DATA ANALYTICS
USING R

About the Author

Seema Acharya is a Senior Lead Principal with the Education,
Training and Assessment department of Infosys Limited. She is a
technology evangelist, a learning strategist, and an author with over
15 years of information technology industry experience in learning/
education services. She has designed and delivered several large-
scale competency development programs across the globe involving
organizational competency need analysis, conceptualization, design,
development and deployment of competency development programs.

An educator by choice and vocation, her areas of interest and
expertise are centered on Business Intelligence and Big Data, and Analytics Technologies
such as Data Warehousing, Data Mining, Data Analytics, Text Mining and Data
Visualization.

She has authored some other books as well on the subject and has co-authored a
paper on Collaborative Engineering Competency Development for ASEE (American Society
for Engineering Education). She holds the patent on Method and system for automatically
generating questions for a programming language.

She is passionate about exploring new paradigms of learning and also dabbles into
creating e-learning content to facilitate learning anytime and anywhere.

DATA ANALYTICS
USING R

Seema Acharya

Senior Lead Principal
Infosys Limited

Mc
Graw
Hill

Education

McGraw Hill Education (India) Private Limited
CHENNAI

McGraw Hill Education Offices
Chennai New York StlLouis San Francisco Auckland Bogota Caracas
Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal
San Juan Santiago Singapore Sydney Tokyo Toronto

S 1 Graw Hill Education (India) Private Limited

Published by McGraw Hill Education (India) Private Limited
444/1, Sri Ekambara Naicker Industrial Estate, Alapakkam, Porur, Chennai - 600 116

Data Analytics using R

Copyright © 2018 by McGraw Hill Education (India) Private Limited.

No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise or stored in a database or retrieval system without the prior written permission of the publishers.
The program listings (if any) may be entered, stored and executed in a computer system, but they may not be reproduced for
publication.

This edition can be exported from India only by the publishers,
McGraw Hill Education (India) Private Limited

Print Edition:
ISBN-13: 978-93-5260-524-8
ISBN-10: 93-5260-524-1

E-Book Edition:
ISBN-13: 978-93-5260-525-5
ISBN-10: 93-5260-525-X

[1]23456789 DI103074 222120 19[18]
Printed and bound in India.

Director—Science & Engineering Portfolio: Vibha Mahajan
Senior Portfolio Manager: Hemant K Jha
Associate Portfolio Manager: Mohammad Salman Khurshid

Senior Manager—Content Development: Shalini Jha
Content Developer: Ranjana Chaube

Production Head: Satinder S Baveja
Assistant Manager—Production: Jagriti Kundu

General Manager—Production: Rajender P Ghansela
Manager—Production: Reji Kumar

Information contained in this work has been obtained by McGraw Hill Education (India), from sources believed to be reliable.
However, neither McGraw Hill Education (India) nor its authors guarantee the accuracy or completeness of any information
published herein, and neither McGraw Hill Education (India) nor its authors shall be responsible for any errors, omissions,
or damages arising out of use of this information. This work is published with the understanding that McGraw Hill Education
(India) and its authors are supplying information but are not attempting to render engineering or other professional services.
If such services are required, the assistance of an appropriate professional should be sought.

Typeset at The Composers, 260, C.A. Apt., Paschim Vihar, New Delhi 110 063 and printed and bound in India at

Cover Printer:

Visit us at: www.mheducation.co.in

Write to us at: info.india@mbheducation.com
CIN: U22200TN1970PTC111531

Toll Free Number: 1800 103 5875

This book is dedicated to

my father who is and will always remain my beacon of
righteous inspiration

Preface

OBJECTIVE OF THIS Book

We are in very exciting times! Statistical computing and high-scale data analysis tasks
need a new category of computer language other than the procedural and object-oriented
programming languages. The main objective of this category of language is to support
various types of statistical analysis and data analysis tasks rather than developing new
software. There are mounds of data available today which can be analyzed in different
ways and can provide a wide range of useful insights for different operations in different
industries. However, the problem was the lack of support, tools and techniques for data
analysis for different purposes. R, a statistical and analytical language, has come to our
rescue! To add to the benefits, it is an open source.

TARGET AUDIENCE

The audience for this book includes all levels of IT professionals, executives responsible
for determining IT strategies, system administrators, data analysts and decision makers
responsible for driving strategic initiatives, etc. It will help to chart your journey from a
novice to a professional data analyst.

The book will also make for an interesting read for business users, management
graduates, and business analysts.

ORGANIZATION OF THE Book

The book has 12 chapters. Each chapter is organized in the following way:

Chapter 1 will help you learn the installation of R and R packages. It will get you
comfortable working with any R package using functions such as find.package (),
install.packages (), library(), vignette() and packageDescription() .

Chapter 2 will allow you to analyze directory content with commands such as dir () and
list () and also easily analyze datasets using functions such as str (), summary(),
ncol (), nrow(), head(), tail() and edit().

viii Preface

Chapter 3 will familiarize with the processes for loading data from .csv, spreadsheets, web,
Jason documents, XML, etc. It will acquaint the reader with usage of R with databases
such as MySQL, PostgreSQL, SQLlite and JasperDB.

Chapter 4 is all about data frames. It will help you store data of varied data types into
frames, retrieve data from data frames, execute R functions such as dim(), nrow(),
ncol(), str(), summary(), names (), head(), tail() and edit () to understand
the data in data frames. It will help you run descriptive statistics on the data (frequency,
mean, median, mode, standard deviation, etc.).

Chapter 5 discusses regression analysis that is typically used to predict the value of an
outcome (target or response) variable based on predictor variables.

Chapter 6 will explain logistic regression, binomial logistic regression model, and
multinomial logistic regression model.

Chapter 7 is on Classification. It will help the learners induct a decision tree to perform
classification and predict the value of the outcome variable using the created decision
tree model.

Chapter 8 talks about exploring time series data. It will help you read time series data
using ts () and scan() functions, apply linear filtering on it, and also decompose time
series data. It will discuss visualizing time series data by plotting it appropriately.

Chapter 9 will help you with implementing clustering in R using hclust () function. It
will also discuss k-means clustering in R.

Chapter 10 will help you determine the association rules given the transactions and
itemsets and also evaluate the association rule using support, confidence and lift. It will
discuss implementing association rule mining in R (create binary incidence matrix of the
given itemsets, create item Matrix, determine item frequencies, use apriori () function
and eclat () function.

Chapter 11 will assist you in performing text mining in R.

Chapter 12 will discuss parallel computing in R using the “doParallel” and “foreach”
package.

ONLINE LEARNING CENTRE
The text is supported by additional content which can be accessed from the weblink
http:/ /www.mhhe.com/acharya/daurle. The weblink comprises:

Instructors’ Resources:

e PPTs
e Solutions Manual

Preface ix

Students Resources:

o Weblinks for useful reference material
e Question Bank
e Suggestions for further reading

How 10 GET THE Most out or THIS Book?

It is easy to leverage the book to gain the maximum by religiously abiding by the following;:

e Read up the chapters thoroughly. Perform hands-on by following the step-by-step
instructions stated in demonstrations. Do NOT skip any demonstration. If required,
repeat it a second time or till the time the concept is firmly etched.

e Explore the various options of all R functions and commands.

¢ Solve the review exercises given at the end of the chapters.

o Pick up public datasets and apply the data mining algorithms and analytical tech-
niques that you learned in the various chapters of the book.

WHERE NEXT?

We have endeavored to unleash the power of R as a statistical data analytics and
visualization tool and introduce you to several data mining algorithms and chart forms/
visualizations. We recommend you to read the book from cover to cover, but if you are
not that kind of person, we have made an attempt to keep the chapters self-contained so
that you can go straight to the topics that interest you most.

Whichever approach you may choose, we wish you well!

A Quick WORD FOR THE INSTRUCTORS’ FRATERNITY

Attention has been paid in arriving at the sequence of chapters and also to the flow of
topics within each chapter. This will assist our fellow instructors and academicians in
carving out a syllabus from the Table of Contents (TOC) of the book. The complete TOC
can qualify as the syllabi for a semester or if the college has an existing syllabus on Data
Analysis or Data Science or Analytics and Visualization, a few chapters can be added to
the syllabi to make it more robust. We leave it to your discretion on how you wish to use
the same for your students.

We have ensured that each tool/component discussed in the book is with adequate
hands-on content to enable you to teach better and provide ample hands-on practice to
your students.

Happy Learning!!!

Seema Acharya

Acknowledgements

The making of this book was a journey that I am glad I undertook. The journey spanned
a few months but the experience will last a lifetime. I had my family, friends, colleagues,
and well-wishers onboard this journey and I wish to express my deepest gratitude to each
one of them. Without their unflinching support and care, I could not have pulled it off.

I owe this book to the student and teacher’s community who, with their continual
bombardment of queries, impelled me to learn more, simplify my learnings and findings
and place it neatly in the book. This book is for them.

I wish to thank my friends—the practitioners from the field for their good counsel
and filling me in on the latest in the field of data analysis and sharing with me valuable
insights on the best practices and methodologies followed therein.

A special thanks to the team of technical reviewers for their vigilant review and filling
in with their expert opinion.

I have been fortunate to have the support of my team who sometimes, knowingly, and
at other times, unknowingly, contributed to the making of the book by lending me their
steady support.

I have been fortunate to have the awesome editorial assistance provided by McGraw
Hill Education (India). I am thankful to Mohammed Salman Khurshid for signing me up
for this wonderful creation. I wish to acknowledge and appreciate Ranjana Chaube and
other team members who adeptly guided me through the entire process of preparation
and publication and weathered delays in my submissions. Thanks a ton for your kind
patience.

A special thanks to my sister, Sunita, who tirelessly egged me on, especially on days
when my energy sagged. And finally, I can never sufficiently express my gratitude towards
other members of my family and friends who patiently stomached my unavailability at
events and my irrational schedules as I assembled the book. You make me what I am
today. “Thanks” sounds a small word for the unconditional support!

Seema Acharya

About the Author

Preface

Acknowledgements

Chapter 1

Chapter 2

Introduction to R
1.1 Introduction I

Contents

1.1 Whatis R? 1
1.1.2 WhyR? 2

1.1.3 Advantages of R Over Other Programming Languages

1.2 Downloading and Installing R 4
1.2.1 Downloading R 4
1.2.2 Installing R 6

1.2.3 Primary File Typesof R 10

1.3 IDEs and Text Editors 11
1.3.1 R Studio 12
1.3.2 Eclipse with StatET 13
1.4 Handling Packagesin R 13
1.4.1 Installing an R Package

1.4.2 Few Commands to Get Started 16

Summary 22
Key Terms 23

Multiple Choice Questions 23

Short Questions 24

Getting Started with R

2.1 Introduction 25

2.2 Working with Directory 25
2.2.1 getwd() Command 25
2.2.2 setwd() Command 26

2.2.3 dir()

Function 26

15

3

11
Vil

Xt

25

xiv Contents

2.3 Data Typesin R 28
2.3.1 Coercion 31
2.3.2 Introducing Variables and 1s () Function 31
2.4 Few Commands for Data Exploration 32
2.4.1 Load Internal Dataset 32
Key Terms 43
Summary 43
Practical Exercises 44

Chapter 3 Loading and Handling Data in R
3.1 Introduction 45
3.2 Challenges of Analytical Data Processing 46
3.2.1 Data Formats 46
3.2.2 Data Quality 46
3.2.3 Project Scope 46
3.2.4 Output Result via Stakeholder Expectation Management 47
3.3 Expression, Variables and Functions 47
3.3.1 Expressions 47
3.3.2 Logical Values 48
3.3.3 Dates 49
3.3.4 Variables 50
3.3.5 Functions 51
3.3.6 Manipulating Text in Data 53
3.4 Missing Values Treatmentin R 56
3.5 Using the ‘as” Operator to Change the Structure of Data 57
3.6 Vectors 59
3.6.1 Sequence Vector 60
3.6.2 rep function 60
3.6.3 Vector Access 61
3.6.4 Vector Names 62
3.6.5 Vector Math 63
3.6.6 Vector Recycling 64
3.7 Matrices 66
3.7.1 Matrix Access 67
3.8 Factors 72
3.8.1 Creating Factors 72
3.9 List 74
3.9.1 List Tags and Values 75
3.9.2 Add/Delete Element to or from a List 76
3.9.3 Size of a List 77

Contents xV

3.10 Few Common Analytical Tasks 78
3.10.1 Exploring a Dataset 79
3.10.2 Conditional Manipulation of a Dataset 81
3.10.3 Merging Data 81
3.11 Aggregating and Group Processing of a Variable 84
3.11.1 aggregate() Function 84
3.11.2 tapply() Function 85
3.12 Simple Analysis Using R 86
3.12.1 Input 86
3.12.2 Describe Data Structure 87
3.12.3 Describe Variable Structure 88
3.12.4 Output 90
3.13 Methods for Reading Data 93
3.13.1 CSV and Spreadsheets 93
3.13.2 Reading Data from Packages 96
3.13.3 Reading Data from Web/APIs 98
3.13.4 Reading a JSON (Java Script Object Notation) Document 99
3.13.5 Reading an XML File 102
3.14 Comparison of R GUlIs for Data Input 106
3.15 Using R with Databases and Business Intelligence Systems 108
3.15.1 RODBC 109
3.15.2 Using MySQL and R 110
3.15.3 Using PostgreSQL and R 111
3.15.4 Using SQLite and R 111
3.15.5 Using JasperDBand R 112
3.15.6 Using Pentaho and R 112
Case Study: Log Analysis 113
Summary 116
Key Terms 118
Multiple Choice Questions 119
Short Questions 121
Long Questions 122

Chapter 4 Exploring Data in R 124
4.1 Introduction 124
4.2 Data Frames 125
4.2.1 Data Frame Access 125
4.2.2 Ordering the Data Frames 128
4.3 R Functions for Understanding Data in Data Frames 128
4.3.1 dim() Function 128

xvi Contents

4.4

4.5

4.6
4.7
4.8
4.9

4.10

4.3.2 str() Function 129
4.3.3 summary () Function 129
4.3.4 names () Function 129
4.3.5 head() Function 130
4.3.6 tail () Function 130
4.3.7 edit () Function 131
Load Data Frames 132
4.4.1 Reading from a .csv (comma separated values file)
4.4.2 Subsetting Data Frame 133
4.4.3 Reading from a Tab Separated Value File 133
4.4.4 Reading from a Table 134
4.4.5 Merging Data Frames 134
Exploring Data 135
4.5.1 Exploratory Data Analysis 135
Data Summary 136
Finding the Missing Values 141
Invalid Values and Outliers 142
Descriptive Statistics 144
4.9.1 Data Range 144
4.9.2 Frequencies and Mode 145
4.9.3 Mean and Median 147
4.9.4 Standard Deviation 151
4.9.5 Mode 152
Spotting Problems in Data with Visualisation 154

132

4.10.1 Visually Checking Distributions for a Single Variable

4.10.2 Histograms 156
4.10.3 Density Plots 158
4.10.4 Bar Charts 160

Summary 165

Key Terms 166

Multiple Choice Questions 167
Short Questions 168

Long Questions 168

Chapter 5 Linear Regression using R

5.1

Introduction 169

5.2 Model Fitting 170

5.3

Linear Regression 170

5.3.1 1m() functionin R 170

154

169

Contents xvii

5.4 Assumptions of Linear Regression 183
5.5 Validating Linear Assumption 184
5.5.1 Using Scatter Plot 184
5.5.2 Using Residuals vs. Fitted Plot 184
5.5.3 Using Normal Q-Q Plot 185
5.5.4 Using Scale Location Plot 186
5.5.5 Using Residuals vs. Leverage Plot 187
Case Study: Recommendation Engines 192
Summary 194
Key Terms 194
Multiple Choice Questions 195
Short Questions 195
Practical Exercises 196

Chapter 6 Logistic Regression 197
6.1 Introduction 197
6.2 What is Regression? 198
6.2.1 Why Logistic Regression? 200
6.2.2 Why can’t we use Linear Regression? 200
6.2.3 Logistic Regression 201
6.3 Introduction to Generalised Linear Models 202
6.4 Logistic Regression 204
6.4.1 Use of Logistic Regression 204
6.4.2 Binomial Logistic Regression 205
6.4.3 Logistic Function 205
6.4.4 Logit Function 205
6.4.5 Likelihood Function 206
6.4.6 Maximum Likelihood Estimator 208
6.5 Binary Logistic Regression 212
6.5.1 Introduction to Binary Logistic Regression 212
6.5.2 Binary Logistic Regression with a Single Categorical
Predictor 213
6.5.3 Binary Logistic Regression for Three-way and k-way Tables 219
6.5.4 Binary Logistic Regression with Continuous Covariates 221
6.6 Diagnosing Logistic Regression 224
6.6.1 Residual 225
6.6.2 Goodness-of-Fit Tests 225
6.6.3 Receiver Operating Characteristic Curve 225
6.7 Multinomial Logistic Regression Models 227

xviii Contents

Case Study: Audience/ Customer Insights Analysis 236
Summary 239

Key Terms 240

Multiple Choice Questions 241

Short Questions 244

Long Questions 244

Chapter 7 Decision Tree

7.1
7.2
7.3

7.4

7.5

Introduction 246

What is a Decision Tree? 247

7.2.1 Terminologies Associated with Decision Tree 249
Decision Tree Representationin R 251

7.3.1 Representation using ‘party’ Package 252

7.3.2 Representation using “rpart” Package 262

Appropriate Problems for Decision Tree Learning 264

7.4.1 Instances are Represented by Attribute-Value Pairs 264
7.4.2 Target Function has Discrete Output Values 265

7.4.3 Disjunctive Descriptions may be Required 266

7.4.4 Training Data May Contain Errors or Missing Attribute
Values 266

Basic Decision Tree Learning Algorithm 268

7.5.1 1D3 Algorithm 268

7.5.2 Which Attribute is the Best Classifier? 270

7.6 Measuring Features 271

7.7
7.8

7.9

7.10

7.6.1 Entropy—Measures Homogeneity 271

7.6.2 Information Gain—Measures the Expected Reduction in
Entropy 273

Hypothesis Space Search in Decision Tree Learning 275

Inductive Bias in Decision Tree Learning 275

7.8.1 Preference Biases and Restriction Biases 275

Why Prefer Short Hypotheses 276

7.9.1 Reasons for Selecting Short Hypothesis 277

7.9.2 Problems with Argument 277

Issues in Decision Tree Learning 278

7.10.1 Overfitting 278

7.10.2 Incorporating Continuous-Values Attributes 281

7.10.3 Alternative Measures for Selecting Attributes 281

7.10.4 Handling Training Examples with Missing Attributes

Values 282
7.10.5 Handling Attributes with Different Costs 282

246

Contents xix

Case Study: Helping Retailers Predict In-store Customer Traffic 284
Summary 285

Key Terms 286

Multiple Choice Questions 287

Short Questions 289

Long Questions 289

Practical Exercise 290

Chapter 8 Time Series in R 291
8.1 Introduction 291
8.2 What is Time Series Data? 292
8.2.1 Basic R Commands for Data Visualisation 292
8.2.2 Basic R Commands for Data Manipulation 302
8.2.3 Linear Filtering of Time Series 310
8.3 Reading Time Series Data 313
8.3.1 scan() Function 313
8.3.2 ts () Function 313
8.4 Plotting Time series Data 315
8.5 Decomposing Time Series Data 317
8.5.1 Decomposing Non-Seasonal Data 317
8.5.2 Decomposing Seasonal Data 319
8.5.3 Seasonal Adjustment 322
8.5.4 Regression Analysis 322
8.6 Forecasts Using Exponential Smoothing 325
8.6.1 Simple Exponential Smoothing 325
8.6.2 Holt’s Exponential Smoothing 326
8.6.3 Holt-Winters Exponential Smoothing 327
8.7 ARIMA Models 329
8.7.1 Differencing a Time Series 329
8.7.2 Selecting a Candidate ARIMA Model 329
8.7.3 Forecasting Using an ARIMA Model 330
8.7.4 Analysis of Autocorrelations and Partial Autocorrelations 332
8.7.5 Diagnostic Checking 333
Case Study: Insurance Fraud Detection 342
Summary 343
Key Terms 345
Multiple Choice Questions 346
Short Questions 348
Long Questions 349

xx Contents

Chapter 9 Clustering 351
9.1 Introduction 351
9.2 What is Clustering? 352
9.3 Basic Concepts in Clustering 353
9.3.1 Points, Spaces, and Distances 353
9.3.2 Clustering Strategies 358
9.3.3 Curse of Dimensionality 359
9.3.4 Angles Between Vectors 359
9.4 Hierarchical Clustering 361
9.4.1 Hierarchical Clustering in Euclidean Space 361
9.4.2 Efficiency of Hierarchical Clustering 366
9.4.3 Alternative Rules for Controlling Hierarchical Clustering 366
9.4.4 Hierarchical Clustering in Non-Euclidean Space 367
9.5 k-means Algorithm 368
9.5.1 k-means Basics 368
9.5.2 Initialising Clusters for k-means 373
9.5.3 Picking the Right Value of k 374
9.5.4 Algorithm of Bradley, Fayyad, and Reina 374
9.5.5 Processing Data in the BFR Algorithm 375
9.6 CURE Algorithm 376
9.6.1 Initialisation in CURE 376
9.6.2 Completion of the CURE Algorithm 377
9.7 Clustering in Non-Euclidean Space 379
9.7.1 Representing Clusters in the GRGPF Algorithm 379
9.7.2 Initialising the Cluster Tree 380
9.7.3 Adding Points in the GRGPF Algorithm 380
9.7.4 Splitting and Merging Clusters 381
9.8 Clustering for Streams and Parallelism 382
9.8.1 Stream-computing Model 382
9.8.2 Stream-clustering Algorithm 383
9.8.3 Clustering in a Parallel Environment 386
Case Study: Personalised Product Recommendations 388
Summary 388
Key Terms 390
Multiple Choice Questions 391
Short Questions 392
Long Questions 393
Practical Exercises 393

Contents xxi

Chapter 10 Association Rules 401
10.1 Introduction 401
10.2 Frequent Itemset 402
10.2.1 Association Rule 403
10.2.2 Rule Evaluation Metrics 403
10.2.3 Brute-force Approach 405
10.2.4 Two-step Approach 4006
10.2.5 Apriori Algorithm 408
10.3 Data Structure Overview 413
10.3.1 Representing Collections of Itemsets 413
10.3.2 Transaction Data 418
10.3.3 Associations: Itemsets and Sets of Rules 421
10.4 Mining Algorithm Interfaces 422
10.4.1 apriori() Function 423
10.4.2 eclat () Function 435
10.5 Auxiliary Functions 437
10.5.1 Counting Support for Itemsets 437
10.5.2 Rule Induction 438
10.6 Sampling from Transaction 440
10.7 Generating Synthetic Transaction Data 441
10.7.1 Sub, Super, Maximal and Closed Itemsets 442
10.8 Additional Measures of Interestingness 445
10.9 Distance-based Clustering Transaction and Associations 4406
Case Study: Making User-generated Content Valuable 448
Summary 449
Key Terms 451
Multiple Choice Questions 452
Short Questions 453
Long Questions 454
Practical Exercise 454

Chapter 11 Text Mining 463
11.1 Introduction 463
11.2 Definition of Text Mining 464
11.2.1 Document Collection 465
11.2.2 Document 465
11.2.3 Document Features 465
11.2.4 Domain and Background Knowledge 465
11.3 A Few Challenges in Text Mining 466

Contents

11.4 Text Mining vs. Data Mining 4606
11.5 Text Miningin R 466
11.6 General Architecture of Text Mining Systems 478
11.6.1 Pre-processing Tasks 478
11.6.2 Core Mining Operations 479
11.6.3 Presentation Layer Components 479
11.6.4 Refinement Techniques 479
11.7 Pre-processing of Documentsin R 479
11.8 Core Text Mining Operations 482
11.8.1 Distribution (Proportions) 482
11.8.2 Frequent and Near Frequent Sets 482
11.8.3 Near Frequent Concept Set 483
11.8.4 Associations 484
11.9 Using Background Knowledge for Text Mining 485
11.10 Text Mining Query Languages 486
11.11 Mining Frequent Patterns, Associations, and Correlations: Basic
Concepts and Methods 487
11.11.1 Basic Concepts 487
11.11.2 Market Basket Analysis: A Motivating Example 487
11.11.3 Association Rule 488
11.12 Frequent Itemsets, Closed Itemsets and Association Rules 489
11.12.1 Frequent Itemset 489
11.12.2 Closed Itemset 489
11.12.3 Association Rule Mining 490
11.13 Frequent Itemsets: Mining Methods 490
11.13.1 Apriori Algorithm: Finding Frequent Itemsets 490
11.13.2 Generating Association Rules from Frequent Itemsets
11.13.3 Improving the Efficiency of Apriori 495
11.13.4 A Pattern-growth Approach for Mining Frequent
Itemsets 496
11.13.5 Mining Frequent Itemsets Using Vertical Data Format
11.13.6 Mining Closed and Max Patterns 498
11.14 Pattern Evaluation Methods 499
11.14.1 Strong Rules are not Necessarily Interesting 499

11.14.2 From Association Analysis to Correlation Analysis 500

11.14.3 A Comparison of Pattern Evaluation Measures 501
11.15 Sentiment Analysis 503

11.15.1 What Purpose does Sentiment Analysis Serve? 503

11.15.2 What Does it Use? 503

493

497

Contents xxiii

11.15.3 What is the Input to Sentiment Analysis? 503
11.15.4 How does Sentiment Analysis Work? 504
Case Study: Credit Card Spending by Customer Groups can be Identified by using
Business Needs 504
Summary 505
Key Terms 508
Multiple Choice Questions 509
Long Questions 511

Practical Exercises 511

Chapter 12 Parallel Computing with R al5
12.1 Imntroduction 515
12.2 Introduction of R Tool Libraries 516
12.2.1 Motivation of Empowering R with HPC 516
12.3 Opportunities in HPC to Empower R 518
12.3.1 Parallel Computation within a Single Node 518
12.3.2 Multi-node Parallelism Support 519
12.4 Support for Parallelism in R 523
12.4.1 Support for Parallel Execution within a Single Node in R 523
12.4.2 Support for Parallel Execution over Multiple Nodes with
Message Passing Interface 530
12.4.3 Packages Utilising Other Distributed Systems 535
12.5 Comparison of Parallel Packagesin R 543
Case Study: Sales Forecasting 545
Summary 547
Key Terms 549
Multiple Choice Questions 550
Short Questions 551
Long Questions 552
Practical Exercises 552

Chapter

Introduction to R

LEARNING OUTCOME

Al the end of this chapler, you will be able to:
» Install R

» Install any R package

» Work with any R package using functions such as find.package (), install.pack-
ages (), library (), vignette () and packageDescription ()

1.1 INTRODUCTION

Statistical computing and high-scale data analysis tasks needed a new category of
computer language besides the existing procedural and object-oriented programming
languages, which would support these tasks instead of developing new software. There is
plenty of data available today which can be analysed in different ways to provide a wide
range of useful insights for multiple operations in various industries. Problems such as
the lack of support, tools and techniques for varied data analysis have been solved with
the introduction of one such language called R.

1.1.1 What is R?

R is a scripting or programming language which provides an environment for statistical
computing, data science and graphics. It was inspired by, and is mostly compatible with,
the statistical language S developed at Bell laboratory (formerly AT & T, now Lucent
technologies). Although there are some very important differences between R and S, much

2 Data Analytics using R

of the code written for S runs unaltered on R. R has become so popular that it is used as
the single most important tool for computational statistics, visualisation and data science.

1.1.2 Why R?

R has opened tremendous scope for statistical computing and data analysis. It provides
techniques for various statistical analyses like classical tests and classification, time-
series analysis, clustering, linear and non-linear modelling and graphical operations. The
techniques supported by R are highly extensible.

S is the pioneer of statistical computing; however, it is a proprietary solution and is not
readily available to developers. In contrast, R is available freely under the GNU license.
Hence, it helps the developer community in research and development.

Another reason behind the popularity and widespread use of R is its superior support
for graphics. It can provide well-developed and high-quality plots from data analysis.
The plots can contain mathematical formulae and symbols, if necessary, and users have
full control over the selection and use of symbols in the graphics. Hence, other than
robustness, user-experience and user-friendliness are two key aspects of R.

Why Learn R?

The following points describe why R language should be used (Figure 1.1):

e If you need to run statistical calculations in your application, learn and deploy R. It
easily integrates with programming languages such as Java, C++, Python and Ruby.

e If you wish to perform a quick analysis for making sense of data.

¢ If you are working on an optimisation problem.

e If you need to use re-usable libraries to solve a complex problem, leverage the 2000+
free libraries provided by R.

e If you wish to create compelling charts.

e If you aspire to be a Data Scientist.

e If you want to have fun with statistics.

(Advanced Statistics j
Supportive Open
Source Community

Integration with other Why Free,
programming languages learn R? Open Source
(Easy Extensibility
&

Ficure 1.1 Advantages of learning R language

Fun with Statistics j

Great Visualization]

Cross Platform
Compatibility

Introduction to R 3

R is free. It is available under the terms of the Free Software Foundation’s GNU

General Public License in source code form.

e It is available for Windows, Mac and a wide variety of Unix platforms (including
FreeBSD, Linux, etc.).

¢ In addition to enabling statistical operations, it is a general programming language
so that you can automate your analyses and create new functions.

¢ R has excellent tools for creating graphics such as bar charts, scatter plots, multi-
panel lattice charts, etc.

e It has an object oriented and functional programming structure along with support
from a robust and vibrant community.

¢ Rhas a flexible analysis tool kit, which makes it easy to access data in various for-
mats, manipulate it (transform, merge, aggregate, etc.), and subject it to traditional
and modern statistical models (such as regression, ANOVA, tree models, etc.)

e R can be extended easily via packages. It relates easily to other programming lan-
guages. Existing software as well as emerging software can be integrated with R
packages to make them more productive.

¢ R can easily import data from MS Excel, MS Access, MySQL, SQLite, Oracle etc. It

can easily connect to databases using ODBC (Open Database Connectivity Protocol)

and ROracle package.

1.1.3 Advantages of R Over Other Programming Languages

Advanced programming languages like Python also support statistical computing and
data visualisation along with traditional computer programming. However, R wins the
race over Python and similar languages because of the following two advantages:

1. Python needs third party extensions and support for data visualisation and
statistical computing. However, R does not require any such support extensively. For
example, the Im function is present for linear regression analysis and data analysis
in both Python and R. In R, data can be easily passed through the function and
the function will return an object with detailed information about the regression.
The function can also return information about the standard errors, coefficients,
residual values and so on. When Im function is called in the Python environment,
it will duplicate the functionalities using third party libraries such as SciPy, NumPy
and so on. Hence, R can do the same thing with a single line of code instead of
taking support from third party libraries.

TP » SciPy is used for performing data analysis tasks and NumPy is used for representing the

data or objects.

2. Rhas the fundamental data type, i.e., a vector that can be organised and aggregated
in different ways even though the core is the same. Vector data type imposes some
limitations on the language as this is a rigid type. However, it gives a strong logical
base to R. Based on the vector data type, R uses the concept of data frames that are

4

Data Analytics using R

like a matrix with attributes and internal data structure similar to spreadsheets or
relational database. Hence, R follows a column-wise data structure based on the
aggregation of vectors.

Y A)
&‘ Just Remember

There are also some disadvantages of R. For example, R cannot scale efficiently for larger data sets.
i Hence, the use of R is limited to prototyping and sandboxing. It is rarely used for enterprise-level solutions. i
: By default, R uses a single-thread execution approach while working on data stored in the RAM which
leads to scalability issues as well. Developers from open source communities are working hard on these
issues to make R capable of multi-threading execution and parallelisation. This will help R to utilise more i
i than one core processor. There are big data extensions from companies like Revolution R and the issues !
i are expected to be resolved soon. Other languages like SPlus can help to store objects permanently on i
disks, hence, supporting better memory management and analysis of high volume of massive datasets.

Ans:

Ans:

Ans:

Ans:

Check Your Understanding

What is R?
R is an open source programming language for data science and statistical computing.

What is the predecessor of R?
The statistical computing language, S is the predecessor of R.

What is the fundamental data type of R?
The fundamental data type of R is a vector.

What is the disadvantage of using R in enterprise-level large-scale solutions?
R language cannot scale up for large data sets. Hence, it is difficult to use R for large-
scale data analysis tasks for enterprise-level solutions.

1.2 DowNLOADING AND INSTALLING R

The integrated development suite for R language can be downloaded from the
Comprehensive R Archive Network (CRAN)'. The network includes mirror websites for
downloading the suite from different countries.

1.2.1

Downloading R

To download R, users need to visit the CRAN mirror page and click on the URL of the
chosen mirror that will redirect them to the respective site (Figure 1.2).

L URL of CRAN—https://cran.r-project.org/mirrors.html

Introduction to R

Y buippojumop Joj apsqgam NvYD 2T 3unoi4

“UOTJRULIOJUT JOMINY J0J 35edatioy 10a101d § 9} J[NSU0d asea[d "2}e ‘SulIa)snyo ‘UOTROIISSEd ‘SISA[RUR SOLIos SU) ‘S)sa) [eoNsne)s ‘SuT[japou Jeaurjuon

pue Teaur] :sonbruyoa) [eorgderd pue [eonsnels Jo Lotrea apim e sopraod gorgm sorgders pue Sunnduioo [eonsne)s I0J JUSTWIUONAUS pue agendue| s[qeieae A[aa1) € ¢S (IND, ST Y

éNVYD pue ¥ aJe jeym

‘[TewId Ue puss nok 210yaq STOTSAND Payse A[juonbal
O] STaMSTE O pea osead ‘are SULIe) 9SUAOT] T} JEYM JO ‘OTeMIJOS 3} [[eISUT PUR PEOJUMOP 0} MOT OI[3 JN0qe Suonsanb aALy NoKJT «

¥ Inoqy SsuoTisan)d

$ageRoed UoISu)Xa pAInguiuo) e
3197 O[QB[TEAR ST 3 JO SUOISIAA J2P[O JO 9p0OD 90INOS »

‘spodax 8nq 1o s)senbar amyesy Surpuodsarioo Sury
210Joq S3XT] BN pUE SaINJEaJ Mal JNOQE PeaI Isea]q ‘3137 S[Qe[TeAE oI SUOIsIaA Jusmidojaasp pue payojed Juaino Jo sjogsdeus Areq «

*(aseara1 pauued e 210J2q spotrad swm Ul A[uo pajeald ‘sjoysdeus A[iep) S35eI[aT BJoq pue Byd[e JO SI0IN0S «

“TIOISIOA 1SJe]) UT AU S,1eqM pedl ‘Z8Tey [¢ ¢ (e[IoX UT Sng ‘17-90-9T07 AepSon]) asea[ar 1aje[oYL,

{11 Op 01 JueM 10U Op A]qeqo1d NOA ‘SURSW ST} JeTM MOUY 10U Op NOA JT “TIAY) SN UD NOA 910Jaq Pa[Idwion aq 0 aAeY|
$92IN0S 9], "2p00o 901n0s a1} Jou ‘xoq Jaddn a1 Ut paysi| sarreurq paqidurosaid a1y peo[umop 0) Juem AJSNI] }SOUT SISSN OBJA] PUB SMOPUTA|

SwJoj1eTd TTE 4O 8po) 82Jnos

*9A0qE U] 97} 0] TONIPPe UT Wa)sAs JuawaFeurun agexoed XnurT MoK [J0ayd P[noys noA ‘suonnqiusip xnur Auew Jo wred si |
SMOpUIA 10J § Peojumoq e
X SO (38IA)) 10] | peojumoq
ST 0] ¥ PEOTIAOQ *

¥ JO SUOTSIOA|
251} JO 2UO JueM A[ONT] ISOUT SIASN IEIA] PUE SMOPUIAY ‘soSexoed Pajnqrnuod pue Wa)sAs aseq ag) Jo suonnqusip Areurq pajiduosaid|

¥ TTelsuI pue peorumoq|

JJOMISN SATYOJY ¥ SATSuayaJddwo) ayl

o]
SOV
ST
uonpUUNI0(q

RO
SFEpRd
Smma
§%/MOS I
20MYos

TEETO 30T
3TEAWON T
¥ mogy

oress
SEATA FEL
TR SRR
SToTTN
NVED

sypeuniooq oo B |

sejoyps 3j6ooo B sjfoon & iadedajereyqaeN MK aua DIDI ¢ 8 Auea :sLoe/ee/eL

10131100 3L auluo /> uibo) - coyex] uozewy @ syeunjoog A sddy

: @&

Biopafoid-ruen//sdny @

00 ¢ >

6 Data Analytics using R

R is offered as a precompiled binary distribution of a base system and contributing
packages. Different distributions of R are available for different operating systems (OS)
like Windows, Mac and Linux.

TP In some Linux 0S, R distributions are included by defaull. Hence, it is a good idea lo check the
package management system of a Linux 0S platform before installing R on it.

Downloading R for Windows

Windows users need to first download and install binaries for the base distribution. The
current version of the base binary distribution is R 3.3.1. Users can check and download
previous contributions and versions of R, Rtools from the mirror website. Rtools is used
for building R and its packages (Figure 1.3).

Downloading R for Mac

R works on Mac OS version 10.6 or more. The downloadable directory contains the base
distribution and packages for downloading and installing R on Mac (Figure 1.4).

Downloading R for Linux

Different distributions of R are available for different distributions of Linux like Ubuntu,
Debian, RedHat and SUSE (Figure 1.5). On the Command Line Interface (CLI), the
following command will download the binary on a Linux machine—$ wgethttp://cran.
rstudio.com/src/base/R-3/R-3.1.1.tar.gz

1.2.2 Installing R

After downloading R distribution binaries for the correct OS platform, R is installed.

Installing R on Windows

Installing R on Windows is simple. Users need to double click on the downloaded binary,
named R-3.3.1-win.exe, on a graphical interface. Command line installation options are
available for Windows (Figure 1.6).

TIP Two versions are available for 32-bit and 64-bit Windows 0S. By defaull, both the versions are
installed. Hence, users need to select the desired version manually during installation.

Introduction to R

smopuip Jof y buippojumoqg

€°T Funol4

*S9]qRINOAXS PAPLOJUAMOP T)IAL SUOTNEOAId [eULIOU 3 3s() ‘sdajuesens oAIS J0UUES Jnq ‘SISIITA IO SILILUIQ 3531} UO SYO3YD SWOS S0P NV YD 910N

OV SMOPUIAL 107 | Pue OV | oY) Ped 0 Juem os[e Aewr nox

‘satreurq

SMOPUTA 0} Paje[aX suonsagsns / suonsanb Jo ased UT A0 Sa5317T am([) JO YOOPINJA Uedun(10B)u0d 0} Juesm JySru s1adojaaap afexoed "NVYO 0} SSLIRUIQ JWqns JoU op as5ed]d

FIOSY ¥ PIINg 03 Jo

‘SMOpUTA TO sa8exoed UMO INOA ping 0} Juem noA Jeym sI STy, “(oopInjy ueoun(y £q paSeuewr) saSexoed 3 pue Y p[ing 0} S[O0L

*(sa881T amp Aq padeuew (X [1°Z > J 10J) Y JO SUOISIA pajepino 10y safexoed NWID PaInquiuod Jo sarreurg
*S3[qRLIEA U PUe JUSWONAUS SUIPUOdSalIod pue SIOTATIS SMOPUIM NIV 10F J[qe[iea. TeMJOS
A37ed pITY) UO UONRWIIOJUT OS[e ST 1A *(s3881T am) Aq paSeuewr x'1°7 =< Y 10J) saexoed NVID PAIngmuod Jo sarreurg

“3WIN) 510 1) 10 U 1¥)50] 0} JUeA NOA et ST ST L “(YoopInjA weoun(y Aq p

SMOPUTM J0J} Y

) ToNGUISIP 95eq 10F SITEUTET

S[oory
qIAuod pjo

qmuod
35eq

:53110}02IPqNS

JSMopuIM/uq/

paloid-ruen//sany|

pamqmuoy
5Ova
BEEN
uoyvudund0q

R_y0
sageIed
STETE
3008 A
24pyfos

eunof 3y YL
35edowon
¥ moqy

P55
Ere
RS STOU,
STOTTN
NVYD

speunooq 2o B |

Jejoyds 3160oo i sjfooo © sadegaereygaen Rk pang DI 3 Nuea i sioz/ee/L W

1012340 W3y 3uluo /> uibo) - ooye] uozewy @ syeunjoog M sddy it

: @&

610 pafoid-ruen//sduy G_ O 0 ¢« >

dDp U0 Y buippojumog §°T Funol4

OJ901Ip 5]007 oU} 29 a5ed[d (3p0d> NV IO UTejuod
e s901n0s WoIy sadexoed orduwros 0} Juem noA J1 papastr) papnjour LON ST UENIOL IND ‘7'

dogurxa], pue sewre1ql 11X 0°9°8 YL/IOL (dde) 1N 11q-9 SPomewresy 3 oYy surejuod o5exoed siy, zs%pﬁn%ww
“SOBIAl 193U 10F 1qQ-79 U 99°T 1ND ddey Jiomewey [Z'¢ Y SURIU0D SOPIFT6QI00RIISLA6PHTE10PGISS “USE-SN
“aBexoed paudis ‘(uorT UrEIUNOI) 801 - (PredooT Mous) 9°01 X SO BN 10 Areurq £oeSe] 1°Z€ ¥ A pIedos[mous-1C €9

‘UOTSIOA Jofetr Mau & 0) X SO Inok Surperddn uogm zyrendx [[eIsur-a1 SKeM[V X SO
30 yred 105UO] OU ST J1 9JUS PA[[LISUI 8q 0} ZIWeNOX sonnbar (3123 Surpnjour) 11X Jo 9sn oY :9)ON

pamqiyuo)y
*se01mos woij uonejusnoop aesoed pring Jo afexoed Y %3103 oYy asn 0] Juem oK JT pepeeu SOvd
AU SI 31 €, [[eISUI WoIsno,, SUISO0YD USYA PSNTLIWIO 8q UD pue [euondo aie sjuauoduwod oM J1Ie] (&1L "e0) S[enuejy
oYL 7' OJUIXaL PUE SSURIQY 11X 0'9°8 YL/IRL ‘SOBIAl [930] 10§ 31q-p9 I 89T INO dde~y “jomewres Bk uoypjuRUNI0(q
! HeIqr ! ! £960098€5989EPLPFSET6LIHAIGE USEU-SAN
1°€°€ Y surejuo) o8exjded pausdts “1eySIy pue (SYILLABI) 6'0T X SO dBIN 10§ ATeurq 1°¢¢ AT EEd e
1saTT4 Sasesoeq
sameurd A
8xyd T g €-y aunjeudts-ydayo-- TrIndyd S9omos g
Sursn a1njeudrs oY) S)epIfEA OS[E UBd NOK J9)8] pue £'0T X SO 98I UQ "ofewr 8yd 1°¢ ¢~y 93 JoJ wnsyoayd SAIA o) jurxd o3 uonesridde jpuueiay v ut 24vayfos
Byd T g €~y spu
adky TewImor 9 ouL
ordurexs 104 "sse201d Sunroxrrm oy Surmp peydniiod 1o I paredure) usaq J0U SeY I1 Jer]) 2INSUS 0} SFLTT PAPLOTUMOP 3T} JO WNSYIAYD SN) oo Sed]d 33edowod ¥
¥ moqy
TZ/90/9T07 U0 pasea[ad ,JTeH Jnojp ut 3ng, T°€°€ ¥
R
‘A18utp109o€ Jumyes Jorrmu SMITA Jser,
NV IO 911 1sn(pe pInoys SUOISISA Yons JO SIdSN 0S SATYIIE NV 90 9} WOIJ S[qe[TeA. AUO a1e ("7 Z Uer]) P[0 SUOISIaA 3 J0] sarreurq agexoed 10/£0/910T JO SV TA5U STEUM
STOTT
*S9[qEINIAXS PIPEOUMOP TIIM STONNEIAId [BULIOU) NVHID
asn asea]d ‘serreurq Surquiasse usym suonnesald oxe) oM YINOY[Y “SOSIIIA JOJ SILIBUIq IS JOYD JOUULD PUR SWISAS X SO IBIA FARY 10U S0P NV IO 910N
"£1030211p PO oT} U PUNOJ 8 UED SIBIN DdIeMod Pue (S0 X SO
SR YSnoIy) SwaIsAs X SO BN PO I0] sasea]ey 3337 (1°L°T ¥ ST YoTym) suie)sAs 9ot 10J 3 Jo aseajar payroddns jsey oy puij ues nok nq paptoddns 1e8uo] ou
a1e (1°0T X SO 98I PUB) 76 01 9°8 SO BN ‘(2A0qe pue 9" 9589[2I) X SO JBIA UO UNI 0] s93exoed pue uonnqINSIp 9seq © 10J SSLIBUIQ SUTRIUOO A10J93IIp ST,
- X SO dey Joj ¥
syreunjooq 12Yy10) 7 Jejoyps aj6ooy E ajboo & sadeqajeseygaeN WL 1ana DI ¢ @ MuUea:SLOZ/ze/zL @ 101D3L0D 3] BUIUO \ uiboj - ooyep E uozewy P syeunjoog A sddy

: @ _«v ho) biopafoid-ruen//sdny @ _ 9 D & >

Data Analytics using R

8

Introduction to R

SEDONCRG [@ https://cran.r-project.org
3% Apps Y Bookmarks @ Amazon Yahoo - login ¢’ Online Text Correctior @) 12/22/2015: Dainik B ¢? ICICI Direct % Navbharat ePaper G Google Google Scholar

Index of /bin/linux

Name Last modified Size Description

a Parent Directory -
CRAN . an
o nnil (€3 debian/ 2016-09-04 18:33
What's new? redhat/ 2014-07-2721:12 -
Task Views €3 suse/ 2012-02-16 15:09 -
e £ ubuntw 2016-10-17 04:06 -

About R

R Homepage Apache/2.4.10 (Debian) Server at cran.r-project.org Port 443
The R Journal

Software
R Sources
R Binaries
Packages
Other

Documentation
Manuals

FAQs
Contributed

Ficure 1.5 Downloading R for Linux distributions

@ RGui (32-bit)
File Edit View Misc Packages Windows Help

R version 3.3.1 (2016-06-21) -- "Bug in Your Hair"
Copyright (C) 2016 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or

'help.start()' for an HTML browser interface to help.

Type 'q()' to quit R.

[Previously saved workspace restored]

> |

Ficure 1.6 R console on a 32-bit Windows PC

10 Data Analytics using R

Installing Rtools

Rtools is an additional requirement for developing R packages under Windows OS
environment. In addition to installing the R software on Windows, users need to install
Rtools for the installed version of R.

Installing R on Mac

The process for installing R on Mac is similar to that for Windows. Users need to double
click on the binaries downloaded from the CRAN website and follow the prompts.

Installing R on Linux

Users need to install R from the source on Linux distributions. This can be done by
following commands in the supervisor mode. The following steps will install and configure
R into a user-specific subdirectory within the home directory:

$ tar xvf R-3.1.1.tar.gz

$ cd R-3.1.1

$./configure --prefix=S$HOME/R

$ make && make install

Setting the path on a Linux machine is very critical. Without the path, R and RScript do
TIP not work.

1.2.3 Primary File Types of R

Working with R involves working on two types of files—RScripts and R markdown
documents.

RScript

RScript is a text file that contains commands for an R program. The same commands
can be executed individually on the CLI of Integrated Development Environment (IDE)
for R programming. An RScript can be also be developed and executed. However, there
is a difference between executing a command directly on CLI and executing the same
command through an R script. An RScript has a .R extension.

Command line interface is needed for quick and small data processing and checking
operations. In large-scale solutions, it integrates multiple programs during prototyping and
subsequent phases. In that case, RScripts are used for managing the integration process.

Markdown Documents

R markdown documents are produced for creating and authoring dynamic documents,
reports and presentations from R. R markdown documents have a set of markdown

Introduction to R 11

syntaxes derived from the core markdown syntaxes. These syntaxes are embedded into
RScripts and codes. When these embedded codes and scripts are executed then the output
is formatted based on the markdown syntaxes and hence becomes easily understandable.
R markdown documents can be regenerated automatically if the underlying RScripts and
codes or data are changed. The output format of an R markdown covers a wide range
of formats including PDF, HTML, HTMLS slides, websites, dashboards, tufte handouts,
notebooks, books, MS word, etc. The extension for R markdown document files is .rmd.

Check Your Understanding

1. How to locate an RScript file in a typical file system?
Ans: An RScript file can be located in a typical file system by verifying if the extension of the
file is .R.

2. What is R markdown and how is it different from word documentation?

Ans: R markdown documents are dynamic and reproducible. Markdown files are used for
making reports and documents with R. These markdown codes are embedded into
files such as PDE, HTML, word files, etc. On the contrary, word files are text files only
and do not support markdown.

1.3 IDEs anp Text EDITORS

Various text editors can be used for writing RScripts and codes. Table 1.1 describes some
popular IDEs and text editors for writing and executing R codes.

TABLE 1.1 Some IDEs and text editors for writing and executing R codes

Name Platform(s) | License Details and Usage

Notepad Windows, GNUGPL Notepad++ to R is an editor for R that is simple and robust.
and Linux and It supports extensions like close passing to Notepad++
Notepad++ Mac editor, R GUI editor and optionally to a PuTTY window on a
toR remote machine. It supports batch processing using shortcuts,

monitoring of execution of RScripts and so on.

Tinn-R Windows GNUGPL Tinn-R is a word processor and text editor that can process
generic ASCII and UNICODE on Windows OS. This is well
integrated into R and supports GUI and IDE for R.

Revolution Commercial Revolution productivity enhancer is an R productivity or
Productivity enhanced environment. However, it can work as an IDE for
Enhancer new users. The usability features of RPE are very supportive.
(RPE) It includes features like IntelliSense for detecting completion

of word, code snippets, and so on. Hence, RPE is an integrated
IDE and editor with built-in visual debugging tools.

12 Data Analytics using R

There are various IDEs used in R language. You will learn about these IDEs in the
following section.

1.3.1 R Studio

R studio is the most widely used IDE for writing, testing and executing R codes (Figure
1.7). This is a user-friendly and open source solution. There are various parts in a typical
screen of an R studio IDE. These are:
e Console, where users write a command and see the output
o Workspace tab, where users can see active objects from the code written in the
console
e History tab, which shows a history of commands used in the code
o File tab, where folders and files can be seen in the default workspace
¢ Plot tab, which shows graphs
e Packages tab, which shows add-ons and packages required for running specific
process(s)
¢ Help tab, which contains the information on IDE, commands, etc.

RStudio |- [a x|
File Edit Code View Project Worksg Plots Tools Help
gl-|2 - 8 Bl & (A cotofiefunction) (&) Project: (None) ~
Console ~/ & & | Workspace | Hishuyl ==
&2 load~ | [Save~ | @ Import Dataset~ | & Clear All @

R version 2.15.1 (2012-06-22) -- "Roasted Marshmallows™
Copyright (C) 2012 The R Foundation for Statistical Computing
ISBN 3-900051-07-0

Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions. |

Type 'license()' or 'licence()' for distribution details. |
Natural language support but running in an English locale “
R is a collaborative project with many contributors. ‘
Type 'contributors()' for more information and
‘citation()’' on how to cite R or R packages in publications.
) Files l Plots] Packages] Help ==
Type,deme(). for sone dencs, help(). for on-Line nelp: o | g aw rlder | @ oskte Fteam | @ e @
Type 'q()' to quit R. O & Home
||+ Name | Size | Modified
starting httpd help server ... done O .Rhistory 10.9KB Sep 18, 2012, 5:22 PM
x| O) .Rprofile 302 bytes Mar 26, 2012, 10:54 PM
O bin
Oac
| O & courses
O Desktop
O & dev
O & Documents
0O & Downloads
O & full-courses
0O & Games
O & gretl
O & imaginary
O & Maplel3
0O & mp3
o | Mucic

Ficure 1.7 R Studio Interface

Introduction to R 13

1.3.2 Eclipse with StatET

Eclipse is a well-known IDE for Java, C++, etc.; however, Eclipse can be used for statistical
programming based on R also. The corresponding IDE is called Eclipse with StatET.
Eclipse with StatET offers a set of tools that can be used for coding in R and building R
packages. It supports one or more local and remote installations of R. Its functionalities
can be expanded by using more add-ons like Sweave and Wikitext. Different parts of the
IDE are given below:

¢ Console for R

¢ Object browser
Package manager
Debugger
Data viewer
R help system.

1.4 HANDLING PACKAGES IN R

A package in R is the fundamental unit of shareable code. It is a collection of the following
elements:

e Functions

e Data sets

e Compiled code

¢ Documentation for the package and for the functions inside

o Tests — few tests to check if everything works as it should.

The directory where packages are stored is called a library. R comes with a standard
set of packages. Others are available for download and installation as per requirement.
As on date, there are over 10,000 plus packages available in CRAN. This is also one of
the reasons behind the huge popularity and success of R.

Packages are used to share codes with others. One can develop their own R package.
Any R user can then download, install and learn to use the package. Packages, therefore
allow for an easy, transparent and cross-platform extension of the R base system.

R is an open source language; thus, new packages are being developed and updated
by developers daily. Some of these packages may not work properly or may have bugs.
Hence, it is not a good idea to use every new and updated package on R development
environment. This can affect the stability of the development environment. A stable
environment requires the sandboxing technique (a security mechanism often used to
execute untested or untrusted programs or code from unverified or untrusted third
parties, users, etc., without damaging/maligning the host machine or operating system
or production environment) to test new packages or update a package before installing
it in the development environment.

In general, there is a single package library with each installation of R on a computer.
Users can change the path to that library to install a package on a different location other
than the default package library. The command .1libPaths () can be used to get or set
the path of the package library.

14 Data Analytics using R

Example
> .libPaths ()

Output
C:/R/R-3.1.3/library

This is the default package library location. The following command will change it
into another path:

Example
> .libPaths (“~/R/win-library/3.1-mran-2016-07-02")

Output
C:/Users/Userl/Documents/R/win-1library/3.1l-mran-2016-07-02

R can be extended easily with the help of a rich set of packages. There are more than
10,000 packages available for R. These packages are used for different purposes. Tables
1.2 and 1.3 list some commonly used R packages for different purposes.

TABLE 1.2 Commonly used R packages for different purposes

Data Management Data Visualisation Data Products Data Modelling and
Simulation

dplyr, tidyr, foreign, ggplot, ggvis, lattice, shiny, slidify, knitr, MASS, forecast,

haven etc. igraph etc. markdown etc. bootstrap, broom, nlme,
ROCR, party etc.

TABLE 1.3 Commonly used packages in R

Author(s) Package | Description Available At

Name
Andrew Gelman, arm It is used for hierarchical or multi-level http:/ /cran.r-project.org/
etal. regression models. web/packages/arm/
Douglas Bates, Ime4 It contains functions for generating http:/ /cran.r-project.org/
Martin Maechler, generalised and linear mixed-effects models. =~ web/packages/Ime4/
and Ben Bolker
Duncan Temple Rcurl It provides an interface of R to the package http:/ /www.omegahat.
Lang library, libcurl. The interface helps in org/RCurl/

interacting with the HTTP protocols for
importing raw data from the web.

Duncan Temple RJSONIO It provides a set of functions to read and http:/ /www.omegahat.

Lang write JSON for analysing data from different org/RJSONIO/
web-based APIs.

Duncan Temple XML It provides functions and facilities for analys- http://www.omegahat.

Lang ing HTML and XML documents to extract org/RSXML/

structured data from web-based sources.

(Continued)

Introduction to R 15

Author(s) Package | Description Awvailable At
Name

Gabor Csardi igraph It contains routines for network analysis and http://igraph.
making simple graphs to represent social sourceforge.net/
networks.

Hadley Wickham ggplot It contains a set of grammar rules for http:/ /cran.r-project.org/
implementing graphics in R. The packageis = web/packages/glmnet/
used for creating high-quality graphics. index.html

Hadley Wickham lubridate The package provides functions to use dates https://github.com/
in R in an easier way. hadley/lubridate

Hadley Wickham reshape It contains a set of tools for manipulation, http:/ /had.co.nz/plyr/
aggregation and management of data in R.

Ingo Feinerer tm It contains functions to perform text mining http:/ /www.spatstat.
in R. Text mining helps to work with org/spatstat/

Jerome Friedman, glmnet It helps to work with the elastic-net and also http:/ /had.co.nz/
Trevor Hastie, and regularised and generalised linear models. ggplot2/
Rob Tibshirani

unstructured data.

1.4.1 Installing an R Package

R comes with some standard packages that are installed when a user first installs R and
additional packages can be installed separately. Users need to navigate through the package
library and install a package in the desired location. Following commands are used for
navigating through R package library and installing R package.

1.

2.

Ll

o

To start R, follow either Step 2 or 3. The assumption is that R is already installed on
your machine.

If there is an “R” icon on the desktop of the computer that you are using, double
click on the “R” icon to start R. If there is no “R” icon on the desktop then click on
the “Start” button at the bottom left of your computer screen, and then choose “All
programs”, and start R by selecting “R” (or R X.X.X, where X.X.X gives the version
of R, e.g. R 2.10.0) from the menu of programs.

The R console should show up.

Once you have started R, you can install an R package (e.g. the “ggplot2” package)
by choosing “Install package(s)” from the “Packages” menu at the top of the R
console. This will ask you for the website that you wish to download the package
from. You can choose “Iceland” (or another country, if you prefer). It will also bring
up a list of available packages that you can install, and you can choose the package
that you want to install from that list (e.g. “ggplot2”).

This will install the “ggplot2” package.

The “ggplot2” package is now installed. Whenever you want to use the “ggplot2”
package after this, after having successfully started R, you first have to load the
package by typing into the R console: library(“ggplot2”).

You can get help on a package by typing the following at the R prompt: help(package

= “ggplot2”)

16 Data Analytics using R

1.4.2 Few Commands to Get Started

installed.packages ()

A user can check for all installed packages on the machine by using the installed.
packages () function.

> installed.packages()

Package LibPath Version Priority
arules "arules" "C:/Users/seema_acharya/Documents/R/win-library/3.2" "1.3-1" NA
arulesViz "arulesViz" "C:/Users/seema_acharya/Documents/R/win-library/3.2" "1.1-0" NA
assertthat "assertthat"” "C:/Users/seema_acharya/Documents/R/win-library/3.2" "0.1" NA
BH "BH" "C:/Users/seema_acharya/Documents/R/win-library/3.2" "1.62.0-1" NA
bit "bit" "C:/Users/seema_acharya/Documents/R/win-library/3.2" "1.1-12" NA
bitops "bitops" "C:/Users/seema_acharya/Documents/R/win-library/3.2" "1.0-6" NA
boot "boot" "C:/Users/seema_acharya/Documents/R/win-library/3.2" "1.3-18" "recommended"
caTools "caTools" "C:/Users/seema_acharya/Documents/R/win-library/3.2" "1.17.1" NA
class "class" "C:/Users/seema_acharya/Documents/R/win-library/3.2" "7.3-14" "recommended"
coin "coin" "C:/Users/seema_acharya/Documents/R/win-library/3.2" "1.1-2" NA
colorspace "colorspace" "C:/Users/seema_acharya/Documents/R/win-library/3.2" "1.2-6" NA
corpcor "corpcor" "C:/Users/seema_acharya/Documents/R/win-library/3.2" "1.6.8" NA
curl "curl"” "C:/Users/seema_acharya/Documents/R/win-library/3.2" "2.3" NA
DBI "DBI" "C:/Users/seema_acharya/Documents/R/win-library/3.2" "0.5-1" NA
dendextend "dendextend"” "C:/Users/seema_acharya/Documents/R/win-library/3.2" "1.1.8" NA
DEoptimR "DEoptimR" "C:/Users/seema_acharya/Documents/R/win-library/3.2" "1.0-8" NA
devtools "devtools" "C:/Users/seema_acharya/Documents/R/win-library/3.2" "1.12.0" NA
dichromat "dichromat” "C:/Users/seema_acharya/Documents/R/win-library/3.2" "2.0-0" NA
digest "digest" "C:/Users/seema_acharya/Documents/R/win-library/3.2" "0.6.9" NA
doParallel "doParallel” "C:/Users/seema_acharya/Documents/R/win-library/3.2" "1.0.10" NA
dplyr "dplyr" "C:/Users/seema_acharya/Documents/R/win-library/3.2" "0.5.0" NA
ff b = 4 "C:/Users/seema_acharya/Documents/R/win-library/3.2" "2.2-13" NA
foreach "foreach" "C:/Users/seema_acharya/Documents/R/win-library/3.2" "1.4.3" NA
foreign "foreign" "C:/Users/seema_acharya/Documents/R/win-library/3.2" "0.8-66" "recommended"
FRB "FRB" "C:/Users/seema_acharya/Documents/R/win-library/3.2" "1.8" NA
gclus "gclus" "C:/Users/seema_acharya/Documents/R/win-library/3.2" "1.3.1" NA
gdata "gdata” "C:/Users/seema_acharya/Dccumencs/R/win—library/3.2" w2.17.0" NA
ggdendro "ggdendro" "C:/Users/seema_acharya/Documents/R/win-library/3.2" "0.1-20" NA
ggfortify "ggfortify"” "C:/Users/seema_acharya/Documents/R/win-library/3.2" "0.4.1" NA
ggplot2 "ggplot2" "C:/Users/seema_acharya/Documents/R/win-library/3.2" "2.0.0" NA
git2r "git2x" "C:/Users/seema_acharya/Documents/R/win-library/3.2" "0.18.0" NA
gplots "gplots" "C:/Users/seema_acharya/Documents/R/win-library/3.2" "2.17.0" NA
gridBase "gridBase" "C:/Users/seema_acharya/Documents/R/win-library/3.2" "0.4-7" NA
gridExtra "gridExtra” "C:/Users/seema_acharya/Documents/R/win-library/3.2" "2.2.1" NA
gtable "gtable" "C:/Users/seema_acharya/Documents/R/win-library/3.2" "0.2.0" NA
gtools "gtools" "C:/Users/seema_acharya/Documents/R/win-library/3.2" "3.5.0" NA

remove.packages () can be used to uninstall a package.

packageDescription ()

“DESCRIPTION” file has the basic information about a package. It has details such as what
the package does, who is the author, what is the version for the documentation, the date,
the type of license its use, and the package dependencies, etc. To access the description file
inside R, use the function, packageDescription(“package”). The same can also be accessed
via the documentation of the package by using help(package = “package”).

Let us look at the description for the “stats” package.

Introduction to R 17

> packageDescription (“stats”)

Package: stats

Version: 3.2.3

Priority: base

Title: The R Stats Package

Author: R Core Team and contributors worldwide
Maintainer: R Core Team <R-core@r-project.org>
Description: R statistical functions.

License: Part of R 3.2.3

Suggests: MASS, Matrix, Suppdists, methods, statsi4
Build: R 3.2.3; x86_ 64-w6d4-mingw32; 2015-12-10 13:03:29 UTC; windows

-— File: C:/Program Files/R/R-3.2.3/library/stats/Meta/package.rds
Or
> help (package="stats")

The output shown is partial.

The R Stats Package

o)

Documentation for package ‘stats’ version 3.2.3

Help Pages

The R Stats Package
-— A --

Auto- and Cross- Covariance and -Correlation Function Estimation
Compute an AR Process Exactly Fitting an ACF

Compute Allowed Changes in Adding to or Dropping from a Formula
Add or Drop All Possible Single Terms to a Model

Puts Arbitrary Margins on Multidimensional Tables or Arrays
Compute Summary Statistics of Data Subsets

Akaike's An Information Criterion

Find Aliases (Dependencies) in a Model

Anova Tables

help (package = “package”)
To get an overview of all the functions and datasets in an R package, use the help()
function.

> help (package = "datasets")

The above will provide an overview of all functions and datasets inside the package,
“datasets”. One of the dataset available in “datasets” package is “AirPassengers”. To

18 Data Analytics using R

access the dataset, “AirPassengers” inside the “datasets” package, use the code given
below:

> datasets::AirPassengers

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1949 112 118 132 129 121 135 148 148 136 119 104 118
1950 115 126 141 135 125 149 170 170 158 133 114 140
1951 145 150 178 163 172 178 199 199 184 162 146 166
1952 171 180 193 181 183 218 230 242 209 191 172 194
1953 196 196 236 235 229 243 264 272 237 211 180 201
1954 204 188 235 227 234 264 302 293 259 229 203 229
1955 242 233 267 269 270 315 364 347 312 274 237 278
1956 284 277 317 313 318 374 413 405 355 306 271 306
1957 315 301 356 348 355 422 465 467 404 347 305 336
1958 340 318 362 348 363 435 491 505 404 359 310 337
1959 360 342 406 396 420 472 548 559 463 407 362 405
1960 417 391 419 461 472 535 622 606 508 461 390 432

If there will be frequent use of this package, it is worthwhile to load it into the memory.
This can be achieved using the library function:

> library (datasets)
Note: the package name has to be specified without enclosing it in quotes. The library ()

function will load the package, “datasets” into the memory. Then any dataset within this
package can be accessed by simply typing the name of the dataset at the R prompt.

> library(datasets)
> AirPassengers

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1949 112 118 132 129 121 135 148 148 136 119 104 118
1950 115 126 141 135 125 149 170 170 158 133 114 140
1951 145 150 178 163 172 178 199 199 184 162 146 166
1952 171 180 193 181 183 218 230 242 209 191 172 194
1953 196 196 236 235 229 243 264 272 237 211 180 201
1954 204 188 235 227 234 264 302 293 259 229 203 229
1955 242 233 267 269 270 315 364 347 312 274 237 278
1956 284 277 317 313 318 374 413 405 355 306 271 306
1957 315 301 356 348 355 422 465 467 404 347 305 336
1958 340 318 362 348 363 435 491 505 404 359 310 337
1959 360 342 406 396 420 472 548 559 463 407 362 405
1960 417 391 419 461 472 535 622 606 508 461 390 432

find.package () and install.packages() Command

find.package () and install.packages () commands will find and install specific R
package(s). There are two versions of this command. The first helps in installing one
package at a time and the other is used to install multiple packages at once using a single
command—install.packages (). More details on commands like find.package () and
install.packages () can be retrieved using the help () command. For example, help
(installed.packages) can show details like the version number of a function.

Introduction to R 19

Example
To install a single package, the command is:

>find.package (“ggplot2”)
>install.packages (“ggplot2”)

Output

The first command will help to find if there is any package named “ggplot2” installed
in the system or not. Then the install.packages () function will install the package
named “ggplot2” CLI (Figure 1.8). It will download and install the package and all the
dependencies of the package.

-
© Rtudio @ e =|8
|'File" EditCode View Plots" Session Build" Debug Tools Help
g'l@'l = @] L;||'| Addins ~ @Projed:(None)v

Console ~/ & @ &3 || Environmeat(TH

: < : P Img
R version 3.3.1 (2016-06-21) -- "Bug in Your Hair" 28| —H
copyright (c) 2016 The R Foundation for statistical computing @ Global Enviro
platform: x86_64-w64-mingw32/x64 (64-bit) f
R is free software and comes with ABSOLUTELY NO WARRANTY. Environment is
You are welcome to redistribute it under certain conditions. empty

Type 'license()' or 'Ticence()' for distribution details.

R is a collaborative project with many contributors.

Type ‘contributors()' for more information and q

‘citation()" on how to cite R or R packages in publications.

Type ‘demo()' for some demos, "help()' for on-Tine help, or Files @EF

‘help.start()"' for an HTML browser interface to help. f

Type 'q()" to quit R. ﬁNewFolderl
Bome l

> install. packages("ggplot2™) [

Installing package into ‘C:/Users/my/Documents/R/win-library/3.3’ I [
(as ‘1ib’ is unspecified)
also installing the dependencies ‘stringi’, ‘magrittr’, ‘colorspace’, ‘Rcpp’, ‘stringr’, ‘RColorBre @) .Rhig
wer’, ‘dichromat’, ‘munsell’, ‘labeling’, ‘digest’, ‘gtable’, ‘plyr’, ‘reshape2’, ‘scales’
trying URL ‘https://cran.rstudio.com/bin/windows/contrib/3.3/stringi_1.1.1.zip"
Content type ‘application/zip' Tlength 14258493 bytes (13.6 MB) (2 16 "
O 26
42% downloaded "
Cust
URL: ... //cran.rstudio.com/bin/windows/contrib/3.3/stringi 111 zip ?e“r: k
@ My
] & Endi
Libre h
M My T
< » 4

A

Ficure 1.8 Example of installing a package

Example

To install more than one package(s) at a time, the install.packages () command will
have the following format:

>install.packages (c (“ggplot”, “tidyr”, “dplyr”))

20 Data Analytics using R

Output
It will install packages ggplot, tidyr and dplyr.

TIP The command to check whether a package is installed or not is the “if” condition checking. The
command for checking whether the package “ggploi2” is installed or not can be done by using:

>if (!require (“ggplot2”)){install.packages (“ggplot2”) }

library()
library () command loads a package.
Example

>library (ggplot?2)

Output
It will load the package “ggplot2”.

vignette()

Vignettes are a very useful source of help with packages. They are provided by the package
authors to demonstrate and highlight few functionalities of their package in detail. Use
browseVignettes () function to get a list of all vignettes available with your installed
packages.

> browseVignettes()

Vignettes found by “browseVignettes()”

Vignettes in package arules

« Introduction to arules - PDF source R code
Vignettes in package arulesvViz

« Visualizing Association Rules: Introduction to arulesViz - PDF source R code
Vignettes in package coin

* A Lego System for Conditional Inference - PDF source R code

« coin: A Computational Framework for Conditional Inference - PDF source R code

* Implementing a Class of Permutation Tests: The coin Package - PDF source R code

¢ Order-restricted Scores Test - PDF source R code
Vignettes in package colorspace

« HCL-Based Color Palettes in R - PDF source R code
Vignettes in package curl

* The curl package: a modem R interface to libcurl - HTML source R code
Vignettes in package DBI

¢ A Common Database Interface (DBI) - HTML source

« A Common Interface to Relational Databases from R and S -- A Proposal - HTML source
+ Implementing a new backend - HTML source R code

Introduction to R 21

To view all vignettes for a specific package, e.g., “ggplot2”, use the vignette () function.

Vignettes in package ‘ggplot2’:

ggplot2-specs Aesthetic specifications (source, html)
extending-ggplot?2 Extending ggplot2 (source, html)

Check Your Understanding

1. Name a few packages used for data management in R.
Ans: dplyr, tidyr, foreign, haven, etc.

2. Name a few packages used for data visualisation in R.
Ans: ggplot, ggvis, lattice, igraph, etc.

3. Name a few packages used for developing data produces in R.
Ans: shiny, slidify, knitr, markdown, etc.

4. Name a few packages used for data modelling and simulation in R.
Ans: MASS, forecast, bootstrap, broom, nlme, ROCR, party, etc.

5. How can the default path to package library be changed in R?
Ans: To change the default package library in R, users need to follow the following steps on
the console of R IDE:
Step 1: Check the current path to the package library
> .libPaths ()
Step 2: Change the path using the following command.
> .libPaths (“write the desired path here”)

6. What is the command to check and install the “dplyr” package?
Ans: if (!require (“dplyr “)) {install.packages (“dplyr”) }

7. How can we install multiple packages in R?
Ans: To install multiple packages in R the command is, >install.packages (c (“ggplo
t// . //tidyr// . //dplyr//))

22 Data Analytics using R

Just Remember

To access help in RStudio, it can be accessed from the console and from the CLI (Figure 1.9). The command
i ishelp (). :

-

eatated o hagen it Y —
Find Installed Packages

ommere Descripson

s) Sehal U 5 pachages raidbed 1 e spm ded (st

Usage

i3

EEEEERELF
-
EEEEEER
'3

FTERREEEL

)) instal). packages (“ggplet Detalis

Ficure 1.9 Accessing help () command from the console and CLI

e R is an open source and object-oriented programming language for statistical computing and data
visualisation.

R is a successor of the proprietary statistical computing programming language S.

R can be downloaded and installed on different OS platforms like Windows, Linux and Mac.

R has the fundamental data type of vector.

Text editors like Notepad++ to R, Tinn-R and Rev R are more than just editors for R. These can sup-
port extended functionalities and IDE features.

R has several IDEs like RStudio, Eclipse with StatET and so on.

R has a rich library of more than 10,000 packages.

R has two fundamental file types called RScripts and R markdown documents.

R commands can be written in RScripts or through the command line interface.

R has a rich collection of inbuilt data sets like mtcars, Biochemical Oxygen Demand (BOD), etc.

Introduction to R 23

‘ Key TERMS

e BOD: An inbuilt data set in R, which

contains data on the Biochemical Oxygen
Demand.

CLI: A console through which a user can
interact with a computer. The interaction
happens through successive lines of com-

computer software. Usually, an IDE consists
of a number of automation tools, a debug-
ger and an editor for coding.

R: An open source and object oriented pro-
gramming language for statistical comput-
ing and data visualisation.

mands on the console.
o IDE: A special type of software that offers
a set of comprehensive facilities to develop

‘ MuLTIiPLE CHOICE QUESTIONS

1. Whatis R?
(a) An object-oriented programming language
(b) An open source project from CRAN
(c) A programming language for statistical computing
(d) All of these

2. Which one of the following programming languages is a dialect of R language?
(a) Python (b) C
(©) S d Q
3. Which one of the following is a text editor of R?
(a) RStudio (b) Microsoft word
(c) Notepad++toR (d) Tableau

4. Which of the following are IDEs for R?
(a) RStudio
(c) Eclipse with StatET

5. What is the primary file type of R?
(a) Vector
(c) RScripts

6. R can be downloaded from:
(a) CRAN website (b) Google PlayStore
(¢) None of these (d) All of these

7. Which one of the following R packages is used for data management?
(a) haven (b) igraph
(c) slidify (d) forecast

(b) Both aand c
(d) None of these

(b) Text file
(d) Statistical file

24 Data Analytics using R

8. Which one of the following R packages is used for data visualisation?

(a) haven (b) igraph
(o) slidify (d) forecast
9. Which one of the following R packages is used for data products?

(a) haven (b) igraph
(o) slidify (d) forecast

10. Which one of the following R packages is used for data modelling and simulation?
(a) haven (b) igraph
(c) slidify (d) forecast

11. The functionalities of R are divided among:
(a) Packages (b) Domains
(c) Libraries (d) None of these

‘ SHORT QUESTIONS

1. Whatis R? What are the advantages of R programming language over other general purpose
programming languages?

2. How can we install a package on R?

3. Give examples of two IDEs for R.

4. Give detailed examples of three packages used in R.

5. Give a detailed description of head() command used in R.

6. How can we install multiple R packages with a single command?

7. State the difference(s) between head () and tail () commands used in R.

8. State the difference(s) between ncol () and nrow () commands used in R.

(® 11 (P) o1 ©) 6 (@ 8

(®) L (®) 9 ©) g @ ¥ ©) ¢ ©) T P) 1

SO 07 S4omsup

Chapter

Getling Started with R

LEARNING OUTCOME

Al the end of this chapler, you will be able to:

» Analyse directory content with commands such as dir (), 1ist ()

» Analyse a dataset using functions such as str (), summary (), ncol(), nrow(),
head (), tail (), edit ()

2.1 INTRODUCTION

Data exploration in R is an approach to summarise and visualise important characteristics
of a data set. An exploratory data analysis focusses on understanding the underlying
variables and data structures to see how they can help in data analysis through various
formal statistical methods.

2.2 WORKING WITH DIRECTORY

Before writing a program or code using R, it is important to find out the directory being
used. This can be done using the getwd () function. If the current working directory is
not as per preference, it can be changed using the setwd () function. The dir () or the
list.files () functions give information about the files and directories in the current
working directory or any other directory.

2.2.1 getwd() Command

getwd () command returns the absolute filepath of the current working directory. This
function has no arguments.

26 Data Analytics using R

Example
>getwd ()

Output
[1] C:/Users/Userl/Documents/R

Note the use of */’ as the file separator on Windows. The file path does not have a trailing
/" unless it is the root directory. The getwd () function can return NULL if the working
directory is not available.

2.2.2 setwd() Command

setwd () command resets the current working directory to another location as per the
user’s preference.

Example
>setwd (“C:/path/to/my directory”)

Output
It will change the path to the user specified directory.

2.2.3 dir() Function

This is equivalent to 1ist.files () function.
This function returns a character vector of the names of files or directories in the named
directory.

Syntax
dir (path = “.”, pattern = NULL, all.files = FALSE,
full.names = FALSE, recursive = FALSE,
ignore.case = FALSE, include.dirs = FALSE, no.. = FALSE)
or

list.files(path = “.”, pattern = NULL, all.files = FALSE,
full.names = FALSE, recursive = FALSE,
ignore.case = FALSE, include.dirs = FALSE, no..

FALSE)
>dir ()
character (0)

>list.files ()
character (0)

The above command implies that there are no files or directories in the current directory.

Example 1

To display the files and directories in the current directory, use path=
todir ().

“” 7

.7 as an argument

Getting Started with R 27

>dir (path=".")
[1] "att connect" "BI_May 2015.pptx" "BI_MetroMap-Final.png" "BISkillMatrix-Final.xlsx"
[5] "c" "cache" "Custom Office Templates" "Dec2016-BroadbandBill.pdf"
[9] "decision_tree.png" "Default.rdp" "desktop.ini" "DSS.wma"

[13] "ILP-AssociationRuleMining.pptx" "May-Broadband bill.pdf" "My Data Sources" "My Music"

[17] "My Pictures" "My Shapes" "My Tableau Repository" "My Videos"

[21] "Northwind 2007 sample.accdt" "Oct-Broadband bill.pdf" "OneNote Notebooks" "Outlokk Files"

[25] "R" "Remote Assistance Logs" "samplelinearregression.png" "SAP"

[29] "SQL Server Management Studio" "Visual Studio 2005" "Visual Studio 2008" "Visual Studio 2010"

Example 2

To display the list of all files and directories in a specific path, use the command as follows:

> dir (path="C:/Users/Seema_acharya")

1] "AppData"

] "Application Data"

] "ATT Connect Setup.exe"

] "CD95F661A5C444F5A6AAECDDY91C2410a . TMP"

] "Contacts"

] "Cookies"

] "Desktop"

] "Documents"

] "Downloads"

] "Favorites"

] "Links"

] "Local Settings"

] "Music"

] "My Documents"

] "NetHood"

] "NTUSER.DAT"

] "ntuser.dat.LOG1"

] "ntuser.dat.LOG2"

] "NTUSER.DAT{6cced2fl-6e01-11de-8bed-001e0bcdl1824}.TM.b1f"

] "NTUSER.DAT{6cced2fl1-6e01-11de-8bed-001e0bcdl824}.
TMContainer00000000000000000001.regtrans-ms"

[21] "NTUSER.DAT{6cced2fl-6e01-11de-8bed-001e0bcdl824}.

TMContainer00000000000000000002.regtrans-ms"

[22] "ntuser.ini"

[23] "ntuser.pol”

[24] "Pictures"

[25] "PrintHood"

[26] "Recent"

[27] "Saved Games"

[28] "Searches"

[29] "SendTo"

[30] "Start Menu"

[31] "Templates"

[32] "Videos"

Example 3

To display the complete or absolute path of all files and directories in the specified path,
use dir () as follows:

28 Data Analytics using R

> dir (pat‘n="C:/Users/Seema_acharya", full.names=TRUE)
[1] "C:/Users/Seema_acharya/AppData"
[2] "C:/Users/Seema_acharya/Application Data"
[3] "C:/Users/Seema_acharya/ATT_Connect_Setup.exe"
[4] "C:/Users/Seema_acharya/CDI5F661A5C444FSA6ARECDDI1C2410A. TMP"
[5] "C:/Users/Seema_acharya/Contacts"
[6] "C:/Users/Seema_acharya/Cookies"
[7] "C:/Users/Seema_ acharya/Desktop"
[8] "C:/Users/Seema_acharya/Documents"
[9] "C:/Users/Seema_acharya/Downloads"
[10] "C:/Users/Seema acharya/Favorites"
[11] "C:/Users/Seema_acharya/Links"
[12] "C:/Users/Seema_acharya/Local Settings"
[13] "C:/Users/Seema_ acharya/Music"
[14] "C:/Users/Seema_acharya/My Documents"
[15] "C:/Users/Seema_acharya/NetHood"
[16] "C:/Users/Seema acharya/NTUSER.DAT"
[17] "C:/Users/Seema_ acharya/ntuser.dat.LOG1"
[18] "C:/Users/Seema_acharya/ntuser.dat.LOG2"
[19] "C:/Users/Seema_ acharya/NTUSER.DAT{6cced2fl-6e01-11de-8bed-001e0bcd1824}.TM.b1£f"
[20] "C:/Users/Seema_ acharya/NTUSER.DAT{6cced2fl-6e01-11de-8bed-001e0bcd1824}.TMContainer00000000000000000001. regtrans-ms"
[21]) "C:/Users/Seema_acharya/NTUSER.DAT{6cced2fl-6e01-11de-8bed-001e0bcd1824}.TMContainer00000000000000000002.regtrans-ms"
[22] "C:/Users/Seema_acharya/ntuser.ini”
[23] "C:/Users/Seema_acharya/ntuser.pol”
[24] "C:/Users/Seema_acharya/Pictures"
[25] "C:/Users/Seema_acharya/PrintHood"
[26] "C:/Users/Seema_acharya/Recent"
[27] "C:/Users/Seema_acharya/Saved Games"
[28] "C:/Users/Seema_acharya/Searches"
[29] "C:/Users/Seema_acharya/SendTo"
[30] "C:/Users/Seema_acharya/Start Menu"
[31] "C:/Users/Seema acharya/Templates"
[32] "C:/Users/Seema acharya/Videos"

Example 4
To look for a specific pattern, e.g. file/directory names beginning with a “D”, use the
dir () command with a pattern = “~D” argument.

> dir (path="C:/Users/Seema acharya", pattern=""D")
[1] "Desktop" "Documents" "Downloads"

Example 5

To display a recursive list of files or directories in the specified path, use the dir ()
command as follows:
> dir (path="d:/data")
[1] "db"
> dir (path="d:/data", recursive=TRUE, include.dirs=TRUE)
[1] "db" "db/Demo.0" "db/Demo.ns" "db/local.0" "db/local.ns"
"db/mongod.lock™ "db/MyDB.O" "db/MyDB.ns"

The options or arguments used with dir () can also be used with 1ist.files (). Try
it out and observe the output.

2.3 Data Types IN R

R is a programming language. Like other programming languages, R also makes use
of variables to store varied information. This means that when variables are created,
locations are reserved in the computer’s memory to hold the related values. The number of

Getting Started with R 29

locations or size of memory reserved is determined by the data type of the variables. Data
type essentially means the kind of value which can be stored, such as boolean, numbers,
characters, etc. In R, however, variables are not declared as data types. Variables in R are
used to store some R objects and the data type of the R object becomes the data type of
the variable. The most popular (based on usage) R objects are:

e Vector

e List

e Matrix

e Array

e Factor

e Data Frames

A vector is the simplest of all R objects. It has varied data types. All other R objects are
based on these atomic vectors. The most commonly used data types are listed as follows:
Data types supported by R are:
e Logical
e Numeric
¢ Integer

e Character

e Double

e Complex

e Raw

class () function can be used to reveal the data type. Other R objects such as list, matrix,
array, factor and data frames are discussed in detail in Chapter 3.

Logical

TRUE / T and FALSE / F are logical values.
> TRUE
[1] TRUE

> class (TRUE)
[1] "logical"

> T

[1] TRUE

> class (T)

[1] "logical"

> F

[1] FALSE
> class (FALSE)
[1] "logical"
FALSE

lass (F)
"logical"

=
—Q —

30 Data Analytics using R

Numeric
> 2
[1] 2
> class (2)
[1] "numeric"

> 76.25

[1] 76.25

> class (76.25)
[1] "numeric"

Integer

Integer data type is a sub class of numeric data type. Notice the use of “L” as a suffix to
a numeric value in order for it to be considered an “integer”.

> 2L

[11 2

> class (2L)
[1] "integer"

Functions such as is.numeric (), is.integer () can be used to test the data type.
> is.numeric(2)

[1] TRUE

> is.numeric (2L)
[1] TRUE

> is.integer (2)

[1] FALSE

> is.integer (2L)
[1] TRUE

Note: Integers are numeric but NOT all numbers are integers.

Character
> "Data Science"
[1] "Data Science"
> class ("Data Science")
[1] "character"
is.character () function can be used to ascertain if a value is a character.

> is.character ("Data Science")
[1] TRUE

Double (for double precision floating point numbers)

By default, numbers are of “double” type unless explicitly mentioned with an L suffixed
to the number for it to be considered an integer.

> typeof (76.25)
[1] "double"

Complex

> 5 + 51

[1] 5+51

> class (5 + 51)
[1] "complex"

Getting Started with R 31

Raw
> charToRaw ("Hi")
[1] 48 69
> class (charToRaw ("Hi"))
[1] "raw"

typeof () function can also be used to check the data type (as shown).
> typeof (5 + 51i)

[1] "complex"

> typeof (charToRaw ("Hi")
+)

[1] "raw"

> typeof ("DataScience")
[1] "character"

> typeof (2L)

[1] "integer"

> typeof (76.25)

[1] "double"

2.3.1 Coercion

Coercion helps to convert one data type to another, e.g. logical “TRUE” value when
converted to numeric yields “1”. Likewise, logical “FALSE” value yields “0 ”.

> as.numeric (TRUE)
[11 1

> as.numeric (FALSE)
[1] O
Numeric 5 can be converted to character 5 using as.character ().
> as.character (5)
[1] " 5 "

> as.integer (5.5)
[11 5
On converting characters, “hi” to numeric data type, the as.numeric () returns NA.

> as.numeric ("hi™)

[1] NA

Warning message:

NAs introduced by coercion

2.3.2 Introducing Variables and 1s() Function

R, like any other programming language, uses variables to store information. Let us start
by creating a variable “RectangleHeight” and assign the value 2 to it. Note the use of the
operator “<-” to assign a value to the variable. Likewise, the variable “RectangleWidth” is
defined and assigned the value 4. The area of the rectangle is computed using the formula
“RectangleHeight * RectangleWidth”. The computed value for the area of the rectangle is
stored in the variable “RectangleArea”.

32 Data Analytics using R

> RectangleHeight <- 2

> RectangleWidth <- 4

> RectangleArea <- RectangleHeight * RectangleWidth
> RectangleHeight

[11 2

> RectangleWidth

(1] 4

> RectangleArea

[1] 8

Note: When a value is assigned to a variable, it does not display anything on the console.
To get the value, type the name of the variable at the prompt.
Use the 1s () function to list all the objects in the working environment.

> 1s()
[1] "RectangleArea" "RectangleHeight" "RectangleWidth"

Is() 1is also useful to clean the environment before running a code. Execute the rm()
function as shown to clean up the environment.

> rm(list=1s())

> 1s()

character (0)

2.4 FEwW CoMMANDS FOR DATA EXPLORATION

This section will use functions such as summary (), str(), head(), tail (), view(),
edit (), etc., to explore a dataset. The dataset used in this section is “mtcars” from the
“datasets” package.

Background to the mtcars dataset from R documentation:

This data was extracted from the 1974 Motor Trend US magazine. It comprises fuel

consumption and 10 aspects of automobile design and performance for 32 automobiles
(1973-74 models).

2.4.1 Load Internal Dataset

There are various inbuilt datasets in R, e.g. AirPassengers, mtcars, BOD, etc. A list of
datasets is available at https://vincentarelbundock.github.io/Rdatasets /datasets.html
Let us load the mtcars dataset from the datasets package following the steps:
1. Check if the datasets package is already installed.
>installed.packages ()

2. If already installed and will be used frequently, load the package.
>library (datasets)

Getting Started with R 33

3. Display the observations from the mtcars dataset.
mtcars is a dataset from the datasets package that has 32 observations on 11
variables. The 11 variables are described as follows:

[1] mpg Miles/(US) gallon

[, 2] cyl Number of cylinders

[, 3] disp Displacement (cu.in.)

[, 4] hp Gross horsepower

[, 5] drat Rear axle ratio

[, 6] wt Weight (1000 Ibs)

[, 7] gsec 1/4 mile time

[, 8] Vs V/S

[, 9] am Transmission (0 = automatic, 1 = manual)
[,10] gear Number of forward gears
[11] carb Number of carburetors

A subset of observations is given as follows:

> mtcars

mpg cyl disp hp drat wt gsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 |
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 O 3 p |
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 O O 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 O 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 O 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 O 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.%0 1 O 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 O 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.%90 1 O 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 O O 3 3
Merc 450SL 1753 8 275.8 180 3.07 3.730 17.60 O O 3 3
Merc 450SLC 15:2 8 275.8 180 3.07 3.780 18.00 O O 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.%8 0 O 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 O 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 O 3 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.%0 1 1 4 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 O 3 |
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 O 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 O 3 2

34 Data Analytics using R

summary () Command

summary () command includes functions like min, max, median, mean, etc., for each
variable present in the given data frame.

Example
>summary (mtcars)

Output

The output shows a six-point summary of each of the column or variable of the dataset
“mtcars”. The summary points are min, 1st quartile, mean, median, 3rd quartile and max
(Figure 2.1).

> summary(mtcars)
mpg oyl disp hp drat wt qsec Vs am gear carb

Min. :10.40 wMin. :4.000 Min, :71.1 Min. : 52,0 Min. :2.760 Min. :1.513 Min. :14,50 Min. :0.0000 Min. :0.0000 Min, :3.000 Min. :1.000
1st Qu.:15.43 1st Qu.:4.000 1t Qu.:120.8 1St Qu.: 96.5 1St Qu.:3.080 1st Qu.:2.581 1st Qu.:16.89 1st Qu.:0.0000 1st Qu.:0.0000 1St Qu.:3.000 1st Qu.:2.000
Median :19.20 Median :6.000 Median :196.3 Median :123.0 Median :3.695 Median :3.325 Median :17.71 Median :0.0000 Median :0.0000 Median :4.000 Median :2.000
Mean :20.09 Mean :6.188 Mean :230.7 Mean :146.7 Mean :3.597 Mean :3.217 Mean :17.85 Mean :0.4375 Mean :0.4062 Mean :3.688 Mean :2.812
3rd Qu.:22.80 3rd Qu.:8.000 3rd Qu.:326.0 3rd Qu.:180.0 3rd Qu.:3.920 3rd Qu.:3.610 3rd Qu.:18.90 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:4.000 3rd Qu.:4.000
Mlax. 133,90 wMax. :8.000 Max. :472.0 Max. :335.0 mMax. :4.930 Max, :5.424 Max. 22,90 Max. :1.0000 Max. :1.0000 Max., :5.000 mMax. :8.000
>

Ficure 2.1 Example of summary () command

str() Command

str () command displays the internal structure of a data frame. It can be used as an
alternative to summary function. It is a diagnostic function and roughly displays one
line per basic object.

Example 1
>str(str)
function (object,..)

The above example shows str () function itself serving as an argument. It displays
compactly str () internal structure, stating that it is a function which takes an object
as an argument,

Example 2
str(ls)
function (name, pos = -1L, envir = as.environment (pos), all.names =
FALSE, pattern, sorted = TRUE)

Here, 1s () is used as an argument to str () function. It provides a brief outline of
the 1s() function.

Example 3

>str (mtcars)

Output
When a data frame named “mtcars” is supplied, the command shows the internal structure
of the data frame. The CLI is:

Getting Started with R 35

>str (mtcars)

“data.frame”: 32 obs. of 11 variables:

$ mpg :num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2
$ cyl :num 6 6 4 6 8 6 844 6 ...

$ disp: num 160 160 108 258 360 ...

S hp : num 110 110 93 110 175 105 245 62 95 123 ...

$ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92
S wt num 2.62 2.88 2.32 3.21 3.44

$ gsec: num 16.5 17 18.6 19.4 17

$vs num 0011010111

$am :num 1 11 00 0O0O0O0O

$ gear: num 4 4 4 3 3 3 3 4 4

$ carb: num 4 4 11 2 1 4 2 4

4
2
It shows the individual datatype of each column or variable of the mtcars dataset.

Example 4

Let us generate a vector of 100 normally distributed random numbers using the function
rnorm (). To learn more about the rnorm () function, use help (rnorm()) at the R prompt.
However, for curious minds, remember to use help(rnorm()) at the R prompt. The

standard mean and sd arguments used are 2 and 4, respectively.

-5.02883176
-0.80831621
2.64653705
2.82091957
4.531840S55
6.32910411
-3.50544817
-5.36516159
6.40199661
0.27387502
8.70976443
5.16838083
3.17153145
0.17486091
2.82071806
-0.42997501
-3.89035251

Median

-0.8327 2.2210 2.0780

> x<-rnorm(100,2,4)

> X
[1] -3.34175887
[7] -3.31820044
[13) 6.87478751
[19] -3.88335858
[25] 5.38151555
[31] 0.58261960
[37] 2.06705854
[43] 9.15602713
[49] -0.01493734
[55] 8.32429912
[61] 7.67927741
[67] 0.40153453
[73] 5.18817660
[79] 5.22876321
[85]) -1.25678091
[91]) -1.08567254
[97) -0.32233632

> summary (x)

Min. 1st Qu.
-6.2750
> str(x)

0.45095709
-1.65448940
1.91879015
3.90339039
0.92504774
-1.77130695
4.41538977
-2.19773796
5.32999450
-1.12127302
-0.90567132
1.50919970
4.61942512
3.01414795
5.45032052
2.91873762
-6.27470698

Mean 3rd Qu.
4.7340 11.9200

2.85552715
4.64511871
-2.17452232
6.21311421
5.49552438
3.77660052
8.97132469
-1.62207865
4.74292147
1.43047868
4.07628860
4.73045804
7.44159001
-0.64969094
7.68390297
1.01037101
3.40189079

Max.

num [1:100] -3.342 -5.029 0.451 2.856 4.927 ...

4.92674244
8.57459786
1.58073729
2.66193705
-0.54671622
3.55678634
-0.50104855
4.28113440
-1.42301876
4.78700037
11.91775989
-1.90190693
0.05577955
1.46025656
6.58033732
-5.46963909

-4.41054919
1.25646177
1.99871232
1.78142291
4.01954453

-2.30606435
9.55595510

-2.71814237
3.83878430
3.49284817
3.05700908

-0.91450400
0.49172636
2.54332927

-1.08314669
2.37473930

When we run the summary () function with “x” as the argument, we get the “minimum

77 uqst
, 1

quartile 7, “Median ”, “Mean ”, «3rd Quartile” and “Maximum” for “x ”.

Next, when we run str () on “x 7, we get the information that “x” is a numeric vector

consisting of 100 elements and it also returns the first 5 elements from the

Example 5

o rmn

X" vector.

Let us now take it a step further by creating a 10 by 10 matrix, “m” and calling str () on it.

36 Data Analytics using R

> m <- matrix (rnorm(100),10,10)

> str(m)

num [1:10, 1:10] -2.231 1.089 0.573 -0.183 0.964 ..

> m[,1]

[1] -2.2310749 1.0885324 0.5730995 -0.1827884 0.9638976 1.2520684
-1.8088454 0.3247033 0.7654839 -0.31007222

The str () function tells us that “m” is a matrix of 10 rows and 10 columns and also
displays the first 5 column values of the first row.

view() Command
view () command displays the given dataset in a spreadsheet-like data frame viewer.

Example
>View (“mtcars"™)

Output
The output shows a tabular view of the content of the mtcars dataset (Figure 2.1).

head() Command
head () command displays the first “n” observations from the given data frame.
The default value for n is 6. However, users can specify the value of “n” as per their
requirement as well.

Example
>head (mtcars, n = 6)

Output
>head (mtcars, n = 6)

mpg cyl disp hp drat wt gsec Vs am gear carb

Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 O 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 O 3 1
>

The command shows the first 6 observations from mtcars.

tail () Command
tail () command displays the last “n” observations from a given data frame. The default
value for n is 6. However, users can specify the value of “n” as per their requirement as well.

Example
>tail (mtcars, n = 5)

Output
> tail (mtcars, n = 5)

mpg cyl disp hp drat wt gsec Vs am gear carb

Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.9 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.5 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.5 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.6 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.6 1 1 4 2

Getting Started with R

File Edit Code View Plots Session Build Debug Tools Help

Ql-| & - W= to filefunction | | ~| Addins v
a mtcars x 71
] &) | 7 Filter
mpg cyl - disp * hp “|/drat * wt - gsec - vs “lam - gear - | carb *
MazdaRX4| 210 6| 1600 110 390 2620 1646 o 1 4 4
Mazda RXaWag | 21.0 6 1600 110, 390 2875 17.02 0 1] 4 4
Datsun710| 228 4 1080 03| 385 2320 186 1 1] 4 1
Homet 4 Drive | 21.4 6| 2580 110, 308 3215 1944 1 o 3 1
Hornet Sportabout | 187 8| 3600 175 315 3440 1702 0 o 3 2
Valiant| 181 6| 2250 105 276 3460 2022 1 o 3 1
Duster360| 143 8| 3600 245 321 3570 1584 o o 3 4
Merc 240D 244 4 1467| 62| 360 3100 2000 1) 4 2
Merc230| 228 4 1408 os| 392 3150 2290 1 o 4 2
Merc280| 192 6 1676 123 302 3440 1830 1 o 4 4
Merc280C| 17.8 6 1676 123 302 3440 1890 1 o 4 4
| Merc 450SE| 164 8| 2758 180, 307 4070 17.40)) 3 3
[MercdsosL| 173 8| 2758 180 307, 3730 1760 o o 3 3
| Merc 450SLC| 152 8| 2758 180 307, 3780 18.00 o o 3 3
| Cadillac Fleetwood | 10.4 8| 4720 205 203 5250 1798 o) 3 4
| Lincoln Continental | 10.4 8| 4600 215| 300 5424 1782 o o 3 4
| Chryster imperial | 14.7 8| 4400 230 323 5345 17.42 0 o 3 4
| Flat 128 324 4 787 66| 408 2200 1947 1] 1 4 1
| Honda Civic| 304 4 757 52| 493| 1615 1852 1 1 4 2
Toyota Corolla| 339 4 70| es| 422 183 1090 1 1 4 1
Toyota Corona | 215 4| 1200 07| 370 2465 2001 1 o 3 1
| Dodge Challenger | 155 8| 3180 150 276, 3520 1687 o o 3 2
| AMC Javelin| 152 8| 3040 150 315 3435 1730 o o 3| 2
' Camaroz28| 133 8| 3500 245 373 3840 1541 0 o 3 4
Pontiac Firebird | 10.2 8| 4000 175 308 3845 1705 o o 3 2
FlatX1-9| 273 4 700 66| 408 1035 1890 1 1 4 1
\' Porsche 9142 26.0 4| 1203 01| 443 2140 1670 o 1] s 2
| Lotus Europa | 30.4 4 esa| ns| 377 1:13] 1690 1 1 5 2
Ford Panteral| 158 8| 3510 264 422 3170 1450 0 1 5 4
Ferrari Dino | 19.7 6 1450| 175| 362 2770 1550 o 1 5 6
| Maserati Bora| 15.0 8| 3010 335 354 3570 1460 o 1 5 8
\' Volvo 142E| 214 4 1210] 100] 4an| 2780 1860 1 1] 4 2

‘ Showing 1 to 32 of 32 entries

Console ~/ >

Mean 1Z.81Z
3rd Qu. :4.000
Max. :8.000

> view(mtcars)
>

Ficure 2.1 Example of View () command

The command shows the last 5 observations from the data frame.

ncol () Command

ncol () command returns the number of columns in the given dataset.

Example

>ncol (mtcars)

Output

The output shows the number of columns in the “mtcars” dataset.
>ncol (mtcars)

[1]

11

37

38 Data Analytics using R

nrow() Command
nrow () command returns the number of rows in the given dataset.

Example
>nrow (mtcars)

Output
The output shows the number of rows in the “mtcars” dataset.

>nrow (mtcars)
[1] 32

edit() Command

edit () command helps with the dynamic editing or data manipulation of a dataset. When
this command is invoked, a dynamic data editor window opens with a tabular view of
the dataset. Hereafter, the required changes to the dataset can be made.

Example
>edit (mtcars)

Output
The output shows the changes made in the first row of the “mtcars” dataset.

> edit (mtcars)
mpg cyl disp hp drat wt gsec vs amgear carb

Mazda RX4 UPDATED 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 O 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 O 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 O 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 O 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 O 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 O 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 O 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 O 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 O 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 O 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 O 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 O 3 4
Lincoln Continentall0.4 8 460.0 215 3.00 5.424 17.82 0 O 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 O 3 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 O 3 1
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 O 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 O 3 2
Camaro 728 13.3 8 350.0 245 3.73 3.840 15.41 0 O 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 O 3 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

Getting Started with R 39

TIP The modified dataset should be stored in a new variable. For example, it is a good practice to
call the edit () method as micars_new = edil(mlcars).

fix() Command

fix () command saves the changes in the dataset itself, so there is no need to assign any
variable to it.

Example

> fix (mtcars)
> View (mtcars)

Output

File Edit Code View Plots Session Build Debug Tools Help
Q- &2 - | & |[A Gotofiletunction) | B8 ~| Addins ~
[mtcars x|
&l | V Fitter
mpg “|cyl ~ disp * hp “ldrat * wt “ . gsec * vs * | am ~ | gear - carb
Mazda RX4 UPDATED 21.0 6 160.0 10 3.90 2.620 16.46 o 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 228 4 108.0 93 3.85 2320 18.61 1 1 4 1
Hornet 4 Drive 214 6 258.0 10 3.08 3.215 19.44 1 o 3 1
Hornet Sportabout 18.7 8 360.0 175 3.8 3.440 17.02] o 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 o 3 1
Duster 360 143 8 360.0 245 3.21 3.570 15.84 o o 3 4
Merc 240D 244 4 146.7 62 3.69 3.190 20.00 1 [4 2
Merc 230 228 4 140.8 95 3.92 3.150 22.90 1 o 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 o 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40] o 3 3
Merc 450SL 173 8 275.8 180 3.07 3.730 17.60 o o 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00] 0o 3 3
Cadillac Fleetwood 104 8 472.0 205 2.93 5.250 17.98 0 o 3 4
Lincoln Continental 104 8 460.0 215 3.00 5.424 17.82 o o 3 4
Chrysler Imperial 147 8 440.0 230 3.23 5.345 17.42] 0 3 4
Fiat 128 324 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 304 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71 65 4.22 1.835 19.90 1 1 4 1
Toyota Corona 215 4 1201 97 3.70 2.465 20.01 1 o 3 1
Dodge Challenger 15.5 8 318.0 150 276 3.520 16.87 o o 3 2
AMC Javelin 15.2 8 304.0 150 3.5 3.435 17.30 0 [3 2
Camaro 228 133 8 350.0 245 3.73 3.840 15.41] o 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 o o 3 2
Fiat X1-9 273 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 1203 91 443 2.140 16.70 o 1 5 2
Lotus Europa 304 4 95.1 13 3.77 1.513 16.90 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2770 15.50 0 1 S 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 o 1 5 8
Volvo 142E 21.4 4 121.0 109 40 2.780 18.60 1 1 4 2
Showing 1 to 32 of 32 entries
Console ~/ >
Maserati gora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 &
volvo 142 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
> fix(mtcars)
> view(mtcars)
>

Ficure 2.2 Viewing the “mtcars” dataset after the modifications using the View () command

40 Data Analytics using R

It shows the changes made to the first row of the dataset and the changes saved
automatically rather than being discarded as in the edit () method (Figure 2.2).

console.

TP » To read help on any command in R, the user can type “?” followed by the function name on the

data() Function

The data () function lists the available datasets.

Syntax
> data()

Output

Data sets in package ‘datasets’:

AirPassengers Monthly Airline Passenger Numbers 1949-1960
BJsales Sales Data with Leading Indicator
BJsales.lead (BJsales)

Sales Data with Leading Indicator

BOD Biochemical Oxygen Demand

Cco2 Carbon Dioxide Uptake in Grass Plants

ChickWeight Weight versus age of chicks on different diets

DNase Elisa assay of DNase

EuStockMarkets Daily Closing Prices of Major European Stock
Indices, 1991-1998

Formaldehyde Determination of Formaldehyde

HairEyeColor Hair and Eye Color of Statistics Students

Harman23.cor Harman Example 2.3

Harman74.cor Harman Example 7.4

Indometh Pharmacokinetics of Indomethacin

InsectSprays Effectiveness of Insect Sprays

JohnsonJohnson Quarterly Earnings per Johnson & Johnson Share

LakeHuron Level of Lake Huron 1875-1972

LifeCycleSavings Intercountry Life-Cycle Savings Data

Loblolly Growth of Loblolly pine trees

Nile Flow of the River Nile

Orange Growth of Orange Trees

OrchardSprays Potency of Orchard Sprays

<

data(trees) function loads the dataset, “trees”.

Syntax
> data (trees)

Getting Started with R 41

Let us look at the data held in the trees dataset.

> trees
Girth Height Volume

1 8.3 70 10.3
2 8.6 65 10.3
3 8.8 63 10.2
4 10.5 72 16.4
5 10.7 81 18.8
6 10.8 83 19.7
7 11.0 66 15.6
8 11.0 75 18.2
9 11.1 80 22.6
10 11.2 75 19.9
11 11.3 79 24.2
12 11.4 76 21.0
13 11.4 76 21.4
14 11.7 69 21.3
15 12.0 75 19.1
16 12.9 74 22.2
17 12.9 85 33.8
18 13.3 86 27.4
19 13.7 71 25.7
20 13.8 64 24.9
21 14.0 78 34.5
22 14.2 80 31.7
23 14.5 74 36.3
24 16.0 72 38.3
25 16.3 77 42.6
26 17.3 81 55.4
27 17.5 82 55.7
28 17.9 80 58.3
29 18.0 80 51.5
30 18.0 80 51.0
31 20.6 87 77.0

This dataset provides measurements of the girth, height and volume of timber in 31
felled blackberry trees.
Let us look at the summary of analysis on this dataset.

> summary (trees)

Girth Height Volume
Min. : 8.30 Min. :63 Min. :10.20
1st Qu. :11.05 1st Qu.:72 1st Qu.:19.40
Median :12.90 Median :76 Median :24.20
Mean :13.25 Mean 176 Mean :30.17
3rd Qu. :15.25 3rd Qu. :80 3rd Qu.:37.30
Max. :20.60 Max. : 87 Max. :77.00

Let us visualise this by plotting a scatter plot between the variables of the trees dataset
(Figure 2.3).

>plot (trees, col="red", pch=16,main="scatter plot b/w variables of trees")

42 Data Analytics using R

scatter plot b/w variables of trees

65 70 75 80 85

9 . o° . o b
2 - .$: :o .o. o. o‘o
2 ;.o . HEight ;o .
o o. e ° .o.. °
0 O | e
e ®o0 B
L] L] - 8
L iy " Volume L
.‘ .. °
) ° ° ® L - 8
.bo . . .o'. LI |
e ° = ‘O_

=
T T T 1 11 UL L L
8 10 12 14 16 18 20

Fiure 2.3 Scatter plot between the variables of the trees dataset

save.image () Function

save.image () function writes an external representation of R objects to the specified
file. At a later point in time when it is required to read back the objects, one can use the
load or attach function.

Syntax
save.image(file = “.RData”, version = NULL, ascii = FALSE, safe = TRUE)

The file is to be given an extension of RData.
Note: The “R” and “D” in “RData” should be in capitals.

If ascii = TRUE, will save an ascii representation of the file. The default is ascii = FALSE.
With ascii being set to false, a binary representation of the file is saved.

Getting Started with R 43

version is used to specify the current workspace format version. The value of NULL
specifies the current default format.

safe is set to a logical value. A value of TRUE means that a temporary file is used to
create the saved workspace. This temporary file is renamed to file if the save succeeds.

Ans:

Ans:

Ans:

e Data type essentially means the kind of value which can be stored, such as boolean, numbers,
characters, etc. In R, however, variables are not declared as data types. Variables in R are used to
store some R objects and the data type of the R object becomes the data type of the variable.

Check Your Understanding

What are the differences between the head () and tail () commandsin R?
The head () command shows records from the start of the dataset, whereasthe tail ()
command shows records from the end of the dataset.

What does the data () function help with?
The data () function lists the available datasets.

What is nrow () function?
nrow () command returns the number of rows in a given dataset.

e 1s () function lists all the objects in the working environment.
e class () function reveals the data type.
e typeof () function checks the data type.
e data () function lists the available datasets.
Key TERMS
e dir():dir () function returns a character e setwd(): setwd() command resets the
vector of the names of files or directories in current working directory to another loca-
the named directory. tion as per the user’s preference.
e getwd():getwd () command returns the e typeof (): typeof () function is used to
absolute file path of the current working check the data type.

directory. This function has no arguments.

44 Data Analytics using R

‘ PrAcTIiCAL EXERCISES

1. BOD is an inbuilt data set in R. The output of the command View (BOD) is given below.
What will be done by the code given below? Explain.

>View (BOD)

=] | &1 | 7 Filter

Time -~ demand -
1 1 83
2 2 103
3 3 19.0
4 4 16.0
5 5 15.6
6 7 19.8

>nrow (BOD)

2. What will be done by the following code?
>head (BOD, n=3)

3. What will be the output of the following codes?
(a) The code is:
> summary (mtcars$mpg)
(b) The code is:
>summary (c(3,2,1,2,4,6))
(c) The code is:
>str(c(1,2,3,4))
(d) The code is:

>str (c (“Mon”, “Tue”,”Wed”,”Thurs”))

(e) The code is:
>head (c (“Mon”, “Tue”,”Wed”,”Thurs”),?2)

(f) The code is:
>tail (¢ (“Mon”, “Tue”,”Wed”,”Thurs”),2)

(g) The code is:
class (76.25L)

Chapter

Loading and Handling Data in R

LEARNING OUTCOME

Al the end of this chapler, you will be able to:

» Store data of varied data types into vectors, matrixes, and lists
» Load data from .csv, spreadsheets, web, Jason documents, and XML
» Deal with missing or invalid values

» Run R functions on the data (sum(), min (), max (), rep(), grep(), substr (),
strsplit(), etc.)

» Use R with databases such as MySQL, PostgreSQL, SQLlIite, and JasperDB

» Create visualisations to help with deeper understanding of data

3.1 INTRODUCTION

Enterprise applications today generate a huge amount of data. This data is analysed to
draw useful insights that can help decision makers make better and faster decisions. This
chapter introduces the different data types such as numbers, text, logical values, dates,
etc., supported in R. It also describes various R objects such as vector, matrix, list, dataset,
etc., and how to manipulate data using R functions such as sum (), min (), max(), rep()
and string functions such as substr (), grep(), strsplit(), etc. It exploresimport of
data into R from .csv (comma separated values), spreadsheets, XML documents, JASON
(Java Script Object Notation) documents, web data, etc., and interfacing R with databases
such as MySQL, PostGreSQL, SQLlite, etc. There are quite a few challenges in analysing

46 Data Analytics using R

data. For instance, data is not always homogeneous, i.e. it comes from varied sources and
in different formats. Ensuring data quality can pose several challenges. Stakeholders also
view data from many perspectives and may have different requirements from it.

3.2 CHALLENGES OF ANALYTICAL DATA PROCESSING

Analytical data processing is a part of business intelligence that includes relational database,
data warehousing, data mining and report mining. It is a computer processing technique
that handles different types of business processing practices like sales, budgeting, financial
reporting, management reporting, etc. All these processing techniques require big data.

Business analytics combines big data with technology. Different challenges occur
during business data analytics. However, most of these challenges are mainly associated
with data and they arise during the early stages of projects. Some of these challenges are
explained ahead.

3.2.1 Data Formats

Data is the main element of business analytics. Business analytics uses sets of data to store
a large amount of data. Selecting a data format is the first challenge in analytical data
processing for researchers or developers. Analytical data processing requires a complete
set of data, in the absence of which, developers can expect problems in further processing.

R is a well-documented programming language that stores data in the form of an
object. It has a very simple syntax that helps in processing any type of data. R provides
many packages and features such as open database connectivity (ODBC), which process
different types of data formats. For example, ODBC supports data formats such as CSV,
MS Excel, SQL, etc.

3.2.2 Data Quality

Maintaining data quality is another challenge in analytical data processing. Business
analysts are required to deliver perfect information, inferences, outliers and output
without any missing or invalid value. A data with inferior input or output is bound to
give incorrect quality results.

With the help of R, business analysts can maintain data quality. Different tools of R
help business analysts in removing invalid data, replacing missing values and removing
outliers in data.

3.2.3 Project Scope

Projects based on analytical data processing are costly and time consuming. Hence, before
starting a new project, business analysts should analyse the scope of the project. They
should identify the amount of data required from external sources, time of delivery and
other parameters related to the project.

Loading and Handling Data in R 47

3.2.4 Output Result via Stakeholder Expectation Management

In analytical data processing, analysts design projects that generate output with different
types of values like p-value, the degree of freedom, etc. However, users or stakeholders
prefer to see the output. The stakeholders do not want to see the constraints used in
data processing, assumptions, hypothesis, p-values, chi-square value or any other value.
Hence, an analytical project should try to fulfil all the expectations of the stakeholders.

Business analysts should use transparent methods and processes. They should also
validate the data using cross validation. If business analysts use the standard steps of
analytical data processing that generate the perfect output, they will not encounter any
problems. Data input, processing, descriptive statistics, visualisation of data, report
generation and output form the sequence of analytical data processing that analysts should
follow while conducting business analysis for their project.

Check Your Understanding

1. What is analytical data processing?
Ans: Analytical data processing is a part of business intelligence that includes relational
database, data warehousing, data mining and report mining.

2. List the challenges of analytical data processing.
Ans: Some challenges of analytical data processing are:
Data formats
Data quality
Project scope
Output results via stakeholder expectation management.

3. What are the common steps of analytical data processing?
Ans: Data input, processing, descriptive statistics, visualisation of data, report generation
and output are the common steps of analytical data processing.

3.3 EXPRESSION, VARIABLES AND FUNCTIONS

Let us get familiar with the R interface. We will start out by practicing expressions,
variables and functions.

3.3.1 Expressions

Look at a few arithmetic operations such as addition, subtraction, multiplication, division,
exponentiation, finding the remainder (modulus), integer division and computing the
square root as given in Table 3.1.

48 Data Analytics using R

TABLE 3.1 Arithmetic operations

Operation Operator Description Example
Addition X+y y added to x >4+ 8

[1] 12
Subtraction xX-y y subtracted from x > 10 -3

[1] 7
Multiplication x*y x multiplied by y > 7 * 8

[1] 56
Division x/y x divided by y < 8/3

[1] 2.666667
Exponentiation xNy x raised to the power y >2 75

ap B y [1] 32
Or

>2 ** 5

[1] 32
Modulus x %% y Remainder of (x divided by y) > 5 %% 3

[1] 2
Integer Division X%/ %oy x divided by y but rounded down > 5 %/% 2

[1] 2
Computing the Square Root sqrt(x) Computing the square root of x > sqrt (235)

[1] 5

3.3.2 Logical Values

Logical values are TRUE and FALSE or T and F. Note that these are case sensitive. The
equality operator is ==.
8 < 4

FALSE

* 2 ==

FALSE

* 2 ==

TRUE

== FALSE

TRUE

== TRUE

TRUE

\4
—

=

=

— V=V = V= Ve
= =

Guided Activity

Step 1: Create a vector, x consisting of 10 elements with values ranging from 1 to 10. Section
3.5 of this chapter deals with creation, accessing vector elements and vector arithmetic,
etc.

> X <= c(1:10)

Loading and Handling Data in R 49

Step 2: Display the contents of the vector, x.
> x
(1] 1.2 3 4 5 6 7 8 9 10

Step 3: Print the values of those elements whose values are either greater than 7 or less
than 5.

“1”is the OR operator. Use the OR operator to display elements whose values are either
greater than 7 or less than 10.

> x[(x>7) | (x<5)]
(1] 1 2 3 4 8 9 10

Explanation

Part (i) Display “TRUE’ for elements whose values are more than 7, else display ‘FALSE’.
> x>7
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
Part (ii) Display “TRUE’ for elements whose values are less than 5, else display ‘FALSE’.
> x<5
[1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

Step 4: Print the values of those elements whose values are greater than 7 and less than 10.
‘&’ is the AND operator. Use the AND operator to display elements whose values are
greater than 7 and less than 10.

> x[(x>7) & (x<10)]
[1] 8 9

3.3.3 Dates

The default format of date is YYYY-MM-DD.

(i) Print system’s date.
> Sys.Date ()
[1] “2017-01-13"
(ii) Print system’s time.
> Sys.time ()
[1] “2017-01-13 10:54:37 IST”
(iii) Print the time zone.
> Sys.timezone ()
[1] “Asia/Calcutta”
(iv) Print today’s date.

> today <- Sys.Date()

> today

[1] “2017-01-13"

> format (today, format = “%B %d %Y”)
[1] “January 13 2017”

(v)

(vi)

(vii)

(viii)

(ix)

Data Analytics using R

Store date as a text data type.

> CustombDate = “2016-01-13"
> CustomDate

[1] “2016-01-13"

> class (CustomDate)

[1] “character”

Convert the date stored as text data type into a date data type.

> CustDate = as.Date(CustomDate)
> class (CustDate)
[1] “Date”
> CustDate
[1] “2016-01-13"
Find the difference between the following two dates.
> strDates <- ¢ (“08/15/1947”, “01/26/1950")

Convert strings into date format.
> dates = as.Date(strDates, “%$m /%d /%Y”)
> dates
[1] “1947-08-15" “1950-01-26"

Compute the difference between the two dates.

> dates([2] - dates|[1l]
Time difference of 895 days

3.3.4 Variables

(i)

(ii)

(iii)

(iv)

Assign a value of 50 to the variable called “Var’.
> Var <-50
Or
> Var=>5
Print the value in the variable, “Var’.
> Var
[1] 50
Perform arithmetic operations on the variable, “Var’.
> Var + 10

[1] 60
> Var / 2
[1] 25

Variables can be reassigned values either of the same data type or of a different data

type.

Reassign a string value to the variable, “Var’.

> Var <- “R is a Statistical Programming Language”

Loading and Handling Data in R 51

Print the value in the variable, “Var’.
> Var
[1] “R is a Statistical Programming Language”
(v) Reassign a logical value to the variable, “Var’.

> Var <- TRUE
> Var
[1] TRUE

3.3.5 Functions

In this section we will try out a few functions such as sum (), min(), max() and seq().

sum () function

sum () function returns the sum of all the values in its arguments.

Syntax
sum(..., na.rm = FALSE)
where ... implies numeric or complex or logical vectors.

na,rm accepts a logical value. Should missing values (including NaN (Not a Number))
be removed?

Examples
(i) Sum the values ‘1", 2" and ‘3" provided as arguments to sum ()
> sum(l, 2, 3)
[1] 6
(i) What will be the output if NA is used for one of the arguments to sum () ?
> sum(l, 5, NA, na.rm=FALSE)
[1] NA
If na.rm is FALSE, an NA or NaN value in any of the argument will cause NA or
NaN to be returned.
(iii) What will be the output if NaN is used for one of the arguments to sum () ?
> sum(l, 5, NaN, na.rm= FALSE)
[1] NaN
(iv) What will be the output if NA and NaN are used as arguments to sum () ?
> sum(l, 5, NA, NaN, na.rm=FALSE)
[1] NA
(v) What will be the output if option, na.rm is set to TRUE?
If na.rm is TRUE, an NA or NaN value in any of the argument will be ignored.
> sum(l, 5, NA, na.rm=TRUE)
(1] ¢
> sum(l, 5, NA, NaN, na.rm=TRUE)
[1] ©

52 Data Analytics using R

min () function
min () function returns the minimum of all the values present in their arguments.
Syntax

min (.., na.rm=FALSE)

where ... implies numeric or character arguments and na.rm accepts a logical value.
Should missing values (including NaN) be removed?

Example

> min(1l, 2, 3)
[11 1

If na.rm is FALSE, an NA or NaN value in any of the argument will cause NA or NaN
to be returned.

> min(1l, 2, 3, NA, na.rm=FALSE)

[1] NA

> min(l, 2, 3, NaN, na.rm=FALSE)

[1] NaN

> min(l, 2, 3, NA, NaN, na.rm=FALSE)
[1] NA

If na.rm is TRUE, an NA or NaN value in any of the argument will be ignored.
> min(l, 2, 3, NA, NaN, na.rm=TRUE)
[1] 1
max () function
max () function returns the maximum of all the values present in their arguments.
Syntax
max (.., na.rm=FALSE)
where ... implies numeric or character arguments
na.rm accepts a logical value. Should missing values (including NaN) be removed?
Example

> max (44, 78, 66)
[1] 78

If na.rm is FALSE, an NA or NaN value in any of the argument will cause NA or NaN
to be returned.

Loading and Handling Data in R 53

> max (44, 78, 66, NA, na.rm=FALSE)

[1] NA

> max (44, 78, 66, NaN, na.rm=FALSE)

[1] NaN

> max (44, 78, 66, NA, NaN, na.rm=FALSE)
[1] NA

If na.rm is TRUE, an NA or NaN value in any of the argument will be ignored.

> max (44, 78, 66, NA, NaN, na.rm=TRUE)
[1] 78

seq() function

seq () function generates a regular sequence.

Syntax
seq(start from, end at, interval, length.out)
where,
Start from: It is the start value of the sequence.
End at: It is the maximal or end value of the sequence.
Interval: It is the increment of the sequence.
length.out: It is the desired length of the sequence.

Example
> seq(l, 10, 2)
[r; 1 3 5 7 9

> seqg(l, 10, length.out=10)
[ty » 2 3 4 5 6 7 8 9 10

(ry » 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

> seq len(18)

(1171 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
> seqg(l, 6, by=3)
[1] 1 4

3.3.6 Manipulating Text in Data

There are many inbuilt string functions available in R that manipulate text or string.
Finding a part of some text string, searching some string in a text or concatenating strings
and other similar operations come under manipulating text operation. Table 3.2 explains
some useful text manipulation operations.
Let us take a look at how R treats strings.
String values have to be enclosed within double quotes.
> “R is a statistical programming language”
[1] “R is a statistical programming language”

54 Data Analytics using R

TABLE 3.2 Text manipulation of inbuilt functions of R

Functions Function Arguments

substr (a, °
start stop) °

strsplit (a, .
split, ..) °

paste (.., sep= e

YV) o

grep (pattern, e
a)

toupper (a) °

tolower (a) °

a is a character vector.
Start and stop arguments contain a
numeric value.

a is a character vector.

Split is also a character vector that
contains a regular expression for
splitting.

The dots “...” define R objects.

sep argument is a character string
for separating objects.

Pattern argument contains a
matching pattern.
a is a character vector.

a is a character vector.

a is a character vector.

Description

The function returns a part of the string be-
ginning from the start argument and ending
at the stop argument.

The function splits the given text string into
substrings.

The function concatenates string vectors after
converting the objects into strings.

The function returns string after searching for
a text pattern into a given text string.

The function converts a string into uppercase.

The function converts a string into lowercase.

Figure 3.1 describes the strsplit () and grep () in the R workspace

IR RGui (64-bit)

(211

[[11]

(1211

[1] 1

> |

<

File Edit View Misc Packages Windows Help

(=l &[afo] 6] (&)

[1] "siness"

> # splitting text

> strsplit (c("MySQL", "SQLite")," ")
[[1]]
[1] "MySQL"

[1] "sQLite"
> strsplit (c("MySQL", "SQLite"),"")

[1] "M "yn ngn nQn nym

[1] "s"™ nwQ™ wLw min wgw maow

> # searching strings
> grep('ness', "Business")

> grep('abc', "Business")
integer (0)

> a <- "R language"

> b <- "is open source language"
> # Concatenating

> paste(a,b)

[1] "R language is open source language"

Ficure 3.1 Examples of string functions

Loading and Handling Data in R 55
Few string functions are explained in detail as follows.

rep () function

rep () function repeats a given argument for a specified number of times. In the example
below, the string, ‘statistics’ is repeated three times.

Example
> rep(“statistics”, 3)
[1] “statistics” “statistics” “statistics”

grep () function

In the example below, the function grep () finds the index position at which the string,
‘statistical” is present.

Example
> grep(“statistical”,c(“R”,
fixed=TRUE)
[1] 4

AN N 7

is”,“a”,“statistical”, “language”),

toupper () function

toupper () function converts a given character vector into upper case.

Syntax
toupper (x)
X — is a character vector

Example

> toupper (“statistics”)
[1] “STATISTICS”
Or
> casefold (“r programming language”, upper=TRUE)
[1] “R PROGRAMMING LANGUAGE”

tolower () function

tolower () function converts the given character vector into lower case.

Syntax
tolower (x)

X — is a character vector

Example

> tolower ("STATISTICS"”)
[1] “statistics”

56 Data Analytics using R

Or
> casefold ("R PROGRAMMING LANGUAGE”, upper=FALSE)
[1] “r programming language”

substr () function

substr () function extracts or replaces substrings in a character vector.

Syntax
substr (x, start, stop)
X — character vector

start — start position of extraction or replacement
stop — stop or end position of extraction or replacement

Example
Extract the string “tic”’ from “statistics’. Begin the extraction at position 7 and continue the
extraction till position 9.

> substr (“statistics”, 7, 9)
[1] \\ticll

3.4 MissiNG VALUES TREATMENT IN R

During analytical data processing, users come across problems caused by missing and
infinite values. To get an accurate output, users should remove or clean the missing values.
In R, NA (Not Available) represents missing values and Inf (Infinite) represents infinite
values. R provides different functions that identify the missing values during processing
(Table 3.3).

TABLE 3.3 Functions for handling missing values

Functions | Function Arguments Description
is.na(x) x is an R object to be tested. The function checks the object and
returns true if data is missing.

na.omit x is an R object from which NA needs to be The function returns the object after
(%,) removed. removing missing values from it.

The dots “...” define the other optional argument.
na.exclude yijsan R object from which NA needs to be The function returns the object after
(x,) removed. removing missing values from it.

The dots “...” define the other optional argument.
na.fail The package provides the functions for accessing all The function will encounter an error if
(%,) APIs. the object contains any missing values

and will return the object if it does not
contain any missing value.

na.pass x is an R object from which NA needs to be removed. The function returns the unchanged
(%,) The dots “..." define the other optional argument. object.

Loading and Handling Data in R 57

The following example creates a vector ‘A’ with some missing values [10, 20, NA,
40] (Figure 3.2). The is.na(a) returns TRUE for the missing value. The na.omit (a)
and na.exclude () removes the missing value and stores it into vector ‘B” and ‘D,
respectively. The na.fail(A) generates an error if A has some missing value. The
na.pass (A) returns the usual vector A.

R RGui (64-bit)
File Edit View Misc Packages Windows Help

BRG]

> # handling missing values
> A <- c¢(10,20,NA, 40)
> A

[1] 10 20 NA 40

>

> is.na(A) # checking missing values

[1] FALSE FALSE TRUE FALSE

>

> B <- c(na.omit (A)) # removing missing value from A and storing it into vector B
> B

[1] 10 20 40

>

> D <- c(na.exclude(A)) # removing missing value from A and storing it into vector D
> D

[1] 10 20 40

>

> na.fail (A) # genarates error if A has some missing values
Error in na.fail.default(A) : missing values in object

>

> E <- c(na.pass(A))

> E

[1] 10 20 NA 40

> na.pass (A)

[1] 10 20 NA 40

>

Ficure 3.2 Handling missing values

3.5 UsING THE ‘AS’ OPERATOR TO CHANGE THE STRUCTURE OF DATA

Sometimes analytical data processing requires data conversion from one data format
into another. Generally, analytical data processing stores data in a table format, wherein
it requires only some part of the table or another structure to store the table’s data. In
this case, R can convert the structure of the table into other structures like factor, list, etc.

The operator ‘as” provides the facility to convert the structure of one dataset into another
structure in R. The syntax of using this operator is

as.objecttype (objectname)

where,

objecttype is the type of object like data.frame, matrix, list, etc. and objectname is the
name of the object that needs to be converted into another format.

58 Data Analytics using R

Also, as.numeric () and as.character () functions convert characters and numbers,
respectively.

The following example creates a data frame D using two vectors a and b (Figure 3.3).
Now the command ‘as.1ist (D)’ converts the data frame into list B. The command ‘as.
matrix (D)’ converts the data frame into a matrix.

R RGui (64-bit)
File Edit View Misc Packages Windows Help

> # creating a data frame
> D <- data.frame (a=c('A','B','C','E',"'F"'),b=c(1,2,3,4,5))
> D
ab
14 1
2 B2
3e3
4 E 4
S FS5
>
> B = as.list (D) # converting data frame into list using as operator
> B
Sa

[1] ABCETF
Levels: ABCE F
$b

[11 12345

> as.matrix (D) # into matrix form
a b

(1,1 "a" niv

(2,1 "B" "2nw

[3,] "c" n3n
[4,] "E" "g"
[51'] ngpn uwgn

< >

Ficure 3.3 Use of ‘as’ operator

Check Your Understanding

1. Whatis the na.omit () function?
Ans: The na.omit () function is an inbuilt function of R that returns the object after
removing missing values from: it.

2. Whatis the na.exclude () function?
Ans: The na.exclude () function is an inbuilt function of R that returns the object after

removing missing values from it.

(Continued)

Loading and Handling Data in R 59

3. Whatisna.fail () function?
Ans: The na.fail () function is an inbuilt function of R that shows an error if the object
contains any missing value and returns the object if it does not contain any missing
value.

4. Which function is used for checking missing values in an R object?
Ans: The is.na () is used for checking missing values in an R object. The function checks
the object and returns true if data is missing.

5. What is the use of ‘as’ operator?
Ans: ‘as’ operator converts the structure of one dataset into another structure using R.

3.6 VECTORS

A vector can have a list of values. The values can be numbers, strings or logical. All the
values in a vector should be of the same data type.
A few points to remember about vectors in R are:
e Vectors are stored like arrays in C
e Vector indices begin at 1
o All vector elements must have the same mode such as integer, numeric (floating
point number), character (string), logical (Boolean), complex, object, etc.
Let us create a few vectors.
1. Create a vector of numbers
> c(4, 7, 8)
[1] 4 7 8
The c¢ function (c is short for combine) creates a new vector consisting of three
values, viz. 4, 7 and 8.
2. Create a vector of string values.
> C(“R”, “SAS”, “SPSS”)
[1] “R” “SAS” “SPSS”
3. Create a vector of logical values.
> c(TRUE, FALSE)
[1] TRUE FALSE
A vector cannot hold values of different data types. Consider the example below on
placing integer, string and Boolean values together in a vector.
> c(4, 8, “R”, FALSE)
[1] \\4,’ \\8,’ \\RII \\FALSEII

TIP » All the values are converted into the same data lype, i.e. ‘character”.

60 Data Analytics using R

4. Declare a vector by the name, ‘Project” of length 3 and store values in it.
> Project <- vector(length = 3)
> Project [1] <- “Finance Project”
> Project [2] <- “Retail Project”
> Project [3] <- “Energy Project”

Outcome

> Project

[1] “Finance Project” “Retail Project” “Energy Project”
> length (Project)

[1] 3

3.6.1 Sequence Vector

A sequence vector can be created with a start:end notation.

Objective
Create a sequence of numbers between 1 and 5 (both inclusive).
> 1:5
[1] 1 2 3 45
Or
> seq(1l:5)
[1] 1 2 3 45

The default increment with seq is 1. However, it also allows the use of increments
other than 1.
> seq (1, 10, 2)
(117 1. 3 5 79
Or
> seq (from=1, to=10, by=2)
(11771 3 5 79
Or
> seq (1, 10, by=2)
[11 1 357 9
seq can also generate numbers in the descending order.
> 10:1
[1] 10 987 654321
> seq (10, 1, by=-2)
[1] 10 8 6 4 2

3.6.2 rep function

The rep function is used to place the same constant into long vectors. The syntax is rep
(z,k), which creates a vector of k*length(z) elements, each equals to z.

Loading and Handling Data in R 61

Objective

Demonstrate rep function.

Act

3.6.3 Vector Access
Objective

Let us create a variable, “VariableSeq” and assign to it a vector consisting of string values.
> VariableSeqg <- ¢ (“R”, “is”, “a”, “programming”, “language”)

Objective

To access values in a vector, specify the indices at which the value is present in the vector.
Indices start at 1.

> VariableSeqg[1l]
[1] “R”

> VariableSeqg[2]
[1] “Nig”

> VariableSeq[3]
[1] “a”

> VariableSeq[4]
[1] “programming”
> VariableSeqg[5]
[1] “language”

Objective
Assign new values in an existing vector. For example, let us assign value, ‘good

programming’ at indices 4 in the existing vector, “VariableSeq’.
> VariableSeqg[4] <- “good programming”

Outcome

> VariableSeq[4]
[1] “good programming”

Objective
To access more than one value from the vector.
(@) Access the first and the fifth element from the vector, “VariableSeq’.

> VariableSeqg[c (1, 5)]
[1] \\R,’ \\languagell

62 Data Analytics using R

(b) Access first to the fourth element from the vector, “VariableSeq’.
> VariableSeqg[1l:4]
[1] \\R/I \\isll \\all \\good programmingll
(c) Access the first, fourth and the fifth element from the vector, ‘VariableSeq'.
> VariableSeqglc(l, 4:5)]
[1] “R” “good programming” “language”
(d) Retrieve all the values from the variable, “VariableSeq’

> VariableSeqg
[1] “R” “is” “a” “good programming
[5] “language”

”

3.6.4 Vector Names

The names () function helps to assign names to the vector elements.
This is accomplished in two steps as shown:

> placeholder <- 1:5
> names (placeholder) <- c(“r”, “is”, “a

”
14

“programming”, “language”)
The vector elements can then be retrieved using the indices position.
> placeholder
r is a programming language
1 2 3 4 5
> placeholder [3]
a
3
> placeholder [1]
r
1
> placeholder([4:5]
programming language
4 5
Or
> placeholder [“programming”]
programming
4

Objective
Plot a bar graph using the barplot function. The barplot function uses a vector’s values
to plot a bar chart.

Act

The vector used is called BarVector.

> BarVector <- c(4, 7, 8)
> barplot (BarVector)

Loading and Handling Data in R 63

Outcome

Let us use the name function to assign names to the vector elements. These names will
be used as labels in the barplot.

> names (BarVector) <- c¢(“India”, “MiddleEast”, “US”)
> barplot (BarVector)

India MiddleEast US

3.6.5 Vector Math

Let us define a vector, 'x” with three values. Let us add a scalar value (single value) to
the vector. This value will get added to each vector element.

64 Data Analytics using R

However, the vector will retain its individual elements.

> X
[1] 4 7 8

If the vector needs to be updated with the new values, type the statement given below.
> x <- x + 1
> x
[1] 58 9

We can run other arithmetic operations on the vector as given:
> x - 1

Other arithmetic operations are:
y

6 6
y
16 27

if the two vectors are equal. The comparison takes place element by element.

> —_
[1] 4
> *
[5

i
=
N
w

-0.9589243 0.9893582 0.4121185

3.6.6 Vector Recycling

If an operation is performed involving two vectors that requires them to be of the same
length, the shorter one is recycled, i.e. repeated until it is long enough to match the longer
one.

Loading and Handling Data in R 65
Objective

Add two vectors wherein one has length, 3 and the other has length, 6.
> c(l, 2, 3) + c(4, 5, 6, 7, 8, 9)
[1] 5 7 9 8 10 12

Objective

Multiply the two vectors wherein one has length, 3 and the other has length, 6.
>c(l, 2, 3) * c(4, 5, 6, 7, 8, 9)
(11 4 10 18 7 16 27

Objective

Plot a Scatter Plot. The function to plot a scatter plot is ‘plot’. This function uses two
vectors, i.e. one for the x axis and another for the y axis. The objective is to understand the
relationship between numbers and their sines. We will use two vectors. Vector, x which

will have a sequence of values between 1 and 25 at an interval of 0.1 and vector, y which
stores the sines of all values held in vector, x.

> x <-seqg(l, 25, 0.1)
> y <-sin(x)
The plot function takes the values in the vector, x and plots it on the horizontal axis. It

then takes the values in the vector, y and places it on the vertical axis (Figure 3.4).
> plot(x, y)

o]
=7 & £) £
) o) S o
© o o ©° [s 9
° o ©° o o o 3
o o © o o o 5
o o O [P Oo
v]) o o
o e 9 o o
o
] o o o o °
[o] o (o]
) ° o o
° o o o ° ° »
(e} o e o o o &
o
>g_) ° °) ° "
o o o o ° ° ° 6
o o o o) ° o] 4 o
° o o o ° o o o
o ° ° o ° ° o o
0| 2 o o 0 o ° °
Q o o o © o © o
° ° o
° o o © o o .o
o o o © o © s £
go Og o°° ° o
Oo (e} 9 o
o ¥ tH
<
'

Ficure 3.4 Scatter plot

66 Data Analytics using R
3.7 MATRICES
Matrices are nothing but two-dimensional arrays.

Objective
Let us create a matrix which is 3 rows by 4 columns and set all its elements to 1.
> matrix (1, 3, 4)

[, 1] [, 2] [, 3] [, 4]

(1, 1] 1 1 1 1

(2, 1] 1 1 1 1

(3, 1] 1 1 1 1
Objective

Use a vector to create an array, 3 rows high and 3 columns wide.

Step 1: Begin by creating a vector that has elements from 10 to 90 with an interval of 10.
> a <- seq(l0, 90, by = 10)

Step 2: Validate by printing the value of vector a.

> a
[1] 10 20 30 40 50 60 70 80 90

Step 3: Call the matrix function with vector, ‘a’ the number of rows and the number of
columns.

> matrix (a, 3, 3)
[, 1] [, 2] [, 3]
(1, 1] 10 40 70
[2, 1 20 50 80
[3, 1] 30 60 90
Objective

Re-shape the vector itself into an array using the dim function.

Step 1: Begin by creating a vector that has elements from 10 to 90 with an interval of 10.
(10, 90, by = 10)
Step 2: Validate by printing the value of vector, a.
> a
[1] 10 20 30 40 50 60 70 80 90
Step 3: Assign new dimensions to vector, a by passing a vector having 3 rows and 3
columns (c (3, 3)).
> dim(a) <-

> a <- seq

c(3, 3)

Step 4: Print the values of vector, a. You will notice that the values have shifted to form 3
rows by 3 columns. The vector is no longer one dimensional. It has been converted into
a two-dimensional matrix that is 3 rows high and 3 columns wide.

[,

1]
10
20
30

2]
40
50
60

3]
70
80
90

3.7.1 Matrix Access
Objective

Access the elements of a 3 *4 matrix.

Loading and Handling Data in R

Step 1: Create a matrix, ‘mat’, 3 rows high and 4 columns wide using a vector.

> x <-= 1:12

> X
[1] 1 2 3 4 5 6 7
> mat <- matrix (x, 3, 4)
> mat
[, 11 [, 2] [, 3] [/
[1, 1] 1 4 7
(2, 1] 2 5 8
[3, 3 6 9

4]
10
11
12

67

12

Step 2: Access the element present in the second row and third column of the matrix, ‘mat’.

> mat [2, 3]
[1] 8

Objective

Access the third row of an existing matrix.

Step 1: Let us begin by printing the values of an existing matrix, ‘mat’

> mat
[, 1] [, 2] [, 3] [/
[1, 1] 1 4 7
[2, 1] 2 5 8
[3, 1 3 6 9

4]
10
11
12

Step 2: To access the third row of the matrix, simply provide the row number and omit

the column number.

> mat [3,]
[1] 3 6 9 12

Objective

Access the second column of an existing matrix.

Step 1: Let us begin by printing the values of an existing matrix, ‘mat’

> mat

4]
10
11
12

68 Data Analytics using R

Step 2: To access the second column of the matrix, simply provide the column number
and omit the row number.

> mat[, 2]
[1] 4 5 6
Objective
Access the second and third columns of an existing matrix.

Step 1: Let us begin by printing the values of an existing matrix, ‘mat’.

> mat

[, 1] [, 2] [, 3] [, 4]
(1, 1 1 4 7 10
[2, 1 2 5 8 11
[3, 1 3 6 9 12

Step 2: To access the second and third columns of the matrix, simply provide the column
numbers and omit the row number.

> mat[,2:3]

Objective
Create a contour plot.

Create a matrix, ‘mat” which is 9 rows high and 9 columns wide and assign the value
1" to all its elements.

> mat <- matrix (1, 9, 9)
Print all the values of the matrix, ‘mat’.

> mat
[,

[—
—
~
[—
—
~
[—
—
~
[—
—
~
[—
—
~
[a—
—
~
[—
—
~
[—
—
~
[

~ 0~ 0~

~

~

~

Codau e wn e
PR R R R R
PR R R R R R R RN
PR R R R R R R W
PR R R R R R R
PR R R R R R R RO
PR R R R R R R R
PR R R R R R R e
PR PR R R R R
PR R R R R R R R o

~

]
]
]
]
]
]
]
]
]

=

Assign ‘0 as the value to the element present in the third row and third column of the
matrix, ‘mat’.

Loading and Handling Data in R 69

[
—
~
[
—
~
f—
—
~
[
—
~
[
—
~
f—
—
~
[
—
~
[

~

~

~

CEEReRE N
PR RRR R R
PR RRRRERRRPN
PR RRPRRPRPRORRPE W
PR R RR R RER RS
PR RRRPRRRERPO
PR RRRRRERPE o

e s

PR R RRP PR R o
PR RRRPRRERRPR O

~

=
=

Plot the contour chart using the contour () function (Figure 3.5). The contour ()
function creates a contour plot or adds contour lines to an existing plot. Look up the R
documentation for a complete description of the contour () function.

> contour (mat)

o
=

06

04

02
I

0.0
I

0.0 0.2 04 06 0.8 1.0
Ficure 3.5 Contour plot

Objective
Create a 3D perspective plot with the persp () function (Figure 3.6). It provides a 3D
wireframe plot most commonly used to display a surface.

>persp (mat)

We can add a title to our plot with the parameter ‘main’. Similarly, ‘xlab’, ‘ylab” and
‘zlab’ can be used to label the three axes. Coloring of the plot is done with parameter ‘col’.
Similarly, we can add shading with the parameter ‘shade’.

70 Data Analytics using R

mat

Ficure 3.6 3D perspective plot

Objective

R includes some sample data sets. One of these is ‘volcano’, which is a 3D map of a
dormant New Zealand volcano. Create a contour map of the volcano dataset (Figure 3.7).

> contour (volcano)

<
-

04

0.2

00

| T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Ficure 3.7 Contour map

Loading and Handling Data in R n

Let us create a 3D perspective map of the sample data set, “volcano” (Figure 3.8).

> persp(volcano)

volcano
Ficure 3.8 3D perspective map of the sample data set, 'volcano’

Objective
Create a heat map of the sample dataset, ‘volcano” (Figure 3.9).

> image (volcano)

=
—

08

06

04

02

o
o
0.0 0.2 04 06 0.8 1.0

Ficure 3.9 Heat map of the sample dataset, 'volcano’

72 Data Analytics using R
3.8 FAcrors

3.8.1 Creating Factors

School, ‘XYZ’ places students in groups, also called houses. Each group is assigned a
unique color such as ‘red’, ‘green’, ‘blue” or “yellow’. HouseColor is a vector that stores
the house colors of a group of students.
> HouseColor <- c(‘red’, ‘green’, ‘blue’, ‘yellow’, red’, ‘green’, ‘blue’, ‘blue’)
> types <- factor (HouseColor)
> HouseColor
[1] \\redll \\greenll \\bluell \\yellOwII \\redll \\greenll \\bluell \\bluell
> print (HouseColor)
[l] \\red// \\green// \\bluell \\yellowll \\red// \\greenlf \\blue// \\bluelf
> print (types)
[1] red green Dblue vyellow red green blue Dblue
Levels: blue green red yellow
Levels denotes the unique values. The above has four distinct values such as ‘blue’,
‘green’, ‘red” and ‘yellow’.
> as.integer (types)
[1] 32143211
The above output is explained as given below.

1 is the number assigned to blue.

2 is the number assigned to green.
3 is the number assigned to red.

4 is the number assigned to yellow.

> levels (types)
[1] “blue” “green” “red” “yellow”

The vector ‘NoofStudents” stores the number of students in each house/group with
12 students in blue house, 14 students in green house, 12 students in red house and 13
students in yellow house.

> NoofStudents <- ¢ (12, 14, 12, 13)
> NoofStudents
[1] 12 14 12 13

The vector, ‘AverageScore’ stores the average score of the students of each house/
group. 70 is the average score for students of the blue house, 80 is the average score for
students of the green house, 90 is the average score for the students of the red house and
95 is the average score for the students of the yellow house.

> AverageScore (70, 80, 90, 95)
> AverageScore
[1] 70 80 90 95

Objective
Plot the relationship between NoofStudents and AverageScore (Figure 3.10).
> plot (NoofStudents, AverageScore)

Loading and Handling Data in R 73

S o
8 o
o
o @
O
[}
[0)
(o))
ol
o o _|
z °
w0
M~
2 qo
T T T T T
120 125 13.0 135 140
NoofStudents

Ficure 3.10 Relationship between "NoofStudents" and "AverageScore"

> plot (NoofStudents, AverageScore, pch=as.integer (types))

The above graph in Figure 3.10 displays 4 dots. Let us improve the graph by at least
using different symbols to represent each house (Figure 3.11).

& X

S 4o
o W _|
5 ®
O
(9]
(9]
D
S S %
(o)]
2 [ve]

Tol

M~

S -+

T T T T T
12.0 125 130 135 140
NoofStudents

Ficure 3.11 Relationship between "NoofStudents" and "AverageScore" using different symbols.

74 Data Analytics using R

To add further meaning to the graph, let us place a legend on the top right corner
(Figure 3.12).

> legend (“topright”, c(“red”, “green”, “blue”, “yellow”), pch=1:4)

8 X
i © red
4 green
~+ blue
g 4o X yellow
0o 0 _|
5 [ee]
O
%)
Q
I
: 8 &
<
0
~
21+
T T T T T
120 125 13.0 135 14.0

NoofStudents
Ficure 3.12 Relationship between "NoofStudents" and "AverageScore" (with legends)

3.9 List

List is similar to C Struct.

Objective
Create a list in R.
To create a list, ‘emp” having three elements, ‘/EmpName’, ‘/EmpUnit” and ‘EmpSal’.
> emp <- list (“EmpName=“Alex”, EmpUnit = “IT”, EmpSal = 55000)

Outcome
To get the elements of the list, ‘emp” use the command given below.

> emp
SEmpName
[1] “Alex”

SEmpUnit
[1] \\ITII

SEmpSal
[1] 55000

Loading and Handling Data in R 75

Actually, the element names, e.g. ‘EmpName’, ‘TEmpUnit” and ‘EmpSal” are optional.
We could alternatively do this as shown below.
> EmpList <- list (“Alex”, “IT”, 55000)
> EmpList
([1]1]
[1] “Alex”

[1] 55000

TIP » Here the elements of Emplist are referred lo as 1, 2 and 3.

3.9.1 List Tags and Values

A list has elements. The elements in a list can have names, which are referred to as tags.
Elements can also have values.

For example, in the ‘emp” list we have three elements, viz. EmpName, EmpUnit and
EmpSal. The values are as follows. The element ‘EmpName’ has the value ‘Alex’, the
element ‘EmpUnit” has the value ‘IT” and the element ‘EmpSal” has the value 55000.

Let us look at the command to retrieve the names and values of the elements in a list.

Objective

Retrieve the names of the elements in the list ‘emp’.
> names (emp)
[1] “EmpName” “EmpUnit” “EmpSal”

Objective

Retrieve the values of the elements in the list ‘emp’.
> unlist (emp)
EmpName EmpUnit EmpSal
\\Alexll \\ITII \\55000//

The command to retrieve the value of a single element in the list ‘emp” is given below.

Objective

Retrieve the value of the element ‘TEmpName’” in the list ‘emp”.

> unlist (emp[“EmpName”])
EmpName
\\Alexfl

The value of the other elements in the list can be checked in a similar manner.

76 Data Analytics using R

> unlist (emp [“EmpUnit”])
EmpUnit
“IT”

> unlist (emp[“EmpSal”])
EmpSal
55000

Yet another way to retrieve the values of the elements in the list ‘emp’ is given as
follows:

Objective

Retrieve the value of the element ‘TEmpName’” in the list ‘emp’.

> emp [[“EmpName”]]
[1] “Alex”

Or
> emp[[1]]
[1] “Alex”

3.9.2 Add/Delete Element to or from a List

Before adding an element to the list ‘emp’, let us verify what elements exist in the list.
> emp
SEmpName
[1] “Alex”

SEmpUnit
[1] \\IT’I

SEmpSal
[1] 55000

Objective

Add an element with the name ‘EmpDesg” and value ‘Software Engineer’ to the list, ‘emp’.
> emp$EmpDesg = “Software Engineer”

Outcome

> emp
SEmpName
[1] “Alex”

SEmpUnit
[l] \\IT//

SEmpSal
[1] 55000

SEmpDesg
[1] “Software Engineer”

Loading and Handling Data in R 77
Objective

Delete an element with the name ‘EmpUnit” and value ‘IT” from the list, ‘emp’.
> emp$EmpUnit <- NULL

Outcome
> emp
SEmpName
[1] “Alex”
SEmpSal
[1] 55000
SEmpDesg
[1] “Software Engineer”

3.9.3 Size of a List

length () function can be used to determine the number of elements present in the list
The list, “emp” has three elements as shown:
> emp
SEmpName
[1] “Alex”

SEmpSal
[1] 55000

SEmpDesg
[1] “Software Engineer”

Objective

Determine the number of elements in the list, ‘emp’.

> length (emp)
(11 3

Recursive List

A recursive list means a list within a list.

Objective
Create a list within a list.
Let us begin with two lists, ‘emp” and ‘emp1’.
The elements in both the lists are as shown below.
> emp
SEmpName
[1] “Alex”

78 Data Analytics using R

SEmpSal
[1] 55000

SEmpDesg
[1] “Software Engineer”

> empl
SEmpUnit
[l] W/

SEmpCity
[1] “Los Angeles”

We would like to combine both the lists into a single list called ‘EmpList’.
> EmpList <- list (emp, empl)

Outcome
> EmpList
[[1]]
[[1]] SEmpName
[1] “Alex”

[[1]]S$EmpSal
[1] 55000

[[1]]SEmpDesg
[1] “Software Engineer”

(1211
[[2]]S$EmpUnit
[l] w1

[[2]]1$EmpCity
[1] “Los Angeles”

3.10 FEw CoMmMON ANALYTICAL TASKS

Reading, writing, updating and merging data are common operations in any programming
language. These are used for processing data. All programming languages work with
different types of data like numeric, characters, logical, etc. Just like any other processing,
analytical data processing also requires general operations for complex processing. In
the next section, you will learn about some common tasks of R that are required during
analytical data processing.

Loading and Handling Data in R 79

3.10.1 Exploring a Dataset

Exploring a dataset means displaying the data of the dataset in a different form. Datasets
are the main part of analytical data processing. It uses different forms or parts of the
dataset. With the help of R commands, analysts can easily explore a dataset in different
ways. Table 3.4 describes some functions for exploring a dataset.

TABLE 3.4 Functions for exploring a dataset

Functions Function Arguments Description

names (dataset)

summary (dataset)

str (dataset)

head (dataset, n)

tail (dataset, n)

class (dataset)

dim (dataset)

table (datasetS$variable
names)

Dataset argument contains
the name of the dataset.

Dataset argument contains
the name of the dataset.

Dataset argument contains
the name of the dataset.

Dataset argument contains
the name of the dataset.

n is a numeric value to
display the number of top
TOWS.

Dataset argument contains
the name of the dataset.

7 is a numeric value to
display the number of bot-
tom rows.

Dataset argument contains
the name of the dataset.

Dataset argument contains
the name of the dataset.

Dataset argument contains
the name of the dataset.
Variable name contains
the name of the variable
names.

The function displays the
variables of the given dataset.

The function displays the
summary of the given dataset.

The function displays the
structure of the given dataset.

The function displays the top
rows according to the value

of n. If the value of n is not
provided in the function then
by default the function displays
the top 6 rows of the dataset.

The function displays the top
rows according to the value

of n. If the value of n is not
provided in the function then
by default the function displays
the bottom 6 rows of the
dataset.

The function displays the class
of the dataset.

The function returns the
dimension of the dataset which
implies the total number of
rows and columns of the
dataset.

The function returns the
number of categorical values
after counting them.

The following example loads a matrix into the workspace. All the above commands
are executed on the dataset, ‘Orange” (Figures 3.13-3.15).

| 80 Data Analytics using R

@ RGui (64-bit)
File Edit View Misc Packages Windows Help

> library (Matrix)
> names (Orange) # displying the variables of the dataset Orange

[1] "Tree" "age" "circumference"

> summary (Orange) #displaying summary of the dataset Orange
Tree age circumference

37 Min. : 118.0 Min. : 30.0

1:7 1st Qu.: 484.0 1st Qu.: 65.5

8isT Median :1004.0 Median :115.0

2:7 Mean s 922.1 Mean $115:9

4:7 3rd Qu.:1372.0 3rd Qu.:161.5

Max. :1582.0 Max. :214.0
> str (Orange)

Classes ‘nfnGroupedData’, ‘nfGroupedData’, ‘groupedData’ and 'data.frame':
$ Tree : Ord.factor w/ 5 levels "3"<"1"<"5"<"2"<..: 2222222444
$ age : num 118 484 664 1004 1231 ...
$ circumference: num 30 58 87 115 120 142 145 33 69 111 ...

attr(*, "formula")=Class 'formula' language circumference ~ age | Tree
«« ..— attr(*, ".Environment")=<environment: R_EmptyEnv>
- attr(*, "labels")=List of 2
..$ x: chr "Time since December 31, 1968"
..$ y: chr "Trunk circumference"
- attr(*, "units")=List of 2
% x: chr " (days)"
..$ y: chr " (mm)"
>

<

35 ob$

[L] e

Ficure 3.13 Exploring a dataset using names (), summary () and str () functions

| RGui (64-bit)

File Edit View Misc Packages Windows Help

EECID0RIEE

> head(Orange) # display top rows [By default 6 rows]
Tree age circumference

bl 1 118 30

2 1 484 58

3 1 664 87

4 1 1004 115

5 1 1231 120

6 1 1372 142

>

> head(Orange,2) # display top 2 rows
Tree age circumference

1 1 118 30

2 1 484 58

>

> tail (Orange) # display bottom rows [By default 6 rows]
Tree age circumference

30 5 484 49

31 5 664 81

32 5 1004 125

33 5 1231 142

34 5 1372 174

35 5 1582 177

> tail (Orange,2) # display bottom 2 rows
Tree age circumference

34 5 1372 174

35 5 1582 177

Ficure 3.14 Exploring a dataset using head () and tail () functions

Loading and Handling Data in R 81

R RGui (64-bit)
Eile Edit View Misc Packages Windows Help

EELOEREE)

> class (Orange) #display class of the Orange dataset

[1] "nfnGroupedData" "nfGroupedData" "groupedData" "data.frame"
>

> dim(Orange) #display dimension of the Orange dataset

[1] 35 3

>

> table (Orange$Tree) #counts categorial variables

1524
7777

VaSw

Ficure 3.15 Exploring a dataset using class (), dim() and table () functions

3.10.2 Conditional Manipulation of a Dataset

Analytical data processing sometimes may require specific rows and columns of a dataset.
Table 3.5 lists commands that can be used for accessing specific rows and columns of
a dataset.

TABLE 3.5 Commands for accessing specific rows and columns of a dataset

Commands Command Arguments | Description

Tablename [n] nis a numeric value. The command displays the rows according to the given
value of argument 7 of the table.

Tablename[, n] nisanumericvalue. The command displays the columns according to the
given value of argument 7 of the table.

The following example reads a table, ‘Hardware.csv’ into object, “TD" on the R
workspace. The TD[1] and TD|, 1] commands displays rows and columns (Figure 3.16).

3.10.3 Merging Data

Merging different datasets or objects is another common task used in most processing
activities. Analytical data processing may also require merging two or more data objects. R
provides a function merge () that merges data objects. The merge () function combines data
frames by common columns or row names. It also follows the database join operations.
The syntax of the merge () function is given as follows:

merge (x, Vy,..) OR

merge (x, y, by = intersect (names(x), names(y)), by.x = by, by.y =

by, all = FALSE, all.x = all, all.y = all, .)

82 Data Analytics using R

‘R RGui (64-bit)
Eile Edit View Misc Packages Windows Help

| R R Console

> # Reading table
> TD <- read.csv("Hardware.csv")

> TD
SN HName HPrice HCompany
1 X Mouse 1000 Sony
2 2 Touchpad 2000 Dell
3 3 Motherboard 10000 HTC
4 4 Speaker 500 LG
> # display specific row and thier structure
> SRow <- TD[1]
> SRow
SN
1 1
2 2
3 3
4 4
> str (SRow)
'data.frame’: 4 obs. of 1 variable:

$ SN: int 1 2 3 4
> # display specific column and thier structure
> SCol <- TD[,1]
> SCol
[1] 12 3 4
> str(SCol)
int [1:4] 1 2 3 4
> |

Ficure 3.16 Conditional manipulation of a dataset

where, x is an object or data frame, y is an object or data frame and by, by.x, by.,y arguments
define the common columns or rows for merging. All arguments contain logical values
‘TRUE’ or ‘FALSE'. If the value is TRUE then it returns the full outer join by adding all
rows of x and y into the result object.

all.x argument contains logical values, “TRUE’ or ‘FALSE’. If the value is TRUE then it
returns the dataset as per left outer join after merging the objects by adding an extra row
in x that is not matching with rows in y. If the value is FALSE then it merges the rows
with the data from both x and y into the result object.

all.y argument contains logical values, “TRUE’ or ‘FALSE’. If the value is TRUE then
it returns the dataset as per right outer join after merging the objects by adding an extra
row in y that is not matching with rows in x. If the value is FALSE then it merges the
rows with data from both x and y into the result object.

The dots “...” define the other optional argument.

The following example creates two data frames, ‘S” and “T’. Then both the data frames
are merged into a new data frame, ‘E” (Figure 3.17).

In this example, two data frames, ‘S” and ‘“T” are using different values to merge data.
The merge command returns the data frames after merging them using the left and right
outer join (Figure 3.18).

Loading and Handling Data in R 83

& RGui (64-bit)
File Edit View Misc Packages Windows Help

=) &[a]c] @] (&)

~

> S <- data.frame(RN = c('A','B','C'),RM =c(10,20,30))
> S
RN RM
1 A 10
2 B 20
3 C 30
> T <- data.frame(TN = c('A','B','C'),T™ =c(10,20,30))
> T
TN TM
1 A 10
2 B 20
3 ¢ 30
> E <- merge(S,T)
> E
RN RM TN T™M
1 A 10 A 10
2 B 20 A 10
3 C30 A 10
4 A 10 B 20
5 B 20 B 20
6 C 30 B 20
7 A 10 C 30
8 B 20 C 30
9 C 30 cC 30
> |

< > 3

Ficure 3.17 Merging data

| RGui (64-bit)
File Edit View Misc Packages Windows Help

[=lfE] ®[a]o] @] (&

> S <- data.frame(RN = c('A','B'),RM =c(10,20))
S
| RN RM
A 10
B 20
T <- data.frame (TN = c('A','C'),TM =c(100,200))
T
TN TM
A 100
Cc 200
Left outer join
E <- merge(S,T,all.x
E
RN RM TN TM
A 10 A 100
B 20 A 100
A 10 C 200
B 20 C 200
right outer join
E <- merge(S,T,all.y
E
RN RM TN TM
A 10 A 100
B 20 A 100
A 10 cC 200
| B 20 c 200

\%

VVNE

"TRUE")

VVVNE

]

"TRUE")

VVVaWNE

W

A
v

Ficure 3.18 Merging data using join condition

84 Data Analytics using R

3.11 AGGREGATING AND GROUP PROCESSING OF A VARIABLE

Aggregate and group operations aggregate the data of specific variables of a dataset after
grouping variable data. Like merging, analytical data processing also requires aggregation
and grouping operation on a dataset. R provides some functions for aggregation operation.
The next section describes two functions aggregate () and tapply() of R.

3.11.1 aggregate() Function

The aggregate () function is an inbuilt function of R that aggregates data values. The
function also splits data into groups after performing given statistical functions. The
syntax of the aggregate () function is

aggregate(x, ..) or
aggregate (x, by, FUN, ..)

where, x is an object, by argument defines the list of group elements of the specific variable
of the dataset, FUN argument is a statistic function that returns a numeric value after
given statistic operations and the dots “...” define the other optional argument.

The following example reads a table, ‘Fruit_data.csv” into object, ‘S”. The aggregate ()
function computes the mean price of each type of fruit. Here by argument is list(Fruit.
Name = S$Fruit.Name) that groups the Fruit. Name columns (Figure 3.19).

R RGui (64-bit)

File Edit View Misc Packages Windows Help

> # reading table

> S <- read.csv("Fruit_data.csv")

> S
Fruit.Name Fruit.Price

1 Mango 80

2 Apple 100

3 Banana 40

4 Mango 70

5 Pienapple 120

6 Banana 50

7 Apple 90

8 Apple 110

9 Mango S0

> # Finding mean value of each fruit

> aggregate (S$Fruit.Price, list (Fruit.Name = S$Fruit.Name), mean)
Fruit.Name x

1 Apple 100

2 Banana 45

3 Mango 80

4 Pienapple 120

>

Ficure 3.19 Example of aggregate () function

Loading and Handling Data in R 85

3.11.2 tapply() Function

The tapply () function is also an inbuilt function of R and works in a manner similar
to the function aggregate (). The function aggregates the data values into groups after
performing the given statistical functions. The syntax of the tapply () function is

tapply (x, ..) or
tapply(x, INDEX, FUN, ..)

where, x is an object that defines the summary variable, INDEX argument defines the
list of group elements—also called group variable, FUN argument is a statistic function
that returns a numeric value after given statistic operations and the dots “...” define the
other optional argument.

The following example reads the table, ‘Fruit_data.csv” into object, ‘A’. The tapply ()
function computes the sum and price of each type of fruit. Here Fruit.Price is a summary
variable and Fruit.Name is a grouping variable. The FUN function is applied on the
summary variable, Fruit.Price (Figure 3.20).

IR RGui (64-bit)

File Edit View Misc Packages Windows Help

q A e -O-) s
> A i

Fruit.Name Fruit.Price

1 Mango 80

2 Apple 100

3 Banana 40

4 Mango 70

5 Pienapple 120

6 Banana 50

7 Apple 90

8 Apple 110

9 Mango 90

> #applying tapply() function
> tapply (A$Fruit.Price, list (Fruit.Name
Fruit.Name
Apple Banana Mango Pienapple
300 90 240 120
> tapply (A$Fruit.Price, list (Fruit.Name
Fruit.Name
Apple Banana Mango Pienapple
110 50 90 120
> tapply (A$Fruit.Price, list (Fruit.Name
Fruit.Name
Apple Banana Mango Pienapple
90 40 70 120

A$Fruit.Name), sum)

A$Fruit.Name), max)

AS$Fruit.Name), min)

> |

< >

Ficure 3.20 Example of tapply () function

86 Data Analytics using R

Check Your Understanding

1. How do you define exploring a dataset?
Ans: Exploring a dataset implies display of data of a dataset in different forms.

2. Which function is used to display the summary of a dataset?
Ans: The summary () function is used to display the summary of a dataset.

3. Whatis the head () function?
Ans: The head () function is an inbuilt data exploring function that displays the top rows
according to a given value.

4. Whatis the tail () function?
Ans: The tail () function is an inbuilt data exploring function that displays the bottom
rows according to a given value.

5. What is the use of merge () function?
Ans: Themerge () function is an inbuilt function of R. It combines data frames by common
columns or row names. It also follows the database join operations.

6. What is the use of aggregate () function?
Ans: The aggregate () function is an inbuilt function of R which aggregates data values
and splits data into groups after performing the required statistical functions.

7. Whatis the use of tapply () function?
Ans: The tapply () function isan inbuilt function of R which aggregates data values into
groups after performing the required statistical functions.

8. List the inbuilt functions of R for manipulating text.
Ans: Some inbuilt functions of R for manipulating text are:
substr ()
strsplit ()
paste ()
grep ()

3.12 SivrLE AnaLysis Using R

In this section, you will learn how to read data from a dataset, perform a common
operation and see the output.

3.12.1 Input

Input is the first step in any processing, including analytical data processing. Here, the
input is dataset, ‘Fruit’. For reading the dataset into R, use read. table () or read.csv ()
function. In Figure 3.21, the dataset, ‘Fruit’ is being read into the R workspace using the
read.csv () function.

Loading and Handling Data in R 87

| RGui (64-bit)
File Edit View Misc Packages Windows Help

BsEROCE!

> # reading dataset [Fruit.csv] as input
> Fruit <- read.csv("Fruit.csv")

>

> Fruit

Fruit.Name Fruit.Price Fruit.Color
1 Mango 80 Yellow
2 Apple 100 Red
3 Banana 40 Green
4 Mango 70 Green
5 Pienapple 120 Yellow
6 Banana 50 Yellow
7 Apple 90 Red
8 Apple 110 Red
9 | Mango 90 Orange
>

< >

Ficure 3.21 Reading dataset as input into R workspace

3.12.2 Describe Data Structure

After reading the dataset into the R workspace, the dataset can be described using different
functions like names (), str (), summary (), head() and tail(). All these functions
have been described in the previous sections. The following figure describes the ‘Fruit’
dataset using all these functions (Figure 3.22).

I RGui (64-bit)
File Edit View Misc Packages Windows Help
[=]e) a[a]c] @) (@]
"
> # Describing data structure f
> names (Fruit) # varibles of the dataset

[1] "Fruit.Name" "Fruit.Price" "Fruit.Color"
>
> str(Fruit) # structure of the dataset

'data.frame’: 9 obs. of 3 variables:

$ Fruit.Name : Factor w/ 4 levels "Apple","Banana",..: 312 3 42113
$ Fruit.Price: int 80 100 40 70 120 50 90 110 90

$ Fruit.Color: Factor w/ 4 levels "Green","Orange",..: 4 3 114 4 3 3 2
>

> head(Fruit,3) #reading top 3 rows of the dataset
Fruit.Name Fruit.Price Fruit.Color

1 Mango 80 Yellow

2 Apple 100 Red

3 Banana 40 Green

>

> tail (Fruit,3) #reading bottom 3 rows of the dataset
Fruit.Name Fruit.Price Fruit.Color

7 Apple 90 Red

8 Apple 110 Red

9 Mango 90 Orange

>

> summary (Fruit) #summary of the dataset

Fruit.Name Fruit.Price Fruit.Color

Apple :3 Min. : 40.00 Green :2

Banana =2 1st Qu.: 70.00 Orange:1

Mango :3 Median : 90.00 Red 3

Pienapple:1 Mean : 83.33 Yellow:3

3rd Qu.:100.00

¢ >

Ficure 3.22 Describing data structure

88 Data Analytics using R

3.12.3 Describe Variable Structure

After describing the dataset, you can also describe the variables of the dataset using
different functions. For describing the variables and performing operations on them,
many functions are available. Some of these functions have been described in the previous
sections. Figure 3.23 describes the variables of ‘Fruit” dataset.

@ RGui (64-bit)
File Edt View Misc Packages Windows Help

EAED0EOE)]

> # Describing varible structure
> summary (Fruit$Fruit.Name) # summary of the variable Fruit.Name of the Fruit dataset
Apple Banana Mango Pienapple
3 2 3 1

>

> mean (Fruit$Fruit.Price) # mean of the fruit price
[1] 83.33333

>

> sum(Fruit$Fruit.Price) # sum of the fruit price
[1] 750

>

> table (Fruit$Fruit.Name)

2
> table (Fruit$Fruit.Price)

Apple Banana Mango Pienapple
3 3 1

40 50 70 80 90 100 110 120
S 1 1 1 2 1 1 1

>

> table (Fruit$Fruit.Color)

Green Orange Red Yellow
2 1 3 3
> |

Fiure 3.23 Describing variable structure

Many inbuilt distribution functions can be applied to the variables of a dataset that
define the distribution of data in a dataset. Figures 3.24-3.26 describe few distribution
functions applied on the ‘Fruit’ database.

Figure 3.24 describes the histogram of the ‘Fruit’ dataset using the hist () function. A
histogram is a graphical display of data that uses many bars of different heights.

The complete syntax for hist () function is:

hist(x, breaks = ‘Sturges’,
freq = NULL, probability = !freq,
include.lowest = TRUE, right = TRUE,
density = NULL, angle = 45, col = NULL, border = NULL,
main = paste (‘Histogram of’ , xname),
xlim = range (breaks), ylim = NULL,
x1lab xname, ylab,
axes = TRUE, plot = TRUE, labels = FALSE,
nclass = NULL, warn.unused = TRUE, ...)

89

Loading and Handling Data in R

19sDIDp 1Ind4, Jo wpibolsIH '€ IunoI4

10j0Q s Joj sa1ouanbaly A

0¢ 114 0Z S 0l
L 1 1 1 1
o pay
o MOJIBA
o [IEEY5)
o | bueio
Qweu
8dud yny auwen i Joj saiouanbaly
13 004 05 0 0¢ 5C 02 St 0l
L 1 1 L] 1 1 1 (i 1
~ O
° ajddy
L o m_ ° obuepyy
a2
s
e 8 o eueueg
N
o | aiddeuvalg
Lo

| <
(3TNIg) IsTY <
wexbolsTH # <

Qelf=]
smopully 3§ KowH T
X 0 - Wa-59) 10y M|

920 Data Analytics using R

where,
x is the vector for which a histogram is required.

freq is a logical value. If TRUE, the histogram graphic is a representation of frequencies,
the counts component of the result. If FALSE, the probability densities and component
density are plotted.

main, xlab, ylab are arguments to title.

plot is a logical value. If TRUE (default), a histogram is plotted, else a list of breaks and
counts is returned.
For explanation of other arguments in the hist () function, refer to R documentation.
Figure 3.25 describes the box-and-whisker plot of the ‘Fruit’ dataset using the boxplot ()
function. A box and whisker plot summarises the group values into boxes.
The syntax for boxplot () function is:
boxplot(x, ..., range = 1.5, width = NULL, varwidth = FALSE,
notch = FALSE, outline = TRUE, names, plot = TRUE,
border = par(‘fg’), col = NULL, log = ‘%',
pars = list (boxwex = 0.8, staplewex = 0.5, outwex = 0.5),
horizontal = FALSE, add = FALSE, at = NULL)

where x is a numeric vector or a single list containing such vectors.
outline - If outline is not true, the outliers are not drawn.

range - This determines how far the plot whiskers extend out from the box.
For explanation of other arguments in the boxplot () function, refer to R documentation.
Figure 3.26 describes the plot of the ‘Fruit’ dataset using the plot () function.

3.12.4 Output

For storing the output, users may use .RData file. On the other hand, if users are using
any GUIs then they can export the output into a specific file. Also, by using database
functions like the write function, the output can be saved.

)
Q’ Just Remember

With the help of any R Graphical User Interface (GUI), users can execute all these commands. Some of the
i GUIs are described in the next section. :

21

Loading and Handling Data in R

19sDIDp N4, Jo 30)d JaYSIYM-pUD-X0g GZ°€ FWNSI4

| <
(3Tnag) 3otdxoq <
joTdxoq # <

=@ Cl=I= BE=)
dpH smopuiff sbexdeg sy MR wpI AT
(1G-p9) NOY My

Data Analytics using R

922

uonounj ()3ot1d buisn jasppp Jni{, Qg€ IuNoI4

10/00NI4

1

oy S€ 0€ §Z 0Z St O}
1

ELTRRILTE

aweN 4

Oy S€ 0€ ST 0Z S O}
1

| <
(3Tnag) 3o1d <
& @ [c/e]= [Eks=)

dpf swopulf ssbepeg sy mak wp3 T
X 0 - (19-9) 1n9y ¥

Loading and Handling Data in R 923

Check Your Understanding

1. Write the names of the functions used for reading datasets or tables into the R
workspace.
Ans: Functions used for reading datasets or tables into the R workspace are:
e read.csv()
e read.table()

2. List the inbuilt functions used for describing a dataset.
Ans: Some inbuilt functions used for describing a dataset are:
names ()
str()
summary ()
head ()
tail ()

3. List the functions of R for describing variables.
Ans: Functions for describing variables are:
table ()
summary (tablename $ variablename)
paste ()
grep ()
hist ()
plot ()

3.13 MEeTHODS FOR READING DATA

R supports different types of data formats related to a database. With the help of import
and export utility of R, any type of data can be imported and exported into R. In this
section, you will learn about the different methods used for reading data.

3.13.1 CSV and Spreadsheets

Comma separated value (CSV) files and spreadsheets are used for storing small size data.
R has an inbuilt function facility through which analysts can read both types of files.

Reading CSV Files

A CSV file uses .csv extension and stores data in a table structure format in any plain text.
The following function reads data from a CSV file:
read.csv(‘filename’)

where,
filename is the name of the CSV file that needs to be imported.

2 Data Analytics using R

The read.table () function can also read data from CSV files. The syntax of the
function is

read.table(‘filename’, header=TRUE, sep="',’,..)
where,

filename argument defines the path of the file to be read, header argument contains
logical values TRUE and FALSE for defining whether the file has header names on the
first line or not, sep argument defines the character used for separating each column of
the file and the dots “...” define the other optional arguments.

The following example reads a CSV file, ‘Hardware.csv’ using read.csv () and read.
table () function (Figure 3.27).

R RGui (64-bit)
File Edit View Misc Packages Windows Help

[=lew] E[a]o] @] [&]

> # Reading CSV file using .csv function()
> read.csv ("Hardware.csv")

SN HName HPrice HCompany
1 Mouse 1000 Sony
2 Touchpad 2000 Dell
3 Motherboard 10000 HTC
4 Speaker 500 LG

VVVBWNE

Reading CSV file using read.table function()
read.table ("Hardware.csv", header=TRUE, sep=",")

\%

SN HName HPrice HCompany
1 1 Mouse 1000 Sony
2 2 Touchpad 2000 Dell
3 3 Motherboard 10000 HTC
4 | 4 Speaker 500 LG
>

Ficure 3.27 Reading CSV file

Reading Spreadsheets

A spreadsheet is a table that stores data in rows and columns. Many applications are
available for creating a spreadsheet. Microsoft Excel is the most popular for creating an
Excel file. An Excel file uses .xIsx extension and stores data in a spreadsheet.

In R, different packages are available such as gdata, xlsx, etc., that provide functions
for reading Excel files. Importing such packages is necessary before using any inbuilt
function of any package. The read.x1lsx () is an inbuilt function of xlsx” package for
reading Excel files. The syntax of the read.x1sx () function is

read.xlsx (‘filename’, ..)

Loading and Handling Data in R 925

where,

filename argument defines the path of the file to be read and the dots *..." define the
other optional arguments.

In R, reading or writing (importing and exporting) data using packages may create some
problems like incompatibility of versions, additional packages not loaded and so on. In
order to avoid these problem:s, it is better to convert files into CSV files. After converting
files into CSV files, the converted file can be read using the read.csv () function.

The following example illustrates creation of an Excel file, ‘Softdrink.xlsx’. The ‘Software.
csv’ file is the converted form of the ‘Softdrink.xIsx” file (Figure 3.28). The function read.
csv () is reading this file into R (Figure 3.29).

BEHS & - Softwdrinkxlsx - Microsoft Excel
HOME INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW Foxit Reader PDF TEAM

‘D géz:;y i .Calibri ']11 A A= == - E'fWrap Text lGeneraI 7| E!;—.“
Paste £t . BIU-H- O-A- === z=3= S Merge&Center - $ -~ % » 5 55 Conditional Formatas
- ‘ormat Painter Formatting ~ Table ~

Clipboard 1 Font N Alignment M~ Number ~
A15 || X Je
A | B (s, D E F G H |

Software drinkName|Price [per leter]

Coca-cola 100
Fruite 80
Pepsi 70
Maza 50

W o0 N UL WN =

Ficure 3.28 Spreadsheet of Excel file

%R RGui (64-bit)
Eile Edit View Misc Packages Windows Help

EGER0N

> # Reading spreatsheet [Excel files] after converting into [.csv file]
> read.csv("Softdrink.csv")
Software.drinkName Price...per.leter. X

1 Coca-cola 100 NA
2 Fruite 80 NA
3 Pepsi 70 NA
4 Maza 50 NA
> |

< >

Ficure 3.29 Reading a converted CSV file

26 Data Analytics using R

Example: Reading the .csv file

To read the data from a .csv file (D:\SampleSuperstore.csv) into a data frame. The data
should be grouped by ‘Category’. The column on which grouping is done is ‘Sales’. The
aggregate function to be used is ‘sum’.

Step 1: The data is stored in “D:\SampleSuperstore.csv’. It is available under the following
columns:

Row ID, Order ID, Order Date, Ship Date, Ship Mode, Customer ID, Customer Name,
Segment, Country, State, City, Postal Code, Region, Product ID, Category, Sub-Category,
Product Name, Sales, Quantity, Discount, Price.

A subset of the data is shown in Figure 3.30.

With the use of read.csv function, the data is read from ‘D:\SampleSuperstore.csv’ file
and stored in the data frame named, ‘InputData’.

> InputData <- read.csv(“d:/SampleSuperstore.csv”)

Step 2: Data is grouped and aggregated on InputData$Sales by InputData$Category. The
aggregation function used is ‘sum’. InputData$Sales refers to the ‘Sales” column of the
data frame, ‘InputData’. Similarly, InputData$Category refers to the ‘Category’ column
of the data frame, ‘InputData’.

> GroupedInputData <- aggregate (InputData$Sales ~
InputData$Category, InputData, sum)

Display the aggregated data. As evident from the display below, the data is available
in three categories, viz. ‘Furniture’, ‘Office Supplies” and “Technology’.

> GroupedInputData
InputData$Category InputData$Sales

1 Furniture 156514.4
2 Office Supplies 132600.8
3 Technology 168638.0

3.13.2 Reading Data from Packages

A package is a collection of functions and datasets. In R, many packages are available for
doing different types of operations (Figure 2.4). Some functions for reading and loading
the dataset from and into packages defined in R are explained next.

library () Function

The library () function loads packages into the R workspace. It is compulsory to import
the package before reading the available dataset of that package. The syntax of the
library () function is:

library (packagename)
where,
packagename argument is the name of the package to be read.

27

Loading and Handling Data in R

LS)x‘a103siadnsajdwins, wo.j bipp ayp Jo 1osqns Q€€ IUNoI4

w@re 0 (4 958 PE lI3M3N Uy ing 20140)T-¥V-440 1S3M 6016 IUIOJI[ED) IoUBL] UBS 21S PAYIUN IBWNSUO)D | SSNYISNZ SZETZ-AZ 1D PU0d3S TT0Z/T/6 T10Z/LZ/8 T-TT0Z-VD 61 (V4
666 0 [4 S'sS 15amo||a4 98e40353nS 0140 DT-15-3440 1S9M ¥80V8 YEIN PIOF IS3M 23S P3IIUN 1I9WNSUOD 0IpUEl3]Y 0LZOT-OV |D Pu0das TT0Z/ST/S TTOZ/ET/S T-TT0Z-¥D 8T 61
TEET 0 9 88'699 215-G~4nis 35es015inS YO OT-15-340 [BNUSD TTLES JISUODSIM UOSIPBIAl 21S PS1IUN 1ISWINSUOD ZLI) 318d SL06T-Xd) PAepuels TT0Z/8T/TT TI0Z/TT/IT I-TT02-VD LT 81
918'¢- 80 € ws'e nQ@xa101s S1apuig Ing 0140 0T-18-440 [e13U3D 90TIL SEX31 [UOM 104 23S PajiuN JJO SWOH ied P|OJeH ST8YT-dH) PJEpURIS ZT0Z/9Z/TT ZT0Z/2Z/1T T-2102-SN 9T L1
6'€CT- 80 S 18'89 7Y S3W|oH duer|ddy ing 301J0)T-dV-440 |eU3D 90T9L SeX3L [LIOM 1104 21S PA1IUN JJO SWOH i8d P|OIBH ST8YT-dH) PABPUELS ZTOZ/9Z/TT ZT0Z/ZZ/TT T-Z10Z-SN ST o1
9CET TO0 € 9/6°£0F |SaMO||93 siapuigdng 22140 0T-18-440 1S3M £0186 NBUIYSEM 3J31ESS 23S PIYUN IBWINSUOD BN BUJI 0LOST-I) PIepuels €10Z/TT/ZT €102/9/2T T-ET0Z-VD T ST
€S T0 € TSS'ST 96T Xx013X 1adeg dng 20140)T-Vd-440 Yinos £zZ08C 1BD YUON PI02UO0) 23S PaYIUN ISWNSUOD ¥ M3IpUY 0810T-VV) pIepuels v10z/1z/v vI02/9T/v T-¥10Z-VD €T 148
9€'89 TO0 v YZY'TT6 5CISPUON sauoyd3ojouyda) IT-Hd-O3L 1S3M €006 e1u1041]eD 135Uy 507 23S PaLIUN 1ISWNSUOD JH BuIsOlg OTLTT-HE) PIepuels TT0Z/¢T/9 T102/6/9 T-TT0T-¥D TT €1
€68 TO0 6 P8T'90LT :BOWOJIYD S3|QeL 3npuUINiIT-Vi-¥Nd 153M TE006 e1uI0}1[eD 138UV 507 23S PaIUN 1I2WNSUOD JH BUISOIG OTLTT-HE) PJBPUBIS TTOZ/YT/9 TT0Z/6/9 T-TT0T-¥D TT (49
Lv'vE O S 6VIT 264 unj|ag ueljddy Ing 301440)T-dV-340 1S3M TE006 e1UJ01|ED)[3BUY S0723S PAIIUN 1IDWNSUOD H BUISOIg OTLTT-HE) PJepuess TT0Z/vT/9 T102/6/9 T-TT0Z-¥D OT 11
€8L'S TO0 € v0S'8T 918Uy IXa sispuigdng 201440 0T-18-340 1S9M €006 e1UJ0J1]ED 1[3BUY 50723 PAYIUN 1I2WNSUOD)H BUISOIg OTLTT-HE) PIEpuels TT0Z/vT/9 T102/6/9 T-TI0Z-¥D 6 ot
woe o 9 TST'L06 DZES SN SaUOYd 30]0UYdaL IT-Hd-D3L 1S3M €006 e1u101]eD 1|2BUY 50723 PAYIUN 12WNSUOD) BUISOIg OTLTT-HE) PIEpuelS TIOZ/vT/9 T10Z/6/9 T-TI0Z-¥D 8 6
996'T 0 14 8T'L ZE |I3MaN Uy ins 10)T-¥V-3440 1S3M T€006 e1U1041|D 138UV 507 2)S PaLIUN ISWNSUOD)H BUISOIg OTLTT-HE) PIBPUB)S TTOZ/¥T/9 TT0Z/6/9 T-TT0C-WD L 8
LTV 0 L 98'8Y dx3 uop|3ulysiuing ainuIng IT-N-¥N4 159M €006 e1u1041|e) j28uY 507 21S PaNUN 1I2WNSUOD)H BUISOIg OTLTT-HE) PIBPURlS TTOZ/¥T/9 TT02/6/9 T-TT0Z-¥D 9 L
91sC T0 T 89€TC J|ojuop|3 38es0153nS 30140 0T-15-440 Yinos TTEEE epLIOj4 3pNeT 104 21§ PI}UN 13WNSU0) 00,0 Ue3S SEE0Z-OS) PJepuels Z10z/8T/0T ZT0Z/TT/0T T-210Z-SN S 9
€8¢- S0 S GLLS'LS6 D ployaig SI|QEL 3npuIng)T-vV1i-¥nd Yinos TTeEE epLIO|4 3pNET L04 23S PIJUN ISWNSUOD 20,0 UeSS SEE0Z-OS) PIepuels ZT0z/8T/0T ZT0Z/TT/0T T-210Z-SN ¢ S
89 0 [4 9T 3ypv-yI3s s19Ge13Nns 140 IT-V1-440 153M 9€006 e1uIoj1|e) 1[3BUY 50723 PAIUN 91e40d10D) JBA ULLIEQ SPOET-AQ [D PUOI3S €T0Z/LT/9 €TOT/ET/9 T-ET0Z-VD € v
9’61 0 € P6'TEL <(N|SQ UOH Sileyd aJanjiuand)T-HO-¥N4 Yinos ozvey Mjonjuay 0sI3pUBH 23S P3YIUN 1IBLNSUOD IND BIB[D 0ZSTT-9D |D PUOS ETOZ/ZT/TT €T0Z/6/IT T-€T0Z-¥D T €
16'ly 0 [4 96'T9Z WOS Yysng;ased)00g 3njuIng)T-08-¥nd yinos ozvey Ajonjuay 0sI3pUBH 23S PAYUN IBWNSUOD IND 3u1B[D 0ZSZT-9D |D PU0dS ETOZ/ZT/IT €T0Z/6/IT T-€10C-VD T z
114014 100513 3uenD S3]eS N Pnpoid wmumunnsm EOWW&SU_ pnpoid CO_MWK 30D |e1sod 21e1s Ay Anuno) aCWEme J3wo3sn) Jawolsn) Ipow n_r—m ajeq n__._m 2iegJspi0 Al LMULOﬂ ai moy | T
n 1 S -] [¢] d (o] N W] A r I H 9 El 3 a) 9 v

928 Data Analytics using R

data () Function

The data () function lists all the available datasets of the loaded package into the R

workspace. For loading a new dataset into the loaded packages, users need to pass the

name of the new dataset into data () function. The syntax of the data () function is:
data (datasetname)

where,

datasetname argument is the name of the dataset to be read.

The following example illustrates the loading of a matrix. The data () function lists
all the available datasets of the loaded package. The * > Orange * command reads and
displays the content of the dataset, ‘Orange” into the workspace.

@ RGui (64-bit) - o X
File Edit Windows
Bl kiElE]
=5
@R Console
> # Loading a package Data sets in package ‘datasets’:
> library(Matrix)
> data() AirPassengers Monthly Airline Passenger Numbers 1949-1960
> Orange BJsales Sales Data with Leading Indicator
Tree age circumference BJsales.lead (BJsales)
1 1 118 30 Sales Data with Leading Indicator
2 1 484 58 BOD Biochemical Oxygen Demand
3 1 664 87 Cco2 Carbon Dioxide Uptake in Grass Plants
4 1 1004 115 ChickWeight Weight versus age of chicks on different d$
5 1. 1231 120 DNase Elisa assay of DNase
6 11372 142 EuStockMarkets Daily Closing Prices of Major European Sto$
7 1 1582 145 Indices, 1991-1998
8 2 118 33 Formaldehyde Determination of Formaldehyde
9 2 484 69 HairEyeColor Hair and Eye Color of Statistics Students
10 2 664 111 Harman23.cor Harman Example 2.3
11 2 1004 156 Harman74.cor Harman Example 7.4
12 2 1231 172 Indometh Pharmacokinetics of Indomethacin
13 2 1372 203 InsectSprays Effectiveness of Insect Sprays
14 2 1582 203 JohnsonJohnson Quarterly Earnings per Johnson & Johnson S$
15 3 118 30 LakeHuron Level of Lake Huron 1875-1972
16 3 484 51 LifeCycleSavings Intercountry Life-Cycle Savings Data
17 3 664 75 Loblolly Growth of Loblolly pine trees
18 3 1004 108 Nile Flow of the River Nile
19 3: 1231 115 Orange Growth of Orange Trees
20 3 1372 139 OrchardSprays Potency of Orchard Sprays
21 3 1582 140 PlantGrowth Results from an Experiment on Plant Growth
< S g S >

Fiure 3.31 Reading data from packages

3.13.3 Reading Data from Web/APIs

Nowadays most business organisations are using the Internet and cloud services for
storing data. This online dataset is directly accessible through packages and application
programming interfaces (APIs). Different packages are available in R for reading from
online datasets. Refer to Table 3.6 to view some packages.

TABLE 3.6 Packages for reading web data

Packages
RCurl

Description
The package permits download of

files from the web server and post
forms.

Google Prediction API It allows uploading of data to
Google storage and then training

them for Google Prediction API.

Infochimps The package provides the

functions for accessing all APIL.

HttpRequest The package reads the web data
with the help of an HTTP request
protocol and implements the GET,

POST request.

The package reads all World Bank
data.

WDI

XML The package reads and creates
an XML and HTML document
with the help of an HTTP or FTP

protocol.

Quantmod The package reads finance data

from Yahoo finance.

ScrapeR The package reads online data.

Loading and Handling Data in R 29

Download Link

https://cran.r-project.org/web/
packages/RCurl/index.html

http:/ /code.google.com/p/r-google-
predictionapi-v121

http://api.infochimps.com

https://cran.r-project.org/web/
packages/httpRequest/index.html

http:/ /cransprojectorg/web/
packages/WD1/index.html

http:/ /cransprojectorg/web/
packages/XML/index.html

http:/ /crans-projectorg/web /
packages/quantmodfindex.html

http:/ /crans-projectorg/web/
packages/scrapeR/index.html

The following example illustrates web scraping. Web scraping extracts data from any
webpage of a website. Here package ‘RCurl’ is used for web scraping (Figure 3.32). At
first, the package, ‘RCurl” is imported into the workspace and then getURL () function of
the package, ‘RCurl’ takes the required webpage. Now htmlTreeParse () function parses

the content of the webpage.

3.13.4 Reading a JSON (Java Script Object Notation) Document

Step 1: Install rjson package.

> install.packages (“rjson”)

Installing package into ‘C:/Users/seema_ acharya/Documents/R/win-

library/3.2" (as ‘lib’
trying URL
rjson 0.2.15.zip’

Content type ‘application/zip’

downloaded 482 KB

is unspecified)

package ‘rjson’

length 493614 bytes

‘https://cran.hafro.is/bin/windows/contrib/3.2/

(482 KB)

successfully unpacked and MD5 sums checked

Data Analytics using R

abpxood ,)anDY, ayl buisn pipp gam buippay gE"E IWNOI4

~ Rl _H_,
INY L0 '9107 ST If 066 swpwosng (] [|
sn @ 7]
spgN @[] ﬂ
susamAn @ |
comon B [
WA 678 'S102 ‘ST AR DATHT WOPUVAVSOLINVHVE (A []
ssudszsn © [|
N L0 S10T T R e wops (R[]
NV OLT1 ‘9107 Y1 f a9 weqyasesowsa [[|
N 61T 9107 ‘ST Y 0 aposrgesequea [[
0o apegasequeq [[] |
W 0S°T1 S107 ‘ST Ao 08¢ apoeieseqeea [[] |
sagdua] oo wosny [[|
armyos dngaaged [[
mpprTeETE 0[]
NS0T 9107 ST @i wopeaz (R[] |
WA TIT 90T ‘s BN o6l wopenxaz (R [|
NV $5:01 ‘9102 ‘€ MY 616 Sosmy (B [|
NV $5:01 9107 ‘€ Y ™ULT war @]
v PPN a5 sy |
=] s G0
) o | ewewsy @) aepal | .s%u..uzg‘,
== sy | dpm | sedepeg | meg | sema
- OU'INX SDIE] Pos [pesxed pm <
“\I\<TUAY FAZLOOQ | SU\T\ . oM apedgam Jo jusjuod oyl HuthkeTdsTd # <
. <
Mz.ﬁz ..: m.h § kuﬂ bl s (pM) osaegaaaL w1y —-> pasaed pm <
9°¢ ¥'¢ 2z z [9:1] umu d ejepgam oyl bursaed MON # <
"9z ¥°z z'z T [9:7] umu d <
“"U93UO0DIUBUND0ATHX bxeT ~ed gouelo (
0 2ITdNd TWIH FdALDOAi>u eouel ASTYd = 192dAITIaoA"TSs /,Hburderds-gqom/zTzS/UOTATUTISpP/wod “etpadoyoal -mmm//:sdaay,,) Tdna=b -> pm <
GZ'IT €Ismsue paxtnbax ejep gom UYOTYmM IOJ TN 9yl bursseds <
il senTep <
o) « wawsonsug a0l (TInDy) AxRIqTT <
B | = F | cwsmquednl i | B B sbexoed TanDY butpeor # <
=2 | oy | yomwomuuy | (D))
 (suor) 3ofosg (g ~smppy oFF || wonoun g 0100 ¢) | e 8.8
disH sjool 6nged@ ping uoisssS s10]d MaIR apo3 WPT 3T
X o - opnisy @)

Loading and Handling Datain R~ 101

Step 2: Input data.
Store the data given below in a text file (‘D:/Jsondoc.json’). Ensure that the file is saved
with an extension of .json

{

‘EMPID’ : ['1001","2001","3001",74001",75001","6001","7001","8001"
1,

‘Name’ : [‘Ricky’,’Danny’,’Mitchelle’,’Ryan’,’Gerry’,’Nonita’,’Sim
on’,’Gallop’ 1,

‘Dept’: [‘IT’,’Operations’,’IT’,’"HR’,’Finance’,’IT’,’ Operations’
,"Finance’]

}

A JSON document begins and ends with a curly brace ({}). A JSON document is a set
of key value pairs. Each key:value pair is delimited using ‘,” as a delimiter.

Step 3: Read the JSON file, ‘d:/Jsondoc.json’.

> output <- fromJSON(file = “d:/Jsondoc.json”)

> output

SEMPID

[1] “10017” ™“2001” “3001” “4001” 250017 “e001” ™7001” “8001”

SName
[1] “Ricky” “Danny” “Mitchelle” “Ryan” “Gerry” “Nonita”
[7] “Simon” “Gallop”

$Dept
[1] “IT” “Operations” “IT” “HR” “Finance”
[6] “IT” “Operations” “Finance”

Step 4: Convert JSON to a data frame.
> JSONDataFrame <- as.data.frame (output)

Display the content of the data frame, ‘output’.
> JSONDataFrame

EMPID Name Dept
1 1001 Ricky IT
2 2001 Danny Operations
3 3001 Mitchelle IT
4 4001 Ryan HR
5 5001 Gerry Finance
6 6001 Nonita IT
7 7001 Simon Operations
8 8001 Gallop Finance

102 Data Analytics using R

3.13.5 Reading an XML File

Step 1: Install an XML package.

> install.packages (“XML")

Installing package into ‘C:/Users/seema_ acharya/Documents/R/win-
library/3.2’ (as ‘lib’ is unspecified)

trying URL ‘https://cran.hafro.is/bin/windows/contrib/3.2/XML 3.98-
1.3.zip’

Content type ‘application/zip’ length 4299803 bytes (4.1 MB)
downloaded 4.1 MB

package ‘XML’ successfully unpacked and MD5 sums checked

Step 2: Input data.
Store the data below in a text file (XMLFile.xml in the D: drive). Ensure that the file is
saved with an extension of .xml.

<RECORDS>
<EMPLOYEE>
<EMPID>1001</EMPID>
<EMPNAME>Merrilyn</EMPNAME>
<SKILLS>MongoDB</SKILLS>
<DEPT>Computer Science</DEPT>
</EMPLOYEE>

<EMPLOYEE>
<EMPID>1002</EMPID>
<EMPNAME >Ramya</EMPNAME >
<SKILLS>People Management</SKILLS>
<DEPT>Human Resources</DEPT>
</EMPLOYEE>

<EMPLOYEE>
<EMPID>1003</EMPID>
<EMPNAME>Fedora</EMPNAME>
<SKILLS>Recruitment</SKILLS>
<DEPT>Human Resources</DEPT>
</EMPLOYEE>
</RECORDS>

Reading an XML File

The xml file is read in R using the function xmlParse (). It is stored as a list in R.

Loading and Handling Datain R~ 103

Step 1: Begin by loading the required packages.

> library (“XML")

Warning message:

package ‘XML’ was built under R version 3.2.3
> library (“methods”)

> output <- xmlParse(file = “d:/XMLFile.xml”)

> print (output)
<?xml version=“1.0"?>
<RECORDS>
<EMPLOYEE>
<EMPID>1001</EMPID>
<EMPNAME>Merrilyn</EMPNAME>
<SKILLS>MongoDB</SKILLS>
<DEPT>ComputerScience</DEPT>
</EMPLOYEE>
<EMPLOYEE>
<EMPID>1002</EMPID>
<EMPNAME>Ramya</EMPNAME >
<SKILLS>PeopleManagement</SKILLS>
<DEPT>HumanResources</DEPT>
</EMPLOYEE>
<EMPLOYEE>
<EMPID>1003</EMPID>
<EMPNAME>Fedora</EMPNAME>
<SKILLS>Recruitment</SKILLS>
<DEPT>HumanResources</DEPT>
</EMPLOYEE>
</RECORDS>

Step 2: Extract the root node from the XML file.

> rootnode <- xmlRoot (output)

Find the number of nodes in the root.

> rootsize <- xmlSize (rootnode)
> rootsize
[1] 3

104 Data Analytics using R

Let us display the details of the first node.

> print (rootnode[1l])

SEMPLOYEE

<EMPLOYEE>
<EMPID>1001</EMPID>
<EMPNAME>Merrilyn</EMPNAME>
<SKILLS>MongoDB</SKILLS>
<DEPT>ComputerScience</DEPT>

</EMPLOYEE>

attr(, “class”)

[1] “XMLInternalNodeList” “XMLNodeList”

Let us display the details of the first element of the first node.

> print (rootnode[[1]11[[111])
<EMPID>1001</EMPID>

Let us display the details of the third element of the first node.

> print (rootnode[[1]1]1[[3]11])
<SKILLS>MongoDB</SKILLS>

Next, display the details of the third element of the second node.

> print (rootnode[[2]]1[[3]11])
<SKILLS>PeopleManagement</SKILLS>

We can also display the value of 2nd element of the first node.

> output <-xmlValue (rootnode[[1]1]1[[2]11)
> output
[1] “Merrilyn”

Step 3: Convert the input xml file to a data frame using the xmlToDataFrame function.
> xmldataframe <- xmlToDataFrame (“d:/XMLFile.xml”)
Display the output of the data frame.

> xmldataframe

EMPID EMPNAME SKILLS DEPT
1 1001 Merrilyn MongoDB ComputerScience
2 1002 Ramya PeopleMananement HumanResources

3 1003 Fedora Recruitment HumanResources

Ans:

Ans:

Ans:

Ans:

Ans:

Ans:

Ans:

Ans:

Ans:

Loading and Handling Datain R~ 105

Check Your Understanding

What is a CSV file?
A CSV file uses .csv extension and stores data in a table structure format in any plain
text.

What is the use of read.csv () function?
A read.csv () function reads data from CSV files.

What is the use of read.table () function?
A read.table () function reads data from text files or CSV files.

What is the use of read.x1sx () function?
Aread.xlsx () isan inbuilt function of ‘xIsx” package for reading Excel files.

What is a package?

A package is a collection of functions and datasets. In R, many packages are available
for doing different types of operations.

What is the use of the 1ibrary () function?

The library () function loads packages into the R workspace. It is compulsory to
import packages before reading the available dataset of that package.

What is the use of data () function?
The data () function lists all the available datasets of the loaded packages into the R
workspace.

List five R packages for accessing web data.

Different packages are available in R for reading from an online dataset. These are:
e RCurl

Google Prediction API

e WDI

e XML

ScrapeR

What is web scraping?
Web scraping extracts data from any web page of a website.

106

Data Analytics using R

3.14 ComrarisoN oF R GUIs ror Data INPUT

R is mainly used for statistical analytical data processing. Analytical data processing needs
a large dataset that is stored in a tabular form. Sometimes it is difficult to use inbuilt
functions of R for doing such analytical data processing operations in R console. Hence,
to overcome this problem, GUI is developed for R.

Graphical user interface is a graphical medium through which users interact with the
language or perform operations. Different GUIs are available for data input in R. Each
GUI has its own features. Table 3.7 describes some of the most popular R GUISs.

TABLE 3.7 Some popular R GUIs

GUI Name

RCommander e
(Remdr)

Rattle °

RKWard °

JGR (Java .
GUI for R)

Deducer °

Description

RCommander was developed by John
Fox and licensed under the GNU
public license.

It comes with many plug-ins and has
a very simple interface.

Users can install it like other packages
of R within language.

Dr. Graham Williams developed the
Rattle GUI package written in R.
Data mining operation is the main
application area of Rattle.

It offers statistical analysis, validation,
testing and other operations.

RKWard community developed the
RKWard package.

It provides a transparent front end
and supports different features for
doing analytical operations in R.

It supports different platforms, such
as Windows, Linux, BSD, and OS X.

Markus Helbig, Simon Urbanek, and
lan Fellows developed JGR.

JGR is a universal GUI for R that sup-
ports cross platform.

Users can use it as a replacement for
the default R GUI on Windows.

Deducer is another simple GUI that
has a menu system for doing common
data operations, analytical processing
and other operations.

It is mainly designed to use it with the
Java-based R Console [JGR].

Download Weblink

http:/ /socserv.mcmaster.ca/jfox/Misc/
Remdr/

Or

https:/ /cran.r-project.org/web/packages/
Remdr/index.html

http:/ /rattle.togaware.com/

Or

http:/ /rattle.togaware.com/rattle-install-
mswindows.html

https:/ /rkward.kde.org/

Or

http:/ /download.kde.org/stable/
rkward/0.6.5/win32/install_rkward_0.6.5.exe

http:/ /www.rforge.net/JGR/

Or

https:/ /cran.r-project.org /web/packages/
JGR/

http:/ /www.deducer.org/pmwiki/pmwiki.
php?n=Main.DeducerManual

Or

http:/ /www.deducer.org/
pmwiki/index.php?n=Main.

Downloading AndInstallingDeducer

Figure 3.33 shows the official screenshot of the RCommander (Remdr) GUI that is

available in R.

Loading and Handling Data in R 107

R R Commander = O X
File Edit Data Statistics Graphs Models Distributions Tools Help

(R Datoset || Fruit| |/ Editdataset||[d) Viewdataset| Modek | = <Noactive model>

RScript R Markdown

Messages

L4 >

Ficure 3.33 RCommander GUI

Figure 3.34 illustrates table, ‘Fruit.csv’ through Remdr GUL

108 Data Analytics using R

R Fruit — O X

Fruit.Name Fruit.Price Fruit.Color
1 Mango 80 Yellow
2 Apple 100 Red
3 Banana 40 Green
4 Mango 70 Green
&) Pienapple 120 Yellow
) Banana 50 Yellow
7 Apple 90 Red
8| Apple 110 Red
9| Mango 90 Orange

Ficure 3.34 Reading table using RCommander GUI

Check Your Understanding

1. Whatis GUI?
Ans: GUI or Graphical User Interface is a graphical medium through which users interact
with the language or perform operations.

2. Name the most popular GUIs for R.
Ans: Popular GUISs for R are:
e RCommander (Remdr)
o Rattle
o RKWard
e JGR
e Deducer

3.15 Usine R wiTH DATABASES AND BUSINESS INTELLIGENCE SYSTEMS

Business analytical processing uses database for storing large volume of information.
Business intelligence systems or business intelligence tools handle all the analytical
processing of a database and use different types of database systems. The tools support the
relational database processing (RDBMS), accessing a part of the large database, getting a
summary of the database, accessing it concurrently, managing security, constraints, server
connectivity and other functionality.

At present, different types of databases are available in the market for processing.
They have many inbuilt tools, GUIs and other inbuilt functions through which database
processing becomes easy. In this section, you will learn about database connection with
SQL, MySQL, PostGreSQL and SQL Lite database as R provides inbuilt packages to access
all of these. With the help of these packages, users can easily access a database since all

Loading and Handling Datain R~ 109

the packages follow the same steps for accessing data from the database. In this section,
you will go through a brief introduction on Jaspersoft and Pentaho with R.

3.15.1 RODBC

RODBC' is a package of languages that interacts with a database. Michael Lapsley and

Brian Ripley developed this package.

RODBC helps in accessing databases such as MS Access and Microsoft SQL Server
through an ODBC interface. Its package has many inbuilt functions for performing
database operations on the database. Table 3.8 describes some major functions of RODBC

packages used in database connectivity.

TABLE 3.8 Major functions of RODBC

Function Description

odbcConnect (dsn, uid= ‘', pwd= ‘')

where,
dsn is domain name server, uid is the user ID and pwd is the password.

sglFetch (sgltable)

where,
sqltable is name of the SQL table.

sglQuery (query)

where,

query is the SQL query.

sglSave (dataframe, tablename= ‘sqgltable’)

where,
data frame defines the data frame object and tablename argument is the
name of the table.

sglDrop (sgltable)

where,
sqltable is the name of the SQL table.

odbcclose ()

The function opens a
connection to an ODBC
database.

The function reads a table
from an ODBC database into a
data frame.

The function takes a query,
sends to an ODBC database
and returns its result.

The function writes or updates
a data frame to a table in the
ODBC database.

The function removes a table
from the ODBC database.

The function closes the open
connection.

Here is a sample code where package RODBC is used for reading data from a database.

># importing package
> library (RODBC)

> connectl <- odbcConnect (dsn = ‘servername’,

#0Open connection
> queryl <- ‘Select * from lib.table where..’

> Demodb <- sqglQuery (connectl, queryl, errors
> odbcClose (connection) #Close the connection

uid= 'Y, pwd= ‘')

= TRUE)

! To download RODBC—https:/ /cran.r-project.org/web /packages/RODBC/index.html

110 Data Analytics using R

3.15.2 Using MySQL and R

MySQL is an open source SQL database system. It is a small-sized popular database that
is available for free download. For accessing MySQL database, users need to install the
MySQL database system on their computers. MySQL database can be downloaded and
installed from its official website.

R also provides a package, ‘RMySQL’" used for accessing the database from the MySQL
database. Like other packages, RMySQL? has many inbuilt functions for interacting with
a database.

Table 3.9 describes some major functions of RMySQL packages used in database
connectivity.

TABLE 3.9 Major functions of RMySQL

Function Description

dbConnect (MySQL (), uid= ‘', pwd= ‘', dbname = ‘',..) The function opens a
where, connection to the MySQL
MySQL () is MySQL driver, uid is the user ID, pwd is the password and database.

dbname is the database name.

dbDisconnect (connectionname) The function closes the open
where, connection.
Connectionname defines the name of the connection.

dbSendQuery (connectionname, sqgl) The function runs the
where, SQL queries of the open
connectionname defines the name of the connection. connection.

dbListTables (connectionname) The function lists the tables
where, of the database of the open
connectionname defines the name of the connection. connection.

dbWriteTable (connectionname, name = ‘table name’, The function creates the table
value = data.frame.name) and alternatively writes or
where, updates a data frame in the
connectionname defines the name of the connection. database.

A sample code to illustrate the use of RMySQL for reading data from a database is
given below.

># importing package

> library (RMySQL)

> connectm <- odbcConnect (MySQL (), uid= ‘', pwd= '‘,dbname = ‘',
host = ‘') #Open connection ‘connectm’

> querym <- ‘Select * from lib.table where..’

> Demom<- dbSendQuery (connectm, gquerym)

>dbDisconnect (connectm) #Close the connection ‘connect’

2 To download RMySQL—https:/ /cran.r-project.org/web/packages/RMySQL/

Loading and Handling Datain R~ 111

3.15.3 Using PostgreSQL and R

PostgreSQL is an open source and customisable SQL database system. After MySQL,
PostgreSQL database is used for business analytical processing. For accessing the
PostgreSQL database, users need to install the PostgreSQL database system on their
computer system. Please note that it requires a server. Users can §et a server on rent,
download and install the MySQL database from its official website.

R has a package, ‘RPostgreSQL’ that is used for accessing the database from the
PostgreSQL database. Like other packages, RPostgreSQL* has many inbuilt functions for
interacting with its database.

Table 3.10 describes open and close functions of RPostgreSQL packages used in database
connectivity.

TABLE 3.10 Major functions of the RPostgreSQL

Function Description

dbConnect (driverobject, uid= ‘', pwd= ‘', dbname The function opens a

= ‘Y, connection to an RPostgreSQL
where, database.

driverobject is an object of database driver, uid is the user ID, pwd is the

password and dbname is the database name.

dbDisconnect (connectionname) The function closes the open
where, connection.

Connectionname defines the name of the connection.

3.15.4 Using SQLite and R

SQLite is a server-less, self-contained, transactional and zero-configuration SQL database
system. It is an embedded SQL database engine that does not require any server, due to
which it is called a serverless database. The database also supports all business analytical
data processing.

R has an RSQLite };ackage that is used for accessing a database from the SQLite
database. The RSQLite” has many inbuilt functions for working with the database.

Like other packages used for accessing a database, as explained in the previous sections,
users can use the same methods—dbconnect () and dbDisconnect () for opening
and closing the connection from the SQLite database, respectively. The only difference
here is that users have to pass the SQLite database driver object in the dbConnect ()
function.

® https:/ /www.postgresql.org/download /windows/

* To download RPostgreSQL—https:/ /cran.r-project.org/web/packages/RPostgreSQL /index.html

> Users can use the following link for downloading RSQLite—https:/ /cran.r-project.org/web /packages/
RSQLite/index.html

112 Data Analytics using R

3.15.5 Using JasperDB and R

JasperDB is another open source database system integrated with R. It was developed
by the Jaspersoft community. It provides many business intelligence tools for analytical
business processing. A Java library interface is used between JasperDB and R. It is called
‘RevoConnectR for JasperReports Server’. The dashboard of the JasperReports Server
provides many features through which R charts, an output of the RevoDeploy R, etc.,
are easily accessible.

Like other packages, JasperDB has a package or web service framework called
‘RevoDeployR’ developed by Revolution Analytics. RevoDeploy R® provides a set of
web services with security features, scripts, APIs and libraries in a single server. It easily
integrates with the dynamic R-based computations into web applications.

3.15.6 Using Pentaho and R

Pentaho is one of the most famous companies in the data integration field that develops
different products and provides services for big data deployment and business analytics.
The company provides different open source-based and enterprise-class platforms. Pentaho
Data Integration (PDI) is one of the products of Pentaho’ used for accessing database and
analytical data processing. It prepares and integrates data for creating a perfect picture
of any business. The tool provides accurate and analytics-ready data reports to the end
users, eliminates the coding complexity and uses big data in one place.

R Script Executor is one of the inbuilt tools of the PDI tool for establishing a relationship
between R and Pentaho Data Integration. Through R Script Executor, users can access data
and perform analytical data operations. If users have R in their system already, then they
just need to install PDI from its official website. The users need to configure environment
variables, Spoon, DI Server, and Cluster nodes as well.

Although users can try PDI and transform a database using R Script Executor, PDI
is a paid tool for doing analytical data integration operation. The complete installation
process of the R Script Executor is available at http://wiki.pentaho.com/display /EAI/

R+script+executor

o
&‘ Just Remember

During database access from MySQL, PostGreSQL and SQL Lite, users can use the same functions if their
own driver object passes the same. For executing SQL queries, users can deploy the same functions for
i all the three databases. :

® Users can download from the following link—http:/ /community.jaspersoft.com /wiki/installation-steps-
installer-distribution
7 To download the Pentaho data integration tool—http:/ /www.pentaho.com/download

Loading and Handling Datain R~ 113

Check Your Understanding

1. What is the RODBC?
Ans: RODBC is a package of R that interacts with a database. It provides database access to
MS Access and Microsoft SQL server through an ODBC interface.

2. What is MySQL?
Ans: MySQL is an open source SQL database system. It is an Oracle product. MySQL is a
popular small-sized database that is available for free download.

3. What is PostgreSQL?
Ans: PostgreSQL is another open source and customisable SQL database system. After
MySQL, PostgreSQL database is used for business analytical processing.

4. What is RSQLite?
Ans: RSQLite is a package of R for accessing a database from the SQLite database.

5. What is RevoDeploy R?
Ans: RevoDeploy R provides a set of web services with security features, scripts, APIs and
libraries for R in a single server.

6. What is the R Script Executor?
Ans: R Script Executor is one of the inbuilt tools of the Pentaho Data Integration tool for
establishing the relationship between R and Pentaho Data Integration.

Study

Case

Log Analysis

A log file is a file that stores events that occur in an operating system
such as any source run in the system, messaging unit’s different ways of
communication, etc. Log files keep logs to be read in future, if required.

A transaction log is a file for communication between a server and users of
that system or server or a data collection method that automatically captures
the types, content or time of transaction made by a person from a terminal
within that system. In web searches, a transaction log file is created which is
an electronic record between interactions that have occurred during a search
index between the web search engine and users searching for getting any
information on that web.

(Continued)

114

Case

Data Analytics using R

Study

Many operating systems, software frameworks and progress include a
logging system. It is easy for the reader or user to generate their own cus-
tomised reports using R that can automatically analyse Apache log files and
create reports automatically as compared to other software. Nowadays, R has
become one of the most popular and powerful tool that can generate a model
based on which, the requirements of the user can be tracked and searched.

Types of Log Files
Event Logs

Event logs record the events that are taking place in the execution of any
system in order to provide an audit that can be used to enable the activities
of the system and to diagnose problems or error in the system or servers.
They are essential to analyse the activities of complex systems, particularly
in the case of applications with little user interactions.

Transaction Logs

Every database system maintains some kind of transaction log which is
not mainly stored as an audit trail for later analysis, and is not intended
to be human-readable. These logs record changes to the stored data to
allow database recovery from any failure or any other data error/loss and
maintenance of the stored data in a consistent state.

Message Logs

In these types of log files, we can see multiple types of logs like the Internet
Relay Chat (IRC), messaging programs, peer-to-peer file sharing clients
with chat functions and multiplayer games commonly having the ability to
automatically log textual communication, i.e. both public and private chat
messages between users. Message logs may be referred to the third-party
log storages from different channels. It builds a unique collective intelligence
model where Rtool is the best tool to analyse the data and provide the model
under any prediction/recommendations algorithms.

Internet Relay Chat (IRC)

Internet Relay Chat log files contain software and message logs. Message logs
often include system/server messages and entries related to any resource
which interacts with the servers. The user does some changes in the message
logs by making them more like a combined message/event log file of the
channel in question or for updating any information related to them. These
are used to set the profile to access their details and enable the basic details.
However, such a log is not comparable to a true IRC server event log file as it

(Continued)

Case

)
5

Loading and Handling Datain R~ 115

only records user-visible events for the period the user spent being connected
to a certain channel.

Instant messaging (IM)

Instant messaging and VoIP chats often offer the chance to store encrypted
log files to enhance the user’s privacy to set the logs related to any user in
the server/system as per the need of users. In this log file, the user can set
priorities in the server files to set their needs and preferences. These logs
require a password to be decrypted and viewed. These logs are often handled
by the respective user-friendly application that is used in mobile application
for getting information from the user and to check the interest of the users.

Transaction Log Analysis

Data stored in transaction logs of web search engines, intranets, and websites
can provide valuable information into the understanding of information
searching process of online searchers. This understanding can enlighten
information designed system, interface development and devise the
information architecture for content collections. The main role of these log files
is to read the data provided by the user to get more information from them
and set the records to identify the role and interest of different users. This is
the main log files with the help of which we can track user preferences and
their visits based on any transaction that they had done in the past.

Advantages of Rtool on Log File Analysis

Although R is not an easy to learn language, it has many advantages such as
the fact that it can be used in UNIX scripts, it has several packages (CRAN)
and outstanding graphical capabilities. It also has the ability to process lots of
data with advanced statistical capabilities and connect to a database, making
it one of the most powerful programming languages.

Getting the Data

Before being able to read the log file data, we must first import that data into
R. The good thing is that R can parse log file without requiring any other
additional work from the user. So, reading a Log file named log.log is as
simple as executing the following:

> LOGS = read.table(‘log.log’, sep=' ', header=F)

After executing the read.table () command, the logs variable holds all
the information from log data from the log.log file. The head (logs) command
illusrates the first few lines from the log variables to get an idea of how we
are going to store this kind of data in R.

(Continued)

116

Case

e Analytical data processing is a part of business intelligence that includes relational database, data
warehousing, data mining and report mining.

e Data formats, data quality, project scope and output results via stakeholder expectation manage-
ment are the challenges faced during analytical data processing.

e Data input, processing, descriptive statistics, visualisation of data, report generation and output are
the common steps of analytical data processing.

Data Analytics using R

=

Stu

» Analysing the Data

Getting the data in R is not difficult for any user who has worked with R.
However, the most important part is analysing the data. The most useful
command we can run on a dataset with numeric values is the summary ()
command. The summary () command can give us better understanding of the
output of the summary of the data.

By running the summary () command, we will get:

e Min: This is the minimum value of the whole dataset.

o Median: It is an element that divides the dataset into two subsets with
the same number of elements. If the dataset has an odd number of ele-
ments, the median is part of the dataset of elements. If the dataset has
an even number of elements, then the median is the mean values of
the two center elements of the dataset. The median is the mean values
of the two centre elements of the dataset.

o Mean: This is the mean value of the data ()

¢ set, the sum of all values divided by the number of items in the datasets.

e Max: This is the maximum value found in the dataset.

Visualising the Data

To visualise the data, we need to run:
>barplot (table (logs[column name])

If we want to save the R bar plot to an image which is 1024 x 1024 pixels,
we should run these lines in R commands:

>png (‘test.png’, width=1024, height=1024)
>barplot (table (logs|[,column name]))
>dev.off ()

Similarly, we can visualise the number of requests per week day and per
hour of the day.

The pair () command is especially useful since it gives a general overview
of the data. Then tempL0OGS <- LOGS command creates a copy of the LOGS
variables into the tempLOGS variable.

Similarly, a user can implement and analyse other log files and get valuable
output to generate any predictive model or recommendation engine.

(Continued)

Loading and Handling Datain R~ 117

R supports different types of data formats related to a database. With the help of import and export
utility of R, any type of data can be imported and exported into R.

A CSV file uses .csv extension and stores data in a table structure format in any plain text.

A read.csv () function reads data from a CSV file.

A read.table () function reads data from a text file or a CSV file.

A package is a collection of functions and datasets. In R, many packages are available for doing dif-
ferent types of operations.

A read.x1lsx () is an inbuilt function of ‘xIsx’ package for reading Excel files.

e The library () function loads packages into the R workspace. It is compulsory to import the

package before reading the available dataset of that package.

e The data () function lists all the available datasets of the loaded package in the R workspace.

Different packages are available in R for reading from the online dataset or web data. RCurl, Google
Prediction API, WDI, XML and ScrapeR are some such packages.

e Web scrapping extracts data from any webpage of a website.

In R, NA (Not Available) represents the missing values and Inf (Infinite) represents the infinite values.
R provides different functions that identify the missing values during processing.

The is.na () function is used for checking missing values in an R object. The function checks an
object and returns true if any data is missing.

The na.omit () function is an inbuilt function of R that returns objects after removing missing
values from the object.

The na.exclude () function is an inbuilt function of R that returns objects after removing miss-
ing values from the object.

The na.fail () function is an inbuilt function of R that detects an error, if any, and returns an
object if an object does not contain any missing value.

The operator ‘as’ converts the structure of one dataset into another structure in R.

Exploring a dataset means displaying the data of a dataset in a different form.

The summary () function is used for displaying the summary of a dataset.

The head () function is an inbuilt data exploring function that displays the top rows according to
a given value.

The tail () function is an inbuilt data exploring function that displays the bottom rows according
to a given value.

The merge () function is an inbuilt function of R. The function combines the data frames by com-
mon columns or row names. It also follows the database join operations.

Aggregate and group operations aggregate the data of specific variables of the dataset after the
grouping of variable data.

The aggregate () function is an inbuilt function of R. The function aggregates the data values. It
also splits the data into groups after performing the required statistics function.

The tapply () function is an inbuilt function of R. The function aggregates the data values into
groups after performing the required statistics function.

Manipulating text operation works on character strings and manipulating strings. There are many
inbuilt string functions available in R that can manipulate text or string.

The functions read.csv () and read.table () are used for reading datasets or tables into the
R workspace.

Graphical user interface (GUI) is a graphical medium through which users interact with a language
or perform an operation.

(Continued)

Data Analytics using R

e RCommander (Rcmdr), Rattle, RKWard, JGR, Deducer are some of the most popular GUIs for R.
e Business analytical processing uses a database for storing a large volume of information. Business

intelligence systems or business intelligence tools handle all the business analytical processing of
the database and uses different types of database systems.

e A database is a collection of values stored in a tabular form.
e RODBC is a package of R that interacts with a database. RODBC provides database accessing of MS

Access and Microsoft SQL server through an ODBC interface.
MySQL is an open source SQL database system and an Oracle product. MySQL is a popular small-
sized database and is available for free download.

e RMySQL is a package of R that is used for accessing database from the MySQL database.
e PostgreSQL is another open source and customizable SQL database system. After MySQL, PostgreSQL

database is used for business analytical processing.

e RPostgreSQL is a package of R for accessing database from the PostgreSQL database.
e SQlite is a server-less, self-contained, transactional, and zero-configuration SQL database system.

It is an embedded SQL database engine that does not require any server, which is why it is called
serverless database.

e RSQLite is a package of R for accessing database from the SQLite database.
e The ‘RevoConnectR for JasperReports Server’ is a java library interface between JasperReports Server

and Revolution R Enterprise.

The RevoDeploy R provides a set of web services for the security features, scripts, APls, and libraries
for the R into a single server.

Pentaho Data Integration (PDI) is one of the products of Pentaho used for accessing the database
and analytical data processing. It prepares and integrates data for creating a perfect picture of any
business.

R Script Executor is one of the inbuilt tools of the Pentaho Data Integration tool for establishing the
relationship between R and Pentaho Data Integration.

KeEy TERMS

CSV: CSV is a file extension that stands
for Comma Separated Values for creating
CSV files.

Database: A database is a collection of val-
ues stored in a tabular form.

GUI: Graphical User Interface or GUI is
a graphical medium through which users
interact with a language or perform opera-
tions.

MySQL: MySQL is an open source SQL
database system and an Oracle product.
Package: A package is a collection of func-
tions and datasets.

PostgreSQL: PostgreSQL is an open source
and customisable SQL database system.
RODBC: RODBC is a package of R that
interacts with a database.

R Console: R Console is a terminal where
the command of R is executed.
RCommander: RCommander is a famous
R GUL

RCurl: RCurl is a package for reading data
from online datasets or web data.
RMySQL: RMySQL is a package of R
for accessing database from the MySQL
database.

Loading and Handling Datain R~ 119

e RPostgreSQL: RPostgreSQL is a package e SQLite: SQLite is a server-less, self-con-

of R for accessing database from the Post- tained, transactional and zero-configuration
greSQL database. SQL database system.

e RSQLite: RSQLite is a package of R for ac- e Web scraping: Web scraping extracts data
cessing database from the SQLite database. from any webpage of a website.

e Spreadsheet: A spreadsheet is a table that e Workspace: Workspace is the current work-
stores data in rows and columns. ing environment of any software.

‘ MuLTIPLE CHOICE QUESTIONS

1. Which one of the following is not a challenge for analytical data processing?

(a) Data Formats (b) Project Scope
(c) Data Quality (d) Data Input
2. Which one of the following arguments of read. table () function contain logical values?
(a) header (b) sep
(c) filename (d) None of the above
3. Which one of the following functions loads a package into the R workspace?
(a) load() (b) library()
(c) data() (d) install()

4. Which one of the following functions lists all the available datasets of a loaded package into
the R workspace?

(a) library() (b) data (datasetname)
(c) data () (d) install()
5. Which one of the following packages reads finance data from Yahoo finance?
(a) Rcurl (b) XML
(c) WDI (d) Quantmod
6. Which one of the following package reads all World Bank data?
(a) RCurl (b) XML
(c) WDI (d) Quantmod
7. Which one of the following packages is used for accessing web data?
(a) ScrapeR (b) Stat
(c) RSQLite (d) Matrix
8. Which one of the following commands converts a data frame into a matrix?
(a) as.Matrix (data frame) (b) .matrix (data frame)
(c) as.numeric (data frame) (d) None of the above

9. Which one of the following symbols is used by ‘as’ operator?
(@) * (b) .
() % (d) &

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Data Analytics using R

What is the correct output of the command is.na(c(4,5,NAa))?

(a) FALSE FALSE TRUE (b) FALSE TRUE TRUE
(c) FALSE TRUE FALSE (d) TRUE FALSE TRUE

Which one of the following functions displays the variables of the given dataset?
(a) summary () (b) names ()
(c) str() (d) install()

Which one of the following functions displays the structure of the given dataset?
(a) summary () (b) names ()
() str() (d) install ()

Which one of the following functions returns the number of categorical value after counting
it?
(a) table (datasetSvariablenames) (b) table (dataset.variablenames)

(c) table (dataset) (d) table(variablenames)
How many rows are returned by the head () or tail () function by default?
(@ 1 (b) 4
(c) 6 (d) 5
Which one of the following functions returns the bottom five rows of the dataset ‘Mobile’?
(a) head (Mobile) (b) head (Mobile, 5)
(¢) tail (Mobile) (d) tail (Mobile, 5)
Which one of the following symbols is used for displaying specific rows and columns?
(@ {} (b) *
(© 0 (d 0
Which one of the following functions contains the argument ‘INDEX"?
(a) aggregate () (b) merge ()
(c) tapply() (d) sum()

Which one of the following arguments is equal to ‘Left Outer Join’ operation in merge ()
function?

(a) byx (b) byy

(c) all.x (d) ally
Which one of the following arguments is equal to ‘Natural Join” operation in merge ()
function?

(a) byx (b) all.x

(c) all (d) ally
Which one of the following arguments is equal to ‘Right Outer Join” operation in merge ()
function?

(a) byx (b) all.x

(c) all (d) ally

21.

22.

23.

24.

25.

Loading and Handling Datain R~ 121

Which one of the following arguments is used for statistical operations?

(a) INDEX (b) BY
(¢) FUN (d) ALL
What is the correct output of the command substr (‘Programming Language’,5,10)?
(a) ‘rammin’ (b) ‘ramming’
(c) ‘amming’ (d) Error

What is the correct output of the command strsplit (‘Programming Language’,
\ \) ?

(a) 'Programming Language’ (b) ‘Programming’ ‘Language’
(c) Programming Language (d) Error

Which one of the following GUIs was developed by Dr. Graham Williams?
(a) Remdr (b) Deducer
(c) Rattle (d) JGR

Which one of the following GUIs is used with the Java-based R console (JGR)?
(a) Remdr (b) Deducer
(¢) RKWard (d) Rattle

‘ SHORT QUESTIONS

1.

O X N oG W N

e
No= o

What do you mean by analytical data processing? What are the advantages of business
analytics?

What is the difference between read.csv () and read.table () function?
How are packages in R read using the 1ibrary () function?

What is the difference between the 1ibrary () and data () functions?

How does web scraping use RCurl package?

What is the difference between na.omit () and na.exclude () functions?
What is the use of the ‘as” operator in R? Explain with syntax and an example.
How can you explore a dataset in R?

What is the difference between aggregate () and tapply () functions?
What is the difference between substr () and strsplit () functions?
Which functions are used for describing a dataset? Explain with an example.

Which functions are used for describing variables? Explain with an example.

Data Analytics using R

‘ LoNG QUESTIONS

¥ X NG W N

N N DN P PR P PR R R R B
WP o 0 NS »N = o

24.
25.

26.

Explain the methods of reading a dataset, along with an example and syntax.
Explain read.x1sx () function with an example and syntax.
Explain data () function with an example and syntax.

Explain the is.na () function with an example and syntax.
Explain the na.omit () function with an example and syntax.
Explain the na.exclude () function with an example and syntax.
Explain the na.fail () function with an example and syntax.
Explain the na.pass () function with an example and syntax.
Explain the head () function with an example and syntax.
Explain the tail () function with an example and syntax.
Explain the merge () function with an example and syntax.
Explain the aggregate () function with an example and syntax.
Explain the tapply () function with an example and syntax.
Explain text manipulation function with an example and syntax.
Explain RODBC package.

Explain RMySQL package.

Explain RPostGreSQL package.

Explain RSQLite package.

Explain Pentaho with R.

Create a table using a CSV file and read it into R using read.csv ().
Create a table and read it into R using read. table ().

Create a table in Excel and read it into R.

Create a data frame ‘Book’ that contains three vectors [Name, Price, Author]. Convert this
data frame into a matrix and list the object using the operator ‘as’.

Create a dataset or table ['Shop’] and apply all the data exploring functions on this table.

Create two data frames, ‘Student” and ‘Subject” with appropriate values. Merge both data
frames using the merge function. Implement the left and right outer join operations on the
data frames.

Create a dataset or table ['Smartphone’] that stores the mobile information [price, company
name, model] of five different companies. Store at least 20 rows. Write the commands and
find out the output for the following information:

e Maximum price of mobile of each company

Loading and Handling Datain R~ 123

e Minimum price of mobile of each company
e Average price of mobile of each company
e Total price of mobile of each company

27. Create a dataset, “Watch’ and store the information about watches of four different
companies. Explain all the steps of simple analytical data processing from input to output
on this dataset.

(@ -gc) ¥t (@ ¢ (e) T
O) 12 (P) "0t () 61 () 81 O L1 () 91 (p) St
O) 1 (e) €1 O (@ ‘11 (e) o1 @ 6 (e) 8
(e) 2 ®) 9 (p) S ()7 @ ¢ (e) (P) 1

SO 07 S4omsup

Chapter

LEARNING OUTCOME

Exploring Data in R

Al the end of this chapler, you will be able to:

>

Store data of various types in frames, retrieve data from data frames, execute R func-
tions such as dim (), nrow(), ncol(), str(), summary(), names (), head(),
tail () and edit () to understand the data in data frames

Load data from .csv, tab separated value file and table
Handle missing values, invalid values and outliers

Run descriptive statistics on the data, i.e. frequency, mean, median, mode, and
standard deviation

Create visualisations to promote deeper understanding of data

4.1 INTRODUCTION

R provides interactive data visualisations to support analyses of statistical data. In R, data
is usually stored in data frames owing to its ability to hold data of varied data types. These
data frames are unlike the matrices, which can store data of only one type. In this chapter,
we will begin by learning about data frames and gradually progress to read in data from
.csv, tab separated value files, tables, etc., into data frames. Finally, we will explore data
using various functions and interactive visualisations provided by R.

Exploring Datain R~ 125

4,2 DATA FRAMES

Imagine a data frame as something akin to a database table or an Excel spreadsheet. It has
a specific number of columns, each of which is expected to contain values of a particular
data type. It also has an indeterminate number of rows, i.e. sets of related values for each
column.

Assume, we have been asked to store data of our employees (such as employee ID,
name and the project that they are working on). We have been given three independent
vectors, viz., namely, “EmpNo”, “EmpName” and “ProjName” that holds details such as
employee ids, employee names and project names, respectively.

>EmpNo <- ¢ (1000, 1001, 1002, 1003, 1004)
>EmpName <- c(“Jack”, “Jane”, “Margaritta”, “Joe”, “Dave”)
>ProjName <- c (“POl”, “P02”, “PO3”, “P0O4”, “PO5”)

However, we need a data structure similar to a database table or an Excel spreadsheet
that can bind all these details together. We create a data frame by the name, “Employee”
to store all the three vectors together.

>Employee <- data.frame (EmpNo, EmpName, ProjName)
Let us print the content of the date frame, “Employee”.

> Employee

EmpNo EmpName ProjName
1 1000 Jack PO1
2 1001 Jane PO2
3 1002 Margaritta PO3
4 1003 Joe PO4
5 1004 Dave PO5

We have just created a data frame, “Employee” with data neatly organised into rows
and the variable names serving as column names across the top.

4.2.1 Data Frame Access

There are two ways to access the content of data frames:
i. By providing the index number in square brackets
ii. By providing the column name as a string in double brackets.

By Providing the Index Number in Square Brackets

Example 1

To access the second column, “EmpName”, we type the following command at the R
prompt.

126 Data Analytics using R

> Employee[2]

EmpName

1 Jack

2 Jane

3 Margaritta

4 Joe

5 Dave
Example 2

To access the first and the second column, “EmpNo” and “EmpName”, we type the
following command at the R prompt.

> Employee[1l:2]

EmpNo EmpName
1 1000 Jack
2 1001 Jane
3 1002 Margaritta
4 1003 Joe
5 1004 Dave
Example 3
> Employee [3,]
EmpNo EmpName ProjName
3 1002 Margaritta PO3

Please notice the extra comma in the square bracket operator in the example. It is not a
typo.

Example 4
Let us define row names for the rows in the data frame.

> row.names (Employee) <- c(“Employee 1”7, “Employee 2”, “Employee 37,
“Employee 4”, “Employee 5”)

> row.names (Employee)

[1] “Employee 1” “Employee 2” “Employee 3” “Employee 4” “Employee 5”
> Employee

EmpNo EmpName ProjName
Employee 1 1000 Jack PO1
Employee 2 1001 Jane P02
Employee 3 1002 Margaritta P03
Employee 4 1003 Joe P04
Employee 5 1004 Dave P05

Let us retrieve a row by its name.

> Employee [“Employee 17,]
EmpNo EmpName ProjName
Employee 1 1000 Jack PO1

Exploring Datain R~ 127

Let us pack the row names in an index vector in order to retrieve multiple rows.

> Employee [c (“Employee 3”, “Employee 5”),]
EmpNo EmpName ProjName

Employee 3 1002 Margaritta P03

Employee 5 1004 Dave P05

By Providing the Column Name as a String in Double Brackets

> Employee [[“EmpName”]]
[1] Jack Jane Margaritta Joe Dave
Levels: Dave Jack Jane Joe Margaritta

Just to keep it simple (typing so many double brackets can get unwieldy at times), use
the notation with the $ (dollar) sign.

> Employee$SEmpName
[1] Jack Jane Margaritta Joe Dave
Levels: Dave Jack Jane Joe Margaritta

To retrieve a data frame slice with the two columns, “EmpNo” and “ProjName”, we
pack the column names in an index vector inside the single square bracket operator.

> Employee[c (“EmpNo”, “ProjName”)]
EmpNo ProjName

1 1000 P01

2 1001 P02

3 1002 P03

4 1003 P04

5 1004 P05

Let us add a new column to the data frame.
To add a new column, “EmpExpYears” to store the total number of years of experience
that the employee has in the organisation, follow the steps given as follows:

> Employee$SEmpExpYears <-c(5, 9, 6, 12, 7)

Print the contents of the date frame, “Employee” to verify the addition of the new
column.

> Employee

EmpNo EmpName ProjName EmpExpYears
1 1000 Jack PO1 5
2 1001 Jane P02 9
3 1002 Margaritta P03 6
4 1003 Joe P04 12
5 1004 Dave P05 7

128 Data Analytics using R

4.2.2 Ordering the Data Frames

Let us display the content of the data frame, “Employee” in ascending order of
“EmpExpYears”.

> Employee[order (EmployeeSEmpExpYears),]

EmpNo EmpName ProjName EmpExpYears
1 1000 Jack POl 5
3 1002 Margaritta P03 6
5 1004 Dave P05 7
2 1001 Jane P02 9
4 1003 Joe P04 12

Use the syntax as shown next to display the content of the data frame, “Employee” in
descending order of “EmpExpYears”.

> Employee[order (-Employee$SEmpExpYears),]

EmpNo EmpName ProjName EmpExpYears
4 1003 Joe P04 12
2 1001 Jane P02 9
5 1004 Dave P05 7
3 1002 Margaritta P03 6
1 1000 Jack PO1 5

4.3 R Functions FOR UNDERSTANDING DATA IN DATA FRAMES

We will explore the data held in the data frame with the help of the following R
functions:
e dim()
¢ nrow ()
¢ ncol ()
e str ()
e summary ()
e names ()
e head()
e tail()
o cdit ()

4.3.1 dim() Function

The dim () function is used to obtain the dimensions of a data frame. The output of this
function returns the number of rows and columns.

> dim (Employee)
[1] 5 4

The data frame, “Employee” has 5 rows and 4 columns.

Exploring Datain R~ 129
nrow () Function

The nrow () function returns the number of rows in a data frame.

> nrow (Employee)
[11 5

The data frame, “Employee” has 5 rows.

ncol () Function
The ncol () function returns the number of columns in a data frame.

> ncol (Employee)
(1] 4

The data frame, “Employee” has 4 columns.

4.3.2 str() Function

The str() function compactly displays the internal structure of R objects. We will use
it to display the internal structure of the dataset, “Employee”.

> str (Employee)

‘data.frame’” : 5 obs. of 4 variables:

$ EmpNo : num 1000 1001 1002 1003 1004

$ EmpName : Factor w/ 5 levels “Dave”, “Jack”, ..: 2 3541

$ ProjName : Factor w/ 5 levels “P01”, “P02”, “P03”, ..: 1 2 3 45
$ EmpExpYears: num 5 9 6 12 7

4.3.3 summary () Function

We will use the summary () function to return result summaries for each column of the
dataset.

> summary (Employee)

EmpNo EmpName ProjName EmpExpYear
Min. : 1000 Dave 1 PO1:1 Min. : 5.0
1°" Qu. : 1001 Jack 1 P02:1 1°% Qu. 6.0
Median : 1002 Jane 1 P03:1 Median 7.0
Mean : 1002 Joe 1 PO04:1 Mean 7.8
3rd Qu. : 1003 Margaritta 1 P05:1 3rd Qu. 9.0
Max. : 1004 Max. : 12.0

4.3.4 names () Function

The names () function returns the names of the objects. We will use the names () function
to return the column headers for the dataset, “Employee”.

130 Data Analytics using R

> names (Employee)
[1] “EmpNo” “EmpName” “ProjName” “EmpExpYears”

In the example, names(Employee) returns the column headers of the dataset “Employee”.
The str () function helps in returning the basic structure of the dataset. This function
provides an overall view of the dataset.

4.3.5 head() Function

The head () function is used to obtain the first n observations where 1 is set as 6 by default.

Examples

1. In this example, the value of n is set as 3 and hence, the resulting output would
contain the first 3 observations of the dataset.

> head (Employee, n=3)

EmpNo EmpName ProjName EmpExpYears
1 1000 Jack PO1 5
2 1001 Jane P02 9
3 1002 Margaritta P03 6

2. Consider x as the total number of observations. In case of any negative values as
input for 1 in the head () function, the output obtained is first x+7n observations. In
this example, x=5 and n= -2, then the number of observations returned will be

x+n=5+(-2)=3

> head (Employee, n=-2)

EmpNo EmpName ProjName EmpExpYears
1 1000 Jack PO1 5
2 1001 Jane P02 9
3 1002 Margaritta P03 6

4.3.6 tail () Function
The tail () function is used to obtain the last 7 observations where 7 is set as 6 by default.

> tail (Employee, n=3)

EmpNo EmpName ProjName EmpExpYears
3 1002 Margaritta P03 6
4 1003 Joe P04 12
5 1004 Dave P05 7

Example

Consider the example, where the value of n is negative, and the output is returned by
a simple sum up value of x+n. Here x = 5 and n =-2. When a negative input is given in
the case of the tail () function, it returns the last x+n observations. The example given
as follows returns the last 3 records from the dataset, “Employee”.

Exploring Datain R~ 131

> tail (Employee, n=-2)

EmpNo EmpName ProjName EmpExpYears
3 1002 Margaritta P03 6
4 1003 Joe P04 12
5 1004 Dave P05 7

4.3.7 edit() Function

The edit () function will invoke the text editor on the R object. We will use the edit ()
function to open the dataset , “Employee” in the text editor.

> edit (Employee)

EmpNo |EmpName ProjName | EmpExpYears
1000 Jack P01 5

1001 Jane P02 9

1002 Margaritta| P03 6

1003 Joe P04 12

Dave PO5 f 4

W | J ||| | W N |-
[
O
O
o

To retrieve the first three rows (with all columns) from the dataset, “Employee”, use
the syntax given as follows:

> Employee[1:3,]

EmpNo EmpName ProjName EmpExpYears
1 1000 Jack P01 5
2 1001 Jane P02 9
3 1002 Margaritta P03 6

To retrieve the first three rows (with the first two columns) from the dataset, “Employee”,
use the syntax given as follows:

> Employee[1:3, 1:2]

EmpNo EmpName
1 1000 Jack
2 1001 Jane

3 1002 Margaritta

132 Data Analytics using R

TABLE 4.1 A brief summary of functions for exploring data in R

Function Name Description

nrow (x) Returns the number of rows

ncol (x) Returns the number of columns

str (mydata) Provides structure to a dataset

summary (mydata) Provides basic descriptive statistics and frequencies
edit (mydata) Opens the data editor

names (mydata) Returns the list of variables in a dataset

head (mydata) Returns the first n rows of a dataset. By default, n =6
head (mydata, n=10) Returns the first 10 rows of a dataset

head (mydata, n= -10) Returns all the rows but the last 10

tail (mydata) Returns the last 7 rows. By default, n = 6

tail (mydata, n=10) Returns the last 10 rows

tail (mydata, n= -10) Returns all the rows but the first 10

mydata[1:10,] Returns the first 10 rows

mydata[1:10,1:3] Returns the first 10 rows of data of the first 3 variables

4.4 Loap DATA FRAMES

Let us look at how R can load data into data frames from external files.

4.4.1 Reading from a .csv (comma separated values file)

We have created a .csv file by the name, “item.csv” in the D:\ drive. It has the following

content:
1 Itemcode ItemCategory ItemPrice

L2 11001 Electronics 700 |
|3 11002 Desktop supplies 300 |
| 4 11003 Office supplies 350 |

Let us load this file using the read.csv function.

> TtemDataFrame <- read.csv(“D:/item.csv”)
> ItemDataFrame

Itemcode ItemCategory ItemPrice
1 I1001 Electronics 700
2 11002 Desktop supplies 300
3 11003 Office supplies 350

Exploring Datain R~ 133

4.4.2 Subsetting Data Frame

To subset the data frame and display the details of only those items whose price is greater
than or equal to 350.

> subset (ItemDataFrame, ItemPrice >=350)

Itemcode ItemCategory ItemPrice
1 I1001 Electronics 700
3 11003 Office supplies 350

To subset the data frame and display only the category to which the items belong (items
whose price is greater than or equal to 350).

> subset (ItemDataFrame, ItemPrice >=350, select = c(ItemCategory))
ItemCategory
1 Electronics

3 Office supplies

To subset the data frame and display only the items where the category is either “Office
supplies” or “Desktop supplies”.

> subset (ItemDataFrame, ItemCategory == “Office supplies” | ItemCat-
egory == “Desktop supplies”)
Itemcode ItemCategory ItemPrice
2 11002 Desktop supplies 300
3 11003 Office supplies 350

4.4.3 Reading from a Tab Separated Value File

For any file that uses a delimiter other than a comma, one can use the read.table command.

Example
We have created a tab separated file by the name, “item-tab-sep.txt” in the D:\ drive. It
has the following content.

Itemcode ItemQtyOnHand ItemReorderLvl
11001 75 25
11002 30 25
I1003 35 25

Let us load this file using the read.table function. We will read the content from the file
but will not store its content to a data frame.

> read.table (“d:/item-tab-sep.txt”, sep="\t”)
V1 V2 V3
1 Itemcode ItemQtyOnHand ItemReorderLvl
2 I1001 70 25
3 11002 30 25
4 11003 35 25

134 Data Analytics using R

Notice the use of V1, V2 and V3 as column headings. It means that our specified column
names, “Itemcode”, ItemCategory” and “ItemPrice” are not considered. In other words,
the first line is not automatically treated as a column header.

Let us modify the syntax, so that the first line is treated as a column header.

> read.table (“d:/item-tab-sep.txt”, sep="\t”,

Itemcode ItemQtyOnHand
1 11001 70
2 11002 30
3 11003 35

header=TRUE)

ItemReorderLvl

25
25
25

Now let us read the content of the specified file into the data frame, “ItemDataFrame”.

> ItemDataFrame <- read.table(“D:/item-tab-sep.txt”,sep="\t”,
header=TRUE)
> TtemDataFrame

Itemcode ItemQtyOnHand
1 11001 70
2 11002 30
3 I1003 35

4.4.4 Reading from a Table

ItemReorderLvl

25
25
25

A data table can reside in a text file. The cells inside the table are separated by blank
characters. An example of a table with 4 rows and 3 columns is given as follows:

1001
2001
3001
4001

Physics 85
Chemistry 87
Mathematics 93
English 84

Copy and paste the table in a file named “d:/mydata.txt” with a text editor and then
load the data into the workspace with the function read.table.

VvV VvV

V1
1001
2001
3001
4001

DSw N

4.4.5 Merging Data Frames

mydata
mydata

= read.table (“d:/mydata.txt”)

v2

Physics
Chemistry
Mathematics
English

V3
85
87
93
84

Let us now attempt to merge two data frames using the merge function. The merge
function takes an x frame (item.csv) and a y frame (item-tab-sep.txt) as arguments. By

Exploring Datain R~ 135

default, it joins the two frames on columns with the same name (the two “Itemcode”
columns).

> csvitem <- read.csv(“d:/item.csv”)
> tabitem <- read.table (“d:/item-tab-sep.txt”,sep="\t”,header=TRUE)
> merge (x=csvitem, y=tabitem)

Itemcode ItemCategory ItemPrice ItemQtyOnHand ItemReorderLvl
1 I1001 Electronics 700 70 25
2 I1002 Desktop supplies 300 30 25
3 11003 Office supplies 350 35 25

4.5 EXPLORING DATA

Data in R is a set of organised information. Statistical data type is more com