having 2, 74 and 20, respectively. Initially,

Ram has paid to others what the amount they have.
Thus, initially all three will be having 49, 37 and 10
respectively.

133. What will be the maximum sum of 44, 42, 40, ... ?

A. 502 B. 504 C. 506 D. 500

 Explanation: We are asking for maximum sum. Thus,
we need not required to consider terms 0 and below 0.
Thus, we need to calculate the sum of 44, 42, 40, ….2.
Number of terms are 22 and the difference value is 2.
Therefore, sum becomes 22/2(2 + 44) = 506

134. The access code for a house consists of four digits but
the first digit must be 3,4 or 5 and it cannot end in
000. How many possible combinations are there?

A. 3000 B. 2997 C. 2001 D. None

 Explanation: The number of 4 digit numbers starting
with 3, 4 or 5 are:

 3 * 10 * 10 * 10 = 3,000.

 There are 3 special cases that aren’t allowed: 3000 4000
and 5000

 3,000 – 3 = 2,997

135. The cost function for a product in a firm is given by
5q2, where q is the amount of production. The firm
can sell the product at a market price of Rs. 50 per
unit. The number of units to be produced by the firm
such that the profit is maximised is (GATE 2012)

A. 5 B. 10 C. 15 D. 25

 Explanation: 5q2 is the cost function. As each item is
sold at Rs. 50/-, the profit function becomes 5q2–50q.

 To maximise this, we calculate derivative and equate
0.

 10q–50 = 0

 There fore q = 5.

136. Wanted Temporary, Part-time persons for the post
of Field Interviewer to conduct personal interviews
to collect and collate economic data. Requirements:
High School-pass, must be available for Day, Evening
and Saturday work. Transportation paid, expenses re-
imbursed.

 Which one of the following is the best inference
from the above advertisement?

A. Gender-discriminatory

B. Xenophobic

C. Not designed to make the post attractive

D. Not gender-discriminatory

137. A political party orders an arch for the entrance to
the ground in which the annual convention is being
held. The profile of the arch follows the equation y =
2x – 0.1x2 where y is the height of the arch in metre.
The maximum possible height of the arch is

10.66 Computer Science & Information Technology for GATE

A. 8 metre B. 10 metre

C. 12 metre D. 14 metre

 Explanation: Calculate dy/dx and calculate x.

 2 – 0.2x = 0

 Therefore, x = 10

 If we substitute x = 10 in the y equation, we get y = 10.

138. An automobile plant contracted to buy shock absorb-
ers from two suppliers X and Y. X supplies 60% and
Y supplies 40% of the shock absorbers. All shock ab-
sorbers are subjected to a quality test. The ones that
pass the quality test are considered reliable. Of X’s
shock absorbers, 96% are reliable. Of Y’s shock ab-
sorbers, 72% are reliable. The probability that a ran-
domly chosen shock absorber, which is found to be
reliable, is made by Y is

A. 0.288 B. 0.334

C. 0.667 D. 0.720

 Explanation: Probability of a sample from X = P(X) =
0.6

 Probability of a sample from Y = P(Y) = 0.4

 Probability of reliable sample from X = P(R/X) = 0.96

 Probability of reliable sample from Y = P(R/Y) = 0.72

 Probability of a reliable sample = P(R) = P(R/X)*P(X)
+ P(R/Y)*P(Y) = 0.96*0.6 + 0.72*0.4 = 0.864

 Probability of a reliable sample coming from Y, P(Y/R)
is required to be calculated. Using Bayes theorem

 P(Y/R) = P(R/Y)*P(Y)/P(R) = 0.72*0.4/0.864 = 0.334

139. Which of the following assertions are correct?

 P: Adding 7 to each entry in a list adds 7 to the mean
of the list

 Q: Adding 7 to each entry in a list adds 7 to the stan-
dard deviation of the list

 R: Doubling each entry in a list doubles the mean of
the list

 S: Doubling each entry in a list leaves the standard
deviation of the list unchanged

A. P, Q B. Q, R

C. P, R D. R, S

140. Given the sequence of terms, AD CG FK JP, the next
term is

A. OV B. OW

C. PV D. PW

141. 25 persons are in a room. 15 of them play hockey, 17
of them play football and 10 of them play both hockey
and football. Then the number of persons playing nei-
ther hockey nor football is: (GATE 2010)

A. 2 B. 17

C. 13 D. 3

142. If 137 + 276 = 435 how much is 731 + 672?

A. 534 B. 1403

C. 1623 D. 1513

143. Hari (H), Gita (G), Irfan (I) and Saira (S) are siblings
(i.e. brothers and sisters). All were born on 1st janu-
ary. The age difference between any two successive
siblings (that is born one after another) is less than 3
years. Given the following facts:

i. Hari’s age + Gita’s age > Irfan’s age + Saira’s age

ii. The age difference between Gita and Saira is 1
year. However Gita is not the oldest and Saira is
not the youngest.

iii. There are no twins.

 In what order were they born (oldest first)?

A. HSIG B. SGHI

C. IGSH D. IHSG

144. 5 skilled workers can build a wall in 20 days: 8 semi-
skilled workers can build a wall in 25 days; 10 un-
skilled workers can build a wall in 30 days. If a team
has 2 skilled, 6 semi-skilled and 5 unskilled workers,
how long will it take to build the wall?

A. 20 B. 18

C. 16 D. 15

145. Modern warfare has changed from large scale clash-
es of armies to suppression of civilian populations.
Chemical agents that do their work silently appear to
be suited to such warfare; and regretfully, there ex-
ist people in military establishments who think that
chemical agents are useful tools for their cause.

 Which of the following statements best sums up the
meaning of the above passage?

A. Modern warfare has resulted in civil strife.

B. Chemical agents are useful in modern warfare.

C. Use of chemical agents in warfare would be unde-
sirable

D. People in military establishments like to use
chemical agents in war.

146. Given digits 2,2,3,3,4,4,4,4 how many distinct 4 digit
numbers greater than 3000 can be formed?

A. 50 B. 51

C. 52 D. 54

Questions Related to Verbal Ability

147. Choose the most appropriate word from the options
given below to the complete the following sentence:

 His rather casual remarks on politics ________ his
lack of seriousness about the subject. (GATE 2010)

A. Masked B. Belied

C. Betrayed D. Suppressed

Verbal Ability and Numerical Reasoning 10.67

148. Which of the following options is closest in meaning
to the word Circuitous. (GATE 2010)

A. Cyclic B. Indirect

C. Confusing D. Crooked

149. Choose the most appropriate word from the options
given below to complete the following sentence:

 If we manage to _________ our natural resources, we
would leave a better planet for our children.

 (GATE 2010)

A. Uphold B. Restrain

C. Cherish D. Conserve

150. The question below consists of a pair of related words
followed by four pairs of words. Select the pair that
best expresses the relation in the original pair.

(GATE 2010)

 Unemployed: Worker

A. Fallow: land B. Unaware: sleeper

C. Wit: jester D. Renovated: house

151. Choose the most appropriate alternative from the op-
tions given below to complete the following sentence:

 Despite several _______ the mission succeeded in its
attempt to resolve the conflict. (GATE 2012)

A. Attempts B. Setbacks

C. Meetings D. Delegations

152. Which one of the following options is the closest in
meaning to the word given below? (GATE 2012)

 Mitigate

A. Diminish B. Divulge

C. Dedicate D. Denote

153. Choose the grammatically incorrect sentence:

(GATE 2012)

A. They gave us the money back less the service
charges of Three Hundred rupees.

B. This country’s expenditure is not less than that of
Bangladesh.

C. The committee initially asked for a funding of Fif-
ty Lakh rupees, but later settled for a lesser sum.

D. This country’s expenditure on educational re-
forms is very less.

154. Choose the most appropriate alternative from the op-
tions given below to complete the following sentence:
Suresh’s dog is the one ________ was hurt in the
stampede. (GATE 2012)

A. That B. Which C. Who D. Whom

155. Choose the most appropriate word(s) from the op-
tions given below to complete the following sentence.

(GATE 2011)

 I contemplated ________Singapore for my vacation
but decided against it.

A. To visit B. Having to visit

C. Visiting D. For a visit

 Explanation: Contemplate is a transitive verb and
hence is followed by a gerund. Hence the correct us-
age of contemplate is verb+ ing form.

156. Choose the most appropriate word from the options
given below to complete the following sentence.

 If you are trying to make a strong impression on your
audience, you cannot do so by being understated, ten-
tative or ___________. (GATE 2011)

A. Hyperbolic B. Restrained

C. Argumentative D. Indifferent

157. Choose the word from the options given below that is
most nearly opposite in meaning to the given word:
Amalgamate (GATE 2011)

A. Merge B. Split

C. Collect D. Separate

158. Which of the following options is the closest in the
meaning to the word below? (GATE 2011)

 Inexplicable

A. Incomprehensible

B. Indelible

C. Inextricable

D. Infallible

 Explanation: Inexplicable means not explicable; that
cannot be explained, understood, or accounted for. So
the best synonym here is incomprehensible.

159. Which one of the following options is the closest
meaning to the word given below? (GATE 2013)

 Nadir

A. Highest B. Lowest

C. Medium D. Integration

160. Complete the sentence:

Universalism is to particularism as diffuseness is to
_________. (GATE 2013)

A. Specificity B. Neutrality

C. Generality D. Adaptation

161. Were you a bird, you _____ in the sky. (GATE 2013)

A. Would fly B. Shall fly

C. Should fly D. Shall have flown

162. Choose grammatically incorrect sentence.

A. He is of Asian origin

B. They belonged to Africa

C. She is an European

D. They migrated from India to Australia

10.68 Computer Science & Information Technology for GATE

A N S W E R K E Y

1. ? 2. ? 3. ? 4. ?

5. ? 6. ? 7. ? 8. ?

9. ? 10. C 11. B 12. ?

13. ? 14. ? 15. ? 16. ?

17. ? 18. A 19. ? 20. A

21. ? 22. ? 23. ? 24. A

25. C 26. B 27. B 28. C

29. C 30. D 31. C 32. C

33. C 34. D 35. B 36. D

37. B 38. B 39. B 40. C

41. D 42. D 43. D 44. C

45. C 46. B 47. B 48. C

49. B 50. A, C 51. B 52. B

53. B 54. D 55. B 56. C

57. ? 58. C 59. ? 60. ?

61. ? 62. ? 63. ? 64. B, C

65. C, D 66. C 67. C 68. B

69. B 70. C 71. A 72. A

73. D 74. C 75. C 76. D

77. C 78. D 79. A 80. C

81. A 82. B 83. C 84. C

85. C 86. C 87. C 88. B

89. B 90. B 91. D 92. B

93. B 94. C 95. C 96. C

97. B 98. B 99. B, C 100. D

101. B 102. C 103. A 104. C

105. C 106. C 107. B 108. C

109. D 110. B 111. B 112. C

113. C 114. A 115. A 116. B

117. ? 118. A 119. C 120. C

121. C 122. C 123. D 124. C

125. D 126. ? 127. A 128. A

129. A 130. D 131. D 132. ?

133. C 134. B 135. A 136. D

137. B 138. B 139. C 140. A

141. D 142. C 143. B 144. C

145. D 146. B 147. C 148. B

149. D 150. A 151. B 152. A

153. D 154. ? 155. C 156. B

157. B 158. A 159. B 160. A

161. A 162. C

Note

For all those questions with ? as answer, explanations are given after the question itself.

11C H A P T E R E L E V E N

Model Papers for GATE Examination

(with Solutions and Explanations)

Test 1

Section A

1. In ___ system a part of a file is stored in a disk and
another part is stored in another disk and vice versa.

A. FAT B. I-node based FS

C. RAID D. None

2. If a program is reading from a file and writing into a
file after modifying and employing double buffering
then number of outstanding disk requests are __

A. 1 B. 2

C. 4 D. None

3. Advantage of accessing memory through the file in-
terface

A. Improved speed

B. Flexibility

C. Trusted processes access to main memory

D. None

4. File pointers in most Unix systems is

A. 4 bits B. 32 bits

C. 4 bytes D. B & C

E. None

5. File system descriptor is

A. Boot block B. Super block

C. I-node blocks D. None

6. Is a machine language instruction interruptible?

A. No B. Yes

C. Commonly No. But on some machines they are
interruptible.

D. None

7. Jacketing

A. Is used to convert blocking system call to non-
blocking.

B. Is used to avoid blocking threads.

C. Contains jacket routine code which checks I/O
device is busy or not.

D. All

8. Where does the Swap space reside?

A. RAM B. ROM

C. Disk D. On-chip cache

9. Which of the following may give compile time error?

A. char *s=“Hello”,p; *p=s;

B. char *s=“Hello”,p; p=s;

C. char *s=“Hello”,p; *p=*s;

D. None

10. Tail recursion

A. All of its recursive calls are tail recursive

B. Its last statement is recursive call and its return
value is not part of any expression

C. While rewinding phase tail recursive functions
will not do anything

D. All

11. Number of zero element, subsets a will be having is

A. Zero B. n

11.2 Computer Science & Information Technology for GATE

C. One D. None

12. Find odd one out

A. IBM Mainframe B. Sun Sparc

C. Motorola(MAC) D. IBM PC

13. Class invariant is

A. Collection of Boolean expressions that are always
true for objects of the class

B. Static member variable of a class

C. Static member function of a class

D. None

14. In user mode

A. PSW bit 0 value is 1

B. Instructions that modify control registers are not
legal and cause a program error

C. All addresses must be less than bound

D. All

15. Find out correct one

A. L1 cache will be in microprocessor

B. L2 cache will be in outside microprocessor

C. Both A & B

D. None

16. Harward architecture

A. Separate caches for data & instructions

B. Same caches for data & instructions

C. Multiple processors

D. None

17. For I = 1 to 1000 do

 x=x+I

 Assume x is stored in cache currently. Then __ is pre-
ferred

A. Write-through B. Write-back

C. Both D. None

18. Traditional LANs example, Ethernet Bus, Token Ring
use

A. Circuit Switching B. Packet Switching

C. Frame Relay D. Packet Broadcast

19. A device has two IP addresses. One address is
192.123.46.219. The other address can be

A. 192.123.46.220 B. 192.123.46.0

C. 192.123.47.219 D. None

20. Gateway

A. Protocol conversion B. Packet re-sizing

C. Data rate adjustment D. All

21. Ethernet addresses are

A. 2 bytes B. 6 bytes C. Both A & B D. None

22. Television channels are 8MHz wide. How many bps
can be sent if four-level digital signals are used. As-
sume cannel is ideal.

A. 32Mbps B. 32MB/s

C. 16Mbps D. 16MB/s

23. CRC polynomial used in Ethernet

A. CRC-12 B. CRC-16

C. CRC-32 D. None

24. With respect to compilers and interpreters which of
the following is true ?

A. Syntax analysis is done by compilers but not by
interpreters.

B. A program that can be compiled can be interpret-
ed .

C. Interpreters are always written in a high level lan-
guage but compilers are written in high or assem-
bly language.

D. None

25. Define two operations

 T1: complement any two bits

 T2 exchange any two bits

 Starting with 000000 which of the following cannot
be generated using sequence T1 and T2?

A. 110 000 B. 001 001

C. 100 001 D. 000 010

E. 001 100

26. A 2-3 tree is a tree in which each node has either 2
or 3 sons, except the leaves and also has equal path
length from root to any leaf. The number of leaves is
9. Then the number of internal nodes can be

A. 7 B. 8

C. 9 D. 6

E. 3

27. Queue with permitted operations

 (i) insertion at tail of queue

 (ii) output the head of queue

 (iii) place the head at the tail

 For an input string of 1 2 3 4 5 6 which of the follow-
ing outputs are possible?

(i) 3 4 1 2 6 5 (ii) 5 2 1 3 4 6

(iii) 5 6 1 2 3 4

A. I only B. II only

C. III only D. I & III

E. I, II & III

28. Grammar G: S Æ Aa|bB|Sa

 A Æ b|a

 B Æ Aa

Model Papers for GATE Examination (with Solutions and Explanations) 11.3

 Which of the following is true?

A. String aaaa proves G is ambiguous

B. String baaa proves that G is ambiguous

C. String abab proves that G is ambiguous

D. Ambigous but not detectable from above given
procedure

E. Not ambiguous

29. A computer represents floating point exponents us-
ing the excess 64 to base 10 form (using 7 bits). If two
such exponents are added using a seven bit adder,
what is the modification in the sum required to en-
sure that the resulting exponent is in excess 64 form?

A. Generate end around carry and add

B. Generate end around borrow and subtract

C. Complement MSB

D. No change is required

30. The following are coded representations of the num-
bers 2 ,4 , 6, 8. Which is not a Gray code?

A. 1110,1010,1111,0101 B. 1001,0011,1111,1100

C. 1101,1000,0010,0111 D. None

31. All the following statements are true except :

A. Concurrent processes must work on different
processors.

B. If the result of two parallel tasks is independent
of their speed then the result has a deterministic
solution.

 C. A deadlock is a circular wait where two or more
processors are waitig for others to release re-
sources.

D. None

32. Sometimes the object module produced by a compiler
includes information (from the symbol table) map-
ping all source program names to their address. The
most likely purpose of this information is

A. For use as input to a debugging aid.

B. To increase the run time efficiency of the pro-
gram.

C. For the reduction of the symbol table space need-
ed by the compiler.

D. To tell the loader where each variable belongs.

E. To tell the OS what to call the variables.

33. Given the grammer

 S Æ S+S | S*S | a

 How many distinct parse trees exist for the expression
a + a*a + a?

A. 4 B. 5

C. 6 D. 9

E. 8

34. If a,b,c occur with equal probability, which of the fol-
lowing is a valid Huffman coding of these symbols?

A. a=1, b=0, c= 11 B. a=0, b=111, c=000

C. a=0, b= 10, c= 11 D. None of the above

35. In an AVL tree with 1000 nodes, path length is the
length of a path from root to a leaf node is

A. At least one path has path length >100.

B. All paths have path length >100.

C. No path has path length >100.

D. Cannot be determined from the above info.

36. The boolean expression xyz¢ + xy¢z + x¢yz + xyz is
equivalent to

A. xy + yz + zx

B. xy+ yz

C. xyz+xyy

D. (xy)¢ + (yz)¢ + (zx)¢ + (xyz)¢

37. Which of the following exhibit locality of reference?

I. Sequential processing of arrays

II. Symbol table using hashing

III. Collection of garbage in linked memory

A. None B. I only

C. I and II D. III

E. I, II and III

38. There is a relational schema which has k attributes.
The domain of each attribute consists of exaclty 2 ele-
ments. A table is defined as subset of tuples where in
each tuple, a value is defined for each of the k attri-
butes. The minimum value of k needed for the num-
ber of distinct tables to exceed 10^9 is

A. 5 B. 9

C. 17 D. 512

E. 1024

39. Which of the following is not done when an interrupt
occurs?

A. Save the starting address of the executing proce-
dure

B. Save the address of the current instruction

C. Detect the cause of the interrupt

D. Save the values of the registers

E. Make a call to the kernel

40. If n is a power of 2, then the minimum number of
multiplications needed to computer an.

A. lg n B. sqrt(n)

C. n–1 D. n

41. The language accepted by a pushdown automation in
which the stack is limited to 10 items is best described
as

11.4 Computer Science & Information Technology for GATE

C. If it has a spanning tree

D. Both A & B

50. A minimal DFA that is equavalent to an NDFA has

A. Always more states

B. Always lesser number of states

C. Always 2^n states

D. Sometime more states

E. None

Section B

51. According to the following transition diagram find
whether strings aaab, bbbbaa are valid or not.

a

b

b
b

a, b

A. aaab B. bbbbaa

C. Both A & B D. None

52. The minimal finite automata accepting set of all
strings over {0,1} ending 000 or 111 has

A. 5 states B. 6 states

C. 7 states D. 8 states

E. None

53. E =`Y +`X̀ Z is a Boolean expression. It is equivalent to

 A. S(0,1,2,4,5) B. P(3,6,7)

C. Both A & B D. None

54. The rank of a matrix

–1 0 0

2 –3 0

1 4 2

A. 0 B. 1

C. 2 D. None

55. The n’th difference of polynomial of degree n is

A. Constant B. Zero

C. Variable D. None

56. A connected planar graph with n vertices and e edges
has ___ regions.

A. n – e+2 B. e – n+2

C. n – e D. e – n

57. A covering of an n-vertex graph will have atleast __
edges.

A. Context free B. Regular

C. Deterministic context free

D. Recursive

42. According to 4th normal form

A. Make sure to have multivalued dependencies

B. Make sure that there are no hidden dependencies

C. Make sure to remove transitive dependencies

D. None

43. bplus tree preferred over hashing in

A. Read one record

B. Read next, read all, reorganize records

C. Modify records

D. Insert, delete records

44. At a particular time the value of the counting sema-
phore is 7. Then 20 P operations and n V operations
are done which makes the final result of semaphore
variable as 5. Then the value of n is

A. 15 B. 18

C. 22 D. 13

45. When will be the paths from one node to every other
node will become V?

A. Directed

B. Only one cycle and all nodes are involved.

C. No self cycles

D. All

46. Adjacency matrix of a graph is having 1’s in off diagonal
while remaining all elements are same. Then the graph

A. Contains all isolated nodes

B. V/2 connected components

C. If odd no of nodes are there then V/2+1 connect-
ed components

D. If odd no of nodes are there then one isolated
node will be available

E. B & C & D

47. If T is a full binary tree with r internal nodes then

A. then it will have r+1 terminals

B. 2r+1 total vertices

C. Both A & B D. None

48. For a connected graph with e edges and n vertices

A. n cycles

B. n-1 branches in any spanning tree

C. n connected components

D. None

49. A graph is connected if it contains

A. One connected component

B. More than one connected component

Model Papers for GATE Examination (with Solutions and Explanations) 11.5

A. n–2 B. [n/2]

C. [3n/2] E. 2n

58. A sender has a sliding window of size 15. The first 15
frames are sent. The receiver sends an ACK for 10.
How many spaces does the receiver widnow expand?

A. 5 B. 9

C. 10 D. 15

59. Which of the following can be used for zeroing out alter-
nate bits of a 16-bit number using the AND operation?

A. 0101 B. AAAA

C. EEEE D. FFFF

E. 1010

60. If n is even, and assuming that all A[i] are distinct,
what does the execution of the code below result in?

 for (i = 0; i < n; i++)

 A[i] = A[n+1-i];

A. It results in 2 copies of each value data

B. The values remain unchanged.

C. The array reverses D. None of the above

61. In a packet delivery system, a packet is retransmit-
ted when lost, till it is successfully transmitted. If the
probability of loss is C, and retransmissions are inde-
pendent, what is the expected number of unsuccessful
transmission before a successful transmission?

A. 1/(1–C) B. C/(1–C)

C. 1/(1–C)^2 D. C

E. 1–C

62. z = xyz + xyz + xyz

 Which of the following is correct?

A. z is true if only 2 variables are true.

B. z is true if one or more variables are true

C. z is false if one or more variables is false

D. z is false is if 2 variables are false

63. Which string does a(b*c)* reject?

A. abbccc B. abcbcbc

C. abbcc D. acbc

64. S Æ A

 A Æ AA | 0

 How many derivations of 00000 are possible?

A. 5 B. 14

C. 24 D. 29

E. 54

65. Find the number of 10 digit sequences belonging to
{ 0,1}* such that each sequence starts with 01 and/or
ends with 01.

A. 512 B. 448

C. 478 D. None

66. int a[10]; here a is __ pointer

A. Wild B. Constant

C. Dangling D. None

 Consider the following graph
A

B C

67. The third row in the transitive closure of the above
graph is

A. 1,1,1 B. 1,1,0

C. 1,0,0 D. 0,1,1

68. A graph is having adjacency matrix of all 1’s then

A. It is fully connected

B. Its path matrix is same as adjacency matrix

C. Contains cycles

D. All

69. Does C doesn’t support

A. Call by value B. Call by reference

C. Call by copy D. Call by restore

E. C & D

70. Make uses

A. I-nodes information

B. Data blocks information

C. Time stamps information

D. None

71. The grammar S Æ SS|aa|e

A. is LR(0) B. is SLR(1)

C. LALR(1) D. None

72. What is the average time required to read or write 512-
bte sector for a disk with 5400 RPM with the average
seek time of 12ms, transfer rate of 5MB/sec. Assume
controller overhead is 2ms and disk is idle initially.

A. 10 ms B. 12 ms

C. 19.7 ms D. 19.2 ms

E. None

73. A synchronous bus with clock cycle of 50 ns and 40ns
per handshake can do one transmission per 1 clock
cycle. Then its bandwidth ____. The data portion of
bus is 32 bits wide and memory access time is 200 ns.

A. 10 Mbps B. 11 Mbps

C. 13.3 MB/sec D. None

74. A memory and bus system supports block access of 4
32-bit words. A 64-bit synchronous bus has clocked
at 200MHz, with each 64-bit transfer taking 1-clock
cycle, and 1 clock cycle to send and address memory.

11.6 Computer Science & Information Technology for GATE

Two clock cycles are needed between each bus opera-
tion. A memory access time for the first four words of
200ns; each additional set of four words can be read in
20ns. Assume that a bus transfer of the most recently
read data and a read of the next four words can be
overlapped. The bandwidth for a read of 256 words
for is ___

A. 4 MB/sec B. 71.11 MB/sec

C. 177.11 MB/sec D. None

75. Complexity of generating all possible subsets of a set
of data

A. O(n) B. O(n2)

C. O(2n) D. O(n!)

76. Complexity of splitting a set of data in half repeatedly
and traversing each half

A. O(lg n) B. O(n lg n)

C. O(n2 lg n) D. None

77. Which is having highest complexity O(n2), O(n2 lg n),
O(n!), O(2n)?

A. O(2n) B. O(n2)

C. O(n2 lg n) D. O(n!)

78. T1(n)=3n lg n + lg n, T2(n)= 2n+n3+25, T3(n,k)=k+n,
k<=n. The highest ordered one is

A. T1 B. T2

C. T3 D. All are same order

79. A graph’s adjacency matrix is as follows. Then the
graph

0100
0010
0001
1000

A. Directed

B. All nodes are a cycle

C. One connected component

D. All

80. In a graph adjacency matrix i’th row contains all 1’s
and i’th column contains all zero’s (except i’th row ele-
ment in the column) then i’th node is

A. Sink

B. Not reachable from any node

C. Not reachable from any node except itself

D. None

81. What is the average read/write time for a 512 byte sec-
tor with 4 ms average seek time, transfer rate 4MB/s
and 7200 RPM, controller overhead is negligible and
queing delay is also negligible

A. 4 ms B. 7 ms

C. 8.3 ms D. 8.15 ms

82. For the following code fragment, 2 stage pipeline is
proposed; 1st stage for multiplication (10 ns) and sec-
ond 2nd stage for addition (10 ns) is required. Then
how much time it takes to complete.

 for I=1 to 100 do A[I]=B[I]*C[I]+D[I]

A. 2000 ns B. 1010 ns

C. 1020 ns D. 2010 ns

83. A system has 3 page frames in main memory and uses
LRU replacement policy with the following reference
string. What is the state of main memory (the pages
existing) after the 5th page fault?

 1223413121

A. 321 B. 124

C. 234 D. None

84. Imagine that the length of a 10Base5 LAN cable
length is 2500m and it is working at 1Gbps. In worst
case how many padding bits are needed? (assume ad-
dresses are 6 bytes long)

A. 46 B. 614

C. 6474 D. None

85. Finding whether a graph G(V,E) contains a sink (a
vertex with in-degree of 1 and out-degree as zero) is

A. O(V) B. O(V2)

C. O(1) D. None

86. A diagraph has the following adjacency matrix

1 1 0 0

0 1 0 1

0 1 1 1

1 0 0 1

 The corresponding relation is

(1) refl. (2) symm.

(3) antisymm.

 A. 1 B. 2

C. 3 D. 1 & 2

E. 1 & 3

87. Given a machine with only a stack whose top can be
outputted and on which POP and PUSH are allowed.
Which of the following strings can be sorted in as-
cending order?

A. 4312 B. 3421

C. 2134 D. 1243

E. 3142

88. Number of productions used to generate a string of
length x for a grammer in CNF is

A. x+1 B. x

C. 2x D. 2x–1

E. x^2

Model Papers for GATE Examination (with Solutions and Explanations) 11.7

89. A 2,3 tree is a tree in which every node has either 1,2
or 3 sons, except the leaves, and also has equel path
length from root to any leaf. The number of leaves is
9. The number of internal nodes could be

A. 7 B. 8

C. 9 D. 6

E. 3

90. Solution of

T(n)= 2T(n/2) + n n>1

 = 1 n=1

A. nlogn + n B. n^2

C. nlogn –n +2 D. n+1

E. n+3

91. Z Æ Ax|By

 A Æ Ay|y

 B Æ x|y

 What is the regular expression for the set of strings
generated by the grammer?

A. xy B. yy

C. xy+y+y(y)*x D. None

92. The number of distinct strings of length 3 that can be
obtained using a,a,b,b,c is

A. 7 B. 6

C. 12 D. 15

E. 18

93. In connection of n processors find the minimum
number of connections needed to provide two dis-
tinct paths between any two processors.

A. 2^n B. n

C. n+1 D. n(n+1)/2

E. n–1

94. The number of stack locations needed for evaluating
(((a+b)*e)–d) using a stack is

A. Four B. Five

C. Six D. Three

E. Seven

95. S Æ aAa | BSB

 A Æ aS | c

 B Æ b | bS

 What is the minimum length string full of terminals
possible ?

A. 1 B. 2

C. 3 D. 4

E. 5

96. Newton Raphson method is used to calculate the
square root of 2 using the iteration x(i+1) = (x(i) +

2/x(i))/2 if the intial value x(0) is chosen as 1.5, then
the number of iterations needed to get an accuracy of
10^(–14) are

A. 2 B. 4

C. 8 D. 16

E. 32

97. We have the recurrence relation

 A(n) = 2A(n–1) – 1

 What is the order of A(n)?

A. Linearly

B. Quadratic

C. Cubic

D. Exponential

E. Logarithmic

98. In a pipelined architecture it is found that 20% of the
instructions are branch instructions. Out of these 20%
are unconditional branches. Out of the conditional
branches about half the branches are taken. If each
instruction takes one cycle. Each branch instruction
causes 1 cycle delay if it is not taken and a 3 cycle de-
lay if it is taken. What is the average number of cycles
each instruction takes?

A. 1.68 B. 1.2

C. 1.4 D. 1.44

E. 1.32

99. Hashing table has size of 1400 records. Assume that
not more than 1000 records are present at any time.
There are 4 keys in each record a1, a2, a3, a4– each can
take 36 values.

 What will be the best hashing function?

a. a1 + a2 b. a1*a2*a3

c. a1*a2 d. None

100. Consider the join of a relation R with a relation S. If
R has m tuples and S has n tuples, then the maximum
and minimum sizes of the join, respectively are

A. m+n and 0 B. mn and 0

C. m+n and |m–n| D. mn and m+n

A N S W E R K E Y

Test 1

1. C 2. C 3. C 4. D

5. B 6. C 7. D 8. C

9. A 10. D 11. C 12. D

13. A 14. D 15. C 16. A

17. B 18. D 19. C 20. D

11.8 Computer Science & Information Technology for GATE

21. C 22. A 23. C 24. C

25. D 26. E 27. D 28. E

29. C 30. A 31. A 32. A

33. C 34. C 35. C 36. A

37. C 38. D 39. B 40. A

41. C 42. B 43. B 44. B

45. D 46. E 47. C 48. B

49. D 50. D 51. A,D 52. C

53. C 54. D 55. A 56. B

57. B 58. D 59. B 60. D

61. A 62. C 63. E (Option is not Given)

64. C 65. A 66. B 67. D

68. D 69. E 70. C

71. D (Erroneous Question)

72. C 73. C 74. B 75. D

76. B 77. D 78. B 79. D

80. C 81. C 82. B 83. D

84. B 85. B 86. E 87. A,C

88. B 89. E 90. A 91. D

92. E 93. D 94. D 95. C

96. B 97. C 98. E 99. C

100. C (mn,0)

Test 1

EXPLANATIONS FOR SELECTED

QUESTIONS

9. p is not a pointer

12. Except all PC is little endian type

15. Most of the recent m/c has L1 cache inside and L2
outside (recent Itanium processor things are differ-
ent)

19. Usually (say router m/c) may be having two network
cards which belongs to two separate LAN’s. Thus they
should differ in IP addresses.

22. Max Data Rate = 2Hlog2V = 2*8*10^6*log2(4)= 32
Mbps.

26. Probably situation will be root node, two children will
accommodate all 9 leaves.

28. Given strings in aaaa, baaa, abab can not be generated
through different derivations

29. For example one 1000111(7), second is 1000111(7)
then sum in seven bits is 0001110 (14). Thus by flip-
ping MSB we can get in excess-64 form.

33. Possible derivations: (bold ones are derivations)

(i) SÆS+S SÆS+S+S SÆS+S*S+S

(ii) SÆS+S SÆS+S+S SÆS+S*S+S

(iii) SÆS+S SÆS+S*S SÆS+S*S+S

(iv) SÆS+S SÆS+S*S SÆS+S*S+S

(v) SÆS*S SÆS+S*S SÆS+S*S+S

(vi) SÆS *S SÆS+S*S SÆS+S*S+S

36.

xyz xyz¢ xy¢z x¢yz xyz F xy yz zx F

000 0 0 0 0 0 0 0 0 0

001 0 0 0 0 0 0 0 0 0

010 0 0 0 0 0 0 0 0 0

011 0 0 1 0 1 0 1 0 1

100 0 0 0 0 0 0 0 0 0

101 0 1 0 0 1 0 0 1 1

110 1 0 0 0 1 1 0 0 1

111 0 0 0 1 1 1 1 1 1

41. Check explanation from definitions

45.

51. aaab is valid string where as bbbbaa is not.

53.

xyz y¢ x¢z¢ E Term No

000 1 1 1 Maxterm 0

001 1 0 1 Maxterm 1

010 0 1 1 Maxterm 2

011 0 0 0 Minterm 3

100 1 0 1 Maxterm 4

101 1 0 1 Maxterm 5

110 0 0 0 Minterm 6

111 0 0 0 Minterm 7

56. See the theorem

57. See the theorem in Deo

61. Probability of loss = C, probability of success = 1–C

 Probability of success in k’th attempt is (1–C)Ck–1

Expercted value = S k (1– C)Ck–1

 = (1–C)C0+ 2(1–C)C1 + 3(1–C)C2 + 4(1–C)C3

 = (1–C){C0+ 2C1 +3C2 + C3 … }

 = (1–C)/C{C+ 2C2 + 3C3 … } (multiplying and devideing with C)

= (1–C)/C* C/(1–C)2

 = 1/(1–C)

Model Papers for GATE Examination (with Solutions and Explanations) 11.9

64.

AAAAA->00000

S->A, AA

AAAAA->00000
AAAAA->00000

AAAAA->00000

AAAA
AAAA

AAAA

AAA

Repeat the above
Repeat the above

 Above tree will be exactly replicated

66. a is called as constant pointer. We can apply on them
a++, a—etc.

72. See answer from question 80

73. 50 ns to send address to memory

 200 ns read the memory

 50 ns send the data to the device

 Thus total 300 ns.

 The maximum bus bandwidth = 4 bytes/300ns = 13.3
MB/sec

74. 1 clock cycle to send the address to memory

 200ns/5ns=40 clock cycles to read

 2 clock cycles to send the data from memory

 2 idle clock cycles between this transfer and next

 Thus total 45 cycles. There for 256/4 = 64 transactions
are needed, so the entire transfer takes 45 × 64 = 2880
clock cycles. Thus the latency is 2880 cycles × 5ns =
14400ns.

 The number of bus transactions per second is =
64*1second/14400 = 4.44M transactions/sec

 The bus bandwidth is = (256*4) bytes*1 second/
14400ns = 71.11MB/sec

80. 4+ 0.5/7200RPM+0.5KB/4MB/sec = 4+4.15+0.125 =
8.3ms

82. No of stages = k = 2

 No of data elements = n = 100

 Each stage requires = 10ns

 Time required = (k+n–1)*10 = 1010

83.

Page No Page Fault or Not

1 PF 1

2 PF 1,2

2 No PF 1,2

3 PF 1,2,3

Page No Page Fault or Not

4 PF 2,3,4

1 PF 3,4,1

84. According to 802.3 specifications maximum length of
cable is 2500 and the minimum allowed frame should
takes 51.2 micro seconds. There fore minimum frame
size is 6400 bytes = 1Gbps*51.2micro seconds. In
frame addresses, and others occupies 26 bytes. Thus
padding bytes 6400–26 = 6374.

92. Total sixteen

aab aac aba abc aca acb acb

bab bac bba bbc bca bcb

caa cbb cba cab

95.

 s Æ aAa (by applying A Æ c) s Æ aca. Thus minimum
3 terminals

97. A(n)=2A(n–1)–1 = 2 {2A(n–2) –1} –1= 22A(n–2) – 3
= 23A(n–3)–7 …

 This may approach 2n

 This complex 2^n is about n^3. Thus it is third order
complexity

98. 20% are branch (0.2)

 80% are others (0.8)

 % of conditional branches = 0.2*0.2 = 0.04 (they re-
quire 1+1 cycles)

 % of not taken instructions =0.08 (they require 1+1
cycles)

 % of taken instructions =0.08 (they require 1+3 cy-
cles)

 The avg no of cycles = 0.8*1 + 0.04*2 + 0.08*2 + 0.08*4
= 1.32

Test 2

Section A

1. When DMA is not preferred

A. I/O devices send interrupts but don’t do any data
movement

B. When data rate is so slow

C. To I/O copying take place in parallel with the
CPU work

D. There is an overhead in terms of sending more
complicated commands to the controller to in-
form it of the DMA operation.

E. All except C

11.10 Computer Science & Information Technology for GATE

2. Find odd one

A. B.

C. D.

E.

3. Topological sort

A. Is not possible if the graph has cycles

B. Is used to sort numbers

C. Is applicable on DAG’s

D. Is used in process management of OS

E. Ordering is not unique; any legal ordering will do

4. An array is having array containing indegrees of all
nodes of a graph. There exists a function Find_New_
Vertex_Of_Indegree_Zero() which when called it re-
turns node index which is having indegree zero else it
returns zero. If it returns zero then the graph is

A. DAG B. Connected

C. Contains cycle D. Acyclic

5. A graph with V vertices can have ___ minimum span-
ning trees.

A. V B. V–1

C. VV–2 D. VV

E. None

6. Let A={a,b}, L(r) be the language where r = abb*a is

A. all words begins with a and ends with a

B. all words with exactly two a’s

C. all words beginning and wnding in a and enclos-
ing one or more b’s

D. all words begining with ab and ending with a and
having any no of b’s

E. C & D

7. Find odd man out

A. L* contains all words over A*

B. L*, L+ are exactly same

C. L*, L + are same with the exception that L+
doesn’t contain empty word

D. L* is called as Kleene Closure of language L

8. If A={a,b}, if r =____ is a regular expression then A*

A. a⁄b* B. (a⁄b)*

C. (a Ÿ b)* D. None

9. In Databases ____ points are used with ROLLBACK
statement to go back provided that the transaction
has not been committed.

A. Synchronisation B. Marker

C. Savepoint D. None

10. Find odd man out

A. Readv system call

B. Writev system call

C. Writing into multiple buffers with single function
call

D. Reading from multiple buffers with a single call

E. Read system call

11. Find odd one out

A. For a completely balanced binary search tree the
worst case search complexity is log2(N+1).

B. For an AVL tree the worst case search complexity
is 1.44*log2(N+2).

C. AVL procedures guarantees atmost 5 pointer re-
assignments for a single reorganisation.

D. For a paged binary tree with k keys/page has
worst case search complexity of logk+1(N+1).

E. None

12. Ostrich Approach (Find odd one out)

A. Simplicity (for the OS designers),

B. Speed (no overhead),

C. Ease of use for the user – doesn’t need to specify
exact resources early.

D. Deadlocks can be prevented

13. Find odd one out

A. An access list is a list for each object consisting of
the domains with a nonempty set of access rights
for that object.

B. A capability list is a list of objects and the opera-
tions allowed on those objects for each domain.

C. Unix chmod command can extend per user basis
permissions

D. In DR DOS 6.0 for each file one can assign pass-
wd

E. None

14. What is the meaning of the “execute’’ permission bit
for a directory in UNIX?

A. Allows execution of files in that directory

B. Allows access to a file in the directory if the file’s
name is known

C. Allows listing of directory contents

D. No meaning, as directories are not executable
files

Model Papers for GATE Examination (with Solutions and Explanations) 11.11

15. The performance of a particular hash function de-
pends on

A. Distribution of key values that are currently in
use

B. No. of key values that are actually in use relative
to the size of the address space

C. No. of records that can be stored at a given ad-
dress without causing any collision

D. The collision resolution technique used

E. None

16. No. of Hamiltonian paths in the following graph are
__

1

5

2

4

3

A. 19 B. 10

C. 20 D. None

17. Find odd one out

A. A code is k-error-detecting iff its manimum dis-
tance is atleast k+1

B. A code is k-error-correcting iff its minimum dis-
tance is atleast 2k+1

C. Hamming codes are used for error detection and
correction

D. Huffman codes are non uniform type

E. CRC codes can be used for error correction

18. Find odd man out

A. FORTRAN IV

B. FORTRAN 77

C. COBOL

D. C

19. Find odd one out

A. Language definition time binding

B. Language implementation time binding

C. Execution time binding

D. Compile time binding

20. Typeless language

A. C B. C++

C. Object oriented D. Assembly

E. C++

21. In the following function code if a,b are arguments
passed in call by reference style, then find the wrong
one.

 swap(int a, int b)

 {

x=x+y;

y=x–y;

x=x-y;

 }

A. works for any two integers

B. works if we pass two different elements of an
array, i.e swap(a[i], a[j]), iπj

C. works if we pass two different elements of an
array, i.e swap(a[i], a[j]), iπj

D. works if we pass two different elements of an
array, i.e swap(a[i], a[j]), i=j

E. None

22. Consider a buddy system in which a particular
block under the current allocation has an address of
011011110000. If the block size is 4, what is the binary
address of its buddy?

A. 011011110100 B. 011011110000

C. 011011111111 D. 111011110100

E. None

23. Free block list in memory is maintained as

A. Push-down stack B. FIFO queue

C. Both D. None

24. Number of frames sent at a time in ARQ are

A. 1 B. w

C. 3 D. None

25.

 int a[10];

 int size=100;

 static int b=15;

 void main()

 {

 int sum=0;

 }

 In the above program which is stack variable?

A. a B. bb

C. size D. sum

E. None

26. In LAN terminology, 10 Base 5 signifies

A. Ethernet Bus 10 metres long, digital, 5Mbps

B. Token Bus, 10 Mbps, digital, 500 metre

C. Ethernet Bus 10 Mbps, analog, 500 metre

D. Ethernet Bus 10 Mbps, digital, 500 metre

27. A device has two IP addresses. This device can be

A. a computer B. a router

C. a gateway D. All

11.12 Computer Science & Information Technology for GATE

28. IPV6 has ___ bit address.

A. 16 B. 32

C. 128 D. Variable

29. Let v,e,f are no. of vertices, edges and faces. v+f = e+2
is valid. Find odd one out.

A. Tetrahedron B. Cube

C. Prism D. Octahedron

E. Circle with n points joined radially

30. What is the min. hardware required for a parity bit
generator when the bits come in serial order?

A. EXOR gates : 1 for each pair of bits

B. 4 EXOR gates

C. AND gates

D. TOGGLE flip-flop which acts a mod 2 counter

E. A and D with some minor additions

31. What is the time about C, the cost of replacement
policy (which is given as the no. of page faults for a
particular reference string?

A. C(LRU) always < C(FIFO)

B. C(LRU) always > C(FIFO)

C. C(LRU) always = C(FIFO)

D. Can’t be answered

E. A and C

32. In the following Fortran code fragment how many as-
signments taken place?

 do 10 i= 1,N

 do 20 j= 1,N

 20 A=B

 do 30 k= 1,N

 30 B=C

 10 continue

A. 2N B. N(3N)

C. 4N D. N*N

E. None

33. In a memory scheme ,the address of a location is spec-
ified by a page address and a displacement within a
page , in hexadecimal. # of pages = 16. # of words per
page = 256. The address of the 11th page, 94th word is

A. B5E B. A5D

C. 5EB D. E9C

34. F(x)= if odd(x) then (x–1)/2

 else F(F(x–1)).

 Then Find F(16).

A. 9 B. 3

C. 10 D. None

35. Solution of :

T(n) = 2T(n/2) + n n>1

= 1 n=1

A. nlogn + n B. n^2

C. nlogn –n +2 D. n+1

E. n+3

36. The number of distinct strings of length 3 that can be
obtained using a,a,b,b,c is

A. 7 B. 6

C. 12 D. 15

E. 18

37. Which of the following does an FSA accept?

A. 0^n1^n n>=1

B. a^n b^m m<n

C. Balanced paranthesis

D. A string of 0's and 1's and in the prefix the differ-
ence between #1's and #0's is 1.

E. Equal no. of 0's and 1's

38. CARRY, in a half-adder can be obtained using

A. EX-OR gate B. AND gate

C. DRAM D. EX-NOR gate

39. No. of comparisions needed to find the max. and the
second max. of 4 numbers is

A. 3 B. 4

C. 5 D. None

40. Which is a tautology?

A. a or b fi a and b B. a fi a and b

C. a and b fi a or b

D. (a or b) fi (a equivalence b)

41. The minimum numbers of hardware required to con-
struct 3-to-8 decoder is

A. two 2-to-4 decoders

B. two 2-to-4 decoders and 1 1-to-2 decoders

C. three 2-to-4 decoders

D. depends on the technology TTL, CMOS, etc

42. Every node in a binary tree has the form lptr|info|rptr.
In a binary tree with n nodes , how many nodes will
point to null?

A. (n + 1) B. n

C. 2n D. None

43. Programs are written with subroutines because of the
following reasons except

A. Easy debugging

B. No repitition of code

C. Increase access speed from buffer to main
memory

Model Papers for GATE Examination (with Solutions and Explanations) 11.13

D. To exploit locality of reference

E. None

44. An array defined as A[1:8,-2:2,3:12]. A[1,-2,3] is at lo-
cation 2000 where will be A[5,0,5] be.

A. 2020 B. 2222

C. 2022 D. None

45. Assuming there are no branch instructions or data
hazards, the number of cycles required to process 100
instructions through a 3-stage instruction pipeline is

A. 300 B. 103

C. 102 D. 97

46. Stack based architectures supports ___ address in-
structions.

A. One B. Two

C. Zero D. None

47. If a = 0xaa, b = a << 1 then b =

A. a B. 2a

C. 2b D. a–1

48. In which collision processing method it is not needed
to detect a given list position, if it is occupied or not?

A. Quadratic B. Linked

C. Rehashing D. None

49. The simplest way to organise the information about
available memory block in a system is

A. AVL tree

B. Doubly linked circular list

C. Stack

D. None

50. The linear probing for collision resolution can lead to

A. Clustering B. Radix sort

C. Efficient storage D. Overflow

Section B

51. Given the functional dependencies F={AÆBC, EÆC,
D Æ AEF, ABF Æ BD} the extraneous left attribute

A. B in AÆBC

B. A in DÆAEF

C. B in ABFÆBD

D. None

52. Find out the Huffman code for symbol a from the fol-
lowing data

Symbol a b c d e f g

Probability 0.4 0.1 0.1 0.1 0.1 0.1 0.1

A. 1 B. 0

C. 10 D. 11

E. Both A & B

53. Solve the following traveling salesman problem

Station A B C D E

A μ 13 19 16 15

B 14 μ 18 15 16

C 14 18 μ 14 13

D 13 17 16 μ 18

E 19 17 16 17 μ

A. CÆAÆBÆDÆE B. CÆBÆAÆEÆD

C. BÆEÆAÆCÆD D. None

54. Disk requests come in to the disk driver for cylinders
12, 42, 106, 3, 55, 14 and 92, in that order. A seek takes
10 msec per cylinder moved. How much seek time is
needed for SCAN algorithm. The arm is initially at
cylinder 20, and the initial arm direction is ascending.

A. 1200 B. 1890

C. 1900 D. 3760

E. None

55. Find the odd thing about the following tree

f

g

cb

a +

+
+

A. (a+b*c)+((d*e+f)*g) B. abc*+de*f+g*+

C. abc*+def*+g* D. ++a*bc*+*defg

56. Find odd man out regarding the following transition
diagram

s0 s1

a

b
b

A. aababbab B. aa

C. ababaa D. aaa

E. aa

57. Given the following data and for time slice value of 2
find out turn around time for process 3.

Process Arrival Service time Priority

1 1 8 2

2 2 2 4

3 3 1 3

4 4 2 4

5 5 5 1

11.14 Computer Science & Information Technology for GATE

A. 9 B. 3

C. 10 D. None

58. A channel uses a 2400 hz carrier. The signal to noise
ratio snr = 30db. The max bit rate __

A. 2400 B. 24000

C. 24Mbps D. None

59. A computer has the following page frames. The time
of allocation, time of last access, and the accessed (A)
and modified (M) bits for each page are as shown
below (with times in clock ticks, lower is earlier in
time). First please note that the times as given as mil-
liseconds since some ‘epoch’. In other words, time 200
is earlier than time 360. Then frames selected for re-
placement using LRU,NRU,FIFO and second chance
approaches are:

Frame Allocation Last reference A M

0 126 279 0 0

1 230 260 1 0

2 120 272 1 1

3 160 280 1 1

4 200 265 0 1

5 200 290 1 0

6 205 273 0 0

A. 1,0,2,0 B. 1,6,2,0

C. 1,2,6,0 D. A & B

E. None

60. Assume you have an inode-based filesystem. The file-
system has 512 byte blocks. Each i-node has 10 direct,
1 single indirect, 1 double indirect, and 1 triple in-
direct block pointer. Block pointers are 4 bytes each.
Assume the inode and any block free list is always in
memory. Blocks are not cached. What is the number
of disk block reads and writes required to write 1 byte
to a file 1.in the best case, 2.in the worst case?

A. 1w, 4r/1w B. 4w,1r/1w

C. 1w,1r/1w D. None

61. What are the mistakes in the following piece of code?

 int *cubed(void){

 int i;

 }

 return f;

 }

A. i Uninitialised

B. Fence post (array index limit exceeded)

C.

D. Returning pointer to automatic variable

E. All

62.

Æ Æ Æ Æ

A. XY B. XZ

C. WP D. Both A & B

E. None

63. Given the relation r(A,B,C) and the set F={ABÆC,
BÆD, DÆB} of FDs then

A. AB, AD are the candidate keys

B. A, B, D are prime attributes

C. Both A & B

D. None

64. Find odd man regarding the following code fragment

 int x,y,x;

 void f()

 { int t,u;

 void ff()

 { int x,w;

 void fff()

 { int y,w,t;

 }

 x=y+t+w+z;

 }

 }

 void main()

 { int z,t;

 f();

 }

A. Only one activation record will be created

B. Program will be compiled successfully

C. 3 activation records will be created when f () is
called

D. Program will be executed

65. What is the average read/write time for a 512 byte sec-
tor with 4 ms average seek time, transfer rate 4MB/s
and 7200 RPM, controller overhead is negligible and
queing delay is also negligible

A. 4 ms B. 7 ms

C. 8.3 ms D. 8.15 ms

66. For the following code fragment, 2 stage pipeline is
proposed; 1st stage for multiplication (10 ns) and

Model Papers for GATE Examination (with Solutions and Explanations) 11.15

second 2nd stage for addition (10 ns) is required.
Then how much time it takes to complete?

 for I=1 to 100 do A[I]=B[I]*C[I]+D[I]

A. 2000 ns B. 1010 ns

C. 1020 ns D. 2010 ns

67. A paging system is employing HW cache as TLB of
20ns access time (search time) and physical memory
access time is 100 ns. It is observed that the hit ratio is
98%. The effective memory access time is

A. 120 ns B. 122 ns

C. 220 ns D. None

68. A Stop and Wait protocol has the following data:
Frame size (L) = 1000 bits; Transmission Speed (R) =
1 Mps Distance (D) = 10 kms; Velocity of Propagation
(V) = 2*10^8 m/sec. Calculate the utilization of the
link, ignoring effects of ACK, and CPU.

A. 1 B. 0.9

C. 0.5 D. None

69. Procedure ZAP(n)

 begin

 if n ‹ 1 then zap = 1;

 else zap = ZAP(n–1) + ZAP(n–3);

 end

 Find ZAP(6).

A. 6 B. 9

C. 10 D. None

70. What is the min. length string possible in the follow-
ing grammar?

 S Æ aAa | BDB

 A Æ aS | c

 B Æ b|bD

 D Æ S

A. 4 B. 3

C. 7 D. None

71. Grammar

 S Æ Aa | bB | Sa

 A Æ b| a

 B Æ Aa

 Which of the following is true?

A. aaaa proves that grammar is ambiguous

B. baaa proves that the grammar is ambiguous

C. abab proves that the grammar is ambiguous

D. Ambiguous but not detectable from the above
given productions

E. Not ambiguous

72. What is true about the language generated by the
above rules?

A. Start(first) and end(last) symbols are the same for
any string

B. Only odd length strings are generated

C. Consists of atmost one ‘c’ in any string

D. None

73. Consider the program fragments

 Procedure;

 var: x,y;

 Procedure P(a,b,c)

 Begin

 b := b + 10;

 a := b + c;

 End;

 y = 20; x = 10;

 P(y,x,y);

 Write(y,x)

 End;

 With respect to the above program fragment if the
procedure P is call by reference what are the values of
x,y printed out:

A. 40,20 B. 35,10

C. 30,20 D. 25,35

74. Five processes are in a queue. The time for completion
of each are 6,3, 4,3 and 2, respectively. Find the mini-
mum average turn around time

A. 18/5 B. 9

C. 62/5 D. 63/5

E. 18

75. On a Stack machine

 Store pops one value and stores it;

 MUL and ADD operate on the top two values of
the stack

 and the result is stored on to the stack

 What is stored in T2 after the following sequence of
statements

 PUSH A

 PUSH B

 MUL

 STORE T1

 PUSH T1

 PUSH T1

 MUL

 PUSH C

 MUL

 PUSH D

 ADD

11.16 Computer Science & Information Technology for GATE

 STORE T2

 HALT

A. (AB)^2 * C * D B. (AB)^2 * C + D

C. AB^2 * C + D D. None

76. A B C | f

 0 0 0 | 1

 0 0 1 | 1

 0 1 0 | 1

 0 1 1 | X

 1 0 0 | 1

 1 0 1 | 0

 1 1 0 | 1

 1 1 1 | X

 Consider the function ‘f ’ shown. Which of the follow-
ing describes correctly the relation between the mini-
mum sum and the minimum product form of ‘f ’ ?

A. They are logically equivalent by definition.

B. They are logically equivalent because dont cares
are used in the same way.

C. They are logically equivalent because don’t cares
don’t matter.

D. They are logically not equivalent by definition.

E. They are logically not equivalent because don’t
cares are used in different ways.

77. Assume data transfer between disk and MM are in-
terrupt driven, 1 byte at a time. if the instruction to
accomplish a 1 byte transfer take 8 micro sec. and
the interrupt overhead is 10 micro sec. then the time
available in micro sec. for other computing between
byte transfer is

A. 0 B. 8

C. 10 D. 14

E. 32

78. Consider N employee records to be solved in mem-
ory for online retrieval. Each employee received is
uniquely identified by a social security number. Con-
sider the following ways to store the N records

1. An array sorted by social security number

2. A link list sorted by social security number

3. A link not sorted.

4. Balanced binary search tree with social security
number as key.

 for the statements 1 to 4, respectively the average time
for an efficient program to find out an employee re-
ceived given social security number is

A. o(log n) o(n) o(n) o(log n)

B. o(n) o(log n) o(n) o(1)

C. o(log n) o(log n) o(n) o(1)

D. o(n) o(n) o(n) o(1)

E. o(n) o(log n) o(log n) o(1)

79. A stack can be defined abstractly by the following
rules. Let S be a stack and let X be a symbol, then :

1. e,the empty stack is a stack

2. push(S,X) is a stack

3. pop(push(S,X)) = S

4. top(push(S,X)) = X

All the following are derivable from above except

A. top(push(push(e,X),Y)) = Y

B. pop(push(e,X)) = e

C. push(pop(push(e,X)),Y) is a stack

D. top(push)pop(push(e,X)),Y) = Y

E. pop(pop(push(e,X))) = X

80. There are 4 wagons standing on section A of the track.
A move consists of moving any one wagon along
the track without changing the direction from one
straight section to the other. No vehicle can stop on
any curved section. What is the minimum number of
moves to invert the order of the 4 wagons.

A. 7 B. 8

C. 9 D. 10

E. 11

 81.

State Input Next State

1 0 3

1 1 2

2 0 4

2 1 3

3 0 3

3 1 3

4 0 3

4 1 2

 1 is start state and 4 is final state.

 What is the regular expression accepted ?

A. 1(01)*0 B. 1110*1

C. (101)*0 D. None

82. Hashing table has size of 1400 records. Assume that
not more than 1000 records are present at any time.
There are 4 keys in each record a1, a2, a3, a4- each can
take 36 values. what will be the best hashing function

A. a1 + a2 B. a1*a2*a3

C. a1*a2 D. All

Model Papers for GATE Examination (with Solutions and Explanations) 11.17

83. If A={a,b,c}, B={1,2}, then the number of relations A
to B is

A. 6 B. 9

C. 64 D. None

84. Find valid order

A. log n, n,n^2, nlogn

B. logn, n, nlogn, n^3

C. n^2, nlogn, 2^n, n^3

D. None

85. A pipeline has 4 stages with time delays 20 ns, 20 ns,
100 ns and 40 ns then in order to get maximum per-
formance which stage can be devided?

A. Stage with 20 ns B. Stage with 100ns

C. Stage with 40 ns D. None

86. A pipeline has 4 stages with time delays 60 ns, 50 ns,
90 ns and 80 ns. The interface latch has a delay of 10
ns then clock frequency of the pipeline is

A. 10MHz B. 13MHz

C. 20MHz D. None

87. Consider a computer with 8M bytes of RAM and
128K cache with cache block size of 4K, and direct
mapping is used. The no. of different memory block
can map on to a given physical cache block are

A. 2048 B. 256

C. 64 D. None

88. A demand paging system with page table in registers
takes 5 ms to service a page fault if an empty page
is available else it takes 15 ms. Memory access time
is 1 micro second. Assume we want an effective ac-
cess time of 2 micro seconds and that the page to be
replaced is dirty 60% of the time. What is the approxi-
mate maximum acceptable page fault rate to meet this
access time requirement?

A. 0.1% B. 1.0%

C. 2.5% D. 0.01%

89. Parity bit stuffed frame for the data frame 01100111100
is 110011000111100

90. Checksum value for 01100111100 if CRC-12 is used
is ____

91. Given R(A,B,C,D) and FDs AÆB, BCÆD then find
the wrong one

A. ACÆD B. BÆD

C. ADÆB D. None

92. The Boolean expression A+BC

A. (A’+b)(A’+C) B. (A+B)(A’+C)

C. (A+B)(A+C) D. None

93. A shift reduce parser carries out the actions specified
within braces immediately after reducing with the
corresponding rule of grammar

 S Æ xxW { print “1”}

 S Æ y { print “2”}

 W Æ Sz { print “3”}

What is the translation of xxxxyzz using the syn-
tax directed translation scheme with the above
rules

A. 23131 B. 11233

C. 11231 D. 33211

94. Rank of matrix

1 2 3

3 2 1

2 1 –2

A. 0 B. 2

C. 1 D. None

95. A pipeline has k stages with time delays Ti, i=1,..,k and
each stage has a latch with latch access time Tl then
the clock period of this linear pipeline is given as

A. max{T1,T2,….Tk} + Tl

B. min{T1,T2,….Tk} + Tl

C. max{T1,T2,….Tk}

D. None

96. Imagine that the length of a 10Base5 LAN cable
length is 2500m and it is working at 1Gbps. In worst
case how many padding bits are needed? (assume ad-
dresses are 6 bytes long)

A. 46 B. 614

C. 6474 D. None

97. What is the best method to sort if no of elements are
less than 1

A. Bubble B. Quick

C. Merge D. None

98. Æ Æ Æ
Æf

A. 1NF B. 2NF

C. 3NF D. BNF

E. None

99. Eigen vector matrix is

A. determinant 1

B. rows are perpenticular to each other

C. columns are perpenticlar to each other

D. norm of rows are columns are one

E. All

100. Given 128×8 RAM chips, no of RAM chips needed
for 2M RAM, no of address lines, chip select lines are:

A. 16, 11,4 B. 16,4,11

C. 11,4,16 D. None

11.18 Computer Science & Information Technology for GATE

A N S W E R K E Y

Test 2

1. E 2. E 3. B 4. C

5. C 6. E 7. B 8. B

9. C 10. E 11. E 12. D

13. C 14. B 15. E 16. C

17. E 18. C 19. C 20. D

21. D 22. A 23. C 24. A

25. D 26. D 27. D 28. C

29. E 30. E 31. E 32. E

33. A 34. B 35. A 36. E

37. D 38. B 39. B 40. C

41. B 42. A 43. C 44. B

45. C 46. C 47. B 48. D

49. B 50. A 51. C 52. E

53. A 54. B 55. C 56. D

57. B 58. B 59. D 60. A

61. E 62. D 63. C 64. A

65. C 66. B 67. B 68. B

69. B 70. B 71. E 72. C

73. A 74. B 75. B 76. C

77. B 78. A 79. E 80. C

81. A 82. C 83. C 84. B

85. B 86. A 87. C 88. A

89. 110011000111100 90. Refer text

91. B 92. C 93. A 94. D

95. A 96. D 97. A 98. C

99. E 100. A

Test 2

EXPLANATIONS FOR SELECTED

QUESTIONS

35. T(n)= 2T(n/2) + n

 =2{2T(n/4)+n/2) + n

 = 4T(n/4) +n+n

 =4{ 2T(n/8) + n/4} + n + n

 =8T(n/8)+
n + n +n

logn terms

 In the last first term will be n. Therefore nlogn+n

45. See explanations for question 66. No of cycles re-
quired is (k + n – 1) = (100 + 3 – 1) = 102

58. Step 1: obtain absolute S/N ratio from the snr (deci-
bels, db)

 snr = 10 log10 (S/N)

 30 = 10 log10 (S/N)

30

10
 = log10 (S/N)

 3 = log10 (S/N)

 log10(S/N) = 3

 S/N = 10^3 =1000

 Step 2:

 {Shannon’s Law: C= W log2[1 + (S/N)] }

 C = W log 2(1 + S/N)

 = 2400* log2(1 + 1000)

 = 2400 * log2 (1001)

 = 2400 * 9.98 (2^9= 512; 2^10 = 1024;

 log2(1001) in between 9 and 10 more towards 10)

 = 23,99 bit/sec

56. String aaa is not acceptable whereas remaining are ac-
ceptable

65. 4+0.5/7200RPM+0.5KB/4MB/sec = 4+4.15+0.125 =
8.3 ms

66. No of stages = k = 2

 No of data elements = n = 100

 Each stage requires = 10ns

 Time required = (k + n – 1)*10 = 1010

67. Time required to access memory if TLB hit occurs =
20 ns+100ns = 120ns

 Time required to access memory if TLB miss occurs =
20 ns+100ns+100ns = 220ns

 TLB hit = 98% = 0.98

 Effective memory access time = 0.98*120 + 0.02*220
= 122ns

68. Tf = L/R = 1000 bits

 ---------------- = 10^(–3) seconds

 1*10^6 bits/sec

 Tp = D/V = 10 kms * 10^3 m/km

 ---------------------- = 10^4

 2*10^8 m/sec ------ seconds

 2*10^8

 = 0.5 * 10^(–4)

 = 0.05 * 10^(–3) seconds

 Tcycle = Tf + Tp + Tcpu + Tack + Tp + Tack, cpu

 Tack, TCpu’s are not given assumed negligible

 = Tf + 2Tp

 = 1*10^(–3) + 2*(0.05*10^(–3))

 = 1*10^(–3) +0.1*10^(–3)

Model Papers for GATE Examination (with Solutions and Explanations) 11.19

 = 1.1*10^(–3) seconds

 U = Tf/Tcycle = 1/1.1 = 0.9

 [same result could have been obtained from U = 1/(1
+ 2a)

 a = Tp/Tf = 0.05*10^(–3)/1*10^(–3) = 0.05

 1+2a = 1 + 2*0.05 = 1 + 0.1 = 1.1

 U = 1/1.1 = 0.9

 **caution, the formula was derived assuming Tack,
Tcpu’s negligible in this given situation, fits in, but not
always true

70. See explanation for previous test

77. 18 ms

82. a1*a2 is best option as hash table size is 1400

85. Stage with 100 ns one has to be devided as it limits the
pipeline throughput.

86. Here for every 100ns (90+10) one result will be com-
ing. Therefore clock frequency 10MHz.

96. D (typing errors)

 According 802.3 specifications maximum length of
cable is 2500 and the minimum allowed frame should
takes 51.2 micro seconds. There fore minimum frame
size is 6400 bytes = 1Gbps*51.2micro seconds. In
frame addresses, and others occupies 26 bytes. Thus
padding bytes 6400–26 = 6374.

Test 3

Section A

1. All are attributes of static binding except

A. Implicit type binding used in Fortran

B. Read-only variables that are initialised with an
expression

C. Taking * as multiplication in C language

D. Declaring a variable in C language

2. NOOP

A. In RISC pipelines

B. Is used to align instructions on word boundaries

C. Is used to align subroutines on page boundaries

D. Is used to introduce delays in the program

E. Improves serial programs performance

3. How many instruction bits are required to specify two
operand registers and one result register in a machine
that has 16- general-purpose registers?

A. If the “result” register can be different from the
“source”, 12 bits are needed.

B. If the “result” register is always, say, the first des-
tination register, then 8 bits are required.

C. Information is insufficient

D. A & B

E. None

4. A Graphics application requires computations on
vectors, and matrices. The best architecture is

A. SISD -single instruction, single data path

B. SIMD - single instruction, multiple data paths

C. MISD - multiple instruction, single data path(s)

D. MIMD - multiple instruction, multiple data
paths(s)

5. An MCU can handle invalid op codes.

A. Most MCU’s use small table lookup to convert
the op-code into a pointer into the microprogram
memory.

B. Op code itself indicates validity

C. Ask the system administrator

D. None

6. ROMs are used in computers for __ except

A. Control memory for the CPU.

B. Code to execute for exceptions.

C. Routines to isolate faults in the computer hard-
ware.

D. Serial number of the computer.

E. To store return addresses of system routines

7. Find odd one out about write through caching

A. Increases memory bus traffic

B. Increased likelihood of memory contention

C. Increased likelihood of cache contention

D. Cache consistency is guranteed

8. In C language a function can be passed as argument
to a function. Really function name itself is pointer to
the function. Thus this style can called as

A. Call by value B. Call by name

C. Call address D. Call by procedure

E. Call by reference

9. The step which is taken when a context switching
takes place is

A. (H/W) Saves User SP and IP in reserved location

B. (H/W) Loads Kernel SP and IP

C. (S/W) Saves some working registers

D. Allocates space for page table

E. (S/W) Calls Scheduler

10. Long-term scheduler does not

A. Selects processes from job queue

B. Loads the selected processes into memory for ex-
ecution

C. Updates the ready queue

11.20 Computer Science & Information Technology for GATE

D. Controls the degree of multiprogramming (the
number of processes in the main memory)

E. Select the process from ready queue

11. Priority of a process in a ready queue is not influenced
by

A. Its memory(swapping) requirements

B. Attained service time

C. Real time spent in the system

D. Total time required for

E. Urgency, system load, external priorities

12. Where we can not save PSW value in

A. Registers B. Control stack

C. PCB D. TCB

E. Cache

13. Find odd one out of the following regarding DES

A. Weak keys is a major security issue

B. Semi weak keys comes in pairs

C. DES use 64 bit blocks

D. DES uses a key for encipher and another to deci-
pher

E. DES uses a key of 56 bits

14. Complexity of Jarvis march to find convex hull of giv-
en set of points n and h as the number of points in the
convex hull

A. O(n) B. O(n^2)

C. O(nh) D. None

15. Find odd one regarding inline functions

A. inline functions supports type checking.

B. inline functions if used excessively it may lead to
reduced cache hit.

C. inline functions can be used to replace any func-
tion to get performance gain.

D. inline functions are very suitable for short func-
tions such as accessors, mutators.

16. Name mangling

A. is also known as name decoration

B. can be also applicable to variables

C. is used by C++ compilers to generate unique
names for identifiers in the program

D. All

17. Destination address of an IP packet which is to be
broadcasted in remote LAN ___

A. All 1’s in hostid B. All 1’s in netid

C. All 0’s in hostid D. All 0’s in netid

E. All 32 bits to be 1’s

18. A host with an IP address of 144.2.2.1 needs to test

internal software. What is the destination address in
the packet?

A. 127.1.1.1 B. 144.0.0.0

C. 144.255.255.255 D. 127.0.0.0

E. Both A & B

19. malloc, new etc. memory allocators use

A. Per-process memory

B. May call OS only if per-process memory is over
or exhausted

C. Both A & B

D. None

20. Find odd man out

A. EXE B. COFF

C. ELF D. DLL

21. Which is not an advantage of large pages over small
Page Sizes?

A. Better TLB coverage (fewer misses),

B. Larger I/O transfers (improves throughput),

C. Smaller page tables,

D. VPN has fewer bits

E. Copy-on-write costs more

22. The characteristics of rendezvous message passing are

A. Boundaries between messages, guaranteed mes-
sage delivery

B. Either sender or receiver block until both are
ready to exchange the message.

C. Rendezvous message passing is often use to syn-
chronise two processes; the message forms a `to-
ken’, and when either process has the token, it is
permitted to access a shared resource.

D. None

23. Is it possible that two processes can read and write to
location 15,000 but not be accessing the same RAM
location? Where?

A. Single partition systems

B. Paged systems

C. Yes. In paged system every process may have
their own page map and base address. Thus loca-
tion 15000 may map to different RAM location.

D. None

24. Find the correct one

A. Every graph covering contains minimal covering

B. A covering of an n-vertex graph wil have at least
Èn/2˘ edges.

C. The minimal covering of an-vertex graph can
contain no more than n–1 edges

D. All

Model Papers for GATE Examination (with Solutions and Explanations) 11.21

25. Find the incorrect one regarding linkage editor

A. Produces load module or an excutable image
which is linked version of the program

B. If a program which is to be executed many times
without being reassembled, the linkage editor is
best preferred

C. External references and library searches are per-
formed only once

D. Linking loader is used with linkage editor while
external references are resolved.

26. Find the correct answer regarding T(n)=T(n–1)+an if
n>0 =b otherwise

A. Order is linear B. Order is O(n^2)

C. O(n^3) order

D. It is running time of selection sort

E. B & D

27. Running time of an algorithm is given as:
T(n)=T(n/3)+T(2n/3)+n then the order of the algo-
rithm.

A. Linear B. Quadratic

C. Cubic D. Exponential

E. O(nlogn)

28. Find the correct regular expression for language of
real numbers given +, –,., d, E as alphabet

A. (+|–|e)dd*(.d*|e)(E(+|–|e)d*|e)

B. (+|–)dd*(.d*)(E(+|–)d*)

C. (+|–|e)dd*(d*|e)(E(+|–|e)d*|e)

D. None

29. A connected undirected graph with n vertices has a
min-cut of cardinality k

A. then G has at least nk/2 edges

B. then G will have n/2 edges

C. then G will have nk edges

D. None

30. In the expression a[I]= 4+2 no of identifiers are

A. 8 B. 4

C. 2 D. None

31. Commonly Intermediate code is

A. Single address B. Two address

C. Three address D. None

32. Commonly employed data structure for representing
symbol table is

A. Tree B. B-tree

C. Hash table D. Linked list

33. Find odd one out

A. Producing a good compiler from dirty compiler
written in a assembly language is called as boot-
strapping

B. After bootstrapping we may have a compiler in
both source and executing code

C. Bootstrap loader causes the reading of other re-
cords

D. Bootstrap loader is a special type of absolute
loader

E. None

34. Find odd one out

A. lex B. flex

C. yacc D. bison

E. make

35. Find odd man out

A. pipe() B. popen()

C. msgget() D. fork()

36. What is the ratio of the number of characters needed
for integer ‘a’ in bases ‘b’ and ‘c’ ?

A. ceiling(log a (base b))/ceiling(log a (base c))

B. (log a (base b))/(log a (base c))

C. ceiling(log a (base b))/ceiling(log a (base c))

D. None

37. [[set A XOR set B]-set C] = ?

A. Only non_common elements.

B. Common element

C. Combined elements D. None

38. 84(base 16) +121(base 4) =?

A. 2213(base 8) B. 2131(base 4)

C. 2212(base 16) D. None

39. Give a regular expression containing exactly 2 con-
secutive 1s

A. (0 + 10)*11(01 + 0)* B. {01}*11{01}*

 C. {11}* D. None

40. 5 processes are in a queue. The times for completion
of each are 6, 3, 4, 3 and 2 respectively. Find the mini-
mum average turn around time

A. 18/5 B. 9

C. 62/5 D. 63/5

E. 18

41. When a fork() is executed the chiald process will in-
herit except

A. Command line arguments

B. Environment variables

C. gid D. uid

E. umask

42. Memory mapping of a file

A. To share a part of a file by multiple process

B. Lets a part of virtual address space to be associ-
ated with a section of a file

11.22 Computer Science & Information Technology for GATE

C. Writes by any of the process on mapped file’s
part/page can be seen by all processes

D. All

43. Interpolation search is a variant of

A. Bubble sort B. Binary search

C. Fibnocci search D. Linear search

44. Intel Pentium processor

A. 16K L1 cache

B. 8K Instruction cache (a part of L1 cache)

C. 8K data cache (a part of L1 cache)

D. All

45. Find odd one out

A. A good hash function reduces collisions

B. A good hash function uses entire key rather than
just a part

C. A good hash function should distribute records
uniformly

D. A good hash function is easily computable

E. None

46. Big:= A[1];

 For i:= 2 to N do

 if A[i] > Big then Big:= A[i];

 If Big can be anywhere with equal probability in
A[1:n] find the average number of executions of the
statement Big := A[i]

A. (n/2) B. (n–1)

C. (n/4) D. None

47. Begin

 b:= a+b+c+d+e

 z:= a+b+c+d+e;

 end

 What can be taken out of the compound statement?

A. a+d+e B. a+e

C. a D. None

48. How more than one value can be returned from a
function in C?

A. By sending a dummy array and storing the values
to be returned

B. By creating a dynamic array and storing the val-
ues to be returned and returning its starting ad-
dress

C. By passing addresses to scalar variables and stor-
ing in them the values to be returned

D. Through global variables

E. All

49. Find odd one out about Bit-fields of C language

A. Data members are specified in terms of bits

B. Bit-fields can be used as members of another
structure

C. An array of bit field type of objects can not be de-
clared

D. Really how much memory saved very much de-
pends on the computer architecture

E. None

50. A pipeline has 4 stages with time delays 60 ns, 50 ns,
90 ns and 80 ns. The interface latch has a delay of 10
ns then cycle time of this pipeline is

A. 90 ns B. 100 ns

C. 60 ns D. None

Section B

51. A program runs in 10 seconds on a computer (A),
which has a 100MHz clock. A computer designer is
trying to build a machine (B) that will run this pro-
gram in 6 seconds. It was determined that a substan-
tial increase in the clock rate is possible, but this in-
crease will affect the rest of the CPU design, causing
machine (B) to require 1.2 times as many clock cycles
as machine (A) for this program. What clock rate
should the designer target?

A. 150MHz B. 200 MHz

C. 220 MHz D. None

52. Consider a 32-bit microprocessor that has an on-chip
16-kbyte four-way set associative cache. Assume that
the cache has a line size of four 32-bit words. Draw a
block diagram of this cache, showing its organisation
and how the different address fields are used to deter-
mine a cache hit/miss. Where in the cache is the word
from memory location ABCDE8F8 mapped?

A. 140 B. 120

C. 143 D. None

53. A computer has a cache, main memory, and a disk for
virtual memory. If a referenced word is in the cache,
20ns are required to access it. If it is in main memory
but not in the cache, 60ns are needed to load it into
the cache, and then the reference is started again. If
the word is not in main memory, 12ms are required
to fetch the word from disk, followed by 60ns to copy
it to the cache, and then the reference is started again.
The cache hit ratio is 0.9 and the main memory hit
ratio is 0.6. What is the average time in nanoseconds
required to access a referenced word on this system?

A. 48000 B. 1200008

C. 480026 D. None

Model Papers for GATE Examination (with Solutions and Explanations) 11.23

54. Huffman coding is applied for the following data (72
symbols) then calculate no of bits the compressed
data occupies

Symbol A E P R U

Probability 12/72 18/72 7/72 15/72 20/72

A. 576 bits B. 300 bits

C. 163 bits D. None

55. The data bits are 11010110111110, generator polyno-
mial is 10111 then checksum is

A. 1001 B. 1110

C. 0000 D. None

56. From the following data find out when process 3 is
completed if shortest job next is employed.

Process Arrival Time Expected CPU Time

1 0 14

2 3 12

3 5 7

4 7 4

5 19 7

A. 7 B. 21

C. 25 D. None

57. Interrupt is used for a byte transfer request from the
above disk. If the interrupt overhead is 10 microsecs,
4 byte transfer time is 8 microsecs, how much time is
available during byte transfers for other work?

A. 13ms B. 14micro seconds

C. 33ms D. None

58. The set of base & limit registers for all of the process-
es is shown in the following diagram. Assume RAM
has 200ns access time. How much time it requires for
compaction?

A. 10minutes B. 11 minutes

C. 11.81 minutes D. None

59. Consider a demand-paging system with a paging disk
that has an average access and transfer time of 5 mil-
liseconds for a single page. Addresses are translated
through a page table in main memory, with an access
time of 100 nanoseconds per memory access. Thus,
each memory reference through the page table takes
two accesses. The system has a 48-entry TLB (with
access time 10 ns) to speed up memory accesses. As-
sume that 99% of memory accesses result in a TLB hit,
and of the remaining 1%, 5 percent (or 0.05% of the
total) cause page faults. What is the effective memory
access time?

A. 10 ns B. 11.8ns

C. 2500 ns(app) D. 40

60. The following are the preorder and inorder traversals
of a tree

 Preorder: GDBFEJMLP

 Inorder: BDEFGJLMP

A. Balanced tree

B. Unbalanced tree

C. J is unbalanced node

D. If H is inserted tree becomes balanced

E. B, C, D are true

61. Complexity of Interpolation search assuming data is
evenly distributed is

A. logn B. O(loglogn)

C. O(nlogn) D. None

62. Out of the following functions to calculate 2^5 which
is efficient? Assume argument x is 5.

 int F1(int x) { return (2<<x); }

 int F2(int x) { int I, s=1; for(I=1;I<=x;I++)s*=2; re-
turn s; }

 int F3(int x) { if(x==0) return 1; else return 2*F3(n–1)
; }

A. F1() B. F2()

C. F3() D. None

63. Find the square root of 2 after third iteration using the
following recursive procedure

 x1=1

 xn+1= 0.5*(xn+2/xn)

A. 1.5 B. 1.414

C. 1.4142 D. 1.4167

E. None

64. Let a double precision number be represented as
concatanating two single precision numbers. For ex-
ample (a, b) and (c, d) are such a two numbers, then
the product can be calculated through (a+b)(c+d) =
ac+ad+bc+bd (appropriate shifting is done). Mini-
mum how many times this double precision opera-
tion costlier compared to single precison

A. 2 B. 4

C. 3 D. None

65. What is the minimum frame size of 250m Ethernet
Lan with 51.2 micro second propagation delay which
is working at 1Gbps?

A. 64bytes B. 6300bytes

C. 640 bytes D. None

66. In unix system, fsck command is used to correct file
system inconsistency.

A. In the first phase it identifies missing data blocks

B. In the second phase it identifies link mistmatches

11.24 Computer Science & Information Technology for GATE

C. It has total 5 passes out of which first two are ma-
jor ones

D. All

67. What is the largest single file supported by a I-node
based file system which has block size of 1K and block
addresses 2 bytes?

A. 17GB B. 128GB

C. 64MB D. None

68. Find odd one out

A. NULL pointer of C is analogous to nil pointer in
Pascal and LISP

B. NULL pointer doesn’t point to any object or func-
tion

C. When malloc() fails it returns NULL indicating
not allocated

D. Null pointer constant is used for representing
null pointers in source code

E. None

69. Find the incorrect one

A. Prime area is an area in which the records are
written when an indexed sequential file is cre-
ated.

B. Prime area is a sequential file as it follows strict
key sequence

C. When an indexed file is created there will not be
any records placed in overflow area

D. Prime area is the super block of disk partition

70. In heap file organisation the average no. of blocks
that may have to be read for a data item if it has equal
probability of appearance anywhere in the file is (n is
total no. of blocks, N is total no. of records)

A. n/2 B. N/2

C. N/n D. None

71. If no of records are 10^6, record size (including link-
age pointer0 is 100 bytes, key is 10 bytes, block is 2000
bytes, pointer size 10 bytes then

A. 50000 first level index entries occuping 500
blocks

B. 500 second level indexes

C. Third level indexes are also needed

D. All

E. None

72. Consider the relation BOOK(CALL-NO, TITLE, AU-
THOR-NAME, PUBLISHER, YEAR, PRICE) and the
functional dependencies

 AUTHOR-NAME TITLE Æ CALL-NO

 CALL-NO Æ AUTHOR-NAME TITLE PUBLISHER

YEAR.

A. AUTHOR-NAME TITLE PUBLISHER can be
super key

B. CALL-NO is a key

C. AUTHOR-NAME TITLE is a key

D. All are valid

73. Find the wrong spanning trees for the following figure

A. Minimal spanning tree BE, CE, AE, DF, BD

B. Minimal spanning tree can be BD, AE, DF, CE,
AF

C. Minimal spanning tree can be AC, AE, AF, BF,
BD, BE

D. None

74. Packet broadcasting

A. Is employed by LAN’s

B. When all stations share common channel this is
used

C. No switching devices are available

D. Each station checks whether the packet whether
it is intended for it or not

E. All

75. Erlangs is unit for

A. for data rate

B. throughput

C. traffic intensity ratio

D. no of processes completed by a multicomputer

E. None

76. At a server the mean arrival rate of client request is
0.05 requests/sec and mean service time is 0.1 re-
quests/sec then mean service time is equal to

A. 1 sec B. 10 ms

C. 10sec D. None

77. Consider a terminal concentrator with 4800 bps input
lines and one 9600 bps output line. The mean packet
size is 1000 bits. Each of four lines delivers poisson
traffic on average of 2 packets/sec.

A. The mean delay experienced by a packet from the
moment the last bit arrives at the concentrator
until the moment that bit is retransmitted to the
output line is 625 msec

B. The mean no. of packets in the concentrator in-
cluding the one in service is 5

Model Papers for GATE Examination (with Solutions and Explanations) 11.25

C. Both A & B

D. None

78. Consider a slotted ALOHA system with four stations
with the following offered loads 0.1, 0.5, 0.2 and 0.2.
Then the station 1’s throughput is

A. 0.1 B. 0.5

C. 0.2 D. 1

E. 0.032

79. Consider the following production rules

 S Æ aS (1)

 S Æ aB (2)

 B Æ bC (3)

 C Æ aC (4)

 C Æ a (5)

A. The above production rules represents the lan-
guage anbam

B. aabaaa is valid according the above production
rules

C. Production rules 1,2,3,4,4,5 are used to produce
aabaaa

D. All

80. Consider the following production rules

 S Æ aSBC (1)

 S Æ aBC (2)

 CB Æ BC (3)

 aB Æ ab (4)

 bB Æ bb (5)

 bC Æ bc (6)

 cC Æ cc (7)

A. Represents anbncn

B. Represents anbmcn

C. Represents anbcn

D. Represents anbncm

81. Does the following function works? If not what is the
problem?

 spintf(buf,”%d”, n);

 return buf;

 }

A. Yes.

B. No. Returning automatic array is not acceptable

C. Compiler dependent behaviour

D. None

82. The Boolean expression (X+Y)(X+Y’)(X’+Z)

A. equal to XZ B. S(4,5,7)

C. P(0,1,2,3,6) D. All

83. Find the Boolean expression which has max terms
as S(0,4,5,7,8,9,13,15) and the variables are {w,x,y,z}
then the minimal expression is

A. x’y’z’ + w’xy’+wy’z+xz

B. w’y’z’ + wx’y’ + xz

C. x’y’z’ + w’xy’+wy’z+xz + y’z’w’

D. None

84. Which of the following is not correct?

A. External fragmentation can occur in a paged vir-
tual memory system.

B. External fragmentation can be prevented (almost
completely) by frequent use of compaction, but
the cost would be too high for most systems.

C. A page frame is a portion of main memory.

D. Once a virtual memory page is locked into main
memory, it cannot be written to the disk is a
wrong statement.

85. Find the correct one

A. Pages that are shared between two or more pro-
cesses can never be swapped out to the disk.

B. The allocated portions of memory using a buddy
system are all the same size.

C. Demand paging requires the programmer to take
specific action to force the operating system to
load a particular virtual memory page.

D. Prepaging is one possibility for the fetch policy in
a virtual memory system.

86. Find the correct one

A. The translation lookaside buffer is a software data
structure that supports the virtual memory ad-
dress translation operation.

B. In a symmetric multiprocessor, threads can al-
ways be run on any processor.

C. Hrashing will never be a problem if the system
has 1 GB of real memory.

D. The resident set of a process can be changed in
response to actions by other processes

87. This function is proposed for use in an operating sys-
tem, with the definitions of

 Process, Process_Set and other functions given else-
where.

-

cesses) {

processes); /* priority ranking */

time */

breaker */

11.26 Computer Science & Information Technology for GATE

 }

 Does this function could lead to proc. starvation
among the available processes.

A. Yes B. No

C. Yes. Because of ranking

D. None

88. Find the in correct one

A. Control and status registers are usually not visible
to user programs.

B. An interrupt will always lead to an operating sys-
tem action that corrects a problem and allows the
interrupted process to continue running.

C. An interrupt handler will usually disable further
interrupts temporarily.

D. Management of a process runtime stack usually
requires a stack pointer, a stack base, and a stack
limit.

89. Which of the following functions can be reentrant
type? When?

 int prob5(int A) { static int B = 0; B = B + A;
return B; }

 int prob5_r(int A, int *B) { *B += A; return *B;}

A. prob5() B. prob5_r()

C. Not applicable

D. prob5_r() if each thread has their own B (prop-
erly initialised)

90. Given the relation R(ABCDE) with F = {A Æ BCDE,
B Æ ACDE, C Æ ABDE}. Which of the following is
the loss less BCNF decomposition?

A. (ABCD,AE) B. (ABC,DE)

C. (AB,CDE) D. None

91. The set of functional dependices F={A Æ BC, B Æ C,
A Æ B, AB Æ C} then canonical cover for F is

A. A Æ B, A Æ C B. A Æ B, B Æ C

C. A Æ B, A Æ C D. None

92. Which of the following is not correct

A. Heap allocated records that are not reachable by
any chain of pointers from program variable are
garbage.

B. Garbage collection will be done runtime system

C. Mark-and-sweep is one way of garbage collection

D. Reference counts is another way of dealing gar-
bage collection

E. C language has in built garbage collector like Java

93. Equivalent one for copying collection

A. Memory compaction

B. Disk defragmentation

C. Buddy system D. Fragmentation

E. Both A & B

94. What should be the order of loops to exploit the ad-
vantage of cache?

 for I=0 to N-1

 for J=0 to M-1

 for K=0 to P-1

 A[I,J,K=(B[I,J-1,K] + B[I,J,K] + B[I,J+1,K])/3

A. I,K,J B. I,J,K

C. K,I,J D. None

95. Let F={A Æ B, AB Æ C, D-.AC, D-.E} and G={A Æ
BC, D-.AB}

A. F covers G and G covers F

B. F covers G and G not covers F

C. G covers F and F not covers G

D. None

96. ___ is used to catch dangling references

A. make and sweep B. reference counts

C. tombstones D. None

97. Find odd one out of the following when passing argu-
ments to functions.

A. When 1-D array is passed formal parameter can
be declared as int a[] or int *a

B. When 2-D array with contiguous layout is passed
formal parameter can be declared as int a[][n] or
int (*a) [n]

C. When 2-D array is passed with row-pointer lay-
out as formal parameter can be declared as int
*a[] or int **a

D. None

98. Dope vector

A. Vector with same elements

B. Vector with mirror elements

C. Compiler maintains details of array variables

D. Is used to check array bounds

E. Both C & D

99. Register windows are used in

A. RISC machines B. Normal processors

C. Used to exploit pipelining benefits

D. Both A & C

100. Which of the following is not correct ?

A. Premature free or dangling pointer problems are
same

B. Some programs continually allocate memory
without ever giving it up and eventually run out
of memory. This is known as memory leak.

Model Papers for GATE Examination (with Solutions and Explanations) 11.27

C. A poor allocator may be the reason for external
fragmentation in memory management.

D. None

A N S W E R K E Y

Test 3

1. B 2. E 3. D 4. B

5. A 6. E 7. D 8. D

9. D 10. E 11. D 12. E

13. D 14. C 15. C 16. D

17. A 18. E 19. C 20. D

21. E 22. D 23. C 24. D

25. D 26. E 27. E 28. A

29. A 30. B 31. C 32. C

33. E 34. E 35. D 36. A

37. A 38. B 39. A 40. B

41. D 42. D 43. B 44. D

45. E 46. A 47. B 48. E

49. E 50. B 51. B 52. C

53. C 54. C 55. C 56. C

57. B 58. C 59. C 60. E

61. B 62. A 63. C 64. B

65. D 66. D 67. B 68. E

69. D 70. A 71. D 72. D

73. C 74. E 75. C 76. C

77. C 78. E 79. D 80. A

81. B 82. D 83. B 84. A

85. A 86. D 87. C 88. B

89. D 90. D 91. B 92. E

93. E 94. A 95. B 96. C

97. D 98. E 99. D 100. D

Test 3

EXPLANATIONS FOR SELECTED

QUESTIONS

51. A program runs in 10 seconds on a computer (A),
which has a 100MHz clock. A computer designer is
trying to build a machine (B) that will run this pro-
gram in 6 seconds. It was determined that a substan-
tial increase in the clock rate is possible, but this in-
crease will affect the rest of the CPU design, causing
machine (B) to require 1.2 times as many clock cycles

as machine (A) for this program. What clock rate
should the designer target?

 CPU TimeA= CPU clock cycles/clock rate

 CPU clock cycles = Instrcutions for a programs X
Avergae clock cycles per instruction (CPI)

 CPU time for B can be used to find the same formula.

 CPU timeb = 6 seconds = (1.2* CPU clock cycles of
A) /clock rate A

 Clock rate B= 2000 × 10^6 cycles/seconds = 200MHz

 Therefor machine (B) must have the twice the clock
rate of A o run the program in 6 seconds.

51. For example, location ABCDE8F8 is mapped onto:

 Set 143, any line, byte 8.

Tag set Offset

A B C D E 8 F 8

(1000) (1111)

52.

Location Probability(hit) Access time

In cache 0.9 20ns

In main memory 0.1*0.6 60+20 = 80ns

Neither in memory 0.1*0.4 12ms+60ns+20ns

or cache =12000080

 So, the average access time would be:

 (0.9)(20) + (.06)(80) + (0.04)(12000080)

 = 480026 ns.

58. Total memory occupied = 192K

 = 192* 1024 word

 During compaction one read/write operations will be
done.

 Thus no. of RAM operations = 192*1024*2

 Total time for compaction = 192*1024*2*200*10–9 sec

59. If hit occurs time required is 10ns

 If miss it may be checked in page table, thus access
time = 10 + 100 + 100ns

 If page fault occurs time required = 5ms+10ms+100

 Effective access time = 0.99*10ns + 210*0.0095 +
0.0005*(5000110) = 2511.95ns

62. F1() As bitwise operators take less time

65. See Tenenbaum 640 bytes

67. N= datablock size/block addresses = 1KB/2byte = 512

 There fore largest single file size using second level in-
dirction is

 10+ (1+512) + (1+512+512^2) +(1 + 512 + 512^2 +
512^3) blocks

 = 512^3 blocks (approximately)= 512^3 * 1KB

 = 128 GB.

11.28 Computer Science & Information Technology for GATE

76. Mean delay is needed. Not service time.

 Mean delay= 1/(mean service time – mean arrivals)

 = 1/(0.1-0.05)= 20 sec

77. Mean service time T= 1/(mCi–li)

 Where 1/m is mean packet size, lI is average packets
per second, Ci is data rate.

 mCi = 9600/1000 = 9.6 l = 4 × 2 = 8

 T = 1/(9.6 – 8) = 625 msec

 Mean No of Packets N = r/(1–r), r is traffic intensity

 = l/m = 8/9.6

 N = 5

78. Thoughput of station 1 is = 0.1*(1–0.5)*(1–0.2)*(1–
0.2) = 0.032

94. Spatial locality is exploited if I,K,J is employed. When
loaded into cache a group of instructions are loaded
such that cache hitting increases.

Test 4

Section A

Each question carries 1 mark for correct answer and
–1/4 for incorrect answer.

1. The complexity of the best possible algorithm to de-
termine if there exists an integer i such that ai = i in an
array of integers a1 < a2 < a3 < …,<an.

A. O(1) B. O(n)

C. O(log n) D. O(n log n)

2. Number of multiplications needed to calculate x62 is

A. 62 B. 31

C. 5 D. 8

3. The time complexity of the following code fragment

 {

 }

A. O(1) B. O(n)

C. O(log n) D. O(n)

4. Find incorrect one regarding linkage editor.

A. Produces load module or an executable image

B. Loading can be done with one pass

C. Searches libraries and resolves external referenc-
es every time the program is executed

D. No external symbol table is needed during load-
ing

5. Find the in-correct one regarding relocation register.

A. It is directly available to user program

B. It is under the control of OS

C. It is saved during context switching

D. It is different from programmer-defined base reg-
isters of PowerPC

6. Running time of calculating n’th Fibnocci number
can be represented as

 T(n)= T(n–1) + T(n–2) +2

 It’s order of complexity is

A. Linear B. Quadratic

C. Cubic D. Exponential

7. A path matrix has all elements as 1’s except diagonal
elements whose values are 0’s. Then, find the false one

A. Connected & complete

B. Its path matrix will be having all 1’s

C. Its adjacency matrix square may have its diagonal
elements as V-1, where V is no. of vertexes.

D. All vertexes are articulation points

E. None

8. Given a machine with only a stack whose top can be
outputted and on which POP and PUSH are allowed,
which of the following strings can be sorted in as-
cending order?

A. 4312 B. 3421

C. 2134 D. 1243

E. 3142

9. A modulo-20 counter can be designed using

A. 20 flipflops B. 4 flipflops

C. 5 flipflops D. None

10. The Hamming distance between two n-bit binary
numbers is defined as the number of bit positions
they differ. If we have a function called onescount(x);
which returns the number of 1’s in the number x, then
a correct way to computer the Hamming distance be-
tween two numbers x and y is

A. Onescount(x) + onescount(y) -n

B. Onescount(x&y), where & is bitwise AND opera-
tor

C. Onescount(x|y), where & is bitwise OR operator

D. Onescount(x^y), where ^ is bitwise XOR opera-
tor

11. In 8-bit Booth’s multiplication algorithm, the largest
number of additions that will be ever required is

A. 8 B. 4

C. 3 D. 2

E. None

Model Papers for GATE Examination (with Solutions and Explanations) 11.29

12. The width of the program counter of a CPU, which
can address 200MB of main memory, is at least

A. 16 B. 25

C. 32 D. 28

E. None

13. Find the incorrect one out of the following.

A. Insertion sort performs on average n2/4 compari-
sions

B. Insertion sorting algorithms time complexity is
O(n2)

C. Insertion sorting algorithms expected ruuning
time is linear if the array elements are almost
sorted

D. For large data insertion sorting is very preferable

E. None

14. If the array A(b1:e1, b2:e2, ……, bn:en) is stored in
row major order, in the language, array name A itself
pointer to the array, then A(i1,i2,…in) can be located
at:

1 1 1 2 2 2 n n n

1 1 1 1 2 2 2 2

n n n n

S n
j j j P n

1 ‹ n

S n
j j j aj = Pk=j+1

n (ek– bk + 1),

1 ‹ j < n and an= 1

E. None

15. Let p: A byte has 7 bits

 q: A word has 2 bytes

 r: A bit is a 0 or 1

 If, p is false and q, r are true then find out the valid
statements

Ÿ ⁄

Ÿ ⁄r]Ÿ Ÿ Ÿ ⁄ r] Ÿ Ÿ

16. Find the odd one

A. (pŸq)⁄(~p⁄~q)

B. ~(pŸq)⁄(~p⁄~q)

C. [(p⁄r) Ÿ (q⁄r)] Ÿ [~p⁄ ~r]

D. [(pŸq)⁄r] Ÿ [~(pŸr)]

E. None

17. Find the unrelated one

A. Returning a reference to a local object

B. Dangling reference

C. A parameter passed by const reference be
returned by const reference

D. Min(const int & a, const int &y) {return x<y ? x:
y;}

E. Dangling memory

18. Locking the data before the beginning of transaction
execution in order to prevent deadlock may lead to

A. Program abortion B. Starvation

C. Delay D. poor performance

E. Deadlock

19. Find the incorrect one

A. If a function argument is a base type object then
while calling we can send its derived class type
object without any problem.

B. If a function argument is a reference to a base
type object then while calling we can send its de-
rived class type object without any problem.

C. If a function argument is a pointer to a base type
object then while calling we can send address of
its derived class type object address without any
problem.

D. If a function argument is pointer to a derived type
object then while calling we can send address of
its base class type object without any problem.

E. None

20. The primary key indexing technique does not allow

A. Duplicate data in a field

B. Multiple attributes

C. Sets of relations

D. Many-to-

21. The downlink and uplink channels of a satellite are
separated in

A. Time B. Space

C. Frequency

D. Not seperated in any domain

E. None

22. Sliding window protocols are very much (find the
incorrect one)

A. Used in satellite channels where propagation de-
lay is higher

B. Used in HDLC

C. USB

D. Used in channels for which signalling propaga-
tion is very high and data rate is also high such as
fiber

E. Used

23. A 30-channel PCM signal in digital telephony will
have data rate of __

A. 64 Kbps B. 240 Kbps

C. 1 Mbps D. 2.048 Mbps

E. None

11.30 Computer Science & Information Technology for GATE

24. In a I-node based file system which uses 1KB blocks,
2 byte block addresses, with third level indirection can
support theoretically a maximum file size of

A. 512MB B. 1GB

C. 128GB D. 17GB

E. None

25. Comment about the graph whose adjacency matrix is
given as

 0111

 1010

 0000

 0010

A. Strongly connected B. Connected

C. bi-connected D. bi-patrite

E. None

26. Find the incorrect one

A. A language is regular if there is a finite automaton
which accepts it

B. Union of two regular languages is regular

C. Concatenation of regular languages is a regular
language

D. L={a, ab, ba, b} defined over {a, b} is regular.

E. None

27. Suppose X, Y are sets. It is given that there are exactly
97 functions from X to Y. Then,

A. |X|=1, |Y|=97 B. |X|=97, |Y|=1

C. |X|=97, |Y|=97 D. None

28. Suppose 2 process share variables and the final result
depends upon the order of execution the processes.
Which of the following describe the situation best?

A. Mutual exclusion B. Busy waiting

C. Race condition D. Deadlock

29. Belody Anomaly is applicable for

A. FIFO B. LRU

C. NRU D. Clock

E. Next fit

30. Heap allocation is required for the languages

A. That support recursion

B. That support dynamic data structures

C. That use dynamic scope rules

D. None

Section B

Each question carries 2 marks for correct answer and
-1/2 for incorrect answer

31. Find the time complexity of the code fragment

 integer iSum,i,j,k

 For i=1 to n

 For j=1 to n

 iSum = iSum + 1

 Next j

 For k=1 to 2*n

 iSum = iSum + 1

 For m=1 to 4*n step 2

 iSum = iSum + 1

 Next m

 Next k

 Next I

A. O(n) B. O(n3)

C. O(n2) D. O(n2 log n)

32. In a system, the frame pointer %fp contains the stack
pointer. When a function is called the following
things happen. The %fp is set to the updated value.
The following information is stored at the fp.

 -4 return address

 -8 static link

 -12 any passed parameters followed by local variables.

 In pass by reference the address of the passed variable
is stored.

 There is a instruction on the system

 load %r2, offset(%r1).

 This loads into r2, the value at the address pointed
to by r1+offset. Consider the following fragment of
code:

 Procedure P

 a:integer

 x:= x+a (0)

 end

 begin

 end

 In this code how is the value of x read in line (0)?

A. load %t0, –12(%fp)

B. load %t0, –8(%fp)

C. load %t0, –12(%fp)

 load %t0, –8(%t0)

D. load %t0, –12(%fp)

 load %t0, 0(%t0)

E. load %t0, –8(%fp)

 load %t0, –8(%t0)

33. The time complexity of the following recurrence rela-
tions is:

Model Papers for GATE Examination (with Solutions and Explanations) 11.31

 T(n) = 2T(n–1) +1 n>1

 T(0) = 1

A. O(n) B. O(n2)

C. Q(2n) D. None

34. Adjacency matrix of a graph is given below. Comment
about the graph

 01000

 00110

 10000

 00001

 00100

A. Strongly connected B. Not connected

C. Has one sink D. Has two sources

E. None

35. The lower bound on the time complexity to found
maximum and minimum of an array is

A. 2n –3 B. 3n/2 –3

C. 3n/2 –2 D. None

36. Which of the following exhibit locality of reference

I. Sequential processing of arrays

II. Symbol table using hashing

III. Collection of garbage in a linked memory

A. None B. I only

C. I and II D. I, II and III

37. Suppose there is a following scheme where, from the
input string, remove the first 2 bits from left, xor them
and then place it to the left and input and right of out-
put. Continue this till you have only 1 bit in the input.

 For example,

 input output

 1110 $

 010 0

 10 01

 1 011

 If the output is 101, then what is the input

A. 0011 B. 01110

C. 0111 D. 1011

E. None

38. Two processes have serial execution if instructions are
executed in some order and instructions of a particu-
lar process are in order. Two processes share variable
r1 and r2 and have local Variable’s x,y in both the pro-
cesses whose initial values are 0. r1 = r2 = 0 process 1
process 2 --------- -------- X = 1 Y = 1 r1 = Y r2 =
X. Which of the following is not possible after execu-
tion of above process?

A. r1 = 0, r2 = 0 B. r1 = 1, r2 = 0

C. r1 = 1, r2 = 1 D. r1 = 0, r2 = 1

E. All of the above are possible

39. Consider the following piece of code where N is a
power of 2 and all the logarithms are to the base 2

 for (j = 1; j < N/(2^i); j++)

 A[j] = A[2*j - 1] + A[2*j];

 The above code has a running time

A. O(N) B. O(N*log(N))

C. O(N*N) D. O(log(N))

E. O(N/log(N))

40. Assume that there are N/2 processors, so that each
iteration of the inner loop is run in parallel on these
processors.i.e. the ith processor performs the ith itera-
tion of the inner loop. Now the running time is

A. O(N) B. O(N*log(N))

C. O(N*N) D. O(log(N))

E. O(N/log(N))

41. In a pipelined architecture it is found that 20% of the
instructions are branch instructions. Out of these
20% are unconditional branches. Out of the condi-
tional branches about half the branches are taken. If
each instruction takes one cycle. Each branch instruc-
tion causes 1 cycle delay if it is not taken and a 3 cycle
delay if it is taken. What is the avg. no. of cycles each
instruction takes.?

A. 1.68 B. 1.2

C. 1.4 D. 1.44

E. 1.32

42. What is the execution time of this sequence on a
7-stage pipeline with a 2-cycle instruction latency
for non-branch instructions, but a 5-cycle branch in-
struction latency? Assume the branch is not taken, so
the DIV is the next instruction executed after it.

 BNE r4, #0, r5

 DIV r2, r1, r7

 ADD r8, r9, r10

 SUB r5, r2, r9

 MUL r10, r5, r8

A. 13 cycles B. 35 cycles

C. 16 cycles D. 15 cycles

E. None

43. A uniprocessor system uses separate instruction and
data caches with hit ratios hi and hd, respectively. The
access time from the processor to either cache is c
clock cycles, and the block transfer time between the
caches and main memory is b clock cycles.

11.32 Computer Science & Information Technology for GATE

 Among all memory references made by the CPU, fi is
the percentage of references to instructions. Among
blocks replaced in the data cache, fdir is the percentage
of dirty blocks. (Dirty means that the cache copy is
different from the memory copy).

 Assuming a write-back policy, determine the effective
memory-access time in terms of hi, hd, c, b, fi and fdir

for this system.

A. fi(hi c + (1–hi)(b+c) + (1–fi)(hd)c + (1–hd)((b+c)

(1–fdir) +(2b+c)fdir))

B. fi(hi c + (1–hi)(b+c)) +(1–fi) ((hd)c + (1–hd)

((b+c)(1–fdir) +(2b+c)fdir))

C. fi(hi c + (1–hi)(b+c) + (1–fi)(hd)c + (1–hd)((b+c)

(1–fdir) +(2b+c)fdir))

D. None

44. Consider the concurrent execution of two programs
by two processors with a shared memory. Assume
that A,B,C, and D are initialized to 0 and that a print
statement prints both the arguments indivisibly at
the same cycle. The output forms a 4-tuple as either
ADBC or BCAD.

Process P0 Process P1

A. A = 1 D. C = 1

B. B = 1 E. D = 1

C. Print A, D F. Print B, C

 Then the number of all execution interleaving orders
of six statements which will be preserve individual
program order are

A. 10 B. 20

C. 40 D. 5

E. None

45. From the above question assume orders are preserved
and all memory accesses are atomic; i.e a store by one
processor is immediately seen by all the remaining
processors. Then the possible 4-tuple output combi-
nations is

A. 0111 B. 0000

C. 1111 D. None

46. For the same question 44, assume program orders are
preserved but memory accesses are nonatomic; i.e
a store by one processor may be buffered such that
some other processors may not immediately observe
the update. Then the not possible 4-tuple output com-
bination is

A. 0111 B. 0000

C. 1001 D. 1011

E. None

47. User 1 is using seven printers and will need at most
a total of 10 printers. User 2 is using one printer and
will need at most four printers. User 3 is using two
printers and will need at most 4 printers. Each user
is currently requesting one more printer. Which of
the following is true? With the system 12 printers are
available in total.

A. The OS will grant a printer to User 1

B. The OS will grant a printer to User 2

C. The OS will grant a printer to User 3

D. The OS will not grant any more till some are re-
linquished

E. Bankers algorithm will prevent such a situation to
arise.

48. User 1 is using x printers and will need a total of y
printers. User 2 is using m printers and will need a
total of n printers. This state is safe iff (y ‹12, n ‹ 12,
x ‹ y, m ‹ n).

A. x+n ‹ 12 and y+m ‹ 12 and x+m ‹ 12

B. x+n ‹ 12, and y+m <12 and x+m ‹ 12

C. x+n ‹ 12, or y+m ‹ 12 and x+m <\12

D. x+m ‹ 12

E. None

49. Given the symbols and frequencies of occurrences
shown below, how many bits are necessary for the
message “ABDEE” if Huffman coding is used to com-
press the data?

Symbol Frequency

A 30

B 40

C 70

D 90

E 110

F 10

A. 11 B. 13

C. 15 D. 12

E. 14

50. A computer communication system uses a unique
8-bit pattern 01111110 to mark the beginning and
end of frame. Suppose that this pattern appears in the
information part of the frame and is subjected to bit
studding; to what would the sequence be changed?

A. 001111110 B. 011111100

C. 011111010 D. 010111110

E. None

51. A a 2400 Hz carrier on the PSTN is reported to be
having an SNR value of 30db. The maximum possible
data rate is

Model Papers for GATE Examination (with Solutions and Explanations) 11.33

A. 4800 bps B. 19200 bps

C. 23.99kbps D. 64kbps

E. None

52. ARQ protocol uses the following: Frame size=1000
bits, Transmission speed = 1Mbps, Distance =10Km,
Velocity of propagation =2*10^8 m/sec, probability of
error = 02. Then utilisation is

A. 0.9 B. 0.8

C. 0.72 D. None

53. Repeat question 52 for selective repeat problem.

A. 0.9 B. 0.8

C. 0.72 D. 0.51

E. None

54. A 6-MHz channel is used by a digital signalling sys-
tem utilising four-level signals. What is the maximum
possible transmission rate?

A. 6 Mbps B. 12 Mbps

C. 24 Mbps D. 3 Mbps

E. None

55. An eleven-bit word is constructed according to Ham-
ming error correcting code scheme. Parity bits are:
1st, 2nd, 4th, 8th (denoted as p1,p2,p3,p4) and where
as data bits are: 3rd, 5th, 6th, 7th, 9th, 10th, and 11th (de-
noted as d1, d2, d3, d4, d5, d6, d7).

 P1 is calculated to be even parity over d1,d2,d4,d5,d7

 P2 is calculated to be even parity over d1, d3, d4, d6,
d7

 P3 is calculated to be even parity over d2, d3, d4

 P4 is calculated to be even parity over d5, d6, d7

 The code word 01010100110 is received. Where, if
any where, has a bit been reversed during transmis-
sion?

A. p1 B. p2

C. d1 D. d5

E. None

56. A node in a network forwards incoming packets by
placing them on its shortest output queue. What rout-
ing algorithm is in operation?

A. Hot potato B. Flooding

C. Static D. Delta

E. Hierarchical

57. S Æ AaaB, A Æ BB|b, B Æ AbA|a

 Which of the following cannot be generated by the
above CFG?

A. aaaaa B. baaa

C. baabbb D. baabbbbb

E. baab

58. A polynomial has the following values in the range 0
to 5.

 0, 3, 8, 15, 24, 35

 What is the lowest degree possible for a polynomial
that takes these values?

A. 3 B. 4

C. 5 D. 2

E. None

59. A 4th degree polynomial is having the following val-
ues: 0,0,1,0,0. Third element after the last zero will be

A. 10 B. 45

C. 126 D. 8

E. None

60. Which of the following is LR(1) grammar?

I. A Æ A+A, A Æ a

II. A Æ aAa|bAb|a|b

III. A Æ aAa|aAb|c

A. I only B. II only

C. III only D. II and III

E. I and III

61. Rank of the following matrix is

2 1 4

3 –1 3

8 –1 10

1 3 5

A. 4 B. 3

C. 2 D. Null

E. 1

62. A car registration system employs registration num-
bers to have either 1 or 2 or 3 letters, followed by a
number with same number of digits and does not
start with zero. The number of possible registrations
numbers are

A. 363 B. 36!

C. 236 D. 61080

E. 15879474

63. In IEEE 754 float representation, sign, exponent
bits and fractional part bits are used. The number
–0.0009002685546875 is stored as:

A. 1 0000 0000 1101 1000 0000 0000 0000 000

B. 1 0111 0100 1101 1000 0000 0000 0000 000

C. 0 0111 0100 1101 1000 0000 0000 0000 000

D. 1 0000 0000 1100 1010 1000 0000 0000 000

E. None

64. Which of the following are contradictory?

A. p ⁄ (~p Æ (p ⁄ ~q))

B. (pÆq) Æ ((pÆ(qÆr))Æ(pÆr)

11.34 Computer Science & Information Technology for GATE

C. (pÆ(q Æ (rÆs))) Æ(((pÆq)Ær)Æs)

D. ~(p⁄q⁄~r) ^ ((rÆp) ⁄ (rÆq))

E. None

65. The best way time complexity of Towers of Hanoi
problem can be represented using recursive manner
using divide conquer policy is

A. T(n)=2T(n–1) + 1 given T(1)=1

B. T(n)=2T(n–1) + 1 given T(0)=1

C. T(n)=2T(n/2) + 1 given T(1)=1

D. T(n)=2T(n/2) + n given T(1)=1

E. None

66. To sort (c, p, n, d, a, g) number of comparisons need-
ed are

A. 9 B. 10

C. 11 D. 100

E. None

67. For the following code fragment, 2 stage pipeline is
proposed; 1st stage for multiplication (10 ns) and sec-
ond 2nd stage for addition (10 ns) is required. Then
how much time it takes to complete.

 for I=1 to 100 do A[I]=B[I]*C[I]+D[I]

A. 2000 ns B. 1010 ns

C. 1020 ns D. 2010 ns

68. Repeat the above problem assuming latching in pipe-
line require 2 ns and fetching time is ignored.

A. 2000 ns B. 1012 ns

C. 1212 ns D. None

69. A pipeline has 4 stages with time delays 60 ns, 50 ns,
90 ns and 80 ns. The interface latch has a delay of 10
ns then this pipeline clock frequency is

A. 10MHz B. 13MHz

C. 20MHz D. None

70. A CPU has a clock period of 20ns. It is possible to re-
move some (2%) instructions to make clock period as
18ns. This 2% instructions can be realized with 3 left
over instructions in assembly. What will be the clock
period of the second CPU?

A. 21 B. 18.72

C. 15 D. 20

E. None

71. A CPU has a clock period of 25ns. Some instructions
can be removed from its instruction set to form a
second CPU with a clock period of 24ns. These in-
structions comprise 1% of typical code and must be
replaced by four instructions each.What percentage
of typical code would be removed instruction have to
comprise in order to for the two CPU’s to have same
performance?

A. 1 B. 1.388

C. 1.5 D. 1.1

E. None

72. Calculate execution time of the following set of in-
structions assuming a 5-stage instruction pipeline (all
operands are registers).

 ADD r3,r4,r5

 SUB r7,r3,r9

 MUL r8,r9,r10

 ASH r4,r8,r12

A. 10 B. 15

C. 12 D. 20

E. None

73. An instruction is stored at location 300 with its ad-
dress field at location 301. The address field has the
value 400. A processor register R1 contains the num-
ber 200. Evaluate effective address if the addressing
mode is register with R1 as index register.

A. 400 B. 702

C. 600 D. 602

E. None

74. If h1, h2, h3 are cache hit ratio’s in a 3 level cache
schema and TL1, TL2, TL3 are their access times then
the average memory access time is given as assuming
Tmain is the main memory access time and hit rates are
till that level.

A. h 1 * T L 1 + (h 2 - h 1) * (T L 1 + T L 2) + (h 3 – h 2 – h 1)
(TL1+TL2+TL3) + (1–h1–h2–h3)(Tmain+ TL1 +TL2

+TL3)

B. h 1*T L1+(1–h 2–h 1)*(T L1+T L2)+(1–h 3–h 2–
h1)*(TL1+TL2+TL3)+(1–h1–h2–h3)*(Tmain+ TL1 +
TL2 + TL3)

C. (1–h1)*TL1+(1–h2–h1)*(TL1+TL2)+(1–h3–h2–h1)*
(TL1+TL2+TL3) + (1–h1–h2–h3)*(Tmain+TL1+ TL2

+ TL3)

D. h 1 * T L 1 + (h 3 – h 1) * (T L 1 + T L 2) + (1 – h 3 – h 2 –
h1)*(TL1+TL2+TL3) + (1–h1–h2–h3)*(Tmain+ TL1+
TL2 +TL3)

E. None

75. If we want an average memory access time of 6.5ns,
our cache access time is 5ns, and our main memo-
ry access time is 80ns, what cache hit rate must we
achieve?

A. 97% B. 90%

C. 98.12% D. 99.12%

E. None

76. A certain memory has four levels with hit ratios 0.8,
0.95, 0.99 and 1.0, respectively. A program makes

Model Papers for GATE Examination (with Solutions and Explanations) 11.35

3000 references to this memory system. Calculate the
exact number of references that are satisfied at third
level cache.

A. 2400 B. 540

C. 29.7 D. 30

E. None

77. What is the order of the following complexity equa-
tions?

 T1=3n lg n + lg n

 T2(n,k)=k+n, where k<=n

 T3=2n +n3 + 25

A. T1<=T2<=T3 B. T2 <= T1 <= T3

C. T3<=T1<=T2 D. T2<=T3<=T1

E. None

78. Find the time complexity of the code fragment

 integer iSum,i,j,k

 For i=1 to n

 For j=1 to n

 iSum = iSum + 1

 Next j

 For k=1 to 2*n

 iSum = iSum + 1

 iSum = iSum + 1

 iSum = iSum +1

 Next k

 Next i

A. O(n) B. O(n3)

C. O(n2) D. O(n2 log n)

79. Consider a system with 500 MHz clock. The HDD
which transfers 4-word (of 4 bytes each) chunks at
4MB/sec. No transfer can be missed. Interrupt driven
I/O is used. The overhead for each transfer including
the interrupt is 500 clock cycles. The fraction of the
processor time consumed if the HDD is only transfer-
ring 5% of the time.

A. 5% B. 2.5%

C. 2% D. 1.25%

E. None

80. Suppose we have processor with 500MHz clock rate
and HD as above. Assume that the initial setup of a
DMA transfer takes 1000 clock cycles for the proces-
sor and assume the handling of the interrupt at DMA
completion takes 500 clock cycles for the processor.
The HD transfer rate is 4MB/sec and uses DMA. If the
average transfer from the disk is 8KB what fraction of
the 500MHz processor is consumed if the disk is ac-
tively transferring 100% of the time? Ignore any impact
from bus contention between the processor and DMA.

A. 1% B. 1.25%

C. 0.2% D. 0.5%

E. None

81. In a C program, n times fork() system call is made.
Then, total number of processes which does not have
child processes are

A. 2n B. n

C. 2n–1 D. 2n/2

E. None

82. How are user-level threads treated differently from
kernel-level threads?

A. Scheduling by process vs. by OS

B. Scheduled on one processor vs. any processor

C. Kernel-level requires mode switch to run the
scheduler

D. In kernel-level threads when one blocks, they all
block

E. All are true

82.

Process ID Arrival time Execution time

1 0 10

2 1 2

3 2 3

4 3 1

5 4 5

 Calculate when process 4 is completed if we employ
round robin algorithm with time slice value as 2.

A. 21 B. 4

C. 12 D. 9

E. 19

83. The RC 4000 system (and other systems) have defined
a tree of processes (called a process tree) such that all
the descendants of a process are given resources (ob-
jects) and access rights by their ancestors only. Thus, a
descendant can never have the ability to do anything
that its ancestors cannot do. The root of the tree is
the operating system, which has the ability to do any-
thing. Assume the set of access rights was represented
by an access matrix, A. A(x,y) defines the access rights
of process x to object y. If x is a descendant of z, what
is the relationship between A(x,y) and A(z,y) for an
arbitrary object y?

A. A(x,y) is superset of A(z,y)

B. A(x,y) is a subset of A(z,y).

C. A(x,y) is same as A(z,y)

D. None

84. What are the mistakes in the following C code frag-
ment?

11.36 Computer Science & Information Technology for GATE

 int *cubed(void){

 f[i] = i * i * i;

 i ++;}

 return f; }

A. returning pointer to an automatic variable

B. overflow

C. use of unitialised variable

D. trying to access memory other than allocated

E. All

85. Consider a buddy system in which a particular
block under the current allocation has an address of
011011110000. If the block size is 4, what is the binary
address of its buddy?

A. 011011110100 B. 011011110001

C. 100011011110 D. None

86. There are 4 processes in the system and 4 resources
types R1, R2, R3, R4 .There are 2 instances of R1 are
available and remaining all are only 1 instance . cur-
rently R1 is allocated to P1 , another R1 is allocated to
P2 , R3 to P3 , R4 to P4 ,R2 to P3.

 The following requests are made

 R1 ¨ P3

 R1 ¨ P4

 R3 ¨ P1

A. System is not deadlocked

B. System is deadlocked

C. System is not deadlocked because of multiple in-
stances of R1

D. None

87. The following grammar is

 S Æ x Y

 X Æ x Y

 Y Æ y X | y

A. type 0 B. type 1

C. regular D. type 2

E. None

88. The language recognised by the following grammar

 S Æ a S | a B

 B Æ b C

 C Æ a C | a

A. L = { am b an , m,n >=1 }

B. L = { an b an , n >=1 }

C. L = { am b a2n , m,n >=1 }

D. None

89. A Æ a B

 B Æ b B | a C | D

 C Æ a C | D

 D Æ b

 Which is acceptable by the above grammar ?

A. baaa B. aaaaab

C. aaa D. abbba

E. abababbb

90. S Æ a A

 A Æ a A B | a

 B Æ b

 Which is acceptable by the above grammar ?

A. aab B. abb

C. aaaabb D. ab

E. None

A N S W E R K E Y

Test 4

1. C 2. D 3. C 4. C

5. A 6. D 7. D 8. B

9. C 10. D 11. B 12. D

13. D 14. C 15. B,C 16. A

17. E 18. B 19. D 20. A

21. C 22. E 23. D 24. C

25. B 26. E 27. A 28. C

29. A 30. B 31. B

32. Incomplete question 33. C

34. A 35. C 36. C 37. C, D

38. A 39. A 40. D

41. Incomplete question 42. C

43. B 44. B 45. A,C 46. B

47. C 48. C 49. B 50. C

51. C 52. C 53. D 54. C

55. C 56. A 57. E 58. D

59. C 60. C 61. C 62. E

63. B 64. D 65. A 66. B

67. B 68. C 69. A 70. B

71. B 72. C 73. C 74. A

75. C 76. C 77. B 78. C

79. D 80. C 81. C 82. D

83. B 84. C 85. A 86. C

87. C 88. C 89. B 90. C

	Cover
	Contents
	1 Introductory Concepts of Digital Logic Design and Computer Architecture
	2 Programming, Data Structures and Algorithms
	3 Theory of Computation
	4 Operating Systems
	5 Entity Relationship Data Model
	6 Information System and Software Engineering
	7 Computer Networks
	8 Introduction to HTML, XML and Client Server Programming
	9 Engineering Mathematics
	10 Verbal Ability and Numerical Reasoning
	11 Model Papers for GATE Examination (with Solutions and Explanations)

