
Data analytics

using R

Seema Acharya is a Senior Lead Principal with the Education,
Training and Assessment department of Infosys Limited. She is a
technology evangelist, a learning strategist, and an author with over
15 years of information technology industry experience in learning/
education services. She has designed and delivered several large-
scale competency development programs across the globe involving
organizational competency need analysis, conceptualization, design,
development and deployment of competency development programs.

An educator by choice and vocation, her areas of interest and
expertise are centered on Business Intelligence and Big Data, and Analytics Technologies
such as Data Warehousing, Data Mining, Data Analytics, Text Mining and Data
Visualization.

She has authored some other books as well on the subject and has co-authored a
paper on Collaborative Engineering Competency Development for ASEE (American Society
for Engineering Education). She holds the patent on Method and system for automatically
generating questions for a programming language.

She is passionate about exploring new paradigms of learning and also dabbles into
creating e-learning content to facilitate learning anytime and anywhere.

About the Author

Seema Acharya

Senior Lead Principal

Infosys Limited

McGraw Hill Education (India) Private Limited
CHENNAI

McGraw Hill Education Offices

Chennai New York St Louis San Francisco Auckland Bogotá Caracas

Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal

San Juan Santiago Singapore Sydney Tokyo Toronto

Data analytics

using R

McGraw Hill Education (India) Private Limited

Published by McGraw Hill Education (India) Private Limited

444/1, Sri Ekambara Naicker Industrial Estate, Alapakkam, Porur, Chennai - 600 116

Data Analytics using R

Copyright © 2018 by McGraw Hill Education (India) Private Limited.

No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical, photocopying,

recording, or otherwise or stored in a database or retrieval system without the prior written permission of the publishers.

The program listings (if any) may be entered, stored and executed in a computer system, but they may not be reproduced for

publication.

This edition can be exported from India only by the publishers,

McGraw Hill Education (India) Private Limited

Print Edition:

ISBN-13: 978-93-5260-524-8

ISBN-10: 93-5260-524-1

E-Book Edition:

ISBN-13: 978-93-5260-525-5

ISBN-10: 93-5260-525-X

1 2 3 4 5 6 7 8 9 D103074 22 21 20 19 18

Printed and bound in India.

Director—Science & Engineering Portfolio: Vibha Mahajan

Senior Portfolio Manager: Hemant K Jha

Associate Portfolio Manager: Mohammad Salman Khurshid

Senior Manager—Content Development: Shalini Jha

Content Developer: Ranjana Chaube

Production Head: Satinder S Baveja

Assistant Manager—Production: Jagriti Kundu

General Manager—Production: Rajender P Ghansela

Manager—Production: Reji Kumar

Information contained in this work has been obtained by McGraw Hill Education (India), from sources believed to be reliable.

However, neither McGraw Hill Education (India) nor its authors guarantee the accuracy or completeness of any information

published herein, and neither McGraw Hill Education (India) nor its authors shall be responsible for any errors, omissions,

or damages arising out of use of this information. This work is published with the understanding that McGraw Hill Education

(India) and its authors are supplying information but are not attempting to render engineering or other professional services.

If such services are required, the assistance of an appropriate professional should be sought.

Typeset at The Composers, 260, C.A. Apt., Paschim Vihar, New Delhi 110 063 and printed and bound in India at

Cover Printer:

Visit us at: www.mheducation.co.in

Write to us at: info.india@mheducation.com

CIN: U22200TN1970PTC111531

Toll Free Number: 1800 103 5875

This book is dedicated to

my father who is and will always remain my beacon of

righteous inspiration

Objective Of this bOOk

We are in very exciting times! Statistical computing and high-scale data analysis tasks
need a new category of computer language other than the procedural and object-oriented
programming languages. The main objective of this category of language is to support
various types of statistical analysis and data analysis tasks rather than developing new
software. There are mounds of data available today which can be analyzed in different
ways and can provide a wide range of useful insights for different operations in different
industries. However, the problem was the lack of support, tools and techniques for data
analysis for different purposes. R, a statistical and analytical language, has come to our
rescue! To add to the benefits, it is an open source.

target audience

The audience for this book includes all levels of IT professionals, executives responsible
for determining IT strategies, system administrators, data analysts and decision makers
responsible for driving strategic initiatives, etc. It will help to chart your journey from a
novice to a professional data analyst.

The book will also make for an interesting read for business users, management
graduates, and business analysts.

OrganizatiOn Of the bOOk

The book has 12 chapters. Each chapter is organized in the following way:

Chapter 1 will help you learn the installation of R and R packages. It will get you
comfortable working with any R package using functions such as find.package(),
install.packages(), library(), vignette() and packageDescription().

Chapter 2 will allow you to analyze directory content with commands such as dir() and
list() and also easily analyze datasets using functions such as str(), summary(),

ncol(), nrow(), head(), tail() and edit().

Preface

viii Preface

Chapter 3 will familiarize with the processes for loading data from .csv, spreadsheets, web,
Jason documents, XML, etc. It will acquaint the reader with usage of R with databases
such as MySQL, PostgreSQL, SQLlite and JasperDB.

Chapter 4 is all about data frames. It will help you store data of varied data types into
frames, retrieve data from data frames, execute R functions such as dim(), nrow(),

ncol(), str(), summary(), names(), head(), tail() and edit() to understand
the data in data frames. It will help you run descriptive statistics on the data (frequency,
mean, median, mode, standard deviation, etc.).

Chapter 5 discusses regression analysis that is typically used to predict the value of an
outcome (target or response) variable based on predictor variables.

Chapter 6 will explain logistic regression, binomial logistic regression model, and
multinomial logistic regression model.

Chapter 7 is on Classification. It will help the learners induct a decision tree to perform
classification and predict the value of the outcome variable using the created decision
tree model.

Chapter 8 talks about exploring time series data. It will help you read time series data
using ts() and scan() functions, apply linear filtering on it, and also decompose time
series data. It will discuss visualizing time series data by plotting it appropriately.

Chapter 9 will help you with implementing clustering in R using hclust() function. It
will also discuss k-means clustering in R.

Chapter 10 will help you determine the association rules given the transactions and
itemsets and also evaluate the association rule using support, confidence and lift. It will
discuss implementing association rule mining in R (create binary incidence matrix of the
given itemsets, create item Matrix, determine item frequencies, use apriori() function
and eclat() function.

Chapter 11 will assist you in performing text mining in R.

Chapter 12 will discuss parallel computing in R using the “doParallel” and “foreach”
package.

Online learning centre

The text is supported by additional content which can be accessed from the weblink
http://www.mhhe.com/acharya/daur1e. The weblink comprises:

Instructors’ Resources:

 d PPTs
 d Solutions Manual

Preface ix

Students Resources:

 d Weblinks for useful reference material
 d Question Bank
 d Suggestions for further reading

hOw tO get the MOst Out Of this bOOk?

It is easy to leverage the book to gain the maximum by religiously abiding by the following:

 d Read up the chapters thoroughly. Perform hands-on by following the step-by-step
instructions stated in demonstrations. Do NOT skip any demonstration. If required,
repeat it a second time or till the time the concept is firmly etched.

 d Explore the various options of all R functions and commands.
 d Solve the review exercises given at the end of the chapters.
 d Pick up public datasets and apply the data mining algorithms and analytical tech-

niques that you learned in the various chapters of the book.

where next?

We have endeavored to unleash the power of R as a statistical data analytics and
visualization tool and introduce you to several data mining algorithms and chart forms/
visualizations. We recommend you to read the book from cover to cover, but if you are
not that kind of person, we have made an attempt to keep the chapters self-contained so
that you can go straight to the topics that interest you most.

Whichever approach you may choose, we wish you well!

a Quick wOrd fOr the instructOrs’ fraternity

Attention has been paid in arriving at the sequence of chapters and also to the flow of
topics within each chapter. This will assist our fellow instructors and academicians in
carving out a syllabus from the Table of Contents (TOC) of the book. The complete TOC
can qualify as the syllabi for a semester or if the college has an existing syllabus on Data
Analysis or Data Science or Analytics and Visualization, a few chapters can be added to
the syllabi to make it more robust. We leave it to your discretion on how you wish to use
the same for your students.

We have ensured that each tool/component discussed in the book is with adequate
hands-on content to enable you to teach better and provide ample hands-on practice to
your students.

Happy Learning!!!

Seema Acharya

The making of this book was a journey that I am glad I undertook. The journey spanned
a few months but the experience will last a lifetime. I had my family, friends, colleagues,
and well-wishers onboard this journey and I wish to express my deepest gratitude to each
one of them. Without their unflinching support and care, I could not have pulled it off.

I owe this book to the student and teacher’s community who, with their continual
bombardment of queries, impelled me to learn more, simplify my learnings and findings
and place it neatly in the book. This book is for them.

I wish to thank my friends—the practitioners from the field for their good counsel
and filling me in on the latest in the field of data analysis and sharing with me valuable
insights on the best practices and methodologies followed therein.

A special thanks to the team of technical reviewers for their vigilant review and filling
in with their expert opinion.

I have been fortunate to have the support of my team who sometimes, knowingly, and
at other times, unknowingly, contributed to the making of the book by lending me their
steady support.

I have been fortunate to have the awesome editorial assistance provided by McGraw
Hill Education (India). I am thankful to Mohammed Salman Khurshid for signing me up
for this wonderful creation. I wish to acknowledge and appreciate Ranjana Chaube and
other team members who adeptly guided me through the entire process of preparation
and publication and weathered delays in my submissions. Thanks a ton for your kind
patience.

A special thanks to my sister, Sunita, who tirelessly egged me on, especially on days
when my energy sagged. And finally, I can never sufficiently express my gratitude towards
other members of my family and friends who patiently stomached my unavailability at
events and my irrational schedules as I assembled the book. You make me what I am
today. ‘Thanks’ sounds a small word for the unconditional support!

Seema Acharya

Acknowledgements

About the Author ii

Preface vii

Acknowledgements xi

Chapter 1 Introduction to R 1

1.1 Introduction 1

1.1.1 What is R? 1

1.1.2 Why R? 2

1.1.3 Advantages of R Over Other Programming Languages 3

1.2 Downloading and Installing R 4

1.2.1 Downloading R 4

1.2.2 Installing R 6

1.2.3 Primary File Types of R 10

1.3 IDEs and Text Editors 11

1.3.1 R Studio 12

1.3.2 Eclipse with StatET 13

1.4 Handling Packages in R 13

1.4.1 Installing an R Package 15

1.4.2 Few Commands to Get Started 16

Summary 22

Key Terms 23

Multiple Choice Questions 23

Short Questions 24

Chapter 2 Getting Started with R 25

2.1 Introduction 25

2.2 Working with Directory 25

2.2.1 getwd() Command 25

2.2.2 setwd() Command 26

2.2.3 dir() Function 26

Contents

xiv Contents

2.3 Data Types in R 28

2.3.1 Coercion 31

2.3.2 Introducing Variables and ls() Function 31

2.4 Few Commands for Data Exploration 32

2.4.1 Load Internal Dataset 32

Key Terms 43

Summary 43

Practical Exercises 44

Chapter 3 Loading and Handling Data in R 45

3.1 Introduction 45

3.2 Challenges of Analytical Data Processing 46

3.2.1 Data Formats 46

3.2.2 Data Quality 46

3.2.3 Project Scope 46

3.2.4 Output Result via Stakeholder Expectation Management 47

3.3 Expression, Variables and Functions 47

3.3.1 Expressions 47

3.3.2 Logical Values 48

3.3.3 Dates 49

3.3.4 Variables 50

3.3.5 Functions 51

3.3.6 Manipulating Text in Data 53

3.4 Missing Values Treatment in R 56

3.5 Using the ‘as’ Operator to Change the Structure of Data 57

3.6 Vectors 59

3.6.1 Sequence Vector 60

3.6.2 rep function 60

3.6.3 Vector Access 61

3.6.4 Vector Names 62

3.6.5 Vector Math 63

3.6.6 Vector Recycling 64

3.7 Matrices 66

3.7.1 Matrix Access 67

3.8 Factors 72

3.8.1 Creating Factors 72

3.9 List 74

3.9.1 List Tags and Values 75

3.9.2 Add/Delete Element to or from a List 76

3.9.3 Size of a List 77

Contents xv

3.10 Few Common Analytical Tasks 78

3.10.1 Exploring a Dataset 79

3.10.2 Conditional Manipulation of a Dataset 81

3.10.3 Merging Data 81

3.11 Aggregating and Group Processing of a Variable 84

3.11.1 aggregate() Function 84

3.11.2 tapply() Function 85

3.12 Simple Analysis Using R 86

3.12.1 Input 86

3.12.2 Describe Data Structure 87

3.12.3 Describe Variable Structure 88

3.12.4 Output 90

3.13 Methods for Reading Data 93

3.13.1 CSV and Spreadsheets 93

3.13.2 Reading Data from Packages 96

3.13.3 Reading Data from Web/APIs 98

3.13.4 Reading a JSON (Java Script Object Notation) Document 99

3.13.5 Reading an XML File 102

3.14 Comparison of R GUIs for Data Input 106

3.15 Using R with Databases and Business Intelligence Systems 108

3.15.1 RODBC 109

3.15.2 Using MySQL and R 110

3.15.3 Using PostgreSQL and R 111

3.15.4 Using SQLite and R 111

3.15.5 Using JasperDB and R 112

3.15.6 Using Pentaho and R 112

Case Study: Log Analysis 113

Summary 116

Key Terms 118

Multiple Choice Questions 119

Short Questions 121

Long Questions 122

Chapter 4 Exploring Data in R 124

4.1 Introduction 124

4.2 Data Frames 125

4.2.1 Data Frame Access 125

4.2.2 Ordering the Data Frames 128

4.3 R Functions for Understanding Data in Data Frames 128

4.3.1 dim() Function 128

xvi Contents

4.3.2 str() Function 129

4.3.3 summary() Function 129

4.3.4 names() Function 129

4.3.5 head() Function 130

4.3.6 tail() Function 130

4.3.7 edit() Function 131

4.4 Load Data Frames 132

4.4.1 Reading from a .csv (comma separated values file) 132

4.4.2 Subsetting Data Frame 133

4.4.3 Reading from a Tab Separated Value File 133

4.4.4 Reading from a Table 134

4.4.5 Merging Data Frames 134

4.5 Exploring Data 135

4.5.1 Exploratory Data Analysis 135

4.6 Data Summary 136

4.7 Finding the Missing Values 141

4.8 Invalid Values and Outliers 142

4.9 Descriptive Statistics 144

4.9.1 Data Range 144

4.9.2 Frequencies and Mode 145

4.9.3 Mean and Median 147

4.9.4 Standard Deviation 151

4.9.5 Mode 152

4.10 Spotting Problems in Data with Visualisation 154

4.10.1 Visually Checking Distributions for a Single Variable 154

4.10.2 Histograms 156

4.10.3 Density Plots 158

4.10.4 Bar Charts 160

Summary 165

Key Terms 166

Multiple Choice Questions 167

Short Questions 168

Long Questions 168

Chapter 5 Linear Regression using R 169

5.1 Introduction 169

5.2 Model Fitting 170

5.3 Linear Regression 170

5.3.1 lm() function in R 170

Contents xvii

5.4 Assumptions of Linear Regression 183

5.5 Validating Linear Assumption 184

5.5.1 Using Scatter Plot 184

5.5.2 Using Residuals vs. Fitted Plot 184

5.5.3 Using Normal Q-Q Plot 185

5.5.4 Using Scale Location Plot 186

5.5.5 Using Residuals vs. Leverage Plot 187

Case Study: Recommendation Engines 192

Summary 194

Key Terms 194

Multiple Choice Questions 195

Short Questions 195

Practical Exercises 196

Chapter 6 Logistic Regression 197

6.1 Introduction 197

6.2 What is Regression? 198

6.2.1 Why Logistic Regression? 200

6.2.2 Why can’t we use Linear Regression? 200

6.2.3 Logistic Regression 201

6.3 Introduction to Generalised Linear Models 202

6.4 Logistic Regression 204

6.4.1 Use of Logistic Regression 204

6.4.2 Binomial Logistic Regression 205

6.4.3 Logistic Function 205

6.4.4 Logit Function 205

6.4.5 Likelihood Function 206

6.4.6 Maximum Likelihood Estimator 208

6.5 Binary Logistic Regression 212

6.5.1 Introduction to Binary Logistic Regression 212

6.5.2 Binary Logistic Regression with a Single Categorical

Predictor 213

6.5.3 Binary Logistic Regression for Three-way and k-way Tables 219

6.5.4 Binary Logistic Regression with Continuous Covariates 221

6.6 Diagnosing Logistic Regression 224

6.6.1 Residual 225

6.6.2 Goodness-of-Fit Tests 225

6.6.3 Receiver Operating Characteristic Curve 225

6.7 Multinomial Logistic Regression Models 227

xviii Contents

Case Study: Audience/Customer Insights Analysis 236

Summary 239

Key Terms 240

Multiple Choice Questions 241

Short Questions 244

Long Questions 244

Chapter 7 Decision Tree 246

 7.1 Introduction 246

 7.2 What is a Decision Tree? 247

7.2.1 Terminologies Associated with Decision Tree 249

 7.3 Decision Tree Representation in R 251

7.3.1 Representation using ‘party’ Package 252

7.3.2 Representation using “rpart” Package 262

 7.4 Appropriate Problems for Decision Tree Learning 264

7.4.1 Instances are Represented by Attribute-Value Pairs 264

7.4.2 Target Function has Discrete Output Values 265

7.4.3 Disjunctive Descriptions may be Required 266

7.4.4 Training Data May Contain Errors or Missing Attribute

Values 266

 7.5 Basic Decision Tree Learning Algorithm 268

7.5.1 ID3 Algorithm 268

7.5.2 Which Attribute is the Best Classifier? 270

7.6 Measuring Features 271

7.6.1 Entropy—Measures Homogeneity 271

7.6.2 Information Gain—Measures the Expected Reduction in

Entropy 273

 7.7 Hypothesis Space Search in Decision Tree Learning 275

 7.8 Inductive Bias in Decision Tree Learning 275

7.8.1 Preference Biases and Restriction Biases 275

 7.9 Why Prefer Short Hypotheses 276

7.9.1 Reasons for Selecting Short Hypothesis 277

7.9.2 Problems with Argument 277

7.10 Issues in Decision Tree Learning 278

7.10.1 Overfitting 278

7.10.2 Incorporating Continuous-Values Attributes 281

7.10.3 Alternative Measures for Selecting Attributes 281

7.10.4 Handling Training Examples with Missing Attributes

Values 282

7.10.5 Handling Attributes with Different Costs 282

Contents xix

Case Study: Helping Retailers Predict In-store Customer Traffic 284

Summary 285

Key Terms 286

Multiple Choice Questions 287

Short Questions 289

Long Questions 289

Practical Exercise 290

Chapter 8 Time Series in R 291

8.1 Introduction 291

8.2 What is Time Series Data? 292

8.2.1 Basic R Commands for Data Visualisation 292

8.2.2 Basic R Commands for Data Manipulation 302

8.2.3 Linear Filtering of Time Series 310

8.3 Reading Time Series Data 313

8.3.1 scan() Function 313

8.3.2 ts() Function 313

8.4 Plotting Time series Data 315

8.5 Decomposing Time Series Data 317

8.5.1 Decomposing Non-Seasonal Data 317

8.5.2 Decomposing Seasonal Data 319

8.5.3 Seasonal Adjustment 322

8.5.4 Regression Analysis 322

8.6 Forecasts Using Exponential Smoothing 325

8.6.1 Simple Exponential Smoothing 325

8.6.2 Holt’s Exponential Smoothing 326

8.6.3 Holt-Winters Exponential Smoothing 327

8.7 ARIMA Models 329

8.7.1 Differencing a Time Series 329

8.7.2 Selecting a Candidate ARIMA Model 329

8.7.3 Forecasting Using an ARIMA Model 330

8.7.4 Analysis of Autocorrelations and Partial Autocorrelations 332

8.7.5 Diagnostic Checking 333

Case Study: Insurance Fraud Detection 342

Summary 343

Key Terms 345

Multiple Choice Questions 346

Short Questions 348

Long Questions 349

xx Contents

Chapter 9 Clustering 351

9.1 Introduction 351

9.2 What is Clustering? 352

9.3 Basic Concepts in Clustering 353

9.3.1 Points, Spaces, and Distances 353

9.3.2 Clustering Strategies 358

9.3.3 Curse of Dimensionality 359

9.3.4 Angles Between Vectors 359

9.4 Hierarchical Clustering 361

9.4.1 Hierarchical Clustering in Euclidean Space 361

9.4.2 Efficiency of Hierarchical Clustering 366

9.4.3 Alternative Rules for Controlling Hierarchical Clustering 366

9.4.4 Hierarchical Clustering in Non-Euclidean Space 367

9.5 k-means Algorithm 368

9.5.1 k-means Basics 368

9.5.2 Initialising Clusters for k-means 373

9.5.3 Picking the Right Value of k 374

9.5.4 Algorithm of Bradley, Fayyad, and Reina 374

9.5.5 Processing Data in the BFR Algorithm 375

9.6 CURE Algorithm 376

9.6.1 Initialisation in CURE 376

9.6.2 Completion of the CURE Algorithm 377

9.7 Clustering in Non-Euclidean Space 379

9.7.1 Representing Clusters in the GRGPF Algorithm 379

9.7.2 Initialising the Cluster Tree 380

9.7.3 Adding Points in the GRGPF Algorithm 380

9.7.4 Splitting and Merging Clusters 381

9.8 Clustering for Streams and Parallelism 382

9.8.1 Stream-computing Model 382

9.8.2 Stream-clustering Algorithm 383

9.8.3 Clustering in a Parallel Environment 386

Case Study: Personalised Product Recommendations 388

Summary 388

Key Terms 390

Multiple Choice Questions 391

Short Questions 392

Long Questions 393

Practical Exercises 393

Contents xxi

Chapter 10 Association Rules 401

10.1 Introduction 401

10.2 Frequent Itemset 402

10.2.1 Association Rule 403

10.2.2 Rule Evaluation Metrics 403

10.2.3 Brute-force Approach 405

10.2.4 Two-step Approach 406

10.2.5 Apriori Algorithm 408

10.3 Data Structure Overview 413

10.3.1 Representing Collections of Itemsets 413

10.3.2 Transaction Data 418

10.3.3 Associations: Itemsets and Sets of Rules 421

10.4 Mining Algorithm Interfaces 422

10.4.1 apriori() Function 423

10.4.2 eclat() Function 435

10.5 Auxiliary Functions 437

10.5.1 Counting Support for Itemsets 437

10.5.2 Rule Induction 438

10.6 Sampling from Transaction 440

10.7 Generating Synthetic Transaction Data 441

10.7.1 Sub, Super, Maximal and Closed Itemsets 442

10.8 Additional Measures of Interestingness 445

10.9 Distance-based Clustering Transaction and Associations 446

Case Study: Making User-generated Content Valuable 448

Summary 449

Key Terms 451

Multiple Choice Questions 452

Short Questions 453

Long Questions 454

Practical Exercise 454

Chapter 11 Text Mining 463

11.1 Introduction 463

11.2 Definition of Text Mining 464

11.2.1 Document Collection 465

11.2.2 Document 465

11.2.3 Document Features 465

11.2.4 Domain and Background Knowledge 465

11.3 A Few Challenges in Text Mining 466

xxii Contents

11.4 Text Mining vs. Data Mining 466

11.5 Text Mining in R 466

11.6 General Architecture of Text Mining Systems 478

11.6.1 Pre-processing Tasks 478

11.6.2 Core Mining Operations 479

11.6.3 Presentation Layer Components 479

11.6.4 Refinement Techniques 479

11.7 Pre-processing of Documents in R 479

11.8 Core Text Mining Operations 482

11.8.1 Distribution (Proportions) 482

11.8.2 Frequent and Near Frequent Sets 482

11.8.3 Near Frequent Concept Set 483

11.8.4 Associations 484

11.9 Using Background Knowledge for Text Mining 485

11.10 Text Mining Query Languages 486

11.11 Mining Frequent Patterns, Associations, and Correlations: Basic

Concepts and Methods 487

11.11.1 Basic Concepts 487

11.11.2 Market Basket Analysis: A Motivating Example 487

11.11.3 Association Rule 488

11.12 Frequent Itemsets, Closed Itemsets and Association Rules 489

11.12.1 Frequent Itemset 489

11.12.2 Closed Itemset 489

11.12.3 Association Rule Mining 490

11.13 Frequent Itemsets: Mining Methods 490

11.13.1 Apriori Algorithm: Finding Frequent Itemsets 490

11.13.2 Generating Association Rules from Frequent Itemsets 493

11.13.3 Improving the Efficiency of Apriori 495

11.13.4 A Pattern-growth Approach for Mining Frequent

Itemsets 496

11.13.5 Mining Frequent Itemsets Using Vertical Data Format 497

11.13.6 Mining Closed and Max Patterns 498

11.14 Pattern Evaluation Methods 499

11.14.1 Strong Rules are not Necessarily Interesting 499

11.14.2 From Association Analysis to Correlation Analysis 500

11.14.3 A Comparison of Pattern Evaluation Measures 501

11.15 Sentiment Analysis 503

11.15.1 What Purpose does Sentiment Analysis Serve? 503

11.15.2 What Does it Use? 503

Contents xxiii

11.15.3 What is the Input to Sentiment Analysis? 503

11.15.4 How does Sentiment Analysis Work? 504

Case Study: Credit Card Spending by Customer Groups can be Identified by using

Business Needs 504

Summary 505

Key Terms 508

Multiple Choice Questions 509

Long Questions 511

Practical Exercises 511

Chapter 12 Parallel Computing with R 515

12.1 Introduction 515

12.2 Introduction of R Tool Libraries 516

12.2.1 Motivation of Empowering R with HPC 516

12.3 Opportunities in HPC to Empower R 518

12.3.1 Parallel Computation within a Single Node 518

12.3.2 Multi-node Parallelism Support 519

12.4 Support for Parallelism in R 523

12.4.1 Support for Parallel Execution within a Single Node in R 523

12.4.2 Support for Parallel Execution over Multiple Nodes with

Message Passing Interface 530

12.4.3 Packages Utilising Other Distributed Systems 535

12.5 Comparison of Parallel Packages in R 543

Case Study: Sales Forecasting 545

Summary 547

Key Terms 549

Multiple Choice Questions 550

Short Questions 551

Long Questions 552

Practical Exercises 552

L E A R N I N G O U T C O M E

At the end of this chapter, you will be able to:

 c Install R

 c Install any R package

 c Work with any R package using functions such as find.package(), install.pack-
ages(), library(), vignette() and packageDescription()

1.1 InTroDUcTIon

Statistical computing and high-scale data analysis tasks needed a new category of
computer language besides the existing procedural and object-oriented programming
languages, which would support these tasks instead of developing new software. There is
plenty of data available today which can be analysed in different ways to provide a wide
range of useful insights for multiple operations in various industries. Problems such as
the lack of support, tools and techniques for varied data analysis have been solved with
the introduction of one such language called R.

1.1.1 What is R?

R is a scripting or programming language which provides an environment for statistical
computing, data science and graphics. It was inspired by, and is mostly compatible with,
the statistical language S developed at Bell laboratory (formerly AT & T, now Lucent
technologies). Although there are some very important differences between R and S, much

Introduction to R

Chapter 1

2 Data Analytics using R

of the code written for S runs unaltered on R. R has become so popular that it is used as
the single most important tool for computational statistics, visualisation and data science.

1.1.2 Why R?

R has opened tremendous scope for statistical computing and data analysis. It provides
techniques for various statistical analyses like classical tests and classification, time-
series analysis, clustering, linear and non-linear modelling and graphical operations. The
techniques supported by R are highly extensible.

S is the pioneer of statistical computing; however, it is a proprietary solution and is not
readily available to developers. In contrast, R is available freely under the GNU license.
Hence, it helps the developer community in research and development.

Another reason behind the popularity and widespread use of R is its superior support
for graphics. It can provide well-developed and high-quality plots from data analysis.
The plots can contain mathematical formulae and symbols, if necessary, and users have
full control over the selection and use of symbols in the graphics. Hence, other than
robustness, user-experience and user-friendliness are two key aspects of R.

Why Learn R?

The following points describe why R language should be used (Figure 1.1):
 d If you need to run statistical calculations in your application, learn and deploy R. It

easily integrates with programming languages such as Java, C++, Python and Ruby.
 d If you wish to perform a quick analysis for making sense of data.
 d If you are working on an optimisation problem.
 d If you need to use re-usable libraries to solve a complex problem, leverage the 2000+

free libraries provided by R.
 d If you wish to create compelling charts.
 d If you aspire to be a Data Scientist.
 d If you want to have fun with statistics.

Why

learn R?

Supportive Open
Source Community

Advanced Statistics

Fun with Statistics

Free,
Open Source

Great Visualization

Cross Platform
Compatibility

Easy Extensibility

Integration with other
programming languages

Figure 1.1 Advantages of learning R language

Introduction to R 3

 d R is free. It is available under the terms of the Free Software Foundation’s GNU
General Public License in source code form.

 d It is available for Windows, Mac and a wide variety of Unix platforms (including
FreeBSD, Linux, etc.).

 d In addition to enabling statistical operations, it is a general programming language
so that you can automate your analyses and create new functions.

 d R has excellent tools for creating graphics such as bar charts, scatter plots, multi-
panel lattice charts, etc.

 d It has an object oriented and functional programming structure along with support
from a robust and vibrant community.

 d R has a flexible analysis tool kit, which makes it easy to access data in various for-
mats, manipulate it (transform, merge, aggregate, etc.), and subject it to traditional
and modern statistical models (such as regression, ANOVA, tree models, etc.)

 d R can be extended easily via packages. It relates easily to other programming lan-
guages. Existing software as well as emerging software can be integrated with R
packages to make them more productive.

 d R can easily import data from MS Excel, MS Access, MySQL, SQLite, Oracle etc. It
can easily connect to databases using ODBC (Open Database Connectivity Protocol)
and ROracle package.

1.1.3 Advantages of R Over Other Programming Languages

Advanced programming languages like Python also support statistical computing and
data visualisation along with traditional computer programming. However, R wins the
race over Python and similar languages because of the following two advantages:
 1. Python needs third party extensions and support for data visualisation and

statistical computing. However, R does not require any such support extensively. For
example, the lm function is present for linear regression analysis and data analysis
in both Python and R. In R, data can be easily passed through the function and
the function will return an object with detailed information about the regression.
The function can also return information about the standard errors, coefficients,
residual values and so on. When lm function is called in the Python environment,
it will duplicate the functionalities using third party libraries such as SciPy, NumPy
and so on. Hence, R can do the same thing with a single line of code instead of
taking support from third party libraries.

SciPy is used for performing data analysis tasks and NumPy is used for representing the

data or objects.

 2. R has the fundamental data type, i.e., a vector that can be organised and aggregated
in different ways even though the core is the same. Vector data type imposes some
limitations on the language as this is a rigid type. However, it gives a strong logical
base to R. Based on the vector data type, R uses the concept of data frames that are

4 Data Analytics using R

like a matrix with attributes and internal data structure similar to spreadsheets or
relational database. Hence, R follows a column-wise data structure based on the
aggregation of vectors.

Just Remember

There are also some disadvantages of R. For example, R cannot scale efficiently for larger data sets.

Hence, the use of R is limited to prototyping and sandboxing. It is rarely used for enterprise-level solutions.

By default, R uses a single-thread execution approach while working on data stored in the RAM which

leads to scalability issues as well. Developers from open source communities are working hard on these

issues to make R capable of multi-threading execution and parallelisation. This will help R to utilise more

than one core processor. There are big data extensions from companies like Revolution R and the issues

are expected to be resolved soon. Other languages like SPlus can help to store objects permanently on

disks, hence, supporting better memory management and analysis of high volume of massive datasets.

Check Your Understanding

 1. What is R?

 Ans: R is an open source programming language for data science and statistical computing.

 2. What is the predecessor of R?

 Ans: The statistical computing language, S is the predecessor of R.

 3. What is the fundamental data type of R?

 Ans: The fundamental data type of R is a vector.

 4. What is the disadvantage of using R in enterprise-level large-scale solutions?

 Ans: R language cannot scale up for large data sets. Hence, it is difficult to use R for large-

scale data analysis tasks for enterprise-level solutions.

1.2 DoWnloaDIng anD InsTallIng r

The integrated development suite for R language can be downloaded from the
Comprehensive R Archive Network (CRAN)1. The network includes mirror websites for
downloading the suite from different countries.

1.2.1 Downloading R

To download R, users need to visit the CRAN mirror page and click on the URL of the
chosen mirror that will redirect them to the respective site (Figure 1.2).

1 URL of CRAN—https://cran.r-project.org/mirrors.html

Introduction to R 5

F
ig

u
r

e
 1

.2

C
R

A
N

 w
eb

si
te

 f
o
r

d
o
w

n
lo

a
d
in

g
 R

6 Data Analytics using R

R is offered as a precompiled binary distribution of a base system and contributing

packages. Different distributions of R are available for different operating systems (OS)

like Windows, Mac and Linux.

In some Linux OS, R distributions are included by default. Hence, it is a good idea to check the

package management system of a Linux OS platform before installing R on it.

Downloading R for Windows

Windows users need to first download and install binaries for the base distribution. The

current version of the base binary distribution is R 3.3.1. Users can check and download

previous contributions and versions of R, Rtools from the mirror website. Rtools is used

for building R and its packages (Figure 1.3).

Downloading R for Mac

R works on Mac OS version 10.6 or more. The downloadable directory contains the base

distribution and packages for downloading and installing R on Mac (Figure 1.4).

Downloading R for Linux

Different distributions of R are available for different distributions of Linux like Ubuntu,

Debian, RedHat and SUSE (Figure 1.5). On the Command Line Interface (CLI), the

following command will download the binary on a Linux machine—$ wgethttp://cran.

rstudio.com/src/base/R-3/R-3.1.1.tar.gz

1.2.2 Installing R

After downloading R distribution binaries for the correct OS platform, R is installed.

Installing R on Windows

Installing R on Windows is simple. Users need to double click on the downloaded binary,

named R-3.3.1-win.exe, on a graphical interface. Command line installation options are

available for Windows (Figure 1.6).

Two versions are available for 32-bit and 64-bit Windows OS. By default, both the versions are

installed. Hence, users need to select the desired version manually during installation.

Introduction to R 7

F
ig

u
r

e
 1

.3

D
o
w

n
lo

a
d
in

g
 R

 f
o
r

W
in

d
o
w

s

8 Data Analytics using R

F
ig

u
r

e
 1

.4

D
o
w

n
lo

a
d
in

g
 R

 o
n

 M
a
c

Introduction to R 9

Figure 1.5 Downloading R for Linux distributions

Figure 1.6 R console on a 32-bit Windows PC

10 Data Analytics using R

Installing Rtools

Rtools is an additional requirement for developing R packages under Windows OS
environment. In addition to installing the R software on Windows, users need to install
Rtools for the installed version of R.

Installing R on Mac

The process for installing R on Mac is similar to that for Windows. Users need to double
click on the binaries downloaded from the CRAN website and follow the prompts.

Installing R on Linux

Users need to install R from the source on Linux distributions. This can be done by
following commands in the supervisor mode. The following steps will install and configure
R into a user-specific subdirectory within the home directory:

$ tar xvf R-3.1.1.tar.gz

$ cd R-3.1.1

$./configure --prefix=$HOME/R

$ make && make install

Setting the path on a Linux machine is very critical. Without the path, R and RScript do

not work.

1.2.3 Primary File Types of R

Working with R involves working on two types of files—RScripts and R markdown
documents.

RScript

RScript is a text file that contains commands for an R program. The same commands
can be executed individually on the CLI of Integrated Development Environment (IDE)
for R programming. An RScript can be also be developed and executed. However, there
is a difference between executing a command directly on CLI and executing the same
command through an R script. An RScript has a .R extension.

Command line interface is needed for quick and small data processing and checking
operations. In large-scale solutions, it integrates multiple programs during prototyping and
subsequent phases. In that case, RScripts are used for managing the integration process.

Markdown Documents

R markdown documents are produced for creating and authoring dynamic documents,
reports and presentations from R. R markdown documents have a set of markdown

Introduction to R 11

syntaxes derived from the core markdown syntaxes. These syntaxes are embedded into
RScripts and codes. When these embedded codes and scripts are executed then the output
is formatted based on the markdown syntaxes and hence becomes easily understandable.
R markdown documents can be regenerated automatically if the underlying RScripts and
codes or data are changed. The output format of an R markdown covers a wide range
of formats including PDF, HTML, HTML5 slides, websites, dashboards, tufte handouts,
notebooks, books, MS word, etc. The extension for R markdown document files is .rmd.

Check Your Understanding

 1. How to locate an RScript file in a typical file system?

 Ans: An RScript file can be located in a typical file system by verifying if the extension of the

file is .R.

 2. What is R markdown and how is it different from word documentation?

 Ans: R markdown documents are dynamic and reproducible. Markdown files are used for

making reports and documents with R. These markdown codes are embedded into

files such as PDF, HTML, word files, etc. On the contrary, word files are text files only

and do not support markdown.

1.3 IDEs anD TExT EDITors

Various text editors can be used for writing RScripts and codes. Table 1.1 describes some
popular IDEs and text editors for writing and executing R codes.

Table 1.1 Some IDEs and text editors for writing and executing R codes

Name Platform(s) License Details and Usage

Notepad

and

Notepad++

to R

Windows,

Linux and

Mac

GNU GPL Notepad++ to R is an editor for R that is simple and robust.
It supports extensions like close passing to Notepad++
editor, R GUI editor and optionally to a PuTTY window on a
remote machine. It supports batch processing using shortcuts,
monitoring of execution of RScripts and so on.

Tinn-R Windows GNU GPL Tinn-R is a word processor and text editor that can process
generic ASCII and UNICODE on Windows OS. This is well
integrated into R and supports GUI and IDE for R.

Revolution

Productivity

Enhancer

(RPE)

Commercial Revolution productivity enhancer is an R productivity or
enhanced environment. However, it can work as an IDE for
new users. The usability features of RPE are very supportive.
It includes features like IntelliSense for detecting completion
of word, code snippets, and so on. Hence, RPE is an integrated
IDE and editor with built-in visual debugging tools.

12 Data Analytics using R

There are various IDEs used in R language. You will learn about these IDEs in the
following section.

1.3.1 R Studio

R studio is the most widely used IDE for writing, testing and executing R codes (Figure
1.7). This is a user-friendly and open source solution. There are various parts in a typical
screen of an R studio IDE. These are:

 d Console, where users write a command and see the output
 d Workspace tab, where users can see active objects from the code written in the

console
 d History tab, which shows a history of commands used in the code
 d File tab, where folders and files can be seen in the default workspace
 d Plot tab, which shows graphs
 d Packages tab, which shows add-ons and packages required for running specific

process(s)
 d Help tab, which contains the information on IDE, commands, etc.

Figure 1.7 R Studio Interface

Introduction to R 13

1.3.2 Eclipse with StatET

Eclipse is a well-known IDE for Java, C++, etc.; however, Eclipse can be used for statistical
programming based on R also. The corresponding IDE is called Eclipse with StatET.
Eclipse with StatET offers a set of tools that can be used for coding in R and building R
packages. It supports one or more local and remote installations of R. Its functionalities
can be expanded by using more add-ons like Sweave and Wikitext. Different parts of the
IDE are given below:

 d Console for R
 d Object browser
 d Package manager
 d Debugger
 d Data viewer
 d R help system.

1.4 HanDlIng PackagEs In r

A package in R is the fundamental unit of shareable code. It is a collection of the following
elements:

 d Functions
 d Data sets
 d Compiled code
 d Documentation for the package and for the functions inside
 d Tests – few tests to check if everything works as it should.

The directory where packages are stored is called a library. R comes with a standard
set of packages. Others are available for download and installation as per requirement.
As on date, there are over 10,000 plus packages available in CRAN. This is also one of
the reasons behind the huge popularity and success of R.

Packages are used to share codes with others. One can develop their own R package.
Any R user can then download, install and learn to use the package. Packages, therefore
allow for an easy, transparent and cross-platform extension of the R base system.

R is an open source language; thus, new packages are being developed and updated
by developers daily. Some of these packages may not work properly or may have bugs.
Hence, it is not a good idea to use every new and updated package on R development
environment. This can affect the stability of the development environment. A stable
environment requires the sandboxing technique (a security mechanism often used to
execute untested or untrusted programs or code from unverified or untrusted third
parties, users, etc., without damaging/maligning the host machine or operating system
or production environment) to test new packages or update a package before installing
it in the development environment.

In general, there is a single package library with each installation of R on a computer.
Users can change the path to that library to install a package on a different location other
than the default package library. The command .libPaths() can be used to get or set
the path of the package library.

14 Data Analytics using R

Example

> .libPaths()

Output

C:/R/R-3.1.3/library

This is the default package library location. The following command will change it
into another path:

Example

> .libPaths(“~/R/win-library/3.1-mran-2016-07-02”)

Output

C:/Users/User1/Documents/R/win-library/3.1-mran-2016-07-02

R can be extended easily with the help of a rich set of packages. There are more than
10,000 packages available for R. These packages are used for different purposes. Tables
1.2 and 1.3 list some commonly used R packages for different purposes.

Table 1.2 Commonly used R packages for different purposes

Data Management Data Visualisation Data Products Data Modelling and
Simulation

dplyr, tidyr, foreign,
haven etc.

ggplot, ggvis, lattice,
igraph etc.

shiny, slidify, knitr,
markdown etc.

MASS, forecast,
bootstrap, broom, nlme,
ROCR, party etc.

Table 1.3 Commonly used packages in R

Author(s) Package
Name

Description Available At

Andrew Gelman,
et al.

arm It is used for hierarchical or multi-level
regression models.

http://cran.r-project.org/
web/packages/arm/

Douglas Bates,
Martin Maechler,
and Ben Bolker

lme4 It contains functions for generating
generalised and linear mixed-effects models.

http://cran.r-project.org/
web/packages/lme4/

Duncan Temple
Lang

Rcurl It provides an interface of R to the package
library, libcurl. The interface helps in
interacting with the HTTP protocols for
importing raw data from the web.

http://www.omegahat.
org/RCurl/

Duncan Temple
Lang

RJSONIO It provides a set of functions to read and
write JSON for analysing data from different
web-based APIs.

http://www.omegahat.
org/RJSONIO/

Duncan Temple
Lang

XML It provides functions and facilities for analys-
ing HTML and XML documents to extract
structured data from web-based sources.

http://www.omegahat.
org/RSXML/

(Continued)

Introduction to R 15

Author(s) Package
Name

Description Available At

Gabor Csardi igraph It contains routines for network analysis and
making simple graphs to represent social
networks.

http://igraph.
sourceforge.net/

Hadley Wickham ggplot It contains a set of grammar rules for
implementing graphics in R. The package is
used for creating high-quality graphics.

http://cran.r-project.org/
web/packages/glmnet/
index.html

Hadley Wickham lubridate The package provides functions to use dates
in R in an easier way.

https://github.com/
hadley/lubridate

Hadley Wickham reshape It contains a set of tools for manipulation,
aggregation and management of data in R.

http://had.co.nz/plyr/

Ingo Feinerer tm It contains functions to perform text mining
in R. Text mining helps to work with
unstructured data.

http://www.spatstat.
org/spatstat/

Jerome Friedman,
Trevor Hastie, and
Rob Tibshirani

glmnet It helps to work with the elastic-net and also
regularised and generalised linear models.

http://had.co.nz/
ggplot2/

1.4.1 Installing an R Package

R comes with some standard packages that are installed when a user first installs R and
additional packages can be installed separately. Users need to navigate through the package
library and install a package in the desired location. Following commands are used for
navigating through R package library and installing R package.
 1. To start R, follow either Step 2 or 3. The assumption is that R is already installed on

your machine.
 2. If there is an “R” icon on the desktop of the computer that you are using, double

click on the “R” icon to start R. If there is no “R” icon on the desktop then click on
the “Start” button at the bottom left of your computer screen, and then choose “All
programs”, and start R by selecting “R” (or R X.X.X, where X.X.X gives the version
of R, e.g. R 2.10.0) from the menu of programs.

 3. The R console should show up.
 4. Once you have started R, you can install an R package (e.g. the “ggplot2” package)

by choosing “Install package(s)” from the “Packages” menu at the top of the R
console. This will ask you for the website that you wish to download the package
from. You can choose “Iceland” (or another country, if you prefer). It will also bring
up a list of available packages that you can install, and you can choose the package
that you want to install from that list (e.g. “ggplot2”).

 5. This will install the “ggplot2” package.
 6. The “ggplot2” package is now installed. Whenever you want to use the “ggplot2”

package after this, after having successfully started R, you first have to load the
package by typing into the R console: library(“ggplot2”).

 7. You can get help on a package by typing the following at the R prompt: help(package
= “ggplot2”)

16 Data Analytics using R

1.4.2 Few Commands to Get Started

installed.packages()

A user can check for all installed packages on the machine by using the installed.
packages() function.

….
remove.packages() can be used to uninstall a package.

packageDescription()

“DESCRIPTION” file has the basic information about a package. It has details such as what
the package does, who is the author, what is the version for the documentation, the date,
the type of license its use, and the package dependencies, etc. To access the description file
inside R, use the function, packageDescription(“package”). The same can also be accessed
via the documentation of the package by using help(package = “package”).

Let us look at the description for the “stats” package.

Introduction to R 17

> packageDescription(“stats”)
Package: stats
Version: 3.2.3
Priority: base
Title: The R Stats Package
Author: R Core Team and contributors worldwide
Maintainer: R Core Team <R-core@r-project.org>
Description: R statistical functions.
License: Part of R 3.2.3
Suggests: MASS, Matrix, Suppdists, methods, stats4
Build: R 3.2.3; x86_64-w64-mingw32; 2015-12-10 13:03:29 UTC; windows

-- File: C:/Program Files/R/R-3.2.3/library/stats/Meta/package.rds

Or

> help(package="stats")

The output shown is partial.

help(package = “package”)

To get an overview of all the functions and datasets in an R package, use the help()
function.

> help(package = "datasets")

The above will provide an overview of all functions and datasets inside the package,
“datasets”. One of the dataset available in “datasets” package is “AirPassengers”. To

18 Data Analytics using R

access the dataset, “AirPassengers” inside the “datasets” package, use the code given
below:

If there will be frequent use of this package, it is worthwhile to load it into the memory.
This can be achieved using the library function:

> library (datasets)

Note: the package name has to be specified without enclosing it in quotes. The library()
function will load the package, “datasets” into the memory. Then any dataset within this
package can be accessed by simply typing the name of the dataset at the R prompt.

find.package() and install.packages() Command

find.package() and install.packages() commands will find and install specific R
package(s). There are two versions of this command. The first helps in installing one
package at a time and the other is used to install multiple packages at once using a single
command—install.packages(). More details on commands like find.package() and
install.packages() can be retrieved using the help() command. For example, help
(installed.packages) can show details like the version number of a function.

Introduction to R 19

Example

To install a single package, the command is:
>find.package(“ggplot2”)

>install.packages(“ggplot2”)

Output

The first command will help to find if there is any package named “ggplot2” installed
in the system or not. Then the install.packages() function will install the package
named “ggplot2” CLI (Figure 1.8). It will download and install the package and all the
dependencies of the package.

Figure 1.8 Example of installing a package

Example

To install more than one package(s) at a time, the install.packages() command will
have the following format:

>install.packages(c(“ggplot”, “tidyr”, “dplyr”))

20 Data Analytics using R

Output

It will install packages ggplot, tidyr and dplyr.

The command to check whether a package is installed or not is the ‘if’ condition checking. The

command for checking whether the package “ggplot2” is installed or not can be done by using:

>if (!require(“ggplot2”)){install.packages(“ggplot2”)}

library()

library() command loads a package.

Example

>library(ggplot2)

Output

It will load the package “ggplot2”.

vignette()

Vignettes are a very useful source of help with packages. They are provided by the package
authors to demonstrate and highlight few functionalities of their package in detail. Use
browseVignettes() function to get a list of all vignettes available with your installed
packages.

> browseVignettes()

Introduction to R 21

To view all vignettes for a specific package, e.g., “ggplot2”, use the vignette() function.

Vignettes in package ‘ggplot2’:

ggplot2-specs Aesthetic specifications (source, html)

extending-ggplot2 Extending ggplot2 (source, html)

Check Your Understanding

 1. Name a few packages used for data management in R.

 Ans: dplyr, tidyr, foreign, haven, etc.

 2. Name a few packages used for data visualisation in R.

 Ans: ggplot, ggvis, lattice, igraph, etc.

 3. Name a few packages used for developing data produces in R.

 Ans: shiny, slidify, knitr, markdown, etc.

 4. Name a few packages used for data modelling and simulation in R.

 Ans: MASS, forecast, bootstrap, broom, nlme, ROCR, party, etc.

 5. How can the default path to package library be changed in R?

 Ans: To change the default package library in R, users need to follow the following steps on

the console of R IDE:

 Step 1: Check the current path to the package library

 > .libPaths()

 Step 2: Change the path using the following command.

 > .libPaths(“write the desired path here”)

 6. What is the command to check and install the “dplyr” package?

 Ans: if (!require(“dplyr “)) {install.packages(“dplyr”)}

 7. How can we install multiple packages in R?

 Ans: To install multiple packages in R the command is, >install.packages(c(“ggplo

t”,”tidyr”,”dplyr”))

22 Data Analytics using R

Just Remember

To access help in RStudio, it can be accessed from the console and from the CLI (Figure 1.9). The command

is help().

Figure 1.9 Accessing help() command from the console and CLI

 d R is an open source and object-oriented programming language for statistical computing and data

visualisation.
 d R is a successor of the proprietary statistical computing programming language S.
 d R can be downloaded and installed on different OS platforms like Windows, Linux and Mac.
 d R has the fundamental data type of vector.
 d Text editors like Notepad++ to R, Tinn-R and Rev R are more than just editors for R. These can sup-

port extended functionalities and IDE features.
 d R has several IDEs like RStudio, Eclipse with StatET and so on.
 d R has a rich library of more than 10,000 packages.
 d R has two fundamental file types called RScripts and R markdown documents.
 d R commands can be written in RScripts or through the command line interface.
 d R has a rich collection of inbuilt data sets like mtcars, Biochemical Oxygen Demand (BOD), etc.

Summary

Introduction to R 23

 Ke y Te r m s

 d BOD: An inbuilt data set in R, which
contains data on the Biochemical Oxygen
Demand.

 d CLI: A console through which a user can
interact with a computer. The interaction
happens through successive lines of com-
mands on the console.

 d IDE: A special type of software that offers
a set of comprehensive facilities to develop

computer software. Usually, an IDE consists
of a number of automation tools, a debug-
ger and an editor for coding.

 d R: An open source and object oriented pro-
gramming language for statistical comput-
ing and data visualisation.

 mu l T i p l e Ch o i C e Qu e s T i o n s

 1. What is R?

 (a) An object-oriented programming language

 (b) An open source project from CRAN

 (c) A programming language for statistical computing

 (d) All of these

 2. Which one of the following programming languages is a dialect of R language?

 (a) Python (b) C

 (c) S (d) Q

 3. Which one of the following is a text editor of R?

 (a) RStudio (b) Microsoft word

 (c) Notepad++ to R (d) Tableau

 4. Which of the following are IDEs for R?

 (a) RStudio (b) Both a and c

 (c) Eclipse with StatET (d) None of these

 5. What is the primary file type of R?

 (a) Vector (b) Text file

 (c) RScripts (d) Statistical file

 6. R can be downloaded from:

 (a) CRAN website (b) Google PlayStore

 (c) None of these (d) All of these

 7. Which one of the following R packages is used for data management?

 (a) haven (b) igraph

 (c) slidify (d) forecast

24 Data Analytics using R

 8. Which one of the following R packages is used for data visualisation?

 (a) haven (b) igraph

 (c) slidify (d) forecast

 9. Which one of the following R packages is used for data products?

 (a) haven (b) igraph

 (c) slidify (d) forecast

 10. Which one of the following R packages is used for data modelling and simulation?

 (a) haven (b) igraph

 (c) slidify (d) forecast

 11. The functionalities of R are divided among:

 (a) Packages (b) Domains

 (c) Libraries (d) None of these

 sh o r T Qu e s T i o n s

 1. What is R? What are the advantages of R programming language over other general purpose
programming languages?

 2. How can we install a package on R?

 3. Give examples of two IDEs for R.

 4. Give detailed examples of three packages used in R.

 5. Give a detailed description of head() command used in R.

 6. How can we install multiple R packages with a single command?

 7. State the difference(s) between head() and tail() commands used in R.

 8. State the difference(s) between ncol() and nrow() commands used in R.

Answers to MCQs:

 1. (d) 2. (c) 3. (c) 4. (b) 5. (c) 6. (a) 7. (a)

 8. (b) 9. (c) 10. (d) 11. (a)

L E A R N I N G O U T C O M E

At the end of this chapter, you will be able to:

 c Analyse directory content with commands such as dir(), list()

 c Analyse a dataset using functions such as str(), summary(), ncol(), nrow(),
head(), tail(), edit()

2.1 intRoDUCtion

Data exploration in R is an approach to summarise and visualise important characteristics
of a data set. An exploratory data analysis focusses on understanding the underlying
variables and data structures to see how they can help in data analysis through various
formal statistical methods.

2.2 woRKinG witH DiReCtoRy

Before writing a program or code using R, it is important to find out the directory being
used. This can be done using the getwd() function. If the current working directory is
not as per preference, it can be changed using the setwd() function. The dir() or the
list.files() functions give information about the files and directories in the current
working directory or any other directory.

2.2.1 getwd() Command

getwd() command returns the absolute filepath of the current working directory. This
function has no arguments.

Getting Started with R

Chapter 2

26 Data Analytics using R

Example

>getwd()

Output

[1] C:/Users/User1/Documents/R

Note the use of ‘/’ as the file separator on Windows. The file path does not have a trailing
‘/’ unless it is the root directory. The getwd() function can return NULL if the working
directory is not available.

2.2.2 setwd() Command

setwd() command resets the current working directory to another location as per the
user’s preference.

Example

>setwd(“C:/path/to/my_directory”)

Output

It will change the path to the user specified directory.

2.2.3 dir() Function

This is equivalent to list.files() function.
This function returns a character vector of the names of files or directories in the named

directory.

Syntax

dir(path = “.”, pattern = NULL, all.files = FALSE,

 full.names = FALSE, recursive = FALSE,

 ignore.case = FALSE, include.dirs = FALSE, no.. = FALSE)

or

list.files(path = “.”, pattern = NULL, all.files = FALSE,

 full.names = FALSE, recursive = FALSE,

 ignore.case = FALSE, include.dirs = FALSE, no.. = FALSE)

>dir()

character(0)

>list.files()

character(0)

The above command implies that there are no files or directories in the current directory.

Example 1

To display the files and directories in the current directory, use path= “.” as an argument
to dir().

Getting Started with R 27

>dir(path=".")

 [1] "att connect" "BI_May_2015.pptx" "BI_MetroMap-Final.png" "BISkillMatrix- Final.xlsx"

 [5] "C" "cache" "Custom Office Templates" "Dec2016-Broadband Bill.pdf"

 [9] "decision_tree.png" "Default.rdp" "desktop.ini" "DSS.wma"

[13] "ILP-AssociationRuleMining.pptx" "May-Broadband bill.pdf" "My Data Sources" "My Music"

[17] "My Pictures" "My Shapes" "My Tableau Repository" "My Videos"

[21] "Northwind 2007 sample.accdt" "Oct-Broadband bill.pdf" "OneNote Notebooks" "Outlokk Files"

[25] "R" "Remote Assistance Logs" "samplelinearregression.png" "SAP"

[29] "SQL Server Management Studio" "Visual Studio 2005" "Visual Studio 2008" "Visual Studio 2010"

Example 2

To display the list of all files and directories in a specific path, use the command as follows:

> dir (path="C:/Users/Seema_acharya")
 [1] "AppData"
 [2] "Application Data"
 [3] "ATT_Connect_Setup.exe"
 [4] "CD95F661A5C444F5A6AAECDD91C2410a.TMP"
 [5] "Contacts"
 [6] "Cookies"
 [7] "Desktop"
 [8] "Documents"
 [9] "Downloads"
[10] "Favorites"
[11] "Links"
[12] "Local Settings"
[13] "Music"
[14] "My Documents"
[15] "NetHood"
[16] "NTUSER.DAT"
[17] "ntuser.dat.LOG1"
[18] "ntuser.dat.LOG2"
[19] "NTUSER.DAT{6cced2f1-6e01-11de-8bed-001e0bcd1824}.TM.blf"
[20] "NTUSER.DAT{6cced2f1-6e01-11de-8bed-001e0bcd1824}.
 TMContainer00000000000000000001.regtrans-ms"
[21] "NTUSER.DAT{6cced2f1-6e01-11de-8bed-001e0bcd1824}.
 TMContainer00000000000000000002.regtrans-ms"
[22] "ntuser.ini"
[23] "ntuser.pol"
[24] "Pictures"
[25] "PrintHood"
[26] "Recent"
[27] "Saved Games"
[28] "Searches"
[29] "SendTo"
[30] "Start Menu"
[31] "Templates"
[32] "Videos"

Example 3

To display the complete or absolute path of all files and directories in the specified path,
use dir() as follows:

28 Data Analytics using R

Example 4

To look for a specific pattern, e.g. file/directory names beginning with a “D”, use the
dir() command with a pattern = “^D” argument.

> dir(path="C:/Users/Seema_acharya", pattern="^D")
[1] "Desktop" "Documents" "Downloads"

Example 5

To display a recursive list of files or directories in the specified path, use the dir()
command as follows:

> dir(path="d:/data")
[1] "db"
> dir(path="d:/data", recursive=TRUE,include.dirs=TRUE)
[1] "db" "db/Demo.0" "db/Demo.ns" "db/local.0" "db/local.ns"
"db/mongod.lock" "db/MyDB.0" "db/MyDB.ns"

The options or arguments used with dir() can also be used with list.files(). Try
it out and observe the output.

2.3 Data types in R

R is a programming language. Like other programming languages, R also makes use
of variables to store varied information. This means that when variables are created,
locations are reserved in the computer’s memory to hold the related values. The number of

Getting Started with R 29

locations or size of memory reserved is determined by the data type of the variables. Data
type essentially means the kind of value which can be stored, such as boolean, numbers,
characters, etc. In R, however, variables are not declared as data types. Variables in R are
used to store some R objects and the data type of the R object becomes the data type of
the variable. The most popular (based on usage) R objects are:

 d Vector
 d List
 d Matrix
 d Array
 d Factor
 d Data Frames

A vector is the simplest of all R objects. It has varied data types. All other R objects are
based on these atomic vectors. The most commonly used data types are listed as follows:

Data types supported by R are:
 d Logical
 d Numeric

 r Integer

 d Character
 d Double
 d Complex
 d Raw

class() function can be used to reveal the data type. Other R objects such as list, matrix,
array, factor and data frames are discussed in detail in Chapter 3.

Logical

TRUE / T and FALSE / F are logical values.

> TRUE
[1] TRUE
> class(TRUE)
[1] "logical"

> T
[1] TRUE
> class(T)
[1] "logical"

> FALSE
[1] FALSE
> class(FALSE)
[1] "logical"

> F
[1] FALSE
> class(F)
[1] "logical"

30 Data Analytics using R

Numeric
> 2
[1] 2
> class (2)
[1] "numeric"

> 76.25
[1] 76.25
> class(76.25)
[1] "numeric"

Integer

Integer data type is a sub class of numeric data type. Notice the use of “L“ as a suffix to
a numeric value in order for it to be considered an “integer”.

> 2L
[1] 2
> class(2L)
[1] "integer"

Functions such as is.numeric(), is.integer() can be used to test the data type.
> is.numeric(2)
[1] TRUE
> is.numeric(2L)
[1] TRUE
> is.integer(2)
[1] FALSE
> is.integer(2L)
[1] TRUE

Note: Integers are numeric but NOT all numbers are integers.

Character
> "Data Science"
[1] "Data Science"
> class("Data Science")
[1] "character"

is.character() function can be used to ascertain if a value is a character.
> is.character ("Data Science")
[1] TRUE

Double (for double precision floating point numbers)
By default, numbers are of “double” type unless explicitly mentioned with an L suffixed
to the number for it to be considered an integer.

> typeof (76.25)
[1] "double"

Complex
> 5 + 5i
[1] 5+5i
> class(5 + 5i)
[1] "complex"

Getting Started with R 31

Raw
> charToRaw("Hi")
[1] 48 69
> class (charToRaw ("Hi"))
[1] "raw"

typeof() function can also be used to check the data type (as shown).

> typeof(5 + 5i)
[1] "complex"
> typeof(charToRaw ("Hi")
+)
[1] "raw"
> typeof ("DataScience")
[1] "character"
> typeof (2L)
[1] "integer"
> typeof (76.25)
[1] "double"

2.3.1 Coercion

Coercion helps to convert one data type to another, e.g. logical “TRUE” value when
converted to numeric yields “1”. Likewise, logical “FALSE” value yields “0 ”.

> as.numeric(TRUE)
[1] 1

> as.numeric(FALSE)
[1] 0

Numeric 5 can be converted to character 5 using as.character().

> as.character(5)
[1] "5"

> as.integer(5.5)
[1] 5

On converting characters, “hi” to numeric data type, the as.numeric() returns NA.

> as.numeric("hi")
[1] NA
Warning message:
NAs introduced by coercion

2.3.2 Introducing Variables and ls() Function

R, like any other programming language, uses variables to store information. Let us start
by creating a variable “RectangleHeight” and assign the value 2 to it. Note the use of the
operator “<-” to assign a value to the variable. Likewise, the variable “RectangleWidth” is
defined and assigned the value 4. The area of the rectangle is computed using the formula
“RectangleHeight * RectangleWidth”. The computed value for the area of the rectangle is
stored in the variable “RectangleArea”.

32 Data Analytics using R

> RectangleHeight <- 2

> RectangleWidth <- 4

> RectangleArea <- RectangleHeight * RectangleWidth

> RectangleHeight

[1] 2

> RectangleWidth

[1] 4

> RectangleArea

[1] 8

Note: When a value is assigned to a variable, it does not display anything on the console.
To get the value, type the name of the variable at the prompt.

Use the ls() function to list all the objects in the working environment.

> 1s()

[1] "RectangleArea" "RectangleHeight" "RectangleWidth"

ls() is also useful to clean the environment before running a code. Execute the rm()
function as shown to clean up the environment.

> rm(list=1s())

> 1s()

character(0)

2.4 Few CommanDs FoR Data exploRation

This section will use functions such as summary(), str(), head(), tail(), view(),
edit(), etc., to explore a dataset. The dataset used in this section is “mtcars” from the
“datasets” package.

Background to the mtcars dataset from R documentation:

This data was extracted from the 1974 Motor Trend US magazine. It comprises fuel
consumption and 10 aspects of automobile design and performance for 32 automobiles
(1973–74 models).

2.4.1 Load Internal Dataset

There are various inbuilt datasets in R, e.g. AirPassengers, mtcars, BOD, etc. A list of
datasets is available at https://vincentarelbundock.github.io/Rdatasets/datasets.html

Let us load the mtcars dataset from the datasets package following the steps:
 1. Check if the datasets package is already installed.

>installed.packages()

 2. If already installed and will be used frequently, load the package.

>library(datasets)

Getting Started with R 33

 3. Display the observations from the mtcars dataset.
 mtcars is a dataset from the datasets package that has 32 observations on 11

variables. The 11 variables are described as follows:

[, 1] mpg Miles/(US) gallon

[, 2] cyl Number of cylinders

[, 3] disp Displacement (cu.in.)

[, 4] hp Gross horsepower

[, 5] drat Rear axle ratio

[, 6] wt Weight (1000 lbs)

[, 7] qsec 1/4 mile time

[, 8] vs V/S

[, 9] am Transmission (0 = automatic, 1 = manual)

[,10] gear Number of forward gears

[,11] carb Number of carburetors

A subset of observations is given as follows:

34 Data Analytics using R

summary() Command

summary() command includes functions like min, max, median, mean, etc., for each
variable present in the given data frame.

Example
>summary(mtcars)

Output

The output shows a six-point summary of each of the column or variable of the dataset
“mtcars”. The summary points are min, 1st quartile, mean, median, 3rd quartile and max
(Figure 2.1).

Figure 2.1 Example of summary() command

str() Command

str() command displays the internal structure of a data frame. It can be used as an
alternative to summary function. It is a diagnostic function and roughly displays one
line per basic object.

Example 1
>str(str)

function(object,…)

The above example shows str() function itself serving as an argument. It displays
compactly str() internal structure, stating that it is a function which takes an object
as an argument.

Example 2
str(ls)

function(name, pos = -1L, envir = as.environment(pos), all.names =

FALSE, pattern, sorted = TRUE)

Here, ls() is used as an argument to str() function. It provides a brief outline of
the ls() function.

Example 3
>str(mtcars)

Output

When a data frame named “mtcars” is supplied, the command shows the internal structure
of the data frame. The CLI is:

Getting Started with R 35

>str(mtcars)
“data.frame”: 32 obs. of 11 variables:
 $ mpg :num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
 $ cyl :num 6 6 4 6 8 6 8 4 4 6 ...
 $ disp: num 160 160 108 258 360 ...
 $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
 $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
 $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
 $ qsec: num 16.5 17 18.6 19.4 17 ...
 $ vs :num 0 0 1 1 0 1 0 1 1 1 ...
 $ am :num 1 1 1 0 0 0 0 0 0 0 ...
 $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
 $ carb: num 4 4 1 1 2 1 4 2 2 4 ...

It shows the individual datatype of each column or variable of the mtcars dataset.

Example 4

Let us generate a vector of 100 normally distributed random numbers using the function
rnorm(). To learn more about the rnorm() function, use help(rnorm()) at the R prompt.
However, for curious minds, remember to use help(rnorm()) at the R prompt. The
standard mean and sd arguments used are 2 and 4, respectively.

When we run the summary() function with “x” as the argument, we get the “minimum
”, “1st quartile ”, “Median ”, “Mean ”, “3rd Quartile” and “Maximum” for “x ”.

Next, when we run str() on “x ”, we get the information that “x” is a numeric vector
consisting of 100 elements and it also returns the first 5 elements from the “x” vector.

Example 5

Let us now take it a step further by creating a 10 by 10 matrix, “m” and calling str() on it.

36 Data Analytics using R

> m <- matrix(rnorm(100),10,10)
> str(m)
num [1:10, 1:10] –2.231 1.089 0.573 -0.183 0.964 …
> m[,1]
[1] -2.2310749 1.0885324 0.5730995 -0.1827884 0.9638976 1.2520684
-1.8088454 0.3247033 0.7654839 -0.31007222

The str() function tells us that “m” is a matrix of 10 rows and 10 columns and also
displays the first 5 column values of the first row.

View() Command
View() command displays the given dataset in a spreadsheet-like data frame viewer.

Example
>View(“mtcars“)

Output

The output shows a tabular view of the content of the mtcars dataset (Figure 2.1).

head() Command
head() command displays the first “n” observations from the given data frame.
The default value for n is 6. However, users can specify the value of “n” as per their
requirement as well.

Example
>head(mtcars, n = 6)

Output
>head(mtcars, n = 6)
 mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
>

The command shows the first 6 observations from mtcars.

tail() Command
tail() command displays the last “n” observations from a given data frame. The default
value for n is 6. However, users can specify the value of “n” as per their requirement as well.

Example
>tail(mtcars, n = 5)

Output
> tail(mtcars, n = 5)
 mpg cyl disp hp drat wt qsec vs am gear carb
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.9 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.5 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.5 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.6 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.6 1 1 4 2

Getting Started with R 37

The command shows the last 5 observations from the data frame.

ncol() Command
ncol() command returns the number of columns in the given dataset.

Example
>ncol(mtcars)

Output

The output shows the number of columns in the “mtcars” dataset.

>ncol(mtcars)
[1] 11

Figure 2.1 Example of View() command

38 Data Analytics using R

nrow() Command
nrow() command returns the number of rows in the given dataset.

Example
>nrow(mtcars)

Output
The output shows the number of rows in the “mtcars” dataset.

>nrow(mtcars)

[1] 32

edit() Command
edit() command helps with the dynamic editing or data manipulation of a dataset. When
this command is invoked, a dynamic data editor window opens with a tabular view of
the dataset. Hereafter, the required changes to the dataset can be made.

Example
>edit(mtcars)

Output
The output shows the changes made in the first row of the “mtcars” dataset.

> edit(mtcars)
 mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 UPDATED 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

Getting Started with R 39

 The modified dataset should be stored in a new variable. For example, it is a good practice to
call the edit() method as mtcars_new = edit(mtcars).

fix() Command
fix() command saves the changes in the dataset itself, so there is no need to assign any
variable to it.

Example

> fix(mtcars)

> View(mtcars)

Output

Figure 2.2 Viewing the “mtcars” dataset after the modifications using the View() command

40 Data Analytics using R

It shows the changes made to the first row of the dataset and the changes saved
automatically rather than being discarded as in the edit() method (Figure 2.2).

To read help on any command in R, the user can type “?” followed by the function name on the
console.

data() Function

The data() function lists the available datasets.

Syntax

> data()

Output

data(trees) function loads the dataset, “trees”.

Syntax

> data(trees)

Getting Started with R 41

Let us look at the data held in the trees dataset.
> trees
 Girth Height Volume
1 8.3 70 10.3
2 8.6 65 10.3
3 8.8 63 10.2
4 10.5 72 16.4
5 10.7 81 18.8
6 10.8 83 19.7
7 11.0 66 15.6
8 11.0 75 18.2
9 11.1 80 22.6
10 11.2 75 19.9
11 11.3 79 24.2
12 11.4 76 21.0
13 11.4 76 21.4
14 11.7 69 21.3
15 12.0 75 19.1
16 12.9 74 22.2
17 12.9 85 33.8
18 13.3 86 27.4
19 13.7 71 25.7
20 13.8 64 24.9
21 14.0 78 34.5
22 14.2 80 31.7
23 14.5 74 36.3
24 16.0 72 38.3
25 16.3 77 42.6
26 17.3 81 55.4
27 17.5 82 55.7
28 17.9 80 58.3
29 18.0 80 51.5
30 18.0 80 51.0

31 20.6 87 77.0

This dataset provides measurements of the girth, height and volume of timber in 31
felled blackberry trees.

Let us look at the summary of analysis on this dataset.

> summary(trees)

 Girth Height Volume

Min. : 8.30 Min. :63 Min. :10.20

1st Qu. :11.05 1st Qu. :72 1st Qu. :19.40

Median :12.90 Median :76 Median :24.20

Mean :13.25 Mean :76 Mean :30.17

3rd Qu. :15.25 3rd Qu. :80 3rd Qu. :37.30

Max. :20.60 Max. :87 Max. :77.00

Let us visualise this by plotting a scatter plot between the variables of the trees dataset
(Figure 2.3).

> plot(trees, col="red", pch=16,main="scatter plot b/w variables of trees")

42 Data Analytics using R

Figure 2.3 Scatter plot between the variables of the trees dataset

save.image() Function

save.image() function writes an external representation of R objects to the specified
file. At a later point in time when it is required to read back the objects, one can use the
load or attach function.

Syntax

save.image(file = “.RData”, version = NULL, ascii = FALSE, safe = TRUE)

The file is to be given an extension of RData.
Note: The “R” and “D” in “RData” should be in capitals.

If ascii = TRUE, will save an ascii representation of the file. The default is ascii = FALSE.
With ascii being set to false, a binary representation of the file is saved.

Getting Started with R 43

version is used to specify the current workspace format version. The value of NULL
specifies the current default format.

safe is set to a logical value. A value of TRUE means that a temporary file is used to
create the saved workspace. This temporary file is renamed to file if the save succeeds.

Check Your Understanding

 1. What are the differences between the head() and tail() commands in R?

 Ans: The head() command shows records from the start of the dataset, whereas the tail()

command shows records from the end of the dataset.

 2. What does the data() function help with?

 Ans: The data() function lists the available datasets.

 3. What is nrow() function?

 Ans: nrow() command returns the number of rows in a given dataset.

 d Data type essentially means the kind of value which can be stored, such as boolean, numbers,

characters, etc. In R, however, variables are not declared as data types. Variables in R are used to

store some R objects and the data type of the R object becomes the data type of the variable.

 d ls() function lists all the objects in the working environment.

 d class() function reveals the data type.

 d typeof() function checks the data type.

 d data() function lists the available datasets.

Summary

 Ke y Te r m s

 d dir(): dir() function returns a character
vector of the names of files or directories in
the named directory.

 d getwd(): getwd() command returns the
absolute file path of the current working
directory. This function has no arguments.

 d setwd(): setwd() command resets the
current working directory to another loca-
tion as per the user’s preference.

 d typeof(): typeof() function is used to
check the data type.

44 Data Analytics using R

 Pr a c T i c a l ex e r c i s e s

 1. BOD is an inbuilt data set in R. The output of the command View(BOD) is given below.
What will be done by the code given below? Explain.

>View(BOD)

>nrow(BOD)

 2. What will be done by the following code?

>head(BOD, n=3)

 3. What will be the output of the following codes?

 (a) The code is:

> summary(mtcars$mpg)

 (b) The code is:
>summary(c(3,2,1,2,4,6))

 (c) The code is:
>str(c(1,2,3,4))

 (d) The code is:
>str(c(“Mon”, “Tue”,”Wed”,”Thurs”))

 (e) The code is:
>head(c(“Mon”, “Tue”,”Wed”,”Thurs”),2)

 (f) The code is:
>tail(c(“Mon”, “Tue”,”Wed”,”Thurs”),2)

 (g) The code is:
class(76.25L)

L E A R N I N G O U T C O M E

At the end of this chapter, you will be able to:

 c Store data of varied data types into vectors, matrixes, and lists

 c Load data from .csv, spreadsheets, web, Jason documents, and XML

 c Deal with missing or invalid values

 c Run R functions on the data (sum(), min(), max(), rep(), grep(), substr(),
strsplit(), etc.)

 c Use R with databases such as MySQL, PostgreSQL, SQLlite, and JasperDB

 c Create visualisations to help with deeper understanding of data

3.1 introDuCtion

Enterprise applications today generate a huge amount of data. This data is analysed to
draw useful insights that can help decision makers make better and faster decisions. This
chapter introduces the different data types such as numbers, text, logical values, dates,
etc., supported in R. It also describes various R objects such as vector, matrix, list, dataset,
etc., and how to manipulate data using R functions such as sum(), min(), max(), rep()
and string functions such as substr(), grep(), strsplit(), etc. It explores import of
data into R from .csv (comma separated values), spreadsheets, XML documents, JASON
(Java Script Object Notation) documents, web data, etc., and interfacing R with databases
such as MySQL, PostGreSQL, SQLlite, etc. There are quite a few challenges in analysing

Loading and Handling Data in R

Chapter 3

46 Data Analytics using R

data. For instance, data is not always homogeneous, i.e. it comes from varied sources and
in different formats. Ensuring data quality can pose several challenges. Stakeholders also
view data from many perspectives and may have different requirements from it.

3.2 Challenges of analytiCal Data ProCessing

Analytical data processing is a part of business intelligence that includes relational database,
data warehousing, data mining and report mining. It is a computer processing technique
that handles different types of business processing practices like sales, budgeting, financial
reporting, management reporting, etc. All these processing techniques require big data.

Business analytics combines big data with technology. Different challenges occur
during business data analytics. However, most of these challenges are mainly associated
with data and they arise during the early stages of projects. Some of these challenges are
explained ahead.

3.2.1 Data Formats

Data is the main element of business analytics. Business analytics uses sets of data to store
a large amount of data. Selecting a data format is the first challenge in analytical data
processing for researchers or developers. Analytical data processing requires a complete
set of data, in the absence of which, developers can expect problems in further processing.

R is a well-documented programming language that stores data in the form of an
object. It has a very simple syntax that helps in processing any type of data. R provides
many packages and features such as open database connectivity (ODBC), which process
different types of data formats. For example, ODBC supports data formats such as CSV,
MS Excel, SQL, etc.

3.2.2 Data Quality

Maintaining data quality is another challenge in analytical data processing. Business
analysts are required to deliver perfect information, inferences, outliers and output
without any missing or invalid value. A data with inferior input or output is bound to
give incorrect quality results.

With the help of R, business analysts can maintain data quality. Different tools of R
help business analysts in removing invalid data, replacing missing values and removing
outliers in data.

3.2.3 Project Scope

Projects based on analytical data processing are costly and time consuming. Hence, before
starting a new project, business analysts should analyse the scope of the project. They
should identify the amount of data required from external sources, time of delivery and
other parameters related to the project.

Loading and Handling Data in R 47

3.2.4 Output Result via Stakeholder Expectation Management

In analytical data processing, analysts design projects that generate output with different
types of values like p-value, the degree of freedom, etc. However, users or stakeholders
prefer to see the output. The stakeholders do not want to see the constraints used in
data processing, assumptions, hypothesis, p-values, chi-square value or any other value.
Hence, an analytical project should try to fulfil all the expectations of the stakeholders.

Business analysts should use transparent methods and processes. They should also
validate the data using cross validation. If business analysts use the standard steps of
analytical data processing that generate the perfect output, they will not encounter any
problems. Data input, processing, descriptive statistics, visualisation of data, report
generation and output form the sequence of analytical data processing that analysts should
follow while conducting business analysis for their project.

Check Your Understanding

 1. What is analytical data processing?

 Ans: Analytical data processing is a part of business intelligence that includes relational

database, data warehousing, data mining and report mining.

 2. List the challenges of analytical data processing.

 Ans: Some challenges of analytical data processing are:
 d Data formats
 d Data quality
 d Project scope
 d Output results via stakeholder expectation management.

 3. What are the common steps of analytical data processing?

 Ans: Data input, processing, descriptive statistics, visualisation of data, report generation

and output are the common steps of analytical data processing.

3.3 exPression, Variables anD funCtions

Let us get familiar with the R interface. We will start out by practicing expressions,
variables and functions.

3.3.1 Expressions

Look at a few arithmetic operations such as addition, subtraction, multiplication, division,
exponentiation, finding the remainder (modulus), integer division and computing the
square root as given in Table 3.1.

48 Data Analytics using R

Table 3.1 Arithmetic operations

Operation Operator Description Example

Addition x + y y added to x > 4 + 8

[1] 12

Subtraction x – y y subtracted from x > 10 – 3

[1] 7

Multiplication x * y x multiplied by y > 7 * 8

[1] 56

Division x / y x divided by y < 8/3

[1] 2.666667

Exponentiation x ^ y
x ** y

x raised to the power y > 2 ^ 5

[1] 32

Or
>2 ** 5

[1] 32

Modulus x %% y Remainder of (x divided by y) > 5 %% 3

[1] 2

Integer Division x%/%y x divided by y but rounded down > 5 %/% 2

[1] 2

Computing the Square Root sqrt(x) Computing the square root of x > sqrt (25)

[1] 5

3.3.2 Logical Values

Logical values are TRUE and FALSE or T and F. Note that these are case sensitive. The
equality operator is ==.

> 8 < 4

[1] FALSE

> 3 * 2 == 5

[1] FALSE

> 3 * 2 == 6

[1] TRUE

> F == FALSE

[1] TRUE

> T == TRUE

[1] TRUE

Guided Activity

Step 1: Create a vector, x consisting of 10 elements with values ranging from 1 to 10. Section
3.5 of this chapter deals with creation, accessing vector elements and vector arithmetic,
etc.

> x <- c(1:10)

Loading and Handling Data in R 49

Step 2: Display the contents of the vector, x.

> x

[1] 1 2 3 4 5 6 7 8 9 10

Step 3: Print the values of those elements whose values are either greater than 7 or less
than 5.

‘|’ is the OR operator. Use the OR operator to display elements whose values are either
greater than 7 or less than 10.

> x[(x>7) | (x<5)]

[1] 1 2 3 4 8 9 10

Explanation

Part (i) Display ‘TRUE’ for elements whose values are more than 7, else display ‘FALSE’.

> x>7

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE

Part (ii) Display ‘TRUE’ for elements whose values are less than 5, else display ‘FALSE’.

> x<5

[1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

Step 4: Print the values of those elements whose values are greater than 7 and less than 10.
‘&’ is the AND operator. Use the AND operator to display elements whose values are

greater than 7 and less than 10.

> x[(x>7) & (x<10)]

[1] 8 9

3.3.3 Dates

The default format of date is YYYY-MM-DD.

 (i) Print system’s date.

> Sys.Date()

[1] “2017-01-13”

 (ii) Print system’s time.

> Sys.time()

[1] “2017-01-13 10:54:37 IST”

 (iii) Print the time zone.

> Sys.timezone()

[1] “Asia/Calcutta”

 (iv) Print today’s date.

> today <- Sys.Date()

> today

[1] “2017-01-13”

> format (today, format = “%B %d %Y”)

[1] “January 13 2017”

50 Data Analytics using R

 (v) Store date as a text data type.

> CustomDate = “2016-01-13”

> CustomDate

[1] “2016-01-13”

> class (CustomDate)

[1] “character”

 (vi) Convert the date stored as text data type into a date data type.

> CustDate = as.Date(CustomDate)

> class(CustDate)

[1] “Date”

> CustDate

[1] “2016-01-13”

 (vii) Find the difference between the following two dates.

> strDates <- c(“08/15/1947”, “01/26/1950”)

 (viii) Convert strings into date format.

> dates = as.Date(strDates, “%m /%d /%Y”)

> dates

[1] “1947-08-15” “1950-01-26”

 (ix) Compute the difference between the two dates.

> dates[2] – dates[1]

Time difference of 895 days

3.3.4 Variables

 (i) Assign a value of 50 to the variable called ‘Var’.

> Var <-50

 Or

> Var=5

 (ii) Print the value in the variable, ‘Var’.

> Var

[1] 50

 (iii) Perform arithmetic operations on the variable, ‘Var’.

> Var + 10

[1] 60

> Var / 2

[1] 25

 Variables can be reassigned values either of the same data type or of a different data
type.

 (iv) Reassign a string value to the variable, ‘Var’.

> Var <- “R is a Statistical Programming Language”

Loading and Handling Data in R 51

 Print the value in the variable, ‘Var’.

> Var

[1] “R is a Statistical Programming Language”

 (v) Reassign a logical value to the variable, ‘Var’.

> Var <- TRUE

> Var

[1] TRUE

3.3.5 Functions

In this section we will try out a few functions such as sum(), min(), max() and seq().

sum() function

sum() function returns the sum of all the values in its arguments.

Syntax

sum(..., na.rm = FALSE)

where … implies numeric or complex or logical vectors.
na,rm accepts a logical value. Should missing values (including NaN (Not a Number))

be removed?

Examples

 (i) Sum the values ‘1’, ‘2’ and ‘3’ provided as arguments to sum()

> sum(1, 2, 3)

[1] 6

 (ii) What will be the output if NA is used for one of the arguments to sum()?

> sum(1, 5, NA, na.rm=FALSE)

[1] NA

 If na.rm is FALSE, an NA or NaN value in any of the argument will cause NA or
NaN to be returned.

 (iii) What will be the output if NaN is used for one of the arguments to sum()?

> sum(1, 5, NaN, na.rm= FALSE)

[1] NaN

 (iv) What will be the output if NA and NaN are used as arguments to sum()?

> sum(1, 5, NA, NaN, na.rm=FALSE)

[1] NA

 (v) What will be the output if option, na.rm is set to TRUE?
 If na.rm is TRUE, an NA or NaN value in any of the argument will be ignored.

> sum(1, 5, NA, na.rm=TRUE)

[1] 6

> sum(1, 5, NA, NaN, na.rm=TRUE)

[1] 6

52 Data Analytics using R

min() function

min() function returns the minimum of all the values present in their arguments.

Syntax

min(…, na.rm=FALSE)

where … implies numeric or character arguments and na.rm accepts a logical value.
Should missing values (including NaN) be removed?

Example

> min(1, 2, 3)

[1] 1

If na.rm is FALSE, an NA or NaN value in any of the argument will cause NA or NaN
to be returned.

> min(1, 2, 3, NA, na.rm=FALSE)

[1] NA

> min(1, 2, 3, NaN, na.rm=FALSE)

[1] NaN

> min(1, 2, 3, NA, NaN, na.rm=FALSE)

[1] NA

If na.rm is TRUE, an NA or NaN value in any of the argument will be ignored.

> min(1, 2, 3, NA, NaN, na.rm=TRUE)

[1] 1

max() function

max() function returns the maximum of all the values present in their arguments.

Syntax

max(…, na.rm=FALSE)

where … implies numeric or character arguments

na.rm accepts a logical value. Should missing values (including NaN) be removed?

Example

> max(44, 78, 66)

[1] 78

If na.rm is FALSE, an NA or NaN value in any of the argument will cause NA or NaN
to be returned.

Loading and Handling Data in R 53

> max(44, 78, 66, NA, na.rm=FALSE)
[1] NA
> max(44, 78, 66, NaN, na.rm=FALSE)
[1] NaN
> max(44, 78, 66, NA, NaN, na.rm=FALSE)
[1] NA

If na.rm is TRUE, an NA or NaN value in any of the argument will be ignored.

> max(44, 78, 66, NA, NaN, na.rm=TRUE)
[1] 78

seq() function

seq() function generates a regular sequence.

Syntax
seq(start from, end at, interval, length.out)

where,
Start from: It is the start value of the sequence.
End at: It is the maximal or end value of the sequence.
Interval: It is the increment of the sequence.
length.out: It is the desired length of the sequence.

Example

> seq(1, 10, 2)
[1] 1 3 5 7 9

> seq(1, 10, length.out=10)
 [1] 1 2 3 4 5 6 7 8 9 10

> seq(18)
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Or
> seq_len(18)
 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
> seq(1, 6, by=3)
[1] 1 4

3.3.6 Manipulating Text in Data

There are many inbuilt string functions available in R that manipulate text or string.
Finding a part of some text string, searching some string in a text or concatenating strings
and other similar operations come under manipulating text operation. Table 3.2 explains
some useful text manipulation operations.

Let us take a look at how R treats strings.
String values have to be enclosed within double quotes.

> “R is a statistical programming language”

[1] “R is a statistical programming language”

54 Data Analytics using R

Table 3.2 Text manipulation of inbuilt functions of R

Functions Function Arguments Description

substr(a,
start stop)

 d a is a character vector.
 d Start and stop arguments contain a

numeric value.

The function returns a part of the string be-
ginning from the start argument and ending
at the stop argument.

strsplit(a,
split, …)

 d a is a character vector.
 d Split is also a character vector that

contains a regular expression for
splitting.

The function splits the given text string into
substrings.

paste(…, sep=
‘‘, …)

 d The dots ‘…’ define R objects.
 d sep argument is a character string

for separating objects.

The function concatenates string vectors after
converting the objects into strings.

grep(pattern,
a)

 d Pattern argument contains a
matching pattern.

 d a is a character vector.

The function returns string after searching for
a text pattern into a given text string.

toupper(a) d a is a character vector. The function converts a string into uppercase.

tolower(a) d a is a character vector. The function converts a string into lowercase.

Figure 3.1 describes the strsplit() and grep() in the R workspace

Figure 3.1 Examples of string functions

Loading and Handling Data in R 55

Few string functions are explained in detail as follows.

rep() function

rep() function repeats a given argument for a specified number of times. In the example
below, the string, ‘statistics’ is repeated three times.

Example

> rep(“statistics”, 3)

[1] “statistics” “statistics” “statistics”

grep() function

In the example below, the function grep() finds the index position at which the string,
‘statistical’ is present.

Example

> grep(“statistical”,c(“R”,“is”,“a”,“statistical”,“language”),

fixed=TRUE)

[1] 4

toupper() function

toupper() function converts a given character vector into upper case.

Syntax

toupper(x)

x Æ is a character vector

Example

> toupper(“statistics”)

[1] “STATISTICS”

Or
> casefold (“r programming language”, upper=TRUE)

[1] “R PROGRAMMING LANGUAGE”

tolower() function

tolower() function converts the given character vector into lower case.

Syntax

tolower(x)

x Æ is a character vector

Example

> tolower(“STATISTICS”)

[1] “statistics”

56 Data Analytics using R

Or
> casefold(“R PROGRAMMING LANGUAGE”, upper=FALSE)

[1] “r programming language”

substr() function

substr() function extracts or replaces substrings in a character vector.

Syntax

substr(x, start, stop)

x Æ character vector
start Æ start position of extraction or replacement
stop Æ stop or end position of extraction or replacement

Example

Extract the string ‘tic’ from ‘statistics’. Begin the extraction at position 7 and continue the
extraction till position 9.

> substr(“statistics”, 7, 9)

[1] “tic”

3.4 Missing Values treatMent in r

During analytical data processing, users come across problems caused by missing and
infinite values. To get an accurate output, users should remove or clean the missing values.
In R, NA (Not Available) represents missing values and Inf (Infinite) represents infinite
values. R provides different functions that identify the missing values during processing
(Table 3.3).

Table 3.3 Functions for handling missing values

Functions Function Arguments Description

is.na(x) x is an R object to be tested. The function checks the object and
returns true if data is missing.

na.omit

(x, …)
x is an R object from which NA needs to be
removed.
The dots ‘…’ define the other optional argument.

The function returns the object after
removing missing values from it.

na.exclude

(x, …)
x is an R object from which NA needs to be
removed.
The dots ‘…’ define the other optional argument.

The function returns the object after
removing missing values from it.

na.fail

(x, …)
The package provides the functions for accessing all
APIs.

The function will encounter an error if
the object contains any missing values
and will return the object if it does not
contain any missing value.

na.pass

(x, …)
x is an R object from which NA needs to be removed.
The dots ‘…’ define the other optional argument.

The function returns the unchanged
object.

Loading and Handling Data in R 57

The following example creates a vector ‘A’ with some missing values [10, 20, NA,
40] (Figure 3.2). The is.na(A) returns TRUE for the missing value. The na.omit(A)
and na.exclude(A) removes the missing value and stores it into vector ‘B’ and ‘D’,
respectively. The na.fail(A) generates an error if A has some missing value. The
na.pass(A) returns the usual vector A.

Figure 3.2 Handling missing values

3.5 using the ‘as’ oPerator to Change the struCture of Data

Sometimes analytical data processing requires data conversion from one data format
into another. Generally, analytical data processing stores data in a table format, wherein
it requires only some part of the table or another structure to store the table’s data. In
this case, R can convert the structure of the table into other structures like factor, list, etc.

The operator ‘as’ provides the facility to convert the structure of one dataset into another
structure in R. The syntax of using this operator is

as.objecttype(objectname)

where,

objecttype is the type of object like data.frame, matrix, list, etc. and objectname is the
name of the object that needs to be converted into another format.

58 Data Analytics using R

Also, as.numeric() and as.character() functions convert characters and numbers,
respectively.

The following example creates a data frame D using two vectors a and b (Figure 3.3).
Now the command ‘as.list(D)’ converts the data frame into list B. The command ‘as.
matrix(D)’ converts the data frame into a matrix.

Figure 3.3 Use of ‘as’ operator

Check Your Understanding

 1. What is the na.omit() function?

 Ans: The na.omit() function is an inbuilt function of R that returns the object after

removing missing values from it.

 2. What is the na.exclude() function?

 Ans: The na.exclude() function is an inbuilt function of R that returns the object after

removing missing values from it.

(Continued)

Loading and Handling Data in R 59

3.6 VeCtors

A vector can have a list of values. The values can be numbers, strings or logical. All the
values in a vector should be of the same data type.

A few points to remember about vectors in R are:

 d Vectors are stored like arrays in C
 d Vector indices begin at 1
 d All vector elements must have the same mode such as integer, numeric (floating

point number), character (string), logical (Boolean), complex, object, etc.

Let us create a few vectors.

 1. Create a vector of numbers

> c(4, 7, 8)

[1] 4 7 8

 The c function (c is short for combine) creates a new vector consisting of three
values, viz. 4, 7 and 8.

 2. Create a vector of string values.

> c(“R”, “SAS”, “SPSS”)

[1] “R” “SAS” “SPSS”

 3. Create a vector of logical values.

> c(TRUE, FALSE)

[1] TRUE FALSE

 A vector cannot hold values of different data types. Consider the example below on
placing integer, string and Boolean values together in a vector.

> c(4, 8, “R”, FALSE)

[1] “4” “8” “R” “FALSE”

All the values are converted into the same data type, i.e. ‘character’.

 3. What is na.fail() function?

 Ans: The na.fail() function is an inbuilt function of R that shows an error if the object

contains any missing value and returns the object if it does not contain any missing

value.

 4. Which function is used for checking missing values in an R object?

 Ans: The is.na() is used for checking missing values in an R object. The function checks

the object and returns true if data is missing.

 5. What is the use of ‘as’ operator?

 Ans: ‘as’ operator converts the structure of one dataset into another structure using R.

60 Data Analytics using R

 4. Declare a vector by the name, ‘Project’ of length 3 and store values in it.

> Project <- vector(length = 3)

> Project [1] <- “Finance Project”

> Project [2] <- “Retail Project”

> Project [3] <- “Energy Project”

 Outcome

> Project

[1] “Finance Project” “Retail Project” “Energy Project”

> length (Project)

[1] 3

3.6.1 Sequence Vector

A sequence vector can be created with a start:end notation.

Objective

Create a sequence of numbers between 1 and 5 (both inclusive).

> 1:5

[1] 1 2 3 4 5

Or
> seq(1:5)

[1] 1 2 3 4 5

The default increment with seq is 1. However, it also allows the use of increments
other than 1.

> seq (1, 10, 2)

[1] 1 3 5 7 9

Or
> seq (from=1, to=10, by=2)

[1] 1 3 5 7 9

Or
> seq (1, 10, by=2)

[1] 1 3 5 7 9

seq can also generate numbers in the descending order.
> 10:1

 [1] 10 9 8 7 6 5 4 3 2 1

> seq (10, 1, by=–2)

[1] 10 8 6 4 2

3.6.2 rep function

The rep function is used to place the same constant into long vectors. The syntax is rep
(z,k), which creates a vector of k*length(z) elements, each equals to z.

Loading and Handling Data in R 61

Objective

Demonstrate rep function.

Act
> rep (3, 4)
[1] 3 3 3 3

Or
> x <-rep (3, 4)
> x
[1] 3 3 3 3

3.6.3 Vector Access

Objective

Let us create a variable, ‘VariableSeq’ and assign to it a vector consisting of string values.

> VariableSeq <- c (“R”, “is”, “a”, “programming”, “language”)

Objective

To access values in a vector, specify the indices at which the value is present in the vector.
Indices start at 1.

> VariableSeq[1]
[1] “R”
> VariableSeq[2]
[1] “is”
> VariableSeq[3]
[1] “a”
> VariableSeq[4]
[1] “programming”
> VariableSeq[5]
[1] “language”

Objective

Assign new values in an existing vector. For example, let us assign value, ‘good
programming’ at indices 4 in the existing vector, ‘VariableSeq’.

> VariableSeq[4] <- “good programming”

Outcome

> VariableSeq[4]

[1] “good programming”

Objective

To access more than one value from the vector.
 (a) Access the first and the fifth element from the vector, ‘VariableSeq’.

> VariableSeq[c(1, 5)]

[1] “R” “language”

62 Data Analytics using R

 (b) Access first to the fourth element from the vector, ‘VariableSeq’.

> VariableSeq[1:4]

[1] “R” “is” “a” “good programming”

 (c) Access the first, fourth and the fifth element from the vector, ‘VariableSeq’.

> VariableSeq[c(1, 4:5)]

[1] “R” “good programming” “language”

 (d) Retrieve all the values from the variable, ‘VariableSeq’

> VariableSeq

[1] “R” “is” “a” “good programming”

[5] “language”

3.6.4 Vector Names

The names() function helps to assign names to the vector elements.
This is accomplished in two steps as shown:

> placeholder <- 1:5

> names(placeholder) <- c(“r”, “is”, “a”, “programming”, “language”)

The vector elements can then be retrieved using the indices position.

> placeholder

 r is a programming language

 1 2 3 4 5

> placeholder [3]

a

3

> placeholder [1]

r

1

> placeholder[4:5]

programming language

 4 5

Or
> placeholder [“programming”]

programming

 4

Objective

Plot a bar graph using the barplot function. The barplot function uses a vector’s values
to plot a bar chart.

Act

The vector used is called BarVector.

> BarVector <- c(4, 7, 8)

> barplot(BarVector)

Loading and Handling Data in R 63

Outcome

Let us use the name function to assign names to the vector elements. These names will
be used as labels in the barplot.

> names(BarVector) <- c(“India”, “MiddleEast”, “US”)

> barplot(BarVector)

3.6.5 Vector Math

Let us define a vector, ‘x’ with three values. Let us add a scalar value (single value) to
the vector. This value will get added to each vector element.

64 Data Analytics using R

> x <- c(4, 7, 8)
> x +1
[1] 5 8 9

However, the vector will retain its individual elements.
> x
[1] 4 7 8

If the vector needs to be updated with the new values, type the statement given below.
> x <- x + 1
> x
[1] 5 8 9

We can run other arithmetic operations on the vector as given:
> x – 1
[1] 4 7 8
> x * 2
[1] 10 16 18
> x / 2
[1] 2.5 4.0 4.5

Let us practice these arithmetic operations on two vectors.
> x
[1] 5 8 9
> y <- c(1, 2, 3)
> y
[1] 1 2 3
> x + y
[1] 6 10 12

Other arithmetic operations are:
> x – y
[1] 4 6 6
> x * y
[1] 5 16 27

Check if the two vectors are equal. The comparison takes place element by element.
> x
[1] 5 8 9
> y
[1] 1 2 3
> x==y
[1] FALSE FALSE FALSE
> x < y
[1] FALSE FALSE FALSE
> sin(x)
[1] -0.9589243 0.9893582 0.4121185

3.6.6 Vector Recycling

If an operation is performed involving two vectors that requires them to be of the same
length, the shorter one is recycled, i.e. repeated until it is long enough to match the longer
one.

Loading and Handling Data in R 65

Objective

Add two vectors wherein one has length, 3 and the other has length, 6.

> c(1, 2, 3) + c(4, 5, 6, 7, 8, 9)
[1] 5 7 9 8 10 12

Objective

Multiply the two vectors wherein one has length, 3 and the other has length, 6.

> c(1, 2, 3) * c(4, 5, 6, 7, 8, 9)
[1] 4 10 18 7 16 27

Objective

Plot a Scatter Plot. The function to plot a scatter plot is ‘plot’. This function uses two
vectors, i.e. one for the x axis and another for the y axis. The objective is to understand the
relationship between numbers and their sines. We will use two vectors. Vector, x which
will have a sequence of values between 1 and 25 at an interval of 0.1 and vector, y which
stores the sines of all values held in vector, x.

> x <-seq(1, 25, 0.1)
> y <-sin(x)

The plot function takes the values in the vector, x and plots it on the horizontal axis. It
then takes the values in the vector, y and places it on the vertical axis (Figure 3.4).

> plot(x, y)

Figure 3.4 Scatter plot

66 Data Analytics using R

3.7 MatriCes

Matrices are nothing but two-dimensional arrays.

Objective

Let us create a matrix which is 3 rows by 4 columns and set all its elements to 1.

> matrix (1, 3, 4)

 [, 1] [, 2] [, 3] [, 4]

[1,] 1 1 1 1

[2,] 1 1 1 1

[3,] 1 1 1 1

Objective

Use a vector to create an array, 3 rows high and 3 columns wide.

Step 1: Begin by creating a vector that has elements from 10 to 90 with an interval of 10.

> a <- seq(10, 90, by = 10)

Step 2: Validate by printing the value of vector a.

> a

[1] 10 20 30 40 50 60 70 80 90

Step 3: Call the matrix function with vector, ‘a’ the number of rows and the number of
columns.

> matrix (a, 3, 3)

 [, 1] [, 2] [, 3]

[1,] 10 40 70

[2,] 20 50 80

[3,] 30 60 90

Objective

Re-shape the vector itself into an array using the dim function.

Step 1: Begin by creating a vector that has elements from 10 to 90 with an interval of 10.

> a <- seq (10, 90, by = 10)

Step 2: Validate by printing the value of vector, a.

> a

[1] 10 20 30 40 50 60 70 80 90

Step 3: Assign new dimensions to vector, a by passing a vector having 3 rows and 3
columns (c (3, 3)).

> dim(a) <- c(3, 3)

Step 4: Print the values of vector, a. You will notice that the values have shifted to form 3
rows by 3 columns. The vector is no longer one dimensional. It has been converted into
a two-dimensional matrix that is 3 rows high and 3 columns wide.

Loading and Handling Data in R 67

> a
 [, 1] [, 2] [, 3]
[1,] 10 40 70
[2,] 20 50 80
[3,] 30 60 90

3.7.1 Matrix Access

Objective

Access the elements of a 3 *4 matrix.

Step 1: Create a matrix, ‘mat’, 3 rows high and 4 columns wide using a vector.

> x <- 1:12
> x
[1] 1 2 3 4 5 6 7 8 9 10 11 12
> mat <- matrix (x, 3, 4)
> mat
 [, 1] [, 2] [, 3] [, 4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

Step 2: Access the element present in the second row and third column of the matrix, ‘mat’.

> mat [2, 3]
[1] 8

Objective

Access the third row of an existing matrix.

Step 1: Let us begin by printing the values of an existing matrix, ‘mat’

> mat
 [, 1] [, 2] [, 3] [, 4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

Step 2: To access the third row of the matrix, simply provide the row number and omit
the column number.

> mat [3,]
[1] 3 6 9 12

Objective

Access the second column of an existing matrix.

Step 1: Let us begin by printing the values of an existing matrix, ‘mat’

> mat
 [, 1] [, 2] [, 3] [, 4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

68 Data Analytics using R

Step 2: To access the second column of the matrix, simply provide the column number
and omit the row number.

> mat[, 2]

[1] 4 5 6

Objective

Access the second and third columns of an existing matrix.

Step 1: Let us begin by printing the values of an existing matrix, ‘mat’.

> mat

 [, 1] [, 2] [, 3] [, 4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

Step 2: To access the second and third columns of the matrix, simply provide the column
numbers and omit the row number.

> mat[,2:3]

 [, 1] [, 2]

[1,] 4 7

[2,] 5 8

[3,] 6 9

Objective

Create a contour plot.
Create a matrix, ‘mat’ which is 9 rows high and 9 columns wide and assign the value

‘1’ to all its elements.

> mat <- matrix(1, 9, 9)

Print all the values of the matrix, ‘mat’.

> mat

 [, 1] [, 2] [, 3] [, 4] [, 5] [, 6] [, 7] [, 8] [, 9]

[1,] 1 1 1 1 1 1 1 1 1

[2,] 1 1 1 1 1 1 1 1 1

[3,] 1 1 1 1 1 1 1 1 1

[4,] 1 1 1 1 1 1 1 1 1

[5,] 1 1 1 1 1 1 1 1 1

[6,] 1 1 1 1 1 1 1 1 1

[7,] 1 1 1 1 1 1 1 1 1

[8,] 1 1 1 1 1 1 1 1 1

[9,] 1 1 1 1 1 1 1 1 1

Assign ‘0’ as the value to the element present in the third row and third column of the
matrix, ‘mat’.

Loading and Handling Data in R 69

> mat[3, 3] <-0
> mat
 [, 1] [, 2] [, 3] [, 4] [, 5] [, 6] [, 7] [, 8] [, 9]
[1,] 1 1 1 1 1 1 1 1 1
[2,] 1 1 1 1 1 1 1 1 1
[3,] 1 1 0 1 1 1 1 1 1
[4,] 1 1 1 1 1 1 1 1 1
[5,] 1 1 1 1 1 1 1 1 1
[6,] 1 1 1 1 1 1 1 1 1
[7,] 1 1 1 1 1 1 1 1 1
[8,] 1 1 1 1 1 1 1 1 1
[9,] 1 1 1 1 1 1 1 1 1

Plot the contour chart using the contour() function (Figure 3.5). The contour()
function creates a contour plot or adds contour lines to an existing plot. Look up the R
documentation for a complete description of the contour() function.

> contour(mat)

Figure 3.5 Contour plot

Objective

Create a 3D perspective plot with the persp() function (Figure 3.6). It provides a 3D
wireframe plot most commonly used to display a surface.

>persp(mat)

We can add a title to our plot with the parameter ‘main’. Similarly, ‘xlab’, ‘ylab’ and
‘zlab’ can be used to label the three axes. Coloring of the plot is done with parameter ‘col’.
Similarly, we can add shading with the parameter ‘shade’.

70 Data Analytics using R

Figure 3.6 3D perspective plot

Objective

R includes some sample data sets. One of these is ‘volcano’, which is a 3D map of a
dormant New Zealand volcano. Create a contour map of the volcano dataset (Figure 3.7).

> contour(volcano)

Figure 3.7 Contour map

Loading and Handling Data in R 71

Let us create a 3D perspective map of the sample data set, ‘volcano’ (Figure 3.8).

> persp(volcano)

Figure 3.8 3D perspective map of the sample data set, ‘volcano’

Objective

Create a heat map of the sample dataset, ‘volcano’ (Figure 3.9).

> image(volcano)

Figure 3.9 Heat map of the sample dataset, ‘volcano’

72 Data Analytics using R

3.8 faCtors

3.8.1 Creating Factors

School, ‘XYZ’ places students in groups, also called houses. Each group is assigned a
unique color such as ‘red’, ‘green’, ‘blue’ or ‘yellow’. HouseColor is a vector that stores
the house colors of a group of students.

> HouseColor <- c(‘red’, ‘green’, ‘blue’, ‘yellow’, red’, ‘green’, ‘blue’, ‘blue’)
> types <- factor(HouseColor)
> HouseColor
[1] “red” “green” “blue” “yellow” “red” “green” “blue” “blue”
> print(HouseColor)
[1] “red” “green” “blue” “yellow” “red” “green” “blue” “blue”
> print (types)
[1] red green blue yellow red green blue blue
Levels: blue green red yellow

Levels denotes the unique values. The above has four distinct values such as ‘blue’,
‘green’, ‘red’ and ‘yellow’.

> as.integer(types)
[1] 3 2 1 4 3 2 1 1

The above output is explained as given below.

1 is the number assigned to blue.
2 is the number assigned to green.
3 is the number assigned to red.
4 is the number assigned to yellow.

> levels(types)
[1] “blue” “green” “red” “yellow”

The vector ‘NoofStudents’ stores the number of students in each house/group with
12 students in blue house, 14 students in green house, 12 students in red house and 13
students in yellow house.

> NoofStudents <- c(12, 14, 12, 13)
> NoofStudents
[1] 12 14 12 13

The vector, ‘AverageScore’ stores the average score of the students of each house/
group. 70 is the average score for students of the blue house, 80 is the average score for
students of the green house, 90 is the average score for the students of the red house and
95 is the average score for the students of the yellow house.

> AverageScore(70, 80, 90, 95)
> AverageScore
[1] 70 80 90 95

Objective

Plot the relationship between NoofStudents and AverageScore (Figure 3.10).

> plot(NoofStudents, AverageScore)

Loading and Handling Data in R 73

Figure 3.10 Relationship between "NoofStudents" and "AverageScore"

> plot (NoofStudents, AverageScore, pch=as.integer (types))

The above graph in Figure 3.10 displays 4 dots. Let us improve the graph by at least
using different symbols to represent each house (Figure 3.11).

Figure 3.11 Relationship between "NoofStudents" and "AverageScore" using different symbols.

74 Data Analytics using R

To add further meaning to the graph, let us place a legend on the top right corner
(Figure 3.12).

> legend(“topright”, c(“red”, “green”, “blue”, “yellow”), pch=1:4)

Figure 3.12 Relationship between "NoofStudents" and "AverageScore" (with legends)

3.9 list

List is similar to C Struct.

Objective

Create a list in R.
To create a list, ‘emp’ having three elements, ‘EmpName’, ‘EmpUnit’ and ‘EmpSal’.

> emp <- list (“EmpName=“Alex”, EmpUnit = “IT”, EmpSal = 55000)

Outcome

To get the elements of the list, ‘emp’ use the command given below.

> emp

$EmpName

[1] “Alex”

$EmpUnit

[1] “IT”

$EmpSal

[1] 55000

Loading and Handling Data in R 75

Actually, the element names, e.g. ‘EmpName’, ‘EmpUnit’ and ‘EmpSal’ are optional.
We could alternatively do this as shown below.

> EmpList <- list(“Alex”, “IT”, 55000)
> EmpList
[[1]]
[1] “Alex”

[[2]]
[1] “IT”

[[3]]
[1] 55000

Here the elements of EmpList are referred to as 1, 2 and 3.

3.9.1 List Tags and Values

A list has elements. The elements in a list can have names, which are referred to as tags.
Elements can also have values.

For example, in the ‘emp’ list we have three elements, viz. EmpName, EmpUnit and
EmpSal. The values are as follows. The element ‘EmpName’ has the value ‘Alex’, the
element ‘EmpUnit’ has the value ‘IT’ and the element ‘EmpSal’ has the value 55000.

Let us look at the command to retrieve the names and values of the elements in a list.

Objective

Retrieve the names of the elements in the list ‘emp’.

> names(emp)
[1] “EmpName” “EmpUnit” “EmpSal”

Objective

Retrieve the values of the elements in the list ‘emp’.

> unlist(emp)
EmpName EmpUnit EmpSal
 “Alex” “IT” “55000”

The command to retrieve the value of a single element in the list ‘emp’ is given below.

Objective

Retrieve the value of the element ‘EmpName’ in the list ‘emp’.

> unlist(emp[“EmpName”])
EmpName
“Alex”

The value of the other elements in the list can be checked in a similar manner.

76 Data Analytics using R

> unlist(emp[“EmpUnit”])
EmpUnit
 “IT”
> unlist(emp[“EmpSal”])
EmpSal
 55000

Yet another way to retrieve the values of the elements in the list ‘emp’ is given as
follows:

Objective

Retrieve the value of the element ‘EmpName’ in the list ‘emp’.

> emp[[“EmpName”]]
[1] “Alex”

Or
> emp[[1]]
[1] “Alex”

3.9.2 Add/Delete Element to or from a List

Before adding an element to the list ‘emp’, let us verify what elements exist in the list.
> emp
$EmpName
[1] “Alex”

$EmpUnit
[1] “IT”

$EmpSal
[1] 55000

Objective

Add an element with the name ‘EmpDesg’ and value ‘Software Engineer’ to the list, ‘emp’.

> emp$EmpDesg = “Software Engineer”

Outcome
> emp
$EmpName
[1] “Alex”

$EmpUnit
[1] “IT”

$EmpSal
[1] 55000

$EmpDesg
[1] “Software Engineer”

Loading and Handling Data in R 77

Objective

Delete an element with the name ‘EmpUnit’ and value ‘IT’ from the list, ‘emp’.

> emp$EmpUnit <- NULL

Outcome

> emp

$EmpName

[1] “Alex”

$EmpSal

[1] 55000

$EmpDesg

[1] “Software Engineer”

3.9.3 Size of a List

length() function can be used to determine the number of elements present in the list.

The list, ‘emp’ has three elements as shown:

> emp

$EmpName

[1] “Alex”

$EmpSal

[1] 55000

$EmpDesg

[1] “Software Engineer”

Objective

Determine the number of elements in the list, ‘emp’.

> length(emp)

[1] 3

Recursive List

A recursive list means a list within a list.

Objective

Create a list within a list.
Let us begin with two lists, ‘emp’ and ‘emp1’.
The elements in both the lists are as shown below.

> emp

$EmpName

[1] “Alex”

78 Data Analytics using R

$EmpSal

[1] 55000

$EmpDesg

[1] “Software Engineer”

> emp1

$EmpUnit

[1] “IT”

$EmpCity

[1] “Los Angeles”

We would like to combine both the lists into a single list called ‘EmpList’.

> EmpList <- list(emp, emp1)

Outcome

> EmpList

[[1]]

[[1]] $EmpName

[1] “Alex”

[[1]]$EmpSal

[1] 55000

[[1]]$EmpDesg

[1] “Software Engineer”

[[2]]

[[2]]$EmpUnit

[1] “IT”

[[2]]$EmpCity

[1] “Los Angeles”

3.10 few CoMMon analytiCal tasks

Reading, writing, updating and merging data are common operations in any programming
language. These are used for processing data. All programming languages work with
different types of data like numeric, characters, logical, etc. Just like any other processing,
analytical data processing also requires general operations for complex processing. In
the next section, you will learn about some common tasks of R that are required during
analytical data processing.

Loading and Handling Data in R 79

3.10.1 Exploring a Dataset

Exploring a dataset means displaying the data of the dataset in a different form. Datasets
are the main part of analytical data processing. It uses different forms or parts of the
dataset. With the help of R commands, analysts can easily explore a dataset in different
ways. Table 3.4 describes some functions for exploring a dataset.

Table 3.4 Functions for exploring a dataset

Functions Function Arguments Description

names(dataset) d Dataset argument contains
the name of the dataset.

The function displays the
variables of the given dataset.

summary(dataset) d Dataset argument contains
the name of the dataset.

The function displays the
summary of the given dataset.

str(dataset) d Dataset argument contains
the name of the dataset.

The function displays the
structure of the given dataset.

head(dataset, n) d Dataset argument contains
the name of the dataset.

 d n is a numeric value to
display the number of top
rows.

The function displays the top
rows according to the value
of n. If the value of n is not
provided in the function then
by default the function displays
the top 6 rows of the dataset.

tail(dataset, n) d Dataset argument contains
the name of the dataset.

 d n is a numeric value to
display the number of bot-
tom rows.

The function displays the top
rows according to the value
of n. If the value of n is not
provided in the function then
by default the function displays
the bottom 6 rows of the
dataset.

class(dataset) d Dataset argument contains
the name of the dataset.

The function displays the class
of the dataset.

dim(dataset) d Dataset argument contains
the name of the dataset.

The function returns the
dimension of the dataset which
implies the total number of
rows and columns of the
dataset.

table(dataset$variable
names)

 d Dataset argument contains
the name of the dataset.

 d Variable name contains
the name of the variable
names.

The function returns the
number of categorical values
after counting them.

The following example loads a matrix into the workspace. All the above commands
are executed on the dataset, ‘Orange’ (Figures 3.13–3.15).

80 Data Analytics using R

Figure 3.13 Exploring a dataset using names(), summary() and str() functions

Figure 3.14 Exploring a dataset using head() and tail() functions

Loading and Handling Data in R 81

Figure 3.15 Exploring a dataset using class(), dim() and table() functions

3.10.2 Conditional Manipulation of a Dataset

Analytical data processing sometimes may require specific rows and columns of a dataset.
Table 3.5 lists commands that can be used for accessing specific rows and columns of

a dataset.

Table 3.5 Commands for accessing specific rows and columns of a dataset

Commands Command Arguments Description

Tablename[n] n is a numeric value. The command displays the rows according to the given
value of argument n of the table.

Tablename[, n] n is a numeric value. The command displays the columns according to the
given value of argument n of the table.

The following example reads a table, ‘Hardware.csv’ into object, ‘TD’ on the R
workspace. The TD[1] and TD[, 1] commands displays rows and columns (Figure 3.16).

3.10.3 Merging Data

Merging different datasets or objects is another common task used in most processing
activities. Analytical data processing may also require merging two or more data objects. R
provides a function merge() that merges data objects. The merge() function combines data
frames by common columns or row names. It also follows the database join operations.
The syntax of the merge() function is given as follows:

merge(x, y,…) OR

merge(x, y, by = intersect(names(x), names(y)), by.x = by, by.y =

by, all = FALSE, all.x = all, all.y = all, …)

82 Data Analytics using R

Figure 3.16 Conditional manipulation of a dataset

where, x is an object or data frame, y is an object or data frame and by, by.x, by.y arguments
define the common columns or rows for merging. All arguments contain logical values
‘TRUE’ or ‘FALSE’. If the value is TRUE then it returns the full outer join by adding all
rows of x and y into the result object.

all.x argument contains logical values, ‘TRUE’ or ‘FALSE’. If the value is TRUE then it
returns the dataset as per left outer join after merging the objects by adding an extra row
in x that is not matching with rows in y. If the value is FALSE then it merges the rows
with the data from both x and y into the result object.

all.y argument contains logical values, ‘TRUE’ or ‘FALSE’. If the value is TRUE then
it returns the dataset as per right outer join after merging the objects by adding an extra
row in y that is not matching with rows in x. If the value is FALSE then it merges the
rows with data from both x and y into the result object.

The dots ‘…’ define the other optional argument.
The following example creates two data frames, ‘S’ and ‘T’. Then both the data frames

are merged into a new data frame, ‘E’ (Figure 3.17).
In this example, two data frames, ‘S’ and ‘T’ are using different values to merge data.

The merge command returns the data frames after merging them using the left and right
outer join (Figure 3.18).

Loading and Handling Data in R 83

Figure 3.17 Merging data

Figure 3.18 Merging data using join condition

84 Data Analytics using R

3.11 aggregating anD grouP ProCessing of a Variable

Aggregate and group operations aggregate the data of specific variables of a dataset after

grouping variable data. Like merging, analytical data processing also requires aggregation

and grouping operation on a dataset. R provides some functions for aggregation operation.

The next section describes two functions aggregate() and tapply() of R.

3.11.1 aggregate() Function

The aggregate() function is an inbuilt function of R that aggregates data values. The

function also splits data into groups after performing given statistical functions. The

syntax of the aggregate() function is

aggregate(x, …) or

aggregate(x, by, FUN, …)

where, x is an object, by argument defines the list of group elements of the specific variable

of the dataset, FUN argument is a statistic function that returns a numeric value after

given statistic operations and the dots ‘…’ define the other optional argument.

The following example reads a table, ‘Fruit_data.csv’ into object, ‘S’. The aggregate()

function computes the mean price of each type of fruit. Here by argument is list(Fruit.

Name = S$Fruit.Name) that groups the Fruit.Name columns (Figure 3.19).

Figure 3.19 Example of aggregate() function

Loading and Handling Data in R 85

3.11.2 tapply() Function

The tapply() function is also an inbuilt function of R and works in a manner similar

to the function aggregate(). The function aggregates the data values into groups after

performing the given statistical functions. The syntax of the tapply () function is

tapply (x, …) or

tapply(x, INDEX, FUN, …)

where, x is an object that defines the summary variable, INDEX argument defines the

list of group elements—also called group variable, FUN argument is a statistic function

that returns a numeric value after given statistic operations and the dots ‘…’ define the

other optional argument.

The following example reads the table, ‘Fruit_data.csv’ into object, ‘A’. The tapply()

function computes the sum and price of each type of fruit. Here Fruit.Price is a summary

variable and Fruit.Name is a grouping variable. The FUN function is applied on the

summary variable, Fruit.Price (Figure 3.20).

Figure 3.20 Example of tapply() function

86 Data Analytics using R

Check Your Understanding

 1. How do you define exploring a dataset?
 Ans: Exploring a dataset implies display of data of a dataset in different forms.

 2. Which function is used to display the summary of a dataset?
 Ans: The summary() function is used to display the summary of a dataset.

 3. What is the head() function?
 Ans: The head() function is an inbuilt data exploring function that displays the top rows

according to a given value.

 4. What is the tail() function?
 Ans: The tail() function is an inbuilt data exploring function that displays the bottom

rows according to a given value.

 5. What is the use of merge() function?
 Ans: The merge() function is an inbuilt function of R. It combines data frames by common

columns or row names. It also follows the database join operations.

 6. What is the use of aggregate() function?
 Ans: The aggregate() function is an inbuilt function of R which aggregates data values

and splits data into groups after performing the required statistical functions.

 7. What is the use of tapply() function?
 Ans: The tapply() function is an inbuilt function of R which aggregates data values into

groups after performing the required statistical functions.

 8. List the inbuilt functions of R for manipulating text.
 Ans: Some inbuilt functions of R for manipulating text are:

 d substr()
 d strsplit()
 d paste()
 d grep()

3.12 siMPle analysis using r

In this section, you will learn how to read data from a dataset, perform a common
operation and see the output.

3.12.1 Input

Input is the first step in any processing, including analytical data processing. Here, the
input is dataset, ‘Fruit’. For reading the dataset into R, use read.table() or read.csv()
function. In Figure 3.21, the dataset, ‘Fruit’ is being read into the R workspace using the
read.csv() function.

Loading and Handling Data in R 87

Figure 3.21 Reading dataset as input into R workspace

3.12.2 Describe Data Structure

After reading the dataset into the R workspace, the dataset can be described using different
functions like names(), str(), summary(), head() and tail(). All these functions
have been described in the previous sections. The following figure describes the ‘Fruit’
dataset using all these functions (Figure 3.22).

Figure 3.22 Describing data structure

88 Data Analytics using R

3.12.3 Describe Variable Structure

After describing the dataset, you can also describe the variables of the dataset using
different functions. For describing the variables and performing operations on them,
many functions are available. Some of these functions have been described in the previous
sections. Figure 3.23 describes the variables of ‘Fruit’ dataset.

Figure 3.23 Describing variable structure

Many inbuilt distribution functions can be applied to the variables of a dataset that
define the distribution of data in a dataset. Figures 3.24–3.26 describe few distribution
functions applied on the ‘Fruit’ database.

Figure 3.24 describes the histogram of the ‘Fruit’ dataset using the hist() function. A
histogram is a graphical display of data that uses many bars of different heights.

The complete syntax for hist() function is:

hist(x, breaks = ‘Sturges’,
 freq = NULL, probability = !freq,
 include.lowest = TRUE, right = TRUE,
 density = NULL, angle = 45, col = NULL, border = NULL,
 main = paste(‘Histogram of’ , xname),
 xlim = range(breaks), ylim = NULL,
 xlab = xname, ylab,
 axes = TRUE, plot = TRUE, labels = FALSE,
 nclass = NULL, warn.unused = TRUE, ...)

Loading and Handling Data in R 89

F
ig

u
r

e
 3

.2
4

H

is
to

g
ra

m
 o

f
‘F

ru
it

’
d
a
ta

se
t

90 Data Analytics using R

where,

x is the vector for which a histogram is required.

freq is a logical value. If TRUE, the histogram graphic is a representation of frequencies,

the counts component of the result. If FALSE, the probability densities and component

density are plotted.

main, xlab, ylab are arguments to title.

plot is a logical value. If TRUE (default), a histogram is plotted, else a list of breaks and

counts is returned.

For explanation of other arguments in the hist() function, refer to R documentation.

Figure 3.25 describes the box-and-whisker plot of the ‘Fruit’ dataset using the boxplot()

function. A box and whisker plot summarises the group values into boxes.

The syntax for boxplot() function is:

boxplot(x, ..., range = 1.5, width = NULL, varwidth = FALSE,

 notch = FALSE, outline = TRUE, names, plot = TRUE,

 border = par(‘fg’), col = NULL, log = ‘‘,

 pars = list(boxwex = 0.8, staplewex = 0.5, outwex = 0.5),

 horizontal = FALSE, add = FALSE, at = NULL)

where x is a numeric vector or a single list containing such vectors.

outline - If outline is not true, the outliers are not drawn.

range - This determines how far the plot whiskers extend out from the box.

For explanation of other arguments in the boxplot() function, refer to R documentation.

Figure 3.26 describes the plot of the ‘Fruit’ dataset using the plot() function.

3.12.4 Output

For storing the output, users may use .RData file. On the other hand, if users are using

any GUIs then they can export the output into a specific file. Also, by using database

functions like the write function, the output can be saved.

Just Remember

With the help of any R Graphical User Interface (GUI), users can execute all these commands. Some of the

GUIs are described in the next section.

Loading and Handling Data in R 91

F
ig

u
r

e
 3

.2
5

B

o
x-

a
n

d
-w

h
is

ke
r

p
lo

t
o
f

‘F
ru

it
’
d
a
ta

se
t

92 Data Analytics using R

F
ig

u
r

e
 3

.2
6

‘F

ru
it

’
d
a
ta

se
t

u
si

n
g

p
l
o
t
(
)

 f
u

n
ct

io
n

Loading and Handling Data in R 93

3.13 MethoDs for reaDing Data

R supports different types of data formats related to a database. With the help of import
and export utility of R, any type of data can be imported and exported into R. In this
section, you will learn about the different methods used for reading data.

3.13.1 CSV and Spreadsheets

Comma separated value (CSV) files and spreadsheets are used for storing small size data.
R has an inbuilt function facility through which analysts can read both types of files.

Reading CSV Files

A CSV file uses .csv extension and stores data in a table structure format in any plain text.
The following function reads data from a CSV file:

read.csv(‘filename’)

where,
filename is the name of the CSV file that needs to be imported.

Check Your Understanding

 1. Write the names of the functions used for reading datasets or tables into the R
workspace.

 Ans: Functions used for reading datasets or tables into the R workspace are:
 d read.csv()
 d read.table()

 2. List the inbuilt functions used for describing a dataset.
 Ans: Some inbuilt functions used for describing a dataset are:

 d names()
 d str()
 d summary()
 d head()
 d tail()

 3. List the functions of R for describing variables.
 Ans: Functions for describing variables are:

 d table()
 d summary(tablename $ variablename)
 d paste()
 d grep()
 d hist()
 d plot()

94 Data Analytics using R

The read.table() function can also read data from CSV files. The syntax of the
function is

read.table(‘filename’, header=TRUE, sep=‘,’,…)

where,

filename argument defines the path of the file to be read, header argument contains
logical values TRUE and FALSE for defining whether the file has header names on the
first line or not, sep argument defines the character used for separating each column of
the file and the dots ‘…’ define the other optional arguments.

The following example reads a CSV file, ‘Hardware.csv’ using read.csv() and read.
table() function (Figure 3.27).

Figure 3.27 Reading CSV file

Reading Spreadsheets

A spreadsheet is a table that stores data in rows and columns. Many applications are
available for creating a spreadsheet. Microsoft Excel is the most popular for creating an
Excel file. An Excel file uses .xlsx extension and stores data in a spreadsheet.

In R, different packages are available such as gdata, xlsx, etc., that provide functions
for reading Excel files. Importing such packages is necessary before using any inbuilt
function of any package. The read.xlsx() is an inbuilt function of ‘xlsx’ package for
reading Excel files. The syntax of the read.xlsx() function is

read.xlsx(‘filename’,…)

Loading and Handling Data in R 95

where,
filename argument defines the path of the file to be read and the dots ‘…’ define the

other optional arguments.
In R, reading or writing (importing and exporting) data using packages may create some

problems like incompatibility of versions, additional packages not loaded and so on. In
order to avoid these problems, it is better to convert files into CSV files. After converting
files into CSV files, the converted file can be read using the read.csv() function.

The following example illustrates creation of an Excel file, ‘Softdrink.xlsx’. The ‘Software.
csv’ file is the converted form of the ‘Softdrink.xlsx’ file (Figure 3.28). The function read.
csv() is reading this file into R (Figure 3.29).

Figure 3.28 Spreadsheet of Excel file

Figure 3.29 Reading a converted CSV file

96 Data Analytics using R

Example: Reading the .csv file

To read the data from a .csv file (D:\SampleSuperstore.csv) into a data frame. The data
should be grouped by ‘Category’. The column on which grouping is done is ‘Sales’. The
aggregate function to be used is ‘sum’.

Step 1: The data is stored in ‘D:\SampleSuperstore.csv’. It is available under the following
columns:

Row ID, Order ID, Order Date, Ship Date, Ship Mode, Customer ID, Customer Name,
Segment, Country, State, City, Postal Code, Region, Product ID, Category, Sub-Category,
Product Name, Sales, Quantity, Discount, Price.

A subset of the data is shown in Figure 3.30.
With the use of read.csv function, the data is read from ‘D:\SampleSuperstore.csv’ file

and stored in the data frame named, ‘InputData’.

> InputData <- read.csv(“d:/SampleSuperstore.csv”)

Step 2: Data is grouped and aggregated on InputData$Sales by InputData$Category. The
aggregation function used is ‘sum’. InputData$Sales refers to the ‘Sales’ column of the
data frame, ‘InputData’. Similarly, InputData$Category refers to the ‘Category’ column
of the data frame, ‘InputData’.

> GroupedInputData <- aggregate(InputData$Sales ~

InputData$Category, InputData, sum)

Display the aggregated data. As evident from the display below, the data is available
in three categories, viz. ‘Furniture’, ‘Office Supplies’ and ‘Technology’.

> GroupedInputData

 InputData$Category InputData$Sales

1 Furniture 156514.4

2 Office Supplies 132600.8

3 Technology 168638.0

3.13.2 Reading Data from Packages

A package is a collection of functions and datasets. In R, many packages are available for
doing different types of operations (Figure 2.4). Some functions for reading and loading
the dataset from and into packages defined in R are explained next.

library() Function

The library() function loads packages into the R workspace. It is compulsory to import
the package before reading the available dataset of that package. The syntax of the
library() function is:

library(packagename)

where,
packagename argument is the name of the package to be read.

Loading and Handling Data in R 97

F
ig

u
r

e
 3

.3
0

S
u

b
se

t
o
f

th
e

d
a
ta

 f
ro

m
 “

S
a
m

p
le

S
u

p
er

st
o
re

.x
ls

”

98 Data Analytics using R

data() Function

The data() function lists all the available datasets of the loaded package into the R
workspace. For loading a new dataset into the loaded packages, users need to pass the
name of the new dataset into data() function. The syntax of the data() function is:

data(datasetname)

where,
datasetname argument is the name of the dataset to be read.
The following example illustrates the loading of a matrix. The data() function lists

all the available datasets of the loaded package. The ‘ > Orange ‘ command reads and
displays the content of the dataset, ‘Orange’ into the workspace.

Figure 3.31 Reading data from packages

3.13.3 Reading Data from Web/APIs

Nowadays most business organisations are using the Internet and cloud services for
storing data. This online dataset is directly accessible through packages and application
programming interfaces (APIs). Different packages are available in R for reading from
online datasets. Refer to Table 3.6 to view some packages.

Loading and Handling Data in R 99

Table 3.6 Packages for reading web data

Packages Description Download Link

RCurl The package permits download of
files from the web server and post
forms.

https://cran.r-project.org/web/
packages/RCurl/index.html

Google Prediction API It allows uploading of data to
Google storage and then training
them for Google Prediction API.

http://code.google.com/p/r-google-
prediction api-v121

Infochimps The package provides the
functions for accessing all API.

http://api.infochimps.com

HttpRequest The package reads the web data
with the help of an HTTP request
protocol and implements the GET,
POST request.

https://cran.r-project.org/web/
packages/httpRequest/index.html

WDI The package reads all World Bank
data.

http://crans projectorg/web/
packages/WD1/index.html

XML The package reads and creates
an XML and HTML document
with the help of an HTTP or FTP
protocol.

http://crans projectorg/web/
packages/XML/index.html

Quantmod The package reads finance data
from Yahoo finance.

http://crans-projectorg/web/
packages/quantmodfindex.html

ScrapeR The package reads online data. http://crans-projectorg/web/
packages/scrapeR/index.html

The following example illustrates web scraping. Web scraping extracts data from any
webpage of a website. Here package ‘RCurl’ is used for web scraping (Figure 3.32). At
first, the package, ‘RCurl’ is imported into the workspace and then getURL() function of
the package, ‘RCurl’ takes the required webpage. Now htmlTreeParse() function parses
the content of the webpage.

3.13.4 Reading a JSON (Java Script Object Notation) Document

Step 1: Install rjson package.

> install.packages(“rjson”)

Installing package into ‘C:/Users/seema_acharya/Documents/R/win-

library/3.2’(as ‘lib’ is unspecified)

trying URL ‘https://cran.hafro.is/bin/windows/contrib/3.2/

rjson_0.2.15.zip’

Content type ‘application/zip’ length 493614 bytes (482 KB)

downloaded 482 KB

package ‘rjson’ successfully unpacked and MD5 sums checked

100 Data Analytics using R

F
ig

u
r

e
 3

.3
2

R

ea
d
in

g
 w

eb
 d

a
ta

 u
si

n
g
 t

h
e

‘R
C

u
rl

’
p
a
ck

a
g
e

Loading and Handling Data in R 101

Step 2: Input data.
Store the data given below in a text file (‘D:/Jsondoc.json’). Ensure that the file is saved
with an extension of .json

{

 ‘EMPID’:[‘1001’,’2001’,’3001’,’4001’,’5001’,’6001’,’7001’,’8001’

],

 ‘Name’:[‘Ricky’,’Danny’,’Mitchelle’,’Ryan’,’Gerry’,’Nonita’,’Sim

on’,’Gallop’],

 ‘Dept’: [‘IT’,’Operations’,’IT’,’HR’,’Finance’,’IT’,’Operations’

,’Finance’]

}

A JSON document begins and ends with a curly brace ({}). A JSON document is a set
of key value pairs. Each key:value pair is delimited using ‘,’ as a delimiter.

Step 3: Read the JSON file, ‘d:/Jsondoc.json’.

> output <- fromJSON(file = “d:/Jsondoc.json”)

> output

$EMPID

[1] “1001” “2001” “3001” “4001” “5001” “6001” “7001” “8001”

$Name

[1] “Ricky” “Danny” “Mitchelle” “Ryan” “Gerry” “Nonita”

[7] “Simon” “Gallop”

$Dept

[1] “IT” “Operations” “IT” “HR” “Finance”

[6] “IT” “Operations” “Finance”

Step 4: Convert JSON to a data frame.

> JSONDataFrame <- as.data.frame(output)

Display the content of the data frame, ‘output’.

> JSONDataFrame

 EMPID Name Dept

1 1001 Ricky IT

2 2001 Danny Operations

3 3001 Mitchelle IT

4 4001 Ryan HR

5 5001 Gerry Finance

6 6001 Nonita IT

7 7001 Simon Operations

8 8001 Gallop Finance

102 Data Analytics using R

3.13.5 Reading an XML File

Step 1: Install an XML package.

> install.packages(“XML”)

Installing package into ‘C:/Users/seema_acharya/Documents/R/win-

library/3.2’(as ‘lib’ is unspecified)

trying URL ‘https://cran.hafro.is/bin/windows/contrib/3.2/XML_3.98-

1.3.zip’

Content type ‘application/zip’ length 4299803 bytes (4.1 MB)

downloaded 4.1 MB

package ‘XML’ successfully unpacked and MD5 sums checked

Step 2: Input data.
Store the data below in a text file (XMLFile.xml in the D: drive). Ensure that the file is
saved with an extension of .xml.

<RECORDS>

 <EMPLOYEE>

 <EMPID>1001</EMPID>

 <EMPNAME>Merrilyn</EMPNAME>

 <SKILLS>MongoDB</SKILLS>

 <DEPT>Computer Science</DEPT>

 </EMPLOYEE>

 <EMPLOYEE>

 <EMPID>1002</EMPID>

 <EMPNAME>Ramya</EMPNAME>

 <SKILLS>People Management</SKILLS>

 <DEPT>Human Resources</DEPT>

 </EMPLOYEE>

 <EMPLOYEE>

 <EMPID>1003</EMPID>

 <EMPNAME>Fedora</EMPNAME>

 <SKILLS>Recruitment</SKILLS>

 <DEPT>Human Resources</DEPT>

 </EMPLOYEE>

</RECORDS>

Reading an XML File

The xml file is read in R using the function xmlParse(). It is stored as a list in R.

Loading and Handling Data in R 103

Step 1: Begin by loading the required packages.

> library(“XML”)

Warning message:

package ‘XML’ was built under R version 3.2.3

> library (“methods”)

> output <- xmlParse(file = “d:/XMLFile.xml”)

> print(output)

<?xml version=“1.0”?>

<RECORDS>

 <EMPLOYEE>

 <EMPID>1001</EMPID>

 <EMPNAME>Merrilyn</EMPNAME>

 <SKILLS>MongoDB</SKILLS>

 <DEPT>ComputerScience</DEPT>

 </EMPLOYEE>

 <EMPLOYEE>

 <EMPID>1002</EMPID>

 <EMPNAME>Ramya</EMPNAME>

 <SKILLS>PeopleManagement</SKILLS>

 <DEPT>HumanResources</DEPT>

 </EMPLOYEE>

 <EMPLOYEE>

 <EMPID>1003</EMPID>

 <EMPNAME>Fedora</EMPNAME>

 <SKILLS>Recruitment</SKILLS>

 <DEPT>HumanResources</DEPT>

 </EMPLOYEE>

</RECORDS>

Step 2: Extract the root node from the XML file.

> rootnode <- xmlRoot(output)

Find the number of nodes in the root.

> rootsize <- xmlSize(rootnode)

> rootsize

[1] 3

104 Data Analytics using R

Let us display the details of the first node.

> print (rootnode[1])

$EMPLOYEE

<EMPLOYEE>

 <EMPID>1001</EMPID>

 <EMPNAME>Merrilyn</EMPNAME>

 <SKILLS>MongoDB</SKILLS>

 <DEPT>ComputerScience</DEPT>

</EMPLOYEE>

attr(, “class”)

[1] “XMLInternalNodeList” “XMLNodeList”

Let us display the details of the first element of the first node.

> print(rootnode[[1]][[1]])

<EMPID>1001</EMPID>

Let us display the details of the third element of the first node.

> print(rootnode[[1]][[3]])

<SKILLS>MongoDB</SKILLS>

Next, display the details of the third element of the second node.

> print(rootnode[[2]][[3]])

<SKILLS>PeopleManagement</SKILLS>

We can also display the value of 2nd element of the first node.

> output <-xmlValue(rootnode[[1]][[2]])

> output

[1] “Merrilyn”

Step 3: Convert the input xml file to a data frame using the xmlToDataFrame function.

> xmldataframe <- xmlToDataFrame(“d:/XMLFile.xml”)

Display the output of the data frame.

> xmldataframe

 EMPID EMPNAME SKILLS DEPT

1 1001 Merrilyn MongoDB ComputerScience

2 1002 Ramya PeopleMananement HumanResources

3 1003 Fedora Recruitment HumanResources

Loading and Handling Data in R 105

Check Your Understanding

 1. What is a CSV file?

 Ans: A CSV file uses .csv extension and stores data in a table structure format in any plain

text.

 2. What is the use of read.csv() function?

 Ans: A read.csv() function reads data from CSV files.

 3. What is the use of read.table() function?

 Ans: A read.table() function reads data from text files or CSV files.

 4. What is the use of read.xlsx() function?

 Ans: A read.xlsx() is an inbuilt function of ‘xlsx’ package for reading Excel files.

 5. What is a package?

 Ans: A package is a collection of functions and datasets. In R, many packages are available

for doing different types of operations.

 6. What is the use of the library() function?

 Ans: The library() function loads packages into the R workspace. It is compulsory to

import packages before reading the available dataset of that package.

 7. What is the use of data() function?

 Ans: The data() function lists all the available datasets of the loaded packages into the R

workspace.

 8. List five R packages for accessing web data.

 Ans: Different packages are available in R for reading from an online dataset. These are:
 d RCurl
 d Google Prediction API
 d WDI
 d XML
 d ScrapeR

 9. What is web scraping?

 Ans: Web scraping extracts data from any web page of a website.

106 Data Analytics using R

3.14 CoMParison of r guis for Data inPut

R is mainly used for statistical analytical data processing. Analytical data processing needs
a large dataset that is stored in a tabular form. Sometimes it is difficult to use inbuilt
functions of R for doing such analytical data processing operations in R console. Hence,
to overcome this problem, GUI is developed for R.

Graphical user interface is a graphical medium through which users interact with the
language or perform operations. Different GUIs are available for data input in R. Each
GUI has its own features. Table 3.7 describes some of the most popular R GUIs.

Table 3.7 Some popular R GUIs

GUI Name Description Download Weblink

RCommander
(Rcmdr)

 d RCommander was developed by John
Fox and licensed under the GNU
public license.

 d It comes with many plug-ins and has
a very simple interface.

 d Users can install it like other packages
of R within language.

http://socserv.mcmaster.ca/jfox/Misc/
Rcmdr/
Or
https://cran.r-project.org/web/packages/
Rcmdr/index.html

Rattle d Dr. Graham Williams developed the
Rattle GUI package written in R.

 d Data mining operation is the main
application area of Rattle.

 d It offers statistical analysis, validation,
testing and other operations.

http://rattle.togaware.com/
Or
http://rattle.togaware.com/rattle-install-
mswindows.html

RKWard d RKWard community developed the
RKWard package.

 d It provides a transparent front end
and supports different features for
doing analytical operations in R.

 d It supports different platforms, such
as Windows, Linux, BSD, and OS X.

https://rkward.kde.org/
Or
http://download.kde.org/stable/
rkward/0.6.5/win32/install_rkward_0.6.5.exe

JGR (Java
GUI for R)

 d Markus Helbig, Simon Urbanek, and
lan Fellows developed JGR.

 d JGR is a universal GUI for R that sup-
ports cross platform.

 d Users can use it as a replacement for
the default R GUI on Windows.

http://www.rforge.net/JGR/
Or
https://cran.r-project.org/web/packages/
JGR/

Deducer d Deducer is another simple GUI that
has a menu system for doing common
data operations, analytical processing
and other operations.

 d It is mainly designed to use it with the
Java-based R Console [JGR].

http://www.deducer.org/pmwiki/pmwiki.
php?n=Main.DeducerManual
Or
http://www.deducer.org/
pmwiki/index.php?n=Main.
DownloadingAndInstallingDeducer

Figure 3.33 shows the official screenshot of the RCommander (Rcmdr) GUI that is
available in R.

Loading and Handling Data in R 107

Figure 3.33 RCommander GUI

Figure 3.34 illustrates table, ‘Fruit.csv’ through Rcmdr GUI.

108 Data Analytics using R

Figure 3.34 Reading table using RCommander GUI

Check Your Understanding

 1. What is GUI?

 Ans: GUI or Graphical User Interface is a graphical medium through which users interact

with the language or perform operations.

 2. Name the most popular GUIs for R.

 Ans: Popular GUIs for R are:
 d RCommander (Rcmdr)
 d Rattle
 d RKWard
 d JGR
 d Deducer

3.15 using r with Databases anD business intelligenCe systeMs

Business analytical processing uses database for storing large volume of information.
Business intelligence systems or business intelligence tools handle all the analytical
processing of a database and use different types of database systems. The tools support the
relational database processing (RDBMS), accessing a part of the large database, getting a
summary of the database, accessing it concurrently, managing security, constraints, server
connectivity and other functionality.

At present, different types of databases are available in the market for processing.
They have many inbuilt tools, GUIs and other inbuilt functions through which database
processing becomes easy. In this section, you will learn about database connection with
SQL, MySQL, PostGreSQL and SQL Lite database as R provides inbuilt packages to access
all of these. With the help of these packages, users can easily access a database since all

Loading and Handling Data in R 109

the packages follow the same steps for accessing data from the database. In this section,
you will go through a brief introduction on Jaspersoft and Pentaho with R.

3.15.1 RODBC

RODBC1 is a package of languages that interacts with a database. Michael Lapsley and
Brian Ripley developed this package.

RODBC helps in accessing databases such as MS Access and Microsoft SQL Server
through an ODBC interface. Its package has many inbuilt functions for performing
database operations on the database. Table 3.8 describes some major functions of RODBC
packages used in database connectivity.

Table 3.8 Major functions of RODBC

Function Description

odbcConnect(dsn, uid= ‘‘, pwd= ‘‘)

where,
dsn is domain name server, uid is the user ID and pwd is the password.

The function opens a
connection to an ODBC
database.

sqlFetch(sqltable)

where,
sqltable is name of the SQL table.

The function reads a table
from an ODBC database into a
data frame.

sqlQuery(query)

where,
query is the SQL query.

The function takes a query,
sends to an ODBC database
and returns its result.

sqlSave(dataframe, tablename= ‘sqltable’)

where,
data frame defines the data frame object and tablename argument is the
name of the table.

The function writes or updates
a data frame to a table in the
ODBC database.

sqlDrop(sqltable)

where,
sqltable is the name of the SQL table.

The function removes a table
from the ODBC database.

odbcclose() The function closes the open
connection.

Here is a sample code where package RODBC is used for reading data from a database.

># importing package

> library(RODBC)

> connect1 <- odbcConnect(dsn = ‘servername’, uid= ‘‘, pwd= ‘‘)

#Open connection

> query1 <- ‘Select * from lib.table where…’

> Demodb <- sqlQuery(connect1, query1, errors = TRUE)

> odbcClose(connection) #Close the connection

1 To download RODBC—https://cran.r-project.org/web/packages/RODBC/index.html

110 Data Analytics using R

3.15.2 Using MySQL and R

MySQL is an open source SQL database system. It is a small-sized popular database that
is available for free download. For accessing MySQL database, users need to install the
MySQL database system on their computers. MySQL database can be downloaded and
installed from its official website.

R also provides a package, ‘RMySQL’ used for accessing the database from the MySQL
database. Like other packages, RMySQL2 has many inbuilt functions for interacting with
a database.

Table 3.9 describes some major functions of RMySQL packages used in database
connectivity.

Table 3.9 Major functions of RMySQL

Function Description

dbConnect(MySQL(), uid= ‘‘, pwd= ‘‘, dbname = ‘‘,…)

where,
MySQL() is MySQL driver, uid is the user ID, pwd is the password and
dbname is the database name.

The function opens a
connection to the MySQL
database.

dbDisconnect(connectionname)

where,
Connectionname defines the name of the connection.

The function closes the open
connection.

dbSendQuery(connectionname, sql)

where,
connectionname defines the name of the connection.

The function runs the
SQL queries of the open
connection.

dbListTables(connectionname)

where,
connectionname defines the name of the connection.

The function lists the tables
of the database of the open
connection.

dbWriteTable(connectionname, name = ‘table name’,

value = data.frame.name)

where,
connectionname defines the name of the connection.

The function creates the table
and alternatively writes or
updates a data frame in the
database.

A sample code to illustrate the use of RMySQL for reading data from a database is
given below.

># importing package

> library(RMySQL)

> connectm <- odbcConnect(MySQL(), uid= ‘‘, pwd= ‘‘,dbname = ‘‘,

host = ‘‘) #Open connection ‘connectm’

> querym <- ‘Select * from lib.table where…’

> Demom<- dbSendQuery(connectm, querym)

>dbDisconnect(connectm) #Close the connection ‘connect’

2 To download RMySQL—https://cran.r-project.org/web/packages/RMySQL/

Loading and Handling Data in R 111

3.15.3 Using PostgreSQL and R

PostgreSQL is an open source and customisable SQL database system. After MySQL,
PostgreSQL database is used for business analytical processing. For accessing the
PostgreSQL database, users need to install the PostgreSQL database system on their
computer system. Please note that it requires a server. Users can get a server on rent,
download and install the MySQL database from its official website.3

R has a package, ‘RPostgreSQL’ that is used for accessing the database from the
PostgreSQL database. Like other packages, RPostgreSQL4 has many inbuilt functions for
interacting with its database.

Table 3.10 describes open and close functions of RPostgreSQL packages used in database
connectivity.

Table 3.10 Major functions of the RPostgreSQL

Function Description

dbConnect(driverobject, uid= ‘‘, pwd= ‘‘, dbname
= ‘‘,…)

where,
driverobject is an object of database driver, uid is the user ID, pwd is the
password and dbname is the database name.

The function opens a
connection to an RPostgreSQL
database.

dbDisconnect(connectionname)

where,
Connectionname defines the name of the connection.

The function closes the open
connection.

3.15.4 Using SQLite and R

SQLite is a server-less, self-contained, transactional and zero-configuration SQL database
system. It is an embedded SQL database engine that does not require any server, due to
which it is called a serverless database. The database also supports all business analytical
data processing.

R has an RSQLite package that is used for accessing a database from the SQLite
database. The RSQLite5 has many inbuilt functions for working with the database.

Like other packages used for accessing a database, as explained in the previous sections,
users can use the same methods—dbconnect() and dbDisconnect() for opening
and closing the connection from the SQLite database, respectively. The only difference
here is that users have to pass the SQLite database driver object in the dbConnect()
function.

3 https://www.postgresql.org/download/windows/
4 To download RPostgreSQL—https://cran.r-project.org/web/packages/RPostgreSQL/index.html
5 Users can use the following link for downloading RSQLite—https://cran.r-project.org/web/packages/
RSQLite/index.html

112 Data Analytics using R

3.15.5 Using JasperDB and R

JasperDB is another open source database system integrated with R. It was developed
by the Jaspersoft community. It provides many business intelligence tools for analytical
business processing. A Java library interface is used between JasperDB and R. It is called
‘RevoConnectR for JasperReports Server’. The dashboard of the JasperReports Server
provides many features through which R charts, an output of the RevoDeploy R, etc.,
are easily accessible.

Like other packages, JasperDB has a package or web service framework called
‘RevoDeployR’ developed by Revolution Analytics. RevoDeploy R6 provides a set of
web services with security features, scripts, APIs and libraries in a single server. It easily
integrates with the dynamic R-based computations into web applications.

3.15.6 Using Pentaho and R

Pentaho is one of the most famous companies in the data integration field that develops
different products and provides services for big data deployment and business analytics.
The company provides different open source-based and enterprise-class platforms. Pentaho
Data Integration (PDI) is one of the products of Pentaho7 used for accessing database and
analytical data processing. It prepares and integrates data for creating a perfect picture
of any business. The tool provides accurate and analytics-ready data reports to the end
users, eliminates the coding complexity and uses big data in one place.

R Script Executor is one of the inbuilt tools of the PDI tool for establishing a relationship
between R and Pentaho Data Integration. Through R Script Executor, users can access data
and perform analytical data operations. If users have R in their system already, then they
just need to install PDI from its official website. The users need to configure environment
variables, Spoon, DI Server, and Cluster nodes as well.

Although users can try PDI and transform a database using R Script Executor, PDI
is a paid tool for doing analytical data integration operation. The complete installation
process of the R Script Executor is available at http://wiki.pentaho.com/display/EAI/
R+script+executor

Just Remember

During database access from MySQL, PostGreSQL and SQL Lite, users can use the same functions if their

own driver object passes the same. For executing SQL queries, users can deploy the same functions for

all the three databases.

6 Users can download from the following link—http://community.jaspersoft.com/wiki/installation-steps-
installer-distribution

7 To download the Pentaho data integration tool—http://www.pentaho.com/download

Loading and Handling Data in R 113

Check Your Understanding

 1. What is the RODBC?

 Ans: RODBC is a package of R that interacts with a database. It provides database access to

MS Access and Microsoft SQL server through an ODBC interface.

 2. What is MySQL?

 Ans: MySQL is an open source SQL database system. It is an Oracle product. MySQL is a

popular small-sized database that is available for free download.

 3. What is PostgreSQL?

 Ans: PostgreSQL is another open source and customisable SQL database system. After

MySQL, PostgreSQL database is used for business analytical processing.

 4. What is RSQLite?

 Ans: RSQLite is a package of R for accessing a database from the SQLite database.

 5. What is RevoDeploy R?

 Ans: RevoDeploy R provides a set of web services with security features, scripts, APIs and

libraries for R in a single server.

 6. What is the R Script Executor?

 Ans: R Script Executor is one of the inbuilt tools of the Pentaho Data Integration tool for

establishing the relationship between R and Pentaho Data Integration.

Log Analysis

A log file is a file that stores events that occur in an operating system
such as any source run in the system, messaging unit’s different ways of
communication, etc. Log files keep logs to be read in future, if required.

A transaction log is a file for communication between a server and users of
that system or server or a data collection method that automatically captures
the types, content or time of transaction made by a person from a terminal
within that system. In web searches, a transaction log file is created which is
an electronic record between interactions that have occurred during a search
index between the web search engine and users searching for getting any
information on that web.

C
a
se

 St
u

dy

(Continued)

114 Data Analytics using R

Many operating systems, software frameworks and progress include a
logging system. It is easy for the reader or user to generate their own cus-
tomised reports using R that can automatically analyse Apache log files and
create reports automatically as compared to other software. Nowadays, R has
become one of the most popular and powerful tool that can generate a model
based on which, the requirements of the user can be tracked and searched.

Types of Log Files

Event Logs

Event logs record the events that are taking place in the execution of any
system in order to provide an audit that can be used to enable the activities
of the system and to diagnose problems or error in the system or servers.
They are essential to analyse the activities of complex systems, particularly
in the case of applications with little user interactions.

Transaction Logs

Every database system maintains some kind of transaction log which is
not mainly stored as an audit trail for later analysis, and is not intended
to be human-readable. These logs record changes to the stored data to
allow database recovery from any failure or any other data error/loss and
maintenance of the stored data in a consistent state.

Message Logs

In these types of log files, we can see multiple types of logs like the Internet
Relay Chat (IRC), messaging programs, peer-to-peer file sharing clients
with chat functions and multiplayer games commonly having the ability to
automatically log textual communication, i.e. both public and private chat
messages between users. Message logs may be referred to the third-party
log storages from different channels. It builds a unique collective intelligence
model where Rtool is the best tool to analyse the data and provide the model
under any prediction/recommendations algorithms.

Internet Relay Chat (IRC)

Internet Relay Chat log files contain software and message logs. Message logs
often include system/server messages and entries related to any resource
which interacts with the servers. The user does some changes in the message
logs by making them more like a combined message/event log file of the
channel in question or for updating any information related to them. These
are used to set the profile to access their details and enable the basic details.
However, such a log is not comparable to a true IRC server event log file as it

(Continued)

C
a
se

 St
u

dy

Loading and Handling Data in R 115

only records user-visible events for the period the user spent being connected
to a certain channel.

Instant messaging (IM)

Instant messaging and VoIP chats often offer the chance to store encrypted
log files to enhance the user’s privacy to set the logs related to any user in
the server/system as per the need of users. In this log file, the user can set
priorities in the server files to set their needs and preferences. These logs
require a password to be decrypted and viewed. These logs are often handled
by the respective user-friendly application that is used in mobile application
for getting information from the user and to check the interest of the users.

Transaction Log Analysis

Data stored in transaction logs of web search engines, intranets, and websites
can provide valuable information into the understanding of information
searching process of online searchers. This understanding can enlighten
information designed system, interface development and devise the
information architecture for content collections. The main role of these log files
is to read the data provided by the user to get more information from them
and set the records to identify the role and interest of different users. This is
the main log files with the help of which we can track user preferences and
their visits based on any transaction that they had done in the past.

Advantages of Rtool on Log File Analysis

Although R is not an easy to learn language, it has many advantages such as
the fact that it can be used in UNIX scripts, it has several packages (CRAN)
and outstanding graphical capabilities. It also has the ability to process lots of
data with advanced statistical capabilities and connect to a database, making
it one of the most powerful programming languages.

Getting the Data

Before being able to read the log file data, we must first import that data into
R. The good thing is that R can parse log file without requiring any other
additional work from the user. So, reading a Log file named log.log is as
simple as executing the following:

> LOGS = read.table(‘log.log’, sep=‘ ‘, header=F)

After executing the read.table() command, the logs variable holds all
the information from log data from the log.log file. The head (logs) command
illusrates the first few lines from the log variables to get an idea of how we
are going to store this kind of data in R.

(Continued)

C
a
se

 St
u

dy

116 Data Analytics using R

Analysing the Data

Getting the data in R is not difficult for any user who has worked with R.
However, the most important part is analysing the data. The most useful
command we can run on a dataset with numeric values is the summary()
command. The summary() command can give us better understanding of the
output of the summary of the data.

By running the summary() command, we will get:
 d Min: This is the minimum value of the whole dataset.
 d Median: It is an element that divides the dataset into two subsets with

the same number of elements. If the dataset has an odd number of ele-
ments, the median is part of the dataset of elements. If the dataset has
an even number of elements, then the median is the mean values of
the two center elements of the dataset. The median is the mean values
of the two centre elements of the dataset.

 d Mean: This is the mean value of the data()
 d set, the sum of all values divided by the number of items in the datasets.
 d Max: This is the maximum value found in the dataset.

Visualising the Data
To visualise the data, we need to run:

>barplot(table(logs[column name])

If we want to save the R bar plot to an image which is 1024 x 1024 pixels,
we should run these lines in R commands:

>png(‘test.png’, width=1024, height=1024)

>barplot(table(logs[,column name]))

>dev.off()

Similarly, we can visualise the number of requests per week day and per
hour of the day.

The pair() command is especially useful since it gives a general overview
of the data. Then tempLOGS <- LOGS command creates a copy of the LOGS
variables into the tempLOGS variable.

Similarly, a user can implement and analyse other log files and get valuable
output to generate any predictive model or recommendation engine.

 d Analytical data processing is a part of business intelligence that includes relational database, data

warehousing, data mining and report mining.

 d Data formats, data quality, project scope and output results via stakeholder expectation manage-

ment are the challenges faced during analytical data processing.

 d Data input, processing, descriptive statistics, visualisation of data, report generation and output are

the common steps of analytical data processing.

Summary

C
a
se

 St
u

dy

(Continued)

Loading and Handling Data in R 117

 d R supports different types of data formats related to a database. With the help of import and export

utility of R, any type of data can be imported and exported into R.

 d A CSV file uses .csv extension and stores data in a table structure format in any plain text.

 d A read.csv() function reads data from a CSV file.

 d A read.table() function reads data from a text file or a CSV file.

 d A package is a collection of functions and datasets. In R, many packages are available for doing dif-

ferent types of operations.

 d A read.xlsx() is an inbuilt function of ‘xlsx’ package for reading Excel files.

 d The library() function loads packages into the R workspace. It is compulsory to import the

package before reading the available dataset of that package.

 d The data() function lists all the available datasets of the loaded package in the R workspace.

 d Different packages are available in R for reading from the online dataset or web data. RCurl, Google

Prediction API, WDI, XML and ScrapeR are some such packages.

 d Web scrapping extracts data from any webpage of a website.

 d In R, NA (Not Available) represents the missing values and Inf (Infinite) represents the infinite values.

R provides different functions that identify the missing values during processing.

 d The is.na() function is used for checking missing values in an R object. The function checks an

object and returns true if any data is missing.

 d The na.omit() function is an inbuilt function of R that returns objects after removing missing

values from the object.

 d The na.exclude() function is an inbuilt function of R that returns objects after removing miss-

ing values from the object.

 d The na.fail() function is an inbuilt function of R that detects an error, if any, and returns an

object if an object does not contain any missing value.

 d The operator ‘as’ converts the structure of one dataset into another structure in R.

 d Exploring a dataset means displaying the data of a dataset in a different form.

 d The summary() function is used for displaying the summary of a dataset.

 d The head() function is an inbuilt data exploring function that displays the top rows according to

a given value.

 d The tail() function is an inbuilt data exploring function that displays the bottom rows according

to a given value.

 d The merge() function is an inbuilt function of R. The function combines the data frames by com-

mon columns or row names. It also follows the database join operations.

 d Aggregate and group operations aggregate the data of specific variables of the dataset after the

grouping of variable data.

 d The aggregate() function is an inbuilt function of R. The function aggregates the data values. It

also splits the data into groups after performing the required statistics function.

 d The tapply() function is an inbuilt function of R. The function aggregates the data values into

groups after performing the required statistics function.

 d Manipulating text operation works on character strings and manipulating strings. There are many

inbuilt string functions available in R that can manipulate text or string.

 d The functions read.csv() and read.table() are used for reading datasets or tables into the

R workspace.

 d Graphical user interface (GUI) is a graphical medium through which users interact with a language

or perform an operation.

(Continued)

118 Data Analytics using R

 d RCommander (Rcmdr), Rattle, RKWard, JGR, Deducer are some of the most popular GUIs for R.

 d Business analytical processing uses a database for storing a large volume of information. Business

intelligence systems or business intelligence tools handle all the business analytical processing of

the database and uses different types of database systems.

 d A database is a collection of values stored in a tabular form.

 d RODBC is a package of R that interacts with a database. RODBC provides database accessing of MS

Access and Microsoft SQL server through an ODBC interface.

 d MySQL is an open source SQL database system and an Oracle product. MySQL is a popular small-

sized database and is available for free download.

 d RMySQL is a package of R that is used for accessing database from the MySQL database.

 d PostgreSQL is another open source and customizable SQL database system. After MySQL, PostgreSQL

database is used for business analytical processing.

 d RPostgreSQL is a package of R for accessing database from the PostgreSQL database.

 d SQLite is a server-less, self-contained, transactional, and zero-configuration SQL database system.

It is an embedded SQL database engine that does not require any server, which is why it is called

serverless database.

 d RSQLite is a package of R for accessing database from the SQLite database.

 d The ‘RevoConnectR for JasperReports Server’ is a java library interface between JasperReports Server

and Revolution R Enterprise.

 d The RevoDeploy R provides a set of web services for the security features, scripts, APIs, and libraries

for the R into a single server.

 d Pentaho Data Integration (PDI) is one of the products of Pentaho used for accessing the database

and analytical data processing. It prepares and integrates data for creating a perfect picture of any

business.

 d R Script Executor is one of the inbuilt tools of the Pentaho Data Integration tool for establishing the

relationship between R and Pentaho Data Integration.

 Ke y Te r m s

 d CSV: CSV is a file extension that stands
for Comma Separated Values for creating
CSV files.

 d Database: A database is a collection of val-
ues stored in a tabular form.

 d GUI: Graphical User Interface or GUI is
a graphical medium through which users
interact with a language or perform opera-
tions.

 d MySQL: MySQL is an open source SQL
database system and an Oracle product.

 d Package: A package is a collection of func-
tions and datasets.

 d PostgreSQL: PostgreSQL is an open source
and customisable SQL database system.

 d RODBC: RODBC is a package of R that
interacts with a database.

 d R Console: R Console is a terminal where
the command of R is executed.

 d RCommander: RCommander is a famous
R GUI.

 d RCurl: RCurl is a package for reading data
from online datasets or web data.

 d RMySQL: RMySQL is a package of R
for accessing database from the MySQL
database.

Loading and Handling Data in R 119

 mu l T i p l e Ch o i C e Qu e s T i o n s

 1. Which one of the following is not a challenge for analytical data processing?

 (a) Data Formats (b) Project Scope

 (c) Data Quality (d) Data Input

 2. Which one of the following arguments of read.table() function contain logical values?

 (a) header (b) sep

 (c) filename (d) None of the above

 3. Which one of the following functions loads a package into the R workspace?

 (a) load() (b) library()

 (c) data() (d) install()

 4. Which one of the following functions lists all the available datasets of a loaded package into
the R workspace?

 (a) library() (b) data(datasetname)

 (c) data() (d) install()

 5. Which one of the following packages reads finance data from Yahoo finance?

 (a) Rcurl (b) XML

 (c) WDI (d) Quantmod

 6. Which one of the following package reads all World Bank data?

 (a) RCurl (b) XML

 (c) WDI (d) Quantmod

 7. Which one of the following packages is used for accessing web data?

 (a) ScrapeR (b) Stat

 (c) RSQLite (d) Matrix

 8. Which one of the following commands converts a data frame into a matrix?

 (a) as.Matrix(data frame) (b) .matrix(data frame)

 (c) as.numeric(data frame) (d) None of the above

 9. Which one of the following symbols is used by ‘as’ operator?

 (a) * (b) .

 (c) % (d) &

 d RPostgreSQL: RPostgreSQL is a package
of R for accessing database from the Post-
greSQL database.

 d RSQLite: RSQLite is a package of R for ac-
cessing database from the SQLite database.

 d Spreadsheet: A spreadsheet is a table that
stores data in rows and columns.

 d SQLite: SQLite is a server-less, self-con-
tained, transactional and zero-configuration
SQL database system.

 d Web scraping: Web scraping extracts data
from any webpage of a website.

 d Workspace: Workspace is the current work-
ing environment of any software.

120 Data Analytics using R

 10. What is the correct output of the command is.na(c(4,5,NA))?

 (a) FALSE FALSE TRUE (b) FALSE TRUE TRUE

 (c) FALSE TRUE FALSE (d) TRUE FALSE TRUE

 11. Which one of the following functions displays the variables of the given dataset?

 (a) summary() (b) names()

 (c) str() (d) install()

 12. Which one of the following functions displays the structure of the given dataset?

 (a) summary() (b) names()

 (c) str() (d) install()

 13. Which one of the following functions returns the number of categorical value after counting
it?

 (a) table(dataset$variablenames) (b) table(dataset.variablenames)

 (c) table(dataset) (d) table(variablenames)

 14. How many rows are returned by the head() or tail() function by default?

 (a) 1 (b) 4

 (c) 6 (d) 5

 15. Which one of the following functions returns the bottom five rows of the dataset ‘Mobile’?

 (a) head(Mobile) (b) head(Mobile, 5)

 (c) tail(Mobile) (d) tail(Mobile,5)

 16. Which one of the following symbols is used for displaying specific rows and columns?

 (a) {} (b) *

 (c) [] (d) ()

 17. Which one of the following functions contains the argument ‘INDEX’?

 (a) aggregate() (b) merge()

 (c) tapply() (d) sum()

 18. Which one of the following arguments is equal to ‘Left Outer Join’ operation in merge()
function?

 (a) by.x (b) by.y

 (c) all.x (d) all.y

 19. Which one of the following arguments is equal to ‘Natural Join’ operation in merge()
function?

 (a) by.x (b) all.x

 (c) all (d) all.y

 20. Which one of the following arguments is equal to ‘Right Outer Join’ operation in merge()
function?

 (a) by.x (b) all.x

 (c) all (d) all.y

Loading and Handling Data in R 121

 21. Which one of the following arguments is used for statistical operations?

 (a) INDEX (b) BY

 (c) FUN (d) ALL

 22. What is the correct output of the command substr(‘Programming Language’,5,10)?

 (a) ‘rammin’ (b) ‘ramming’

 (c) ‘amming’ (d) Error

 23. What is the correct output of the command strsplit(‘Programming Language’,

‘ ‘)?

 (a) ‘Programming Language’ (b) ‘Programming’ ‘Language’

 (c) Programming Language (d) Error

 24. Which one of the following GUIs was developed by Dr. Graham Williams?

 (a) Rcmdr (b) Deducer

 (c) Rattle (d) JGR

 25. Which one of the following GUIs is used with the Java-based R console (JGR)?

 (a) Rcmdr (b) Deducer

 (c) RKWard (d) Rattle

 sh o r T Qu e s T i o n s

 1. What do you mean by analytical data processing? What are the advantages of business
analytics?

 2. What is the difference between read.csv() and read.table() function?

 3. How are packages in R read using the library() function?

 4. What is the difference between the library() and data() functions?

 5. How does web scraping use RCurl package?

 6. What is the difference between na.omit() and na.exclude() functions?

 7. What is the use of the ‘as’ operator in R? Explain with syntax and an example.

 8. How can you explore a dataset in R?

 9. What is the difference between aggregate() and tapply() functions?

 10. What is the difference between substr() and strsplit() functions?

 11. Which functions are used for describing a dataset? Explain with an example.

 12. Which functions are used for describing variables? Explain with an example.

122 Data Analytics using R

 lo n g Qu e s T i o n s

 1. Explain the methods of reading a dataset, along with an example and syntax.

 2. Explain read.xlsx() function with an example and syntax.

 3. Explain data() function with an example and syntax.

 4. Explain the is.na() function with an example and syntax.

 5. Explain the na.omit() function with an example and syntax.

 6. Explain the na.exclude() function with an example and syntax.

 7. Explain the na.fail() function with an example and syntax.

 8. Explain the na.pass() function with an example and syntax.

 9. Explain the head() function with an example and syntax.

 10. Explain the tail() function with an example and syntax.

 11. Explain the merge() function with an example and syntax.

 12. Explain the aggregate() function with an example and syntax.

 13. Explain the tapply() function with an example and syntax.

 14. Explain text manipulation function with an example and syntax.

 15. Explain RODBC package.

 16. Explain RMySQL package.

 17. Explain RPostGreSQL package.

 18. Explain RSQLite package.

 19. Explain Pentaho with R.

 20. Create a table using a CSV file and read it into R using read.csv().

 21. Create a table and read it into R using read.table().

 22. Create a table in Excel and read it into R.

 23. Create a data frame ‘Book’ that contains three vectors [Name, Price, Author]. Convert this
data frame into a matrix and list the object using the operator ‘as’.

 24. Create a dataset or table [‘Shop’] and apply all the data exploring functions on this table.

 25. Create two data frames, ‘Student’ and ‘Subject’ with appropriate values. Merge both data
frames using the merge function. Implement the left and right outer join operations on the
data frames.

 26. Create a dataset or table [‘Smartphone’] that stores the mobile information [price, company
name, model] of five different companies. Store at least 20 rows. Write the commands and
find out the output for the following information:

 d Maximum price of mobile of each company

Loading and Handling Data in R 123

 d Minimum price of mobile of each company
 d Average price of mobile of each company
 d Total price of mobile of each company

 27. Create a dataset, ‘Watch’ and store the information about watches of four different

companies. Explain all the steps of simple analytical data processing from input to output

on this dataset.

Answers to MCQs:

 1. (d) 2. (a) 3. (b) 4. (c) 5. (d) 6. (c) 7. (a)

 8. (a) 9. (b) 10. (a) 11. (b) 12. (c) 13. (a) 14. (c)

 15. (d) 16. (c) 17. (c) 18. (c) 19. (c) 20. (d) 21. (c)

 22. (a) 23. (b) 24. (c) 25. (b)

L E A R N I N G O U T C O M E

At the end of this chapter, you will be able to:

 c Store data of various types in frames, retrieve data from data frames, execute R func-
tions such as dim(), nrow(), ncol(), str(), summary(), names(), head(),
tail() and edit() to understand the data in data frames

 c Load data from .csv, tab separated value file and table

 c Handle missing values, invalid values and outliers

 c Run descriptive statistics on the data, i.e. frequency, mean, median, mode, and
standard deviation

 c Create visualisations to promote deeper understanding of data

4.1 introDuction

R provides interactive data visualisations to support analyses of statistical data. In R, data

is usually stored in data frames owing to its ability to hold data of varied data types. These

data frames are unlike the matrices, which can store data of only one type. In this chapter,

we will begin by learning about data frames and gradually progress to read in data from

.csv, tab separated value files, tables, etc., into data frames. Finally, we will explore data

using various functions and interactive visualisations provided by R.

Exploring Data in R

Chapter 4

Exploring Data in R 125

4.2 Data Frames

Imagine a data frame as something akin to a database table or an Excel spreadsheet. It has
a specific number of columns, each of which is expected to contain values of a particular
data type. It also has an indeterminate number of rows, i.e. sets of related values for each
column.

Assume, we have been asked to store data of our employees (such as employee ID,
name and the project that they are working on). We have been given three independent
vectors, viz., namely, “EmpNo”, “EmpName” and “ProjName” that holds details such as
employee ids, employee names and project names, respectively.

>EmpNo <- c(1000, 1001, 1002, 1003, 1004)

>EmpName <- c(“Jack”, “Jane”, “Margaritta”, “Joe”, “Dave”)

>ProjName <- c(“PO1”, “PO2”, “PO3”, “PO4”, “PO5”)

However, we need a data structure similar to a database table or an Excel spreadsheet
that can bind all these details together. We create a data frame by the name, “Employee”
to store all the three vectors together.

>Employee <- data.frame(EmpNo, EmpName, ProjName)

Let us print the content of the date frame, “Employee”.

> Employee

 EmpNo EmpName ProjName

1 1000 Jack PO1

2 1001 Jane PO2

3 1002 Margaritta PO3

4 1003 Joe PO4

5 1004 Dave PO5

We have just created a data frame, “Employee” with data neatly organised into rows
and the variable names serving as column names across the top.

4.2.1 Data Frame Access

There are two ways to access the content of data frames:
 i. By providing the index number in square brackets
 ii. By providing the column name as a string in double brackets.

By Providing the Index Number in Square Brackets

Example 1

To access the second column, “EmpName”, we type the following command at the R
prompt.

126 Data Analytics using R

> Employee[2]

 EmpName

1 Jack

2 Jane

3 Margaritta

4 Joe

5 Dave

Example 2

To access the first and the second column, “EmpNo” and “EmpName”, we type the
following command at the R prompt.

> Employee[1:2]

 EmpNo EmpName

1 1000 Jack

2 1001 Jane

3 1002 Margaritta

4 1003 Joe

5 1004 Dave

Example 3

> Employee [3,]

 EmpNo EmpName ProjName

3 1002 Margaritta PO3

Please notice the extra comma in the square bracket operator in the example. It is not a
typo.

Example 4

Let us define row names for the rows in the data frame.

> row.names(Employee) <- c(“Employee 1”, “Employee 2”, “Employee 3”,

“Employee 4”, “Employee 5”)

> row.names (Employee)

[1] “Employee 1” “Employee 2” “Employee 3” “Employee 4” “Employee 5”

> Employee

 EmpNo EmpName ProjName

Employee 1 1000 Jack P01

Employee 2 1001 Jane P02

Employee 3 1002 Margaritta P03

Employee 4 1003 Joe P04

Employee 5 1004 Dave P05

Let us retrieve a row by its name.

> Employee [“Employee 1”,]

 EmpNo EmpName ProjName

Employee 1 1000 Jack P01

Exploring Data in R 127

Let us pack the row names in an index vector in order to retrieve multiple rows.

> Employee [c (“Employee 3”, “Employee 5”),]

 EmpNo EmpName ProjName

Employee 3 1002 Margaritta P03

Employee 5 1004 Dave P05

By Providing the Column Name as a String in Double Brackets

> Employee [[“EmpName”]]

[1] Jack Jane Margaritta Joe Dave

Levels: Dave Jack Jane Joe Margaritta

Just to keep it simple (typing so many double brackets can get unwieldy at times), use
the notation with the $ (dollar) sign.

> Employee$EmpName

[1] Jack Jane Margaritta Joe Dave

Levels: Dave Jack Jane Joe Margaritta

To retrieve a data frame slice with the two columns, “EmpNo” and “ProjName”, we
pack the column names in an index vector inside the single square bracket operator.

> Employee[c(“EmpNo”, “ProjName”)]

 EmpNo ProjName

1 1000 P01

2 1001 P02

3 1002 P03

4 1003 P04

5 1004 P05

Let us add a new column to the data frame.
To add a new column, “EmpExpYears” to store the total number of years of experience

that the employee has in the organisation, follow the steps given as follows:

> Employee$EmpExpYears <-c(5, 9, 6, 12, 7)

Print the contents of the date frame, “Employee” to verify the addition of the new
column.

> Employee

 EmpNo EmpName ProjName EmpExpYears

1 1000 Jack P01 5

2 1001 Jane P02 9

3 1002 Margaritta P03 6

4 1003 Joe P04 12

5 1004 Dave P05 7

128 Data Analytics using R

4.2.2 Ordering the Data Frames

Let us display the content of the data frame, “Employee” in ascending order of
“EmpExpYears”.

> Employee[order(Employee$EmpExpYears),]

 EmpNo EmpName ProjName EmpExpYears

1 1000 Jack P01 5

3 1002 Margaritta P03 6

5 1004 Dave P05 7

2 1001 Jane P02 9

4 1003 Joe P04 12

Use the syntax as shown next to display the content of the data frame, “Employee” in
descending order of “EmpExpYears”.

> Employee[order(-Employee$EmpExpYears),]

 EmpNo EmpName ProjName EmpExpYears

4 1003 Joe P04 12

2 1001 Jane P02 9

5 1004 Dave P05 7

3 1002 Margaritta P03 6

1 1000 Jack P01 5

4.3 r Functions For unDerstanDing Data in Data Frames

We will explore the data held in the data frame with the help of the following R
functions:

 d dim()

 r nrow()

 r ncol()

 d str()

 d summary()

 d names()

 d head()

 d tail()

 d edit()

4.3.1 dim() Function

The dim()function is used to obtain the dimensions of a data frame. The output of this
function returns the number of rows and columns.

> dim(Employee)

[1] 5 4

The data frame, “Employee” has 5 rows and 4 columns.

Exploring Data in R 129

nrow() Function

The nrow() function returns the number of rows in a data frame.

> nrow(Employee)

[1] 5

The data frame, “Employee” has 5 rows.

ncol() Function

The ncol() function returns the number of columns in a data frame.

> ncol(Employee)

[1] 4

The data frame, “Employee” has 4 columns.

4.3.2 str() Function

The str() function compactly displays the internal structure of R objects. We will use
it to display the internal structure of the dataset, “Employee”.

> str (Employee)

‘data.frame’ : 5 obs. of 4 variables:

$ EmpNo : num 1000 1001 1002 1003 1004

$ EmpName : Factor w/ 5 levels “Dave”, “Jack”, ..: 2 3 5 4 1

$ ProjName : Factor w/ 5 levels “P01”, “P02”, “P03”, ..: 1 2 3 4 5

$ EmpExpYears : num 5 9 6 12 7

4.3.3 summary() Function

We will use the summary() function to return result summaries for each column of the
dataset.

> summary (Employee)

 EmpNo EmpName ProjName EmpExpYears

Min. : 1000 Dave : 1 P01:1 Min. : 5.0

1st Qu. : 1001 Jack : 1 P02:1 1st Qu. : 6.0

Median : 1002 Jane : 1 P03:1 Median : 7.0

Mean : 1002 Joe : 1 P04:1 Mean : 7.8

3rd Qu. : 1003 Margaritta : 1 P05:1 3rd Qu. : 9.0

Max. : 1004 Max. : 12.0

4.3.4 names() Function

The names()function returns the names of the objects. We will use the names() function
to return the column headers for the dataset, “Employee”.

130 Data Analytics using R

> names (Employee)

[1] “EmpNo” “EmpName” “ProjName” “EmpExpYears”

In the example, names(Employee) returns the column headers of the dataset “Employee”.
The str() function helps in returning the basic structure of the dataset. This function
provides an overall view of the dataset.

4.3.5 head() Function

The head()function is used to obtain the first n observations where n is set as 6 by default.

Examples

 1. In this example, the value of n is set as 3 and hence, the resulting output would
contain the first 3 observations of the dataset.

> head(Employee, n=3)

 EmpNo EmpName ProjName EmpExpYears

1 1000 Jack P01 5

2 1001 Jane P02 9

3 1002 Margaritta P03 6

 2. Consider x as the total number of observations. In case of any negative values as
input for n in the head() function, the output obtained is first x+n observations. In
this example, x=5 and n= -2, then the number of observations returned will be

 x + n =5 + (-2)= 3

> head(Employee, n=-2)

 EmpNo EmpName ProjName EmpExpYears

1 1000 Jack P01 5

2 1001 Jane P02 9

3 1002 Margaritta P03 6

4.3.6 tail() Function

The tail()function is used to obtain the last n observations where n is set as 6 by default.

> tail(Employee, n=3)

 EmpNo EmpName ProjName EmpExpYears

3 1002 Margaritta P03 6

4 1003 Joe P04 12

5 1004 Dave P05 7

Example

Consider the example, where the value of n is negative, and the output is returned by
a simple sum up value of x+n. Here x = 5 and n =-2. When a negative input is given in
the case of the tail()function, it returns the last x+n observations. The example given
as follows returns the last 3 records from the dataset, “Employee”.

Exploring Data in R 131

> tail(Employee, n=-2)

 EmpNo EmpName ProjName EmpExpYears

3 1002 Margaritta P03 6

4 1003 Joe P04 12

5 1004 Dave P05 7

4.3.7 edit() Function

The edit() function will invoke the text editor on the R object. We will use the edit()
function to open the dataset , “Employee” in the text editor.

> edit(Employee)

To retrieve the first three rows (with all columns) from the dataset, “Employee”, use
the syntax given as follows:

> Employee[1:3,]

 EmpNo EmpName ProjName EmpExpYears

1 1000 Jack P01 5

2 1001 Jane P02 9

3 1002 Margaritta P03 6

To retrieve the first three rows (with the first two columns) from the dataset, “Employee”,
use the syntax given as follows:

> Employee[1:3, 1:2]

 EmpNo EmpName

1 1000 Jack

2 1001 Jane

3 1002 Margaritta

132 Data Analytics using R

Table 4.1 A brief summary of functions for exploring data in R

Function Name Description

nrow(x) Returns the number of rows

ncol(x) Returns the number of columns

str(mydata) Provides structure to a dataset

summary(mydata) Provides basic descriptive statistics and frequencies

edit(mydata) Opens the data editor

names(mydata) Returns the list of variables in a dataset

head(mydata) Returns the first n rows of a dataset. By default, n = 6

head(mydata, n=10) Returns the first 10 rows of a dataset

head(mydata, n= -10) Returns all the rows but the last 10

tail(mydata) Returns the last n rows. By default, n = 6

tail(mydata, n=10) Returns the last 10 rows

tail(mydata, n= -10) Returns all the rows but the first 10

mydata[1:10,] Returns the first 10 rows

mydata[1:10,1:3] Returns the first 10 rows of data of the first 3 variables

4.4 LoaD Data Frames

Let us look at how R can load data into data frames from external files.

4.4.1 Reading from a .csv (comma separated values file)

We have created a .csv file by the name, “item.csv” in the D:\ drive. It has the following
content:

A B C

1 Itemcode ItemCategory ItemPrice

2 |1001 Electronics 700

3 |1002 Desktop supplies 300

4 |1003 Office supplies 350

Let us load this file using the read.csv function.

> ItemDataFrame <- read.csv(“D:/item.csv”)

> ItemDataFrame

 Itemcode ItemCategory ItemPrice

1 I1001 Electronics 700

2 I1002 Desktop supplies 300

3 I1003 Office supplies 350

Exploring Data in R 133

4.4.2 Subsetting Data Frame

To subset the data frame and display the details of only those items whose price is greater
than or equal to 350.

> subset(ItemDataFrame, ItemPrice >=350)

 Itemcode ItemCategory ItemPrice

1 I1001 Electronics 700

3 I1003 Office supplies 350

To subset the data frame and display only the category to which the items belong (items
whose price is greater than or equal to 350).

> subset(ItemDataFrame,ItemPrice >=350, select = c(ItemCategory))

 ItemCategory

1 Electronics

3 Office supplies

To subset the data frame and display only the items where the category is either “Office
supplies” or “Desktop supplies”.

> subset(ItemDataFrame, ItemCategory == “Office supplies” | ItemCat-

egory == “Desktop supplies”)

 Itemcode ItemCategory ItemPrice

2 I1002 Desktop supplies 300

3 I1003 Office supplies 350

4.4.3 Reading from a Tab Separated Value File

For any file that uses a delimiter other than a comma, one can use the read.table command.

Example

We have created a tab separated file by the name, “item-tab-sep.txt” in the D:\ drive. It
has the following content.

Itemcode ItemQtyOnHand ItemReorderLvl

I1001 75 25

I1002 30 25

I1003 35 25

Let us load this file using the read.table function. We will read the content from the file
but will not store its content to a data frame.

> read.table(“d:/item-tab-sep.txt”,sep=“\t”)

 V1 V2 V3

1 Itemcode ItemQtyOnHand ItemReorderLvl

2 I1001 70 25

3 I1002 30 25

4 I1003 35 25

134 Data Analytics using R

Notice the use of V1, V2 and V3 as column headings. It means that our specified column
names, “Itemcode”, ItemCategory” and “ItemPrice” are not considered. In other words,
the first line is not automatically treated as a column header.

Let us modify the syntax, so that the first line is treated as a column header.

> read.table(“d:/item-tab-sep.txt”,sep=“\t”, header=TRUE)

 Itemcode ItemQtyOnHand ItemReorderLv1

1 I1001 70 25

2 I1002 30 25

3 I1003 35 25

Now let us read the content of the specified file into the data frame, “ItemDataFrame”.

> ItemDataFrame <- read.table(“D:/item-tab-sep.txt”,sep=“\t”,

header=TRUE)

> ItemDataFrame

 Itemcode ItemQtyOnHand ItemReorderLvl

1 I1001 70 25

2 I1002 30 25

3 I1003 35 25

4.4.4 Reading from a Table

A data table can reside in a text file. The cells inside the table are separated by blank
characters. An example of a table with 4 rows and 3 columns is given as follows:

1001 Physics 85

2001 Chemistry 87

3001 Mathematics 93

4001 English 84

Copy and paste the table in a file named “d:/mydata.txt” with a text editor and then
load the data into the workspace with the function read.table.

> mydata = read.table(“d:/mydata.txt”)

> mydata

 V1 V2 V3

1 1001 Physics 85

2 2001 Chemistry 87

3 3001 Mathematics 93

4 4001 English 84

4.4.5 Merging Data Frames

Let us now attempt to merge two data frames using the merge function. The merge
function takes an x frame (item.csv) and a y frame (item-tab-sep.txt) as arguments. By

Exploring Data in R 135

default, it joins the two frames on columns with the same name (the two “Itemcode”
columns).

> csvitem <- read.csv(“d:/item.csv”)

> tabitem <- read.table(“d:/item-tab-sep.txt”,sep=“\t”,header=TRUE)

> merge (x=csvitem, y=tabitem)

 Itemcode ItemCategory ItemPrice ItemQtyOnHand ItemReorderLvl

1 I1001 Electronics 700 70 25

2 I1002 Desktop supplies 300 30 25

3 I1003 Office supplies 350 35 25

4.5 expLoring Data

Data in R is a set of organised information. Statistical data type is more common in R,
which is a set of observations where values for the variables are passed. These input
variables are used in measuring, controlling or manipulating the results of a program.
Each variable differs in size and type. R supports the following basic data types to explore:

 d Integer
 d Numeric
 d Logical
 d Character/string
 d Factor
 d Complex

Data types have been covered in Chapter 2. Based on the specific data characteristics
in R, data can be explored in different ways. You will learn about these methods in the
following section.

4.5.1 Exploratory Data Analysis

Exploratory data analysis (EDA) involves dataset analysis to summarise the main
characteristics in the form of visual representations. Exploratory data analysis using R is
an approach used to summarise and visualise the main characteristics of a dataset, which
differs from initial data analysis. The main aim of EDA is to summarise and visualise the
main characteristics of a dataset. It focuses on:

 d Exploring data by understanding its structure and variables
 d Developing an intuition about the dataset
 d Considering how the dataset came into existence
 d Deciding how to investigate by providing a formal statistical method
 d Extending better insights about the dataset
 d Formulating a hypothesis that leads to new data collection
 d Handling any missing values
 d Investigating with more formal statistical methods.

136 Data Analytics using R

Some of the graphical techniques used by EDA are:
 d Box plot
 d Histogram
 d Scatter plot
 d Run chart
 d Bar chart
 d Density plots
 d Pareto chart

Just Remember

In R, statistical data inputs are presented in a graphical form, which helps in improving insights gained from

input data. The diagrams used in R are simple and can represent a large amount of data.

Check Your Understanding

 1. Which function in R is used to obtain the values of dimension?

 Ans: The dim() function is used to obtain the dimension of the dataset.

 >dim(x)

 [1] a b

 where, a refers to the number of rows and b refers to the number of columns.

 2. Which function in R is used to open the data editor?

 Ans: The edit(x) function opens the data editor in R.

 3. What is the default value of n in head(mydata) and tail(mydata) function?

 Ans: The default value of n is 6.

 4. State a few graphical techniques used by EDA in R.

 Ans: The graphical techniques used by EDA in R are:
 d Bar chart
 d Histogram
 d Scatter plot
 d Density plot

4.6 Data summarY

Data summary in R can be obtained by using various R functions. Table 4.2 provides a
brief overview of few R functions.

Exploring Data in R 137

Table 4.2 Functions for obtaining data summary in R

Function Name Description

summary(x) Returns the min, max, median, and mean

min(x) Returns the minimum value

max(x) Returns the maximum value

range(x) Returns the range of the given input

mean(x) Returns the mean value

median(x) Returns the median value

mad(x) Returns the median absolute deviation value

IQR(x) Returns the interquartile range

quantile(x) Returns quartiles

summary(x) Summarises the data frame

apply(x,1,mean) Calculates the row mean value

apply(x,2,mean) Calculates the column mean which is similar to the function of mean(x)

We will execute few R functions on the data set, “Employee”. Let us begin by displaying
the contents of the dataset, “Employee”.

> Employee

 EmpNo EmpName ProjName EmpExpYears

1 1000 Jack P01 5

2 1001 Jane P02 9

3 1002 Margaritta P03 6

4 1003 Joe P04 12

5 1004 Dave P05 7

The summary(Employee[4]) function works on the fourth column, “EmpExpYears”
and computes the minimum, 1st quartile, median, mean, 3rd quartile and maximum for
its value.

> summary(Employee[4])

EmpExpYears

Min. : 5.0

1st Qu. : 6.0

Median : 7.0

Mean : 7.8

3rd Qu. : 9.0

Max. : 12.0

The min(Employee[4]) function works on the fourth column, “EmpExpYears” and
determines the minimum value for this column.

> min(Employee[4])

[1] 5

138 Data Analytics using R

The max(Employee[4]) function works on the fourth column, “EmpExpYears” and
determines the maximum value for this column.

> max(Employee[4])

[1] 12

The range(Employee[4]) function works on the fourth column, “EmpExpYears” and
determines the range of values for this column.

> range(Employee[4])

[1] 5 12

The Employee[,4] command at the R prompt displays the value of the column,
“EmpExpYears” .

> Employee[,4]

[1] 5 9 6 12 7

The mean(Employee[,4]) function works on the fourth column, “EmpExpYears” and
determines the mean value for this column.

> mean (Employee[,4])

[1] 7.8

The median(Employee[,4]) function works on the fourth column, “EmpExpYears” and
determines the median value for this column.

> median(Employee[,4])

[1] 7

The mad(Employee[,4]) function returns the median absolute deviation value.

> mad (Employee[,4])

[1] 2.9652

The IQR(Employee[,4]) function returns the interquartile range.

> IQR (Employee[,4])

[1] 3

The quantile(Employee[,4]) function returns the quantile values for the column,
“EmpExpYears”.

> quantile(Employee[,4])

 0% 25% 50% 75% 100%

 5 6 7 9 12

The sapply()function is used to obtain the descriptive statistics with the specified
input. With the use of this function, mean, var, min, max, sd, quantile and range can be
determined.

The mean of the input data is found using:

sapply (sampledata, mean, na.rm=TRUE)

Exploring Data in R 139

Similarly, other functions (such as mean, min, max, range and quantile) can be used
with the sapply()function to obtain the desired output.

Consider the same data frame, Employee.

> sapply(Employee[4],mean)

EmpExpYears

 7.8

> sapply(Employee[4],min)

EmpExpYears

 5

> sapply(Employee[4],max)

EmpExpYears

 12

> sapply(Employee[4],range)

 EmpExpYears

[1,] 5

[2,] 12

> sapply(Employee[4],quantile)

 EmpExpYears

0% 5

25% 6

50% 7

75% 9

100% 12

Table 4.3 Function table to return the highest and lowest value in R matrix

Function Name Description

which.min() Returns the minimum position for each row in the matrix.

which.max() Returns the maximum position for each row in the matrix.

> which.min(Employee$EmpExpYears)

[1] 1

At position 1, is the employee with the minimum years of experience, “5”.

> which.max(Employee$EmpExpYears)

[1] 4

At position 4, is the employee with the maximum years of experience, “12”.
For summarising data, there are three other ways to group the data based on some

specific conditions or variables and subsequent to this, the summary() function can be
applied. These are explained below.

 d ddply() requires the “plyr” package

140 Data Analytics using R

 d summariseBy() requires doBy package
 d aggregate() is included in base package of R.

A simple code to explain the ddply() function is:

data <- read.table(header= TRUE, text= ‘no sex before after change

 1 M 54.2 5.2 -9.2

 2 F 63.2 61.0 1.1

 3 F 52 24.5 3.5

 4 F 25 55 2.5

 .

 .

 .

 .

 .

 .

 .

 54 M 54 45 1.2’

)

When applying the ddply()function to the above input,

library(plyr)

#set the functions to run the length, mean, sd on the value based on

the “change” input for each group of inputs.

#Break down with the values of “no”

cdata <- ddply(data,c(“no”),summarise,

 N=length(change),

 sd=sd(change),

mean=mean(change)

)

cdata

Output of the ddply()function is:

> no N sd mean

 1 5 4.02 2.3

 2 14 5.5 2.1

 3 4 2.1 1.0

 .

 .

 .

 .

 54 9 2.0 0.9

Exploring Data in R 141

4.7 FinDing the missing VaLues

In R, missing data is indicated as NA in the dataset, where NA refers to “Not Available”.
It is neither a string nor a numeric value, but it is used to specify the missing data. Input
vectors can be created with the missing values as follows:

x <- c(2,5,86,9,NA,45,3)

y <- c(“red”,NA,“NA”)

In this case, x contains numeric values as the input. Here, NA can be used to avoid
any errors or other numeric exceptions like infinity. In the second example, y contains
the string values as the input. Here, the third value is a string ‘NA’ and the second value
NA is a missing value. The function is.na()is used in R to identify the missing values.
This function returns a Boolean value as either TRUE or FALSE.

> is.na(x)

[1] FALSE FALSE FALSE FALSE TRUE FALSE FALSE

> is.na(y)

[1] FALSE TRUE FALSE

The is.na function is used to find and create missing values.
na.action provides options for treating the missing data.
Possible na.action settings include:

 d na.omit, na.exclude: This function returns the object by removing the missing
values’ observation.

 d na.pass: This function returns object unchanged even with missing objects.
 d na.fail: This function returns object if it has no missing values.

To enable the na.action in options, use getOption(“na.action”).

Examples

 1. Populating the matrix with sample input values as follows:

> c <- as.data.frame (matrix(c(1:5,NA),ncol=2))

> c

 V1 V2

1 1 4

2 2 5

3 3 NA

 na.omit(c) omits the NA missing values’ row and returns the other object.

> na.omit(c)

 V1 V2

1 1 4

2 2 5

 2. na.exclude(c) excludes the missing values and returns the object. A slight
difference can be found in some residual and prediction functions.

142 Data Analytics using R

> na.exclude(c)

 V1 V2

1 1 4

2 2 5

 3. na.pass(c)returns the object unchanged along with the missing values.

> na.pass(c)

 V1 V2

1 1 4

2 2 5

3 3 NA

 4. na.fail(c)returns an error when a missing value is found. It returns an object
only when there is no missing value.

> na.fail(c)

Error in na.fail.default(c) : missing value in object

Basic commands that are used for finding missing data in the dataset are listed in
Table 4.4.

Table 4.4 Function table for finding missing entities in a dataset in R

Function Name Description

sum(is.na(mydata))

Example:
> sum(is.na(c))

[1] 1

Number of missing data in dataset

rowSums(is.na(data))

Example:
> rowSums(is.na(c));

[1] 0 0 1

The third row has one missing value.

Number of missing data per variable

rowMeans(is.na(data))*length(data)

Example:
> rowMeans(is.na(c))*length(c)

[1] 0 0 1

Number of missing data per row

4.8 inVaLiD VaLues anD outLiers

In R, special checks are conducted for handling invalid values. An invalid value can be
NA, NaN, Inf or -Inf. Functions for these invalid values include anyNA(x) anyInvalid(x)
and is.invalid(x), where the value of x can be a vector, matrix or array. Here, anyNA
function returns a TRUE value if the input has any Na or NaN values. Else, it returns a
FALSE value. This function is equivalent to any(is.na(x)).

anyInvalid function returns a TRUE value, if the input has any invalid values. Else,
it returns a FALSE value. This function is equivalent to any(is.valid(x)).

Exploring Data in R 143

Unlike the other two functions, is.invalid returns an object corresponding to each
input value. If the input is invalid, it returns TRUE, else it returns FALSE. This function
is also equivalent to (is.na(x) | is.infinite(x)).

Few examples with the above functions are:
> anyNA(c(-9,NaN,9))

[1] TRUE

is.finite(c(-9, Inf,9))

> is.finite(c(-9, Inf,9))

[1] TRUE FALSE TRUE

is.infinite(c(-9, Inf,9))

> is.infinite(c(-9, Inf, 9))

[1] FALSE TRUE FALSE

is.nan(c(-9, Inf,9))

> is.nan(c(-9, Inf, 9))

[1] FALSE FALSE FALSE

> is.nan(c(-9, Inf, NaN))

[1] FALSE FALSE TRUE

The basic idea of invalid values and outliers can be explained with a simple example.
Obtain the min, max, median mean, 1st quantile, 3rd quantile values using the summary()
function.

0.000

0.005

0.010

0.015

0.020

0 50 100 150

Invalid
values?

Min. 1st Qu. Median Mean 3rd Qu. Max.

summary(custdata$age)>

0.0 38.0 50.0 51.7 64.0146.7

Customer
“subpopulation”: more

customers over 75 than
you would expect.

It’s easier to read the mean, median
and central 50% of the customer

population off the summary.

It’s easier to get a sense of the
customer age range from the graph.

Outliers

D
e
n
s
it
y

Figure 4.1 Graphical representation of invalid values and outliers

144 Data Analytics using R

Figure 4.1 helps in understanding the difference between the invalid values and outliers
in detail.

Figure 4.1 is explained as follows:

>summary(custdata$income)

#returns the minimum, maximum, mean, median, and quantile values of the ‘income’
from the ‘custdata’ input values.

Minimum 1st Quantile Median Mean 3rd Quantile Maximum

-8700 14600 35000 53500 67000 615000

>summary(custdata$age)

#returns the minimum, maximum, mean, median, and quantile values of the ‘age’ from
the ‘custdata’ input values.

Minimum 1st Quantile Median Mean 3rd Quantile Maximum

0.0 38.0 50.0 51.7 64.0 146.7

The above two scenarios clearly explain the invalid and outlier values. In the first
output, one of the values of ‘income’ is negative (-8700). Practically, a person cannot have
negative income. Negative income is an indicator of debt. Hence, the income is given in
negative values. However, such negative values are required to be treated effectively. A
check is required on how to handle these types of inputs, i.e. either to drop the negative
values for the income or to convert the negative income into zero.

In the second case, one of the values of ‘age’ is zero and the other value is greater than
120, which is considered as an outlier. Here, the values fall out of the data range of the
expected values. Outliers are considered to be incorrect or errors in input data. In such
cases, an age ‘0’ could refer to unknown data or may be the customer never disclosed
the age, and in case of more than 120 years of age, the customer must have lived long.

A negative value in the age field could be a sentinel value and an outlier could be an
error data, unusual data or sentinel value. In case of missing a proper input to the field,
an action is required to handle the scenario, i.e. whether to drop the field, drop the data
input or convert the improper data.

4.9 DescriptiVe statistics

4.9.1 Data Range

Data range in R helps in identifying the extent of difference in input data. The data range
of the observation variable is the difference between the largest and the smallest data
value in a dataset. The value of a data range can be calculated by subtracting the smallest
value from the largest value, i.e. Range = Largest value – Smallest value.

Exploring Data in R 145

For example, the range or the duration of rainfall can be computed as

Calculates the duration.

>duration = time$rainfall

#Apply max and min function to return the range

>max(duration) - min(duration)

This sample code returns the range or duration by taking the minimum and maximum
values. In the example above, time duration of rainfall is helpful in predicting the
probability of duration of rainfall. Hence, there should be enough variation in the amount
of rainfall and the duration of the rainfall.

4.9.2 Frequencies and Mode

Frequency

Frequency is a summary of data occurrence in a collection of non-overlapping types. In
R, freq function can be used to find the frequency distribution of vector inputs. In the
example given, consider sellers as the dataset and the frequency distribution of the shop
variable is the summary of the number of sellers in each shop.

> head(subset(mtcars, select = ‘gear’))

 gear

Mazda RX4 4

Mazda RX4 Wag 4

Datsun 710 4

Hornet 4 Drive 3

Hornet Sportabout 3

Valiant 3

> factor(mtcars$gear)

[1] 4 4 4 3 3 3 3 4 4 4 4 3 3 3 3 3 3 4 4 4 3 3 3 3 3 4 5 5 5 5 5 4

Levels: 3 4 5

> w = table(mtcars$gear)

> w

3 4 5

15 12 5

> t = as.data.frame(w)

> t

 Var1 Freq

1 3 15

2 4 12

3 5 5

146 Data Analytics using R

> names(t) [1] = ‘gear’

> t

 gear Freq

1 3 15

2 4 12

3 5 5

The cbind()function can be used to display the result in column format.

> w

3 4 5

15 12 5

> cbind(w)

 w

3 15

4 12

5 5

Mode

Mode is similar to frequency, except that the value of mode returns the highest number
of occurrences in a dataset. Mode can take both numeric and character as input data.
Mode does not have any standard inbuilt function to calculate mode of the given inputs.
Hence, a user-defined function is required to calculate mode in R. Here, the input is a
vector value and the output is the mode value.

A sample code to return the mode value is

#Create the function

getmode <- function(y){

uniqy <- unique(y)

uniqy[which.max(tabulate(match(y,uniqy)))]

}

Define the input vector values

v <- c(5,6,4,8,5,7,4,6,5,8,3,2,1)

#Calculate the mode with user-defined functions

resultmode<- getmode(v)

print(resultmode)

#Define characters as input vector values

charv <-c(“as”,“is”,“is”,“it”,“in”)

#Calculate mode using user-defined function

resultmode <- getmode(charv)

print(resultmode)

Executing the above code will give the result as:
[1] 5
[1] “is”

Exploring Data in R 147

> #Create the function

> getmode <- function(y) {

+ uniqy <- unique (y)

+ uniqy[which.max(tabulate(match(y, uniqy)))]

+ }

>

> v <- c(5,6,4,8,5,7,4,6,5,8,3,2,1)

> resultmode<- getmode(v)

> print(resultmode)

[1] 5

> charv <- c(“as”,“is”,“is”,“it”,“in”)

> resultmode <- getmode (charv)

> print (resultmode)

[1] “is”

4.9.3 Mean and Median

Statistical data in R is analysed using inbuilt functions. These inbuilt functions are found
in the base R package. The functions take vector values as input with arguments and
produce the output.

Mean

Mean is the sum of input values divided by the sum of the number of inputs. It is also
called the average of the input values. In R, mean is calculated by inbuilt functions. The
function mean()gives the output of the mean value in R.

Basic syntax for the mean() function in R is:

mean(x, trim=0, na.rm = FALSE,...)

where,
x is the input vector, trim specifies some drop in observations from both the sorted ends
of the input vector and na.rm removes the missing values in the input vector.

Example 1

A sample code to calculate the mean in R is

#Define a vector

x<- c(15,54,6,5,9.2,36,5.3,8,-7,-5)

Find the mean of the vector inputs

result.mean <- mean(x)

print(result.mean)

148 Data Analytics using R

Output

On execution, it would produce an output value of [1]12.65.

> x<- c(15,54,6,5,9.2,36,5.3,8,-7,-5)

> result.mean <- mean(x)

> print (result.mean)

[1] 12.65

When the trim parameter is selected, it sorts the vector values first and drops the input
values for calculating the mean based on the trim value from both the ends. Say trim = 0.4,
4 values from both the ends of sorted vector values are dropped. With the above sample,
vector values (15,54,6,5,9.2,36,5.3,8,-7,-5) are sorted to (-7,-5,5,5.3,6,8,9.2,15,36,54) and 4
values are removed from both the ends, i.e. (-7,-5,5,5.3) from the left and (9.2,15,36,54)
from the right.

Example 2

#Define a vector

x<- c(15,54,6,5,9.2,36,5.3,8,-7,-5)

Find the mean of the vector inputs

result.mean <- mean(x, trim =0.3)

print(result.mean)

Output

On execution, it would produce an output value of[1] 7.125

> x<- c(15,54,6,5,9.2,36,5.3,8,-7,-5)

> result.means <- mean(x, trim =0.3)

> print(result.mean)

[1] 7.125

Example 3

In case of any missing value, the mean() function would return NA. In order to overcome
such cases, na.rm = TRUE is used to remove the NA values from the list for calculating
the mean in R.

#Define a vector

x<- c(15,54,6,5,9.2,36,5.3,8,-7,-5,NA)

Find the mean of the vector inputs

result.mean <- mean(x)

print(result.mean)

#Dropping NA values from finding the mean

result.mean <- mean(x, na.rm=TRUE)

print(result.mean)

Output

On execution, it would produce an output value of
[1]NA

[1]12.65

Exploring Data in R 149

> x<- c(15,54,6,5,9.2,36,5.3,8,-7,-5,NA)

> result.means <- mean (x)

> print (result.mean)

[1] NA

> result.mean <- mean (x, na.rm=TRUE)

> print (result.mean)

[1] 12.65

Example 4

Objective: To determine the mean of a set of numbers. To plot the numbers in a barplot
and have a straight line run through the plot at the mean.

Step 1: To create a vector, “numbers”.

> numbers <-c(1, 3, 5, 2, 8, 7, 9, 10)

Step 2: To compute the mean value of the set of numbers contained in the vector,
“numbers”.

> mean (numbers)

[1] 5.625

Outcome: The mean value for the vector, “numbers” is computed as 5.625.

Step 3: To plot a bar plot using the vector, “numbers”.

> barplot (numbers)

0
2

4
6

8
1
0

Step 4: Use the abline function to have a straight line (horizontal line) run through the
bar plot at the mean value. The abline function can take an h parameter with a value
to draw a horizontal line or a v parameter for a vertical line. When it’s called, it updates
the previous plot. Draw a horizontal line across the plot at the mean.

> barplot (numbers)

> abline (h = mean (numbers))

150 Data Analytics using R

0
2

4
6

8
1
0

Outcome: A straight line at the computed mean value (5.625) runs through the bar plot
computed on the vector, “numbers”.

Median

Median is the middle value of the given inputs. In R, the median can be found using the
median() function. Basic syntax for calculating the median in R is

 median(x, na.rm=FALSE)

where,
x is the input vector value and na.rm removes the missing values in the input vector.

Example 1

A sample to find out the median value of the input vector in R is

#Define a vector

x<- c(15,54,6,5,9.2,36,5.3,8,-7,-5)

Find the median value

median.result <-median(x)

print(median.result)

On execution, it would produce an output value of [1]7.

> x<- c(15,54,6,5,9.2,36,5.3,8,-7,-5)

> median.result <-median (x)

> print (median.result)

[1] 7

Example 2

Objective: To determine the median of a set of numbers. To plot the numbers in a bar
plot and have a straight line run through the plot at the median.

Step 1: To create a vector, “numbers”.

> numbers <- c(1, 3, 5, 2, 8, 7, 9, 10)

Exploring Data in R 151

Step 2: To compute the median value of the set of numbers contained in the vector,
“numbers”.

> median(numbers)

[1] 6

Step 3: To plot a bar plot using the vector, “numbers”. Use the abline function to have a
straight line (horizontal line) run through the bar plot at the median.

> barplot (numbers)

> abline (h = median (numbers))

0
2

4
6

8
1
0

Outcome: A straight line at the computed median value (6.0) runs through the bar plot
computed on the vector, “numbers”.

4.9.4 Standard Deviation

Objective: To determine the standard deviation. To plot the numbers in a bar plot and
have a straight line run through the plot at the mean and another straight line run through
the plot at mean + standard deviation.

Step 1: To create a vector, “numbers”.

> numbers <- c(1,3,5,2,8,7,9,10)

Step 2: To compute the mean value of the set of numbers contained in the vector,
“numbers”.

> mean(numbers)

[1] 5.625

Step 3: To determine the standard deviation of the set of numbers held in the vector,
“numbers”.

> deviation <- sd(numbers)

> deviation

[1] 3.377975

152 Data Analytics using R

Step 4: To plot a bar plot using the vector, “numbers”.

> barplot (numbers)

Step 5: Use the abline function to have a straight line (horizontal line) run through the
bar plot at the mean value (5.625) and another straight line run through the bar plot at
mean value + standard deviation (5.625 + 3.377975)

> barplot (numbers)

> abline (h=sd(numbers))

> abline (h=sd(numbers) + mean(numbers))

0
2

4
6

8
1
0

4.9.5 Mode

Objective: To determine the mode of a set of numbers. R does not have a standard inbuilt
function to determine the mode. We will write out own, “Mode” function. This function
will take the vector as the input and return the mode as the output value.

Step 1: Create a user-defined function, “Mode”.

Mode <- function(v) {

 UniqValue <- unique(v)

 UniqValue[which.max(tabulate(match(v, UniqValue)))]

}

> Mode <-function(v) {

+ UniqValue <- unique(v)

+ UniqValue[which.max(tabulate(match(v, UniqValue)))]

+ }

While writing the above function, “Mode”, we have used three other functions provided
by R, viz. “unique”, “tabulate” and “match”.

unique function: The “unique” function will take the vector as the input and returns the
vector with the duplicates removed.

Exploring Data in R 153

> v

[1] 2 1 2 3 1 2 3 4 1 5 5 3 2 3

> unique(v)

[1] 2 1 3 4 5

match function: Takes a vector as the input and returns the vector that has the position
of (first) match of its first arguments in its second.

> v

[1] 2 1 2 3 1 2 3 4 1 5 5 3 2 3

> UniqValue <- unique(v)

> UniqValue

[1] 2 1 3 4 5

> match(v,UniqValue)

[1] 1 2 1 3 2 1 3 4 2 5 5 3 1 3

tabulate function: Takes an integer valued vector as the input and counts the number of
times each integer occurs in it.

> tabulate(match(v,UniqValue))

[1] 4 3 4 1 2

Going by our example, “2” occurs four times, “1” occurs three times, “3” occurs four
times, “4” occurs one time and “5” occurs two times.

Step 2: Create a vector, “v”.

> v <- c(2,1,2,3,1,2,3,4,1,5,5,3,2,3)

Step 3: Call the function, “Mode” and pass the vector, “v” to it.

> Output <- Mode(v)

Step 4: Print out the mode value of the vector, “v”.

> print(Output)

[1] 2

Let us pass a character vector, “charv” to the “Mode” function.

Step 1: Create a character vector, “charv”.

> charv <- c(“o”,“it”,“the”,“it”,“it”)

Step 2: Call the function, “Mode” and pass the character vector, “charv” to it.

> Output <- Mode(charv)

Step 3: Print out the mode value of the vector, “v”.

> print(Output)

[1] “it”

154 Data Analytics using R

Just Remember

In R, with basic inbuilt functions mean, median and range can be found out. But in case of finding mode, a

user-defined function is needed to obtain the value of mode.

Check Your Understanding

 1. What are the possible na.action settings?

 Ans: The possible na.action settings are na.omit, na.exclude, na.pass and

na.fail.

 2. How are the missing values in the input vector removed?

 Ans: na.rm removes the missing values in the input vector.

 3. How is the data range obtained from a given input?

 Ans: The value of the data range can be obtained by using the following formula:

 Range = Largest value – Smallest value

4.10 spotting proBLems in Data With VisuaLisation

For a better understanding of input data, pictures or charts are preferred over text.

Visualisation engages the audience well and numerical values, on comparison, cannot

represent a big dataset in an engaging manner.

From Figure 4.1, we observe that the graph represents the density of data with respect

to the age of the customers. The use of graphical representation to examine the given set

of data is called visualisation. With this visualisation, it is easier to calculate the following:

 d To determine the peak value of the age of the customers (maximum value)
 d To estimate the existence of the sub-population
 d To determine the outlier values.

The graphical representation displays the maximum available information from the

lowest to the highest value. It also presents users with greater data clarity. For better usage

of visualisation, the right aspect ratio and scaling of data is needed.

4.10.1 Visually Checking Distributions for a Single Variable

With R visualisation, one can answer the following questions:

 d What is the peak value of the standard distribution?
 d How many peaks are there in a distribution? (Basically bimodality vs unimodality)

Exploring Data in R 155

 d Is it normal data or lognormal data?
 d How does the given data vary?
 d Is the given data concerned in a certain interval or category?

Generally, visual representation of data is helpful to grasp the shape of data distribution.

Figure 4.1 represents a normal distribution curve with an exception towards the right

side of the figure. The summary statistics assumes that the data is more or less close to

normal distribution.

Figure 4.2 represents a unimodal diagram with only one peak in the normal distribution

diagram. It also represents the values in a more visually understandable way. It returns

the mean customer age of about 51.7, which is nearly equal to 52.50% of the customers

who fall in the age group of 38 to 64 years. With this statistical output, it can be concluded

that the customer is a middle-aged person in the age range of 38–64 years.

The additional black curve in Figure 4.2 refers to a bimodal distribution. Usually, if

a distribution contains more than two peaks, then it is considered a multimodal. The

second black curve has the same mean age as that of the grey curve. However, here the

curve concentrates on two sets of populations with younger ages between 20 and 30 and

the older ages above 70.

These two sets of populations have different patterns in their behaviour and the

probability of customers who have health insurance also differs. In such a case, using

a logistic regression or linear regression fails to represent the current scenario. Hence,

0.00

0.01

0.02

0.03

0 25 50 75 100

Min. 1st Qu. Median Mean 3rd Qu. Max.

>summary(custdata$age)

38.0 50.0 51.7 64.0146.70.0

Min.1st Qu.MedianMean3rd Qu.Max.

>summary(Age)

–3.98325.27061.40050.69075.93082.230

“Average”

customer–but

not “typical”

customer!

D
e
n
s
it
y

Figure 4.2 Bimodal representation

156 Data Analytics using R

in order to overcome the difficulties faced for such representations, a density plot or

histogram can examine the distribution of the input values. Moving forward, the histogram

makes the representation simpler as compared to density plots and is the preferred method

for presenting findings from quantitative analysis.

4.10.2 Histograms

A histogram is a graphical illustration of the distribution of numerical data in successive

numerical intervals of equal sizes. It looks similar to a bar graph. However, values are

grouped into continuous ranges in a histogram. The height of a histogram bar represents

the number of values occurring in a particular range.

R uses hist(x) function to create simple histograms, where x is a numeric value to

be plotted. Basic syntax to create a histogram using R is:

 hist(v,main,xlab,xlim,ylim,breaks,col,border)

where,

v takes a vector that contains numeric values, ‘main’ is the main title of the bar chart, xlab

is the label of the X-axis, xlim specifies the range of values on the X-axis, ylim specifies

the range of values on the Y-axis, ‘breaks’ control the number of bins or mentions the width

of the bar, ‘col’ sets the colour of the bars and ‘border’ sets the border colour of the bars.

Example 1

A simple histogram can be created by just providing the input vector where other

parameters are optional.

Create data for the histogram

h<- c (8,13,30,5,28)

#Create histogram for H

hist(h)

Example 2

A histogram simple can be created by providing the input vector “v”, file name, label for

X-axis “xlab”, colour “col” and colour “border” as shown:

Create data for the histogram

H <- c (8,13,30,5,28)

Give a file name for the histogram

png(file = “samplehistogram.png”)

#Create a sample histogram

hist(H, xlab=“Categories”, col=“red”)

#Save the sample histogram file

dev.off()

Exploring Data in R 157

Executing the above code fetches the output as shown in Figure 4.3. It fills the bar with

the ‘col’ colour parameter. And border to the bar can be done by passing values to the

‘border’ parameter.

> H <- c (8,13,30,5,28)

> hist(H, xlab=“Categories”, col=“red”)

5

0
.0

0
.5

1.
0

1.
5

2
.0

F
re
q
u
e
n
c
y

10

Categories

Histogram of H

15 20 25 30

Figure 4.3 Histogram

Example 3

The parameters xlim and ylim are used to denote the range of values that are used in

the X and Y axes. And breaks are used to specify the width of each bar.

#Create data for the histogram

H <- c (8,13,30,5,28)

Give a file name for the histogram

png(file = “samplelimhistogram.png”)

#Create a samplelimhistogram.png

hist(H, xlab =“Values”, ylab= “Colours”, col=“green”, xlim=c(0,30),

ylim=c(0,5), breaks= 5)

#Save the samplelimhistogram.png file

dev.off()

> H <- c (8,13,30,5,28)

> hist(H, xlab =“Values”, ylab = “Colours”, col= “green”,

xlim=c(0,30), ylim=c(0,5), breaks=5)

Executing the above code will display the histogram as shown in Figure 4.4.

158 Data Analytics using R

0

0
1

2
3

5
4

C
o
lo
rs

5

Values

Histogram of H

10 15 20 25 30

Figure 4.4 Histogram with X and Y values

> H <- c (8, 13, 30, 5, 28)

> bins <- c(0, 5, 10, 15, 20, 25, 30)

> bins

[1] 0 5 10 15 20 25 30

> hist(H, xlab =“Values”, ylab=

“Colours”, col=“green”, xlim=c(0,30),

ylim=c(0,5), breaks=bins)

0

0
1

2
3

5
4

C
o
lo
rs

5

Values

Histogram of H

10 15 20 25 30

4.10.3 Density Plots

A density plot is referred to as a ‘continuous histogram’ of the given variable. However,
the area of the curve under the density plot is equal to 1. Therefore, the point on the
density plot diagram matches the fraction of the data (or the percentage of the data which
is divided by 100 that takes a particular value). The resulting value of the fraction is very
small.

A density plot is an effective way to assess the distribution of a variable. It provides a
better reference in finding a parametric distribution. The basic syntax to create a plot is
plot(density(x)), where x is a numeric vector value.

Exploring Data in R 159

Example 1

A simple density plot can be created by just passing the values and using the plot()
function (Figure 4.5).

Create data for the density plot

h <- density (c(0.0, 38.0, 50.0, 51.7, 64.0, 146.0))

#Create density plot for h

plot(h)

> h <- density (c(0.0, 38.0, 50.0, 51.7, 64.0, 146.0))

> plot(h, xlab=“Values”, ylab=“Density”)

0 50 100 150

Values

density.default(x=c(0, 38, 50, 51.7, 64, 146))

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

D
e
n
s
it
y

Figure 4.5 Density plot

When executing the above code, it displays the density plot for the given input values.
The plot() function creates the density diagram. In case of widespread data range, the
distribution of data is concentrated to one side of the curve. Here it is very complex to
determine the exact value in the peak.

Example 2

In case of non-negative data, another way to plot the curve is using the distribution
diagram on a logarithmic scale, which is equivalent to the plot the density plot of
log10 (input value). For Figure 4.5 it is very hard to find out the peak value of the mass
distribution. Hence, in order to simplify the visual representation log10 scale is used. In
Figure 4.6 the peak value of the income distribution is clearly pictured as ~$40,000. In
case of wide spread data this logarithmic approach can give a perfect result.

160 Data Analytics using R

Figure 4.6 shows how the density plot is plotted in the logarithmic scale. Here, the
logarithmic scale is given in both the ends of the X-axis where the Y-axis denotes the
density values.

0.00

0.25

0.50

0.75

1.00

$100 $1,000 $10,000 $100,000
Income

More customers have income in the
$10,000 range than you would expect.

D
e
n
s
it
y

Most customers have income in the

$20,000–$100,000 range.

Peak of income

distribution at ~$40,000

Customers with income

over $200,000 are rare,

but they no longer look

like “outliers” in log

space.

Very-low-income outliers

Figure 4.6 Logarithmic scale density plot

Example 3

The above sample code displays Figure 4.5 with the income of the customer on the X-axis
and density on the Y-axis. To enable the dollar symbol in the input data labels=dollar
parameter is passed. Hence, the amount is displayed with the dollar $ symbol (Figure 4.7).

library(scales)

barplot(custdata) + geom_density(aes(x=income)) + scale_x_

continuous(labels=dollar)

4.10.4 Bar Charts

A bar chart is a pictorial representation of statistical data. Both vertical and horizontal bars
can be drawn using R. It also provides an option to colour the bars in different colours.
The length of the bar is directly proportional to the values of the axes.

R uses the barplot() function to create a bar chart. The basic syntax for creating a
bar chart using R is

barplot(H, xlab, ylab, main, names.arg, col)

Exploring Data in R 161

0e+00

$0 $200,000 $400,000 $600,000
income

Wide data range:
several orders of

magnitude.

Subpopulation
of wealthy

customers in
the $400,000

range.

Most of the distribution is concentrated at
the low end: less than $100,000 a year.

It’s hard to get good resolution here.

d
e
n
s
it
y

1e–05

5e–06

Figure 4.7 Density function with symbol $

where,
H is a matrix or a vector that contains the numeric values used in bar chart, xlab is

the label of the X-axis, ylab is the label of the Y-axis, main is the main title of the bar
chart, names.arg is the collection of names to appear under each bar and col is used to
give colours to the bars.

Some basic bar charts commonly used in R are:
 d Simple bar chart
 d Grouped bar chart
 d Stacked bar chart

1. Simple Bar Chart
A simple bar chart is created by just providing the input values and a name to the bar
chart. The following code creates and saves a bar chart using the barplot() function in R.

Example 1

Create data for the bar chart

H <- c (8,13,30,5,28)

#Give a name for the bar chart

png(file = “samplebarchart.png”)

#Plot bar chart using barplot() function

barplot(H)

162 Data Analytics using R

#Save the file

dev.off()

> H <- c (8,13,30,5,28)

> barplot (H, xlab = “Categories”, ylab=“Values”, col=“blue”)

When executing the above sample code, it
returns a simple bar chart diagram (as shown in
Figure 4.8) as the output. The bar takes up the
input values and the file is stored.

The barplot() function draws the simple bar
chart as above with the inputs provided. It can be
drawn both vertically and horizontally. Labels for
both the X and Y axes can be given with xlab and
ylab parameters. The colour parameter is passed
to fill the colour in the bar.

Example 2

The bar chart is drawn horizontally by passing
the “horiz” parameter TRUE. This can be shown
with a sample program as follows:

Create data for the bar chart

H <- c (8,13,30,5,28)

#Give a name for the bar chart

png(file = “samplebarchart.png”)

#Plot bar chart using barplot() function

barplot(H, horiz=TRUE))

#Save the file

dev.off()

> barplot(H, xlab = “Values”, ylab=“Categories”, col=“blue”,

horiz=TRUE)

Executing the above code in R will result in

Figure 4.9 which takes up the input values and

plots the bar using the barplot() function. Here

when the “horiz” parameter is set to TRUE, it

displays the bar chart in a horizontal position else

it will be displayed as a default vertical bar chart.

2. Group Bar Chart

A group data in R is used to handle multiple

inputs and takes the value of the matrix. This

group bar chart is created using the barplot()

function and accepts the matrix inputs.

Categories

V
a
lu
e
s

0
5

1
0

1
5

2
0

2
5

3
0

Figure 4.8 Simple bar chart
C
a
te
g
o
ri
e
s

Values

0 5 10 15 20 25 30

Figure 4.9 Horizontal bar chart

Exploring Data in R 163

Example

> colors <- c(“green”,“orange”,“brown”)

> months <- c(“Mar”,“Apr”,“May”,“Jun”,“Jul”)

> regions <- c(“East”,“West”,“North”)

> Values <- matrix(c(2,9,3,11,9,4,8,7,3,12,5,2,8,10,11),nrow=3,ncol

= 5,byrow = TRUE)

> Values

 [,1] [,2] [,3] [,4] [,5]

[1,] 2 9 3 11 9

[2,] 4 8 7 3 12

[3,] 5 2 8 10 11

> rownames(Values) <- regions

> rownames(Values)

[1] “East” “West” “North”

> Values

 [,1] [,2] [,3] [,4] [,5]

East 2 9 3 11 9

West 4 8 7 3 12

North 5 2 8 10 11

> colnames(Values) <- months

> Values

 Mar Apr May Jun Jul

East 2 9 3 11 9

West 4 8 7 3 12

North 5 2 8 10 11

> barplot(Values, col=colors, width=2, beside=TRUE, names.

arg=months, main=“Total Revenue 2015 by month”)

> legend(“topleft”, regions, cex=0.6, bty= “n”, fill=colors);

In Figure 4.10, the matrix input is read and passed to the barplot() function to create a
group bar chart. Here the legend column is included on the top right side of the bar chart.

3. Stacked Bar Chart
Stacked bar chart is similar to group bar chart where multiple inputs can take different
graphical representations. Except by grouping the values, the stacked bar chart stacks
each bar one after the other based on the input values.

Example

> days <- c(“Mon”,“Tues”,“Wed”)

> months <- c(“Jan”,“Feb”,“Mar”,“Apr”,“May”)

> colours <- c(“red”,“blue”,“green”)

> val <- matrix(c(2,5,8,6,9,4,6,4,7,10,12,5,6,11,13), nrow =3, ncol

=5, byrow =TRUE)

> barplot(val,main=“Total”,names.arg=months,xlab=“Months”,ylab=“Day

s”,col=colours)

> legend(“topleft”, days, cex=1.3,fill=colours)

164 Data Analytics using R

Total Revenue 2015 by month

East

West

North

Mar Apr May Jun Jul

0
2

4
6

8
1
0

1
2

Figure 4.10 Group bar chart

Mon

Tues

Wed

Total

Jan Feb Mar Apr May

Months

D
a
y
s

0
5

1
0

1
5

2
0

2
5

3
0

Figure 4.11 Stacked bar chart

In Figure 4.11, the ‘Total’ is set as the main title of the stack bar chart with ‘Months’
as the X-axis label and ‘Season’ as the Y-axis label. The code legend (“topleft”, days,

Exploring Data in R 165

cex=1.3,fill=colours) specifies the legend to be displayed at the top right of the bar chart
with colours filled accordingly.

Just Remember

Bar charts are an efficient way of presenting a huge collection of data. Here the values are represented in

the X and Y axes and the legend function is used to summarise the data that is used in the chart, which

can be positioned anywhere in the chart.

Check Your Understanding

 1. What are the three types of bar charts used in R?

 Ans: Simple bar chart, group bar chart and stacked bar chart are the three types of bar charts

are used in R.

 2. What are the advantages of using data visualisation?

 Ans: The advantages of using data visualisation are:
 d To determine the peak value of the age of the customer (maximum value)
 d To estimate the existence of the subpopulation
 d To determine the outliers easily.

 3. Which function is used to create a bar chart?

 Ans: The barplot() function is used to create a bar chart.

 Syntax of barplot() is:

 barplot(H, xlab, ylab, main, names.arg, col)

 d Exploring data in R makes use of interactive data visualisations that further helps to analyse statisti-

cal data.

 d nrow(x) and ncol(x) returns the number of rows and columns respectively of a given dataset.

 d dim(x) is used to find the dimension of the given dataset.

 d summary(x) provides basic descriptive statistics and frequencies.

 d edit(x) opens the data editor.

 d head() function is used to obtain the first n observations where n is set as 6 by default.

 d tail() function is used to obtain the last n observations where n is set as 6 by default.

 d Data in R, are sets of organised information. We deal more with statistical data type in R.

 d Exploratory Data Analysis (EDA) involves analysing datasets in order to summarise the main charac-

teristics in the form of visual representations.

Summary

(Continued)

166 Data Analytics using R

 d Some of the graphical techniques used by EDA are—box plot, histogram, scatter plot, Pareto chart,

etc.

 d Outliers are considered to be incorrect or error input data.

 d In R, missing data is indicated as NA in the dataset, where NA refers to “Not Available”. It is neither

a string nor a numeric value but used to specify the missing data.

 d Range = Largest value - Smallest value.

 d Frequency is a summary of data occurrences in a collection of non-overlapping types.

 d Mode is similar to the frequency except the value of mode returns the highest number of occur-

rences in the dataset.

 d Mean is generally referred as summing up of input values and dividing the sum by the number of

inputs.

 d Median is the middle value of the given inputs.

 d Histogram is a graphical illustration of the distribution of numerical data in successive numerical

intervals of equal size.

 d A bar chart is a pictorial representation of statistical data.

 d A simple bar chart is created by just providing the input values and the name to the bar chart.

 d Stacked bar chart is similar to group bar chart where multiple inputs can take different graphical

representations.

 Ke y Te r m s

 d Bar chart: A bar chart is a pictorial repre-
sentation of statistical data.

 d Data range: Data range is the difference
between the largest and smallest data values
in a dataset.

 d Data visualisation: The use of graphical
representation to examine a given set of
data is called data visualisation.

 d Density plot: A density plot is otherwise
referred to as a ‘continuous histogram’ of a
given variable, except the area of the curve
under the density plot is equal to 1.

 d EDA: Exploratory Data Analysis (EDA)
involves analysing datasets to summarise
their main characteristics in the form of
visual representations.

 d Frequency: Frequency is a summary of
data occurrences in a collection of non-
overlapping types.

 d Histogram: Histogram is a graphical il-
lustration of the distribution of numerical
data in successive numerical intervals of
equal size.

 d Mean: Mean is generally referred to as sum-
ming up of input values and dividing the
sum by the number of inputs.

 d Median: Median is the middle value of the
given inputs.

 d Mode: Mode is similar to frequency except
the value of mode returns the highest num-
ber of occurrences in a dataset.

 d Outliers: Outliers are considered to be in-
correct or error input data.

Exploring Data in R 167

 mu l T i p l e Ch o i C e Qu e s T i o n s

 1. How many numbers of columns are there in the given output?
 >dim(Grades)

 [1] 80 2

 (a) 80 (b) 2

 (c) NA (d) 0

 2. What will be the output of the following code?

 >head(dataset, n=5) (a) returns first 5 observations (b) returns last 5 observations (c) returns first 6 default observations (d) returns last 6 default observations

 3. What will be the output of the following code:

 >tail(dataset, n=-55), where there are total 70 observations?

 (a) returns first 15 observations

 (b) returns last 15 observations

 (c) returns first 55 default observations

 (d) returns last 55 default observations

 4. What will be the output of the following code?

 is.invalid(c(0,Inf,0)) (a) FALSE TRUE TRUE (b) FALSE FALSE FALSE (c) FALSE TRUE FALSE (d) TRUE TRUE TRUE

 5. Which function is used to open a data editor?

 (a) edit() (b) str()

 (c) summary() (d) open()

 6. Which is not an invalid value in R?

 (a) -inf (b) NA

 (c) 0 (d) NaN

 7. Which one of the following is used to drop missing values?

 (a) na.rm=TRUE (b) na.rm=FALSE

 (c) na.rm=0 (d) na.rm=NA

 8. Which parameter is used to mention the width of each bar in a histogram?

 (a) width (b) col

 (c) breadth (d) xlab

 9. Which parameter is used to give the border colour in a bar chart?

 (a) col (b) border

 (c) colour (d) fill

 10. Which command is used to save a file in R?

 (a) dev.off() (b) dev.on()

 (c) dev.save() (d) dev.close()

168 Data Analytics using R

 sh o r T Qu e s T i o n s

 1. List the differences between the head() and tail() functions?

 2. What is EDA?

 3. Differentiate between invalid values and outliers.

 4. How are missing values treated in R?

 5. What is data visualisation?

 6. How to calculate a data range?

 7. How to find a mode value?

 8. Give contrast of mean and median.

 9. What is density plot?

 10. What is histogram?

 lo n g Qu e s T i o n s

 1. Explain the reason to use the trim parameter.

 2. Create a histogram by filling the bar with ‘blue’ colour.

 3. What is a bar chart? Describe the types of bar charts.

 4. Create a horizontal bar chart.

 5. Differentiate between a group and stacked bar chart.

 6. Create and place a legend in bar chart.

Answers to MCQs:

 1. (b) 2. (a) 3. (b) 4. (c) 5. (a) 6. (c) 7. (a)

 8. (a) 9. (b) 10. (a)

L E A R N I N G O U T C O M E

At the end of this chapter, you will be able to:

 c Explain regression analysis, which is typically used to predict the value of an outcome
(target or response) variable based on predictor variables

 c Create a simple linear regression model

 c Validate a model using “residuals vs. fitted plot”, “normal Q-Q plot”, “scale location
plot” and “residuals vs. leverage plot”

5.1 introduCtion

Regression analysis is a statistical process for estimating relationships between variables.

It includes many techniques for modelling and analysing several variables when

the focus is on the relationship between a dependent variable (also called a target or

response variable) and one or more independent variables (also called predictors). Simple

linear regression is used to determine the extent of the linear relationship between a

dependent variable and a single independent variable. Typically, regression analysis

is used for one (or more) of the following three purposes: (1) prediction of the target

variable (forecasting), (2) modelling the relationship between x and y and (3) testing of

hypotheses.

Linear Regression using R

Chapter 5

170 Data Analytics using R

5.2 Model Fitting

Models in R language are a representation of a sequence of data points, which has the
look of noisy clouds of points. Model fitting refers to choosing the right model that best
describes a set of data. R has different types of models. These are listed below along with
their commands.

 d Linear model (lm): lm() is a linear model function in R. It can be used to create a
simple regression model.

 d Generalised linear model (glm): It is specified by giving a symbolic description of
a linear predictor and a description of the error distribution.

 d Linear model for mixed effects (lme)
 d Non-linear least square (nls): It determines the non-linear (weighted) least-square

estimate of the parameters of a non-linear model.
 d Generalised additive models (GAM): GAMs are simply a class of statistical models in

which the usual linear relationship between the response and predictors is replaced
by several non-linear smooth functions to model and capture the non-linearities in
the data.

Each model has a specific function and the data points are distributed based on the
function that describes the model.

5.3 linear regression

Linear regression in R consists of two main variables that are related through an equation
where exponent (power) of both the variables is 1. Mathematically a linear relationship
represents a straight line when plotted as a graph. In case of a non-linear relationship, the
exponent of the variables is not equal to 1 and it creates a curve on the graph.

General equation of linear regression is y = ax + b
where, y is a response variable, x is a predictor variable and a and b are constants called
coefficients.

5.3.1 lm() function in R

lm(formula, data, subset, weights, na.action,

 method = “qr”, model = TRUE, x = FALSE, y = FALSE, qr = TRUE,

 singular.ok = TRUE, contrasts = NULL, offset, ...)

where,

 d “formula” represents the relation between x and y
 d “data” contains the variable in the model
 d “subset” is an optional vector that specifies a subset of observations used in model

fitting

Linear Regression using R 171

 d “weights” is an optional vector that specifies the weight for the model fitting process.
It takes a numeric vector value or NULL.

 d “na.action” is an optional function that specifies the actions on how to react for
data that contains NAs

 d “method” is the method used in fitting
 d model, x, y, qr—If this parameter is TRUE, then model matrix, model frame and

QR decomposition are returned
 d “singular.ok”— If this parameter is FALSE, then a singular fit is an error.
 d “Contrasts” is an optional list offset used to specify prior known components that

are to be included in the linear predictor.

Simple syntax of the lm() function in linear regression is lm(formula,data), where, the
optional parameters can be omitted.

Let us determine the relationship model between the predictor and response variables
for a student data set. The predictor vector stores the number of hours of study put in by
the students, whereas the response vector stores the Freshmen score.

Check the Data in the Data Set

Consider the dataset given in Table 5.1, “D:\student.csv”, indicating the number of hours
of study put in by the students (NoOfHours) and their freshmen score (Freshmen_Score).

Table 5.1 Data in “student” data set

NoOfHours Freshmen_Score

2 55

2.5 62

3 65

3.5 70

4 77

4.5 82

5 75

5.5 83

6 85

6.5 88

Read the Data from the Data Set into a Data Frame

Use the read.table() function to read the file D:\student.csv” in a table format and
create a data frame, “HS” from it, with cases corresponding to lines and variables to
fields in the file.

172 Data Analytics using R

> HS <- read.table(“D:/student.csv”, sep=”,“,header=TRUE)

> HS

 NoOfHours Freshmen_Score

1 2.0 55

2 2.5 62

3 3.0 65

4 3.5 70

5 4.0 77

6 4.5 82

7 5.0 75

8 5.5 83

9 6.0 85

10 6.5 88

Check the Result Summary of the Data Held in the Data Frame

Use the summary() to produce result summaries. Here minimum, 1st quartile, median,
mean, 3rd quartile and maximum values are computed for all the numeric variables.

> summary(HS)

 NoOfHours Freshmen_Score

Min. : 2.000 Min. : 55.00

1st Qu. : 3.125 1st Qu. : 66.25

Median : 4.250 Median : 76.00

Mean : 4.250 Mean : 74.20

3rd Qu. : 5.375 3rd Qu. : 82.75

Max. : 6.500 Max. : 88.00

Check the Internal Structure of the Data Frame

Display the internal structure of the R object, “HS”. It shows that there are 10 observations
of 2 variables, “NoOfHours” and “Freshmen_Score”.

> str(HS)

‘data.frame’ : 10 obs. of 2 variables:

 $ NoOfHours : num 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

 $ Freshmen_Score : int 55 62 65 70 77 82 75 83 85 88

Plot the R Object

Plot the R object, “HS” with “HS$NoOfHours” on the X-axis and “HS$Freshmen_Score”
on the Y-axis. Refer Figure 5.1.

> plot (HS$NoOfHours, HS$Freshmen_Score)

Linear Regression using R 173

Figure 5.1 Scatter plot of predictor vs. response variables

Draw a horizontal line across the plot at the mean (mean of Freshmen_Score is 74.20)
as indicated in Figure 5.2.

> abline (h=mean (HS$Freshmen_Score))

8
5

8
0

7
5

7
0

6
5

6
0

5
5

2 3 4 5 6

HS$NoOfHours

H
S
$
F
re
s
h
m
e
n
_
S
c
o
re

Figure 5.2 Scatter plot of predictor vs. response variables with a straight line drawn at the mean

When we use the mean to predict the Freshmen_Score score, at some instances we can
observe a significant difference between the actual (observed) value and the predicted
value.

174 Data Analytics using R

For example, the first student has a Freshmen_Score of 55. If we used the mean to
predict the score, we would have predicted it as 74.20. Here the observed score is lesser
than the expected score. For the 10th student, the observed score is 88 which is larger than
the predicted score of 74.20.

This indicates that to be able to predict the expected score, we may have to consider
other factors as well.

Correlation Coefficient

S - S S
=

S - S S - S
2 2 2 2

() ()()

[()][()]

n xy x y
r

n x x n y y

Solving this for the student data set,

 R = 10 ¥ (3295.5) – (42.5) ¥ (742)/square root of
 ([10 ¥ 201.25 – 1806.25] [10 ¥ 56130 – 550564])

 = 32955 – 31545/1488.05

 = 1410/1488.05

 = 0.947548805

 = 0.95

Use the cor() Function in R to Determine the Degree and Direction of
Linear Association

The degree and direction of a linear association can be determined using correlation. The
Pearson correlation coefficient of the association between the number of hours studied
and GPA score is shown as follows:

> cor(HS$NoOfHours, HS$Freshmen_Score)

[1] 0.9542675

The correlation value here suggests that there is a strong association between the number
of hours studied and the freshmen score.

However, there are quite a few cautions associated with correlation:

 1. For non-linear relationships, correlation is NOT an appropriate measure of
association. To determine whether two variables may be linearly related, a scatter
plot can be used.

 2. Pearson correlation can be affected by outliers. A box plot can be used to identify
the presence of outliers. The effect of outliers is minimal for Spearman correlation.
Therefore, if outliers cannot be manipulated or eliminated from the analysis with
proper justification, Spearman correlation is preferred.

 3. A correlation value close to 0 indicates that the variables are not linearly associated.
However, these variables may still be related. Thus, it is advised to plot the data.

 4. Correlation does not imply causation, i.e. based on the value of correlation. It
cannot be asserted that one variable causes the other.

 5. Correlation analysis helps in determining the degree of association only.

Linear Regression using R 175

Since correlation analysis may be inappropriate in determining the causation, we use
regression techniques to quantify the nature of the relationship between the variables.

The regression model is represented using a mathematical model of form y = f(X), where
y is the dependent variable and X is the set of predictor variables (x1, x2… xn).

In general, f(X) may take linear or non-linear forms:

 1. Linear form: f(X) = b0 + b1x1 + b2x2 + …. + bnxn + e

 2. Non-linear form: f(X) = b0 + b1x1
p1 + b2x2

p2 + …. + bnxn
pn + e

Some commonly used linear forms are:

 1. Simple linear form: There is one predictor and one dependent variable: f(X) = b0 +
b1x1 + e

 2. Multiple linear form: There are multiple predictor variables and one dependent
variable:

f(X) = b0 + b1x1 + b2x2 + …. + bnxn + e

Some commonly used types of non-linear forms are:

 1. Polynomial form: f(X) = b0 + b1x1
p1 + b2x2

p2 + …. + bnxn
pn + e

 2. Quadratic form: f(X) = b0 + b1x1
2 + b2x1 + e

 3. Logistic form:

b b b b
e

- + + + +
= +

+
0 1 1 2 2()

1
()

1 n nx x x
f x

e

 where b0, b1, b2 ... bn are said to be the regression coefficients and e accounts for the
error in prediction. The regression coefficients and the error in prediction are real
numbers.

When a regression model is of a linear form, such a regression is called a linear
regression. Similarly, when a regression model is of non-linear form, then such a regression
is called a non-linear regression.

Since the scatter plot between the number of hours of study put in by students and the
freshmen scores suggested a linear association, let us build a linear regression model to
quantify the nature of this relationship.

Note: This chapter predominantly deals with linear regression.

In our example, we shall use the number of hours of study put in by a student to predict
his/her freshmen score. Therefore, “Freshmen_Score” can be considered as the dependent
variable, while the “NoOfHours” studied can be considered as the predictor variable. This is
a case of simple linear regression because we have one predictor and one dependent variable.

Therefore, the regression model to predict the value of time taken to repair a computer
could be expressed as Freshmen_Score = b0 + (b1 ¥ NoOfHours) + e

Create the Linear Model Using lm()

Let us compute the coefficients:

 (a) Intercept (b) HS$NoOfHours

176 Data Analytics using R

> x<-HS$NoOfHours
> y<-HS$Freshmen_Score
> n <- nrow (HS)
> xmean <- mean(HS$NoOfHours)
> ymean <- mean(HS$Freshmen_Score)
> xiyi <- x * y
> numerator <- sum(xiyi) – n * xmean * ymean
> denominator <- sum(x^2) – n * (xmean ^ 2)
> b1 <- numerator / denominator
> b0 <- ymean – b1 * xmean
> b1
[1] 6.884848
> b0
[1] 44.93939

Use the lm() to create the model. Here, “HS$Freshmen_Score” is the response or
target variable and “HS$NoOfHours” is the predictor variable. Refer Figure 5.3 for visual
representation of the model.

> model_HS <- lm(HS$Freshmen_Score ~ HS$NoOfHours)

> model_HS

Call:
lm(formula = HS$Freshmen_Score ~ HS$NoOfHours)

Coefficients:
 (Intercept) HS$NoOfHours
 44.939 6.885

> summary(model_HS)

Call:
lm(formula = HS$Freshmen_Score ~ HS$NoOfHours)

Residuals:
 Min 1Q Median 3Q Max
-4.3636 -1.5803 -0.3727 0.7712 6.0788

Coefficients
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 44.9394 3.4210 13.136 1.07e-06 ***
HS$NoOfHours 6.8848 0.7626 9.028 1.81e-05 ***

Signif. codes: 0 ‘***” 0.001 ‘**’ 0.01 ‘*’ ‘0.05’ ‘.’ 0.1 ‘’ 1

Residual standard error: 3.463 on 8 degrees of freedom
Multiple R-squared: 0.9106, Adjusted R-squared: 0.8995
F-statistic: 81.51 on 1 and 8 DF, p-value: 1.811e-05

Linear Regression using R 177

> plot(HS$NoOfHours, HS$Freshmen_Score, co1=“blue”, main = “Linear

Regression”,

+ abline(lm(HS$Freshmen_Score ~ HS$NoOfHours)), cex = 1.3, pch = 16,

xlab = “No of hours of study”,

+ ylab = “Student Score”)

Explanation of the Output

The first item shown in the output is the
formula (lm(formula = HS$Freshmen_
Score ~ HS$NoOfHours) that R uses to fit
the data. lm() is a linear model function in
R that is used to create a simple regression
model. HS$NoOfHours is the predictor
variable and HS$Freshmen_Score is the
target/response variable.

The next item in the model output
describes residuals. What are “residuals”?
The difference between the actual observed
response values (HS$Freshmen_Score in
our case) and the response values that
the model predicted is called “residuals”.
The residuals section of the model output
breaks it down into five summary points,
viz., (Minimum, 1Q (first quartile),
Median and 3Q (third quartile) and Maximum). When assessing how well the model fits
the data, one should look for a symmetrical distribution across these points on the mean
value zero (0).

NoOfHours Freshmen_Score Predicted value Residual Value
(Actual Value – Estimated Value)

2 55 58.70909 –3.70909

2.5 62 62.15152 –0.15152

3 65 65.59394 –0.59394

3.5 70 69.03636 0.96364

4 77 72.47879 4.52121

4.5 82 75.92121 6.07879 (maximum value)

5 75 79.36364 –4.36364 (minimum value)

5.5 83 82.80606 0.19394

6 85 86.24848 –1.24848

6.5 88 89.69091 –1.69091

8
5

8
0

7
5

7
0

6
5

6
0

5
5

2 3 4 5 6

No of hours of study

S
tu
d
e
n
t
s
c
o
re

Figure 5.3 Linear regression plot

178 Data Analytics using R

To compute the five summary points, we write down the number in the ascending order.
(–4.36364, –3.70909, –1.69091, –1.24848, –0.59394, –0.15152, 0.19394, 0.96364, 4.52121,

6.07879)

Minimum: –0.436364

1Q: is at position 3.25.

To get the value at 3.5th position = (–1.69090 + –1.24848)/2 = –1.46969

To get the value at 3.25th position = (–1.69090 + –1,46969)/2 = –1.580295

Median: = (–0.59394 + –0.15152)/2 = –0.37273
(median is at position 5.5)

3Q: is at position 7.75
To get the value at 7.5th position = (0.19394 + 0.96364) / 2 = 0.57879
To get the value at 7.75th position = (0.57879 + 0.96364) / 2 = 0.771215

Maximum: 6.07879

The next section in the model output describes the coefficients of the model.
Theoretically, in simple linear regression, the coefficients are two unknown constants that
represent the intercept and slope terms in a linear model.

Coefficient: Estimate

The coefficient, Estimate contains two rows. The first one is the intercept, which is the mean
of the response Y when all predictors, all X = 0. Note, the mean is only useful if every X
in the model actually has some values of zero. The second row in the Coefficients is the
slope, or in our example, the effect HS_NoOfHours has on Freshmen_Score. The slope
term in our model proves that for every hour increase in the NoOfHours, the required
Freshmen_Score goes up by 6.8848 points.

Coefficient: Standard Error

The coefficient, Standard Error measures the average amount that the coefficient estimates
vary from the actual average value of our response variable. Ideally this should be a lower
number relative to its coefficients.

Coefficient: t-value

The coefficient, t-value is a measure of how many standard deviations our coefficient
estimate is far away from 0. This should be far away from zero as this would enable
us to reject the null hypothesis, i.e., we could declare that a relationship exists between
HS_NoOfHours and Freshmen_Score. The t value is the coefficient divided by the standard
error ((44.9394/3.4210) =13.1363). In general, t-values are also used to compute p-values.

Coefficient: Pr(>t)

The Pr(>t) acronym found in the model output relates to the probability of observing any
value equal or larger than t. A small p-value indicates that it is unlikely we will observe

Linear Regression using R 179

a relationship between the predictor (HS_NoOfHours) and response (Freshmen_Score)
variables due to chance. Typically, a p-value of 5% or less is a good cut-off point.

Note the ‘signif. Codes’ associated with each estimate.
Three stars (or asterisks) represent a highly significant p-value.
A coefficient marked *** is one whose p value < 0.001.
A coefficient marked ** is one whose p value < 0.01, and so on.

Residual Standard Error

Residual standard error is measure of the quality of a linear regression fit. Theoretically,
every linear model is assumed to contain an error term, E which prevents us from perfectly
predicting our response variable from the predictor one. Let us compute the Root Mean
Squared Error (RMSE) which is the square root of the mean squared residual.

Let us consider the student data set given as follows:

NoOfHours Freshmen_
Score

Predicted
value

Residual Value
(Actual Value – Estimated Value)

Square of
Residual

2 55 58.70909 –3.70909 13.75734863

2.5 62 62.15152 –0.15152 0.02295831

3 65 65.59394 –0.59394 0.352764724

3.5 70 69.03636 0.96364 0.92860205

4 77 72.47879 4.52121 20.44133986

4.5 82 75.92121 6.07879 36.95168786

5 75 79.36364 –4.36364 19.04135405

5.5 83 82.80606 0.19394 0.037612724

6 85 86.24848 –1.24848 1.55870231

6.5 88 89.69091 –1.69091 2.859176628

Note: We will demonstrate how to compute the predicted and residual values using
predict() and resid() functions in the following sections.

Residual Standard Error = Square root of (Sum of the squared residuals / Degrees of
freedom in the model).

 d Sum of the squared residuals = 95.95154715
 d Degrees of freedom in the model = 8

Degree of freedom is given by number of rows in the dataset – Number of columns or
variables. There are 10 rows in the student dataset and 2 columns HS$NoOfHours and
HS$Freshmen_Score

i.e., 10 – 2 = 8

Degree of freedom in R can be computed using the df.residual() function.

> df.residual (model_HS)

[1] 8

180 Data Analytics using R

Residual Standard Error = Square root of (95.95154715/8)

Residual Standard Error = Square root of (11.99394339)

Residual Standard Error = 3.463227309

Multiple R-squared, Adjusted R-squared

Multiple R-squared The R-squared (R2R2) statistic provides a measure of how well the
model fits the actual data. It takes the form of a proportion of variance. R2R2 is a measure
of the linear relationship between our predictor variable (HS_NoOfHours) and our
response/target variable (Freshmen_Score). It always lies between 0 and 1 (i.e., a number
near 0 represents a regression that does not explain the variance in the response variable
well and a number close to 1 does explain the observed variance in the response variable).

Multiple R-squared is also called “coefficient of determination”. It gives an idea of how
many data points fall within the results of the line formed by the regression equation. The
higher the coefficient, the higher percentage of points the line passes through when the
data points and line are plotted. If the coefficient is 0.80, then 80% of the points should
fall within the regression line. Values of 1 or 0 would indicate that the regression line
represents all or none of the data, respectively. A higher coefficient is an indicator of a
better goodness of fit for the observations.

To compute multiple R-squared, square the correlation coefficient.

 Multiple R-squared = (correlation coefficient)2

 = (0.9542675)2

 = 0.910626

Adjusted R-squared Adjusted R-squared will decrease if more and more useless variables
are added to a model. However, if you add more useful variables, the adjusted R-squared
will increase. The adjusted R2 will always be less than or equal to R2.

 R2 adjusted =
2(1)(1)

1
1

R N

N p

- -
-

- -

where
 R2 = sample R-square

 p = Number of predictors

 N = Total sample size.

 R2 = 0.910626

 P = 1

 N = 10

 R2 adjusted = 1 – ((0.089374 ¥ 9) / 8)

 R2 adjusted = 1 – ((0.804366)/8)

 R2 adjusted = 1 – 0.10054575

 R2 adjusted = 0.8995

Linear Regression using R 181

F-statistic

F-statistic is a good indicator of whether there is a relationship between predictor and
response variables. The further the F-statistic is from 1, the better it is. However, both the
number of data points and the number of predictors determine how large the F-statistic
should be. Generally, when the number of data points is large, an F-statistic that is only
slightly larger than 1 is sufficient to reject the null hypothesis (H0: There is no relationship
between HS_NoOfHours and Freshmen_Score). The reverse is also true, i.e., if the number
of data points is small, a large F-statistic is required to ascertain that there may be a
relationship between the predictor and response variables. To compute the F statistic,
the formula is

 F = (explained variation/(k – 1))/(unexplained variation/(n – k))

where, k is the no. of variables in the dataset and n is the no. of observations.

 F = (0.910626/1)/((1 – 0.910626)/8)

 F = 0.910626/((0.089374)/8)

 F= 0.910626/0.01117175

 F = 81.51149103

Use predict()

predict() is a generic function for making predictions from the results of various model
fitting functions (Table 5.2).

> pred_HS <- predict(model_HS)

> pred_HS

 1 2 3 4 5 6 7 8

58.70909 62.15152 65.59394 69.03636 72.47879 75.92121 79.36364 82.80606

 9 10

86.24848 89.69091

Table 5.2 Data set with predicted/estimated values of freshmen score

A B C

1 NoOfHours Freshmen_Score Estimated Value

2 2 55 58.70909

3 2.5 62 62.15152

4 3 65 65.59394

5 3.5 70 69.03636

6 4 77 72.47879

7 4.5 82 75.92121

8 5 75 79.36364

9 5.5 83 82.80606

10 6 85 86.24848

11 6.5 88 89.69091

182 Data Analytics using R

Use resid()

Compute the residual values for the data set. The difference between the observed value
of the dependent variable (y) and the predicted value (y^) is called the residual (e). Each
data point has one residual. Both the sum and the mean of the residuals are equal to zero
(Table 5.3).

> ResHS <- resid(model_HS)

> ResHS

 1 2 3 4 5 6 7

-3.7090909 -0.1515152 -0.5939394 0.9636364 4.5212121 6.0787879 -4.3636364

 8 9 10

0.1939394 -1.2484848 -1.6909091

Table 5.3 Data set with residual values

A B C D

1 NoOfHours Freshmen_Score Estimated Value Residual value (Actual value – Estimated value)

2 2 55 58.70909 –3.70909

3 2.5 62 62.15152 –0.15152

4 3 65 65.59394 –0.59394

5 3.5 70 69.03636 0.96364

6 4 77 72.47879 4.52121

7 4.5 82 75.92121 6.07879

8 5 75 79.36364 –4.36364

9 5.5 83 82.80606 0.19394

10 6 85 86.24848 –1.24848

11 6.5 88 89.69091 –1.69091

Compute the sum and mean of the residuals (Table 5.4).

Table 5.4 Sum and mean of residuals is zero

Residual Value (Actual Value – Estimated Value)

–3.70909

–0.15152

–0.59394

0.96364

4.52121

6.07879

–4.36364

0.19394

–1.24848

–1.69091

Sum = zero
Mean = zero

Linear Regression using R 183

A residual plot is a graph that shows the residuals on the vertical axis and the
independent variable on the horizontal axis. If the points in a residual plot are randomly
dispersed around the horizontal axis, a linear regression model is appropriate for the data;
otherwise, a non-linear model is more appropriate (Figure 5.4).

No of hours of study

2 3 4 5 6

–
4

–
2

0
2

4
6

R
e
s
id
u
a
ls

Residual vs. NoOfHours

Figure 5.4 Residual plot

5.4 assuMptions oF linear regression

The model is validated based on the validation of the following assumptions of linear
regression:

(1) Assumptions about the form of the model The linear regression model Y = b0 +
b1x1 + b2x2 + ◊◊◊ + bnxn + e that relates the response Y to the predictors X1, X2 ◊◊◊ Xn, is
assumed to be linear in the regression coefficients b0, b1 ◊◊◊ bn, if the relationship between
the dependent and predictor variable(s) of the model is linear.

(2) Assumptions about the errors: The errors are assumed to be normally distributed with
mean zero and a common variance s2.

This implies four assumptions:

 1. The errors (also called as residues/residuals) of the model are normally distributed.
 2. The errors of the model have a mean of zero.
 3. The errors of the model have the same variance. This is also referred to as

homoscedasticity principle.
 4. The errors of the model should be statistically independent of each other.

These assumptions regarding errors are explained in detail in subsequent sections.

184 Data Analytics using R

(3) Assumptions about the predictors: The predictor variables x1, x2 ◊◊◊ xn are assumed to
be linearly independent of each other. If this assumption is violated, then the problem is
called the collinearity problem.

Check Your Understanding

 1. Which of the following are correct assumptions about errors?

 (a) The errors of the model are normally distributed.

 (b) The errors of the model should be statistically independent of each other.

 (c) The errors of the model have different variance.

 2. The coefficient of determination is defined as:

 (a) SST/SSR (b) SSR/SST

 (c) SSE/SSR (d) SSR/SSE

 Note: SST is sum of squared total (SST), SSR is sum of squared regression (SSR) and

SSE is sum of squared errors (SSE).

 3. The adjusted R2 is preferred over R2 because R2 ________________________.

 (a) Can be inflated artificially by adding more and more predictors

 (b) Can be zero

 (c) Can take negative values

5.5 Validating linear assuMption

5.5.1 Using Scatter Plot

The linearity of the relationship between the dependent and predictor variables of the
model can be studied using scatter plots.

For the provided student data set (with variables, “NoOfHours” and “Freshmen_
Score”), the scatter plot of number of hours of study put in by students (HS$NoOfHours)
against Freshmen_Score (Freshmen_Score) is as shown in Figure 5.5.

It can be observed that the study time (in hours) exhibits a linear relationship with the
score in the freshmen year.

If the relationship is not found to be linear in nature, then a non-linear regression
analysis or a polynomial regression or data-transformation may be adopted for prediction.

5.5.2 Using Residuals vs. Fitted Plot

The assumption of linearity can also be validated using the residuals (errors) plotted
against the fitted values. The fitted values are the predicted values of the dependent

Linear Regression using R 185

variable. The plot of errors vs. fitted values for linear regression model for the student
data set is given as:

Freshmen_Score = b0 + (b1 ¥ NoOfHours) + e

Freshmen_Score = 44.9394 + (6.8848 ¥ NoOfHours) + e

60 65 70 75 80 85 90

Fitted values

Residuals vs Fitted

–
4

–
2

0
2

4
6

R
e
s
id
u
a
ls

7

5

6

Figure 5.6 Residuals vs. fitted plot

It can be observed that the above plot does not follow any specific pattern. This is an
indicator that the relationship between the dependent and predictor variables is linear
in nature. If the residual vs. fitted values plot exhibits any pattern, then the relationship
maybe non-linear.

5.5.3 Using Normal Q-Q Plot

A linear regression model is said to be valid if its errors (residuals) are normally distributed.
A Normal Q-Q plot can be used to validate this assumption.

Figure 5.5 Scatter plot

186 Data Analytics using R

For the student data set, the Q-Q plot for the residuals of the best fit model (Figure 5.7),
suggests that the residuals are normally distributed since the points lie close to normal
line. It is good if residuals are lined well on the straight dashed line.

–1.5

Theoretical Quantiles

S
ta
n
d
a
rd
iz
e
d
re
s
id
u
a
ls

–1.0 –0.5 0.0 0.5 1.0 1.5

Normal Q-Q

–
1
.0

0
.0

1
.0

2
.0

Figure 5.7 Normal Q-Q plot

5.5.4 Using Scale Location Plot

For a linear regression model to be valid for any statistical inference or prediction,
it is essential that the errors (residuals) of the model be homoscedastic in nature.
Homoscedasticity describes a situation in which the error term (i.e., the “noise” or random
disturbance in the relationship between the independent variables and the dependent
variable) is the same across all values of the independent variables.

In statistics, a sequence or a vector of random variables is homoscedastic if all random
variables in the sequence or vector have the same finite variance. This is also known as
homogeneity of variance.1

The homoscedasticity of the residuals obtained for our best fit model can be examined
using the scale-location plot. It is also called spread-location plot. This plot shows if
residuals are spread equally along the ranges of predictors. The scale-location plot depicts
the square rooted standardised residual vs. predicted value obtained using the best fit
model. Standardised residuals are residuals scaled such that they have mean of 0 and
variance of 1.

The linear regression model is said to abide by the homoscedasticity assumption if
there is no specific pattern observed in the scale-location plot. The scale-location plot of
the best fit model for the student data set is as shown below (Figure 5.8).

It can be observed in the above plot that there is no specific pattern. In general, the

homoscedasticity is said to be violated if:
 d The residuals seem to increase or decrease in average magnitude with the fitted

values. This is an indication that the variance of the residuals is not constant.
 d The points in the plot lie on a curve around zero, rather than fluctuating randomly.
 d A few points in the plot lie a long way from the rest of the points.

1 Wikipedia: Homoscedasticity

Linear Regression using R 187

60

Fitted values

|S
ta
n
d
a
rd
iz
e
d
re
s
id
u
a
ls
|

65 70 75 80 85 90

Scale-Location

0
.0

0
.4

0
.8

1
.2

Figure 5.8 Scale location plot

5.5.5 Using Residuals vs. Leverage Plot

This plot is useful in determining the influential cases (i.e., subjects) if any. Not all outliers
are influential in linear regression analysis. There could be a few outliers whose inclusion
or exclusion from analysis would not affect the results a lot. They usually follow the trend
in most cases and they do not really matter. On the other hand, there could be a few
outliers which when excluded from analysis can significantly alter the results.

Here, plot patterns are not relevant. However, observe the outlying values at the upper
right corner or at the lower right corner. These spots are the places where cases can be
influential against a regression line. Look for cases outside of a dashed line, such as Cook’s
distance. Cook’s distance can be defined as, “Data points with large residuals (outliers) and/
or high leverage may distort the outcome and accuracy of a regression. Cook’s distance measures
the effect of deleting a given observation. Points with a large Cook’s distance are considered to
merit closer examination in the analysis.”2 Watch out for cases that are outside of Cook’s
distance (meaning they have high Cook’s distance scores). These cases may influence
the regression results. Exercise caution while excluding such cases as the regression
results may be significantly altered if we exclude them. Refer Figure 5.9 for “Residuals
vs Leverage” plot for the student data set.

Figure 5.9 Residuals vs. plot

2 Wikipedia: Cook’s distance

188 Data Analytics using R

Example 1

Problem statement: Demonstrate the relationship model between predictor and response
variables. The predictor vector stores the heights of persons, whereas the response vector
stores the weights of persons. Print the summary of the relationship. Also determine the
weights of new persons. Visualise the regression graphically.

Step 1: Create the predictor vector, x. The vector, x stores the heights of persons.

> x <- c(152, 175, 139, 187, 129, 137, 180, 162, 151, 130)

Step 2: Create the response vector, y. The vector, y stores the weights of persons.

> y <- c(62, 80, 55, 90, 48, 56, 75, 73, 63, 49)

Step 3: Apply the lm() function.

> relation <- lm(y~x)
> print(relation)

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept) x
-34.7196 0.6473

Step 4: Print the summary of the relationship.

> print(summary(relation))

Call:
lm(formula = y ~ x)

Residuals:
 Min 1Q Median 3Q Max
-6.8013 -0.6989 -0.1445 1.8845 3.6673

Coefficients:
 Estimate Std. Error t Value Pr(>|t|)
(Intercept) -34.7196 7.6651 -4.53 0.00193 **
x 0.6473 0.0493 13.13 1.08e-06 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1

Residual standard error: 3.117 on 8 degrees of freedom
Multiple R-squared: 0.9557, Adjusted R-squared: 0.9501
F-statistic: 172.4 on 1 and 8 DF, p-value: 1.076e-06

Step 5: Find the weight of a person with height 170.
> a <- data.frame(x = 170)
> result <- predict(relation, a)
> print(result)
 1
75.32795

Linear Regression using R 189

Step 6: Visualise the regression graphically by plotting a chart.

> plot(y,x,col = “blue”,main = “Height & Weight Regression”,

+ abline(lm(x~y)),cex = 1.3,pch = 16,xlab = “Weight in Kg”,ylab =

“Height in cm”)

Example 2:

We will work with the “cars” dataset provided
with R. This dataset can be accessed by typing
“cars” at the R prompt. The dataset has 50
observations (rows) and 2 columns, viz., “dist”
and “speed”. Let us print out the first 6 rows
of the car dataset using the head command.

> head(cars)
 speed dist
1 4 2
2 4 10
3 7 4
4 7 22
5 8 16
6 9 10

Problem statement: To be able to predict the
distance (dist) by establishing a statistically
significant linear relationship with the predictor variable (speed).

Step 1: Plot a scatter plot to visually understand the relationship between the predictor
and response variables. The scatter plot indicates a linearly increasing relationship between
the two variables (Figure 5.11).

> scatter.smooth(x=cars$speed, y=cars$dist, main=”Dist ~ Speed”)

Dist ~ Speed

0

C
a
rs
$
d
is
t

5 10 15 20 25

cars$speed

2
0

4
0

6
0

8
0

1
0
0

1
2
0

Figure 5.11 Scatter plot for predictor vs. response variable for “cars” data set

1
8
0

Height & weight regression

1
7
0

1
6
0

1
5
0

1
4
0

1
3
0

H
e
ig
h
t
in
c
m

50 60 70 80 90

Weight in Kg

Figure 5.10 Linear regression between
predictor and response variables

190 Data Analytics using R

Step 2: Spot any outlier observations in the variable by plotting a box plot. We begin by
dividing the graph area into two columns. One column contains the box plot for “speed”
and the second column contains the box plot for “distance” (Figure 5.12).

> par(mfrow=c(1, 2)) # divide graph area in 2 columns

> boxplot(cars$speed, main=“Speed”, sub=paste(“Outlier rows: ”,

 boxplot.stats(cars$speed)$out)) #box plot for ‘speed’

> boxplot(cars$dist, main=“Distance”, sub=paste(“Outlier rows: ”,

 boxplot.stats(cars$dist)$out)) # box plot for ‘distance’
5

1
0

1
5

2
0

2
5

Speed

Outlier rows:

0
2
0

4
0

6
0

8
0

Distance

Outlier rows: 120

1
0
0

1
2
0

Figure 5.12 Box plots

Step 3: Build a linear relationship model. The “coefficients” part has two components,
“intercept” (Intercept = -17.579) and “speed” (speed = 3.932). These are also called the
beta coefficients. In other words, dist = Intercept + (b ¥ speed).

> linearMod <- lm(dist ~ speed, data=cars)

> print(linearMod)

Call:

lm(formula = dist ~ speed, data = cars)

Coefficients:

(Intercept) speed

-17.579 3.932

> print(summary(linearMod))

Call:

lm(formula = dist ~ speed, data = cars)

Linear Regression using R 191

Residuals:
 Min 1Q Median 3Q Max
-29.069 -9.525 -2.272 9.215 43.201

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.5791 6.7584 -2.601 0.0123 *
speed 3.9324 0.4155 9.464 1.49e-12 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1

Residual standard error: 15.38 on 48 degrees of freedom
Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12

Step 4: Visualise the regression graphically by plotting a chart (Figure 5.13).

> plot(cars$dist, cars$speed, col = “blue”, main = “Speed & Distance
Regression”,
+ abline(lm(cars$speed ~ cars$dist)), cex = 1.3, pch=16, xlab =
“Distance”, ylab = “Speed”)

120

5
1
0

1
5

2
0

2
5

100806040200

Distance

S
p
e
e
d

Figure 5.13 Linear regression between predictor and response variables

Check Your Understanding

 1. Which plot is the most appropriate to examine the homoscedasticity of the residuals

obtained for the best fit model?

 (a) Histogram (b) Bar Plot

 (c) Scale-location Plot (d) Heat Map

(Continued)

192 Data Analytics using R

Recommendation Engines

The term, ‘recommender systems’ is widely used nowadays. Recommender

systems are composed of very simple algorithms that aim to provide the

most relevant and accurate information to users by sorting/filtering useful

information from very large databases. Recommendation engines discover

data patterns from a given dataset by learning the consumers’ information

and then producing outcomes that correlate to their needs and interests. In

addition, recommendation engines narrow down the risk that could become

a complex decision to just a few recommendations search. Big data supports

recommendations at an unimaginable level these days.

Recommendation engines work mainly in one of the following two ways,

viz., either they rely on the properties of items with their bread crumps that

a user likes, which are analysed to determine what else the user may like, or

they rely on the likes and dislikes of other users, which the recommendation

engine uses to compute a similarity index between users and recommends

items to them accordingly. It is also possible to combine both these methods

to build a highly-advanced recommendation engine. The main goal is to

achieve the recommended collective information of users for the items that

might interest customers.

These systems have access to user-centric information with profile

attributes, such as demographics and product descriptions. They differ in

the way they interact while analysing the data to develop affinity values

between users and items, which can be used to identify well-matched pairs.

A collaborative filtering system is used for matching and analysing historical

interaction alone, while content-based filtering is used for profiling-based

attributes.

Let us see how we can implement a recommendation engine with a

collaborative memory-based recommendation engine. However, before that

we must first understand the logic behind such a system. To this engine, each

item and each user is nothing but an identifier or token element. Let us take

the example of Netflix. Please note that we will not take any other attribute of

 2. _________ link function is commonly used for generalised linear models with binomial

distribution.

 (a) Logit (b) Inverse squared

 (c) Inverse (d) Identity

C
a
se

 St
u

dy

(Continued)

Linear Regression using R 193

a movie, such as cast, director, genre, etc., into consideration while generating

recommendations for users. The similarity between two users is represented

by using a decimal number between -1.0 and 1.0. We will call this number,

the similarity index. The possibility of a user liking a movie will be represented

by using another decimal number between -1.0 and 1.0. Now that we have

modelled the world around this system using simple terms, we can unleash a

handful of elegant mathematical equations to define the relationship between

these identifiers and numbers.

In our recommendation algorithm, we will maintain a number of sets,

which should represent a member of supersets with all users and identifiers.

Each user will have two sets, viz., a set of movies the user likes and a set of

movies the user dislikes. Each movie will also have two sets associated with

it, viz., a set of users who liked the movie and a set of users who disliked the

movie. During the performance where recommendations start to generate, a

number of sets will be produced, mostly unions or intersections of the other

sets. We will also have ordered lists of suggestions and similar users for each

user.

Similarly, like movies we can use the following recommendations.

Personalised Product Information E-commerce Sites

Such engines help in understanding customers’ preferences on the basis

of their visit on the website. They show the customers the most relevant

recommendation-type products as per their needs or there likes in real time.

Recommendations improve as the cognitive learning improves with regression

about each visitor each time.

Website Personalisation

This is used by many organisations to calculate revenue on the basis of the

number of hits from visitors. It increases their sales and targets new customers

through segmentation into different clusters. It also allows getting in touch

by message-centric methods.

Real-time Notifications

This is used by e-commerce for letting their customers know about the new

top selling brands and available discounts. Such engines help brands build

trust among their customers and create a sense of presence and urgency

while showing real-time notifications of shoppers’ activities on their website.

C
a
se

 St
u

dy

194 Data Analytics using R

 d Models in R are a representation of a sequence of data points.
 d R has different types of models. These are listed below along with their commands:

 c Linear (lm)
 c Generalised linear models (glm)
 c Linear models for mixed effects (lme)
 c Non-linear least squares (nls)
 c Generalised additive models (gam)

 d Linear regression relationship is represented by a straight line when plotted on a graph.
 d General equation of linear regression is y = ax + b.
 d Simple syntax of the lm() function in linear regression is lm(formula,data).

 d F-statistics =
explained variation/(k – 1)

unexplained variation/(n – k)

where, k is the number of variables in the dataset and n is the number of observations.

 d Multiple R-squared = (correlation coefficient)
2

 d Residual is computed by using the resid() function.
 d The predict() function operates on any lm object and generates a vector of predicted values

by default.
 d Standardised residual in R is the ratio of normal residual to its standard deviation of residual.
 d Cook’s distance is used to identify the outliers in X values which are predictor variables.
 d Standard error is the ratio of standard deviation to the square root of the sample size.
 d The coefficient of determination r

2
 is given as:

S - ¢
=

S - ¢

2
2

2

()

()

i

i

y y
r

y y

 d Scatterplot in R can be created in many ways and the basic function is plot(x, y) where x and y are

input vector values that are to be plotted.

Summary

 Ke y Te r m s

 d Cook’s distance: Cook’s distance is used to
identify the outliers in X values, which are
predictor variables.

 d Linear regression: Linear regression is
represented by a straight line when plotted
on a graph.

 d Models: Models in R are a representation
of a sequence of data points.

 d Model fitting: Model fitting is picking the
right model that best describes the data.

 d predict(): predict() is used to obtain
the predicted values in R.

 d Residuals: Residuals are the data of linear
regression, which is the difference between
the observed data of the independent vari-
able y and the fitted values y^.

 d R-squared: The coefficient of determination
(R-squared) of linear regression model is the
quotient of variances of the fitted values
and the observed values of the dependent
variables.

 d Scatterplot: Scatterplot is used in displaying
the relationship of the given input variables.

Linear Regression using R 195

 mu l T i p l e Ch o i C e Qu e s T i o n s

 1. What will be the response variable in the given equation?

 y = ax + b

 (a) a (b) b

 (c) x (d) y

 2. Which function will compute the correlation of x and y, considering x and y are vectors?

 (a) cor() (b) var()

 (c) cov() (d) dvar()

 3. Which function will be used to create a model as per linear regression in R?

 (a) lm() (b) pp()

 (c) biglm() (d) glm()

 4. Which function will be used for making predictions from the results of various model
fitting functions?

 (a) compare() (b) contrasts()

 (c) predict() (d) resid()

 5. Residual is calculated as:

 (a) Residual = y - y^ (b) Residual = y^ - y

 (c) Residual = y ~ x (d) Residual = x ~ y

 6. The ratio of normal residual to its standard deviation of residual is:

 (a) Standardised residual (b) Studentised residual

 (c) Residual (d) R-squared

 sh o r T Qu e s T i o n s

 1. What is model fitting?

 2. What is the general equation for computing linear regression?

 3. What is a response and predictor variable?

 4. What is the syntax of lm() function?

 5. What is a residual?

 6. What is leverage?

 d Standardised residual: Standardised re-
sidual is the ratio of normal residual to its
standard deviation of residual.

 d Studentised residuals: Studentised residual
is the ratio of the normal residual to its
independent standard deviation of residual.

196 Data Analytics using R

 7. What is Cook’s distance?

 8. What is homoscedasticity?

 9. How to find standard error?

 10. How to plot a scatterplot?

 pr a C T i C a l ex e r C i s e s

 1. Consider the “cars” data set. Assume “cars$dist” as the response variable and “cars$speed”
as the predictor variable. Create a model using the lm()function. Explain the below plots
with respect to residuals as per the model:

 (i)

806040200

Fitted values

R
e
s
id
u
a
ls

–
2
0

0
2
0

4
0

Residuals vs Fitted

49

35

23 (ii)

2

Theoretical quantiles

S
ta
n
d
a
rd
iz
e
d
re
s
id
u
a
ls

Normal Q-Q

3
2

1
0

–
1

–
2

10–1–2

35

23

40

 (iii)

0

Fitted values

|S
ta
n
d
a
rd
iz
e
d
re
s
id
u
a
ls
| Scale-Location

1
.5

1
.0

0
.5

0
.0

20 40 60 80

49

35

23 (iv)

0.00

Leverage

S
ta

n
d

a
rd

iz
e

d
re

s
id

u
a

ls

Residuals vs leverage

3
2

1
0

–
2

0.04 0.08

0.5
4923

39
Cook s distance’

Answers to MCQs:

 1. (d) 2. (a) 3. (a) 4. (c) 5. (a) 6. (a)

L E A R N I N G O U T C O M E

At the end of this chapter, you will be able to:

 c Select a suitable logistic regression technique for a problem statement

 c Create binomial, multinomial and ordinal logistic regression models

 c Determine the prediction accuracy of a logistic regression model

 c Predict the outcome of a data point using a logistic regression model

6.1 intRoduction

Logistic regression helps to describe the relationship between a dependent binary
(dichotomous) variable and one or more nominal (also called as categorical variable.
These variables have two or more categories without necessarily having any kind of
natural order), ordinal (they have a clear ordering of the categories), interval (where the
differences between values are meaningful and more often equally split) or ratio level
independent variables (variables have a natural zero point).

In order to facilitate easy understanding, this section discusses the commonly asked
questions in data science, explains regression, types of regression, significance of logistic
regression and why we cannot stick to using only linear regression.

Let us ponder for a while on the commonly asked questions in data science (data science
is also known as data-driven science. It is an interdisciplinary field that encompasses
scientific methods, processes and systems with an intent to extract knowledge or gain
insights from data in various forms, either structured or unstructured.)

Logistic Regression

Chapter 6

198 Data Analytics using R

Commonly asked questions in data science Algorithms used to provide the answers

Is this A or B?
Example:

 d Is this an apple or an orange?
 d Is this a pen or a pencil?
 d Is it sunny or overcast?
 d Email spam classification
 d A bank loan officer wants to determine which

customers (loan applicants) are risky or which
are safe based on the analysis of the data.

Classification algorithm

Is this weird?
Example:

 d Fraud detection: Detecting credit card frauds
 d Surveillance

Anomaly detection algorithm. It is also referred to as
outlier detection. These algorithms help with identify-
ing items, events or observations that do not conform
to an expected pattern or other items in a dataset.

Quantifiable questions such as, “How much or how
many?”
Examples:

 d Predicting house prices with increase in sizes
of houses.

 d Determining relationship between the hours of
study a student puts in, with respect to his/her
exam results.

 d How many goals will be scored in the basketball
match today?

 d What will be the day’s temperature in the city
tomorrow?

Regression algorithm
(Refer chapter 5)

How is this organized? Clustering algorithm
(Refer chapter 9)

What should I do next?
Example:

 d Robot uses deep reinforcement learning to pick
a device from one box and put it in a container.
Whether it succeeds or fails, it memorises the
object and gains knowledge and train’s itself to
do this job with great speed and precision.

Reinforcement learning. It helps with making a de-
cision. Reinforcement learning is a type of machine
learning, and thereby also a branch of artificial intel-
ligence. It allows machines and software agents to
automatically determine the ideal behaviour within
a specific context, in order to maximise its perfor-
mance.

6.2 What is RegRession?

Regression analysis is a predictive modeling technique. It estimates the relationship
between a dependent (target) and an independent variable (predictor).

Example: A regression model can be used to predict the height of children with data given
about their age, weight and other factors.

Logistic Regression 199

0 1 2–3 –2 –1

50

0

–50

–100

–150

Figure 6.1 Linear regression

Refer Figure 6.1 and note that as X increases, Y also increases. X can increase
independently of Y but Y will increase in accordance to X. So, X is the independent
variable and Y is the dependent variable.

There are essentially three types of regression:
 1. Linear regression: When there is a linear relationship between independent and

dependent variables it is known as linear regression (Figure 6.1).
 2. Logistic regression: When the dependent variable is categorical (0/1, True/False,

Yes/No, A/B/C) in nature it is known as logistic regression (Figure 6.2).

S

x

Y

Figure 6.2 Logistic regression

 As can be seen from Figure 6.2, Y’s value is zero for certain values of X and Y’s
value is one for certain values of X. After the value 4 on the X-axis, the value of Y is
becoming 1. We say it is undergoing a transition to become 1. This transition is the
S or sigmoid curve.

 3. Polynomial regression: When the power of the independent variable is more than
1 then it is referred as polynomial regression (Figure 6.3).

200 Data Analytics using R

50

0 1 2 3 4 5 6 7

100

150

200

250

300

350

400

450

Figure 6.3 Polynomial regression

6.2.1 Why Logistic Regression?

Whenever the outcome of the dependent variable(y) is discrete, like 0/1, Yes/No, or
A/B/C, we use logistic regression.

Example: Let us ask a question, “Is this animal a rat or an elephant?” The answer to
this question is either a rat or an elephant. You cannot say it is a dog.

6.2.2 Why can’t we use Linear Regression?

In linear regression Y’s value is in a range but in our case Y’s value is discrete, i.e., the
value will either be 0 or 1. If you look at the best fit line for linear regression, it is crossing
1 and is also below 0. However, in logistic regression it cannot be below zero or above
1 (Figure 6.4).

X axis

0

Y axis

1

Figure 6.4 Best fit line crosses 1 and is also below 0

Logistic Regression 201

We will have to clip the best fit line of linear regression at 0 and 1 (Figure 6.5).

X

Y

Figure 6.5 Best fit line is clipped at 0 and 1

The resulting curve cannot be formulated into a single formula. There is a need to find
a new way to solve this problem. Therefore, logistic regression (Figure 6.6).

6.2.3 Logistic Regression

Figure 6.6 Logistic regression

Logistic regression gives a probability, i.e., what are the chances that Y will become 1.
Assume your college is playing a basketball match. Your team has scored 10 baskets.

Assume the model calculates the probability of winning as 0.8. This probability is
then compared with the threshold value. Assume the threshold value is fixed at 0.5. If
probability is above threshold, Y will be 1 otherwise it will be 0.

Equation for a straight line:

Y = C + B1X1 + B2X2 + … Range of Y is from – (infinity) to infinity

202 Data Analytics using R

Let us try to deduce the logistic regression equation from this equation.

Y = C + B1X1 + B2X2 + … (in logistic equation Y can only be between 0 and 1)

Now, to get the range of Y between 0 and infinity, let us transform Y.

=

=

¸
˝- ˛

0|0

1|infinity
1

Y

Y

Y

Y

Now the range is between 0 and infinity. Let us transform it further to get the range
between (infinity) and infinity.

Ê ˆ Ê ˆ
ÆÁ ˜ Á ˜- -Ë ¯ Ë ¯ 1 1 2 2log log = + + + ...

1 1

Y Y
C B X B X

Y Y

Thus, logistic regression is a regression model where the dependent variable is
categorical.

Categorical Æ variables that can have only fixed values such as A/B/C or Yes/No
Dependent Æ Y = f(X), i.e., Y is dependent on X.
The chapter presents detailed explanation of logistic regression, binary logistic

regression and multinomial logistic regression.

6.3 intRoduction to geneRalised lineaR Models

Generalised linear model (glm) is a flexible generalisation of ordinary linear regression that
allows for response variables that have error distribution models other than a normal
distribution. Several subtypes of generalised linear models are available. These are
logistic regression, Poisson regression, survival analysis, etc. The focus of this chapter is
on “logistic regression”.

Generalised linear model (glm) is an extension of usual regression models through a link
function. It allows the mean to depend on explanatory variables. The response variable
is any member of set of distributions called the exponential family like normal, Poisson
and binomial distributions.

The built-in command or function glm() of R language executes GLMs. The glm()
function performs regression on binary outcome data, probability data, count data, proportion
data and other data types. GLM is similar to other ordinary linear models except that it
requires an extra parameter to identify variance and link functions.

The major components of glm are:
 d A random component:

 r It identifies dependent variable (response) and its probability distribution.

 r This categorises the response variable Y and its probability distribution.

 r The random component of glm consists of a response variable Y with independent
observations (y1, y2 . . .yn) from a distribution in the natural exponential family.

Logistic Regression 203

 d A systematic component:
 r It identifies a set of explanatory variables that are used in a linear predictor

function.

 d A link function:
 r It defines the relationship between a random and systematic component.

The syntax of glm() command is:

glm(formula, family = family type(link = linkfunction), data,…)

where, “formula” argument defines the symbolic description of the model to be fitted,
“data” argument is an optional argument that defines the dataset, the dots “…” define
the other optional arguments, “family” argument defines the link function to be used in
the model.

Table 6.1 describes the different types of families and their default link functions used
in glm function.

Table 6.1 Types of families and their default link functions

Family Default link function

Binomial (link = “logit”)

Gaussian (link = “identity”)

Gamma (link = “inverse”)

Inverse Gaussian (link = “1/mu^2”)

Poisson (link = “identity”, variance = “constant’)

Quasi (link = “logit”)

Quasi Binomial (link = “log”)

Check Your Understanding

 1. What do you mean by glm?

 Ans: Generalised linear model (glm) is an extension of usual regression models through a

link function.

 2. What is the role of random components in the glm model?

 Ans: A random component identifies the dependent variable (response) and its probability

distribution in the glm model.

 3. What is the role of the systematic component in the glm model?

 Ans: A systematic component identifies a set of explanatory variables in the glm model.

 4. What is the role of the link function in the glm model?

 Ans: The link function defines the relationship between a random and systematic component

in the glm model.

204 Data Analytics using R

6.4 logistic RegRession

Logistic regression (LR) is an extension of linear regression to environments that contain

a categorical dependent variable. LR is a part of GLM and uses the glm() command to fit

the regression model. In LR, the parameter estimation is carried out through a maximum

likelihood estimator. LR is derived from the logistic function given below:

p= = =
+

(1)
1

Z

Z

e
P Y

e

The main objective of LR is to estimate how the probability of an event affects one or

more explanatory variables. For LR, the following conditions are to be satisfied:
 d An outcome variable with two categorical results, viz., 0 and 1.
 d Proper estimation is required to know the probability P of an observed value of the

outcome variable.
 d The outcome variable must be related to the explanatory variables, which are done

through logistic function.
 d Proper estimation of coefficients of the regression equation must be developed.
 d The regression model should be tested to check if it fits the intervals of the coef-

ficients.

6.4.1 Use of Logistic Regression

Logistic regression is mostly used to solve classification problems, discrete choice models

or to find the probability of an event.
 d Classification problems: Classification problems are an important category of prob-

lems in which a decision maker classifies the customers into two or more categories.

For example, customer churn is a very common problem that any industry or com-

pany faces. The reason why it is an important problem is that customer acquisition

or acquisition of new customers and its costs are much higher than retaining existing

customers or the cost of retaining existing customers. So many companies prefer to

know customer churn or at least an early warning about a customer churn. Hence,

LR is the best option to solve problems where the outcome is either binomial or

multinomial.
 d Discrete choice model: Discrete choice model (DCM) estimates the probability about

customers who select a particular brand over several available alternative brands.

For example, a company would like to know why customers opt for a particular

brand and their motivation behind it. LR analyses such probabilities as well.
 d Probability: Probability measures the possibility of the occurrence of any event. LR

finds out the probability of an event.

Logistic Regression 205

6.4.2 Binomial Logistic Regression

Binomial or binary logistic regression (BLR) is a model in which the dependent variable
is dichotomous. The expression is as follows:

p= = =
+

(1)
1

Z

Z

e
P Y

e

where, Y can take two values, i.e., 0 or 1 and the independent variable can be of any type.
Hence, the explanatory variables are either continuous or qualitative.

6.4.3 Logistic Function

Logistic function or sigmoidal function is a function that estimates various parameters
and checks whether they are statistically significant and influence the probability of an
event. The formula of the logistic function is as:

p

b b b b

=
+

= + + +º+0 1 1 2 2

()
1

z

z

n n

e
z

e

z x x x

where, x1, x2…xn are the explanatory variables.
The logistic function with one explanatory variable is given as:

a b
p

a b

+
= = = =

+ +
()

(1|) ()
1 ()

exp x
P Y X x x

exp x

 d When b = 0, it implies that P(Y|x) is the same for each value of x, i.e., there is no
statistically significant relationship between Y and X.

 d When b > 0, it implies that P(Y|x) increases as the value of X increases, i.e., the
probability of the event increases as the value of X increases.

 d When b < 0, it implies that P(Y|x) decreases as the value of X increases, i.e., the
probability of Y decreases as the value of X increases.

6.4.4 Logit Function

Logit function is the logarithmic transformation of the logistic function. It is defined as
the natural logarithm of odds. Some logit models with only categorical variables have
equivalent log-linear models. The formula of the logistic function is:

p
p b b

p

Ê ˆ
= = +Á ˜-Ë ¯ 0 1 1Logit() 1

1
n X

Logit of a variable p is given by,

p

p
=

-
odds

1

206 Data Analytics using R

Logistic Regression Parameters

Odds and odds ratio are two LR parameters. They are explained as given:
Odds is defined as the ratio of two probability values and is given as:

p

p
=
-

()

l ()

x
odds

x

Odds ratio (OR) is the ratio of two odds and as per the logit function it is given as:

p
b b

p

Ê ˆ
= +Á ˜-Ë ¯ 0 1 1

()
ln

l ()

x
x

x

Consider x to be an independent variable, i.e., covariate. Then the odds ratio OR is
defined as the ratio of the odds for x = 1 to the odds for x = 0.

For x = 0,

p
b

p

Ê ˆ
=Á ˜-Ë ¯ 0

()

l ()

x

x
 (1)

For x = 1,

p
b b

p

Ê ˆ
= +Á ˜-Ë ¯ 0 1

(l)
ln

l (l)
 (2)

Subtracting equation (1) from equation (2), we get,

p p
b

p p

Ê ˆ-
= Á ˜-Ë ¯l

(l)/(l (l))
ln

(0)/(l (0))

Hence, we can conclude that b1 captures the change in the log odds ratio. The expression
can be rewritten as

b p p

p p

+ - +
= =

- +
l

(1)/(1 (1))
Change in odds ratio

()/(1 (1))

x x
e

x x

Hence, a change in the explanatory variable also produces a change in the odds ratio.
Suppose the value of odds ratio is 2, then the event is twice likely to occur when x = 1

compared to x = 0. Now, the x value changes when the odds ratio approximates the
relative risk whether the risk increases or decreases.

6.4.5 Likelihood Function

Likelihood function [L(b)] represents the joint probability or likelihood of observing
the collected data. This function also summarises the evidence of data about unknown
parameters.

Logistic Regression 207

Consider the following n observations of a dataset: x1, x2…xn. Their corresponding
distribution is f(x,q), where q is the unknown parameter. Then, the likelihood function
is L(q) = f(x1, x2…xn, q) which is the joint probability density function of the sample. The
value of q, q* which maximises L(q) is called the maximum likelihood estimator of q.

Take another example in which a dataset follows an exponential distribution with n
observations (x1, x2…xn). For exponential distribution, the probability density is given by,

f(x, q) = qe–qx

The equations below then represent the likelihood function as

L(x, q) = f(x1, q) ◊ f(x2, q) … f(xn, q)

By replacing the density function in the above expression, you will get an expression
that represents the joint probability as:

1 1x x

1

Joint probabilty ... n

n
x n

i
i

e X e X e e xqq qq q q q q-- -

=

= = - Â

Just Remember

Use log-likelihood function instead of handling the likelihood function. The log-likelihood function is given as

q q q
=

= - Â
1

Ln((,)) 1
i

i

n

L x n n x

Inbuilt R Language Function for Finding Likelihood Function

R language provides two functions, viz., nlm() and optim() for finding out the likelihood
function.

nlm() Function

The nlm() function performs a non-linear minimisation and minimises the function using
a Newton-type algorithm. In simple words, the nlm() function minimises arbitrariness
of any user-defined function that is written in R and maximises its likelihood. Hence,
to maximise the likelihood, the negative of the log likelihood is used. The syntax of the
nlm() function is

nlm(f,p,…).

where, “f” argument defines a function to be minimised. The function should return a
single value. “P” argument starts parameter values for minimisation and the dots “…”
define the other optional arguments.

In the following example, a simple function f is finding the sum of (n-1)^2. The nlm()
function estimates the likelihood function of f as shown in Figure 6.7.

208 Data Analytics using R

Figure 6.7 Example of nlm() function

optim() Function

The optim() function performs a general-purpose optimisation and optimises a function
using a Nelder-Mead, conjugate-gradient and quasi-Newton algorithm. The syntax of the
optim() function is optim(par,fun,…)

where, “par” argument defines the starting parameter values for optimisation and “fun”
argument defines a function to be minimised or maximised. The function should return
a scalar value. The dots “…” define the other optional arguments.

In the following example, the same function f from the previous example has been
used. The optim() function performs the optimisation of the given function as shown
in Figure 6.8.

6.4.6 Maximum Likelihood Estimator

Maximum likelihood estimator (MLE) estimates the parameters in LR. It is a statistical
model to estimate model parameters of a function. For a given dataset, MLE chooses the
values of model parameters that make the data ‘more likely’ than other parameter values.
For finding out MLE, it is necessary to select a model that has one or more unknown
parameters for the data.

Logistic Regression 209

Figure 6.8 Example of optim() function

Inbuilt R Language Function mle() for Finding Maximum Likelihood

Estimator

R language provides an inbuilt function mle() of the package ‘stats4’ for MLE. The mle()
function finds or estimates the parameters by using the maximum likelihood method.
The syntax of mle() function is:

mle(miunslog1, start = formals(minuslog1), method = “BFGS”, …)

where, “miunslog1” is a function to calculate negative log-likelihood, “start” argument
contains the initial values for optimisers, “method” defines the optimisation method and
the dots “…” define the other optional arguments.

The mle() function requires a function that calculates the negative log-likelihood. For
this, the mle() function can use nlm() or optim() function.

In the following example, the mle() function is finding MLE of the simple function f
(Figure 6.9).

Another Example for an LR Model

The following example defines MLE for an LR model. For fitting a logistic model, optim()
or nlm() functions are required. Figure 6.10 describes the general code of the likelihood
function, where log-likelihood function is used. Figure 6.11 is reading a table ‘Student.
data’, where ‘Annual.attendance’ is a predictor that is predicting the column ‘Eligible’.
The glm() function implements this dataset. The optim() function is finding MLE of the
table Studata.csv.

210 Data Analytics using R

Figure 6.9 Example of mle() function

Figure 6.10 Likelihood function definition for logistic regression model

Logistic Regression 211

Figure 6.11 Maximum likelihood estimation of logistic regression model

(Continued)

Check Your Understanding

 1. What do you mean by LR?

 Ans: Logistic regression (LR) is an extension of linear regression to environments that

contain a categorical dependent variable.

 2. Which function is used to implement LR?

 Ans: The glm() function is used to implement LR.

 3. What are the uses of LR?

 Ans: Logistic regression is used to solve classification problems, discrete choice models and

to find the probability of an event.

 4. What is BLR?

 Ans: Binomial or binary logistic regression (BLR) is a model in which the dependent variable

is dichotomous.

212 Data Analytics using R

6.5 BinaRy logistic RegRession

This section will describe the concept of BLR, BLR with a single categorical predictor,
three-way and k-way tables and continuous covariates.

6.5.1 Introduction to Binary Logistic Regression

Logistic regression is conducted if a dependent variable is binary and it is a predictive
analysis. It also describes data and explains the relation between single binary and multiple
independent variables (explanatory variables or predictors). Binary logistic regression is a
type of LR that defines the relationship between a categorical response variable and one
or more explanatory variables. These explanatory variables can be either continuous or
categorical. It makes an explicit distinction between a response variable and explanatory
variables.

In simple words, a BLR finds out the probability of success according to the given values
of the explanatory variables. The following function defines the BLR model.

p
p b b

p

Ê ˆ
= = +Á ˜-Ë ¯ 0 1Logit() 1

1
i

i i
i

n x

or
b b

p
b b

+
= = = =

+ +
0 1

0 1

()
Pr(1|)

1 ()
i

i i i i
i

exp x
Y X x

x

 5. What are the parameters of the logit function?

 Ans: Odds and odds ratio are the two parameters of the logit function.

 6. What is MLE?

 Ans: Maximum likelihood estimator (MLE) estimates the parameters of a function in LR. For

a given dataset, MLE chooses the values of model parameters that make the data ‘more

likely’ than other parameter values.

 7. What is a likelihood function?

 Ans: Likelihood function [L(b)] represents the joint probability or likelihood of observing

the collected data.

 8. Which functions are used to find out the likelihood function?

 Ans: The nlm() and optim() functions are used to find out the likelihood function.

 9. Which function is used to find MLE?

 Ans: The mle() of the package ‘stats4’ is used to find out MLE.

Logistic Regression 213

where, Y defines the binary response variable, Yi = 1 defines the condition is true in

observation i and Yi = 0 defines the condition is not true in observation i, X defines the

set of explanatory variables that can be either discrete, continuous or combination of both.

Model Fit

There are different types of statistical methods available, such as Pearson chi-square

statistic [X2], deviance [G2], likelihood ratio test and statistic [DG2] and Hosmer-Lemeshow

test to check the goodness of statistics of the BLR model.

Parameter Estimation

Maximum likelihood estimator estimates the parameters in the binary logistic model.

MLE uses some iterative algorithms like Newton-Raphson or iteratively re-weighted

least squares (IRWLS) for estimating these variables. The following function describes

the function that finds out parameters for the BLR model:

b b p p -

=
= -’ i

0 1 i
1

Logit(,) (1) i i

N
y n y

i
i

or

b b

b b=

+
+ +’ 0 1

0 1 i1

exp{ ()}

1 exp()

N
i i

i

y x

x

Also, users can use mle(), nlm() or optim() functions for finding MLEs for any LR.

6.5.2 Binary Logistic Regression with a Single Categorical Predictor

Binary logistic regression with a single categorical predictor uses a categorical variable to

fit data into the BLR model. When a single categorical variable is applied on the above-

defined BLR model, the following model is obtained:

p = Pr(Y = 1|X = x)

where, Y is a response variable and X is an explanatory variable.

In the following example, a dummy data table ‘Studata1.csv’ explains the BLR with a

single categorical predictor. The table contains information about annual attendance and

annual scores of 15 students. The students are eligible to appear in the entrance exam if

they clear both criteria, viz., annual score and annual attendance. Based on the annual

score and annual attendance, the eligibility to appear or not for the entrance exam will be

assessed. Table 6.2 puts the value 1 if students clear both criteria, otherwise 0. With the

information of these tables, it is found that 6 out of 15 students clear the annual attendance

and 5 out of 15 students clear the annual score. Table 6.2 summarises this data.

214 Data Analytics using R

Table 6.2 Summarised data

Clear [1] Not Clear[0]

Attendance 6 9

Annual Score 5 10

Here, the annual score and annual attendance are response variables and eligibility is
a single categorical variable. A response vector is created for Table 6.2. Also eligibility
factor is created using the as.factor() function. The glm() command fills the data to
the BLR model (Figure 6.12).

Figure 6.12 Binary logistic regression with a single categorical predictor

Figure 6.13 provides a summary of the example. The information from the summary
can be used to check the fitting of the model. The fitted model of the dummy data is:

Logit (p) = –0.6931 + 0.2877 el

Here, el is a dummy variable that takes 1 if at least one student clears the eligibility
criteria and 0 if no one clears the eligibility criteria. Also, users can use the mle()
function for finding MLE of a given dataset, as described in Section on Maximum Likelihood
Estimator.

Logistic Regression 215

Figure 6.13 Binary logistic regression summary

Example:

Objective: To predict whether a car will have a V-engine or a straight engine based on

our inputs.

Perform the following steps to build the model:

Step 1: Divide the data set into training data and testing data. We will use the variables

“training” and “testing” to store the data subsets. The variable “training” will hold 80%

of the data and the remaining 20% of the data will be stored in the “testing” variable.

Step 2: Build the model (i.e., estimate the regression coefficients) using the training data

subset.

Step 3: Use the model to estimate the probability of a success, i.e., p = the probability that

the car is likely to have a “V-engine”.

Step 4: Determine a threshold probability based on domain knowledge (in this example

we have assumed it to be 0.5).

216 Data Analytics using R

Step 5: Use the estimated probability to classify each observation of the test data as a
“Yes” (V-engine) or a “No” (S- (straight) engine).

Step 6: Compare the predicted outcomes of the test data with the actual values and
compute the “prediction accuracy”.

Step 7: We will be using the “mtcars” dataset. Let us look at the data held within the
“mtcars” dataset. The data was extracted from the 1974 Motor Trend US magazine and
comprises fuel consumption and 10 aspects of automobile design and performance for
32 automobiles (1973–74 models). – R documentation.

Logistic Regression 217

Step 8: Let us look at the structure of the dataset, “mtcars”. This dataset has 32 observations
of 11 variables.

Let us take a look at what these variables are:

mpg Miles/(US) gallon

cyl Number of cylinders

disp Displacement (cu.in.)

hp Gross horsepower

drat Rear axle ratio

wt Weight (1000 lbs)

qsec 1/4 mile time

vs V/S

am Transmission (0 = automatic, 1 = manual)

gear Number of forward gears

carb Number of carburetors

Step 9: Let us load the package “caTools”. This package has the “sample.split()”
function. This function will be used to split the data into test and train subsets.

> library(caTools)

Step 10: Use the sample.split() function to split the data into test and train subsets.
The splitting ratio is 0.8, i.e., 80:20 ratio. We plan to use 80% of the data as training data
to train the model and the remaining 20% of the data as testing data to test the model.

> split <-sample.split(mtcars, SplitRatio = 0.8)

> split

[1] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE FALSE TRUE

The “TRUE” represents 80% of the data and “FALSE” represents the remaining 20%
of the data.

218 Data Analytics using R

Step 11: Store 80% of the data into the variable “training”.

Step 12: Store the remaining 20% of the data into the variable “testing”.

> testing <- subset(mtcars, split == “FALSE”)

Step 13: Use the glm() function to create the model. glm is used to fit generalised linear
models. A typical predictor has the form response ~ terms where response is the (numeric)
response vector and terms is a series of terms which specifies a linear predictor for
response. For binomial and quasibinomial families the response can also be specified as a
factor (when the first level denotes failure and all others success) or as a two-column matrix
with the columns giving the numbers of successes and failures. A terms specification of
the form first plus second indicates all the terms in the first together with all the terms
in the second and any duplicates removed. – R documentation.

Logistic Regression 219

> model <- glm(formula = vs ~ wt + disp, family = “binomial”, data = training)
> model

Call: glm(formula = vs ~ wt + disp, family = “binomial”, data = training)

Coefficients:
(Intercept) wt disp
 1.15521 1.29631 –0.03013
Degrees of Freedom: 22 Total (i.e. Null); 20 Residual
Null Deviance: 28.27
Residual Deviance: 15.77 AIC 21.77

Here, “Null Deviance” shows how well the response variable is predicted by a model
that includes only the intercept (grand mean). “Residual deviance” shows how well the
response variable is predicted with inclusion of the independent variables.

Step 14: Use the predict function. predict() is a generic function for predictions from
the results of various model fitting functions.

Step 15: Check the accuracy of the model by using the table() function. table() uses
the cross-classifying factors to build a contingency table of the counts at each combination
of factor levels. Here, the “ActualValue” represents the values as how it appears in the
dataset. The “PredictedValue” is the value predicted by our model. Let us try and explain
this. When the actual value in the dataset for the variable, “vs” was “0”, our model also
predicted “0”. However, when the actual value in the dataset was “1”, our model predicted
“1” six times correctly but also reported “0” incorrectly once.

> (table (ActualValue=testing$vs, PredictedValue=res>0.5))
 PredictedValue
ActualValue FALSE TRUE
 0 2 0
 1 1 6

Step 16: The equation below shows that our model is accurate 88.9% times. This is
definitely good accuracy for the model.

> (2+6) / (2+0+1+6)

[1] 0.8888889

6.5.3 Binary Logistic Regression for Three-way and k-way Tables

A three-way contingency table contains cross-classification of observations using the level
of three categorical variables. Just like three-way contingency table, k-way contingency

220 Data Analytics using R

table contains cross-classification of observations and uses k-way categorical variables.
Binary logistic regression for three-way and k-way contingency tables uses three or
k-categorical variables for fitting data to BLR model. When these tables are applied on
the above defined BLR model, the following model is obtained:

0 1 1 2 2Logit() X X
1

p
p b b b

p

Ê ˆ
= = + +Á ˜-Ë ¯

where, X is the explanatory variable.
The following example uses the same dummy data table “Studata1.csv” used in the

previous example with an additional column. A new table “Studata1.csv” stores all the new
information. The new column stores the information about the internal exams indicating
whether students clear the internal exam or not. Table 6.3 summarises this data.

Table 6.3 Summary data with additional new data

 Clear Not Clear

Attendance 6 9

Annual Score 5 10

Internal Exam 15 0

The glm() command is also fitting the table to the BLR model. Figure 6.14 describes
the model fitting while Figure 6.15 describes the result.

Figure 6.14 Binary logistic regression for the three-way table

Logistic Regression 221

Figure 6.15 Summary of the model for the three-way table

6.5.4 Binary Logistic Regression with Continuous Covariates

A covariate variable is a simple variable that predicts the outcome of another variable.
Explanatory, independent and predictor are some of the other names of a covariate
variable. A covariate variable may either be discrete or continuous. The BLR with
continuous covariates follows the general concept of the LR where a predictor variable
predicts the outcome of the response variable. Users may make some adjustments for
getting a more accurate answer.

The following example is reading a table “Studata.csv” that contains two columns
described in Table 6.4. The column “annual attendance” stores the annual attendance.
There is another column “eligibility”. Here “annual attendance” is a covariate (predictor)
that predicts the values of the “eligibility” column (response). If the “annual attendance”
is less than 175, then “eligibility” is 0 else ‘annual attendance’ is 1. The glm() function
is implementing this data and is described in Figure 6.16 while a summary of the same
is described in Figure 6.17.

222 Data Analytics using R

Table 6.4 Dummy data of annual attendance and eligibility criteria of 15 students

Student Name Annual Attendance Eligibility

Student1 256 1

Student2 270 1

Student3 150 0

Student4 200 1

Student5 230 1

Student6 175 1

Student7 140 0

Student8 167 0

Student9 230 1

Student10 180 1

Student11 155 0

Student12 210 1

Student13 160 0

Student14 155 0

Student15 260 1

Figure 6.16 Binary logistic regression with continuous covariate

Logistic Regression 223

Figure 6.17 Binary logistic regression with continuous covariate summary

Use cases
 d “Customer loyalty” is of utmost importance to any business. Businesses the world

over execute several programs/schemes to retain their customers. One such busi-
ness firm wants to arrange for an early intervention process or processes to reduce
customer churn. This is possible if they are able to predict when a customer is likely
to churn, much ahead of time.

 d Banks stores the transaction records for each customer. They study these transaction
records in order to determine if a transaction is fraudulent.

 d Logit analysis is used by marketers to assess customer acceptance of a new product.
It attempts to determine the intensity or magnitude of customers’ purchase inten-
tions and translates that into a measure of actual buying behavior. Many e-commerce
websites assess this behavior using this model.

Check Your Understanding

 1. Which function is used by BLR?

 Ans: BLR uses the following function:

(Continued)

224 Data Analytics using R

6.6 diagnosing logistic RegRession

After fitting the model, it is necessary to check the model. Different types of diagnostic
methods are available for checking the logistics model. According to the type of dataset
and research, users can select diagnostic methods and interpret the output. R provides an
inbuilt package ‘LogisticDx’ that provides various methods for diagnosing the logistics
regression model. The dx(), gof(), or(), and plot.glm() are the major diagnostic
functions of the ‘LogisticDx’ package. Some major diagnostics are explained ahead.

i
0 1

i

Logit() 1n
1

i ix
p

p b b
p

Ê ˆ
= = +Á ˜-Ë ¯

 or

0 1 i

0 1

exp()
Pr(1|)

1 ()
i i i i

i

x
Y X x

x

b b
p

b b

+
= = = =

+ +

 where,

 Y defines the binary response variable, Yi = 1 defines the condition is true in observation

i, Yi = 0 defines the condition is not true in observation i and X defines the set of

explanatory variables that can be either discrete, continuous or a combination of both.

 2. What is a three-way contingency table?

 Ans: A three-way contingency table contains cross-classification of observations that use the

level of three categorical variables.

 3. What is a covariate variable?

 Ans: A covariate variable is a simple variable that predicts the outcome of another variable.

 4. List the names of major statistical methods used to check the goodness of statistics of

the BLR model.

 Ans: Some major statistical methods used to check the goodness of statistics of the BLR

model are:

 d Pearson chi-square statistic [X2]

 d Deviance [G2]

 d Likelihood ratio test and statistic [DG2]

 d Hosmer-Lemeshow test and statistic

Logistic Regression 225

6.6.1 Residual

Residual is a common measure influence that identifies potential outliers. Pearson and
deviance residual are two common residuals. Pearson residual assesses how predictors are
transformed during the fitting process. It uses mean and standard deviation for assessment.
Deviance residual is a best diagnostic measure when individual points are not fitting well
by the model. One of the functions dx() of the package ‘LogisticDx’ performs the diagnosis
of the model. After passing the logistics regression model object into the function dx(), it
returns the Pearson and deviance residual, along with the other parameters. Figure 6.18
describes all return values of the dx() function.

Figure 6.18 Diagnosis of model using dx() function

6.6.2 Goodness-of-Fit Tests

Different methods check the goodness of statistics of the BLR model. It is best to use the
inbuilt function gof() of the package ‘LogisticDx’ to check the goodness-of-fit tests for
the logistics regression model. Figure 6.19 describes the generated output of the gof()
function.

6.6.3 Receiver Operating Characteristic Curve

Receiver operating characteristic curve is a plot of specificity (False positive rate) against
sensitivity (True positive rate). The area under the ROC curve quantifies the predictive
ability of the model. If the value under the curve is equal to 0.5, then the model can
randomly predict. If the value is close to 1, then the model can do a good prediction.

226 Data Analytics using R

Figure 6.19 Diagnosis of model using gof() function

Check Your Understanding

 1. What is Pearson residual?

 Ans: Pearson residual assesses how predictors are transformed during the fitting process. It

uses mean and standard deviation for assessment.

 2. What is deviance residual?

 Ans: Deviance residual is the best diagnostic measure when individual points are not fitting

well by the model.

 3. What is ‘LogisticDx’?

 Ans: ‘LogisticDx’ is an R package that provides functions for diagnosing the LR model.

 4. What are the major diagnostic functions of the ‘LogisticDx’ package?

 Ans: dx(), gof(), or(), and plot.glm() are some major diagnostic functions of the

‘LogisticDx’ package.

 5. What is the use of gof()?

 Ans: The gof() function of ‘LogisticDx’ package checks the goodness-of-fit tests for the LR

model.

Logistic Regression 227

6.7 MultinoMial logistic RegRession Models

Multinomial logistic regression (MLR) is a type of linear regression where more than two
levels of independent variables (predictors) predict the outcome of the dependent variable
(response variable). MLA uses a dependent variable as a nominal variable because a nominal
variable has no intrinsic ordering. For example, strong performance, average performance
or weak performance has no ordering, instead each one represents a different category.

MLP is an extension of the BLR that describes the relationship between these nominal
dependent variables and one or more levels of independent variables. It estimates a differ-
ent BLR model for each variable that defines the success of that model.

R provides many options to implement MLR. One of the methods is using an inbuilt
function, multinom() of the packages ‘nnet’. The nnet package is a neural network package.
Before using this package, it is necessary to install and load the package into the R work-
space. The multinom() function implements MLR. The syntax of the multinom() function is:

multinom(formula,, data,…)

where, “formula” argument defines the symbolic description of the model to be fitted,
“data” argument is an optional argument that defines the dataset and the dots “…” define
the other optional arguments.

In the following example, a dummy table ‘Icecream.csv’ is created to store information
about the test of flavours of ice cream. With the help of MLR, the table analyses which fla-
vours of ice cream are ‘most likely’, ‘likely’, ‘not likely’ and ‘other’ by children. Each child
is asked to put a number on each flavour. Then the multinom() function implements MLR
of this data as described in Figure 6.20. Figure 6.21 describes the summary of the output.

Figure 6.20 Multinomial logistic regression

228 Data Analytics using R

Figure 6.21 Summary of MLR

How can we model a data set wherein the target variable has more than two outcomes?
This leads us to multinomial logistic regression technique. Multinomial logistic regression
allows us to predict the probabilities of multi-class target attributes, given the predictors.

Let us consider a data set where the target attribute has J categories. All the categories
are mutually exclusive and exhaustive,

J

1

1, for eachij
j

p i
=

=Â

where,
j = 1, 2, ..., J are the possible outcomes of the target attribute
pij denotes the probability that the ith observation of a data set belongs to the jth category
i = 1, 2, ..., k are the observations of a data set of size k.

Thus, if we compute the probabilities of an ith observation of a data set belonging to J - 1
categories, i.e., pi1, pi2, pi3, ..., pi(J - 1), then we can compute the probability of the observation
belonging to the one remaining category as

piJ = 1 – (pi1 + pi2 + pi3 + ... + pi(J – 1))

Consider the “iris” data set in R. Consider “Species” attribute as the target attribute
and the categories that an ith observation can belong to are “setosa”, “versicolor” and

Logistic Regression 229

“virginica”. Assume the categories are indexed as 1, 2 and 3, respectively, and the
probability of an ith observation belonging to either of these three categories will sum up
to 1. This can be depicted as shown below.

pi setosa + pi versicolor + pi virginica = 1

Now, once we determine the probability of an ith observation belonging to say “setosa”
and “versicolor”, we can compute the probability of it belonging to “virginica” as:

pi virginica = 1 – (pi setosa + pi versicolor)

Recall, in binomial logistic regression, since the target attribute had only two possible
outcomes, it was sufficient to set up a single logit function as

0 1 1 2 2ln
1

n n

p
x x x

p
b b b b

Ê ˆ
= + + + +Á ˜-Ë ¯



However, in multinomial logistic regression, the target attribute has more than two
possible outcomes. Hence, we adopt an approach wherein we nominate one of the
outcomes as a pivot/baseline/reference outcome and then calculate log odds for all the
other remaining outcomes relative to the reference outcome. Suppose, if the nominal target
attribute has J possible outcomes, then we need to determine J - 1 individual binomial
logistic regression models.

For the iris data set, since Species is the target attribute with 3 possible outcomes
(“setosa”, “virginica” and “versicolor”), we need to set up 3 - 1 = 2 logit models. Let us
assume “virginica” as the reference outcome. Then the two logit models are as shown
below.

setosa setosa setosa
0 1 2

setosa setosa
3 4

setosa

* Sepal. Length + * Sepal. Width(outcome = setosa)
ln

(outcome = virginica) * Petal. Length * Petal. Width

()

p

p

g X

b b b

b b

Ê ˆ + +
=Á ˜Ë ¯ +

= (1)

b b b

b

b

+
Ê ˆ

= + +Á ˜Ë ¯

=

versicolor versicolor versicolor
0 1 2

versicolor
3

versicolor
4

versicolor

* Sepal. Length +
(outcome = versicolor)

ln * Sepal. Width * Petal. Length
(outcome = virginica)

* Petal. Width

()

p

p

g X
(2)

In general, the logit model for a jth category for a data set with n predictors is:

th

1 2 30 1 2 3

(outcome = category)
ln * * * *

(outcome = reference category)
()

j j j j j
n n

j

p j
x x x x

p
g X

b b b b b
Ê ˆ

= + + + + +Á ˜Ë ¯
=



230 Data Analytics using R

where,
b0, b1, ..., bn are the regression coefficients
x1, x2, ..., xn are the predictor variables
j = 1, 2, ..., J – 1

To estimate the probabilities associated with each outcome, let us perform the following
steps.

The logit models (1) and (2) can be rewritten as shown:

= setosa (X)(outcome = setosa)

(outcome = virginica)
gp

e
p

 (3)

= versicolor (X)(outcome = versicolor)

(outcome = virginica)
gp

e
p

 (4)

Since, p(outcome = virginica) = 1 - (p(outcome = setosa) + p(outcome = versicolor)), we
can rewrite (3) and (4) as shown:

setosa (X)(outcome = setosa)

1 ((outcome = setosa) + (outcome = versicolor))
gp

e
p p

=
-

 (5)

versicolor (X)(outcome = versicolor)

1 ((outcome = setosa) + (outcome = versicolor))
gp

e
p p

=
-

 (6)

Rewriting (5) and (6), we get,

setosa

setosa

()

()
(outcome setosa) * (1 (outcome versicolor))

1

g X

g X

e
p p

e
= = - =

+
 (7)

versicolor

versicolor

()

()
(outcome versicolor) * (1 (outcome setosa))

1

g X

g X

e
p p

e
= = - =

+
 (8)

Solving (7) and (8), we get,

setosa

setosa versicolor

()

() ()
(outcome setosa)

1

g X

g X g X

e
p

e e
= =

+ +
 (9)

versicolor

setosa versicolor

()

() ()
(outcome versicolor)

1

g X

g X g X

e
p

e e
= =

+ +
 (10)

Since, p(outcome = virginica) = 1 – (p(outcome = setosa) + p(outcome = versicolor)),
we can compute the probability of occurrence of reference outcome using (9) and (10) as
shown below.

setosa versicolor() ()

1
(outcome virginica)

1 g X g X
p

e e
= =

+ +
 (11)

Let us now look at how we can obtain the multinomial logit model in R.

Logistic Regression 231

Let us first observe the levels of the target attribute (i.e., before setting the reference
outcome) using the code shown:

Step 1: Assign the “iris” dataset to a variable “IrisDataset”. The “iris” dataset provides
the measurement in centimeters of the variables, sepal length and width, petal length and
width for 50 flowers from each of the three species of “iris”, viz., “setosa”, “versicolor”
and “virginica”.

> IrisDataset <- iris

Step 2: Determine the levels of the “Species” column. “levels” provides access to the levels
attribute of a variable.

> levels(IrisDataset$Species)

[1] “setosa” “versicolor” “virginica”

Notice that the species, “setosa” is placed as the first level.

Step 3: Set the pivot/baseline/reference outcome as “virginica” using the relevel()
function. “relevel” levels of a factor are re-ordered so that the level specified by ref is
first and the others are moved down.

> IrisDataset$SpeciesReleveled <- relevel(IrisDataset$Species, ref =

“virginica”

> levels(IrisDataset$SpeciesReleveled)

[1] “virginica” “setosa” “versicolor”

Note that the reference outcome is always placed as the first level of the factor, i.e., the
target attribute.

The new column “SpeciesReleveled” is added to the “IrisDataset” data set as shown.
Let us display a subset of the IrisDataset. Few row nos. (1, 2, 51, 52, 101, 102) have been

selected to display rows corresponding to each of the three species.

> print(IrisDataset[c(1,2,51,52,101,102),], row.names = F)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species SpeciesReleveled

 5.1 3.5 1.4 0.2 setosa setosa

 4.9 3.0 1.4 0.2 setosa setosa

 7.0 3.2 4.7 1.4 versicolor versicolor

 6.4 3.2 4.5 1.5 versicolor versicolor

 6.3 3.3 6.0 2.5 virginica virginica

 5.8 2.7 5.1 1.9 virginica virginica

Let us use “SpeciesReleveled” as the new target attribute and proceed with fitting a
model to the above data.

Step 4: To build the multinomial logistic regression classifier, let us perform the following
steps.

1. Divide the “IrisDataset” data set into training data and testing data: Load the package
“caTools”. This package has the “sample.split()” function. This function will be used
to split the data into test and train subsets.

232 Data Analytics using R

Use the sample.split() function to split the data into test and train subsets. The
splitting ratio is 0.6, i.e., 60:40 ratio. We plan to use 60% of the data as training data to
train the model and the remaining 40% of the data as testing data to test the model.

> split <- sample.split(IrisDataset, SplitRatio = 0.6)

> split

[1] FALSE TRUE TRUE FALSE TRUE FALSE

The “TRUE” represents 60% of the data and “FALSE” represents the remaining 40%
of the data.

> training <- subset(IrisDataset[c(–5)], split == “TRUE”)

> testing <- subset(IrisDataset[c(–5)], split == “FALSE”)

2. Build the model using the training data: Let us use the training data to build the
multinomial logistic regression classifier. To estimate the regression coefficients of the
two logit models, let us use the multinom() function which belongs to the nnet package
in R, as shown in the code below. multinom() fits multinomial log-linear models via
neural networks.

> library(nnet)

> model <- multinom(formula = SpeciesReleveled ~ .,data = training)

weights: 18 (10 variable)

initial value 82.395922

iter 10 value 5.860978

iter 20 value 0.257840

iter 30 value 0.014877

iter 40 value 0.010180

iter 50 value 0.010030

iter 60 value 0.009509

iter 70 value 0.006793

iter 80 value 0.006383

iter 90 value 0.006283

iter 100 value 0.006136

final value 0.006136

stopped after 100 iterations

> print(model)

Call:

multinom(formula = SpeciesReleveled ~ ., data = training)

Coefficients:

 (Intercept) Sepal.Length Sepal.Width Petal.Length Petal.Width

setosa 14.44179 73.60551 76.35325 –129.66718 –94.38017

versicolor 101.91660 47.96270 62.77323 –95.03296 –68.56682

Residual Deviance: 0.01227198

AIC: 20.01227

Logistic Regression 233

3. Use the model to estimate the probability of a success: Let us estimate the probabilities
of a few random observations from testing data as shown:

> random_test_obs <- testing[c(6,13,22,34,49,53),]

> print(random_test_obs, row.names = F)

 Sepal.Length Sepal.Width Petal.Length Petal.Width SpeciesReleveled

 4.8 3.4 1.6 0.2 setosa

 4.8 3.4 1.9 0.2 setosa

 4.4 3.2 1.3 0.2 setosa

 5.6 3.0 4.5 1.5 versicolor

 5.7 2.9 4.2 1.3 versicolor

 7.6 3.0 6.6 2.1 virginica

Let us now use the predict(). It is a generic function for predictions from the results
of various model fitting functions.) function in R, to estimate the probabilities of the above
observations. Note, that type = “prob” argument allows us to compute the probabilities
associated with each of the three outcomes of the target attribute.

> predicted_probability <- data.frame(predict(model, random_test_

obs, type = “prob”))

> print(predicted_probability, row.names = F)

 virginica setosa versicolor

7.005010e-175 1.000000e+00 6.174970e-10

5.489360e-158 9.999799e-01 2.009373e-05

2.343326e-172 1.000000e+00 8.172575e-09

 4.976749e-13 3.677291e-43 1.000000e+00

 1.006545e-30 6.981706e-36 1.000000e+00

 1.000000e+00 8.900046e-110 2.655813e–51

Let us try to sum the probabilities of the three outcomes for each random observation,

as shown below.

> predicted_probability <- data.frame(predicted_probability,apply

(predicted_probability,1,sum))

> colnames(predicted_probability)[4] <- “sum”

> print(predicted_probability, row.names = F)

 virginica setosa versicolor sum

7.005010e-175 1.000000e+00 6.174970e-10 1

5.489360e-158 9.999799e-01 2.009373e-05 1

2.343326e-172 1.000000e+00 8.172575e-09 1

 4.976749e-13 3.677291e-43 1.000000e+00 1

 1.006545e-30 6.981706e-36 1.000000e+00 1

 1.000000e+00 8.900046e-110 2.655813e–51 1

Observe that for each observation above, the sum of probabilities of the outcomes is 1.

234 Data Analytics using R

Next, let us determine the outcomes associated with each of the random observation

selected above.

4. Use the estimated probability to classify the observations

Let us once again use the predict() function in R. This time let us use type =

“class” argument, which allows us to predict the most probable outcome associated with

each observation, as shown in the code below.

> predicted_class <- data.frame(predict(model, random_test_obs, type

= “class”))

> colnames(predicted_class) <- c(“predicted class”)

> predicted_probability <- subset(predicted_probability, select =

c(–4))

> predicted_class <- data.frame(predicted_probability, predicted_

class)

> print(predicted_class, row.names = F)

 virginica setosa versicolor predicted.class

 7.005010e-175 1.000000e+00 6.174970e-10 setosa

 5.489360e-158 9.999799e-01 2.009373e-05 setosa

 2.343326e-172 1.000000e+00 8.172575e-09 setosa

 4.976749e-13 3.677291e-43 1.000000e+00 versicolor

 1.006545e-30 6.981706e-36 1.000000e+00 versicolor

 1.000000e+00 8.900046e-110 2.655813e–51 verginica

Observe that the outcome with the highest probability has been chosen as the most

probable outcome, i.e., the predicted class.

5. Compare the predicted outcomes with the actual values

Let us now compare the actual values with the predicted outcomes for the sample of

random observations from the testing data, as shown:

> actual_class <- random_test_obs$SpeciesReleveled

> #Compare the actual values with predicted outcomes for the random

observations from testing data

> predicted_class <- subset(predicted_class, select = c(4))

> comparison_data <- data.frame(actual_class, predicted_class)

> print(comparison_data, row.names = F)

 actual_class predicted.class

 setosa setosa

 setosa setosa

 setosa setosa

 versicolor versicolor

 versicolor versicolor

 virginica virginica

Logistic Regression 235

Note that in the above comparison data, none of the observation is misclassified.
Let us determine and compare the predicted outcomes for all test data points to compute

the prediction accuracy.
Let us estimate the predicted outcomes for each observation in the testing data and

create a confusion matrix to compute the prediction accuracy of the model, as shown:

> predicted_class <- predict(model, testing_data, type = “class”)

> #Extract the actual values from the testing data

> actual_class <- testing_data$SpeciesReleveled

> #Create a confusion matrix

> addmargins(table(actual_class,predicted_class))

 predicted_class

actual_class virginica setosa versicolor Sum

 virginica 25 0 0 25

 setosa 0 12 0 12

 versicolor 1 0 22 23

 Sum 26 12 22 60

From the above results, we can observe that an instance (i.e., 1) from the testing data
has been misclassified. In other words, out of 60 instances, 59 instances (i.e., 25+ 12 + 22)
have been predicted correctly. Therefore,

Prediction accuracy = 59 / 60 i.e. 98.33%

Use cases:
 d During the testing phase of a software application, the testing team classifies the

source of the detected bugs into one of the three categories, viz., requirement analy-
sis, design or code bugs.

 d Based on the complexity level of the questions, the assessment team of the college
classifies the questions into three categories, viz., simple, medium and complex.

Check Your Understanding

 1. What do you mean by MLR?

 Ans: MLR or multinomial logistic regression is a type of linear regression where more than

two levels of independent variables predict the outcome of the dependent variable.

 2. What is the use of multinom() function?

 Ans: The multinom() function is an inbuilt function of the ‘nnet’ package of R that

implements MLR.

236 Data Analytics using R

Audience/
Customer Insights Analysis

Audience insight is very helpful and is used in hospitals, social network,
e-commerce, biomedical, pharmachemicals, bioinformatics and many other
industries.

This case study is used by companies to indicate the level of growth and
predict new user behaviour. This case study uses complex algorithms like time
series, neural network, graph exploration data analysis (EDA), graph search
mapping, regression model, pattern recognition, data mapping, social analysis
mapping, clustering, etc., to analyse the behaviour of users and clients.

In this case study, a regression model is used to find the audiences’ insight
on different parameters. Other models can be used as well to conclude other
things. As the data, we collected for this problem involves many parameters
and each parameter provides detailed information on other parameters, it is
difficult to ignore any parameter without analysing its data.

Logistic algorithm is one of the most popular statistical algorithms used
for probability discrete variables. If properly applied, a logistic algorithm
can give the most powerful insight on the attributes of dependent variables.
The logistic function maps or translates changes in the values of continuous
or dichotomous independent variables on the right-hand side of the logistic
equation to increase or decrease the probability of the event modelled by
dependent variables or the left-hand side variables. The implementation of
logistic regression techniques includes a wealth of tools for the analysts to
first construct a model, then test its ability to perform good in terms of data
(audience insight data) from which real data goes to analysis again and this
data is assumed to be a random sample from a really large database.

Before moving further, a clarification is warranted regarding the nature of
dependent variables. In many analytics, customers (unit of data) may have
more than one choice. For example, during online shopping, customers may
opt for costlier items with low price with some offers. In such situations, the
MLR model might be useful rather than a binary or dichotomous logistic
regression model, while multinomial models can be implemented in R.

The parameter estimated from the logistic regression model can be applied
to a simple data step to the ‘interest of customer’, this ‘score’ or creating a
group of customers of event outcome for each member of the customer group.
This ‘score’ can be used to select subsets of the customers to the substantive
issue under analysis.

C
a
se

 St
u

dy

(Continued)

Logistic Regression 237

(Continued)

Construction of Dependent Variables

These variables may give the result of some natural information of data with

their behaviour of the units under the analysis. This information from each

variable identifies the dependent and independent variables for analysis.

From a statistical point of view, the dichotomous, nominal level dependent

variable must have both discriminating and exhaustive nature.

Selecting the ‘Optimal Subset’ of Independent Variables

In many different models, the main task is to find the optimal subset from

data as this will give us information on how to optimise the algorithm to

get more accurate results. The substantive variables are required to get the

backward, forward, stepwise generation of information for selecting the

covariance errors. This information in optimal subset plots the ROC as this

can indicate the past behaviour of customers in time series of their activities.

The optimal subset helps us design the segmentation of different kinds of

users. Each segment stores information on customers’ activities. It is used

to provide more effective product recommendations to customers. To select

the optimum subset, the percentage change in the agglomerative coefficient

variables is observed, which indicates precisely the heterogeneity within the

segments with ‘point and distance’1 in the form of small cluster segments,

along with producing a graphical analysis of the results.

Past Behaviour

Past behaviour is the widely used dependent variable that predicts future

predictive behaviour of customers. To do so, the past trends in customers’

behaviour are observed to analyse if there is a cyclical pattern in forecasting

customer activities. To assess the nature of variables to be forecasted, the basic

premise is to use past behaviour to predict future behaviour.

Information about past activities (behaviour) of the customers is divided

into three categories, viz., acquisition, use and possession. This classification

into behavioural subsets helps to determine some information about

customers as per their behaviour. This data helps to determine future needs

of customers.

In general, the identification of consumer segments is useful in marketing

with the subset information as long as the following four statements apply:

1 Point and distance will be discussed in detail in Chapter 9: Clustering.

C
a
se

 St
u

dy

238 Data Analytics using R

 1. Substantial: The value in terms of potentially increased sales makes it

worthwhile to do so.

 2. Differentiable: There are practical means of differentiating purchase

behaviour among market segments. There is homogeneity within and

heterogeneity between segments.

 3. Operational: There is a cost-effective method of reaching the targeted

market segment.

 4. Responsive: The differentiated market segments respond differently to

marketing offerings tailored to meet their needs.

The above four parameters help create patterns and subsets for getting

the dependent and independent variables in time series of past customer

behaviours. Besides these parameters, another main parameter is customer

cognitive behaviour in terms of their satisfaction with a product.

Implicit expectations represent the norms of performance that reflect accepted

standards established by business in general. This is calculated by the mean

of inverse matrix for checking the fitness in the way business behaves towards

the customer and vice versa.

Static performance expectations address how performance and quality for a

specific application are defined. Performance measures for each application

are unique, though general expectations relate to the quality of outcome. This

outcome is plotted in the ROC curve to check the variable fitness and also

for correcting the inaccuracies of the algorithm. This helps in designing the

covariance matrix to get the accurate distance in measurements with fitness

parameters.

Dynamic performance expectations indicate how products or services evolve

over time and include the changes in support offered. These also include

product and service enhancement offered to meet future business needs.

Such requirements are detected on the basis of the research data on past

customer activities, behaviour towards products and their availability in

the market. Dynamic performance expectations may help to produce ‘static’

performance expectations. New users, integrations or system requirements

develop and become more stable and this stable model is checked by the

fitness of algorithm in past and future predictors in patterns.

Interpersonal expectations reflect the relationship between the customers and the

products or service providers. Person-to-person relationships are important,

especially where support services are required. Expectations for interpersonal

support include technical knowledge, ability to solve problems, ability to

communicate, time taken to resolve problems, etc.

C
a
se

 St
u

dy

Logistic Regression 239

 d The generalised linear model (glm) is an extension of usual regression models through a link function.

 d The inbuilt command glm() of R implements the GLMs and performs the regression on different

data like binary, probability, count data, proportion data, etc.

 d A random component, a systematic component and a link function are the main components of

the glm model.

 d A random component identifies the dependent variable (response) and its probability distribution

in the glm model.

 d A systematic component identifies a set of explanatory variables in the glm model.

 d A link function defines the relationship between a random and systematic component in the GLM

model.

 d Logistic regression is an extension of linear regression to environments that contain a categorical

dependent variable. The glm() function is used to implement LR.

 d Logistic regression is used to solve classification problems, discrete choice models or to find out the

probability of an event.

 d Binomial logistic regression is a model in which the dependent variable is dichotomous.

 d Logistic or sigmoidal function estimates the parameters, checks whether they are statistically sig-

nificant and whether they influence the probability of an event.

 d Logit function is the logarithmic transformation of the logistic function. It is defined as the natural

logarithm of odds.

 d Odds and odds ratio are two parameters of the logit function.

 d Odds is one of the parameters of the logit function defined as the ratio of two probability values.

 d Odds ratio is another parameter of the logit function defined as the ratio of two odds.

 d Maximum likelihood estimator (MLE) estimates the parameters of a function in LR. For a given

dataset, MLE chooses the values of model parameters that make the data ‘more likely’ than other

parameter values.

 d Likelihood function [L(b)] represents the joint probability or likelihood of observing the collected data.

 d R provides two functions, viz., nlm() and optim() for finding out the likelihood function.

 d The nlm() function performs a non-linear minimisation and minimises the function using a Newton-

type algorithm.

 d The optim() function performs a general purpose optimisation and optimises the function using

a Nelder-Mead, conjugate-gradient and quasi-Newton algorithm.

 d Binary logistic regression is a type of LR that defines the relationship between a categorical response

variable and one or more explanatory variables.

 d A three-way contingency table contains a cross-classification of observation using the level of three

categorical variables.

 d A covariate variable is a simple variable that predicts the outcome of another variable.

 d Binary logistic regression with a single categorical predictor uses only a single categorical variable

to fit data to the BLR model.

 d Binary logistic regression for three-way and k-way contingency table uses three or k categorical

variable for fitting the data to the BLR model.

 d The BLR with continuous covariates follows the general concept of logistic regression where a pre-

dictor variable predicts the outcome of the response variable.

Summary

(Continued)

240 Data Analytics using R

 Ke y Te r m s

 d Pearson chi-square statistic [X
2
], deviance [G

2
], likelihood ratio test and statistic [Δ G

2
], and Hosmer-

Lemeshow test and statistic are available to check the goodness of statistics of the BLR model.

 d Residuals, goodness-of-fit tests and receiver operating characteristic curve are major diagnostics

used for diagnosing the logistics regression model.

 d Residual is a common measure influence that identifies potential outliers.

 d Pearson and deviance residuals are two common types of residuals.

 d The Pearson residual assess how predictors are transformed during the fitting process. It uses mean

and standard deviation for assessment.

 d The deviance residual is the best diagnostic method when individual points are not fitting well by

the model.

 d The ‘LogisticDx’ is an R package that provides functions for diagnosing the logistics regression model.

 d The dx(), gof(), or() and plot.glm() are major diagnostic functions of the ‘LogisticDx’

package.

 d The gof() function of the ‘LogisticDx’ package checks the goodness-of-fit tests for the logistics

regression model.

 d Receiver operating characteristic (ROC) curve is a plot of specificity (False positive rate) against sensi-

tivity (True positive rate). The area under the ROC curve quantifies the predictive ability of the model.

 d Multinomial logistic regression (MLR) is a type of linear regression where more than two levels of

independent variables predict the outcome of the dependent variable.

 d The multinom() function is an inbuilt function of the ‘nnet’ package of R that implements MLR.

 d Binomial logistic regression: Binomial or
binary logistic regression (BLR) is a model
in which the dependent variable is dichoto-
mous.

 d Covariate variable: A covariate variable is
a simple variable that predicts the outcome
of another variable.

 d Deviance residual: Deviance residual is the
best diagnostic measure when individual
points are not fitting well by the model.

 d GLM: The generalised linear model (GLM)
is an extension of usual regression models
through a link function.

 d Likelihood function: Likelihood function
[L(b)] represents the joint probability or
likelihood of observing collected data.

 d Link function: It defines the relationship
between a random and a systematic com-
ponent.

 d LogisticDx: The ‘LogisticDx’ is an R pack-
age that provides functions for diagnosing
the logistics regression model.

 d Logistic function: Logistic function or sig-
moidal function is a function that estimates
the parameters, checks whether they are
statistically significant and whether they
influence the probability of an event.

 d Logit function: Logit function is the loga-
rithmic transformation of the logistic func-
tion.

 d Logistics regression: Logistic regression
(LR) is an extension of linear regression
to environments that contain a categorical
dependent variable. The glm() function is
used to implement logistics regression.

 d Maximum likelihood estimator: Maximum
likelihood estimator (MLE) estimates the
parameters of a function in LR. For a given

Logistic Regression 241

dataset, MLE chooses the values of model
parameters that make the data more likely
than other parameter values.

 d Multinomial logistic regression: Multi-
nomial logistic regression (MLR) is a type
of linear regression where more than two
levels of independent variables predict the
outcome of the dependent variable.

 d nlm(): The nlm() function is an inbuilt
function of R that finds the likelihood esti-
mation using nonlinear minimisation.

 d nnet: The ‘nnet’ is a neural network package
of R that provides a function multinom()
to implement MLR.

 d Odds: Odds is one of the parameters of the
logit function defined as the ratio of two
probability values.

 d Odds ratio: Odds ratio is another parameter
of the logit function defined as the ratio of
two ODDS.

 d optim(): The optim() function is an
inbuilt function of R that finds the likeli-
hood estimation using general purpose
optimisation.

 d Pearson residual: Pearson residual assess
how the predictors are transformed during
the fitting process. It uses the mean and
standard deviation for assessment.

 d Predictor: Predictor is an independent vari-
able in regression analysis.

 d Residual: Residual is a common measure
influence that identifies potential outliers.

 d Response variable: Response variables are
dependent variables in regression analysis.

 d ROC Curve: Receiver operating charac-
teristic (ROC) curve is a plot of specificity
against sensitivity. The area under the ROC
curve quantifies the predictive ability of a
model.

 d stats4: The ‘stats4’ is a package of R that
provides a function mle() to implement
the maximum likelihood estimation.

 d Three-way contingency table: A three-way
contingency table contains cross-classifica-
tion of observations using the level of three
categorical variables.

 mu l T i p l e Ch o i C e Qu e s T i o n s

 1. From the given options, which of one the following is another name for a dependent

variable?

 (a) Explanatory variable (b) Independent variable

 (c) Response variable (d) Predictor

 2. From the given options, which regression type is an extension of the linear regression model

that uses a link function?

 (a) Generalised linear model (b) Non-linear regression model

 (c) Logistics regression model (d) None of the above

 3. From the given options, which one of the following functions defines the relationship

between a random and a systematic component?

 (a) Logit function (b) User-defined function

 (c) Link function (d) None of the above

242 Data Analytics using R

 4. From the given options, which regression is an extension of linear regression to environments
that contain a categorical dependent variable?

 (a) Generalised linear model (b) Non-linear regression

 (c) Logistics regression (d) None of the above

 5. From the given options, which one of the following functions implements binary logistic
regression?

 (a) glm() (b) multinom()

 (c) nls() (d) lm()

 6. From the given options, which one of the following functions implements multinomial
logistic regression?

 (a) glm() (b) lm()

 (c) nls() (d) multinom()

 7. From the given options, which one of the following tables contains cross-classification of
observations that uses the level of three categorical variables?

 (a) A k-way contingency (b) A two-way contingency

 (c) A four-way contingency (d) A three-way contingency

 8. From the given options, which one of the following packages contains the diagnosis
functions for the diagnosis of logistic regression?

 (a) nnet (b) stat

 (c) LogisticDx (d) party

 9. The binomial family argument of the glm() function uses which one of the following link
functions?

 (a) logit (b) identity

 (c) inverse (d) log

 10. The glm() or multinom() function uses which one of the following symbols for defining
formula mode?

 (a) $ (b) ~

 (c) * (d) #

 11. The Gaussian family argument of the glm() function uses which one of the following link
functions?

 (a) logit (b) identity

 (c) inverse (d) log

 12. From the given options, which one of the following packages contains a function that
implements the multinomial logistic regression?

 (a) nnet (b) stat

 (c) LogisticDx (d) party

 13. From the given options, which one of the following functions returns Pearson and deviance
residuals?

 (a) gof() (b) dx()

 (c) or() (d) plot.glm()

Logistic Regression 243

 14. From the given options, which one of the following is a common measure influence that
identifies potential outliers?

 (a) Over-dispersion (b) Goodness-of-fit tests

 (c) ROC curve (d) Residual

 15. From the given options, which one of the following functions is a logarithmic transformation
of the logistic function?

 (a) Logit function (b) Link function

 (c) Likelihood function (d) None of the above

 16. From the given options, which one of the following functions estimates the parameters and
checks significance statistics?

 (a) Logit function (b) Link function

 (c) Likelihood function (d) Logistic function

 17. From the given options, which one of the following functions represents joint probability or
likelihood of observing the collected data?

 (a) Logit function (b) Link function

 (c) Likelihood function (d) Logistic function

 18. The ratio of two probability values is called:

 (a) ODDS (b) OR

 (c) ODDP (d) ODDL

 19. The ratio of two ODDS is called:

 (a) ODDP (b) OR

 (c) ODDL (d) None of the above

 20. What is the full form of MLE?

 (a) Minimum likelihood estimator (b) Maximum likelihood estimation

 (c) Minimum likelihood estimation (d) Maximum likelihood estimator

 21. What is the full form of nlm used in the nlm() function?

 (a) Non-linear minimisation (b) Non log-linear minimisation

 (c) Non-linear maximisation (d) Non log-linear maximisation

 22. From the given options, which one of the following functions determines the maximum
likelihood estimators?

 (a) nlm() (b) optim()

 (c) mle() (d) glm()

 23. From the given options, which ine of the following functions determines the likelihood
function?

 (a) nlm() (b) lm()

 (c) mle() (d) glm()

 24. From the given options, which one of the following packages contains the mle() function?

 (a) nnet (b) stats4

 (c) LogisticDx (d) party

244 Data Analytics using R

 25. From the given options, which one of the following functions determines the likelihood
function using the Nelder-Mead algorithm?

 (a) nlm() (b) optim()

 (c) mle() (d) glm()

 sh o r T Qu e s T i o n s

 1. What is GLM regression? What are its components?

 2. What are the applications of logistic regression?

 3. What are independent and dependent variables in regression?

 4. What is the difference between the logistic and logit functions?

 5. What is the difference between nlm() and optim() functions?

 6. What is the difference between Pearson and deviance residuals?

 7. What is the difference between residual and goodness-of-fit tests?

 lo n g Qu e s T i o n s

 1. Which function implements the GLM model in R? Explain with an example and syntax.

 2. Explain the nlm() function with syntax and an example.

 3. Explain the optim() function with syntax and an example.

 4. Explain the mle() function with syntax and an example.

 5. Explain binary logistic regression with a single categorical variable.

 6. Explain binary logistic regression with a contingency table.

 7. Explain binary logistic regression with a covariate variable.

 8. Explain the multinom() function with syntax and an example.

 9. Create a table with an ‘employee’ column that stores the necessary information including
each employee’s performance scores. Implement logistic regression to check whether
an employee is eligible for promotion or not based on his/her performance score. Also,
implement the mle() function for defining the maximum likelihood estimation.

 10. Create a table with a ‘person’ column that stores the information like name, age, gender,
annual income and other. Implement the binary logistic regression with single categorical
and three-way contingency table after placing the required information on the table.

 11. Create a table with a ‘pizza’ column that stores the information that is necessary to
implement multinomial logistics regression. After placing the information, implement
multinomial logistics regression on this table.

Logistic Regression 245

Answers to MCQs:

 1. (c) 2. (a) 3. (c) 4. (c) 5. (a) 6. (d) 7. (d)
 8. (c) 9. (a) 10. (b) 11. (b) 12. (a) 13. (b) 14. (d)
 15. (a) 16. (d) 17. (c) 18. (a) 19. (b) 20. (d) 21. (a)
 22. (c) 23. (a) 24. (b) 25. (b)

L E A R N I N G O U T C O M E

At the end of this chapter, you will be able to:

 c Induct a decision tree to perform classification

 c Explain the various attribute selection measures used to split data while inducting
a decision tree for classification

 c Predict the value of the outcome variable using the created decision tree model

7.1 introDuction

Decision trees are being extensively used in many classification and prediction applications.

Sometimes they are also called classification and regression trees (CART or C&RT). Key

advantages of using decision trees in decision making are:

 d Decision trees are known to clearly lay out the problem so that every possible out-

come of a decision can be challenged. They enable analysts to completely analyse

all possible consequences of a decision and quantify the values of outcomes and

the probabilities of achieving them.
 d Decision trees are very intuitive and easy to explain.
 d Decision trees require minimum data preparation from users. Missing values do

not prevent splitting of the data to build the trees. They are also not sensitive to

the presence of outliers.

Decision Tree

Chapter 7

Decision Tree 247

Decision trees are being used in varied areas to arrive at business decisions. Some

areas are:
 d To increase capacity vs outsourcing to fulfil demand
 d To purchase cars for company car fleet or to get them on lease
 d Deciding when to launch a new product
 d Deciding which celebrity to invite to endorse your product

This chapter discusses appropriate problems for decision making, the ID3 algorithm,

the importance of measuring entropy and information gains and issues in decision tree

learning such as over fitting, handling missing attributes and handling attributes with

different costs.

7.2 What is a Decision tree?

In the previous chapter, you learnt about the relationship between different variables of
business data using R. In this chapter, you will learn about the graphical representation
of such types of business data using R. Decision tree is one of the methods of graphical
representation of data. Business analytics involves big data and requires suitable
representation for it for which decision tree is the best method.

Decision tree is a part of machine learning and it is mostly used in data mining
applications. It is a type of undirected graph (an undirected graph is a graph in which
edges have no orientation, i.e., the edge (x, y) is identical to the edge (y, x) that represents
the decisions and their outcomes in a tree structure or hierarchal form. In other words, an
undirected graph is a group of nodes and edges where there is no cycle in the graph and
there is a path between every two nodes of the graph. In a decision tree graph, a node
represents the events or choices and edges represent the decision rules.

Decision tree is a type of supervised learning algorithm. In supervised learning, we make
predictions using a known dataset, often called the training dataset. Supervised learning
problems are classified into “regression” or “classification” problem. In “regression”
problem, we predict the results within a continuous output. This implies that we map
input variables to some continuous function. For example, predict the price of a house
based on the size of the house in the real estate market. Here, the price as a function of
house size is a continuous output.

In “classification” problem, we predict the results within a discrete output. This implies
that we map input variables into discrete categories.

Examples of classification task are:
 d Determine whether the house sells for more than or less than the asking price. Here,

we classify the house based on the price into two discrete categories.
 d Classify a loan applicant as “low”, “medium” or “high” credit risks.
 d Categorise news stories as finance, weather, entertainment, sports, etc.
 d Classify credit card transactions as legitimate or fraudulent.
 d Predict whether tumour cells are benign or malignant.

248 Data Analytics using R

Many data mining applications use decision trees for making various kinds of decisions.
A decision tree classifies data by partitioning attribute space and tries to find the axis-
parallel decision boundaries for some criteria.

Consider the following scenario. You have been asked to explore the “iris” dataset.
This dataset has measurements in centimetres for the variables “Sepal.Length”, “Sepal.
Width”, “Petal.Length” and “Petal.Width” for 50 flowers from each of the three species of
iris, viz., “setosa”, “versicolor” and “virginica”. A subset of the data is given as follows:

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

7.4 2.8 6.1 1.9 virginica

7.9 3.8 6.4 2.0 virginica

6.4 2.8 5.6 2.2 virginica

6.3 2.8 5.1 1.5 virginica

6.1 2.6 5.6 1.4 virginica

7.7 3.0 6.1 2.3 virginica

6.3 3.4 5.6 2.4 virginica

6.4 3.1 5.5 1.8 virginica

6.0 3.0 4.8 1.8 virginica

6.9 3.1 5.4 2.1 virginica

6.7 3.1 5.6 2.4 virginica

6.9 3.1 5.1 2.3 virginica

5.8 2.7 5.1 1.9 virginica

6.8 3.2 5.9 2.3 virginica

6.7 3.3 5.7 2.5 virginica

6.7 3.0 5.2 2.3 virginica

6.3 2.5 5.0 1.9 virginica

6.5 3.0 5.2 2.0 virginica

6.2 3.4 5.4 2.3 virginica

5.9 3.0 5.1 1.8 virginica

The values that the “Species” attribute holds are called class labels or classes and
the attribute itself is called class label attribute. The class label of a new instance can
be predicted by studying the patterns in the previously processed data. The previously
processed data is referred to as historical data. The attributes that are used in order to
predict the value of the class label attribute are called the predictor attributes.

Your supervisor checks on you if you have studied the data set. He poses a question,
“If I were to provide you with the values for “Sepal.Length”, “Sepal.Width”, “Petal.
Length” and “Petal.Width” for a particular flower, will you be able to state the species
to which it belongs?

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

5.1 3.5 1.4 0.2 ?

Likewise, study the “readingSkills” data set. This data set has variables “age”,
“shoeSize”, “score” and “nativeSpeaker”. A subset of the data is given as follows:

Decision Tree 249

> readingSkills[c(1:100),]
 nativeSpeaker age shoesize score
1 yes 5 24.83189 32.29385
2 yes 6 25.95238 36.63105
3 no 11 30.42170 49.60593
4 yes 7 28.66450 40.28456
5 yes 11 31.88207 55.46085
6 yes 10 30.07843 52.83124
7 no 7 27.25963 34.40229
8 yes 11 30.72398 55.52747
9 yes 5 25.64411 32.49935
10 no 7 26.69835 33.93269
11 yes 11 31.86645 55.46876
12 yes 10 29.15575 51.34140
13 no 9 29.13156 41.77098
14 no 6 26.86513 30.03304
15 no 5 24.23420 25.62268
16 yes 6 25.67538 35.30042
17 no 5 24.86357 25.62843
18 no 6 26.15357 30.76591
19 no 9 27.82057 41.93846
20 yes 5 24.86766 31.69986
21 no 6 25.21054 30.37086
22 no 6 27.36395 29.29951
23 no 8 28.66429 38.08837
24 yes 9 29.98455 48.62986
25 yes 10 30.84168 52.41079
26 no 7 26.80696 34.18835
27 yes 6 26.88768 35.34583
28 yes 8 28.42650 43.72037
29 no 11 31.71159 48.67965
30 yes 8 27.77712 44.14728
31 yes 9 28.88452 48.69638
32 yes 7 26.66743 39.65520
33 no 9 28.91362 41.79739
34 no 9 27.88048 42.42195
35 yes 7 25.46581 39.70293

If the age, shoeSize and score for a child is provided, then will you be able to state if
the child is a native speaker of the language in the reading test?

age shoeSize score nativeSpeaker

11 30.63692 55.721149 ?

“Decision tree” helps to answer these questions and several more similar ones. The an-
swer to the stated questions is provided in Section 7.2, “Decision tree representation in R”.

7.2.1 Terminologies Associated with Decision Tree

Various terminologies associated with decision tree are depicted in Figure 7.1 and are
described as follows:

250 Data Analytics using R

 d Root node: It represents the entire population or sample. It gets divided into two
or more homogeneous sets.

 d Decision node: It is a subnode that can be split into further subnodes.
 d Leaf or terminal node: It is a node that does not split further into subnodes.
 d Splitting: It is a process of dividing a node into subnodes.
 d Pruning: It is a process of removing subnodes of a decision node.
 d Branch or subtree: It is a subsection of the entire tree.
 d Depth of a node is the minimum number of steps required to reach the node from

the root.

Leaf/Terminal

Splitting

Decision node Decision node

Branch sub-tree

Leaf/Terminal Decision node Leaf/Terminal

Leaf/TerminalLeaf/Terminal

Root node

Figure 7.1 Decision Tree

Definition of a Decision Tree

A decision tree is a tree-like structure in which an internal node (decision node) represents
a test on an attribute. A branch represents the outcome of the test. Each leaf/terminal
node represents a class label. A path from the root to leaf represents classification rules.

Example of a Decision Tree

Assume we would like to take a decision based on the gender of the employee. If it is a
male employee, perform a further check on the income scale and then decide appropriately.
If it is a female employee, check on the age. For female employees <= 30 follow the branch
that leads to “Yes” (this could be a certain policy applicable to employees <= 30 years of
age), else follow the branch that leads to “No” (Figure 7.2).

<=50,000

Gender

Age Income

>30<=30

Yes No Yes No

>50,000

Depth = 1 Female Male

Root node

Branch

Internal node

Leaf node

Figure 7.2 An example of a decision tree

Decision Tree 251

Advantages of a Decision Tree

 d Does not require domain knowledge/expertise
 d Is easy to comprehend
 d The classification steps of a decision tree are simple and fast
 d Works with both numerical as well as categorical data
 d Able to handle both continuous and discrete attributes
 d Scales to big data
 d Requires very little data preparation (as it works with NAs, no need for normalisa-

tion, etc.).

Disadvantages of a Decision Tree

 d Easy to overfit the tree
 d Complex “if then” relationships inflates tree size
 d Decision boundaries are rectilinear
 d Small variations in the data can imply that very different looking trees are generated.

Check Your Understanding

 1. What is a decision tree?

 Ans: A decision tree is a part of machine learning and it is mostly used in data mining

applications. It is a type of undirected graph that represents the decisions and their

outcomes in a tree structure or hierarchal form.

 2. What is an undirected graph?

 Ans: An undirected graph is a group of nodes and edges where there is no cycle in the graph

and there is one path between every two nodes of the graph.

 3. What represents the node and edges in a decision tree?

 Ans: In a decision tree graph, a node represents the events or choices and edges represent

the decision rules.

7.3 Decision tree representation in r

R has features for tree-based modelling and generates various types of trees like regression
tree, classification tree, recursive tree, etc. R represents the decision tree just as it is
generally represented by the graph where the internal or non-leaf node represents a
choice or options between available alternatives and the leaf or terminal node represents
the decisions. It provides different packages, such as party, rpart, maptree, tree, partykit,
and randomforest that create different types of such trees. The most popular packages
are ‘party’ and ‘rpart’. A brief introduction to both packages is given ahead.

252 Data Analytics using R

7.3.1 Representation using ‘party’ Package

The party package contains many functions but the core function is the ctree() function.
It follows the concept of recursive partitioning and embeds the tree-structured models
into conditional inference procedures. Actually, conditional inference tree (ctree) is a
non-parametric class of regression tree that solves various regression problems, such as
nominal, ordinal, univariate and multivariate response variables or numbers. The basic
syntax of the ctree() function is:

ctree(formula, data, controls = ctree_control ()…)

where, “formula argument” defines a symbolic description of the model to be fit using
the “~” symbol, “data argument” defines the data frame that contains the variables in
the selected model and “controls argument” is an optional argument that contains an
object of class TreeControl. It is obtained using ctree_control and the dots “…” define
other optional arguments.

Example 1

This example takes a vector “a” and binds it into a data frame “cb”. For creating a recursive
decision tree, the ‘party’ package is loaded. The ctree() function creates a recursive tree
“t” and four terminal nodes. Using the plot() function, Figure 7.3 defines this tree.

Figure 7.3 A simple decision tree of a vector using the ctree() function

Decision Tree 253

Example 2

This example takes an inbuilt dataset “cars” that contains two variables, viz., “speed” and
“dist”. Here, variable “dist” is taken as a predictor and variable “speed” as a response.
The ctree() function creates a recursive tree t using the formula “speed~dist”. In Figure
7.4, it can be seen that the function generates three terminal nodes.

Figure 7.4 A simple decision tree of an inbuilt dataset ‘cars’ using the ctree() function

Example 3

To determine whether a child is a native speaker or not based on his/her age and scores
in the reading test.

Step 1: Load the party package.

> library(party)

Loading required package: grid

Loading required package: mvtnorm

Loading required package: modeltools

Loading required package: stats4

Loading required package: strucchange

Loading required package: zoo

Attaching package: ‘zoo’

The following objects are masked from ‘package:base’:

 as.Date, as.Date.numeric

254 Data Analytics using R

Loading required package: sandwich

Warning messages:

1: package ‘party’ was built under R version 3.2.3

2: package ‘mvtnorm’ was built under R version 3.2.3

3: package ‘modeltools’ was built under R version 3.2.3

4: package ‘strucchange’ was built under R version 3.2.3

5: package ‘zoo’ was built under R version 3.2.3

6: package ‘sandwich’ was built under R version 3.2.3

The above command loads the namespace of the package, “party” and attaches it on
the search list.

Step 2: Check the data set “readingSkills”.

> readingSkills[c(1:100),]
 nativeSpeaker age shoeSize score
1 yes 5 24.83189 32.29385
2 yes 6 25.95238 36.63105
3 no 11 30.42170 49.60593
4 yes 7 28.66450 40.28456
5 yes 11 31.88207 55.46085
6 yes 10 30.07843 52.83124
7 no 7 27.25963 34.40229
8 yes 11 30.72398 55.52747
9 yes 5 25.64411 32.49935
10 no 7 26.69335 33.93269
11 yes 11 31.86645 55.46876
12 yes 10 29.15575 51.34140
13 no 9 29.13156 41.77098
14 no 6 26.86513 30.03304
15 no 5 24.23420 25.62268
16 yes 6 25.67538 35.30042
17 no 5 24.86357 25.62843
18 no 6 26.15357 30.76591
19 no 9 27.82057 41.93846
20 yes 5 24.86766 31.69986
21 no 6 25.21054 30.37086
22 no 6 27.36395 29.29951
23 no 8 28.66429 38.08837
24 yes 9 29.98455 48.62986
25 yes 10 30.84168 52.41079
26 no 7 26.80696 34.18835
27 yes 6 26.88768 35.34583
28 yes 8 28.42650 43.72037
29 no 11 31.71159 48.67965
30 yes 8 27.77712 44.14728
31 yes 9 28.88452 48.69638
32 yes 7 26.66743 39.65520
33 no 9 28.91362 41.79739
34 no 9 27.88048 42.42195

Decision Tree 255

35 yes 7 28.46581 39.70293
36 yes 8 27.71701 44.06255
37 no 7 25.18567 34.27840
38 yes 11 30.78970 55.98101
39 yes 11 30.75664 55.86037
40 yes 11 30.51397 56.60820
41 no 5 26.23732 26.18401
42 no 5 24.36030 25.36158
43 no 7 27.60571 32.88146
44 no 10 29.64754 45.76171
45 yes 8 29.49313 43.48726
46 yes 7 26.92283 38.91425
47 yes 8 28.35511 44.99324
48 no 6 26.10433 29.35036
49 yes 8 29.63552 43.66695
50 yes 8 27.25306 43.68387
51 no 8 26.22137 37.74103
52 yes 6 26.12942 36.26278
53 no 9 30.46199 42.50194
54 no 7 27.81342 34.33921
55 yes 10 29.37199 52.83951
56 yes 10 29.34344 51.94718
57 yes 7 25.46308 39.52239
58 no 10 28.77307 45.85540
59 no 11 30.35263 50.02399
60 no 8 29.32793 37.52172
61 yes 10 28.87461 51.53771
62 no 7 26.62042 33.96623
63 no 7 28.11487 33.39622
64 no 11 30.98741 50.28310
65 yes 10 29.25488 50.80650
66 yes 5 24.54372 31.95700
67 no 8 26.99163 37.61791
68 no 11 30.26624 50.22454
69 no 7 27.86489 34.20965
70 yes 10 30.16982 52.16763
71 yes 7 25.53495 40.24965
72 no 7 26.75747 34.72458
73 yes 10 29.62773 51.47984
74 no 5 24.41493 25.32841
75 no 9 30.64056 42.88392
76 yes 7 26.78045 39.36539
77 yes 8 28.51236 43.69140
78 yes 5 23.68071 32.33290
79 no 7 26.75671 33.12978
80 no 10 29.65228 47.08507
81 no 9 29.33337 41.29804
82 no 6 26.47543 29.52375
83 no 9 28.35927 41.92929

256 Data Analytics using R

84 no 8 27.15459 38.30587
85 no 10 30.58496 45.20211
86 yes 9 30.08234 48.72401
87 no 9 28.34494 42.42763
88 yes 11 29.25025 55.98533
89 yes 9 28.21583 48.18957
90 no 8 28.10878 37.39201
91 no 8 26.78507 37.40460
92 yes 10 31.09258 51.95836
93 no 5 24.29214 26.37935
94 no 7 27.03635 33.52986
95 yes 7 24.92221 40.19923
96 no 6 27.22615 29.54096
97 yes 7 25.61014 41.15145
98 yes 10 28.44878 52.57931
99 yes 7 27.60034 40.01064
100 yes 11 31.97305 56.71151

“readingSkills” is a toy dataset which exhibits a spurious/false correlation between a
child’s shoe size and the score in his/her reading skills. It has a total of 200 observations
on four variables, viz., nativeSpeaker, age, shoeSize and score. The explanation for the
variables is given as follows:

 d Nativespeaker: It is a factor that can have a value of yes or no. “yes” indicates that
the child is a native speaker of the language in the reading test.

 d age: It is the age of the child.
 d shoeSize: This variable stores the shoe size of the child in cm.
 d score: This variable has the raw score of the child in the reading test.

Step 3: Create a data frame, “Inputdata” and have it store from 1 to 105 records of the
“readingSkills” data set.

> InputData <-readingSkills[c(1:105),]

The above command extracts out a subset of the observations in “readingSkills” and
places it in the data frame “InputData”.

Step 4: Give the chart file a name.

> png(file = “decision_tree.png”)

“decision_tree.png” is the name of the output file. With this command, a plot device
is opened and nothing is returned to the R interpreter.

Step 5: Create the tree.

> OutputTree <-ctree(

+ nativeSpeaker ~ age + shoeSize + score

+ data = InputData)

ctree is the conditional inference tree. We have supplied two inputs. The first being the
formula that is a symbolic description of the model to be fit and the second input “data”
is to specify the data frame containing the variables in the model.

Decision Tree 257

Step 6: Check out the content of “OutputTree”.

> OutputTree
 Conditional inference tree with 4 terminal nodes
Response: nativeSpeaker
Inputs: age, shoeSize, score
Number of observations: 105
1) score <= 38.30587; criterion = 1, statistic = 24.932
 2) age <= 6; criterion = 0.993, statistic = 9.361
 3) score <= 30.76591; criterion = 0.999, statistic = 14.093
 4)* weights = 13
 3) score > 30.76591
 5)* weights = 9
 2) age > 6
 6)* weights = 21
1) score > 38.30587
 7)* weights = 62

Step 7: Save the file.
> dev.off()
null device
 1

This command is to shut down the specified device “png” in our example.
The output from the whole exercise is shown in Figure 7.5.
The inference is that anyone with a reading score <= 38.306 and age greater than 6 is

NOT a native speaker.
Let us go back to the question asked in Section 7.1. “If the age, shoeSize and score for a

child is provided, will you be able to state if the child is a native speaker of the language
in the reading test?”

Let us try answering this question.

Step 1: Load the “rpart” package. A detailed explanation of “rpart” package is provided
in Section 7.2.2 “Representation using “rpart” Package”.

> library(rpart)

Step 2: Specify the values for “age”, “shoeSize” and “score” for a child for whom we wish
to determine if he/she is a native speaker of the language or not.

> nativeSpeaker_find <-data.frame(“age” = 11, “shoeSize” = 30.63692,

“score” = 55.721149)

Step 3: Create an rpart object “fit”.

> fit <-rpart(nativeSpeaker ~ age + shoeSize + score, data=readingSkills)

Step 4: Use predict function. predict is a generic function for predictions from the results
of various model fitting functions.

> prediction <-predict(fit, newdata=nativeSpeaker_find, type = “class”)

Step 5: Print the returned value from predict function. The inference is, for the child aged
11 with shoe size = 30.63692 and a score of 55.721149, he/she is a native speaker of the
language in the reading test.

258 Data Analytics using R

> print(prediction)

 1

yes

Levels: no yes

£

£

£

Figure 7.5 A simple decision tree of an inbuilt dataset ‘readingSkills’ using the ctree() function

Example 4

We will work with the “airquality” data set. This data set has data of “daily air quality
measurements in New York from May to September 1973”.

The data set has 154 observations on six variables.

Variable Data type Meaning

Ozone numeric Ozone in parts per billion

Solar.R numeric Solar radiation in Langleys

Wind numeric Average wind speed in miles per hour

Temp numeric Maximum daily temperature in degrees Fahrenheit

Month numeric Month (1—12)

Day numeric Day (1—31)

Decision Tree 259

Step 1: Print the first 6 entries of the data set “airquality”.
> head(airquality)
 Ozone Solar.R Wind Temp Month Day
1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
5 NA NA 14.3 56 5 5
6 28 NA 14.9 66 5 6

Step 2: Remove the records with missing “ozone” data.
> airq <-subset(airquality, !is.na(Ozone))

Step 3: Print the first six entries of the cleaned-up dataset “airq”.

> head(airq)
 Ozone Solar.R Wind Temp Month Day
1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
6 28 NA 14.9 66 5 6
7 23 299 8.6 65 5 7

Step 4: Use ctree to construct a model of Ozone as a function of all other covariates.

> air.ct <-ctree(Ozone ~ ., data = airq, controls = ctree_
control(maxsurrogate = 3))
> air.ct
 Conditional inference tree with 5 terminal nodes
Response: Ozone
Inputs: Solar.R, Wind, Temp, Month, Day
Number of observations: 116

1) Temp <= 82; criterion = 1, statistic = 56.086
 2) Wind <= 6.9; criterion = 0.998, statistic = 12.969
 3) * weights = 10
 2) Wind > 6.9
 4) Temp <= 77; criterion = 0.997, statistic = 11.599
 5) * weights = 48
 4) Temp > 77
 6) * weights = 21
1) Temp > 82
 7) Wind <= 10.3; criterion = 0.997, statistic = 11.712
 8) * weights = 30
 7) Wind > 10.3
 9) * weights = 7

Step 5: Plot a decision tree.

> plot (air.ct)

260 Data Analytics using R

£

£

£

£

Figure 7.6 A simple decision tree of an inbuilt dataset ‘airquality’ using the ctree() function

Data is divided into five classes (as seen in Figure 7.6, in nodes labelled 3, 5, 6, 8 and 9).
To understand the meaning of the plot, let us consider a measurement with temperature
of 70 and wind speed of 12. At the highest level the data is divided into two categories
according to temperature, i.e., either £ 82 or > 82. Our measurement follows the left branch
(temperature £ 82). The next division is made according to wind speed, by giving two
categories according to wind speed, i.e., either £ 6.9 or > 6.9. Our measurement follows
the right branch (speed > 6.9). We arrive at the final division, which once again depend
sup on the temperature and has two categories: either £ 77 or > 77. Our measurement has
temperature £ 77, so it gets classified in node 5. Let us look at the boxplot for Ozone in
node 5. It suggests that we expect the conditions for our measurement to be associated
with a relatively low level of ozone.

Example 5

We will work with the “iris” data set. The iris data set gives data on the dimensions
of sepals and petals measured on 50 samples of three different species of iris (setosa,
versicolor and virginica).

Step 1: Print the first six entries of the data set “iris”.

> head (iris)

 Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

Decision Tree 261

Step 2: Use ctree to construct a model of iris “Species” as a function of all other covariates.
> iris.ct <- ctree(Species ~ ., data=iris, controls = ctree_
control(maxsurrogate =3))
> iris.ct

 Conditional interference tree with 4 terminal nodes

Response: Species
Inputs: Sepal.Length, Sepal.Width, Petal.Length, Petal.Width
Number of observations: 150

1) Petal.Length <= 1.9; criterion = 1, statistic = 140.264
 2)* weights = 50
1) Petal.Length > 1.9
 3) Petal.Width <=1.7; criterion = 1, statistic = 67.894
 4) Petal.Length <= 4.8; criterion = 0.999, statistic = 13.865
 5)* weights = 46
 4) Petal.Length > 4.8
 6)* weights = 8
3) Petal.Width > 1.7
 7)* weights = 46

Step 3: Plot a decision tree.

> plot(iris.ct)

Node 2 (= 50)n

1

0.8

0.6

0.4

0.2

0

se
tos
a

ve
rsi
co
lor

vir
gin
ica

Node 5 (= 46)n

1

0.8

0.6

0.4

0.2

0

se
tos
a

ve
rsi
co
lor

vir
gin
ica

Node 6 (= 8)n

1

0.8

0.6

0.4

0.2

0

se
tos
a

ve
rsi
co
lor

vir
gin
ica

Node 7 (= 46)n

1

0.8

0.6

0.4

0.2

0

se
tos
a

ve
rsi
co
lor

vir
gin
ica

4

Petal.Length
< 0.001p

1

Petal.Length
< 0.001p

3

Petal.Width
< 0.001p

£ 1.9 > 1.9

£ 1.7 > 1.7

£ 4.8 > 4.8

Figure 7.7 A simple decision tree of an inbuilt dataset ‘iris’ using ctree() function

The structure of the tree is essentially the same as with “airquality” data set. The only differ-
ence is the representation of the nodes wherein “ozone” is a continuous numerical variable
and “iris Species” is a categorical variable. The nodes are thus represented as bar plots. As
evident from the plot in Figure 7.7, Node 2 is predominantly “setosa”, node 5 is mostly
“versicolor” and node 7 is almost all “viriginica”. Node 6 is half “versicolor” and half “virgi-

262 Data Analytics using R

nica” and corresponds to a category with long, narrow petals. An interesting observation is
that the model depends only on the dimensions of the petals and not on those of the sepals.

Let us go back to the question asked in Section 7.1, i.e., “If I were to provide you with
the values for “Sepal.Length”, “Sepal.Width”, “Petal.Length” and “Petal.Width” for a
particular flower, will you be able to state the species to which it belongs?

Step 1: Load the “rpart” package.

> library(rpart)

Step 2: Specify the values for “Sepal. Length”, “Sepal.Width”, “Petal.Length” and “Petal.
Width” of the flower for whom we wish to determine the species.

> new_species <-data.frame (“Sepal.Length” = 5.1, “Sepal.Width” = 3.5,

+ “Petal.Length” = 1.4, “Petal.Width” = 0.2)

Step 3: Create an rpart object “fit”.

> fit <-rpart(Species ~ Sepal.Length + Sepal.Width + Petal.Length +

Petal.width, data = iris)

Step 4: Use the predict function. predict is a generic function for predictions from the
results of various model fitting functions.

> prediction <-predict(fit, newdata = new_species, type = “class”)

Step 5: Print the returned value from the predict function. The inference is, for a flower
with values (“Sepal.Length” = 5.1, “Sepal.Width” = 3.5, “Petal.Length” = 1.4, “Petal.Width”
= 0.2), the species is “setosa”.

> print(prediction)

 1

setosa

Levels: setosa versicolor virginica

7.3.2 Representation using “rpart” Package

Recursive partitioning and regression trees or rpart package is a famous package for
creating decision trees, such as classification, survival and regression trees. The package
contains many inbuilt datasets and functions. The core function of the package is rpart()
that fits the given data into a fit model. The basic syntax of the rpart() function is
rpart(formula, data, method = (anova/class/poisson/exp)…)

where, “formula argument” defines a symbolic description of the model to be fit using
the “~” symbol, “data argument” defines the
data frame that contains the variables in the
selected model, “method argument” is an
optional argument that defines the method
through which a model is implemented and
the dots “…” define other optional arguments.

Along with this, the ‘rpart’ package
contains many useful functions for decision
trees. These functions are also used during the
pruning of decision trees. Table 7.1 describes
some other major functions of the package.

Table 7.1 Some useful functions of ‘rpart’
package

Functions Function Description
plotcp(tree) It plots the cross-validation

output.
printcp(tree) It prints the complexity

parameter.
text() It labels the decision tree plot.
post() It creates postscript plot of

decision tree.

Decision Tree 263

The following example takes an inbuilt dataset ‘cars’ that was used in the previous
example. It contains two variables, viz., ‘speed’ and ‘dist’. The rpart() function creates
a recursive tree t using the ‘speed~dist’ formula. In Figure 7.8, it can be seen that the
function generates the following decision tree. Along with this, Figure 7.9 shows the
cross-validation result of the decision tree.

Figure 7.8 A simple decision tree of an inbuilt dataset ‘cars’ using the rpart() function

Figure 7.9 Cross-validation result using the plotcp() function

264 Data Analytics using R

Check Your Understanding

 1. Which packages build decision trees in R?

 Ans: R language provides different packages, such as party, rpart, maptree, tree, partykit,

randomforest, etc., that create different types of trees.

 2. What is a ctree?

 Ans: A conditional inference tree (ctree) is a non-parametric class of regression tree that solves

various regression problems such as nominal, ordinal, univariate and multivariate

response variables or numbers.

 3. What is the use of the rpart() function?

 Ans: rpart() is a function of the ‘rpart’ package that also creates decision or classification

trees of the given dataset.

 4. What is the use of the printcp() function in a decision tree?

 Ans: printcp() is a function of the ‘rpart’ package that prints the complexity parameter of

the generated decision tree.

7.4 appropriate problems for Decision tree learning

In this section, you will learn about some problems for which decision trees provide the
best solutions.

7.4.1 Instances are Represented by Attribute-Value Pairs

An attribute-value pair is one of the data-representation methods in computer science.
Name-value pair, field-value pair and key-value pair are other names of attribute-value
pair. This method represents data in an open-ended form so that the user can modify
the data and extend it in future as well. Different applications, such as general metadata,
Windows registry, query strings and database systems use an attribute-value pair for
storing information. The database uses it for storing the real data. If any problem uses
attribute-value pairs for storing data, then a decision tree is a good choice for representing
it.

For example, a student database needs attributes, such as student name, student age,
class, etc., for storing information of students. Here, a student’s name is stored using the
attribute “student name” and the value pair stores the actual values of the students. In
this case, the decision tree is the best way to represent this information.

In the following example, attribute-pair values are created using two vectors, viz.,
“snames” and “sage”. A data frame d binds these vectors. Now, the ctree() function

Decision Tree 265

creates a decision tree using this data. Since this data is dummy data and contains only
eight rows, the ctree() function creates a single parent-child node (Figure 7.10).

Figure 7.10 A simple decision tree that contains attribute-pair values

7.4.2 Target Function has Discrete Output Values

For any problem that needs discrete output values, such as [yes/no], [true/false], [positive/
negative], etc., for representing data or solving problems, a decision tree is preferred. A
decision tree generates a tree with a finite number of terminal and non-terminal nodes.
These nodes are also properly labelled so that they’re easier to read. Along with this, the
function helps to label any terminal node as an output value.

The following example takes a dummy dataset “student” that contains a few data
means storing annual attendance and the score of 15 students only. The column “Eligible”
contains only “yes” or “no” values according to the attendance and score information. It
means column “Eligible” contains discrete output values. The ctree() function creates
a decision tree “fit” that generates only one terminal node. It is because there are only 15
rows. If you increase the number of rows, then it will create a recursive tree with more
than one level (Figure 7.11).

266 Data Analytics using R

Figure 7.11 A simple decision tree that contains discrete output values

7.4.3 Disjunctive Descriptions may be Required

A disjunction form is a sum of products of operands that use logical operators “and
[& / + /]” and “or [|| /*/V”]. For example, (a Ÿ b Ÿ c) ⁄ (a Ÿ b Ÿ c) is a disjunction form,
where the logical operators connect the operands a, b and c. Also, for problems that require
the disjunction form of representation, a decision tree is a good option. The decision tree
uses nodes and edges for representing a dataset in disjunction form. The ctree() func-
tion that creates the decision tree also uses these disjunction forms for data representation.

The following example takes an inbuilt dataset “mtcars” that contains many features.
The ctree() function creates a recursive tree “mt” using the formula “am~disp+hp+mpg”.
In this formula, predictors are in the disjunctive form. In Figure 7.12, it can be seen that
the function is generating the following decision tree.

7.4.4 Training Data May Contain Errors or Missing Attribute Values

Training data is a type of data that is used to design learning algorithms. Machine learning
algorithms use training data and testing data. Such algorithms perform classification,
clustering, partitioning and other similar tasks on this data. While designing training
data, some values can be mislabelled for an attribute or there might be training data with
errors in it. In such cases, the decision tree is a robust method for representing training
data. Using pruning techniques, these errors can be easily resolved. This is discussed
in the later sections of this chapter. It is also possible that training data may have some
missing values. In such a case, decision trees can efficiently represent the training data.

Decision Tree 267

Figure 7.12 A simple decision tree of a built-in dataset “mtcars”

Check Your Understanding

 1. What do you mean by an attribute-value pair?

 Ans: An attribute-value pair is one of the data-representation methods in computer science.

Name-value pair, field-value pair and key-value pair are some other names of the

attribute-value pair.

 2. What is the use of an attribute-value pair?

 Ans: Different applications, such as general metadata, Windows registry, query strings and

database systems use an attribute-value pair for storing their information.

 3. What do you mean by discrete value?

 Ans: Discrete value is a type of value that contains two values such as [yes/no], [true/false],

[positive/negative], etc.

 4. What do you mean by the disjunction form?

 Ans: A disjunction form is a sum of products of operands using logical operators “and [& /

+ /]” and “or [|| / * / V”]. For example, (a Ÿ b Ÿ c) ⁄ (a Ÿ b Ÿ c) is a disjunction form

where the logical operators connect the operands a, b and c.

268 Data Analytics using R

7.5 basic Decision tree learning algorithm

After learning the basics of the decision tree, this section will explain some of the decision
tree learning algorithms. These algorithms use inductive methods on the given values of an
attribute of an unknown object for finding an appropriate classification. These algorithms
use decision trees to do the same. The main objective of creating these trees is to classify
any unknown instances in the training dataset. These trees traverse from the root node
to the leaf node and test the attributes of the nodes. After which, they move down to the
branch of the tree according to the attribute value of the dataset. It is repeated at each
level of the tree.

There are different algorithms defined for creating decision trees, such as ID3 (Iterative
Dichotomiser 3), C4.5 (C4.5 is an extension of Quinlan’s earlier ID3 algorithm. The decision
trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often
referred to as a statistical classifier.), CART (Classification and Regression Tree), etc. ID3 is
the first decision-tree learning algorithm. The C4.5 and C5.0 came after ID3 for improving
the ID3 algorithm.

In all algorithms, features have a major role in classifying trees. Information gain and
entropy are two major metrics for finding the best attributes or features of trees. Metric
entropy measures the impurity of data, whereas the information gain metric measures
the features by reducing the entropy. Section 7.5 discusses the details of these metrics.

Along with this, speed and memory consumption are used to measure how the
algorithm will perform and accurately construct the final tree. The subsection explains
the ID3 algorithm in detail.

7.5.1 ID3 Algorithm

ID3 algorithm is one of the most used basic decision tree algorithm. In 1983, Ross Quinlan
developed this algorithm. The basic concept of ID3 is to construct a tree by following the
top-down and greedy search methodology. It constructs a tree that starts from the root
and moves downwards from it. In addition, for performing the testing of each attribute
at every node, the greedy method is used. The ID3 algorithm does not require any
backtracking for creating a tree.

In other words, the ID3 algorithm classifies the given objects according to the
characteristics of the dataset called features. Such a model creates a tree where each node
of the tree works as a router. The training and prediction process predicts the particular
feature using this tree. The pseudocode of the ID3 algorithm is given below.
 1. If the dataset is pure, then
 (i) construct a leaf having the name of the class,
 2. else
 (i) choose the feature with the highest information gain, and
 (ii) for each value of that feature
 (a) take the subset of the dataset having that feature value,
 (b) construct a child node having the name of that feature value and
 (c) call the algorithm recursively on the child node and the subset.

Decision Tree 269

R provides a package “data.tree” for implementing the ID3 algorithm. The package
“data.tree” creates a tree from the hierarchical data. It provides many methods for
traversing the tree in different orders. After converting the tree data into a data frame,
any operation like print, aggregation can be applied on it. Due to this, many applications
like machine learning and financial data analysis use this package. In the package “data.
tree”, the ID3 algorithm is implemented with an inbuilt dataset “mushroom”. The dataset
“mushroom” contains the features of the mushrooms.

The following example creates a dummy dataset “Mango.csv” that contains the features
of mangos. The ID3 algorithm is implementing this dummy dataset in Figure 7.13 using
a function called “TrainID3”. Figure 7.14 describes the pseudo code of the function
“TrainID3”. In Figure 7.13, the function Node$new() is used to create the root node for the
dataset. Along with this, the classification of the mango dataset is done using the feature
“taste”. If the taste of the mango is sweet, then it is edible but if it is sour, then it is toxic.

Figure 7.13 Implementing the ID3 using the package “data.tree”

270 Data Analytics using R

Figure 7.14 Pseudocode of the function “TrainID3”

7.5.2 Which Attribute is the Best Classifier?

Each algorithm uses a particular metric for finding a feature that best classifies the
tree. During classification, information gain measures how a given attribute separates
the training examples according to the target classification. In ID3, information gain
is measured as the reduction in entropy. Hence, the ID3 algorithm uses the highest
information gain for making the decision using entropy and selecting the best attribute.

Check Your Understanding

 1. What is the decision-tree learning algorithm?

 Ans: The decision-tree learning algorithm creates recursive trees. It uses certain inductive

methods on the given values of an attribute of an unknown object for finding the

appropriate classification using decision tree rules.

 2. What is the need of learning algorithms?

 Ans: Learning algorithms generate different types of trees for any training dataset. These

trees are used to classify any unknown instances in the training dataset.

 3. Write the names of learning algorithms that create a decision tree.

 Ans: Different algorithms such as ID3, C4.5, CART, etc., are used to create decision trees. ID3

is the first decision-tree learning algorithm.

Decision Tree 271

7.6 measuring features

In this section, we will discuss entropy and information gain in detail and how they are
calculated.

7.6.1 Entropy—Measures Homogeneity

Entropy measures the impurity of collected samples that contain positive and negative
labels. A dataset is pure if it contains only a single class; otherwise, the dataset is impure.
Entropy calculates the information gain for an attribute of a tree. In simple words, entropy
measures the homogeneity of the dataset. ID3 algorithm uses entropy to calculate the
homogeneity of a sample. The entropy is zero if the sample is completely homogeneous
and if the sample is equally divided (i.e., 50% on each side) it has an entropy of one.

Example

Let us look at the two nodes below and
answer a simple question. Which node can
we describe easily (Figure 7.15)?

The answer is Node A. Why? Because it
requires less information as all the values are
similar. On the other hand, Node B requires
more information to be able to completely
describe it. In other words, we can say, Node
A is pure, and Node B is impure. Thus, the

Node A Node B

Figure 7.15

 4. Write the names of two metrics that find the best attributes of a decision tree.

 Ans: Information gain and entropy are two major metrics for finding the best attributes or

features of trees.

 5. What is ID3?

 Ans: The ID3 algorithm is one of the most used basic decision tree algorithm. In 1983, Ross

Quinlan developed this algorithm. The basic concept of ID3 is to construct a tree by

following the top-down and greedy search methodology.

 6. What is data.tree?

 Ans: R provides a package “data.tree” for implementing the ID3 algorithm. The package

“data.tree” creates a tree from the hierarchical data.

 6. What is the best classifier of the ID3 algorithm?

 Ans: The highest information gain of the ID3 algorithm is the best classifier for making

decisions using entropy.

272 Data Analytics using R

inference is that less impure or pure nodes require less information and impure nodes
require more information. Entropy is a measure of this disorganisation in a system.

Let us consider a set S that contains the positive label “P(+)” and the negative label
“P(–)”. The entropy is defined by the formula,

Entropy (S) = –P(+) log2 P(+) – P(–)log2 P(–)

where, P(+) = Proportion of positive examples in S and P(–) = Proportion of negative
examples in S.

For example, the set S contains the positive and negative labels 0.5+ and 0.0–,
respectively. Now put these values to the given formula as:

Entropy (S) = –0.5 log2 0.5 – 0.5log2 0.5 = 1

Hence, after calculation, the entropy of set S is 1.
Please note that the entropy of a pure dataset is always zero. If the dataset contains

equal numbers of positive and negative labels, then the entropy is always 1.

Example: Calculating Impurity

In the following example, the same dataset “Mango.csv” is considered to check its purity
using a function “IsPure”. A dataset is pure if it contains only a single class. Since the
given dataset contains two classes, it is not a pure dataset. Hence, the function “IsPure”
returns false, as shown in Figure 7.16.

Figure 7.16 Checking impurity using the IsPure() function

Decision Tree 273

Example: Calculating Entropy

In the following example, the same dataset “Mango.csv” is read and its entropy is
calculated using the function “Entropy”. It returns the entropy of the dataset “m” 0.9182958
(Figure 7.17).

Figure 7.17 Calculating entropy using the Entropy() function

7.6.2 Information Gain—Measures the Expected Reduction in Entropy

Information gain is another metric that is used to select the best attribute of a decision tree.
Information is a metric that minimises decision tree depth. In tree traversing, an optimal
attribute that can split the tree node is required. Information gain easily does this and
also finds out the best attribute with the most entropy reduction.

The expected reduction of the entropy that is related to the specified attribute during
the splitting of decision tree node is called information gain. Let the Gain(S, A) be the
information gain of an attribute A. Then the information gain is defined by the formula

Gain(S, A) = Entropy(S) –
Œ

Â
Values()

| |
Entropy()

| |
v

v
v A

S
S

S

The following example reads the same dataset “Mango.csv” and calculates the
information gain using the InformationGain() function where the function “Entropy”
is also used. For all the three features colour, taste and size, the function returns values
0.5849625, 0.9182958 and 0.2516292, respectively. Here, the information gain of the “taste”
is maximum. Hence, it will be selected as the best feature (Figure 7.18).

274 Data Analytics using R

Figure 7.18 Calculating information gain using the InformationGain() function

Check Your Understanding

 1. What is entropy?

 Ans: Entropy is a metric for selecting the best attribute that measures the impurity of

collected samples containing positive and negative labels.

 2. What is a pure dataset?

 Ans: A dataset is pure if it contains only a single class; otherwise, the dataset is impure. The

entropy of a pure dataset is always zero and if the dataset contains equal number of

positive and negative labels, then the entropy is always 1.

 3. What is the formula for calculating entropy?

 Ans: The formula for calculating entropy is Entropy(S) = – P(+) log2 P(+) – P(–)log2 P(–),

where

 P(+) defines the proportion of positive examples in S and P(-) is the proportion of

negative examples in S.

 4. What is the formula of calculating information gain?

 Ans: The formula for calculating information gain is Gain(S, A) = Entropy(S) –
Œ

Â
Values()

| |

| |
v

v A

S

S
 Entropy (Sv) where A is an attribute of S.

Decision Tree 275

7.7 hypothesis space search in Decision tree learning

Hypothesis space search is a set of all the possible hypotheses that are retuned by it.
In simple words, it contains a complete space of finite discrete-valued functions. In
hypothesis space search, a hypothesis language is used for defining it in conjunction with
the restriction bias. Hypothesis space search is used by machine learning algorithms.

The ID3 algorithm uses simple to complex hill climbing search methods for doing
hypothesis space search that maintains only a single current hypothesis. Along with this,
during hill climbing search, no backtracking is used. For measuring attributes, information
gain metric is used. Here a pseudocode of the hypothesis space search [ID3] is written as:
 1. Do the complete hypothesis space search. It should contain all finite discrete-valued

functions [there should be one target function in these functions]
 2. Output a single hypothesis
 3. No backtracking that can create some local minima
 4. Now use statistically-based search choices so that noisy data can be easily managed
 5. Do inductive bias by using short trees.

Check Your Understanding

 1. What is a hypothesis space search?
 Ans: A hypothesis space search is a set of all possible decision trees.

 2. Which search is used by ID3 algorithm for hypothesis space search?
 Ans: The ID3 algorithm uses simple to complex hill climbing search methods for doing

hypothesis space search.

7.8 inDuctive bias in Decision tree learning

Inductive bias is a set of assumptions that includes training data for predicting the output
from the given input data. It is also called learning bias; whose main objective is to design
an algorithm that can learn and predict an outcome. For this, learning algorithms use
training examples that define the relationship between input and output. Each algorithm
has different inductive biases.

The inductive bias of the ID3 decision tree learning is the shortest tree. Hence, when
ID3 or any other decision tree learning classifies the tree, then the shortest tree is preferred
over larger trees for the induction bias. Also, the trees that place high information gain
attributes that are close to the root are also preferred over those that are not close and
they are used as inductive bias.

7.8.1 Preference Biases and Restriction Biases

The ID3 decision tree learning search is a complete hypothesis space. It becomes
incomplete when the algorithm finds a good hypothesis and it stops the search. The
candidate-elimination search is an incomplete hypothesis space search because it contains

276 Data Analytics using R

only some hypotheses. It also becomes complete when the algorithm finds a good
hypothesis and stops the search.

Preference Biases

A type of inductive bias where some hypotheses are preferred over others is called
preference bias or search bias. For example, the bias of ID3 decision tree learning is an example
of the preference bias. This bias is solely a consequence of ordering of the hypothesis
search and different from the type of bias used by the candidate-elimination algorithm.
The LMS algorithm for parameter tuning is another example of preference bias.

Restriction Biases

A type of inductive bias where some hypothesis is restricted to a smaller set is called
restriction bias or the language bias. For example, the bias of the candidate-elimination
algorithm is an example of the restriction bias. This bias is solely the consequence of the
expressive power of its presentation of hypothesis. Linear function is another example
of restriction bias.

Check Your Understanding

 1. What is inductive bias?
 Ans: Inductive bias is a set of assumptions that also includes training data for the prediction

of the output from the given input data. It is also called learning bias.

 2. What is the inductive bias of the ID3 decision tree learning?
 Ans: The inductive bias of the ID3 decision tree learning is the shortest tree.

 3. What is a candidate-elimination search?
 Ans: A candidate-elimination search is an incomplete hypothesis space search because it

contains only some hypotheses.

 4. What is preference bias?
 Ans: A type of inductive bias where some hypothesis is preferred over others is called the

preference bias or search bias.

 5. What is restriction bias?
 Ans: A type of inductive bias where some hypothesis is restricted to a smaller set is called

the restriction bias or language bias.

7.9 Why prefer short hypotheses

Occam’s razor is a classic example of inductive bias. It prefers the simplest and shortest
hypothesis that fits the data. The philosopher, William of Occam proposed it in 1320.

Decision Tree 277

Physicists prefer providing simple explanations for the motion of planets. According to
Occam, because there are fewer short hypotheses than longer hypotheses, it is less likely
that one will find a short hypothesis that coincidentally fits the training data. Occam’s
razor argument became a successful strategy in experiments.

7.9.1 Reasons for Selecting Short Hypothesis

Some reasons that answer the question, “Why prefer short hypotheses?” as the induction
bias of a decision tree are given below.

 d During decision tree learning, let us assume there are few simple trees and many
complex trees. A simple tree that fits the data is more likely to be the correct one.
Hence, anyone will prefer a simple tree to a more complex tree. However, sometimes
it can also create problems.

 d Another reason is that anyone might accept a simple and general tree for the predic-
tion. In machine learning, learning is the process of generalisation where a simple
tree is likely to be more general than a complex tree. A general tree accurately gives
the output on the population. Hence, Occam’s razor prefers short hypotheses and
states that when two hypotheses equally explain a training set, then always select
the general hypothesis.

 d Another reason for selecting the short hypothesis is that it takes lesser space. For
example, in report party with space constraints and in data compression, a small hy-
pothesis may accurately define the data as compared to a more complex hypothesis.

7.9.2 Problems with Argument

Some problems that may occur when applying the argument, “Why prefer short
hypotheses?” as the induction bias of a decision tree are:

 d The argument, “Why prefer short hypotheses?” can be made about many other
constraints. It puts many questions in front of others like ‘Why is short description
constraint more relevant than others?”

 d Along with this, it is based on the internal representation of the learner.

Check Your Understanding

 1. What is an Occam’s razor?

 Ans: Occam’s razor is a classic example of the inductive bias. It prefers the simplest and

short hypothesis that fits the data. The philosopher, William of Occam proposed it in

1320.

 2. Why does decision tree prefer short hypotheses?

 Ans: A decision tree prefers short hypotheses as it takes less space. Moreover, it efficiently

represents the data.

278 Data Analytics using R

7.10 issues in Decision tree learning

Decision trees and their algorithms are one of the best tools for machine learning tasks.
Many issues arise during the use of the learning algorithm. Hence, it is good to understand
the issues and resolve them. The following subsection explains these issues.

7.10.1 Overfitting

Overfitting is one of the major issues in decision tree learning. The decision tree grows
each ranch deeply to classify the training data and instance. However, in case the training
data is small, or the data is noisy, then the overfitting problem occurs. In simple words, a
decision tree is perfect to classify training data, but it does not perform well on unknown
real-world instances. It happens due to noise in the training data and a number of training
instances that are too small to fit. This type of issue is called overfitting training data.
Here is a simple definition of overfitting.

Definition of Overfitting

“Given a hypothesis space H, a hypothesis h in H is said to overfit the training data if
there exists some alternative hypothesis h’ in H, such that h has smaller error than h’
over the training examples, but h’ has a smaller error than h over the entire distribution
of instances.”

Overfitting can decrease the accuracy of the decision tree on any real-world instance;
hence, it is necessary to resolve the problem of overfitting. Avoiding overfitting, reduced
error pruning and rule-post pruning are some methods for resolving the problem of
overfitting. Here is a brief introduction of all these three aspects.

Avoiding Overfitting the Data

Overfitting occurs when a training instance is too small to fit a model. Hence, try to use a
training instance that is big in size. Avoiding overfitting is one of the simple solutions, but
it is not a standard way to overcome the problem. Some methods to avoid overfitting are:

 d Stop growing the tree earlier. If the tree stops growing, then the problem automati-
cally resolves; since the obtained training set is already small, it easily fits into the
model.

 d This method uses a separate set of examples that do not include any training data.
It is the training and validation set method. This method works even if the training
set is misled due to random errors. The validation set exhibits the same random
fluctuations by 2/3 training set and 1/3 validation set.

 d Use a statistical test. It estimates whether to expand a node of a tree or not. In ad-
dition, the test that expands a node improves performance beyond the training set.

 d The last method is to explicitly measure the complexity for encoding training
examples and the decision tree. When the encoding size is minimised, then stop
measuring. For this, the minimum description length principle can be used.

Decision Tree 279

Reduced Error Pruning

Pruning or reduced error pruning is another method for resolving overfitting problems.
The simple concept of pruning is to remove subtrees from a tree. The reduced error
pruning algorithm goes through the entire tree and removes the nodes, including the
subtree of that node that has no negative effect on the accuracy of the decision tree. It
turns the subtree into a leaf node with the most common label.

Removing the redundant subtrees does not provide an accurate answer. Instead, it
provides the same answer as the original tree. In this case, using a validation test instead of
using a testing set is good for deciding how accurate the subtree is. The validation test can
be taken from the training set. The pseudocode of the reduced error pruning algorithm is:
 1. Split the dataset into training and validation sets
 2. Consider a node for pruning
 3. Perform pruning by removing the subtree at that node and make it a leaf. Assign

the most common class at that node.
 4. A node is removed if the resulting tree performs no worse than the original tree on

the validation sets. It removes the coincidences and errors.
 5. Nodes of the tree are removed iteratively by selecting the node whose removal

mostly increases the decision tree accuracy on the graph.
 6. Pruning process continues until further pruning is harmful.

R provides inbuilt features for pruning decision trees. The packages ‘rpart’ and ‘tree’
provide functions to perform pruning on the decision tree. Pruning gives the best result
when the dataset is big. If the size of the dataset is small, then pruning generates the
same result. Here, pruning is discussed with the ‘rpart’ package. The prune() function
of the ‘rpart’ package determines a nested sequence of subtrees of the given rpart object.
The function recursively snips or trims off the least important splits according to the
complexity parameter [cp].

For finding out the complexity parameter, the printcp() function of the package can
be used. Through this, the size of a tree can be selected to minimise the cross-validated
error. The “xerror” column is used to find the minimum cross-validated error. Along with
this, fit$cptable[which.min(fit$cptale[,”xerror”]), “CP”] can also be used with the prune
function.

The basic syntax of the prune() function is:

prune(tree, cp, …)

where, the tree argument contains the fitted model object of the class ‘rpart’, the cp
argument contains the complexity parameter to which the tree will be trimmed and the
dots “…” define other optional arguments.

The following example takes an inbuilt dataset “cars” that contains two variables, viz.,
“speed” and “dist”. The rpart() function creates a recursive tree t using the formula
“speed~dist”. In Figure 7.19 shows a decision tree before pruning. In Figure 7.20, the
printcp() function is used for finding out the complexity parameter. The minimum
value for the column xerror is 0.58249, which is also taken as the CP value in the prune
function. Figure 7.20 shows the same decision tree as there are only 50 rows in the dataset.

280 Data Analytics using R

Figure 7.19 Decision tree before pruning

Figure 7.20 Decision tree after pruning

Decision Tree 281

Rule Post-Pruning

Rule post-pruning is the best method for resolving the overfitting problem that gives high
accuracy hypotheses. This method prunes the tree and reduces the overfitting problem.
The steps of the rule post-pruning method are:
 1. Infer the decision tree from the training set and grow the tree until the training data

is fitted as well as possible. It allows overfitting to happen.
 2. Now convert the learned tree into an equivalent set of rules by creating one rule for

each path from the root node to the leaf node.
 3. Prune each rule by removing any precondition that results in improving its

estimates accuracy.
 4. At last, sort the pruned rules by their estimates accuracy and consider them in this

sequence when classifying subsequent instances.
Rule post-pruning can improve the estimated accuracy by calculating the rule accuracy

over training data or by calculating the standard deviation that assumes a binomial
distribution. A large dataset estimates accuracy very closely and uses lower bound for
the measurement of rule performance.

7.10.2 Incorporating Continuous-Values Attributes

Sometimes it is possible that attributes of some learning data contain continuous values
instead of discrete values which means these attributes do not contain yes/no, true/
false or similar values. The attributes containing continuous values create problems
during learning. In this case, Boolean value attribute is useful. For this, follow the steps
as mentioned below.
 1. Reduce the continuous value attribute to the Boolean value attribute through some

threshold value.
 2. Sort the examples according to the continuous values for selecting the threshold

value.
 3. Identify adjacent examples that differ in classification for reaching candidate

threshold values.
 4. In the end, select the attribute whose information gain value is maximum and take

it as an ideal threshold value.
Along with this method of the threshold value, another method is also used for handling

continuous values attribute. In this method, split the continuous values into multiple
intervals instead of two.

7.10.3 Alternative Measures for Selecting Attributes

A problem in decision tree also occurs when an attribute has many values. These values
separate the training examples into very small subsets that give a high information gain
when Gain is used. To avoid this problem, GainRatio is used instead of Gain. Let the
GainRatio (S, A) be a GainRatio of an attribute A. Then it is defined by the formula

282 Data Analytics using R

GainRatio(S, A) =
Gain(,)

SplitInformation(,)

S A

S A

where,

SplitInformation (S, A) =
=

- Â 2
1

| | | |
 log

| | | |

c
i i

i

S S

S S
; Si is the subset of S for which A has values vi.

Sometimes, GainRatio also creates a problem when Si is nearly equal to S. In this case,
GainRatio is not defined or very large. Hence, to avoid this, calculate the GainRatio only
on attributes with above average Gain and then select the best GainRatio.

7.10.4 Handling Training Examples with Missing Attributes Values

A problem in decision trees occurs when the training examples contain missing attribute
values. Some methods for handling the missing values of attributes are given below.

 d One of the simplest methods is to sort the training examples. Select the most com-
mon value of that attribute and use it in another training example. For instance, in
some training examples, if the attribute A contains some missing values in a node
n, then continue calculating gain and assigning the most common value of A in
another training example.

 d Another method is to assign the most common value of the attribute at the node.
For example, assign the missing value of an attribute A to the node n.

 d Another complex method for handling missing values is to assign the probability
to each possible value of the attribute that contains the missing values. These prob-
ability values are used to calculate the Gain. In case, if more missing values are there,
then further sub-divide the probability values at subsequent branches of the tree.

7.10.5 Handling Attributes with Different Costs

The last problem occurs in the decision tree when the attributes have different costs. These
different costs affect the overall cost of the learning process. Some medical diagnosis tasks,
such as blood test, biopsy result and temperature contain significant cost values that make
the learning task more expensive for patients.

To overcome such problems, use decision trees that contain low-cost attributes. The
ID3 algorithm uses a cost term in attribute selection method for considering the attribute
costs for its modification. Another method is to divide the Gain by the cost of the attribute
and replace Gain(S,A) by the formula:

2Gain (,)

Cost()

S A

A
 or

w

-

+

Gain(,)2 1

Cost() 1

S A

A

Where w Œ [0, 1] that determines the importance of cost.

Decision Tree 283

Check Your Understanding

 1. What is the definition of overfitting?

 Ans: The definition of overfitting is, ‘Given a hypothesis space H, a hypothesis h in H is said

to overfit the training data if there exists some alternative hypothesis h¢ in H, such that

h has smaller error than h¢ over the training examples, but h` has a smaller error than h

over the entire distribution of instances.’

 2. What do you mean by pruning or reduced error pruning?

 Ans: Pruning or reduced error pruning is another method for resolving the overfitting

problem. The simple concept of pruning is to remove the subtrees from a tree.

 3. What is the use of the prune() function?

 Ans: The prune() function of the ‘rpart’ package determines a nested sequence of subtrees

of the given rpart object. The function is recursively snipping or trimming off the least

important splits according to the complexity parameter [cp].

 4. What is the use of the printcp() function?

 Ans: For finding out the complexity parameter, the printcp() function of the package can

be used. Through this, the size of tree is selected as such that it minimises the cross-

validated error. The “xerror” column is used to find out the minimum cross-validated

error.

 5. What is the use of the GainRatio in decision tree?

 Ans: The GainRatio is used to overcome the problem of the attributes that contains many

values in decision tree.

 6. What is the formula of the GainRatio?

 Ans: The formula of the GainRatio is GainRatio(S, A) =
Gain(,)

SplitInformation(,)

S A

S A

 where, SplitInformation (S, A) =
=

- Â 2
1

| | | |
 log

| | | |

c
i i

i

S S

S S
 and Si is the subset of S for which A

has values vi.

284 Data Analytics using R

Helping Retailers
Predict In-store Customer Traffic

In the internet era, prediction of customer behaviour is a very valuable insight,
since it helps a marketer to analyse its products’ value and send updates for
selling its products. The online market depends on the history of its customers.
Devising new strategies for markets and attracting customers to stores and
trying to convert the incoming traffic into sales profitably are all vital to the
financial health of retailers.

Every retailer uses different strategies to increase store traffic and convert
traffic into profits. They invest in prime real estate with desirable properties
such as high foot-traffic of their targeted customer segments, customer
populations, customer convenience and visibility. Once they determine a
location, retailers drive store traffic in a variety of ways such as spending on
advertising, offering loss-leader about the products with various discounts
or conducting various promotional events in local markets, such as offering
discounts at various levels or price deductions.

Whenever customers visit a store, retailers try to convert the customers
profitably through several means. They ensure that the right product is
available at the right place, at the right time and at the right price. They invest
in store labour to ensure that customers experience a good and competitively
priced shopping service that would encourage them to purchase and return
to the store in future as well.

Such relationships are critical to retailers for the following reasons. First,
they get to know the feedback of other stores and requirements of the
customers. Financial data of the local customers can be calculated using time-
series data. Decision tree is very important for this type of problem as we
can calculate the risk factors in the local market and understand the needs of
the customers from their previous behaviour. This is also known as learning
the cognitive behaviour of the customer. Let us take the example of iPhone
7 that was launched recently. This brand also uses time-series analysis for
understanding the behaviour of their customers by means of data gathered
from the earlier models like iPhone 6 and iPhone 6s. How the customer used
these earlier models and what features they look for in competitive products
provides important insights for product development.

Decision tree is very useful for gathering information about new market
values as these depend on the time series that comes from historical data.
Using such data, we can analyse information from new products as well. We
can analyse customer behaviour in conjunction with their financial status and
give them best discounts for their needs.

If we analyse historical data, many products have failed badly because
they were not able to understand the requirements of the market at that time.

C
a
se

 St
u

dy

(Continued)

Decision Tree 285

So, to play it safe, every company nowadays tries to understand the market
and its needs as per the market values, thus, creating a decision tree from
the time-series data is an essential task for them.

Decision trees can help in reducing errors by means of information gain
from the parent to the child. Tree biased induction in ID3 helps to generate
a recommendation engine. Such an engine is a powerful tool to understand
the needs of the market and help companies choose profitable markets.

Decision trees have many features that are very helpful to retailers and
companies for offering discounts by comparing the information gain and
loss in the market. This is also done by understanding the behaviour of the
customer with regards to the new product and older products—iPhone 6
and 6s being pertinent examples here because after launching iPhone 7 and
7s the prices of iPhone 6 and 6s were reduced by 20k in the Indian Market.

Using decision tree and its properties in data mining, we can increase the
profits for retailers and help companies convert customer traffic into profits.
Data mining is presented in more detail in the next few chapters.

 d A decision tree is a type of undirected graph that represents decisions and their outcomes in a tree

structure or hierarchal form. It is a part of machine learning and it is mostly used in data mining

applications.

 d R provides different packages, such as party, rpart, maptree, tree, partykit and randomforest that

create different types of trees.

 d Ctree is a non-parametric class of regression tree that solves various regression problems such as

nominal, ordinal, univariate and multivariate response variables or numbers.

 d An attribute-value pair is one of the data-representation methods in computer science. Name-value

pair, field-value pair and key-value pair are other names of the attribute-value pair.

 d During the design of training data, some values may be mislabelled for an attribute, some data may

be missing in the attribute or there may be some errors in the training data. In such cases, a decision

tree is a robust method to represent training data.

 d The decision-tree learning algorithms create recursive trees. They use some inductive methods on

the given values of an attribute of an unknown object for finding the appropriate classification us-

ing decision tree rules.

 d Learning algorithms generate different types of trees for any training dataset. These trees are used

to classify any unknown instances in the training dataset.

 d The ID3 algorithm is one of the most commonly used basic decision tree algorithms. In 1983, Ross

Quinlan developed this algorithm. The basic concept of the ID3 is to construct a tree by following

the top-down and greedy search methodology.

 d R provides a package “data.tree” for implementation of the ID3 algorithm. The package “data.tree”

creates a tree from the hierarchical data.

 d Information gain is another metric that is used to select the best attribute of the decision tree.

Information gain is a metric that minimises the decision tree depth.

Summary

C
a
se

 St
u

dy

(Continued)

286 Data Analytics using R

 d The formula of calculating information gain is

 Gain(S, A) = Entropy(S) –

Œ

Â
v Values()

| |
Entropy()

| |

v

v

A

S
S

S

, where A is an attribute of S.

 d The candidate-elimination search is an incomplete hypothesis space search because it contains only

some hypothesis.

 d A type of inductive bias where some hypothesis is preferred over others is called the preference

bias or search bias.

 d The prune() function of the ‘rpart’ package determines a nested sequence of subtrees of the

given rpart object. The function recursively snips or trims off the least important splits according to

the complexity parameter [cp].

 d Incorporating continuous-values attributes, alternative measures for selecting attributes, handling

training examples with missing attributes values and handling attributes with different costs are

some issues with decision trees.

 d The formula of the GainRatio is GainRatio(S, A) =
Gain(,)

SplitInformation(,)

S A

S A

 where SplitInformation(S, A) =
=

-Â
c

2

1

| | | |
log

| | | |

i i

i

S S

S S
 and S

i
 is the subset of S for which A has values v

i
.

 d By sorting training examples using the most common value or using probability values, the problem

of missing attribute values can be resolved in the decision tree.

 d By using a decision tree that contains low-cost attributes in the decision tree, the problem of at-

tribute with different cost can be resolved in the decision tree.

 Ke y Te r m s

 d Continuous value: Continuous value is a
type of value that contains many values.

 d ctree: ctree is a non-parametric class of re-
gression tree that solves various regression
problems such as nominal, ordinal, univari-
ate and multivariate response variables or
numbers.

 d data.tree: data.tree is a package of R used
for implementing the ID3 algorithm.

 d Edge: In the decision tree graph, an edge
represents the decision rules.

 d Entropy: Entropy is a metric for selecting
the best attribute that measures the impu-
rity of collected samples containing positive
and negative labels.

 d Hypothesis space search: A hypothesis space
search is a set of all possible hypotheses.

 d ID3: The ID3 is the first decision-tree learn-
ing algorithm. In 1983, Ross Quinlan devel-
oped this algorithm. The basic concept of
ID3 is to construct a tree by following the
top-down and greedy search methodology.

 d Information gain: Information gain is a
metric that is used to select the best attri-
bute of a decision tree. Information gain is
a metric that minimises decision tree depth.

 d Inductive bias: Inductive bias is a set of
assumptions that includes training data for
the prediction of the output from the given
input data.

 d mushroom: mushroom is an inbuilt dataset
of the package “data.tree”.

 d Overfitting: Overfitting is one of the major
issues in decision tree learning. It happens

Decision Tree 287

 mu l T i p l e Ch o i C e Qu e s T i o n s

 1. Which one of the following packages is different from the others?

 (a) rpart (b) party

 (c) tree (d) stats

 2. Which one of the following packages contains the ctree() function?

 (a) rpart (b) tree

 (c) party (d) data.tree

 3. Which one of the following options represents events in a decision tree?

 (a) Edge (b) Graph

 (c) Node (d) None of the above

 4. Which one of the following arguments is a part of the rpart() function?

 (a) method (b) controls

 (c) cp (d) use.n

 5. Which one of the following arguments is a part of the ctree() function?

 (a) method (b) controls

 (c) cp (d) use.n

 6. Which one of the following arguments is a part of the prune() function?

 (a) method (b) controls

 (c) cp (d) use.n

 7. Which one of the following arguments is a part of the text() function?

 (a) method (b) controls

 (c) cp (d) use.n

 8. Which one of the following packages contains the prune() function?

 (a) rpart (b) partykit

 (c) party (d) data.tree

due to the noise in training data and the
number of training instances that are too
small to fit.

 d party: party is a package for creating a deci-
sion tree in R.

 d Preference bias: Preference bias is a type
of inductive bias where some hypothesis is
preferred over other hypotheses.

 d Pruning: Pruning or reduced error pruning
is a method for resolving overfitting prob-
lems. The simple concept of pruning is to
remove subtrees from a tree.

 d Pure dataset: A pure dataset contains only
a single class and entropy of a pure dataset
is always zero.

 d Restriction bias: Restriction bias is a type
of inductive bias where some hypothesis is
restricted to a smaller set.

 d rpart: rpart is a package for creating a deci-
sion tree or a regression tree in R.

 d Undirected graph: An undirected graph is
a group of nodes and edges where there is
no cycle in the graph and there is one path
between every two nodes of the graph.

288 Data Analytics using R

 9. Which one of the following functions plots the cross-validation output in the generated
decision tree?

 (a) plotcp() (b) printcp()

 (c) prune() (d) text()

 10. Which one of the following functions prints the complexity parameter in the generated
decision tree?

 (a) plotcp() (b) printcp()

 (c) prune() (d) text()

 11. Which one of the following functions performs pruning of a decision tree?

 (a) plotcp() (b) printcp()

 (c) prune() (d) text()

 12. Which one of the following functions prints the labels on a plotted decision tree?

 (a) plotcp() (b) printcp()

 (c) prune() (d) text()

 13. Which one of the following is the best classifier of a decision tree?

 (a) Highest information gain (b) Entropy

 (c) Inductive bias (d) None of the above

 14. What is the entropy value of a pure dataset?

 (a) 2 (b) 3

 (c) 1 (d) 0

 15. How many number of classes is used in a pure dataset?

 (a) 1 (b) 2

 (c) 3 (d) 4

 16. Which one of the following is the inductive bias of the ID3 decision tree learning?

 (a) Linear function (b) Shortest tree

 (c) Minimum (d) Maximum

 17. Which one of the following is the preference bias?

 (a) Linear function (b) Shortest tree

 (c) Minimum (d) Maximum

 18. Which one of the following is the restriction bias?

 (a) LMS algorithm (b) Shortest tree

 (c) Linear function (d) Maximum

 19. Which one of the following is a classic example of inductive bias?

 (a) LMS algorithm (b) Shortest tree

 (c) Linear function (d) Occam’s razor

 20. Which one of the following is the correct full form of “cp”?

 (a) Common parameter (b) Classic parameter

 (c) Complexity parameter (d) Complexity point

Decision Tree 289

 sh o r T Qu e s T i o n s

 1. What is the role of decision trees in machine learning? How many types of trees are used in
machine learning?

 2. Write about the packages, ‘rpart’ and ‘party’.

 3. What is the difference between CTree and ctree() in R?

 4. What is the decision-tree learning algorithm?

 5. What are the applications of the decision-tree learning algorithm?

 6. What is hypothesis space search? List its steps.

 7. What are the methods to resolve “the missing attributes value problem” in the decision
tree?

 lo n g Qu e s T i o n s

 1. Think of a problem statement and represent it using a decision tree.

 2. Explain the packages data.tree, entropy and information gain with examples.

 3. Explain “Occam’s razor”.

 4. What is pruning? Why it is used in a decision tree?

 5. Explain the prune() function with syntax and an example.

 6. Create a dataset and generate the decision tree for it using the ctree() function.

 7. Create a dataset that contains attribute-value pairs. Generate the decision tree for it using
the ctree() function.

 8. Create a dataset that contains attribute-value pairs. Generate the decision tree for it using
the ctree() function.

 9. Create a dataset that contains discrete values. Generate the decision tree for it using the
ctree() function.

 10. Create a dataset that contains the data in disjunction form. Generate the decision tree for it
using the ctree() function.

 11. Take any inbuilt dataset from R and explain pruning in this dataset.

 12. Create a dataset that contains the features of apples. Now find out the “entropy” and
“information gain” for this dataset. Also, find out the best feature of the apple dataset.

290 Data Analytics using R

 pr a C T i C a l ex e r C i s e

 1. Visit the UCI Machine Learning Repository site (https://archive.ics.uci.edu/ml/datasets.
html). Look up the bank marketing dataset (http://archive.ics.uci.edu/ml/machine-
learning-databases/00222/ - (use bank-additional-full.csv)). Induct a decision tree to predict
whether the client will subscribe a term deposit or not (predict the value of variable y).

 A sample of the data is shown as follows:

Note: As recommended on the UCI Machine Learning website, avoid using the ‘duration’ column
as a predictor.

Answers to MCQs:

 1. (d) 2. (c) 3. (c) 4. (a) 5. (b) 6. (c) 7. (d)
 8. (d) 9. (a) 10. (b) 11. (c) 12. (d) 13. (a) 14. (d)
 15. (a) 16. (b) 17. (b) 18. (c) 19. (d) 20. (c)

L E A R N I N G O U T C O M E

At the end of this chapter, you will be able to:

 c Read time series data using ts() and scan() functions

 c Apply linear filtering on time series data

 c Apply Simple, Holt and Holt-winters exponential smoothing to time series data

 c Decompose time series data

 c Fit time series data into the ARIMA model

 c Plot time series data

8.1 introDUction

Success in business today relies profoundly on timely, informed decisions. Business houses
have realised the importance of analysing time series data that helps them to analyse and
predict sales numbers for the next fiscal year, predict and take proactive measures to deal
with overwhelming website traffic, monitor competition position and much more. Several
methods have evolved over time that help with prediction and forecasting. One such
method, which makes use of time-based data is time series modelling. Time series modelling
involves working on time (years, days, hours and minutes) based data, to derive hidden
insights, which then lead to informed decision making.

This chapter will help answer the following questions with regard to time series data:
 d Is there a trend? Do the measurements tend to increase (or decrease) over time?

Time Series in R

Chapter 8

292 Data Analytics using R

 d Is there seasonality? Does the data regularly exhibit repeating pattern of highs and
lows related to calendar time such as seasons, quarters, months, days of the week
and so on?

 d Are their outliers in the data?
 d Is there variance over time, either constant or non-constant?
 d Are there abrupt changes to either the level of the series or the variance?

Time series data finds typical uses with the following:
 d Trend analysis
 d Cyclical fluctuation analysis
 d Variance analysis

The chapter begins with sections on basic R commands for data visualisation and
data manipulation and then delves deeper into reading time series data, plotting it,
decomposing it, performing regression analysis and exponential smoothing and then
carries a detailed explanation of the ARIMA model.

8.2 What is time series Data?

Time series analysis plays a major role in business analytics. Time series data can be
defined as quantities that trace the values taken by a variable over a period such as
month, quarter or year. For example, in share market, the price of shares changes every
second. Another example of time series data is measuring the level of unemployment
each month of the year.

Univariate and multivariate are two types of time series data. When time series data
uses a single quantity for describing values, it is termed univariate. However, when time
series data uses more than a single quantity for describing values, it is called multivariate.
Time series analysis performs the analysis of both types of time series data. R provides a
feature for performing time series analysis. The following subsections discuss the basic
commands of R that are necessary for time series analysis.

8.2.1 Basic R Commands for Data Visualisation

R language provides many commands that plot the given data, such as plot(), hist(),
pie(), boxplot(), stripchart(), curve(), abline(), qqnorm(), etc. of which plot()
and hist() commands are mostly used in time series analysis. Here is a brief introduction
to some of these commands.

plot() Function

The plot() command of R helps to create different types of charts. It has many options
for visualising data in different forms. Along with this, the graphical parameters such as
col, font, lwd, lty, cex, etc., can also use the plot command for enhancing the visualisation
of time series data. The basic syntax of the plot() command is:

plot(x, y, type, main, sub, xlab, ylab,…)

Time Series in R 293

where, “x” argument defines the coordinates of points in the plot that can be any R objects,
“y” argument is an optional argument that contains y coordinates of points if the X-axis is
used and “type” argument defines which type of plot is to be drawn. Table 8.1 describes
the different values of “type” argument, “main” argument defines the title of the plot,
“sub” argument defines the subtitle of the plot, “xlab” argument defines the title for the
X-axis, “ylab” argument defines the title for the Y-axis and the dots “…” define the other
optional arguments.

Table 8.1 Values of “type” argument of plot command

Type Value Graph Type

p Points on plot

l Lines on plot

b Both points and lines

c For the lines part alone of b

o Overplotting of lines and points

h Histogram like vertical lines on plot

s Stair steps on plot

S Other steps on plot

n No plotting

The following example creates an object named “s” and the plot() function creates
a histogram of this object. Along with this the parameters, “main” (overall title for the
plot), “col” (plotting colour) and “lwd” (line width) customise the plot (Figure 8.1).

Figure 8.1 A histogram using the plot() command

294 Data Analytics using R

hist() Function

R provides the hist() command for creating the histogram of any data set. A histogram
is a type of plot that uses different bars for the graphical representation of a data set. It
divides the data set into certain ranges and creates bars of different heights. The basic
syntax of the hist() function is hist(x, …)

where, “x” is a vector of values for which the histogram is to be drawn and the dots
“…” define the other optional arguments.

The following example reads a table “StuAt.csv”. The object h stores the attendance for
January. The hist() function creates the histogram of this object h (Figure 8.2).

Figure 8.2 A histogram using the hist() command

pie() Function

Step 1: Create a vector “B”.

> B <- c(2, 4, 5, 7, 12, 14, 16)

Step 2: Plot the pie chart using the pie function. The syntax for pie() is:

pie(x, labels = names(x), edges = 200, radius = 0.8,

 clockwise = FALSE, init.angle = if(clockwise) 90 else 0,

 density = NULL, angle = 45, col = NULL, border = NULL,

 lty = NULL, main = NULL, ...)

where, x is a vector of non-numerical numerical quantities, clockwise accepts a logical
value indicating if the slices are drawn clockwise or counter-clockwise, main is used to
provide the overall title of the pie chart, col is used to state the plotting colour and labels
is used to provide names to the slices.

> pie(B)

Time Series in R 295

Note: Refer to the R documentation for definition and explanation of other parameters.

4

3

2

1

5

6
7

Figure 8.3 Pie chart

Step 3: Plot the pie chart with values provided for parameters such as main, col, labels, etc.

> pie(B, main=“My Piechart”, col=rainbow(length(B)),

+ labels=c(“Mon”, “Tue”, “Wed”, “Thu”, “Fri”, “Sat”, “Sun”))

Thu

Wed

Tue

Mon

Fri

Sat
Sun

Figure 8.4 My Piechart

Let us see how to set up black, grey and white colour for clear printing.

> cols <- c(“grey90”, “grey50”, “black”, “grey 30”, “white”, “grey

70”, “grey 50”)

Let us calculate the percentage for each day, using one decimal place.

> percentlabels<- round(100*B/sum(B), 1)

> percentlabels

[1] 3.3 6.7 8.3 11.7 20.0 23.3 26.7

296 Data Analytics using R

Now, add a ‘%’ sign to each percentage value using the paste command.

> pielabels<- paste(percentlabels, “%”, sep=””)

> pielabels

[1] “3.3%” “6.7%” “8.3%” “11.7%” “20.0%” “23.3%” “26.7%”

Finally, plot the pie chart in black, grey and white colour with values displayed in
percentage for labels.

> pie (B, main=“My Piechart”, col= cols, labels=pielabels, cex=0.8)

11.7%

8.3%

6.7%

3.3%

20%

23.3%
26.7%

Figure 8.5 My Piechart

Add a legend to the right.

> legend(“topright”, c(“Mon”, “Tue”, “Wed”, “Thu”, “Fri”, “Sat”,

“Sun”)), cex=0.8, fill=cols)

11.7%

8.3%

6.7%

3.3%

20%

23.3%
26.7%

Mon

Tue

Wed

Thu

Fri

Sat

Sun

Figure 8.6 My Piechart

Time Series in R 297

boxplot() Function

The boxplot is also referred to as box and whiskers plot. It was invented in 1977 by John
Tukey, who is also known as the father of exploratory data analysis. The purpose of a
boxplot is to efficiently display the following five magic numbers or statistical measures:

 d Minimum or low value
 d Lower quartile or 25th percentile
 d Median or 50th percentile
 d Upper quartile or 75th percentile
 d Maximum or high value

5
0
%

o
f
th
e
v
a
lu
e
s

Maximum

75 percentileth

Median (a.k.a 50 percentile)th

25 percentileth

Minimum

1
0
0
%

o
f
th
e
v
a
lu
e
s

Figure 8.7 Boxplot

A boxplot can be drawn either vertically or horizontally and is often used in conjunction
with a histogram.

Advantages of Boxplot
 d Provides a fair idea about the data’s symmetry and skewness (skewness is asym-

metry in statistical distribution).
 d It shows outliers.
 d It allows for an easy comparison of data sets.

Steps to Create a Boxplot
Step 1: We will use the “trees” dataset. This data set provides measurements of the girth
(diameter in inches), height and volume of timber in 31 felled black cherry trees. Use the
head() function to view the top six rows from the data set.

> head(trees)
 Girth Height Volume
1 8.3 70 10.3
2 8.6 65 10.3
3 8.8 63 10.2
4 10.5 72 16.4
5 10.7 81 18.8
6 10.8 83 19.7

298 Data Analytics using R

2 4 6 8 10 12 14 16 18

Symmetric

2 4 6 8 10 12 14 16 18

Skewed right

2 4 6 8 10 12 14 16 18

Skewed left

Figures 8.8 (a to c) Boxplots

Step 2: Plot the boxplot using the boxplot() function. Boxplot is used to show the five
magic numbers, viz., minimum, maximum, median, lower quartile and upper quartile.

> boxplot(trees)

Figure 8.9 Boxplot for "tree” dataset.

Time Series in R 299

The complete syntax of the boxplot() function is:

boxplot(x, ..., range = 1.5, width = NULL, varwidth = FALSE,

 notch = FALSE, outline = TRUE, names, plot = TRUE,

 border = par(“fg”), col = NULL, log = “”,

 pars = list(boxwex = 0.8, staplewex = 0.5, outwex = 0.5),

 horizontal = FALSE, add = FALSE, at = NULL)

where, x is a numeric vector or a single list containing such vectors.

Refer to the R documentation for definition and explanation of other parameters.

Step 3: Use parameters such as “main” to provide an overall title to the plot and “ylab”
to provide label to the Y-axis, etc.

> boxplot(trees$Height, main=“Height of Trees”, ylab=“Tree height in

feet”)

7
0

7
5

8
0

8
5

6
5

T
re
e
h
e
ig
h
t
in

fe
e
t

Height of Trees

Figure 8.10 Boxplot with parameter values

stripchart() Function

The stripchart() function helps to create one-dimensional scatter plots (or dot plots)
of the given data. These plots are a good alternative to boxplots when sample sizes are
small.

Consider the “airquality” data set. It is a data frame with 153 observations on six
variables (Ozone, Solar.R, Wind, Temp, Month and Day).

300 Data Analytics using R

Step 1: Check the internal structure of the R object “airquality” using str().

> str(airquality)

‘data.frame’: 153 obs. Of 6 variables:

$ Ozone: int 41 36 12 18 NA 28 23 19 8 NA ...

$ Solar.R: int 190 118 149 313 NA NA 299 99 19 194 ...

$ Wind: num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...

$ Temp: int 67 72 74 62 56 66 65 59 61 69 ...

$ Month: int 5 5 5 5 5 5 5 5 5 5 ...

$ Day: int 1 2 3 4 5 6 7 8 9 10...

Step 2: Let us make a strip chart for the ozone readings.

> stripchart(airquality$Ozone)

Figure 8.11 Stripchart

We can see that the data is mostly cluttered below 50 with one falling outside 150.
The syntax for stripchart() is:

stripchart(x, method = “overplot”, jitter = 0.1, offset = 1/3,

 vertical = FALSE, group.names, add = FALSE,

 at = NULL, xlim = NULL, ylim = NULL,

 ylab = NULL, xlab = NULL, dlab = “”, glab = “”,

 log = “”, pch = 0, col = par(“fg”), cex = par(“cex”),

 axes = TRUE, frame.plot = axes, ...)

where,
 d x: the data from which the plots are to be produced. It can be a single numeric vec-

tor or a list of numeric vectors.
 d main: main title (on top)
 d xlab: X-axis label
 d ylab: Y-axis label
 d method: method used to separate coincident points, “overplot” causes such points

to be overplotted, “jitter” to jitter the points or “stack” to have the coincident points
stacked.

Time Series in R 301

 d col: default plotting colour
 d pch: either an integer specifying a symbol or a single character to be used as the

default in plotting points.
Refer to the R documentation for definition and explanation of other parameters.

Step 3: Plot the stripchart using the parameters such as main, xlab, ylab, method, col,
pch, etc.

> stripchart(airquality$Ozone,

+ main=“Mean ozone in parts per billion at Roosevelt Island”,

+ xlab=“Parts Per Billion”,

+ ylab=“Ozone”,

+ method=“jitter”,

+ col=“orange”,

+ pch=1

+)

Figure 8.12 Mean ozone in parts per billion at Roosevelt Island

curve() Function

It draws a curve corresponding to a function over the interval [from, to]. curve() can
also plot an expression in the variable xname, default x. The syntax for curve() is:

curve(expr, from = NULL, to = NULL, n = 101, add = FALSE,

 type = “l”, xname = “x”, xlab = xname, ylab = NULL,

 log = NULL, xlim = NULL, ...)

where, x is a ‘vectorising’ numeric R function and
from, to provided the range over which the function will be plotted.

Refer to the R documentation for definition and explanation of other parameters.

> curve(x^2, from=1, to=50, , xlab=“x”, ylab=“y”)

302 Data Analytics using R

0 10 20 30 40 50

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

Figure 8.13 A curve

8.2.2 Basic R Commands for Data Manipulation

Time series analysis most often requires arithmetic mean, standard deviation, difference,
probability distribution, density and other such operations. R provides various commands
that perform these operations and help manipulate time series data. Table 8.2 describes
some common commands for time series analysis.

Table 8.2 Some major manipulation commands/functions

Functions Function arguments Description

mean(x) x argument defines any r object. The function returns the arithmetic mean
of the given object.

diff(x) x argument contains either any numeric
vector or matrix.

The function returns the lagged and
iterated difference.

sd(x) x argument contains either any numeric
vector or any r object.

The function returns the standard
deviation of the given object.

log(x) x argument contains either any numeric
vector or any r object.

The function returns the logarithms of
the given object.

pnorm(x) x argument contains either any numeric
vector or any r object.

The function returns the normal
distribution function.

dnorm(x) x argument contains either any numeric
vector or any r object.

The function returns the density of the
object.

The following example creates an object “d”. The functions described above generate
different values used during time series analysis. For example, the pnorm() and qnorm()
functions define the distribution properties of the data (Figure 8.14) explains this.

Time Series in R 303

Figure 8.14 Some manipulation commands

mean() Function

Objective: To determine the mean of a set of numbers. Plot the numbers in a bar plot and
have a straight line run through the plot at the mean.

Step 1: Create a vector “numbers”.

> numbers <- c(1, 3, 5, 2, 8, 7, 9, 10)

Step 2: Compute the mean value of the set of numbers contained in the vector “numbers”.

> mean(numbers)

[1] 5.625

Outcome: The mean value for the vector “numbers” is computed as 5.625.

Step 3: Plot a bar plot using the vector “numbers”.

> barplot(numbers)

304 Data Analytics using R

Figure 8.15 A Barplot

Step 4: Use the abline function to have a straight line (horizontal line) run through the
bar plot at the mean value. The abline function can take an “h” parameter with a value
at which to draw a horizontal line or a “v” parameter for a vertical line. When it is called,
it updates the previous plot. Draw a horizontal line across the plot at the mean:

> barplot(numbers)

> abline(h= mean(numbers))

Figure 8.16 A bar plot with a straight line at the computed mean value

Outcome: A straight line at the computed mean value (5.625) runs through the bar plot
computed on the vector “numbers”.

median() Function

Objective: To determine the median of a set of numbers. Plot the numbers in a bar plot
and have a straight line run through the plot at the median.

Step 1: Create a vector “numbers”.
> numbers <- c(1,3,5,2,8,7,9,10)

Time Series in R 305

Step 2: Compute the median value of the set of numbers contained in the vector “numbers”.

> median(numbers)

[1] 6

Step 3: Plot a bar plot using the vector “numbers”. Use the abline function to have a
straight line (horizontal line) run through the bar plot at the median.

> barplot(numbers)

> abline(h = median(numbers))

Figure 8.17 A bar plot with a straight line at the computed median value

Outcome: A straight line at the computed median value (6.0) runs through the bar plot
computed on the vector “numbers”.

sd() Function

Objective: To determine the standard deviation. Plot the numbers in a bar plot and have
a straight line run through the plot at the mean and another straight line run through the
plot at mean + standard deviation.

Step 1: Create a vector “numbers”.
> numbers <-c(1,3,5,2,8,7,9,10)

Step 2: Compute the mean value of the set of numbers contained in the vector “numbers”.
> mean(numbers)

[1] 5.625

Step 3: Determine the standard deviation of the set of numbers held in the vector
“numbers”.

> deviation <- sd(numbers)

> deviation

[1] 3.377975

Step 4: Plot a bar plot using the vector “numbers”.
> barplot(numbers)

306 Data Analytics using R

Step 5: Use the abline function to have a straight line (horizontal line) run through the
bar plot at the mean value (5.625) and another straight line run through the bar plot at
mean value + standard deviation (5.625 + 3.377975)

> barplot(numbers)

> abline(h=sd(numbers))

> abline(h=sd(numbers) + mean(numbers))

Figure 8.18 A bar plot with straight line at its mean value + standard deviation

Mode Function

Objective: To determine the mode of a set of numbers.
R does not have a standard inbuilt function to determine the mode. We will write our

own “mode” function. This function will take the vector as the input and return the mode
as the output value.

Step 1: Create a user-defined function “Mode”.

Mode <- function(v) {

 UniqValue <- unique(v)

 UniqValue[which.max(tabulate(match(v,UniqValue)))]

}

On execution of the above code,

> Mode <- function(v) {

+ UniqValue <-unique(v)

+ UniqValue [which.max(tabulate(match(v,UniqValue)))]

+}

While writing the above function “Mode”, we have used three other functions provided
by R, viz., “unique”, “tabulate” and “match”.

unique function: The “unique” function will take a vector as the input and return the
vector with the duplicates removed.

Time Series in R 307

> v

[1] 2 1 2 3 1 2 3 4 1 5 5 3 2 3

> unique(v)

[1] 2 1 3 4 5

match function: Takes a vector as the input and return the vector that has the positions
of (first) matches of its first arguments in its second.

> v

[1] 2 1 2 3 1 2 3 4 1 5 5 3 2 3

> UniqValue <-unique(v)

> UniqValue

[1] 2 1 3 4 5

> match(v,UniqValue)

[1] 1 2 1 3 2 1 3 4 2 5 5 3 1 3

tabulate function: Takes an integer valued vector as the input and counts the number of
times each integer occurs in it.

> tabulate(match(v,UniqValue))

1] 4 3 4 1 2

Going by our example, “2” occurs 4 times, “1” occurs 3 times, “3” occurs 4 times, “4”
occurs 1 time and “5” occurs 2 times.

Step 2: Create a vector “v”.
> v <- c(2,1,2,3,1,2,3,4,1,5,5,3,2,3)

Step 3: Call the function “Mode” and pass the vector “v” to it.

> Output <- Mode(v)

Step 4: Print the mode value of the vector “v”.
> print (Output)

[1] 2

Let us pass a character vector “charv” to the “Mode” function.

Step 1: Create a character vector “charv”.
> charv <- c(“o”, “it”, “the”, “it”, “it”)

Step 2: Call the function “Mode” and pass the character vector “charv” to it.
> Output <- Mode(charv)

Step 3: Print out the mode value of the vector “v”.

> print(Output)

[1] “it”

log() Function

The following are the variants of the log() function:
 d log() computes the natural logarithms (Ln) for a number or vector
 d log10() computes common logarithms (Lg)
 d log2() computes binary logarithms (Log2)
 d log(x,b) computes logarithms with base b.

308 Data Analytics using R

> log (5)

[1] 1.609438

> log10(5)

[1] 0.69897

> log2(5)

[1]2.321928

>log(9,base=3)

[1] 2

Using log functions with a vector.

> x <- rep(1:10)

> x

 [1] 1 2 3 4 5 6 7 8 9 10

> log(6)

 [1] 1.791759

> log (x)
 [1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379
 1.7917595 1.9459101

 [8] 2.0794415 2.1972246 2.3025851

> log (x,6)

 [1] 0.0000000 0.3868528 0.6131472 0.7737056 0.8982444

 1.0000000 1.0860331

 [8] 1.1605584 1.2262944 1.2850972

diff() Function

diff() function returns suitably lagged and iterated differences. The syntax is:
diff(x, lag = 1, differences = 1, ...)

where,
 d x is a numeric vector or matrix containing the values to be differenced
 d lag is an integer indicating which lag to use
 d differences is an integer indicating the order of the difference.

Example
> temp <-c(10,1,1,1,1,1,1,2,1,1,1,1,1,1,1,3,10)
> temp
[1] 10 1 1 1 1 1 1 2 1 1 1 1 1 1 1 3 10
> diff(temp)
[1] -9 0 0 0 0 0 1 -1 0 0 0 0 0 0 2 7
> diff(diff(temp))
[1] 9 0 0 0 0 1 -2 1 0 0 0 0 0 2 5
> diff(temp, differences=2)
[1] 9 0 0 0 0 1 -2 1 0 0 0 0 0 2 5

Note: Output of diff(diff(temp)) and diff(temp, differences=2) is the same.

dnorm() and pnorm() Function

The syntax, purpose and examples of dnorm()and pnorm() functions are given in
Table 8.3.

Time Series in R 309

Table 8.3 dnorm() and pnorm() functions

Function Purpose Syntax Example

dnorm() Probability Density
Function (PDF)

dnorm(x, mean,

sd)

dnorm(0, 0, 0.5)

Gives the density (height of the PDF) of
the normal with mean=0 and sd=0.5.

pnorm() Cumulative Distribution
Function (CDF)

pnorm(q, mean,

sd)

pnorm(1.96, 0, 1)

Gives the area under the standard normal
curve to the left of 1.96, i.e., ~0.975.

Example

Step 1: Create a sequence xseq.
> xseq <- seq(-4, 4, .01)

> xseq

(Continued)

310 Data Analytics using R

Step 2: Compute the probability density and cumulative distribution using dnorm() and
pnorm().

> densities <- dnorm(xseq,0,1)

> cumulative <- pnorm(xseq,0,1)

> plot(xseq, densities, col=“darkgreen”, xlab=“”, ylab=”Density”,

type=“1”, lwd=2, cex=2, main=“PDF of Standard Normal”, cex.axis=.8)

> plot(xseq, cumulative, col=“darkorange”, xlab=“”, ylab=“Cumulative

Probability”, type=“1”, lwd=2, cex=2, main=“CDF of Standard Normal”,

cex.axis=.8)

8.2.3 Linear Filtering of Time Series

A part of simple component analysis, the linear filter divides the data by applying the
linear filtering process. A simple component analysis divides the data into four main
components called trend, seasonal, cyclical and irregular. Each component has its own
special feature. For example, the trend, seasonal, cyclical and irregular components
define the long-term progression, the seasonal variation, the repeated but non-periodic
fluctuations, and the random or irregular components of any time series, respectively.

Time Series in R 311

The simple process of linear filtering converts the time series input data in linear output
in traditional time series analysis. Different classes of linear filters are available. The
moving averages with equal weights are a simple class of a linear filter. The following
equation defines this simple class of linear filter:

+

=-

=
+
Â

1

2 1

a

t t i
i a

T X
a

where, “Tt” is a trend component, “Xt” is any time series, “a” defines the moving average
and “”” represents counter variable.

Figure 8.19 PDF of Standard Normal

Figure 8.20 CDF of Standard Normal

312 Data Analytics using R

The following equation defines a simple linear filter that finds out the trend component

on the given time series:

l

•

+

=-•

= Ât i t i
i

T X

where, “Tt” is a trend component and “Xt” is any time series.

R language provides the filter() function for linear filtering on time series analysis.

The filter() function generates the time series object or series of any given univariate

time series or multivariate time series. The basic syntax of the filter() function is:

filter(x, filter, method,…)

where, “x” argument contains either a univariate time series or multivariate time series,

filter argument contains a vector of filter coefficients in reverse time order and method

argument defines a method for the linear filtering process. It can be either convolution

(for moving average or MA) or recursive (for auto regression or AR) and the dots “…”

define other optional arguments.

The following example generates two series, viz., f1 and f2 by incrementing 1 and 2,

respectively, using the filter() function. The plot() function is used to create solid

and dashed lines for both series, viz., f1 and f2, respectively (Figure 8.4).

Figure 8.21 Linear filtering using the filter() command

Time Series in R 313

Check Your Understanding

 1. What is the difference between univariate and multivariate time series?
 Ans: A univariate time series is a type of time series that uses a single quantity for describing

values. A multivariate time series is a type of time series that uses more than a single
quantity for describing values.

 2. List the names of some basic R commands used for visualisation of time series data.
 Ans: plot(), hist(), boxplot(), pie(), abline(), qqnorm(), stripchart(), and

curve() are some R commands used for visualisation of time series data.

 3. List the names of some basic R commands used for the manipulation of time series
data.

 Ans: means(), sd(), log(), diff(), pnorm(), and qnorm() are some R commands
used for the manipulation of time series data.

 4. What is filter() function?
 Ans: The filter() function performs the linear filtering of time series data and generates

the time series of the given data.

8.3 reaDing time series Data

For the analysis of time series data, it is necessary to read and store time series data into
some objects. R provides functions scan() and ts() for this. A brief introduction of each
function is given as follows.

8.3.1 scan() Function

The scan() function reads the data from any file. Since time series data contains data
with respect to a successive time interval, it is the best function for reading it. The basic
syntax of the scan() function is scan(filename)

where, Filename argument contains the name of the file to be read.
The following example is reading a file “Attendance.txt”. The file contains the

attendance of a month of class (Figure 8.22).

8.3.2 ts() Function

The ts() function stores time series data and creates the time series object. Sometimes,
data may be stored in a simple object. In such a case the as.ts() function can convert
a simple object into a time series object. In addition, R also provides a function is.ts()
that checks whether an object is a time series object or not. The basic syntax of the ts()
function is

ts(data, start, end, frequency, class, …)

314 Data Analytics using R

Figure 8.22 Reading time series data using the scan() function

where, “data” argument contains time series values stored in any vector or matrix, “start”
argument contains a single number or a vector of two integers that defines the time of the
first observation, “end” argument contains a single number or a vector of two integers
that defines the time of the last observation, “frequency” argument contains a single
number that defines the number of observations per unit of time and “class” is an optional
argument that defines the class for the output. The default class is “ts” for a single series;
classes such as “mts”, “ts”, “matrix”, etc., are used for multiple series; and the dots “…”
define other optional arguments.

In the following example described in Figure 8.23, the ts() function stores the object
s that contains the attendance of one month which has been read with the use of the
scan() function.

Figure 8.23 Storing time series data using the ts() function

Time series analysis also stores daily, monthly, quarterly or yearly data. For this, the
frequency argument of the ts() function is used. In the following example, the scan()

Time Series in R 315

function is reading a file into an object s. The ts() function creates a time series object
t using the frequencies 12 and 4. The frequency 12 stores the object in yearly form and
frequency 4 stores the object quarterly. Along with this, the start c = (2011, 1) argument
defines that time series analysis is starting from January 2011 (Figure 8.24).

Figure 8.24 ts() function with frequency parameter

Check Your Understanding

 1. What is scan() function?
 Ans: The scan() function reads the data from any file. Since time series data contains data

with respect to a successive time interval, it is the best function for reading it.

 2. What is the ts() function?
 Ans: The ts() function stores time series data and creates the time series object.

 3. What is as.ts() and is.ts() function?
 Ans: The as.ts() function converts a simple object into a time series object and the

is.ts() function checks whether an object is a time series object or not.

8.4 Plotting time series Data

In time series analysis, plotting time series data is the next basic task after reading and
storing time series data. A plotting task represents time series data graphically that is
easily understandable by anyone. For plotting time series data, the plot() function of

316 Data Analytics using R

R is the best function (described in Section 8.1). The basic syntax for plotting time series
data is plot.ts(x)

where, “x” is any time series object.
The following example creates a plot of simple time series object t that contains time

series data regarding attendance. The plot in Figure 8.25 describes the additive model
because there are random fluctuations in the attendance data.

Figure 8.25 Plotting simple time series data

The following example creates plots of the attendance data of some students over six
months. An object s stores the time series data and the ts() function creates the time
series object t for this object s (Figure 8.26).

Figure 8.26 Another example of plot of time series data

Time Series in R 317

8.5 DecomPosing time series Data

Decomposing time series data is also a part of the simple component analysis that defines

four components, viz., trend, seasonal, cyclical and irregular. A time series changes

because of seasonal, cyclical or irregular events; hence, the need for generating these

four components. The seasonal component contains the data that occurs seasonally every

year. For example, fruit prices change according to the season. The cyclical component

contains data that changes daily, weekly, monthly or annually. For example, share prices

change daily. The irregular component contains the data that occurred at a specific time

point but was not related to a season or a cycle. For example, a natural incident or any

political event is an example of this sort of irregular data that happens at a specific

time.

Decomposing time series data refers to a process that decomposes the given time

series data into different components. In business analytics, decomposing is used to find

out a particular component of seasonal or non-seasonal time series data. The following

subsections describe different methods of decomposition available in R.

8.5.1 Decomposing Non-Seasonal Data

A non-seasonal time series contains the trends and the irregular components; hence,

the decomposition process converts the non-seasonal data into these components. An

additive model is used for finding out these components of the non-seasonal time series.

This additive model uses a smoothing method by calculating the moving average of the

time series.

R provides a function SMA() that smooths time series data by calculating the moving

average and estimates trend and irregular component. The package “TTR” defines this

function. The basic syntax of the SMA() function is:

SMA(x,n,…)

where, “x” argument contains the series that defines time series data like price, volume,

etc.; the “n” argument contains a numeric value for calculating the average and the dots

“…” define other optional arguments.

The following example takes the same time series data that is stored in the file “SA.

dat”. The time series object t stores this data. Figure 8.27 describes the plotting of this

time series data. It can be seen from the plot that there are random fluctuations in the

attendance data over time. Now SMA() uses this data to estimate the trend component of

the time series. For this, the function smooths the data using a simple moving average of

order 4. Now this smoothed time series data is plotted using the plot() function. Figure

8.28 displays the smoothed time series data or the trend component of the time series

data, which is smoother than that displayed in Figure 8.27.

318 Data Analytics using R

Figure 8.27 Normal plotting of time series data

Figure 8.28 Decomposition of the non-seasonal data using the SMA() function

Time Series in R 319

If the value of the order argument increases, it will plot more smoothed time series plot.
In simple words, a higher value generates the trend component more accurately. Figure
8.29 defines the trend component of time series data using a high order value.

Figure 8.29 Decomposition using SMA()with high value order for smoothness

8.5.2 Decomposing Seasonal Data

A seasonal time series contains the seasonal, trend and irregular components; hence, the
decomposition process converts the seasonal data into these three components. It also
uses an additive model for finding out these components. The additive model calculates
the moving average of the time series and smooths the models.

R provides two functions, viz., decompose() and stl() for the decomposition of
seasonal data. A brief introduction to both functions is given as follows.

decompose() Function

The decompose() function decomposes the time series into seasonal, trend and irregular
components. The function also smooths time series data by calculating moving averages.
The basic syntax of decompose() function is:

decompose(x, type, …)

where, “x” argument contains a time series object for which components are to be
estimated, “type” is an optional argument that defines the type of component to be
estimated and the dots “…” define other optional arguments.

320 Data Analytics using R

The following example creates a time series object t of the time series data regarding
attendance that is stored in the file “SA.dat”. The decompose() function returns all these
components of this time series object t into a form of list objects (Figure 8.30). Along with
this, from Figure 8.30, it is found that the largest seasonal factor is for month of June
[17.63] and the lowest seasonal factor is for the month of July [-21.86]. It indicates that
there is a high peak of attendance in June and low peak of attendance in July. Figure 8.31
describes all components of the time series object graphically using the plot() function.

Figure 8.30 Decomposing seasonal data using the decompose() function

stl() Function

The seasonal trend decomposition (STL) is an algorithm that uses non-parametric
regression methods for calculating the components. R provides the function stl() for
decomposing seasonal data using “loess” regression. The function estimates the seasonal
and trend components of the given time series data. The basic syntax of the stl() function
is:

stl(x, s. Window,…)

where, “x” argument contains a time series object for which components are to be
estimated, “s. Window” contains either the character string “periodic” or numeric number
(which should be odd and at least contain the value 7) and the dots “…” define the other
optional arguments.

The following example creates a time series object t of the time series data stored in the
file “SA.dat”. The stl() function returns all seasonal, trend and remainder components

Time Series in R 321

of this time series object t into a form of list objects (Figure 8.32). Figure 8.33 describes
all these components of the time series objects graphically using the plot() function.

Figure 8.31 Generated components of the seasonal data

Figure 8.32 Decomposing seasonal data using the stl() function

322 Data Analytics using R

Figure 8.33 Generated components of the seasonal data using the stl() function

8.5.3 Seasonal Adjustment

A seasonally adjusted time series is a time series with no seasonality or seasonal
component. The simple method of calculating this series is to first calculate the seasonal
component and then remove it from the original time series. This series provides the
trend component without any noise generated by the seasonality. For example, Figure
8.34 reads a time series data into object t and decomposes return components in an object
d. Now the command “t – d$seasonal” calculates the seasonally adjusting component.

Another method of generating seasonally adjusted data is to use the inbuilt function
seas() of the package “seasonal”. It automatically finds out the seasonally adjusted series.
The following Figure 8.35 describes the seasonally adjusted series of the same time series
data as the one used above.

8.5.4 Regression Analysis

Regression analysis defines the linear relationship between independent variables
(predictors) and dependent (response) variables using a linear function. R provides the
lm() function for regression analysis and testing the significance of the coefficient. The
function returns many values that are used during analysis. The basic syntax of function
lm() is:

lm(formula, data, …)

Time Series in R 323

Figure 8.34 Seasonally adjusting data using difference method

Figure 8.35 Seasonally adjusting using the seas()function

where, “formula” argument represents an object of class “formula” and defines the
symbolic description of the model to be fitted; “data” is an optional argument that may
be a data frame, list or an object and the dots “…” define the other optional arguments.

324 Data Analytics using R

The following example creates two vectors, viz., “a” and “r” that store some dummy
data on attendance and result, respectively. The lm() function finds out the relationship
between these vectors. Along with this, the summary() function also returns the various
values that describe the coefficient (Figure 8.36).

Figure 8.36 Regression analysis

Check Your Understanding

 1. What do you mean by plotting the time series?

 Ans: Plotting represents time series data graphically during time series analysis and R

provides the plot() function for plotting time series data.

 2. What do you mean by decomposing a time series?

 Ans: Decomposing a time series is a process that decomposes the given time series data into

different components.

(Continued)

Time Series in R 325

8.6 Forecasts Using exPonential smoothing

Forecasts are a type of prediction that predict future events from past data. Here, the
forecast process uses exponential smoothing for making predictions. An exponential
smoothing method finds out the changes in time series data by ignoring the irrelevant
fluctuations and makes the short-term forecast prediction for time series data.

The following subsection describes three types of exponential smoothing. All of them
use a common inbuilt function HoltWinters() of R but with different parameters. The
basic syntax of the HoltWinters() function is:

HoltWinters(x, alpha = NULL, beta = NULL, gamma = NULL, …)

where, “x” argument contains any time series object, “alpha” argument defines the
alpha parameter of Holt-Winters Filter, “beta” argument defines the beta parameter of the
Holt-winters Filter (For exponential smoothing, it is set to FALSE), “gamma” argument
defines the seasonal component (for non-seasonal model, it is set to FALSE) and the dots
“…” define the other optional arguments.

The HoltWinters() function returns a value between 0 and 1 of all three parameters
(alpha, beta and gamma). If the value is near zero, then it indicates that forecasts are done
on less recent observation and if the value is near to one, then it indicates that forecasts
are done on the most recent observation. Brief introductions to each type of exponential
smoothing are given ahead.

8.6.1 Simple Exponential Smoothing

A simple exponential smoothing estimates the level at the current time point and performs
the short-term forecast. The alpha parameter of the HoltWinters() function controls the
simple exponential smoothing. To implement simple exponential smoothing, it is necessary
to set the beta and gamma parameters to FALSE in the HoltWinters() function.

 3. What is the SMA() function ?

 Ans: The SMA() function is used for the decomposition of the non-seasonal time series. It

smooths time series data by calculating the moving average and estimates the trend

and irregular components. The function is available in the package “TTR”.

 4. What is the decompose() function?

 Ans: The decompose() function is used for the decomposition of the seasonal time series.

It decomposes the time series into the seasonal, trend and irregular components and

smooths time series data by calculating the moving averages.

 5. What is the use of the lm() function?

 Ans: The lm() function is used for regression analysis and for testing the significance of the

coefficient. The function returns many values that are useful for time series analysis.

326 Data Analytics using R

In the following example, the ts() function creates a time series object a of time series

data stored in the file “Attendance.txt”. The HoltWinters() function implements the

exponential smoothing without any trend and seasonal component. The value of the

alpha parameter is 0.030. Since this value is near to zero, we know that forecasts are done

on both recent and less recent observations. Along with this, in the generated plot, the

vertical zigzag lines represent the original time series and the single horizontal vertical

line represents the forecast. The forecast line is smoother than the original time series

(Figure 8.37).

Figure 8.37 Simple exponential smoothing

8.6.2 Holt’s Exponential Smoothing

Holt’s exponential smoothing estimates the level and slope at the current time point. The

alpha and beta parameters of the HoltWinters() function control Holt’s exponential

smoothing and estimate the level and slope, respectively. It is the best method for time

series containing trend components. To implement this smoothing, it is necessary to set

the gamma parameter to FALSE in the HoltWinters() function.

In the following example, the ts() function creates a time series object a of time

series data stored in the file “Attendance.txt”. The HoltWinters() function implements

Holt’s exponential smoothing with trend components but does not contain any seasonal

component. The values of alpha and beta parameters are near to zero, indicating forecasts

Time Series in R 327

are done on less recent observations in the time series. In the generated plot, the black

vertical zigzag lines represent the original time series and the grey vertical zigzag lines

represent the forecast. Since both the lines are not smooth, the forecast agrees with the

observed original time series (Figure 8.38).

Figure 8.38 Holt’s exponential smoothing

8.6.3 Holt-Winters Exponential Smoothing

Holt-Winters exponential smoothing estimates the level, slope and seasonal component

at the current time point. The alpha, beta and gamma parameters of the HoltWinters()

function controls the Holt-Winters exponential smoothing and estimates the level, slope of

trend component and seasonal component, respectively. It is the best smoothing method

for time series containing trend and seasonal components. To implement this smoothing,

only time series objects need to pass in the HoltWinters() function.

In the following example, the ts() function creates a time series object a of time series

data stored in the file “Attendance.txt”. The HoltWinters() function implements the

Holt-Winters exponential smoothing with trend and seasonal components. The values

of all parameters are zero, indicating that forecasts are done on less recent observations

in the time series. Just like the above example, in the following generated plot, the black

vertical zigzag lines represent the original time series and the grey vertical zigzag lines

represent the forecast (Figure 8.39).

328 Data Analytics using R

Figure 8.39 Holt-Winters exponential smoothing

Check Your Understanding

 1. What do you mean by exponential smoothing?

 Ans: Exponential smoothing method finds out the changes in time series data by ignoring

the irrelevant fluctuations and makes the short-term forecast prediction for time series

data.

 2. What is the HoltWinters() function?

 Ans: The HoltWinters() function is an inbuilt function, commonly used for

finding exponential smoothing. All three types of exponential smoothing use the

HoltWinters() function but with different parameters. The HoltWinters()

function returns a value between 0 and 1 for all the three parameters, viz., alpha, beta

and gamma.

 3. What is the function of Holt’s exponential smoothing?

 Ans: Holt’s exponential smoothing estimates the level and slope at the current time point.

The alpha and beta parameters of the HoltWinters() function controls it and

estimates the level and slope, respectively.

Time Series in R 329

8.7 arima moDels

ARIMA (Autoregressive Integrated Moving Average) is another method of time series
forecasting. The exponential models make short-term forecasts without using correlation
between the successive values of the time series. However, sometimes a correlation requires
forecasting some irregular components. In this case, the ARIMA model is best suited for
forecasting. The ARIMA model explicitly defines the irregular components of a stationary
time series with non-zero autocorrelation.

The ARIMA model is represented by ARIMA(p,d,q) where parameters p, d and q defines
the autoregression (AR) order, the degree of differencing and the moving average (MA)
order, respectively. It follows some stages such as model estimation, parameter checking,
forecasting, analysis and diagnostic for finding a suitable model for any time series data.
A brief introduction to each stage is given ahead.

8.7.1 Differencing a Time Series

Differencing a time series is the first step for finding an appropriate ARIMA model. The
ARIMA model is basically used for a stationary time series; hence, for a non-stationary
time series it is necessary to difference the time series until a stationary time series is not
obtained. R provides a diff() function for finding out the difference. For obtaining a
stationary time series, it is necessary to pass the value of difference variable (d) of the
ARIMA model in the diff() function. The basic syntax of the diff() function is:

diff(x, differences, …)

where, “x” argument contains an object to differentiate, “differences” argument contains
a numeric value that defines the order of difference and the dots “…” define the other
optional arguments.

In the following example, the ts() function creates a time series object “ax” of the time
series data stored in the file “Attendance.txt”. The diff() function performs difference
on this object “ax” where the order of the difference is 2. After placing several values for
the difference argument, 2 is taken for the order of difference since it appears stationary
in mean and variance (Figure 8.41).

8.7.2 Selecting a Candidate ARIMA Model

Now the next step in finding an appropriate ARIMA model is to analyse the autocorrelation
and partial autocorrelation of the stationary time series. This analysis helps to find the
most appropriate values of p and q for an ARIMA(p, d, q) model. R language provides
the acf() and pacf() functions for finding the actual values of the autocorrelation [q]
and the partial autocorrelation [p] of the time series, respectively. The basic syntax of the
acf() and pacf() functions are:

acf(x,lag.max = NULL, …)

pacf(x, lag.max = NULL,…)

330 Data Analytics using R

Figure 8.41 Differencing a time series using the diff() function

where, “x” argument contains any time series object or vector, lag.max is an optional
argument that defines the maximum lag at which to calculate ACF or PACF and the dots
“…” define the other optional arguments.

In the following example, we see the differentiated time series object “ad” that was
generated by the diff() function in the example given in the previous subsection. The
acf() and pacf() functions calculate the actual values of the autocorrelation and partial
autocorrelation of the differentiated time series, respectively. Figure 8.42 is describing the
ACF and in the generated plot, since the line at lag 1 goes beyond the dotted line; hence,
the value of the autocorrelation at lag 1 exceeds the significance bounds. Figure 8.43 is
describing the partial ACF and in the generated plot, since all lines at lags 1, 2 and 3 are
going beyond the dotted line; hence, the value of the partial autocorrelation at these lags
exceeds the significance bounds.

According to the value of autocorrelation and partial correlation, a suitable ARIMA(p, d,
q) model is selected. Along with this, R also provides an inbuilt function auto.arima() that
automatically returns the best candidate ARIMA(p, d, q) model for the given time series.

8.7.3 Forecasting Using an ARIMA Model

After selecting the suitable candidate ARIMA(p, d, q) model, parameters of the selected
ARIMA(p, d, q) model is found out. These values are also used for defining the predictive
model that makes the forecasts for the time series. R provides the arima() function that
finds out the parameters of the selected ARIMA(p, d, q) model. The basic syntax of the
arima() function is:

arima(x, order(0L, 0L, 0L), …)

Time Series in R 331

Figure 8.42 Autocorrelation using the acf()function

Figure 8.43 Partial autocorrelation using the pacf() function

where, “x” argument contains a time series object, order argument defines the order
component of ARIMA(p, d, q) model and the dots “…” define the other optional
arguments.

332 Data Analytics using R

R also provides the function forecast.Arima() for making forecasting of the given

time series. The function forecasts the time series object using the ARIMA model. The

function is available in the package “forecast”.

In the following example, the ts() function creates a time series object “ax” of time

series data stored in the file “Attendance.txt”. Here ARIMA(0,2,1) is selected as a candidate

ARIMA model for finding out the parameters of the ARIMA model using the arima()

function. The forecast.Arima() forecasts the output of ARIMA model [“af”]. Figure

8.44 also describes the plot of the obtained forecast values.

Figure 8.44 Forecasting using ARIMA model

8.7.4 Analysis of Autocorrelations and Partial Autocorrelations

In this step, the values of autocorrelation and partial autocorrelation are analysed and

simulated from an ARIMA(p, d, q) model. R provides the function arima.sim() that

simulates these values from an ARIMA(p, d, q) model. The basic syntax of the arima.

sim() function is:

arima.sim(model, n, …)

where, “model” argument contains a list that defines the coefficients of the component AR

and/or MA. In addition, an optional component order can also be used, “n” argument

Time Series in R 333

contains a positive value for defining the number of output series and the dots “…” define

the other optional arguments.

In the following example, some dummy values of AR and MA coefficients are taken

according to the calculation done in the previous subsections. The arima.sim() function

now simulates it into an object “as”. Figure 8.45 also gives a corresponding plot of this

object.

Figure 8.45 Analysis of ACF and PACF using the arima.sim()function

8.7.5 Diagnostic Checking

Diagnostic checking is the last step in fitting an ARIMA model process. It checks the

residuals from the fit model. R provides the function tsdiag() that creates a diagnostic

plot for the time series fitted model. The function returns three plots, viz., “Standardised

residuals plot”, “ACF of residuals plot” and “plot defining the p-values of the Ljung-Box

statistic”. The basic syntax of the tsdiag() function is:

tsdiag(object, …)

where, “object” argument contains a time series fitted model and the dots “…” define

the other optional arguments.

In the following example, the tsdiag() function takes a fitted model “af” obtained in

the previous subsection. Figure 8.46 describes all three plots of the corresponding fitted

model.

334 Data Analytics using R

Figure 8.46 Diagnostic checking and plot for fitted model using the tsdiag() function

Check Your Understanding

 1. What is ARIMA model?
 Ans: ARIMA (Autoregressive Integrated Moving Average) is another method of time series

forecasting. The ARIMA model explicitly defines the irregular component of a stationary
time series with non-zero autocorrelation. It is represented by ARIMA(p,d,q) where
parameters p, d and q define the autoregression (AR) order, the degree of differencing
and the moving average (MA) order, respectively.

 2. What is the use of acf() and pacf() functions in ARIMA modelling?
 Ans: The acf() and pacf() functions determine the actual values of the autocorrelation

[q] and partial autocorrelation [p] of the time series, respectively, for an ARIMA(p, q,
r) model.

 3. What is the use of the forecast.Arima() function?
 Ans: The forecast.Arima() function makes the forecasting of the given time series using

an ARIMA model. The function is available in the package “forecast”.

 4. What is the use of the tsdiag() function?
 Ans: The tsdiag() function creates a diagnostic plot for the time series fitted model and

checks the residuals from the fit model. It returns three plots, viz., “Standardised
residuals plot”, “ACF of residuals plot” and “plot defining the p-values of the Ljung-
Box statistic”.

Time Series in R 335

Practical Assignment

Let us analyse the “AirPassengers” data set. It is a classic Box and Jenkins airline data. The
data set has monthly airline passenger numbers from 1st January, 1949 to 31st December,
1960.

Step 1: Display the data stored in the data set “AirPassengers”.

> AirPassengers

Step 2: Decompose the time series “AirPassengers” into three components, viz., trend,
seasonal and irregular. The function “decompose()” returns a list object, where the
estimates of the seasonal, trend and irregular components are stored in named elements
of that list objects, called “seasonal”, “trend”, and “random”, respectively.

> passengers <- decompose(AirPassengers)

> passengers

$x

336 Data Analytics using R

Time Series in R 337

Step 3: Plot the trend component as stored in “passengers$trend”.

> plot(passengers$trend, col = (“dodgerblue3”, main=“Trend”, xlab=

“Jan 1949 to Dec 1960”, ylab = “No. of passengers”)

1950

N
o
.
o
f
p
a
s
s
e
n
g
e
rs

1
5
0

1952 1954 1956 1958 1960

Jan 1949 to Dec 1960

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

Figure 8.47

338 Data Analytics using R

Step 4: Plot the seasonal component as stored in “passengers$seasonal”.

> plot(passengers$seasonal, col = (“dodgerblue3”, main=“Seasonal”,

xlab= “Jan 1949 to Dec 1960”, ylab = “No. of passengers”)

1950 1952 1954 1956 1958 1960

Jan 1949 to Dec 1960

–
4
0

–
2
0

0
2
0

4
0

6
0

N
o
.
o
f
p
a
s
s
e
n
g
e
rs

Figure 8.48

Step 5: Plot the seasonal monthly data for 1949 (January 1949 to December 1949).

> plot(ts(passengers$seasonal[1:12]), col = (“dodgerblue3”),

main=“Seasonal monthly data for 1949”,xlab= “Jan 1949 to Dec 1949”,

ylab = “No. of passengers”)

2 4 6 8 10 12

Jan 1949 to Dec 1949

–
4
0

–
2
0

0
2
0

4
0

6
0

N
o
.
o
f
p
a
s
s
e
n
g
e
rs

Figure 8.49 Seasonal monthly data for 1949

Time Series in R 339

Let us further explore the time series data.

Step 6: Check the class of the data set “AirPassengers”.

> data(AirPassengers)

> class(AirPassengers)

[1] “ts”

The above states that data series “AirPassengers” is in a time series format.

Step 7: Use start() and end() to extract and encode the times the first and last
observations were taken.

> start(AirPassengers)

[1] 1949 1

The above states that the time series data starts in January 1949.

> end(AirPassengers)

[1] 1960 12

The time series ends in December 1960.

Step 8: Use the frequency() function to return the number of samples per unit time.

> frequency(AirPassengers)

[1] 12

Step 9: Let us take a look at the summary data.

> summary(AirPassengers)

 Min. 1
st
 Qu. Median Mean 3

rd
 Qu. Max.

 104.0 180 265.5 280.3 360.5 622.0

> plot(AirPassengers)

Figure 8.50

340 Data Analytics using R

The above plot shows the distribution of data.

> abline(reg=lm(AirPassengers~time(AirPassengers)))

Figure 8.51

This will fit in a line.

Step 10: The function cycle() gives the positions in the cycle of each observation.

> cycle(AirPassengers)

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1949 1 2 3 4 5 6 7 8 9 10 11 12

1950 1 2 3 4 5 6 7 8 9 10 11 12

1951 1 2 3 4 5 6 7 8 9 10 11 12

1952 1 2 3 4 5 6 7 8 9 10 11 12

1953 1 2 3 4 5 6 7 8 9 10 11 12

1954 1 2 3 4 5 6 7 8 9 10 11 12

1955 1 2 3 4 5 6 7 8 9 10 11 12

1956 1 2 3 4 5 6 7 8 9 10 11 12

1957 1 2 3 4 5 6 7 8 9 10 11 12

1958 1 2 3 4 5 6 7 8 9 10 11 12

1959 1 2 3 4 5 6 7 8 9 10 11 12

1960 1 2 3 4 5 6 7 8 9 10 11 12

> plot(aggregate(AirPassengers,FUN=mean))

Time Series in R 341

Figure 8.52

Aggregates the data and displays a year-on-year trend. The year-on-year trend clearly
shows that the #passengers have been increasing without fail.

Step 11: Plot a box and whiskers plot.

> boxplot(AirPassengers~cycle(Airpassengers))

1 2 3 4 5 6 7 8 9 10 11 12

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

Figure 8.53

Inferences

 d The variance and the mean value in July and August is much higher than other
months.

 d Even though the mean value of each month is quite different, its variance is small.
Hence, we have a strong seasonal effect with a cycle of 12 months or less.

342 Data Analytics using R

Insurance Fraud Detection

In the world of technology, fraud involves high-tech gadgets and processes
such as cell phones, insurance claims, tax return claims, credit card
transactions, etc. These represent significant problems for governments and
businesses as each day sees a new type of fraud, which these bodies fail to
predict. Fraud is a collective crime, so it deserves special treatment with the
help of the system of intelligent data analysis for detecting and preventing it.
These methods exist in the areas of Knowledge Discovery in Databases (KDD),
data mining, machine learning and statistics. Using intelligent systems, we
can develop an effective and steady system to detect these frauds and ensure
they do not happen in future.

Techniques used for fraud detection fall into two primary classes, viz.,
statistical techniques and artificial intelligence. Examples of statistical data
analysis techniques include the following:

 d Data pre-processing techniques that include the means pair wise, list
wise missing data finding properties for detection, validation, error
correction and filling up of missing or incorrect data by the means pair
wise, list wise missing data finding properties.

 d Calculation of various random statistical parameters such as mean, per-
formance metrics, statistical probability distributions charts and so on.

 d Models and probability distributions of various business activities
either in terms of various mutual informed parameters or probability
distributions curves.

 d Computing user profiles from very different channels.
 d Time series analysis of time-dependent data that uses loops of variables

on different relations in indexing of these data.
 d Clustering and classification to find graph patterns and associations

rules among groups of data.
 d Matching algorithms to detect anomalies in the behaviour of customer

transactions or users as to get the risk profile of the customer.
Fraud is a major challenge in our daily lives, costing us billions. In many

surveys, the United States loses 1,000 billion dollars every year because of a
failure to detect fraud in insurance. However, many companies are working
on it and there are many approaches to solve such prediction lacunae.
According to many scientists and researchers, neural network is one of the
best approaches to solve the problem of predicting fraud. In this case study,
we will try to throw some light on the neural network approach though there
are other effective approaches as well.

C
a
se

 St
u

dy

(Continued)

Time Series in R 343

Neural Network

Similar to a living neuron circuit, the neural network depends on the
information of its nodes and their weights. These weights are changeable, as
are the layers and dynamic properties of hidden neural network variables.

To understand this type of problem let us consider survey information
pertaining to US. Until 2009, car companies in the US faced nearly 9.1 billion
USD in loss but in 2016 this figure neared 150 billion USD. To reduce this
sort of loss, what is needed is a very good analytical and statistical approach
that uses historical data to predict the current and future output. For these
kinds of problems, the neural network is useful, especially back-propagate
neural network algorithm.

Use of Neural Network

The dataset was adjusted before the beginning of training with many time
series data as per the insurance claims in day-to-day life and this data was
stored according to the nature of claim by the customers. In time-related
column we used a single node, which is days related to accident and type
of claim column. Then we converted this data into binary variants and time
variant as integers.

However, there are many complexities in neural networks and one of
them has to do with minimising the nodes and layers. To reduce the number
of input nodes required, variants are grouped under the following labels—
timing, demographics, policy, rating and customer social status. Each node
of the neural network takes inputs and has a weight for each input. Now, the
weights are in the range of -1 and 1 to reflect how certain factors can increase
or decrease the detection of fraud. These weights are interpreted in the light
of the importance of each input and larger weights are more significant.

To check the accuracy of the neural network we need to check the co-
variance and error, and for this root square mean (RSE) is a good algorithm
to use. For the errors, there are many RSE algorithms that we can use but the
choice depends on the variables and types of errors we get from the node
information and mutual information. Through these processes, we can create
a neural network model to predict frauds.

 d Time series data is a type of data that is stored at regular intervals or follows the concept of time

series. According to the statistic, a time series defines the sequence of numerical data points in

successive order.

Summary

C
a
se

 St
u

dy

(Continued)

344 Data Analytics using R

 d A multivariate time series is a type of time series that uses more than a single quantity for describ-

ing the values. The plot(), hist(), boxplot(), pie(), abline(), qqnorm(), strip-

charts() and curve() are some R commands used for visualisation of time series data.

 d The mean(), sd(), log(), diff(), pnorm() and qnorm() are some R commands used for

manipulation of time series data.

 d The simple component analysis divides the data into four main components named trend, seasonal,

cyclical and irregular. The linear filter is a part of simple component analysis.

 d Linear filtering of time series uses linear filters for generating the different components of the time

series. Time series analysis mostly uses a moving average as a linear filter.

 d A filter() function performs linear filtering of time series data and generates the time series

of the given data.

 d A scan() function reads the data from any file. Since time series data contains data with respect

to a successive time interval, it is the best function for reading it.

 d A ts() function stores time series data and creates a time series object.

 d The as.ts() function converts a simple object into time series object and the is.ts() func-

tion checks whether an object is a time series object or not.

 d The plotting task represents time series data graphically during time series analysis and R provides

the plot() function for plotting of time series data.

 d A non-seasonal time series contains the trend and irregular components; hence, the decomposition

process converts the non-seasonal data into these components.

 d The SMA() function is used for decomposition of non-seasonal time series. It smooths time series

data by calculating the moving average and estimates the trend and irregular components. The

function is available in the package “TTR”.

 d A seasonal time series contains the seasonal, trend and irregular component; hence, the decomposi-

tion process converts the seasonal data into these three components.

 d The seas() function automatically finds out the seasonally adjusting series. The function is avail-

able in the “seasonal” package.

 d Regression analysis defines the linear relationship between independent variables (predictors) and

dependent (response) variables using a linear function.

 d Forecasts are a type of prediction that predicts the future events from the past data.

 d Simple exponential smoothing estimates the level at the current time point and performs the

short-term forecast. The alpha parameter of the HoltWinters() function controls the simple

exponential smoothing.

 d Holt’s exponential smoothing estimates the level and slope at the current time point. The alpha and

beta parameters of the HoltWinters() function controls it and estimates the level and slope,

respectively.

 d Holt-Winters exponential smoothing estimates the level, slope and seasonal component at the cur-

rent time point. The alpha, beta and gamma parameters of the HoltWinters() function controls

it and estimates the level, slope of trend component and seasonal component, respectively.

 d The ARIMA (Autoregressive Integrated Moving Average) is another method of time series forecasting.

The ARIMA model explicitly defines the irregular component of a stationary time series with non-

zero autocorrelation. It is represented by ARIMA(p, d, q) where parameters p, d and q define the

autoregression (AR) order, the degree of differencing and the moving average (MA) order, respectively.

(Continued)

Time Series in R 345

 d A diff() function is differencing a time series for finding an appropriate ARIMA model. It helps

to obtain a stationary time series for an ARIMA model and also finds out the value of ‘d’ parameter

of an ARIMA(p, q, r) model.

 d An auto.arima() function automatically returns the best candidate ARIMA(p, d, q) model for

the given time series.

 d An arima() function finds out the parameters of the selected ARIMA(p, d, q) model.

 d The arima.sim() function simulates the values of the autocorrelation and partial autocorrelation

from an ARIMA(p, d, q) model.

 Ke y Te r m s

 d ARIMA: The ARIMA (Autoregressive Inte-
grated Moving Average) is a method of time
series forecasting.

 d Decomposing time series: Decomposing
time series is a process that decomposes a giv-
en time series data into different components.

 d Exponential smoothing: The exponential
smoothing method finds out the changes
in time series data by ignoring irrelevant
fluctuation and making a short-term fore-
cast prediction for time series data.

 d Forecasts: Forecasts are a type of prediction
that predict future events from past data.

 d Holt’s exponential smoothing: Holt’s expo-
nential smoothing estimates the level and
slope at the current time point.

 d Holt-Winters exponential smoothing:
Holt-Winters exponential smoothing esti-
mates the level, slope and seasonal compo-
nent at the current time point.

 d HoltWinters()function: The HoltWin-
ters() function is a common inbuilt func-
tion for finding exponential smoothing. All
three exponential smoothing use it.

 d Linear filtering: Linear filtering of time
series uses linear filters for generating dif-
ferent components of the time series.

 d Multivariate time series: A multivariate
time series is a type of time series that uses
more than a single quantity for describing
the values.

 d Non-seasonal time series: A non-seasonal
time series contains the trend and irregular
components.

 d Plotting: Plotting task represents time series
data graphically during time series analysis.

 d Regression analysis: Regression analysis
defines the linear relationship between
independent variables (predictors) and de-
pendent (response) variables using a linear
function.

 d Seasonal adjusting series: A seasonally
adjusting time series is a time series with no
seasonality or seasonal component.

 d Seasonal time series: A seasonal time series
contains the seasonal, trend and irregular
components.

 d Simple component analysis: Simple com-
ponent analysis divides data into four main
components, viz., trend, seasonal, cyclical
and irregular.

 d Simple exponential smoothing: Simple
exponential smoothing estimates the level
at the current time point and does the short-
term forecast.

 d Time series data: Time series data is a type
of data that is stored at regular intervals or
follows the concept of time series.

 d Univariate time series: A univariate time
series is a type of time series that uses a
single quantity for describing the values.

346 Data Analytics using R

 mu l T i p l e Ch o i C e Qu e s T i o n s

 1. Which one of the following commands is used for visualisation in time series analysis?

 (a) diff() (b) sd()

 (c) plot() (d) means()

 2. Which one of the following commands is used for manipulation in time series analysis?

 (a) plot() (b) pnorm()

 (c) qqnorm() (d) hist()

 3. Which one of the following commands is different from others?

 (a) qnorm() (b) pnorm()

 (c) qqnorm() (d) log()

 4. Which one of the following commands stores the time series object?

 (a) as.ts() (b) is.ts()

 (c) ts() (d) scan()

 5. Which one of the following commands reads the time series object?

 (a) plot() (b) is.ts()

 (c) ts() (d) scan()

 6. Which one of the following commands plots the time series object?

 (a) as.ts() (b) plot()

 (c) ts() (d) scan()

 7. Which one of the following commands implements linear filtering?

 (a) ts() (b) decompose()

 (c) filter() (d) scan()

 8. Which one of the following commands decomposes non-seasonal time series?

 (a) seas() (b) stl()

 (c) decompose() (d) SMA()

 9. Which one of the following commands decomposes seasonal time series data?

 (a) seas() (b) ts()

 (c) decompose() (d) SMA()

 10. Which one of the following commands is used for seasonally adjusting time series?

 (a) seas() (b) stl()

 (c) decompose() (d) SMA()

 11. Which one of the following components are used by non-seasonal time series data?

 (a) Trend and seasonal (b) Irregular and trend

 (c) Seasonal and Irregular (d) Cyclical and trend

 12. Which one of the following components are used by seasonal time series data?

 (a) Trend, irregular and seasonal (b) Irregular, cyclical and trend

 (c) Seasonal, cyclical and irregular (d) Cyclical, trend, and seasonal

Time Series in R 347

 13. Which one of the following packages contains the SMA() function?

 (a) Forecast (b) Seasonal

 (c) TTR (d) Graphics

 14. Which one of the following packages contains the seas() function?

 (a) Forecast (b) Seasonal

 (c) TTR (d) Graphics

 15. Which one of the following packages contains the forecast() function?

 (a) Forecast (b) Seasonal

 (c) TTR (d) Graphics

 16. Which one of the following functions implements regression analysis?

 (a) ts() (b) lm()

 (c) seas() (d) decompose()

 17. Which one of the following functions implements exponential smoothing?

 (a) HoltWinters() (b) seas()

 (c) arima() (d) plot()

 18. Which one of the following functions is used for differencing a time series object?

 (a) HoltWinters() (b) acf()

 (c) diff() (d) pacf()

 19. Which one of the following functions estimates the autocorrelation for time series object?

 (a) acf() (b) diff()

 (c) arima() (d) pacf()

 20. Which one of the following functions estimates the partial autocorrelation for time series
object?

 (a) acf() (b) diff()

 (c) arima() (d) pacf()

 21. Which one of the following functions automatically returns a candidate ARIMA model?

 (a) HoltWinters() (b) auto.arima()

 (c) arima() (d) arima.sim()

 22. Which one of the following functions finds out the parameters of a candidate ARIMA
model?

 (a) HoltWinters() (b) auto.arima()

 (c) arima() (d) arima.sim()

 23. Which one of the following function simulates an ARIMA model?

 (a) HoltWinters() (b) auto.arima()

 (c) arima() (d) arima.sim()

 24. Which one of the following functions forecasts an ARIMA model?

 (a) arima() (b) auto.arima()

 (c) forecast.Arima() (d) arima.sim()

348 Data Analytics using R

 25. Which one of the following function creates a diagnostic plot for an ARIMA model?

 (a) arima() (b) auto.arima()

 (c) tsdiag() (d) ts()

 26. Which one of the following is not a parameter of an ARIMA model?

 (a) Moving average (b) Difference

 (c) Auto regression (d) Lag

 27. How many plots are generated by the tsdiag() function?

 (a) 2 (b) 3

 (c) 4 (d) 5

 28. Which one of the following is not a parameter of the HoltWinters() function?

 (a) Alpha (b) Gamma

 (c) Beta (d) Lambda

 29. Which one of the following parameters of the HoltWinters() function controls simple
exponential smoothing?

 (a) Alpha (b) Gamma

 (c) Beta (d) Lambda

 30. Which one of the following parameters of the HoltWinters() function controls Holt’s
exponential smoothing?

 (a) Alpha and beta (b) Gamma and beta

 (c) Beta and lambda (d) None of the above

 31. Which one of the following parameters of the HoltWinters() function controls Holt-
Winters exponential smoothing?

 (a) Alpha and beta (b) Alpha, beta, and gamma

 (c) Beta, gamma and lambda (d) None of the above

 sh o r T Qu e s T i o n s

 1. Describe time series data with respect to time series analysis.

 2. What is the difference between univariate and multivariate time series?

 3. What are the basic R commands for visualisation of time series data?

 4. What is basic R commands for the manipulation of time series data?

 5. What is linear filtering in time series analysis?

 6. What is simple component analysis?

 7. What is plotting in time series analysis?

 8. What is decomposing in time series analysis?

 9. What is the difference between non-seasonal and seasonal time series?

Time Series in R 349

 10. What is exponential smoothing in time series analysis?

 11. What steps are used for fitting an appropriate ARIMA model?

 12. How does one analyse the autocorrelation and partial correlation for fitting an ARIMA
model?

 13. How does one forecast an ARIMA model in time series analysis?

 lo n g Qu e s T i o n s

 1. Explain the plot() function with syntax and an example.

 2. Explain the hist() function with syntax and an example.

 3. Explain the filter() function with syntax and an example.

 4. Explain the scan() function with syntax and an example.

 5. Explain the ts() function with syntax and an example.

 6. Explain the SMA() function with syntax and an example.

 7. Explain the decompose() function with syntax and an example.

 8. Explain the stl() function with syntax and an example.

 9. Explain seasonally adjusting series and decompose it without using any function.

 10. Explain the seas() function with syntax and an example.

 11. Explain the lm() function with syntax and an example.

 12. Explain forecasting in time series analysis.

 13. Explain the HoltWinters() function.

 14. Explain simple exponential smoothing with an example.

 15. Explain Holt’s exponential smoothing with an example.

 16. Explain Holt-Winters exponential smoothing with an example.

 17. Explain ARIMA model.

 18. Explain the diff() function with syntax and an example.

 19. Explain the acf() function with syntax and an example.

 20. Explain the pacf() function with syntax and an example.

 21. Explain the arima() function with syntax and an example.

 22. Explain the tsdiag() function with syntax and an example.

 23. Create and read a time series data for changing prices of shares using ts() and scan()
functions. Also, plot the time series data.

 24. Create time series data and apply linear filtering on it. Interpret the output.

 25. Create time series data and decompose it. Interpret the output.

350 Data Analytics using R

 26. Create time series data that applies all the three exponential smoothing on it. Also, interpret
the output.

 27. Create time series data and fit it into an ARIMA model by following all the steps used
during fitting an ARIMA model.

Answers to MCQs:

 1. (c) 2. (b) 3. (c) 4. (c) 5. (d) 6. (b) 7. (c)

 8. (d) 9. (c) 10. (a) 11. (a) 12. (b) 13. (c) 14. (b)

 15. (a) 16. (b) 17. (a) 18. (c) 19. (a) 20. (d) 21. (b)

 22. (c) 23. (d) 24. (c) 25. (c) 26. (d) 27. (b) 28. (d)

 29. (a) 30. (a) 31. (b)

L E A R N I N G O U T C O M E

At the end of this chapter, you will be able to:

 c Create a distance matrix using the dist() function

 c Implement clustering in R using hclust() function

 c Implement k-means clustering in R

9.1 introduCtion

Clustering analysis has widespread application in areas such as data analysis, market
research, pattern recognition, etc. It is extensively used to:

 d Classify documents on the web for information discovery;
 d Detect credit card frauds in outlier detection applications; and
 d Gain insight into the distribution of data to observe characteristics of each cluster, etc.

This chapter deals with hierarchical clustering in both Euclidean and non-Euclidean
spaces. It also discusses partitioning clustering k-means algorithm. Hierarchical and
partitioning clustering is demonstrated using R. The chapter also deliberates on few
other algorithms such as BFR (Bradley, Fayyad, and Reina) algorithm, a variant of the
k-means algorithm that performs clustering in a high-dimensional Euclidean space, the
CURE (Clustering Using REpresentatives) algorithm, the GRGPF algorithm that uses
non-Euclidean space, the BDMO algorithm, stream-clustering algorithms (B. Babcock, M.
Datar, R. Motwani, L. O’Callaghan), etc.

Clustering

Chapter 9

352 Data Analytics using R

9.2 What is Clustering?

Clustering techniques are the most important techniques with respect to business analytics
and data mining. Clustering is a process that examines given data and partitions this data
into many groups on the basis of their similarities or features. These groups of data are
called clusters.

Given a set of points, group the points into some number of clusters, so that:
 d Members of a cluster are close/similar to each other
 d Members of different clusters are dissimilar

Usually points are in a high dimensional space and similarity is defined using a distance
measure (such as Euclidean/Cosine/Jaccard distance measure, etc.)

Cluster analysis divides data into groups (clusters) that are meaningful and useful.
Let us look at an example of clustering. Assume you fire a query of “movie” in a search
engine. The query returns a number of web pages. These web pages are then grouped
into categories such as “movie reviews”, “star cast”, “theatres”, “trailers”, etc. Each of the
category (cluster) can further be broken into a number of “sub-categories” (sub-clusters)
to form a hierarchical structure that aids a user’s comprehension of the query results.

Clustering can also be expressed as a technique that examines a collection of points
and groups them into clusters based on their distance. Figure 9.1 shows three clusters and
two outliers. Data points in a cluster are closer to each other by their Euclidean distance
than they are to data points outside the group.

Clusters

Outlier

x

x
x

x

x

x

x x

x
x

xx

xx

x

x
x

x

x x
x
x

x
x

x

x x

x

xx

x

xx

x

x
x

x

x
x

x

x

x

x x

x

x

x x
x

x

x x x

x

x

x

Outlier

Figure 9.1 Clusters and outliers

Clustering in two dimensions is easy. Clustering small amounts of data also looks easy.
However, clustering is not always easy especially when applications involve not two but
10 or 100 or 10,000 dimensions. In high dimensional spaces, almost all pairs of points are
at approximately the same distance from each other and it is not intuitively clear how
to group them.

Clustering 353

The main objective of clustering is to find points in the same cluster having a small
distance from each other along with points in different clusters where points have a larger
distance from each other. In general, there are different types of clustering available in
statistics that are used during data mining.

Nowadays, several fields make use of clustering algorithms to implement different
applications in their respective fields. Data mining, information retrieval, search engines,
academics, psychology and medical, machine learning, computer graphics, pattern
recognition, etc., are few of the major application areas of clustering.

The field of business data analytics deals with huge mounds of data and requires the use
of different types of algorithms to implement clustering. R provides different packages to
implement clustering. Each package has different inbuilt functions to implement clustering
and to determine the clusters.

9.3 BasiC ConCepts in Clustering

Before learning clustering in R, comprehension of few basic concepts (points, spaces and
distances) is important. You will learn about these basic concepts in this section.

9.3.1 Points, Spaces, and Distances

Points, spaces, and distances are some of the most important concepts in clustering.

Points and Spaces

Clustering is a data mining process where data are viewed as points in a multi-dimensional
space. The collection of points stored in a single place is called space. These points are
said to belong to the same space. In other words, space is a universe of a set of points
from where points are drawn in the dataset. "Euclidean space" is one of the famous and
useful spaces.

In the Euclidean space, points are vectors of real numbers. The number of dimensions
of the space is the length of the vector, and the coordinates of the represented points are
the components of the vector.

Distances

Distance is another important metric used in clustering. The difference between any two
points is called distance. All spaces have a distance measure and they have to follow the
following properties of distance:

 d Distance must be non-negative.
 d Distance should be symmetric where the order of points does not matter during

distance computing.
 d Distance measures should also follow the triangle inequality rule which means the

distance from x to y to z is never less than the distance from x to z directly.

354 Data Analytics using R

Clustering uses different types of distance according to the need of application. The
most common types of distance measures are Euclidean distance, Manhattan distance,
Hamming distance, Maximum norm, L1 distance, etc., which are used for finding distance
between the points.

R language provides a dist() function for measuring distance by using different types
of methods. The function calculates the distance and returns the distance matrix. This
distance matrix is calculated by using the specified distance measure that computes the
distance between rows of a data matrix. The basic syntax of dist() is as follows:

dist(x, method = “Euclidean”,…)

where,
x argument defines a numeric matrix, or an object that can be converted to a matrix or a

data frame; method argument defines the name of the method for measuring the distance
measure. Table 9.1 shows the names of the distance measure; the dots, “…” define the
other optional arguments.

Table 9.1 Different distance measures

Distance Measure Method Description

Euclidean It calculates the distance by taking the square root of sums of the
squares of the differences between the coordinates of the points in each
dimension.

Manhattan It returns the absolute distance by the sum of the magnitudes of the
differences in each dimension

Binary The binary bits are either 0 (zero) or 1 (non-zero). The zero and non-
zero elements are represented by ‘Off’ and ‘On’. The binary distance is
the proportion of bits where only one bit should be ‘On’ bit.

Maximum It returns the maximum distance between two vectors.

Canberra It works with non-negative values where terms with zero numerators
and denominators are omitted from the sum and treated as if the
values are missing.

Minkowski It represents the p norm where the p
th

 root of the sum of the p
th

powers
of the differences of the components.

Example 1

The dist() function is creating distance matrices of a matrix “m” of 4 by 4 using Euclidean
and Manhattan method (Figure 9.2).

Example 2

The dist() function is creating distance matrices of a matrix “m” of 4 by 4 using the
methods “binary”, “maximum”, “Canberra”, and “Minkowski” (Figure 9.3).

Clustering 355

Figure 9.2 Distance matrices using Euclidean and Manhattan method

Figure 9.3 Distance matrices using remaining methods

356 Data Analytics using R

Example 3

Let us take a look at the “mtcars” dataset. “mtcars” data set is a data frame with
32 observations (for 32 automobiles) on 11 variables (fuel consumption and 10 aspects of
automobile design).

> mtcars

Since there are 11 measurement attributes (mpg, cyl, disp, hp, drat, wt, etc.) for each
automobile, the data set can be seen as a collection of 32 sample vectors in an 11-dimen-
sional space. In order to determine the dissimilarity between two automobiles, say Honda
Civic and Camaro Z28, let us calculate the distance between them using the dist function:

Step 1: Create a data frame, “x” and assign it the details of the car, “Honda Civic”.
> x <- mtcars[“Honda Civic”,]
> x
 mpg cyl disp hp drat wt qsec vs am gear carb
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2

Step 2: Create a data frame, “y” and assign it the details of the car, “Camaro Z28”.
> y <- mtcars[“Camaro Z28”,]
> y
 mpg cyl disp hp drat wt qsec vs am gear carb
Camaro Z28 13.3 8 350 245 3.73 3.84 15.41 0 0 3 4

Clustering 357

Step 3: Use the rbind() function to take data-frames, “x” and “y” as arguments and
combine by rows. Use the dist() function to compute and return the distance matrix
(computed by using the specified distance measure to compute the distances between
the rows of a data matrix).

> dist(rbind(x, y))

 Honda Civic

Camaro Z28 335.8883

Likewise, we can compute the distance between Camaro Z28 and Pontiac Firebird:
> z <- mtcars[“Pontiac Firebird”,]

> dist(rbind(y, z)

 Camaro Z28

Pontiac Firebird 86.26658

Conclusion

As the distance between Camaro Z28 and Pontiac Firebird (86.267) is smaller than the
distance between Camaro Z28 and Honda Civic (335.89), we conclude that Camaro Z28
is more similar to Pontiac Firebird than to Honda Civic.

Let us now compute the distance matrix. We will apply the same distance computation
between all possible pairs of automobiles in mtcars, and arrange the result into a 32x32
symmetric matrix, with the element at the i-th row and j-th column being the distance
between the i-th and j-th automobiles in the data set.

> dist(as.matrix(mtcars))

358 Data Analytics using R

9.3.2 Clustering Strategies

Clustering strategies are techniques that define the way of performing clustering on
any dataset. Hierarchical and partitioning are two major and fundamental categories of
clustering strategies. The clustering algorithms follow the techniques according to the
need of the application.

Hierarchical Clustering Strategy

Hierarchical clustering strategy defines a hierarchical structure of objects of a dataset and
their clusters. The main strategy of the Hierarchical algorithm is to start with each point
in its own cluster and then combine the clusters according to their “closeness” by using
the appropriate definition of “close”. After this, it stops combining the clusters when
some clusters become undesirable. For example, the user can stop combining the clusters
after getting the predetermined number of clusters or sometimes the user can also stop
combining the clusters based on the compactness measures of clusters.

The hierarchical clustering strategy can be either agglomerative or divisive.
 d Agglomerative hierarchical clustering:

 r Bottom up
 r Initially, each point is a cluster
 r Repeatedly combine the two nearest clusters into one

 d Divisive hierarchical clustering:
 r Top down
 r Start with one cluster and recursively split it

The key operation in agglomerative hierarchical clustering is to “repeatedly combine
two nearest clusters”.

There are three important questions to answer as we go about building the hierarchical
algorithm:

 d How do you represent a cluster of more than one point?
 d How do you determine the “nearness” of clusters?
 d When do you stop combining clusters?

We will answer the above three questions in Section 9.2, Hierarchical Clustering.

Partitioning Clustering Strategy

The main strategy of partitioning clustering is to divide or partition the dataset of n
objects or tuples of a dataset into k partitions. After partitioning the dataset, each partition
represents a cluster, where k £ n. In simple words, it classifies the given datasets into k
different groups that satisfies the following conditions:

 d Each group should contain at least one object.
 d Each object should belong to exactly one group.

The cluster algorithms also use the concept of point assignment, Euclidean space,
density-based methods, grid-based methods, model-based methods, or fit the data into
main memory for doing clustering.

Clustering 359

 d The main strategy of the point assignment clustering is to consider points in some
order and then assign each point to the cluster where it best fits. In this strategy,
initial clusters are estimated in a short phase. In some applications, these points are
not assigned if they are too far from the current clusters, i.e. outliers.

 d In Euclidean space strategy, clustering algorithms use an arbitrary distance measure.
The algorithms can use centroids (average of points) in the Euclidean space. In the
non-Euclidean space, the algorithms need to develop their method to summarise
the clusters.

 d Some algorithms use the size of the data for clustering. These algorithms assume
that the data is small enough to fit in main memory for clustering. Alternatively,
the algorithms assume whether the data must reside in the secondary memory for
clustering. In applications, where the data size is too big then it is not feasible to put
all pairs of points in main memory. In such a case, not all the points of the clusters
can be placed in main memory at the same time.

9.3.3 Curse of Dimensionality

Analysis and organisation of data in high-dimensional spaces (over hundreds of dimensions)
that cannot fit in low-dimensional settings are called the curse of dimensionality. Normally
a Euclidean space contains two dimensions but the high-dimensional Euclidean space
contains many dimensions and defines different unintuitive properties. These properties
also come under the curse of dimensionality. The curse in the curse of dimensionality
indicates that all pairs of points are equally far away from each other and two vectors
are mostly orthogonal.

In high-dimensional spaces, there are huge points to distribute the distances among
these points. For this, consider a d-dimensional Euclidean space and select n random
points in the unit cube.

 d When d = 1, then place random points on a line of length equal to 1. In this case,
some pairs of points are very close on the line or some points are very far away on
the line. Hence, the average distance between a pair of points will be 1/3.

 d When d is very large, then the Euclidean distance between two random points [x1,
x2… xd] and [y1, y2… yd] on a line is as follows:

Distance = 2

1

()
d

i i
i

x y
=

-Â

where,
xi and yi = random variables between 0 to 1

9.3.4 Angles Between Vectors

An angle between two vectors defines a single point or the shortest angle, where one
vector turns around to another vector. But, in high-dimensional spaces, there are a number
of vectors. For finding angles between vectors, take any three random points P, Q, and
R in a d-dimensional space (high-dimensional space).

360 Data Analytics using R

 P = [x1, x2… xd]
 R = [y1, y2… yd]
 Q = origin

The shortest angle between P, Q, and R is the cosine of the angle PQR that is the dot
product of P and R divided by the product of lengths of the vectors P and Q. The following
formula defines the angle:

Angles between vectors = 1

2 2
1 1

d
i ii

d d
i ii i

x y

x y

=

= =

Â

Â Â

As soon as d grows, the denominator grows linearly in d, whereas the numerator is
a sum of random values that can be positive or negative. Hence, the expected value of
the numerator is 0 and for the large values of d, the cosine of the angle between any two
vectors is almost 0. It indicates that the angle is close to 90 degrees.

Check Your Understanding

 1. What is a cluster in cluster analysis?
 Ans: A cluster is a group of data in cluster analysis.

 2. What is space in clustering?
 Ans: A collection of points stored in a single place is called space. These points are said to

belong to the same space.

 3. What is a dist() function?
 Ans: R language provides a dist() function for measuring the distance using different

methods. The function calculates the distance and returns the distance matrix.

 4. What are clustering strategies?
 Ans: Clustering strategies are the techniques that define the way of performing clustering on

any dataset. Hierarchical and partitioning are two major and fundamental categories
of clustering strategies.

 5. What is a hierarchical clustering strategy?
 Ans: Hierarchical clustering strategy defines a hierarchical structure of the objects of a dataset

and their clusters. The hierarchical clustering strategy can be either agglomerative or
divisive.

 6. What is partitioning clustering strategy?
 Ans: Partitioning clustering strategy divides or partitions the dataset of n objects or tuples

into k partitions of the dataset.

Clustering 361

9.4 hierarChiCal Clustering

Hierarchical clustering organises a set of nested clusters as a tree. Each cluster (node) of
the tree, excluding the leaf nodes, is the union of its sub-clusters (children) and the root of
the tree is the cluster that contains all the objects. In both types of hierarchical clustering
techniques, agglomerative clustering is the most common clustering.

Hierarchical clustering generates either dendrogram (tree-like diagram) or nested
cluster diagram (clusters into other clusters). Figure 9.4 defines four points generated
after hierarchical clustering.

p1 p2 p3 p4

(b) Nested cluster diagram.

p1

p2

p3
p4

(a) Dendrogram.

Figure 9.4 Dendrogram and nested cluster diagram

During hierarchical clustering, it is necessary to find how to represent the clusters, how
to merge any two clusters, and how to stop merging clusters. Here is the pseudocode of
the hierarchical algorithm:
 1. While it is not time to stop Do
 a. Find and select the best two clusters to merge;
 b. Combine those two clusters into one cluster;
 2. End;
 In Figure 9.4, cluster p2 and p3 are merged to give one cluster (p2, p3) which then is

merged with cluster p4. This cluster, comprising p2, p3 and p4, is then merged with
cluster p1.

9.4.1 Hierarchical Clustering in Euclidean Space

Euclidean space contains two dimensions with one centre point. For performing
hierarchical clustering on this space, it is necessary to represent a cluster by its centroid
or average of the points in the cluster. Since a Euclidean space has only one centre point,
it becomes the centroid. By applying the above pseudocode of hierarchical clustering
algorithm on the space, we get:
 1. The algorithm initialises the cluster (centre point of space).
 2. Find the Euclidean distance between their centroids, i.e. the distance between any

two clusters.

362 Data Analytics using R

 3. Select two clusters with the shortest distance and merge them.
 4. Let us consider Euclidean space. We have four basic questions to answer.

 d How do you represent a cluster of more than one point?
 d How do you represent the location of each cluster, to tell which pair of clusters

is closest?
Represent each cluster by its centroids. A centroid here is the average of its points.

 d How do you determine the “nearness” of clusters?
Measure cluster distances by distances of centroids

 d When do you stop combining clusters?
Pick a number “k” upfront and stop when you have “k” clusters or stop when the

next merge would create a bad cluster. A bad cluster is a cluster with low “cohesion”.

“Cohesion” can be measured by any of the below approaches.

Approach 1: measure the diameter of the merged cluster. Diameter = maximum
distance between points in the cluster.

Approach 2: measure the radius of the merged cluster. Radius = maximum
distance of a point from centroid (or clustroid). “Clustroid” will be explained
when we discuss clustering in non-Euclidean space.

Approach 3: measure the density. Density = number of points per unit volume.
E.g. divide the number of points in the cluster by the diameter or radius of the
c luster.

In the Figure 9.5, o represents the data points whereas
x represents the centre point. We have three data points
with coordinates (0, 0), (2, 1) and (1, 2). Let us begin
by assuming that points (1, 2) and (2, 1) are the closest.
Compute the centroid of the two points by averaging its
x and y coordinates to give x = (1.5, 1.5). Then consider
the clusters, one with centroid (0, 0) and another with
centroid (1.5, 1.5). Combine the three points (0, 0), (1, 2)
and (2, 1) into a single cluster with centroid (1, 1). The
centroid was computed by averaging the x coordinates
for all the three data points ((0 + 2 + 1) / 3) and likewise averaging the y coordinates for
all the three data points ((0 + 1 + 2) /3).

Implementation of Hierarchical Clustering in R

R language provides a function hclust() that performs hierarchical clustering on a
distance matrix. For finding the distance matrix, dist() function is used that generates
the distance matrix. The basic syntax of hclust() is as follows:

hclust(d, method,…)

x (1.5, 1.5)

(1, 2)

x (1, 1) (2, 1)

(0, 0)

Figure 9.5 Centroid in a Euclidean
space

Clustering 363

where,
“d” argument defines a dissimilar structure such as dissimilar matrix generated by

dist() function; “method” argument defines the type of method used for clustering.
This can be “ward.D”, “ward.D2”, “single”, “complete”, “average”, “median”, “centroid”,
“mcquitty”; the dots “…” define the other optional arguments.

In the following example, matrix() function creates a 10 by 10 matrix. The dist()
function creates a dissimilar matrix “ed” using the Euclidean method. Now the hclust()
function generates the dendrogram of this matrix (Figure 9.6).

Figure 9.6 Generating dendrogram using hclust() function for clustering

Example 1

In this example, a sample dataset “DemoSample.csv” is taken for clustering that contains
two columns, “Sample1” and “Sample2”. as.matrix() function is used to convert
the dataset, “r” into a matrix, “dc”. The dist() function creates a dissimilar matrix
“dm” using the Euclidean method. Now, the hclust() function generates different types
of dendrogram for this sample dataset using different methods. Figures 9.7–9.9 shows
the dendrograms generated using the method “complete”, “average”, and “single”
respectively. All the three dendrograms are different.

364 Data Analytics using R

Figure 9.7 Dendrogram for the sample data using method “complete”

Figure 9.8 Dendrogram for the sample dataset using method “average”

Clustering 365

Figure 9.9 Dendrogram for the sample dataset using method “single”

Example 2

For the data set mtcars, we can run the distance matrix with hclust, and plot a dendrogram
that displays a hierarchical relationship among the vehicles.

Step 1: Find the distance matrix.
> d <- dist(as.matrix(mtcars))

Step 2: Apply hierarchical clustering.
> hc <- hclust (d)

Step 3: Plot the dendrogram (Figure 9.10).
> plot (hc)

Careful inspection of the dendrogram shows that 1974 Pontiac Firebird
and Camaro Z28 are classified as close relatives as expected.

Similarly, the dendrogram shows that the 1974 Honda Civic and Toyota
Corolla are close to each other.

F
o
rd

P
a
n
te
ra

L

D
u
s
te
r
3
6
0

C
a
m
a
ro

Z
2
8

H
o
rn
e
t
S
p
o
rt
a
b
o
u
t

P
o
n
ti
a
c
F
ir
e
b
ir
d

366 Data Analytics using R

Figure 9.10 Cluster dendrogram

9.4.2 Efficiency of Hierarchical Clustering

The simple hierarchical clustering algorithm calculates distance between two points,
which is not very efficient. Hence, to improve the efficiency of hierarchical clustering it is
necessary to calculate distances between every pair of cluster for finding the best merger.
In this case, the hierarchical clustering should use the following steps:
 1. At first, calculate the distances between every pair of points that takes time O(n2).
 2. Now, find the smallest distance from the pairs and arrange their distances into a

priority queue. It also takes time O(n2).
 3. After this, remove all entries of the two clusters that are to be merged from the

priority queue. It takes time O(nlogn).
 4. At last, calculate all the distances between the new cluster and the remaining

clusters. It takes time O(nlogn).
In all the four steps, the last two steps execute in O(nlogn) time which means that at

the most n times, whereas the first two steps execute only once in O(n2) time, hence the
total running time complexity of the hierarchical clustering is O(n2logn) which is very
good as compared to O(n3).

9.4.3 Alternative Rules for Controlling Hierarchical Clustering

Even after improving the efficiency of the algorithm, there are still some limitations. The
value of n is very large, which should not be, because a large value is not feasible to
use in any application through clustering approach. To overcome such a problem, some
alternative rules are available that can control hierarchical clustering.

Clustering 367

 1. Find out the distance between the two clusters that is a minimum of all distances
between any two points where each point should be selected from each cluster.
It generates an entirely different cluster that is obtained using the distance-of-
centroid rule. For example, in Figure 9.11, it is good to select the next cluster point
(10, 5) with the cluster of two points as (10, 5) has distance p2 and there is no other
pair of unclustered points that is this close.

(2, 2) (5, 2)

(9, 3)

(3, 4)

(10, 5)

(12, 6)

(4, 8) (6, 8)

(7, 10)(4, 10)

(11.5, 3.5)

(11, 4)

(12, 3)

+

Figure 9.11 Points in the space for finding clusters

 2. Another rule is to find out the distance between the two clusters that is to be the
average distance of all pairs where each point should be selected from each cluster.

 3. The third rule is to calculate the radius of a cluster. The radius is the maximum
distance between all the points and the centroid. For this, combine two clusters
whose resulting cluster has the lowest radius. In this case, another method is to use
the sum of squares of the distances between the points and the centroid.

 4. The last rule is to calculate the diameter of a cluster. The diameter of a cluster is the
maximum distance between any two points of the cluster.

9.4.4 Hierarchical Clustering in Non-Euclidean Space

In the non-Euclidean space, the only “locations” that we can talk about are the points
themselves, i.e. there is no “average” of two points. The question is then, “how to represent
a cluster of many points?” The answer is to compute a “clustroid”. A “clustroid” is a
data point “closest” to other points. The other question is “how does one determine the
“nearness” of clusters?” The simple answer is to treat clustroid as if it were centroid when
computing intercluster distances.

368 Data Analytics using R

x

Datapoint

Centroid
Artificial point

Clustroid
An existing point

Figure 9.12 A cluster with clustroid

In Figure 9.12, we have a cluster on three data points. A centroid here is an average of all
data points in the cluster. This implies that the centroid is an artificial point. On the other
hand, a clustroid is an existing data point that is “closest” to all other points in the cluster.

There are different methods available for selecting the clustroid. Each clustroid is
designed to minimise the distance between the clustroid and other points in the cluster.
Some common methods for selecting the clustroid that minimises are as follows:

 d The average distance to the other points in the cluster.
 d The maximum distance to other points in the cluster.
 d The sum of squares of the distances to the other points in the cluster.

Check Your Understanding

 1. What do you mean by hierarchical clustering?
 Ans: Hierarchical clustering organises the set of nested clusters as a tree. Each cluster

[node] of the tree, excluding the leaf nodes, is the union of its sub-clusters
[children] and the root of the tree is the cluster that contains all the objects.

 2. What is a Euclidean space?
 Ans: A Euclidean space contains two dimensions with one centre point.

9.5 k-means algorithm

k-means algorithm is one of the famous partitioning clustering algorithm. This section
explains the basics of the k-means algorithm, the number of clusters for this, and its right
value. Along with this, the BFR algorithm is also described in this section.

9.5.1 k-means Basics

k-means algorithm is an unsupervised clustering method that assigns different data objects
into a number of clusters. It takes the input dataset (k), partitions it into a set of n objects,
and assigns them to k clusters. Due to this, the similarity of the resulting intra-cluster

Clustering 369

is high, whereas the similarity of the inter-cluster is low. The mean value of the objects
(cluster’s centroid or centre of gravity) in a cluster finds the cluster similarity.

The main strategy of k-means algorithm is that it first randomly selects k number of
objects, where each object initially represents a cluster mean or centre. After this, for each
remaining object, the object is assigned to its similar cluster according to the distance
between the object and the cluster mean. Now the algorithm calculates the new mean
for each cluster and this process is repeated until the defined function converges. The
pseudocode of the k-means algorithm is given below:

k-means algorithm
(k = number of clusters, D = a dataset containing n objects):

 1. Initially choose k points from the dataset, D that are likely to be in different clusters
as the initial cluster centres;

 2. Make these points the centroids of their clusters;
 3. For each of the remaining points p:

 d Find the centroid to which p is closest;
 d Add p to the cluster of that centroid;
 d Adjust the centroid of that cluster to account for p;

 4. End;

To fix the centroid of the clusters, the algorithm may add an optional step where it
reassigns each point, including the k initial points, to the k clusters.

Implementation of k-means Clustering in R

R language provides a function k-means() that performs the k-means clustering on a
data matrix. The basic syntax of k-means() is as follows:

k-means(x, centers, iter.max= 10, nstart = 1, algorithm =

c(“Hartigan-Wong”, “Lloyd”, “Forgy”, “MacQueen”),…)

where,
“x” argument defines a numeric matrix of the data or an object that can be converted to

a matrix; “centers” argument contains either the number of clusters (k) or a set of initial
(distinct) cluster centers; “iter.max” argument defines the maximum number of iterations;
“nstart” argument defines the number of random sets that should be chosen if centers is
a number; “algorithm” defines the type of algorithm used for clustering; the dots, “…”
defines the other optional arguments.

Example 1
matrix() function is used to create a 4 by 4 matrix. The k-means() function takes value
3 for “centers” argument to create the number of clusters of the matrix (Figure 9.13). It is
necessary that the value of the “centers” argument is less than the value of the column
value of the matrix. The function returns the cluster means of all three clusters along with
cluster components and vector. Figure 9.14 defines the corresponding plot for the given
clusters of the matrix.

370 Data Analytics using R

Figure 9.13 Use of k-means() function for clustering

Figure 9.14 Plot of clusters or k-means() function output

Clustering 371

Example 2

This demonstration uses the iris dataset. This dataset gives the measurements in
centimeters of the variables, sepal length and width, petal length and width of 50 flowers
of each of the three species of iris. The species are Iris setosa, versicolor, and virginica.

Let us start by looking at the first 6 records (there are a total of 150 rows) of the iris
dataset. Data is available under five columns (variables), “Sepal.Length”, “Sepal.Width”,
“Petal.Length”, “Petal.Width” and “Species”.

> head(iris)

 Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

Step 1: Copy the dataset, “iris” into a data frame, “newiris”.

> newiris <- iris

> head(newiris)

 Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

Step 2: Set the “Species” column of the data frame, “newiris” to NULL.
> newiris$Species <- NULL

Note: The “Species” column is no longer present in the data frame, “newiris”.

> head(newiris)

 Sepal.Length Sepal.Width Petal.Length Petal.Width

1 5.1 3.5 1.4 0.2

2 4.9 3.0 1.4 0.2

3 4.7 3.2 1.3 0.2

4 4.6 3.1 1.5 0.2

5 5.0 3.6 1.4 0.2

6 5.4 3.9 1.7 0.4

Step 3: Apply k-means to the data frame, “newiris”, and store the clustering result in
“kc”. The cluster number is set to 3.

372 Data Analytics using R

> (kc <- kmeans(newiris, 3))

k-means clustering with 3 clusters of sizes 50, 62, 38

Cluster means:

 Sepal.Length Sepal.Width Petal.Length Petal.Width

1 5.006000 3.428000 1.462000 0.246000

2 5.901613 2.748387 4.393548 1.433871

3 6.850000 3.073684 5.742105 2.071053

Clustering vector:

 [1] 112232

222222222222222222222223222

[82] 22222222222222222223233332333333223333232323322333332

333323332332332

Within cluster sum of squares by cluster:

[1] 15.15100 39.82097 23.87947

 (between_SS / total_SS = 88.4%)

Available components:

[1] “cluster” “centers” “totss” “withinss” “tot.withinss” “be-

tweenss” “size” “iter” “ifault”

Compare the “Species” label with the clustering result.

> table (iris$Species, kc$cluster)

 1 2 3

setosa 50 0 0

versicolor 0 48 2

virginica 0 14 36

Step 4: Let us plot the clusters and their centres. Note that there are four dimensions
(“Sepal.Length”, “Sepal.Width”, “Petal.Length” and “Petal.Width”) in the data. We will
use only two dimensions (“Sepal.Length” and “Sepal.Width”) to draw the plot as follows
(Figure 9.15):

> plot(newiris[c(“Sepal.Length”, “Sepal.Width”)], col=kc$cluster)

$Species, kc$cluster)

> points(kc$centers[,c(“Sepal.Length”, “Sepal.Width”)], col=1:3,

pch=8, cex=2)

“Points” is a generic function to draw a sequence of points at the specified coordinates.
The argument, “pch” is to plot “character”, i.e. “symbol to use”, “col” specifies the color
code to use and “cex” is for “character or symbol expansion” (Figure 9.16).

Clustering 373

Figure 9.15

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

Sepal.Length

S
e
p
a
l.
W
id
th

2
.0

2
.5

3
.0

3
.5

4
.0

Figure 9.16

9.5.2 Initialising Clusters for k-means

In the k-means algorithm, selecting the initial k points is a very critical task. For this, the
following methods can be used:

 d In the first method, select the points that are as far away from one another as pos-
sible. In this case, it is good to select the points randomly. If there are points fewer
than k points, then add the points with minimum distance from the selected points.

374 Data Analytics using R

 d In the second method, a hierarchical cluster is used for getting a sample of the
data. In the k clusters, select the point from each cluster closest to the centroid of
the cluster.

9.5.3 Picking the Right Value of k

After initialising the cluster, selecting the right value of k is a very tough task in the
k-means algorithm. Most of the times, the right value of k is selected based on guesses.
For example, consider an application where the average radius or diameter values grows
slowly and the number of clusters remains at or above the true number of clusters. In
simple words, the number of clusters falls below the true number present in the data.

If it is difficult to pick the right value, then the user can find out a good value. A good
value of k is one that grows only logarithmically with the true number. A different number
of the clustering operation uses this for finding the good value of k. For this, it is necessary
to run the k-means algorithm for k = 1, 2, 4, 8… means in even series. It will give two
values between v and 2v, which is a very little decrease in the average diameter that is
justified by the data that lies between v/2 and v. In this case, using the binary search is
the best method for finding the correct value of k. In conclusion, selecting the logarithmic
value for k is best.

9.5.4 Algorithm of Bradley, Fayyad, and Reina

The BFR (Bradley, Fayyad, and Reina) algorithm is a variant of the k-means algorithm
that performs clustering in a high-dimensional Euclidean space. The algorithm uses the
following assumptions:

 d It assumes that the shape of the clusters is normally distributed about a centroid.
 d There may be a difference between the mean and standard deviation for a cluster

and for this, the dimension must be independent. For example, in two different
dimensions, a cluster may be cigar-shaped and for this, the cigar must not rotate
on the axes.

The BFR algorithm selects the points that are read in chunks. These chunks may be
obtained from a conventional file system or distributed file system that partitions it into
appropriate sizes. Each chunk contains points that are processed in the main memory.
The main memory stores the summaries of the cluster and its data. The main memory
data contains three other objects (Discard, Compressed, and Retained) with the chunks
from the input.

Discard Set

Discard set is a summary of the clusters themselves. Actually, these cluster summaries are
a very essential part. However, the points that the summary represents are discarded
and have no representation in main memory other than through this summary.

Clustering 375

Compressed Set

A compressed set is also the summary of the clusters but for sets of points that are found
close to one another and not close to any other cluster. The points represented by the
compressed set are also discarded implying that they do not appear explicitly in the main
memory. These represented sets of points are known as miniclusters.

Retained Set

Retained set contains points that can neither be assigned to a cluster nor are they
sufficiently close to any other points that allow them to be represented by a compressed
set. These points are held in main memory exactly as they appear in the input file.

If the data is d-dimensional then the discard and compressed set are represented by
2d+1 values. In simple words, it represents a set of points by their count, their centroid,
and the standard deviation in each dimension. Along with this, it is good to use N (count),
SUM (sum of dimension-divided by N), SUMSQ (square root of variance) instead of using
count, their centroid, and the standard deviation respectively.

Figure 9.17 defines all the three sets: discard, compressed, and retained.

Points in the
retained set

Compressed
sets

Its centroidA cluster. Its points
are in the discard set.

Figure 9.17 Discard set, compressed set, and retained set

9.5.5 Processing Data in the BFR Algorithm

The BFR (Bradley, Fayyad, and Reina) algorithm processes a chunk of points of any dataset
by using the following steps:
 1. First, it finds all points that are sufficiently close to the centroid of a cluster. It is

simple to add the point to the N, SUM, and SUMSQ that represent the cluster. After
this, it discards the points.

 2. In the second step, it finds all points that are not sufficiently close to any centroid.
These points are clustered along with the points that are in the retained set. For this,
it uses any main-memory clustering algorithm such as hierarchical clustering. Then
it is summarised and adds the clusters of more than one point to the compressed
set, so singleton clusters become the retained set of points.

376 Data Analytics using R

 3. Then it obtains the miniclusters from the old compressed set and from our attempts
to cluster new points and the old retained set. Although none of these miniclusters
can be merged with one of the k clusters, they might merge with one another.

 4. In the next step, points that are assigned to clusters or miniclusters and are not in the
retained set are then written out to the secondary memory with their assignment.

 5. In the final step, if this happens to be the last chunk of input data then we can
either treat the compressed and retained set as outliers and never cluster them or
assign each point in the retained set to the cluster of the nearest centroid and merge
each minicluster with the cluster whose centroid is closest to the centroid of the
minicluster.

Check Your Understanding

 1. What is a k-means algorithm?
 Ans: k-means algorithm is an unsupervised clustering method that assigns different data

objects into a number of clusters. It takes the input dataset (k), partitions it into a set of
n objects, and assigns them into k clusters.

 2. What is a k-means() function?
 Ans: R language provides a function k-means() that performs k-means clustering on a

data matrix.

 3. Write the names of the objects or sets used during the BFR algorithm.
 Ans: Discard, compressed, and retained objects or sets are used during the BFR algorithm.

 4. What is a compressed set?
 Ans: A compressed set is also the summaries of the clusters but it contains a set of points

that are found close to one another and not close to any other cluster.

9.6 Cure algorithm

The CURE (Clustering Using REpresentatives) algorithm is another large-scale clustering
algorithm.

9.6.1 Initialisation in CURE

The CURE algorithm follows the concept of Euclidean space and does not consider the
shape of clusters. The algorithm represents the clusters using a collection of representative
points. Due to this, the algorithm is called the Clustering Using REpresentatives.

The CURE algorithm uses the following steps for clustering during the initialisation
phase of the algorithm:

Clustering 377

 1. It takes a small sample from the dataset and clusters it into the main memory. For
this, it is good to use the hierarchical method that merges the clusters having a
close pair of points.

 2. Then it selects a small set of points from each cluster as representative points. These
points should be selected in such a way that they are as far from one another as
possible.

 3. After this, it moves each representative point to a fixed fraction of the distance
between its location and the centroid of its cluster. Most often 20% is selected as
a good fraction. In this step, it also uses Euclidean space for finding the distance
between two points.

9.6.2 Completion of the CURE Algorithm

In this section, completion stage of the CURE algorithm is discussed, which is the last
step of the algorithm. In this step, the algorithm merges two clusters if they have a pair
of representative points, one from each cluster and are close to each other. The algorithm
continues merging until there are no more sufficiently close clusters.

In the last step of the algorithm, points are assigned. For this, each point p is brought
from secondary storage and compared with the representative points. After this, p is
assigned to the cluster of the representative point that is closest to the point p.

Figure 9.18 represents two different clusters with different shapes by following the
concept of the CURE algorithm.

Figure 9.18 Representation of two clusters using CURE algorithm

In two circles, the inner cluster is an ordinary circle, while the outer cluster is a ring
around the circle. The three steps of the algorithm are as follows:
 1. In the first step, hierarchical clustering algorithm can be used on some sample

data based on Figure 9.18. The distance taken between two clusters is the shortest
distance between any pair of points, one from each cluster. It easily generates the
two clusters, meaning pieces of the ring would stick together and pieces of the

378 Data Analytics using R

inner circle would stick together but pieces of the ring would be far away from the
pieces of the circle.

 2. In the second step, representative points are selected from the sample data. If the
sample data is large enough then it is easy to count the sample points of the cluster
at the greatest distance from one another that are lying on the boundary of the
cluster. Figure 9.19 defines the representative points.

Figure 9.19 Selecting representative points that are far from one another

 3. In the third and last step, move the representative points with a fixed fraction of the
distance from their true location towards the centroid of the cluster. In Figure 9.19,
both clusters have their centroid at the same place, i.e. at the centre of the inner
circle hence the representative points from the circle move inside the cluster. Along
this, the points on the outer edge of the ring also move into their cluster but the
points on the inner edge of the ring move outside the cluster. Figure 9.20 shows the
final location of the representative points.

Figure 9.20 Final location of the representative points

Clustering 379

9.7 Clustering in non-euClidean spaCe

This section discusses the clustering algorithm in non-Euclidean space to handle non-main
memory data. The GRGPF algorithm is one of the clustering algorithm that uses non-
Euclidean space. Its name comes from the name of its authors V. Ganti, R. Ramakrishnan,
J. Gehrke, A. Powell, and J. French. It follows the concept of hierarchical and partitioning
methods and represents the clusters using sample points in the main memory.

The algorithm organises the clusters in a hierarchical form (tree) so that it is easy to
assign the new points to the appropriate cluster by passing it down the tree. The leaves
of the tree contain the summaries of some clusters and the interior nodes of the tree
contain subsets of the cluster information that makes it possible to describe the clusters
that are reachable through that node. Along with this, it also groups the clusters using
their distance from one another. In this case, the clusters at a leaf are close and the clusters
reachable from one interior node are relatively close as well.

The major steps of the GRGPF algorithm are as follows:
 d Representing the clusters
 d Initialising the cluster tree
 d Adding points in the clusters
 d Merging and Splitting the clusters

The following subsections describe the steps.

9.7.1 Representing Clusters in the GRGPF Algorithm

Clusters grow in size as points are assigned to it. Some points in clusters are stored on
disk and not used in guiding the assignment of points. The representation of a cluster in
main memory involves several features. Before getting to understand the features, it is
important to consider the below:

Assume p is any point in the cluster, then ROWSUM(p) is the sum of the squares of the
distances from p to each of the other points in the cluster and d is the distance measure

The following features form the representation of the cluster:
 1. N defines the number of points in the cluster.
 2. The clustroid is the point in the cluster with the smallest ROWSUM. It minimises

the sum of the squares of the distances to the other points.
 3. The k points of the clusters closest to the clustroid and their rowsums also come

under representation of cluster except when the addition of points to the cluster
causes the clustroid to change. For this, it is assumed that the new clustroid would
be one of these k points near the old clustroid.

 4. The k points of the clusters furthest from the clustroid and their rowsums also come
under representation of cluster. Through this, it can be considered whether two
clusters are close enough for merging. For this, it is assumed that if two clusters are
close then a pair of points distant from their respective clustroids would be close.

380 Data Analytics using R

9.7.2 Initialising the Cluster Tree

After representing the clusters in main memory, the GRGPF algorithm initialises the cluster
tree. In the algorithm, the clusters are organised into a tree. Every cluster representation
has a size that does not depend on the number of points in the clusters.

In the cluster tree, each leaf of the tree holds as many cluster representations as can fit
whereas the interior node contains a sample of the clustroids of the clusters. Each subtree
of the interior node represents these clusters along with the pointer to the roots of those
subtrees.

The algorithm initialises the cluster tree by taking a main memory sample of the dataset
and performs hierarchical clustering on it. It generates a tree T that is not exactly the tree
used by the GRGPF algorithm. The algorithm selects from T and few nodes that represent
the clusters according to the desired size n. These clusters work as initial clusters for the
algorithm and their representations are placed at the leaf of the cluster-representing tree.

Now the algorithm groups the clusters using one common ancestor in T into the interior
nodes of the cluster-representing tree. By doing this, clusters descended from one interior
node are as close as possible. For getting more efficient output, it is good to rebalance the
cluster-representing tree.

9.7.3 Adding Points in the GRGPF Algorithm

Adding points is the next step in the GRGPF algorithm after initialisation. The algorithm
reads points from the disk (secondary storage) and inserts each point into the nearest
cluster. For this, the algorithm uses the following steps:
 1. The algorithm starts at the root and looks at the sample of clustroids for each of the

children of the root.
 2. During this, examine the next child that has the clustroid closest to the new point

p. It repeats this process for each node in the tree.
 3. Some sample clustroids at a node may have been seen at a higher level but each

level provides more details about the clusters that are lying below it, so we see
many new sample clustroids each time we go a level down the tree.

 4. After reaching a leaf that contains the cluster features for each cluster represented
by that leaf. At last, that cluster is selected whose clustroid is closest to point p.

The algorithm adds 1 to N or add the square of the distance between p and each of the
nodes q used in the representation to ROWSUM(q). These points q includes the clustroids,
the k nearest points, and k furthest points.

The algorithm estimates the ROWSUM of p using the following formula:

ROWSUM(p) = ROWSUM(c) + Nd2(p,c)

Where,

d(p,c) = distance between p and clustroid c.

N and ROWSUM are the values of these features before they were adjusted to account
for the addition of p.

Clustering 381

9.7.4 Splitting and Merging Clusters

In the last step of processing, the GRGPF algorithm splits and merges the clusters. The
process of splitting and merging clusters is as follows:

Splitting Clusters

The algorithm assumes that there is a limit on the radius of a cluster. How does one
define the radius of a cluster? The radius is the square root of the average square of the
distance from the clustroid of the points in the cluster and uses the following formula
for calculation:

Radius = ()/ROWSUM c N

where,
c is the clustroid of the cluster; N is the number of points in the cluster
When do you decide on splitting a cluster? When the radius of a cluster grows too large,

the cluster is split into two. During computation, the points of that cluster are brought
into main memory and partitioned into two clusters to minimise the rowsums. After this,
the cluster features for both clusters are calculated. It generates output where the leaf of
the split cluster contains one more cluster to represent.

It is beneficial to manage the cluster tree like a B-tree. By doing so, it can get some
space in a leaf to add one more cluster. However, if there is no room/space, then the leaf
should again split into two leaves. For this splitting, it adds another pointer and more
sample clustroids at the parent node. Again, it may have extra space, if not, then it must
be split again. This is done to minimise the squares of the distances between the sample
clustroids assigned to different nodes.

Merging Clusters

During splitting, it can so happen that the cluster-representing tree is too large to fit in
main memory. In this case, the algorithm raises the limit on how large the radius of a
cluster can be and then merges the pairs of the clusters.

For merging of the clusters, the algorithm selects the nearby clusters meaning the
representatives of the clusters are on the same leaf or at leaves with a common parent.
Alternatively, it can also merge any two clusters C1 and C2 into one single cluster C.
The algorithm assumes that the clustroid of C will be one of the points that are as far as
possible from the clustroid of C1 or the clustroid of C2.

For the computation of the rowsum in C for the point p that is one of the k points in C1
and far from the centroid of C1, the algorithm uses the curse of dimensionality. According
to the curse of dimensionality, all angles are approximately right angles to justify the
following formula:

ROWSUMc(p) = ROWSUMc1(p) + Nc2 (d
2(p, c1) + d2(c1, c2)) + ROWSUMc2(c2)

where,

382 Data Analytics using R

We subscript N and ROWSUM by the cluster to which that feature refers; c1 and c2
represent the clustroids of C1 and C2 respectively.

For this formula, the algorithm uses the following steps for calculation:
 1. Now the algorithm computes the sum of the squares of the distances from p to all

the nodes in the merged cluster C by beginning with ROWSUMc1(p) for getting the
terms for the points in the same cluster as p.

 2. For the Nc2 points q in C2, it considers the path from p to the clustroid of C1 then to
the clustroid of C2 and finally to q.

 3. It also assumes that there is a right angle between the legs from p to c1 and c1 to c2.
In addition, there is a right angle between the shortest path from p to c2 and the leg
from c2 to q.

 4. After this, it uses the Pythagoras Theorem to justify computing the square of the
length of the path to each q as the sum of the squares of the three legs.

The last step in merging is the computation of the features of the merged cluster. For
this, the algorithm considers all points in the merged cluster that have the rowsum. It
includes the centroids of the two clusters, the k points closest and furthest to and from
the clustroids respectively for each cluster.

Now it calculates the distance from the new clustroid for each of these 4k + 1 points and
selects k with the smallest and largest distances as the “close” and “far” points respectively.
At last, it calculates the rowsums for the chosen points using the same formula that was
used to calculate the rowsums for the candidate clustroids.

Check Your Understanding

 1. What is GRGPF algorithm?
 Ans: The GRGPF algorithm is one of the clustering algorithm that uses non-Euclidean space.

Its name comes from the name of its authors V. Ganti, R. Ramakrishnan, J. Gehrke, A.
Powell, and J. French.

 2. How does the GRGPF algorithm initialise the clusters?
 Ans: The GRGPF algorithm initialises the cluster tree by taking a main memory sample of

the dataset and performing hierarchical clustering on it.

9.8 Clustering for streams and parallelism

The following subsections briefly explain clustering a stream and parallelism.

9.8.1 Stream-computing Model

A stream-computing model uses the stream and works like a data stream management
system. What is a stream? A stream is a sequence of characters, numbers, or others.

Clustering 383

Figure 9.21 shows a data stream system where a stream processor takes some stream
inputs and generates the output stream. The standing queries answer the queries asked
by the user. All these streams are stored in the Archival Storage of the system. For the
processing of the stream, this model either maintains the summaries of the streams or uses
a sliding window of the most recently arrived data. At present, most real applications use
streams for representing the data. The image data, sensor data, web traffic, the internet
are few examples of stream data.

Limited
Working
Storage

Standing
Queries

Stream
Processor

Archival

Storage

Output streams

Ad-hoc
Queries

Streams entering

1, 5, 2, 7, 4, 0, 3, 5

q, w, e, r, t, y, u, i, o

0, 1, 1, 0, 1, 0, 0, 0

...

time

Figure 9.21 Data stream management system

With reference to clustering, a stream is nothing but a sliding window of N points. For
the centroids or clustroids of the best clusters, it selects the last m points of these clusters
where m £ N. For clustering streams, the stream-computing model preclusters subsets of
the points in the stream for getting the answer to the query ‘What are the clusters of the last
m points for m £ N’. In addition, the stream-computing model assumes that the statistics
of the stream elements varies with time.

For getting an answer to this query, it is good to use the k-means method. This method
partitions the last m points into exactly k clusters. Or we may allow the number of clusters
to vary and then use a criterion to determine when to stop merging clusters into the
larger clusters.

In order to find the distance space, it can use either Euclidean space or non-Euclidean
space. In the Euclidean space, the distance is the centroid of the selected clusters, whereas
in the non-Euclidean space, the distance is the clustroids of the selected clusters.

9.8.2 Stream-clustering Algorithm

The BDMO algorithm is one of the stream-clustering algorithms and the generalisation
of the DGIM algorithm that clusters points of a slowly evolving stream. The name of the

384 Data Analytics using R

BDMO algorithm comes from the name of its authors B. Babcock, M. Datar, R. Motwani,
L.O’Callaghan.

The BDMO algorithm follows the concept of ‘counting ones’ method, which means
that there is a window of length N on a binary stream and it counts the number of 1s
that comes in the last k bits where k £ N.

The BDMO algorithm uses the bucket with allowable bucket sizes that forms a sequence
where each size is twice of the previous size. In the algorithm, the number of points
represents the size of the bucket. It does not consider that the sequence of allowable bucket
sizes starts with 1 but consider only forming a sequence such as 2, 4, 6, 8… where each
size is twice the previous size.

For maintaining the buckets, the algorithm considers the size of the bucket with the
power of two. In addition, the number of buckets of each size is either one or two that
form a sequence of non-decreasing size.

The buckets that are used in the algorithm, contains the size and timestamp of the most
recent points of the stream. Along with this, the bucket also contains a collection of records
that represents the clusters into which the points of that bucket have been partitioned.
This record contains the number of points in the cluster, the centroid, or clustroid of the
cluster, and other parameters that are required to merge and maintain the clusters.

The major steps of the BDMO algorithm are as follows:
 d Initialising buckets
 d Merging buckets
 d Answering queries

These steps have been described as follows.

Initialising Buckets

Initialisation of the bucket is the first step of the BDMO algorithm. The algorithm uses
the smallest bucket size that is p with a power of two. It creates a new bucket with the
most recent p points for p stream elements. The timestamp of the most recent point in
the bucket is the timestamp of the new bucket. After this, we may choose to leave every
point in a cluster by itself or perform clustering using an appropriate clustering method.
For example, if k-means clustering method is used, it clusters the k points into k clusters.

For the initialisation of the bucket using selected clustering methods, it calculates
the centroid or clustroids for the clusters and counts the points in each cluster. All this
information is stored and becomes a record for each cluster. The algorithm also calculates
the other required parameters for the merging process.

Merging Buckets

After the initialisation of the bucket, the algorithm needs to review the sequence of a
bucket.

 d If there happens to be a bucket with a timestamp more than N time units prior to
the current time then nothing of that bucket is in the window. In such a case, the
algorithm drops it from the list.

Clustering 385

 d In case we had created three buckets of size p, then we must merge the oldest two
of the three buckets. In this case, the merger can create two buckets of size 2p, this
may require us to merge buckets of increasing sizes recursively.

For merging two consecutive buckets, the algorithm needs to perform the following
steps:
 1. For merging, the size of the bucket should be twice the sizes of the two buckets to

be merged.
 2. The timestamp of the merged bucket is the timestamp of the more recent of the two

consecutive buckets.
 3. In addition, it is necessary to calculate the parameters of the merged clusters.

Answering Queries

A query in the stream-computing model is a length of a suffix of the sliding window.
Any algorithm takes all the clusters in all the buckets that are at least partially within
the suffix and then merges them using some method. The answer of the query is the
resulting clusters.

For the clustering of the streams, the stream-computing model finds out the answer
to the query ‘What are the clusters of the last or more recent m points in the stream for m £ N’.
During the initialisation, the k-means method is used and for merging the buckets
timestamp is used. Hence the algorithm is unable to find a set of buckets that covers the
last m points.

However, we can choose the smallest set of buckets that covers the last m points and
include in these buckets no more than the last 2m points. After this, the algorithm generates
the answer in response to the query as ‘the centroids or clustroids of all the points in the
selected buckets’.

In addition, for getting a more accurate prediction of the query, it can assume that the
points 2m and m+1 will not have different statistics from the most recent m points. In
another case, if the statistics vary then reduce the error. It will follow a complex bucketing
scheme that ensures to find buckets that cover at most the last m(1+e) points for any e > 0.

After selecting the desired buckets, the algorithm pools all their clusters and uses some
merging methods. If we are required to produce exactly k clusters then the algorithm
merges the clusters with the closest centroids until it is left with only k clusters.

Now understand all the steps of the algorithm using a simple example that uses k-means
method in a Euclidean space and represents the clusters by the count of their points and
centroids. There is a bucket containing exactly k clusters so select point p = k or p > k.
Now cluster the p points into k clusters during bucket initialisation.

After initialisation, it is necessary to find the best match for merging between the k
clusters of the first and second bucket. The best match is a match, which minimises the
sum of the distances between the centroids of the matched clusters. It selects two different
consecutive buckets to find each k true clusters in each of two adjacent buckets that rare
in one stream.

386 Data Analytics using R

The merging of the two clusters where each cluster is taken from each bucket sums the
numbers of points in the two clusters. It generates the weighted average of the centroids
of the two clusters that become the centroid of the merged cluster. The number of points
in the cluster defines the weightage. Symbolically it can be defined as follows:

If there were two clusters n1 and n2 with centroids c1 and c2 respectively then the
centroid of the merged cluster c would be as follows:

c = (n1c1 + n2c2) / n1 + n2

This centroid of the merged cluster c is also the answer to the query.

9.8.3 Clustering in a Parallel Environment

The simple concept of parallelism is to execute multiple processes at the same time by
sharing same resources. It is possible to perform clustering and calculate the clusters in
a parallel environment. For this, a simple phenomenon can be used where it is assumed
that there is a huge collection of points and parallelism is needed for calculating the
centroids of their clusters.

To implement such phenomenon, MapReduce method is the best option. However, most
applications use only Reduce process for clustering. The MapReduce method is one of
the latest programming paradigms that defines and implements the parallel distributed
processing on the massive dataset. In the MapReduce programming paradigm, the Map
and Reduce are two main tasks performed by the mapper and reducer respectively. The
map task takes the input data as a set of key-value pairs and Reduce task produces a set
of key-value pairs as the output. The detailed description of this programming paradigm
is available in Chapter 12.

Use of MapReduce Method in Clustering

Different types of clustering algorithms are available and can be implemented with
MapReduce paradigm. Most of the times, k-means clustering is used with the MapReduce
framework. Use of MapReduce in data clustering helps to manage the data partition and
parallel processing over the data chunks.

Any type of clustering should define both functions of the MapReduce paradigm. The
MapReduce paradigm follows the concept of data partitioning and works on the keys
and values.

Assuming that all data points in memory for clustering in the MapReduce paradigm
are not possible, in this case, an algorithm is designed in such a way that task can be
parallelised. It does not depend on other splits for any computation.

To implement the clustering in parallel environment, the MapReduce method divides
the given data into chunks, clusters each chunk in parallel, and generates a single cluster.
The description of both tasks is as follows:

Clustering 387

Map Task

To start the map task, each task is assigned a subset of the points. Now the map function
clusters the given points and generates a set of key-value pairs with a fixed key 1 with
a value that describe one cluster in many forms such as count, centroid, or diameter of
the cluster.

In simple words, the mappers do the distance computation and split out a key-value pair
<centroid_id, data_point> and finds out the associativity of a data point with the cluster.

Reduce Task

Here all key-value pairs contain the same key hence only one Reduce function is used
during the Reduce task. It takes the description of the clusters generated during the Map
task and merges it appropriately. Now it uses a suitable clustering method to generate
the output of the Reduce task.

In simple words, the Reducer work with specific cluster_id and a list of the data points
associated with it. It calculates new means and writes to the new centroid file.

At last, according to the type of clustering algorithm, the paradigm needs to do a
number of iterations or comparisons with the centroid in the previous iteration.

Check Your Understanding

 1. What is a stream-computing model?
 Ans: A stream-computing model uses the stream and works like a data stream management

system.

 2. What is a BDMO algorithm?
 Ans: A BDMO algorithm is one of the stream-clustering algorithms and the generalisation

of the DGIM algorithm that clusters points of a slowly evolving stream. The name of
the BDMO algorithm comes from the names of the authors, B. Babcock, M. Datar, R.
Motwani, L. O’Callaghan.

 3. What is a ‘counting ones’ method?
 Ans: The ‘counting ones’ method uses a window of length N on a binary stream and counts

the number of 1s that come in the last k bits where k £ N.

 4. What is a MapReduce method?
 Ans: The MapReduce method is one of the latest programming paradigms that defines and

implements parallel distributed processing on massive datasets. In this method, Map
and Reduce are two main tasks performed by the mapper and reducer respectively.

388 Data Analytics using R

Personalised Product Recommendations

Personalisation of products is similar to sales forecast. It is used to read user
information, forecast the user needs, and to offer them the best products. In
the process, many algorithms work together to predict the cognitive nature
of customers to recommend what they need. This is also like an application
for the users that can help them to identify their needs without wasting their
time on the website/application.

The recommendation engine generates good revenue for a company
and helps them in getting many insights on market. These days, most of
the e-commerce companies have adopted this approach. Amazon, Flipkart,
Snapdeal, MakeMyTrip are few examples. Recommendation is not limited
ONLY to product recommendations. This mechanism can help the customers
to make use of sales, discounts, etc., on anything they need.

 If as a customer you placed a product in your cart, the data so generated,
is used by companies to predict your requirement. Take a look at its impact.
 1. Percentage of transaction revenue from recommendations: The

worldwide average of website revenues generated from product
recommendations is 18% as of today and likely to increase in future.

 2. Impact on conversion rate: Personalisation tailors recommendations
right down to the individual. It helps the retailers know the brands the
customers love, the categories they shop and what they’ve bought or
browsed in the past. The result? Higher conversion rates for the online
retailers.

 3. Placement of recommendations: Each recommendation has a huge
impact on the customers’ needs and it influences the cognitive nature
of customers.

 4. The impact of personal merchandising: The self-learning
recommendation engine works in real-time, detecting product
and customer behaviour updates as they happen and updating
recommendations accordingly, ensuring a smooth, up-to-date and
relevant user experience at all times.

C
a
se

 St
u

dy

 d Clustering is a process that examines the given data and partitions it into many groups based on

the similarity of data or its features.

 d Data mining, information retrieval, search engines, academics, psychology and medicine, machine

learning, computer graphics, pattern recognition, etc., are major application areas of clustering.

 d The most common types of distance measures are Euclidean distance, Manhattan distance, Ham-

ming distance, and Maximum norm used during clustering.

Summary

(Continued)

Clustering 389

 d R language provides a dist() function for measuring the distance using different types of method.

The function calculates the distance and returns the distance matrix.

 d Clustering strategies are the techniques that define the way in which clustering is performed on any

dataset. Hierarchical and partitioning are two major and fundamental categories of the clustering

strategies.

 d Partitioning clustering strategy divides or partitions the dataset of n objects or tuples into k parti-

tions of the dataset.

 d The analysis and organisation of data in high-dimensional spaces (over hundreds of dimensions) that

cannot fit in low-dimensional settings is called the curse of dimensionality.

 d The ‘curse’ in the curse of dimensionality indicates that all pair of points are equally far away from

one another and two vectors are mostly orthogonal.

 d The angle between two vectors defines a single point or shortest angle where one vector turns

around to another vector.

 d The hierarchical clustering is a clustering that organises the set of nested clusters as a tree. Each

cluster (node) of the tree excluding the leave nodes is the union of its sub-clusters (children) and

the root of the tree is the cluster that contains all the objects.

 d A Euclidean space contains two dimensions with one centre point.

 d R language provides a function hclust() that performs hierarchical clustering on a distance matrix.

 d A non-Euclidean space is space that contains more than one dimension.

 d k-means algorithm is an unsupervised clustering method that assigns the different data objects into

a number of clusters. It takes the input dataset (k), partitions it into a set of n objects, and assigns

into k clusters.

 d R language provides a function k-means() that performs k-means clustering on a data matrix.

 d The BFR (Bradley, Fayyad, and Reina) algorithm is a variant of the k-means algorithm that performs

the clustering in a high-dimensional Euclidean space.

 d The discard, compressed, and retained objects or sets are used during the BFR algorithm.

 d Discard set is a summary of the clusters themselves. Actually, these cluster summaries are a very

essential part. However, the points that the summary represents are discarded and have no repre-

sentation in main memory other than through this summary.

 d A compressed set is also the summary of the clusters but it contains a set of points that are found

close to one another and not close to any other cluster.

 d Retained set contains points that can neither be assigned to a cluster nor are they sufficiently close

to any other points that allows them to be represented by a compressed set. These points are held

in main memory exactly as they appear in the input file.

 d The CURE algorithm is a large-scale clustering algorithm that follows the concept of Euclidean space

and does not consider the shape of clusters. The algorithm represents the clusters using a collection

of representative points.

 d Partitioning, hierarchical, and model-based clustering are the major categories of clustering in R.

 d The GRGPF algorithm is one of the clustering algorithm that uses non-Euclidean space. Its name

comes from the name of authors, V. Ganti, R. Ramakrishnan, J. Gehrke, A. Powell, and J. French.

 d Representing clusters, initialising the clusters, adding points in the clusters, and merging and splitting

the clusters are the main steps of the GRGPF algorithm.

 d The GRGPF algorithm uses the sample points for representing the clusters in the main memory.

 d The GRGPF algorithm initialises the cluster tree by taking a main memory sample of the dataset and

performs hierarchical clustering on it.

(Continued)

390 Data Analytics using R

 d A stream-computing model uses the stream and works like a data stream management system.

 d The simple meaning of a stream is a sequence of things including characters, numbers, or others.

With reference to clustering, a stream is nothing but a sliding window of N points.

 d The image data, sensor data, web traffic, the Internet are some examples of the stream data.

 d The BDMO algorithm is one of the stream-clustering algorithm and the generalisation of the DGIM

algorithm that clusters points of a slowly evolving stream. The name of the BDMO algorithm comes

from the name of its authors, B. Babcock, M. Datar, R. Motwani, L. O’Callaghan.

 d The ‘counting ones’ method uses a window of length N on a binary stream and counts the number

of 1s that comes in the last k bits where k £ N.

 d Initialising buckets, merging buckets, and answering queries are the major steps of the BDMO

algorithm.

 d A query in the stream-computing model is a length of a suffix of the sliding window.

 d The MapReduce method is one of the latest programming paradigm that defines and implements

parallel distributed processing on massive datasets. In this method, Map and Reduce are two main

tasks performed by the mapper and reducer respectively.

 d To implement clustering in a parallel environment, the MapReduce method divides the given data

into chunks, clusters each chunk in parallel, and generates a single cluster.

 Ke y Te r m s

 d BFR algorithm: The BFR (Bradley, Fayyad,
and Reina) algorithm is a variant of the k-
means algorithm that performs the cluster-
ing in a high-dimensional Euclidean space.

 d Clustering: Clustering is a process that
examines the given data and partitions this
data into many groups according to the
similarity of the data or its features.

 d Counting ones: The counting ones’ method
uses a window of length N on a binary
stream and counts the number of 1s that
come in the last k bits where k £ N.

 d CURE algorithm: The CURE algorithm is a
large-scale clustering algorithm that follows
the concept of Euclidean space and does not
consider the shape of clusters.

 d Curse of dimensionality: Analysis and
organisation of data in high-dimensional

spaces (over hundreds of dimensions) that
cannot fit in low-dimensional settings is
called the curse of dimensionality.

 d Euclidean space: A Euclidean space con-
tains two dimensions with one centre point.

 d Hierarchical clustering: Hierarchical clus-
tering organises a set of nested clusters as
a tree.

 d k-means clustering: k-means algorithm is
an unsupervised clustering method that
assigns different data objects into a number
of clusters.

 d Non-Euclidean space: A non-Euclidean
space contains more than one dimension.

 d Stream-computing model: A stream-com-
puting model uses the stream and works
like a data stream management system.

Clustering 391

 mu l T i p l e Ch o i C e Qu e s T i o n s

 1. From the given options, which of the following term defines the collection of points stored
in single place?

 (a) Cluster (b) Group

 (c) Space (d) Dataset

 2. From the given options, which of the following term defines the points in the Euclidean
space?

 (a) Vector of real numbers (b) Vector of even numbers

 (c) Vector of decimal numbers (d) Vector of odd numbers

 3. From the given options, which of the following is not a property of the distance measure?

 (a) Symmetry (b) Triangle inequality

 (c) Negative (d) Non-negative

 4. From the given options, which of the following distance methods is not available in the
dist() function?

 (a) Euclidean (b) L1 distance

 (c) Maximum (d) Manhattan

 5. From the given options, which of the following function generates the distance matrix?

 (a) plot() (b) dist()

 (c) hclust() (d) require()

 6. From the given options, which of the following function implements the hierarchical
clustering?

 (a) dist() (b) hclust()

 (c) k-means() (d) plot()

 7. From the given options, which of the following function implements the k-means clustering?

 (a) hclust() (b) plot()

 (c) k-means() (d) dist()

 8. From the given options, which of the following clustering is a top-down clustering?

 (a) Agglomerative hierarchical clustering

 (b) Model-based clustering

 (c) Divisive hierarchical clustering

 (d) Grid-based clustering

 9. From the given options, which of the following clustering is a bottom-up clustering?

 (a) Divisive hierarchical clustering (b) Agglomerative hierarchical clustering

 (c) Model-based clustering (d) Grid-based clustering

392 Data Analytics using R

 10. How many numbers of dimensions are used in the Euclidean space?

 (a) 1 (b) 3

 (c) 4 (d) 2

 11. From the given options, which of the following method is not available in the hclust()
function?

 (a) Average (b) Single

 (c) Mode (d) Median

 12. From the given options, which of the following term defines the maximum distance between
all the points and the centroid?

 (a) Diameter (b) Radius

 (c) Perimeter (d) None of the above

 13. From the given options, which of the following package contains the dist(), k-means(),
and hclust() function?

 (a) stats (b) base

 (c) forecast (d) cluster

 14. From the given options, which of the following term defines the maximum distance between
any two points of the cluster?

 (a) Perimeter (b) Radius

 (c) Diameter (d) None of the above

 15. From the given options, which of the following algorithm is not available in the k-means()
function?

 (a) Centre (b) Lloyd

 (c) Forgy (d) MacQueen

 sh o r T Qu e s T i o n s

 1. What are the different clustering strategies?

 2. What is the difference between hierarchical and partitioning clustering strategies?

 3. How is the efficiency of hierarchical clustering in the cluster analysis improved?

 4. Explain the steps of the CURE algorithm.

 5. How does the GRGPF algorithm represent clusters during the clustering process?

 6. Describe the splitting and merging process of the GRGPF algorithm.

 7. Explain the stream-computing model.

 8. How does the BDMO algorithm initialise and merge the Buckets during clustering?

Clustering 393

 lo n g Qu e s T i o n s

 1. Explain the process of initialising and selecting the correct value of R in the k-means
clustering.

 2. Explain the dist() function with syntax and example.

 3. Explain the hclust() function with syntax and example.

 4. Explain the k-means() function with syntax and example.

 5. Create a matrix and find out different distance matrix using different methods of the
dist() function.

 6. Create a matrix and implement hierarchical clustering on it.

 7. Create a matrix and implement k-means clustering on it.

 8. Read an appropriate built-in dataset and implement the hierarchical clustering using
different methods with dendrograms.

 pr a C T i C a l ex e r C i s e s

 1. Read in the data from “Cars.txt” file. The data in “Cars.txt” is as follows:

 Petrol Kilometers

 1.1 60

 6.5 20

 4.2 40

 1.5 25

 7.6 15

 2.0 55

 3.9 39

 Split the data into 3 clusters using k-means clustering. Plot the clusters for better
comprehension.

Solution:

 1. You can import data into the Environment as shown below. The name of the file is Cars.txt.
This file contains entry for Petrol cars and its corresponding mileage in Kilometers.

394 Data Analytics using R

 2. Apply k-means algorithm as shown below. The data set is split into 3 clusters and the
maximum iteration is 10.

Clustering 395

 3. Plot clusters as shown below:

 2. Consider the below data set.

Country Per Capita Income Literacy Infant mortality Life Expectancy

Brazil 10326 90 23.6 75.4

Germany 39650 99 4.08 79.4

Mozambique 830 38.7 95.9 42.1

Australia 43163 99 4.57 81.2

China 5300 90 23 73

Argentina 13308 97.2 13.4 75.3

United Kingdom 34105 99 5.01 79.4

South Africa 10600 82.4 44.8 49.3

Zambia 1000 68 92.7 42.4

Namibia 5249 85 42.3 52.9

 Store it in a file, “data.txt”. Read in the data into the R environment. Perform k-means
clustering. Print out the result and also show it visually.

396 Data Analytics using R

Solution:

 Step 1: Read in the data from “data.csv” into the R environment.

> x <- read.csv(“D:/data.csv”, header=TRUE, row.names=1)

 Display the content of the data frame, “x”.

 Step 2: Perform k-means clustering to form 3 clusters.

> km <- kmeans(x,3,15)

 Print out the components of “km”.

Clustering 397

 Step 3: Plot the clusters.

> plot(x, col=km$cluster)

> points(km$centers, col = 1:3, pch = 8)

 3. Consider the data available in UCI Machine learning Repository (https://archive.ics.uci.
edu/ml/datasets/Wholesale+customers). The dataset is about the annual spending of
customers on various items. Description of the various attributes is as follows:

 Attribute Information:

 1. FRESH: annual spending (m.u.) on fresh products (Continuous);

 2. MILK: annual spending (m.u.) on milk products (Continuous);

398 Data Analytics using R

 3. GROCERY: annual spending (m.u.)on grocery products (Continuous);

 4. FROZEN: annual spending (m.u.)on frozen products (Continuous)

 5. DETERGENTS_PAPER: annual spending (m.u.) on detergents and paper products

(Continuous)

 6. DELICATESSEN: annual spending (m.u.) on and delicatessen products (Continuous);

 7. CHANNEL: Channel - Horeca (Hotel/Restaurant/CafÃ©) or Retail channel (Nominal)

 8. REGION: Region - Lisnon, Oporto or Other (Nominal)

 Cluster the data into 5 clusters and plot the clusters for a visual display.

Solution:

 Step 1: Read in data into R environment from “WS.csv”).

> WholeSale <- read.csv(“d:/WS.csv”)

 Step 2: Install packages, “ggplot2” and “ggfortify”.

> library(ggplot2)

> library(ggfortify)

Clustering 399

 Step 3: Cluster the data set (columns: Fresh, Milk and Grocery) into 5 groups/cluster.

> km <- kmeans(WholeSale[,3:5],5)

 Step 4: Plot the clusters for visual display.

> autoplot(km, WholeSale[,3:5], frame=T) +

labs(title=“clustering wholesale data”)

400 Data Analytics using R

Clustering wholesale data

Answers to MCQs:

 1. (c) 2. (a) 3. (c) 4. (b) 5. (b) 6. (b) 7. (c)
 8. (c) 9. (b) 10. (d) 11. (c) 12. (b) 13. (b) 14. (c)
 15. (a)

L E A R N I N G O U T C O M E

At the end of this chapter, you will be able to:

 c Determine the association rules given the transactions and itemsets, and also evaluate
the association rule using support, confidence and lift

 c Implement association rule mining in R (create binary incidence matrix of the given
itemsets, create itemMatrix, determine item frequencies, use apriori() function and
eclat() function

10.1 IntrODuctIOn

Today every field (retail, manufacturing, energy, healthcare, etc.) generates and stores a
large amount of data relevant to its work and uses data mining techniques for finding the
unknown and hidden patterns from this data. Big data analytics also uses data mining
techniques to find hidden patterns from big data. Association rules in data mining play
a major role in business analytics.

Listed below are few application areas of association rules:
 d In retail, association rules help to discover purchase patterns of product items or

associations between the different products.
 d In the field of science, biological database uses association rules for finding patterns

in biological data, discovering knowledge from agricultural database, collecting
survey data from agricultural research to protein composition, etc.

 d Software developers or researchers use association rules to extract knowledge from
software engineering metrics in different fields of mining, such as text mining, web
mining, etc.

Association Rules

Chapter 10

402 Data Analytics using R

 d Other applications that use association rules include market basket analysis, studying
the population and economic census, discovering data about soil and cultivation,
crop production, extracting data for finding the geographical condition, etc.

The main objective of association rule is to identify a pattern among a set of items or
objects in the relational database, transaction database, or any other information repository.
The findings related to the co-occurrence relationship between two or more items in a
database are called association. For example, consider a dataset that contains the items
pen, pencil, notebook, eraser, and sharpener. The association defines the co-occurrence
relationship between pen and notebook, pencil and eraser, etc.

Different algorithms are available for implementing association rules. Among all,
Apriori algorithm is the most popular. For studying this algorithm, the basic knowledge
of association rules is important. In this section, you will learn about the association
rules, including association requirements, a database of a transaction, itemsets, form of
association rules, and association techniques.

10.2 Frequent Itemset

Items and transactions (database) form a major part of association rules. An itemset is a
collection of different items. For example, {pen, pencil, notebook} is an itemset. An itemset
that contains items that often occur together and are associated with each other is called
a frequent itemset.

Let {pen, pencil, notebook}, {pen, pencil, eraser}, {sharpener, pencil, notebook} constitute
a few itemsets of the items {pen, pencil, notebook, sharpener}. In the itemsets mentioned,
pencil and notebook often occur together; hence, {pencil, notebook} is an example of a
frequent itemset.

Let I and T be the set of items and transactions respectively, represented as below:

 I = {I1, I2, I3… Im}

 T = {T1, T2, T3… Tn},

 where each transaction Ti is a set of items such that Ti Õ I

The transactions can be represented as follows (Table 10.1):

Table 10.1 Transactions and itemsets

Transaction Itemsets

T1 {pen, pencil, notebook}

T2 {pen, pencil, eraser}

T3 {sharpener, pencil, notebook}

Frequent itemset = {pencil, notebook}

Here, frequent itemset is identified by merely examining the occurrence of items. However, it can
be calculated by using certain methods. In the next section, you will learn about these methods.

Association Rules 403

10.2.1 Association Rule

All the rules that correlate the presence of one set of items with another set of items are
known as association rules. An association rule is an implication from the expression
X Æ Y, where X and Y are two disjoint itemsets and X Õ I and Y Õ I, and X « Y = f.

Consider a stationery shop that contains items such as pen, pencil, notebook, sharpener,
etc. A student purchases three items: pen, pencil, and notebook. Here, {pen, pencil,
notebook} is a transaction. It implies that if the student purchases pen and pencil, then
he or she would also purchase a notebook. An association rule from this transaction may
be defined as follows:

pen, pencil Æ notebook

where,

X = {pen, pencil} and Y= {notebook}

The quality of the association rules depends on how it estimates the occurrence of items.
Unexpectedness, weak and strong belief, and action belief are some subjective measures
of the association rules. Also, simplicity, threshold value, support (utility), and confidence
(certainty) are some of the objective measures of association rules.

10.2.2 Rule Evaluation Metrics

Rule evaluation metrics is used to measure the strength of an association rule. Support
and confidence are important to rule evaluation metrics.

Support

Support is a metric that measures the usefulness of a rule using the minimum support
threshold. The metric measures the number of events that have itemsets which match both
sides of the implications of association rules. In addition, rules for events whose itemsets
do not match both the sides sufficiently defined by a threshold value can be excluded. It
determines how frequently the rule is applicable in the respective transaction set.

Let X Æ Y be an association rule and T be a transaction set with n being the number
of transactions in T. Then, the support of this rule is the percentage of the transaction in
T containing X » Y or the estimation of the probability Pr(X » Y). The support of rule
X Æ Y is calculated by using the following formula:

Support or sup = (X » Y).count/n

If the value of Support is low, then it effectively measures the strength of the given rule.

Example

Table 10.2 represents three transactions of the itemset {pen, pencil, notebook, sharpener}.

404 Data Analytics using R

Table 10.2 Transactions of the itemset {pen, pencil, notebook, sharpener}

Transactions Itemsets

T1 {pen, pencil, notebook}

T2 {pen, pencil, eraser}

T3 {sharpener, pencil, notebook}

The Support of the item ‘pen’ is calculated as follows:

 Support(Pen) =
Total occurrences of pen

Total number of transactions

 = 2/3 = 0.66

 = 60%

Similarly, Support (Pencil) = 3/3 = 1 = 100%

Confidence

Confidence is a metric that measures the certainty of a rule by using threshold. It measures
how often an event itemset that matches the left side of implication in the association rule
also matches the right side. Rules for events whose itemsets do not sufficiently match
the right side, but match the left side can be excluded. It determines the predictability
of the rule.

Let X Æ Y be an association rule and T be a transaction set, then the confidence of this
rule is the percentage of the transaction in T containing both X and Y or the estimation
of the conditional probability Pr(Y|X). The confidence of rule X Æ Y is calculated by
using the following formula:

Confidence = conf = (X » Y).count/X.count

Or
Confidence = conf = support(X » Y)/support(X)

If the value of the Confidence is low for a rule, then it is unreliable to predict Y from
X as there is no use of the rule with low predictability.

Consider the data (transactions and itemsets) listed in Table 10.2. Let us assume that
pencil Æ notebook is an association rule for the transaction, then the confidence of this
rule is calculated as follows:

Confidence (pencil Æ notebook) =
Occurrences of (pencil, notebook)

Occurrences of (pencil)
Or

Confidence (pencil Æ notebook) = 2/3 = 0.66 = 60%

Minimum Support and Minimum Confidence

The minimum support (minsup) and minimum confidence (minconf) is the threshold of
support and confidence respectively. The goal of association rule mining is to find all the
rules that fulfil the following conditions:

Association Rules 405

Support ≥ minsup threshold

Confidence ≥ minconf threshold

Few Assignments

You are the owner of a small retail shop. You would like to study what items are usually
bought together. You have a set of transaction data with you as given below. Transaction
with ID 1 had items A, B and E bought together. Likewise, items, A, B, D and E were
purchased together in Transaction with ID 2 and so on…

Transaction ID Items

1 A,B,E

2 A,B,D,E

3 B,C,D,E

4 B,D,E

5 A,B,D

6 B,E

7 A,E

Problem statement 1
Consider the itemset {B,D,E}. Determine the support count for this itemset.

Answer: The support count is 3. This is because three transactions namely, transactions
2, 3, and 4 contain the itemset, {B, D, E}.

Problem statement 2
Consider the association rule BD Æ E. Determine the support and confidence for this
association rule.

Answer: The support for BD Æ E is the same as the support for {B, D, E} which is 3. This
is because three transactions 2, 3, and 4 contain the itemset, {B, D, E}.

The confidence is given by the below formula:

 conf. (BD Æ E) = support ({B,D,E}) / support ({B,D})

 = 3 / 4

10.2.3 Brute-force Approach

A Brute-force approach computes the support and confidence for every possible rule for
mining the association rules. Here are the steps of this method:
 1. List all the possible association rules.
 2. Compute the support and confidence for each rule.
 3. Prune the rules that fail the minsup and minconf threshold.

The method is computationally prohibited, as there are exponentially many rules that
can be extracted from a dataset after applying this method. In general, the total number of

406 Data Analytics using R

possible rules extracted from a dataset containing d items is represented by the following
formula:

R = 3d – 2d+1 +1

In a research, it has been found that more that 80% of the rules are excluded after
applying 20% minsup and 50% minconf. Hence, the method becomes expensive. To avoid
this problem of needless computation, it is good to prune the rules early without having
to compute their support and confidence values.

10.2.4 Two-step Approach

Due to the disadvantage of the Brute-force approach, the association rules mining algorithm
uses a common method that contains two steps. It is called the two-step approach. The
first step is ‘frequent itemset generation’ and the second step is ‘rule generation’. The
following subsection discusses both the steps.

1. Frequent Itemset Generation

In the first step of the two-step approach, the frequent itemset generation finds the
itemsets that satisfy the minsup threshold. These itemsets are called the frequent itemsets.
If a dataset contains k items, then it can generate upto 2k – 1 frequent itemsets. A lattice
structure also finds out a list of all the possible itemsets. The dataset of real-life applications
contains very large items.

In this case, it is difficult and time-consuming to find out frequent itemsets. Hence,
a brute-force method finds out the frequent itemsets using support count for every
candidate itemset. For this, each candidate itemset is compared against every transaction
and if each candidate is in the transaction, then the support is incremented. This method
is very expensive and complex. In this case, some of the following strategies can be used
for finding frequent itemsets:

 d Reduce the number of candidates using Apriori principle
 d Reduce the number of transactions
 d Reduce the number of comparisons using efficient data structures that store trans-

actions or candidates.

Apriori Principle

Among the three—Apriori principle—is the best strategy and an effective method to
generate the frequent itemset. According to the Apriori principle,

If an itemset is frequent, then all of its subsets must also be frequent.

The method eliminates some candidate itemsets without counting their support values.
Eliminating the candidate itemsets is called pruning of itemsets. The Apriori principle
uses the following property of the support measure:

" X Y: (X Õ Y) –> s(X) ≥ s(Y)

Association Rules 407

This property is called the anti-monotone property of support, where support of an
itemset never exceeds the support of its subsets. This principle need not match every
candidate against every transaction.

Let {c, d, e} be a frequent itemset of the items {a, b, c, d, e}. According to the principle,
any transaction that contains {c, d, e} must also contain all its subsets {c, d}, {d, e}, {c, e},
{c}, {d}, {e}. In simple words, if {c, d, e} is a frequent itemset, then all its subsets have to be
frequent as well. Figure 10.1 explains this concept by selecting all the itemsets containing
c, d, and e items. In addition, if any itemset is infrequent, then all its subsets are infrequent
too. For example, let {a, b} be an infrequent itemset, then all subsets that contain a and b
will also be infrequent. In Figure 10.2, all itemsets are automatically pruning the subsets
containing a and b.

abcde

Frequent
Itemset

abcd abce abde acde bcde

abc abd abe acd ace ade bcd bce bde cde

ab ac ad ae bc bd be cd ce de

a b c d e

null

In simple words, the Apriori principle automatically prunes the candidate itemsets.

Figure 10.1 Apriori principle generating frequent itemsets

2. Rule Generation

In the second step of the two-step approach, rule generation extracts all the high-
confidence rules from each frequent itemset obtained in the first step. Each rule is a binary
partitioning of a frequent itemset. For each frequent k itemsets, 2k- 2 association rules can
be generated by ignoring the rules containing empty antecedents or consequents (f Æ
Y or YÆ f). By partitioning the itemset Y into two non-empty subsets X and Y – X such
that X Æ Y – X satisfies the confidence threshold, an association rule is extracted.

408 Data Analytics using R

Figure 10.2 Apriori principle pruning the infrequent itemsets

10.2.5 Apriori Algorithm

For solving the problem of frequent itemset generation, many algorithms were developed.
However, the Apriori algorithm is the best and fastest algorithm developed by Agarwal
and Srikant in 1994. Apriori algorithm is a breadth-first algorithm that counts transactions
by following a two-step approach. It finds out the frequent itemset, maximal frequent
itemset, and closed frequent itemset. The implementation of the algorithm also generates
the association rules. The two steps of the Apriori algorithm are explained as follows:

Step 1: Frequent Itemset Generation in Apriori Algorithm

This step generates all frequent itemsets, where a frequent itemset is an itemset that has
transaction support greater than minsup. Here, the algorithm uses the Apriori principle or
downward closure property for generating all frequent itemsets. According to the Apriori
principle, “If an itemset is frequent, then all of its subsets must also be frequent”. According to
the downward closure property, “If an itemset has minimum support then all its non-empty
subsets have minimum support”. Both the properties prune a large number of infrequent
itemsets.

For efficient itemset generation, the algorithm should be sorted in lexicographic order.
Let {w[1], w[2], …, w[k]} represent the k itemsets, where w contains the item w[1], w[2],
…, w[k] and w[1] < w[2]< … < w[k]. The pseudocode of the algorithm would be:

Association Rules 409

Apriori(T)

1. Ck ← init-pass(T) ; // First pass

2. F1 ← { f | f ŒC1 , f.count ≥minsup } // n = number of transaction

3. for (k = 2; Fk-1 ≠ f; k++) do // subsequent passes over T

4. Ck ← candidate-gen(Fk-1)

5. for each transaction t Œ T do // scan the data once

6. for each candidate c ŒCk do

7. if c is contained in t then

8. c.count++;

9. end

10. end

11. Fk ← { c ŒCk | c.count / n ≥ minsup }

12. end

13. return F ← UkFk

The algorithm uses a level-wise search for generating the frequent itemset and multiple
passes over the data. In each pass of the algorithm, it counts the support of individual
items [line 1] and determines whether each of them is frequent [line 2]. F1 is the set of
frequent 1 itemsets. In each subsequent pass k, it follows the following three steps:
 1. It starts with the seed set of itemsets Fk-1 found to be frequent in the (k-1)th pass.

This seed sets generate the candidate itemsets Ck [line 4] that are possible frequent
itemsets using candidate gen() function.

 2. In the second step, the transaction database is scanned and the actual support of
each candidate itemset c in Ck is counted [line 5 to 10].

 3. At the end of the pass, the actual frequent candidate itemsets are determined.
The set of all frequent itemsets F is the final output of the algorithm.

Candidate gen() Function

The candidate gen() function is used in the Apriori algorithm that contains two steps
Join and Pruning explained as follows:
 1. The join step [line 2–3] joins two frequent (k-1) itemsets for producing a possible

candidate c [line 6]. The two frequent itemsets f1 and f2 have exactly the same items
except the last one [line 3–5]. The c is added to the set of candidates Ck [line 7].

 2. The pruning step [line 8–11] determines whether all the k-1 subsets of c are in Fk-1.
If no one of them is in Fk-1, c cannot be frequent according to the downward closure
property and deleted from Ck.

The pseudocode of the candidate gen() function is as follows:

candidate gen(Fk-1)

1. Ck ← f // initializes the set of candidates

2. for all f1, f2ŒFk-1 // traverse all pairs of frequent itemsets

3. with f1 ={i1, i2, …, ik-2,ik-1}

 // differ only in the last item

4. and f2 ={i1, i2, …, ik-2,ik-1}

5. and ik-1 < i’k-1do // according to the sorted order

6. c ←{i1,…, ik-1,i’k-1} // join the two itemsets f1 and f2
7. Ck ← Ck »{c} // add the new itemset c to the candidates

8. For each (k-1)-subset s of c do

410 Data Analytics using R

9. If (s ŒFk-1) then

10. delete c from Ck // delete c from the candidates

11. end

12. end

13. return

Step 2: Association Rule Generation

This step generates all confidence association rules from the frequent itemsets, where
confident association rules are the rules with confidence value greater than minconf. This
step is an optional step as for many applications, frequent itemsets are sufficient and do
not require generating the association rules.

The following formula is used to generate the rules for every frequent itemset f that
contains subsets and for each subset a.

(f – a) Æ a if confidence = (f.count/(f – a).count) ≥ minconf

where,
(f.count/(f – a).count) = support count of f((f – a)); f.count/n = support of the rule

where n = number of transactions in the transaction set
This method is complex; hence, an efficient algorithm and procedure is used that

generate the rules. A pseudo code of the algorithm with one item in the consequent [subset
of a] is given as follows:

genRules(F) // F = set of all frequent itemsets

1. for each frequent =itemset fk in F, k≥ 2 do

2. output every 1.item consequent rule of fk with confidence ≥ min-

conf and Support ← fk.count/n

3. H1 ← {consequents of all 1-item consequent rules derived from fk above}

4. ap-genRules(fk, H1)

5. end

The pseudocode of the ap-genRules(fk, Hm) procedure is as follows:
ap-genRules(fk, Hm) // Hm = set of m-item consequents

1. if (k > m+1) AND (Hm≠f) then
2. Hm+1 ← candidate-gen(Hm)

3. for each hm+1 in Hm+1do

4. conf ← fk.count / (fk - hm+1).count

5. if (conf ≥ minconf) then

6. output the rule (f - hm+1) Æhm+1 with confidence = conf and sup-

port = fk.count /n

7. else

8. delete hm+1 from

9. end

10. ap-genRules(fk, Hm)

11. end

The following example uses data of Table 10.1 that represents three transactions of
the itemset {pen, pencil, notebook, sharpener}. Now, the Apriori algorithm finds out the
frequent itemsets with minsup 50% and minconf 50%.

Frequency of each item is given as (Tables 10.3–10.6):

Association Rules 411

Table 10.3 Support of each items of the given itemset

Items Support

Pen 2

Pencil 3

Notebook 2

Sharpener 1

Table 10.4 Frequent itemset F1 after removing items with minsup 50% = 2

Items Support

Pen 2

Pencil 3

Notebook 2

Table 10.5 Candidate itemsets C2 – F1 x F1

Items Support

Pen, Pencil 2

Pen, Notebook 1

Pencil, Notebook 2

Table 10.6 New frequent itemset F2 after removing items with minsup 50% = 2

Items Support

Pen, Pencil 2

Pencil, Notebook 2

After this, it cannot process as both itemsets have minsup as 2. Hence, the frequent
itemset is {pen, pencil} and {pencil, notebook} for the data given in Table 10.1.

Problem statement
Consider the transactions as follows:

Transaction ID Items

1 A,B,E

2 A,B,D,E

3 B,C,D,E

4 B,D,E

5 A,B,D

6 B,E

7 A,E

Find all the frequent itemsets whose counts are at least 3.

Answer:
Find all itemsets with support >= 3.

We generate the below sets, C1, C2 and C3. Remove all the sets where the support is
less than 3 (the highlighted ones).

412 Data Analytics using R

C1:

Set Support

{A} 4

{B} 6

{C} 1

{D} 4

{E} 6

Here {C} is eliminated because its support is less than 3.

C2:

Set Support

{A, B} 3

{A, C} 0

{A, D} 2

{A, E} 3

{B, C} 1

{B, D} 4

{B, E} 5

{C, D} 1

{C, E} 1

{D, E} 3

Here, {A, C}, {A, D}, {B, C}, {C, D} and {C, E} is eliminated because its support is less
than 3.

C3:

Set Support

{A, B, E} 2

{B, D, E} 3

Here, {A, B, E} is eliminated as its support is less than 3.

Check Your Understanding

 1. What is data mining?

 Ans: Data mining is a process used for finding unknown and hidden patterns from a large

amount of data.

 2. What are association rules?

 Ans: Association rules are part of data mining used for finding patterns in data. An

association rule is an implication of the expression X Æ Y, where X and Y are two

disjoint itemsets and X Õ I and Y Õ I, and X « Y = f.

(Continued)

Association Rules 413

10.3 Data structure OvervIew

In the previous section, you learnt about the major theoretical concept of the association

rules mining and algorithms. For the implementation of the association rules mining,

users need to efficiently represent the input and output data.

R language provides packages like arules and arulesViz for implementing the association

rule algorithms in R language. The arules package provides the required infrastructure

that creates and manipulates the input dataset for any type of mining algorithms. It also

provides features that analyse the resulting itemsets and association rules. It mainly uses

the sparse matrix for representation that minimises the use of memory.

Before implementing the algorithms in R language, it is necessary to represent the input

data into a well-designed structure as these algorithms contain a large amount of data.

This section will describe various features of the arules package for representing data.

10.3.1 Representing Collections of Itemsets

Transaction of databases and set of associations are a main part of the association rules

mining. Both use set of items means itemsets with additional information. The transaction

database of the association rules mining contains the transaction id and an itemset,

whereas an association rule contains at least two itemsets for left-hand side and right-

hand side of the rule respectively. In both the forms of data, columns contain the items

and rows contain the itemsets; hence, a matrix, sparse matrix, or binary incidence matrix

is a convenient way to represent such types of data.

Here a binary incidence matrix is an effective method to represent the collection of

itemsets used for transaction databases and set of associations among all three matrices.

A binary incidence matrix is a type of sparse matrix that contains only two values 0 and 1

or true and false. In binary incidence matrix, columns represent items and rows represent

the itemsets. The entries of the matrix represent the presence [1] and absence [0] of an

item in a particular itemset.

For example, Table 10.7 represents four itemsets of a database ‘stationery’.

 3. What is the formula for calculating support?

 Ans: The Support or sup of a rule is calculated by using (X » Y).count / n.

 4. What is a Brute-force approach?

 Ans: A Brute-force approach computes the support and confidence for every possible rule

for mining the association rules.

414 Data Analytics using R

Table 10.7 Itemsets of a database ‘stationery’

Itemsets Items

I1 {pen, pencil, notebook}

I2 {pencil, sharpener}

I3 {sharpener, pencil, notebook}

I4 {pen, notebook}

Users can represent these itemsets through a binary incidence matrix. Table 10.8
represents the corresponding binary incidence matrix of the above table. The matrix
contains value 1 for the items that are in the particular itemset and 0 for those that are not
in the particular itemset. For example, for the itemset I1 = {pen, pencil, notebook}, value
1 is used to represent pen, pencil, notebook and sharpener contains 0.

Table 10.8 Binary incidence matrix

Itemsets Items

Pen Pencil Notebook Sharpener

I1 1 1 1 0

I2 0 1 0 1

I3 0 1 1 1

I4 1 0 1 0

itemMatrix class

The arules package provides a class “itemMatrix” that efficiently represents such type
of set of items in the form of sparse binary matrices. The itemMatrix class is base for the
itemsets, transactions, and rules of the association rule mining in R. It contains a sparse
matrix representing items that can be either set of itemsets or transactions.

Since “itemMatrix” is a class, thus, an object can be created by using the
new(“itemMatrix”,…). It is inconvenient to call it in such form, so mostly an object is
created by using conversion or coercion from a matrix, data.frame, or list. Here is a basic
syntax for creating an object of the “itemMatrix” class.

as(x, “itemMatrix”)

where,

“x” can be either a matrix, data.frame, or list.

If the itemMatrix is transposed, then it represents the actual data into a binary incidence
form. For this, the arules package provides a class “ngCMatrix” that represents the
transposed form of the binary incidence matrix in the ItemMatrix class. The transposed
form can be created by using (x, “ngCMatrix”).

The “itemMatrix” class contains many methods for further representations. Table 10.9
describes few useful methods of the “itemMatrix” class:

Association Rules 415

Table 10.9 Values of type argument of plot command

Methods Description

dim(x) It returns the dimension of the itemMatrix.

c(x) It combines the itemMatrix.

dimnames(x) It returns the dimension names where row contains itemsetID and column contains
the item names.

Labels It returns the labels for the itemsets in each transaction

nitems(x) It returns the number of items in the itemMatrix

The example below creates a matrix “sm” in Table 10.8 by using matrix() function. The
function dimnames() sets the names of the items (Figure 10.3). In Figure 10.4, the matrix
“sm” is converted to itemMatrix using the function (“sm”, “itemMatrix”) that represents
the given data in a binary incidence matrix form.

Figure 10.3 Binary incidence matrix

Figure 10.5 creates a column oriented transpose matrix using as(x, “ngCMatrix”) of the
matrix “sm”. From the figure, the user can see that columns contain the items and rows
contain the itemsets. The entries of the matrix contains ‘|’ for the value ‘1’ and the dot ‘.’
for the value ‘0’. The inspect() function inspects the items of this matrix. For example,
the item “Pen” is in itemset 1 and 4 and the function inspect() shows the same.

416 Data Analytics using R

Figure 10.4 itemMatrix

Figure 10.5 itemMatrix inspection using inspect()

Association Rules 417

itemFrequency() Function

The itemFrequency() function of the package “arules” returns the frequency or support of
single items or all single items of an object of the itemMatrix. Actually, item frequencies are
the column sums of the binary matrix. The basic syntax of the function itemFrequency()
is as follows:

itemFrequency (x, type, …)

where,

“x” argument can be an object of itemMatrix, or transactions class or any dataset; “type”
argument contains the string that specifies frequency/support in relative or absolute form.
By default, it returns the relative form; the dots “…” define the other optional arguments.

In the example below, the itemFrequency() function returns the frequency of the
itemMatrix “IM” created in the above example in both form “relative” and “absolute”.
The “relative” and “absolute” type returns the values in decimal points and whole number
respectively (Figure 10.6).

Figure 10.6 Use of itemFrequency() function

Generate Hash Tree

A hash tree is a type of data structure that stores values in the key-value pair and a type
of tree, where every internal node contains the hash values. The association rules mining
uses datasets that are also in the form of hash tree. Such dataset uses itemset ID and
items or transaction ID and items. In the Apriori algorithm, hash tree is used for support
counting. A hash tree only hashes with the candidate itemsets that belong to the same
bucket instead of every candidate’s itemset.

418 Data Analytics using R

In the Apriori algorithm, candidates itemsets are stored in the form of hash tree, this
means each itemset or transaction is hashed into respective buckets. Here are some steps
used for support counting using hash tree:
 1. Create a hash tree and hash all the candidate k itemsets to the external nodes of the

tree.
 2. For each transaction, generate all k items subsets of the transaction. For example,

for a transaction {“a”, “b”, “c”}, the 2-item subsets are {“a”, “b”}, {“b”, “c”}, {“a”,
“c”}.

 3. For each k item subset, hash it to an external node of the hash tree and compare it
against the candidate k itemsets hashed to the same leaf node. If the k item subset
matches a candidate k itemset then increment the support count of the candidate k
itemset.

10.3.2 Transaction Data

All types of association rules work mostly with the transaction datasets. A transaction
dataset is a collection of the transactions, where each transaction is stored in the tuple
form as < transaction ID, item ID, …>. A single transaction is a group of all tuples with
the same transaction ID that contains all the items of the given item ID in the tuples. For
example, the transaction on the stationery items may be pen, pencil, notebook, and others.

For the association rules mining, it is necessary to transform the transaction data into
a binary incidence matrix where columns contain different items and rows contain the
transactions. The entries of the matrix represent the presence [1] and absence [0] of an
item in a particular transaction. This binary incidence matrix form is called the horizontal
database. On the other hand, if the transaction data is represented in the form of the
transactions list then it is called the vertical database. In the vertical database, for each
item a list of IDs of the transactions the item is contained in is stored.

For example, Table 10.10 represents four itemsets of a database “stationery” used in
the previous section.

Table 10.10 Transactions and Itemsets for a database “Stationery”

Transactions Items

T1 {pen, pencil, notebook}

T2 {pencil, sharpener}

T3 {sharpener, pencil, notebook}

T4 {pen, notebook}

Users can represent these transactions through a binary incidence matrix. Table 10.11
represents the corresponding binary incidence matrix of Table 10.10. It is a horizontal
database. The matrix contains value 1 for the items that are in the particular transaction and
contains 0 that are not in the particular transaction. Table 10.11 represents the horizontal
database while Table 10.12 represents the vertical database.

Association Rules 419

Table 10.11 Horizontal database

Transactions Items

Pen Pencil Notebook Sharpener

T1 1 1 1 0

T2 0 1 0 1

T3 0 1 1 1

T4 1 0 1 0

Table 10.12 Vertical database

Items Transaction ID list

Pen T1, T4

Pencil T1, T2, T3

Notebook T1, T3, T4

Sharpener T2, T3

Transaction Class

The arules package provides a class “transactions” that represent transaction data of the
association rules. It is an extension of the itemMatrix class. Like “itemMatrix” class, an
object of the “transactions” class can be created using the new (“transactions”,…). An
object is created by conversion from a matrix, data.frame, or list. Since, the association rule
mining does not work with continuous variables and uses only items hence it is necessary
to first create the data list using list, matrix, or data.frame features of R language. Here
is a basic syntax for creating an object of the “transactions” class.

as(x, “transactions”)

where,

“x” can be either a matrix, data.frame, or list.

Like “itemMatrix” class, the “transactions” class contains many methods for further
representations. Table 10.13 describes some useful methods of the “transactions” class:

Table 10.13 Values of type argument of plot command

Methods Description

dimnames(x) It returns the dimension names where the row contains the transaction IDs and
the column contains the item names

labels It returns the labels for each transaction

transactionInfo It returns information about the transaction

The example below creates a matrix “sm” of the table using matrix() function. The
function dimnames() sets the names of the items (Figure 10.7). In the example the matrix
“sm” is converted to transactions using function as(“sm”, “transactions”) that represents
the given data into a binary incidence matrix form (the horizontal database). Figure 10.8
describes the summary of the generated transactions “TM”.

420 Data Analytics using R

Figure 10.7 Creating transaction using matrix

Figure 10.8 Summary of transactions

Association Rules 421

In Figure 10.9, a transaction is created using a list. For this, the list function is used to
create a list “al”. Then as(al, “transactions”) creates a transaction of this list.

Figure 10.9 Creating transaction using the list function

10.3.3 Associations: Itemsets and Sets of Rules

In association rule mining, associations are the output of the transaction data after mining
operations have been performed. Associations define the relationship between the set of
itemset and a rule that has assigned some values for measuring quality. It can measure
significance, such as support or interestingness such as confidence, etc.

The “arules” package provides a virtual class “associations” that is extended to mining
result. For the implementation of the mining output, classes “itemsets” and “rules”
are used that extend the associations class. The “itemsets” class is used for defining
the frequent itemsets of their closed or maximal subsets and “rules” class is used for
association rules. A brief introduction of both classes is as follows:

The “itemsets” class represents a set of itemsets and the associated quality measures. It
also represents the multiset of itemsets with duplicate elements that can be removed through
unique() function. An object of the class is created either using new(“itemsets”,…) or by
calling the function apriori() with target parameter. Along with this, the class contains
an object of the class “itemMatrix” and “tidList” that stores the items in sets of itemsets
[items] and transaction ID lists [tidLists] respectively.

The “rules” class represents a set of rules. It also represents the multiset of rules with
duplicate elements that can be removed through unique() function. An object of the class

422 Data Analytics using R

is created either using new(“rules”,…) or by calling the function apriori(). Along with
this, the class contains an object of the class “itemMatrix” that stores the left-hand sides
[lhs] and right-hand sides [rhs] of the association respectively.

Table 10.14 outlines few methods from the arules package to describe associations.

Table 10.14 Few common methods for describing associations in arules package

Methods Description

summary() It returns a short overview of the association rules and sets

length() It returns the number of elements in the set

items() It returns a set of items that are part of the association

inspect() It displays individual associations

sort() It sorts the given sets using the values of quality measures

subset() It extracts the subset from the set

union() It performs the union operation on the sets

intersect() It performs the intersect operation on the sets

setequal() It compares two sets

match() It matches elements from two sets

Check Your Understanding

 1. What is the arules package?

 Ans: The arules package provides the required infrastructure that creates and manipulates

the input dataset for any type of mining algorithm. It also provides features to analyse

the resulting itemsets and association rules.

 2. What is an “itemMatrix”?

 Ans: The arules package provides a class “itemMatrix” that efficiently represents binary

incidence matrix containing the itemsets and items.

 3. What is a hash tree?

 Ans: A hash tree is a type of data structure that stores values in key-value pairs and a type

of tree where every internal node contains the hash values.

10.4 mInIng algOrIthm InterFaces

Any interface interacts with any application using some function. R language packages
like “arules” and “arulesViz” provide some functions that implement the association
rules mining algorithms. The Apriori algorithm is the most important algorithm of the
association rules.

Association Rules 423

10.4.1 apriori() Function

The package “arules” provides a function apriori() that performs the association rule
mining using Apriori algorithm. The function mines the frequent itemsets, association
rules, and association hyperedges. It follows the Apriori algorithm and uses the level-wise
search for frequent itemsets. The function returns the object of the classes “itemsets” and
“rules”. The basic syntax of the function apriori() is as follows:

apriori(data, parameter = NULL, appearance = NULL, control = NULL)

where,
“data” argument contains a data.frame or binary matrix that defines an object of class

“transactions”; “parameter” argument contains an object of the “APparameter” class or
a named list that contains the values of support, confidence, maxlen [the default values
are: support = 0.1, confidence = 0.8, maxlen = 10]; “appearance” argument contains an
object of the “APappearance” class or a named list that can restrict the appearance of the
items; “control” argument contains an object of the “APcontrol” class or named list for
controlling the performance of the algorithm.

The example given below takes the same table that was used to demonstrate “itemMatrix”
and “transactions” classes. The apriori() function takes the object of the corresponding
binary matrix and mines the frequent itemsets and association rules of the given table. Here,
apriori() function takes no value for the parameters, support and confidence (Figure 10.10).
Figure 10.11 represents the summary of the object returned by the apriori() function.

Figure 10.10 Use of apriori() function to implement the Apriori algorithm

424 Data Analytics using R

Figure 10.11 Summary of apriori() function

In Figure 10.12, the apriori() function implements the Apriori algorithm with support
= 0.02 and confidence = 0.5 and summary() function provides the output of the object.

Figure 10.12 Use of apriori() function with support = 0.02 and confidence = 0.5

Association Rules 425

An example of association rule mining using “titanic” dataset. It will make use of
methods such as inspect(), summary(), union(), intersect(), setequal(),

match() etc.

Step 1: Load and attach the “arules” package.

> library(arules)

Step 2: Download the titanic data from: http://www.rdatamining.com/data/titanic.raw.
rdata?attredirects=0&d=1

Describing the data from “titanic.raw”.

> str(titanic.raw)

‘data.frame’ : 2201 obs. of 4 variables:

$ Class : Factor w/ 4 levels “1st”, “2nd”, “3rd”,...: 333333333 ...

$ Sex : Factor w/ 2 levels “Female”, “Male”: 2 2 2 2 2 2 2 2 2 2 ...

$ Age : Factor w/ 2 levels “Adult”, “Child”: 2 2 2 2 2 2 2 2 2 2 ...

$ Survived : Factor w/ 2 levels “No”, “Yes”: 1 1 1 1 1 1 1 1 1 1 ...

Step 3: Use the apriori algorithm to mine frequent itemsets and association rules.

> rules <- apriori(titanic.raw)

Apriori

Parameter specification:

confidence minval smax arem aval originalSupport maxtime support

0.8 0.1 1 none FALSE TRUE 5 0.1

minlen maxlen target ext

1 10 rules FALSE

Algorithmic control:

 filter tree heap memopt load sort verbose

 0.1 TRUE TRUE FALSE TRUE 2 TRUE

Absolute minimum support count: 220

set item appearances ...[0 item(s)] done[0.00s].

set transactions ...[10 item(s), 2201 transaction(s)]done[0.00s].

sorting and recording items ...[9 item(s)] done[0.00s].

creating transaction tree ... done[0.00s].

checking subsets of size 1 2 3 4 done[0.00s].

writing ... [27 rule(s)] done[0.00s].

creating S4 object ... done[0.00s].

Step 4: Display associations and transactions in readable form (format it for online
inspection).

426 Data Analytics using R

> inspect(rules)

Step 5: Set rhs=c(“Survived=No”, “Survived=Yes”) in appearance. This will ensure that
only “Survived=No” and “Survived=Yes” will appear in the rhs of rules.

> rules <- apriori(titanic.raw, parameter = list(minlen=2, supp=0.005,

conf=0.8), appearance = list(rhs=c(“Survived=No”, + “Survived=Yes”),

default=“lhs”), control = list(verbose=F))

Step 6: Display the associations for the above stated criteria.
> inspect(rules)

Association Rules 427

Step 7: Display the result summary using the summary() function.

> summary(rules)

set of 12 rules

rule length distribution (lhs + rhs) : sizes

3 4

6 6

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 3.0 3.0 3.5 3.5 4.0 4.0

summary of quality measures:

 support confidence lift count

Min. :0.005906 Min. :0.8275 Min. :1.222 Min. :13.0

1st Qu. :0.010450 1st Qu. :0.8603 1st Qu. :1.333 1st Qu. :23.0

Median :0.052930 Median :0.8735 Median :2.692 Median :116.5

Mean :0.062396 Mean :0.9053 Mean :2.338 Mean :137.3

3rd Qu. :0.069968 3rd Qu. :0.9723 3rd Qu. :3.010 3rd Qu. :154.0

Max. :0.191731 Max. :1.0000 Max. :3.096 Max. :422.0

mining info:

 data ntransactions support confidence

titanic.raw 2201 0.005 0.8

Step 8: Get the number of elements in the associations
> length(rules)

[1] 12

Step 9: Sort the associations by “lift”.
> rules.sorted <- sort(rules, by=”lift”

> inspect(rules.sorted)

Step 10: Set rhs=c(“Survived=No”) in appearance. This will ensure that only “Survived=No”
will appear in the rhs of rules.

> rules1 <- apriori(titanic.raw,parameter = list(minlen=2,

supp=0.005, conf=0.8), + appearance = list(rhs=c(“Survived=No”),

default=“lhs”), control = list(verbose=F))

> inspect(rules1)

428 Data Analytics using R

Step 11: Set rhs=c(“Survived=Yes”) in appearance. This will ensure that only
“Survived=Yes” will appear in the rhs of rules.

> rules2 <- apriori(titanic.raw,parameter = list(minlen=2,

supp=0.005, conf=0.8), + appearance = list(rhs=c(“Survived=Yes”),

default=“lhs”), control = list(verbose=F))

> inspect(rules2)

Step 12: Run union() on sets of associations, “rules1” and “rules2”.

> rules3 <-union(rules1, rules2)

> rules3

set of 12 rules

> inspect(rules3)

Step 13: Run intersect() on sets of associations, “rules” and “rules1”.

> intersectrules <- intersect(rules,rules1)

> intersectrules

set of 4 rules

> inspect(intersectrules)

Association Rules 429

Step 14: Run setequal() on sets of associations, “rules” and “rules1”.

> equalsets <- setequal(rules, rules1)

> equalsets

[1] FALSE

Step 15: Run match() on sets of associations, “rules” and “rules1”. match() returns a
vector of the positions of (first) matches of its first argument in its second.

> matchsets <- match(rules, rules1)

> matchsets

[1] NA NA 1 NA NA 2 NA NA 3 NA NA 4

Additional Assignments on apriori() Function

Exercise 1

Problem statement: Transaction data (Transaction ID and Transaction Details (the items
bought together) for seven transactions is provided in the file, “trans1.csv”. Analyze the
data to find associations with their support, confidence and lift.

Step 1: Read data from “trans1.csv” and store it in the data frame, “transdata”.
> transdata <- read.csv(“D:/trans1.csv”)

Print the data held in the data frame, “transdata”.
> transdata
 Transaction.ID Transaction.Details
1 1 A
2 1 B
3 1 E
4 2 A
5 2 B
6 2 D
7 2 E
8 3 B
9 3 C
10 3 D
11 3 E
12 4 B
13 4 D
14 4 E
15 5 A
16 5 B
17 5 D
18 6 B
19 6 E
20 7 A
21 7 E

430 Data Analytics using R

Step 2: Using the split() function divide the data held in “transdata$Transaction.Details”
into groups defined by “transdata$Transaction.ID”.

> AggPosData <- split(transdata$Transaction.Details,

transdata$Transaction.ID)

> AggPosData

$‘1’

[1] A B E

Levels: A B C D E

$‘2’

[1] A B D E

Levels: A B C D E

$‘3’

[1] B C D E

Levels: A B C D E

$‘4’

[1] B D E

Levels: A B C D E

$‘5’

[1] A B D

Levels: A B C D E

$‘6’

[1] B E

Levels: A B C D E

$‘7’

[1] A E

Levels: A B C D E

Step 3: Use the as() function to coerce the data held in “AggPosData” to the class
“transactions”.

> txns <- as(AggPosData, “transactions”)

> txns

Transactions in sparse format with

 7 transactions (rows) and

 5 items (columns)

Step 4: Use the summary() function to display the summary of the object, “txns”.

> summary (txns)

transactions as itemMatrix in sparse format with

 7 rows (elements/itemsets/transactions) and

 5 columns (items) and a density of 0.6

most frequent items:

 B E A D C (Other)

 6 6 4 4 1 0

Association Rules 431

element (itemset/transaction) length distribution:

sizes

2 3 4

2 3 2

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 2.0 2.5 3.0 3.0 3.5 4.0

includes extended item information – examples:

 labels

1 A

2 B

3 C

includes extended transaction information – examples:

 transaction ID

1 1

2 2

3 3

Step 5: Use apriori() function to mine the data. The apriori() function mines frequent
itemsets, association rules or association hyperedges using the Apriori algorithm. The
Apriori algorithm employs level-wise search for frequent itemsets.

> rules <- apriori(txns,parameter=list(sup=0.3, conf=0.75))

Apriori

Parameter specification:

 confidence minval smax arem aval originalSupport support

 0.75 0.1 1 none FALSE TRUE 0.3

 minlen maxlen target ext

 1 10 rules FALSE

Algorithmic control:

 filter tree heap memopt load sort verbose

 0.1 TRUE TRUE FALSE TRUE 2 TRUE

Absolute minimum support count: 2

set item appearances ...[0 item(s)] done[0.00s].

set transactions ...[5 item(s), 7 transaction(s)] done[0.00s].

sorting and recoding items ...[4 item(s)] done[0.00s].

creating transaction tree ... done[0.00s].

checking subsets of size 1 2 3 done[0.00s].

writing ... [10 rule(s)] done[0.00s].

creating S4 object ... done[0.00s].

432 Data Analytics using R

Step 6: Use the inspect() function to inspect a set of associations or transactions or an
itemMatrix.

> inspect(rules)

 lhs rhs support confidence lift

1 {} => {E} 0.8571429 0.8571429 1.0000000

2 {} => {B} 0.8571429 0.8571429 1.0000000

3 {A} => {E} 0.4285714 0.7500000 0.8750000

4 {A} => {B} 0.4285714 0.7500000 0.8750000

5 {D} => {E} 0.4285714 0.7500000 0.8750000

6 {D} => {B} 0.5714286 1.0000000 1.1666667

7 {E} => {B} 0.7142857 0.8333333 0.9722222

8 {B} => {E} 0.7142857 0.8333333 0.9722222

9 {D,E} => {B} 0.4285714 1.0000000 1.1666667

10 {B,D} => {E} 0.4285714 0.7500000 0.8750000

Exercise 2

Problem statement: Transaction data (Transaction ID and Transaction Details (the items
bought together) for five transactions is provided in the file, “trans2.csv”. Analyze the
data to find associations with their support, confidence and lift.

Step 1: Read data from “trans2.csv” and store it in the data frame, “transdata”.

> transdata <- read.csv(“D:/trans2.csv”)

Print the data held in the data frame, “transdata”.

> transdata

 Transaction.ID Transaction.Details

1 1 A

2 1 B

3 1 C

4 2 B

5 2 C

6 2 D

7 2 E

8 3 C

9 3 D

10 4 A

11 4 B

12 4 D

13 5 A

14 5 B

15 5 C

Step 2: Using the split() function divide the data held in “transdata$Transaction.Details”
into groups defined by “transdata$Transaction.ID”.

Association Rules 433

> AggPosData <- split(transdata$Transaction.Details,

transdata$Transaction.ID)

> AggPosData

$‘1’

[1] A B C

Levels: A B C D E

$‘2’

[1] B C D E

Levels: A B C D E

$‘3’

[1] C D

Levels: A B C D E

$‘4’

[1] A B D

Levels: A B C D E

$‘5’

[1] A B C

Levels: A B C D E

Step 3: Use the as() function to coerce the data held in “AggPosData” to the class
“transactions”.

> txns <- as(AggPosData,“transactions”)

> txns

transactions in sparse format with

 5 transactions (rows) and

 5 items (columns)

Step 4: Use the summary() function to display the summary of the object, “txns”.

> summary(txns)

transactions as itemMatrix in sparse format with

 5 rows (elements/itemsets/transactions) and

 5 columns (items) and a density of 0.6

most frequent items:

 B C A D E (Other)

 4 4 3 3 1 0

element (itemset/transaction) length distribution:

sizes

2 3 4

1 3 1

434 Data Analytics using R

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 2 3 3 3 3 4

includes extended item information – examples:

 labels

1 A

2 B

3 C

includes extended transaction information – examples:

 transactionID

1 1

2 2

3 3

Step 5: Use apriori() function to mine the data. The apriori() function mines frequent
itemsets, association rules or association hyperedges using the Apriori algorithm. The
Apriori algorithm employs level-wise search for frequent itemsets.

> rules <- apriori(txns, parameter = list(supp=0.2, conf=0.70))

Apriori

Parameter specification:

 confidence minval smax arem aval originalSupport support minlen

 0.7 0.1 1 none FALSE TRUE 0.2 1

 maxlen target ext

 10 rules FALSE

Algorithmic control:

 filter tree heap memopt load sort verbose

 0.1 TRUE TRUE FALSE TRUE 2 TRUE

Absolute minimum support count: 1

Warning in apriori(txns, parameter = list(supp = 0.2, conf = 0.7)):

 You chose a very low absolute support count of 1. You might run out

of memory! Increase minimum support.

set item appearances … [0 item(s)] done [0.00s].

set transactions …[5 item(s), 5 transaction(s)] done [0.02s].

sorting and recoding items … [5 item(s)] done [0.00s].

creating transaction tree … done [0.00s].

checking subsets of size 1 2 3 4 done [0.03s].

writing … [21 rule(s)] done [0.00s]

creating S4 object … done [0.00s]

Association Rules 435

Step 6: Use the inspect() function to inspect a set of associations or transactions or an
itemMatrix.

> inspect(rules)

 lhs rhs support confidence lift

1 {} => {C} 0.8 0.80 1.000000

2 {} => {B} 0.8 0.80 1.000000

3 {E} => {D} 0.2 1.00 1.666667

4 {E} => {C} 0.2 1.00 1.250000

5 {E} => {B} 0.2 1.00 1.250000

6 {A} => {B} 0.6 1.00 1.250000

7 {B} => {A} 0.6 0.75 1.250000

8 {C} => {B} 0.6 0.75 0.937500

9 {B} => {C} 0.6 0.75 0.937500

10 {D,E} => {C} 0.2 1.00 1.250000

11 {C,E} => {D} 0.2 1.00 1.666667

12 {D,E} => {B} 0.2 1.00 1.250000

13 {B,E} => {D} 0.2 1.00 1.666667

14 {C,E} => {B} 0.2 1.00 1.250000

15 {B,E} => {C} 0.2 1.00 1.250000

16 {A,D} => {B} 0.2 1.00 1.250000

17 {A,C} => {B} 0.4 1.00 1.250000

18 {C,D,E} => {B} 0.2 1.00 1.250000

19 {B,D,E} => {C} 0.2 1.00 1.250000

20 {B,C,E} => {D} 0.2 1.00 1.666667

21 {B,C,D} => {E} 0.2 1.00 5.000000

10.4.2 eclat() Function

The package “arules” provides another function eclat() that performs association rule
mining and generates frequent itemsets. It follows the Eclat algorithm and uses simple
intersection operations for frequent itemsets. The function returns the object of the class
“itemsets”. The basic syntax of the function eclat() is as follows:

eclat(data, parameter = NULL, control = NULL)

where,

“data” argument contains a data.frame or binary matrix that defines an object of class
“transactions”; “parameter” argument contains an object of the class “ECparameter” or
a named list that contains the values of support, maxlen [the default values are: support
= 0.1, maxlen = 5]; “control” argument contains an object for controlling the performance
of the algorithm

The example below takes the same table as demonstrated in “itemMatrix” and
“transactions” classes. The eclat() function takes the object of the corresponding binary
matrix with support = 0.02. It generates the frequent itemsets of the given table. Figure
10.14 represents the summary of the object as returned by the eclat() function.

436 Data Analytics using R

Figure 10.13 Use of eclat() function

Figure 10.14 Summary of eclat() function

Association Rules 437

Check Your Understanding

 1. What is an apriori() function?

 Ans: The package “arules” provides a function apriori() that performs association rule

mining using Apriori algorithm. The function mines the frequent itemsets, association

rules, and association hyperedges.

 2. What is an eclat() function?

 Ans: The package “arules” provides another function eclat() that performs association

rule mining and generates frequent itemsets. It follows the Eclat algorithm and uses

simple intersection operations for frequent itemsets.

10.5 auxIlIary FunctIOns

Implementation of any algorithm needs some auxiliary function that provides common
required functionality. Here the implementation of association rules mining also needs
some auxiliary functions for finding support, sample, or rules. The package “arules”
provides functions for counting the support or rules. The following subsection describes
these auxiliary functions.

10.5.1 Counting Support for Itemsets

It is very time-consuming to count many items for low minimum support values during
mining the databases. During this process, all frequent and candidate itemsets are counted.
Sometimes an application needs to mine only a single or very few itemsets and does not
need to mine the whole database for all frequent itemsets.

Hence, the package “arules” provides a function support() that determines the support
for a given set of items as an itemMatrix. It also finds the support for infrequent itemsets
with a support that is too low. The basic syntax of the function support() is as follows:

support(x, transactions, type, …)

where,
“x” argument contains a set of itemsets for which support is to be counted; “transactions”

argument contains transactions dataset; “type” argument contains the string that specifies
frequency/support in relative or absolute form. By default, it returns the relative form;
the dots “…” define the other optional arguments.

In the example below, the support() function takes a set of itemsets, “ap”, i.e. an object
of the apriori() function and a transaction dataset “TM” and returns the support of the
itemset. By default, it returns the support value in a relative form. It can also return the
value in absolute form (Figure 10.15).

438 Data Analytics using R

Figure 10.15 Use of support() function

10.5.2 Rule Induction

Sometimes only generation of rules from a set of itemsets is required. The package “arules”
provides a function ruleInduction() that induces all rules generated by the given
itemsets from a transaction dataset. The basic syntax of the function ruleInduction()
is as follows:

ruleInduction(x, transactions, confidence, …)

where,

“x” argument contains a set of itemsets for which rules are to be induced; “transactions”
argument contains transactions dataset; “confidence” argument contains a numeric value
for defining the minimum confidence value; the dots “…” define the other optional
arguments.

In the example below, the ruleInduction() function takes a set of itemset, “ap” which
is an object of the apriori() function and a transaction dataset “TM”. Here the object
“ap” is generated using “ap <- apriori(TM,parameter = list(target = “closed”, support = 0.02))”
where confidence is not used in the apriori() function. The ruleInduction() function
returns the set of rules of the given itemset (Figure 10.16).

Association Rules 439

Figure 10.16 Use of ruleInduction() function

In Figure 10.17, the inspect() function inspects these rules and displays the rules in
the original form with lhs and rhs. It also provides the support and confidence values.

Figure 10.17 Inspection of rules using inspect() function

440 Data Analytics using R

Check Your Understanding

 1. What is the support() function?

 Ans: The package “arules” provides a function support() that determines the support for

a set of given set of items as an itemMatrix.

 2. What is the ruleInduction() function?

 Ans: The package “arules” provides a function ruleInduction() that induces all rules

that are generated by given itemsets from a transaction dataset.

10.6 samplIng FrOm transactIOn

Any mining algorithm needs samples for mining huge databases. Business analytics also

uses large databases and needs samples from these databases, as sometimes the original

large database does not fit into the main memory. Sampling is a process that takes the

samples from the original databases for mining of large data. The sampling process speeds

up the mining with low cost. The association rules also need sampling.

For this, the package “arules” provides a function sample() that generates random

samples and permutations from a set of transactions or associations. It takes a sample

of the specified size from the elements of x (contains a set of transactions or associations

from which a sample is required). The basic syntax of the function sample() is as follows:

sample(x, size, replace,…)

where,

“x” argument contains a set of transactions or associations from which a sample is

required; “size” argument defines the sample size; “replace” argument contains the

logical value that defines the replacement for the sample; the dots “…” define the other

optional arguments.

In the example given below, the sample() function takes a built-in dataset “Mushroom”

and generates 50 samples from the dataset. It returns 50 transactions [rows] and 114 items

[columns].The summary() function generates the summary of the sample.

Association Rules 441

Figure 10.18 Use of sample() function

10.7 generatIng synthetIc transactIOn Data

The association rules also need synthetic data. Synthetic data is data that is created on the
basis of the need of an application. This data evaluates and compares different mining
algorithms for measuring the behaviour of the interestingness of the rules and itemsets.
The standard methods either use the simple probabilistic method or re-implements the
generator.

In R language, the package “arules” provides a function random.transactions() that
simulates random transactions datasets. It returns the object of the class “transactions”.
The basic syntax of the function random.transactions() is as follows:

random.transactions(nItems, nTrans, method,…)

where,

“nItems” argument contains an integer number that defines the number of items;
“nTrans” argument contains an integer number that defines the number of transactions;

442 Data Analytics using R

“method” argument defines the method name to be used. It can be either “independent”
or “agrawal”; the dots “…” define the other optional arguments.

In the following example, the random.transactions() function generates a random
number of transactions using 20 items and 10 transactions (Figure 10.19).

Figure 10.19 Use of random.transactions() function

10.7.1 Sub, Super, Maximal and Closed Itemsets

The association rules mining require subset, superset, maximal, or closed itemsets from
the given set of items. A subset contains some parts of the set and a superset contains
all the sets. A maximal itemset is an itemset that does not have a proper superset of the
itemset in the set of itemsets. A closed itemset is an itemset that has its own closure and
does not have any superset.

In R language, the package “arules” provides functions to determine a subset, superset,
maximal or closed itemsets. All these functions are very slow and consume high memory
for large itemsets. The following table describes the functions. All functions need one main
argument “x” that can be either set of itemsets, rules, or itemMatrix.

Association Rules 443

Table 10.15 Functions for finding subset, superset, maximal and closed itemsets

Method Name Description

is.subset(x) It finds out the subset in the associations and itemMatrix objects.

is.superset(x) It finds out the superset in the associations and itemMatrix objects.

is.maximal(x) It finds out the maximal itemset in the associations and itemMatrix objects.

is.closed(x) It finds out the closed itemset in the associations and itemMatrix objects.

In the example given below, is.subset() function takes an itemMatrix, “itemM” that
contains 4 itemsets. It checks the subset of each itemset and returns either a TRUE or
FALSE value. For example, for the itemset “{Itemset1, Itemset3, Itemset4}”, all the other
itemsets return FALSE except {Itemset1, Itemset3, Itemset4} (Figure 10.20).

Figure 10.20 Use of is.subset() function

In the example given below, is.superset() function takes an itemMatrix, “itemM”
that contains 4 itemsets. It checks the superset of each itemset and returns either
TRUE or FALSE value. For example, for the itemset “{Itemset1, Itemset3, Itemset4}”,
{Itemset2, Itemset3, Itemset4} and {Itemset2, Itemset3} are showing FALSE as their
items are not in that itemset and they are small in size, whereas {Itemset1, Itemset2,
Itemset3, Itemset4} is a superset for the “{Itemset1, Itemset3, Itemset4}”. Along this, the
is.Maximal() checks the maximal set in the given itemsets. Here, it returns TRUE
for itemset {Itemset1, Itemset2, Itemset3, Itemset4} as it is the biggest in all the itemsets
(Figure 10.21).

444 Data Analytics using R

Figure 10.21 Use of is.superset() and is.maximal() function

Check Your Understanding

 1. What is the sample() function?

 Ans: The arules package provides a function sample() that generates random samples and

permutations from a set of transactions or associations.

 2. What is random.transactions() function?

 Ans: The package “arules” provides a function random.transactions() that simulates

random transactions datasets. It returns the object of the class “transactions”.

 3. What is a maximal itemset?

 Ans: A maximal itemset is an itemset that has no proper superset of the itemset in the set of

itemsets.

Association Rules 445

10.8 aDDItIOnal measures OF InterestIngness

The association rules mining needs different types of measures, such as support, confidence,
list, etc., for measuring the set of itemsets and rules. For this, the package “arules” provides
a function interestMeasure() that returns different types of interesting features from
an existing set of itemsets or rules. The basic syntax of the function interestMeasure()
is as follows:

interestMeasure(x, measure, transactions…)

where,

“x” argument contains a set of itemsets or rules for which measures need to be found;
“measure” argument contains the name of measures. Table 10.16 describes few important
measures that are useful for itemsets and rules respectively; “transactions” argument
contains transactions dataset; the dots “…” define the other optional arguments.

Table 10.16 Useful measures for itemsets

Measure Name Range Description

Support [0,1] It defines the support

allConfidence [0,1] It defines the minimum confidence for all possible rules generated
from the itemset

Cross-support ratio [0,1] It defines the ratio between the support of the least frequent item to
the support of the most frequent item

lift [0,•] It defines the probability of the itemsets over the product of the
probabilities of all items in the itemset.

Table 10.17 Useful measures for rules

Measure Name Range Description

Support [0, 1] It defines the support.

Confidence [0, 1] It defines the minimum confidence for all possible rules generated
from the itemset.

Certainty [-1, 1] It measures the variation of the probability that Y is a transaction
when only considering transactions with X.

gini [0, 1] It measures the quadratic entropy

lift [0, •] It defines the probability of the itemsets over the product of the
probabilities of all items in the itemset.

Leverage [-1, 1] It measures the difference of X and Y appearing together in a dataset
defined as sup(X Æ Y) – sup(X)sup(Y)

Improvement [0, 1] It measures the improvement of a rule by finding difference between
its confidence and confidence of more general rule.

In the following example, the interestMeasure() function takes a set of itemset,
“demoa” means an object of the apriori() function and a transaction dataset “itemT”

446 Data Analytics using R

and calculates the different measures of itemsets and rules such as “lift”, “support”,
“improvement”, “confidence”, “oddsRatio”, “leverage” (Figure 10.22, Tables 10.16 and
10.17).

Figure 10.22 Use of interestMeasure() function

10.9 DIstance-baseD clusterIng transactIOn anD assOcIatIOns

Some applications need to calculate dissimilarities and cross-dissimilarities between
transactions (itemsets) or associations (rules). Jaccard coefficient, dice coefficient, affinities
between items, or simple matching coefficients are some standard methods that find out
dissimilarities. In R language, the package “arules” provides a function dissimilarity()
that calculates and returns the distances for binary data that can be either a matrix,
transactions, or associations.

Distance-based clustering identifies clusters by using some distance measures. The
return value of the function dissimilarity() is directly used by clustering methods that
generate random samples and permutations from a set of transactions or associations.
The basic syntax of the function dissimilarity() is as follows:

dissimilarity (x, y = NULL, method = NULL,…)

where,
“x” argument contains the set of elements that can be a matrix, itemMatrix,

transactions, itemsets, rules; “y” argument contains either NULL or second set to calculate

Association Rules 447

cross-dissimilarities; method argument defines the distance measure to be used. The table
describes a few methods; the dots “…” define the other optional arguments.

Table 10.18 Method names used in the dissimilarity() function

Method Name Description

affinity It calculates the average affinity distance between the items in two transactions

cosine It calculates the cosine distance

dice It calculates the dice coefficient

euclidean It calculates the Euclidean distance

jaccard It calculates the Jaccard coefficient

matching It calculates the matching coefficient

pearson It calculates Pearson correlation coefficient

phi It also calculates Pearson correlation coefficient

In the example given below, the dissimilarity() function takes an itemMatrix,
“itemM” and calculates the dissimilarities by using different methods, such as “affinity”,
“euclidean”, “pearson”. The itemMatrix has four transactions and items (Table 10.18,
Figure 10.23).

Figure 10.23 Use of dissimilarity() function

448 Data Analytics using R

Check Your Understanding

 1. What is the interestMeasure() function?

 Ans: The arules package provides a function interestMeasure() that returns different

types of the interesting features from an existing set of itemsets or rules.

 2. List the names of some measuring features for the set of itemsets and rules.

 Ans: Support, Confidence, lift, improvement, Certainity, Leverage, gini, and cross-support

ratio are some measuring features for the set of itemsets and rules.

 3. What is the dissimilarity() function?

 Ans: The package “arules” provides a function dissimilarity() that calculates and

returns the distances for binary data that can be either a matrix, transactions, or

associations.

Making User-generated Content Valuable

User-generated content is an indispensable part of today’s industry as every
other company needs user data to sell and buy products and provide the
best possible support to its users and clients. While user data is important,
it needs to be processed to make it relevant for the company. Data mining is
the most important tool to process such data and make it relevant and useful.
The decision tree algorithm with the apriori algorithm can be used to support
the needs of the clients.

To explain this problem, we will turn to smart technology—something
that makes our lives easier. Whenever we install any application in our
smartphone, we are asked for permission for the installation, but we do not
pay too much attention to the information these applications require to be
installed. In the process, we unknowingly disseminate varied information
on maps, messages, contacts, etc. With the help of this information the
application, besides collating customer data, also tries to support the users
to make their life easier and at the same time makes them dependent on the
application in the near future.

Once the user information is gathered, the data is analysed to get the
required information so as to give the best information to the algorithm at
different times. This type of analysis starts from data pre-processing steps,
steps that have already been explained in Chapters 1 and 2. However, for
this type of data pre-processing the information gain happens by designing

C
a
se

 St
u

dy

(Continued)

Association Rules 449

the decision tree at different levels—the depth decision tree or 2–10 level
decision tree as well.

Each data gives a valid point of information and these points are used in
designing the clusters among different types of data but they are very centric
in information as they provide the information of different users according
to same contents. The frequency of the matching data is processed by means
of decision tree under info gain and Apriori.

It is a common experience nowadays for different applications to
recommend the same item for buying from different applications or portals.
Users are also able to exercise their choices when it comes to reading the
news by selecting the content that is more liked. Through their preferences,
they provide the application information about the cognitive behaviour of
users. This allows prediction of the way a particular consumer behaves and
recommendations are accordingly tweaked. Most studies of systems or online
reviews so far have used only numeric information about sellers or products
to examine their economic impact. The understanding that text matters
has not been fully realised in electronic markets or in online communities.
Insights derived from text mining of user-generated feedback can thus provide
substantial benefits to businesses looking for competitive advantages.

Let us summarise some of the chief benefits of utilising user-centric data:
 d It saves money: Since the users themselves provide relevant content

for prediction and subsequent recommendations, user data need not be
bought and efficiency in terms of time and costs is increased.

 d It provides variety: By using the user data, the customer can be apprised
of various new features or upgrades to the existing product. Further,
the user gets to know about the discounts being offered and can avail
the support extended to the end user.

 d It offers a voice to the user: The company is in a position to offer indi-
vidual customers different products as per individual preferences and a
user can provide any specific information of the item he/she wants to use.

These benefits of user-centric data should be firmly kept in mind to make
such data more predictive and relevant in our fast-paced technological era.

 d Data mining is the process of finding unknown and hidden patterns from a large amount of data.
 d An itemset is a collection of different items. For example, {pen, pencil, notebook} is an itemset.
 d An itemset containing items that often occur together and are associated with each other are called

frequent itemsets.
 d Association rules are also a part of data mining used for finding patterns in data. An association

rule is represented by the expression X Æ Y, where X and Y are two disjoint itemsets and X Õ I and

Y Õ I, and X « Y = f.

Summary

C
a
se

 St
u

dy

(Continued)

450 Data Analytics using R

 d Rule evaluation metrics is used to measure the strength of an association rule. Support and Confi-

dence are major types of rule evaluation metrics.
 d Support is a metric that measures the usefulness of a rule by using the minimum support threshold.

The metric measures the number of events that have such itemsets that match both sides of the

implications of the association rules.
 d The Support or sup of a rule is calculated using (X » Y).count/n.
 d Confidence is a metric that measures the certainty of a rule by using a threshold. It measures how

often an event itemset that matches the left side of an implication in the association rule also

matches the right side.
 d The Confidence or conf of a rule is calculated using (X » Y).count / X.count.
 d A Brute-force approach computes the support and confidence for every possible rule for mining.
 d A two-step approach uses two steps for calculating the frequent itemsets and rules where the first

step is ‘frequent itemset generation’ and the second step is ‘rule generation’.
 d The frequent itemset generation finds out the itemsets that satisfy the minsup threshold. These

itemsets are called the frequent itemsets. If a dataset contains k items then it can generate upto

2
k
 – 1 frequent itemsets.

 d Rule generation extracts all the high-confidence rules from each frequent itemset obtained in the

first step and each rule is a binary partitioning of a frequent itemset.
 d An Apriori principle is the best strategy and an effective method to generate the frequent itemset. Ac-

cording to the Apriori principle, ‘If an itemset is frequent, then all of its subsets must also be frequent’.

 d Apriori algorithm is a breadth-first algorithm that counts transactions by following the two-step ap-

proach. It finds out the frequent itemset, maximal frequent itemset, and closed frequent itemset.
 d The candidate gen() function is used in the Apriori algorithm that contains two steps, Join and Pruning.
 d The arules package provides the required infrastructure that creates and manipulates the input da-

taset for any type of mining algorithms. It also provides features that analyse the resulting itemsets

and association rules.
 d A binary incidence matrix is a type of sparse matrix that contains only two values 0 and 1 or true

and false.
 d The arules package provides a class “itemMatrix” that efficiently represents the binary incidence

matrix that contains the itemsets and items.
 d The itemFrequency() function of the package “arules” returns the frequency or support of

single items or all single items of an object of the itemMatrix.
 d A hash tree is a type of data structure that stores values in key-value pairs and a type of tree where

every internal node contains the hash values.
 d A transaction dataset is a collection of transactions where each transaction is stored in the tuple

form such as < transaction ID, item ID, …>.
 d The arules package provides a class, “transactions” that represents transaction data of the associa-

tion rules. It is an extension of the itemMatrix class.
 d The “itemsets” and “rules” are classes. The “itemsets” class is used for defining the frequent itemsets

of their closed or maximal subsets and “rules” class is used for association rules.
 d The summary(), length(), sort(), inspect(), match(), items(), and union() are

some of R commands used in association rules mining.
 d The package “arules” provides a function apriori() that performs the association rule mining

using Apriori algorithm. The function mines the frequent itemsets, association rules, and associa-

tion hyperedges.

(Continued)

Association Rules 451

 d The package “arules” provides another function eclat() that performs the association rule mining

and generates the frequent itemsets. It follows the Eclat algorithm and uses the simple intersection

operations for frequent itemsets.
 d The package “arules” provides a function support() that determines the support for a set of

given set of items as an itemMatrix.
 d The package “arules” provides a function ruleInduction() that induce all rules that are gener-

ated by given itemsets from a transaction dataset.
 d Sampling is a process that takes the samples from the original databases for mining of large data.
 d The package “arules” provides a function sample() that generates random samples and permuta-

tions from a set of transactions or associations.
 d The package “arules” provides a function random.transactions() that simulates random

transactions datasets. It returns the object of the class “transactions”.
 d A subset contains some parts of the set and a superset contains all the sets.
 d A maximal itemset is an itemset that has no proper superset of the itemset in the set of itemsets.
 d A closed itemset is an itemset that has own closure and does not have any superset.
 d The package “arules” provides a function interestMeasure() that returns different types of

interesting features from an existing set of itemsets or rules.
 d Support, Confidence, lift, improvement, Certainty, Leverage, gini, and cross-support ratio are some

measuring features for the set of itemsets and rules.
 d The package “arules” provides a function dissimilarity() that calculates and returns the

distances for binary data that can be either a matrix, transactions, or associations.
 d The affinity, Euclidean, Pearson, Jaccard, cosine, dice, and phi are few methods used in dissimi-

larity() function.

 Ke y Te r m s

 d Apriori algorithm: Apriori algorithm is a
breadth-first algorithm that counts transac-
tions by following the two-step approach. It
finds out the frequent itemset, maximal fre-
quent itemset, and closed frequent itemset.

 d Apriori principle: An Apriori principle is
the best strategy and an effective method
to generate the frequent itemset.

 d arules: arules is a package of R language
used for association rules mining.

 d Association rules: An association rule is an
implication form of the expression X Æ Y
where X and Y are two disjoint itemsets and
X Õ I and Y Õ I, and X « Y = f.

 d Binary incidence matrix: A binary incidence
matrix is a type of sparse matrix that con-

tains only two values 0 and 1 or true and
false.

 d Brute-force approach: A Brute-force ap-
proach computes the support and confi-
dence for every possible rule for mining the
association rules.

 d Confidence: Confidence is a metric that
measures the certainty of a rule by using
threshold.

 d Data mining: Data mining is the process for
finding unknown and hidden patterns from
a large amount of data.

 d Frequent itemsets: An itemset containing
items that often occur together and are as-
sociated with each other are called frequent
itemsets.

452 Data Analytics using R

 mu l T i p l e Ch o i C e Qu e s T i o n s

 1. From the given options, which of the following is a rule evaluation metric?

 (a) Frequent itemsets (b) Support

 (c) lift (d) None of the above

 2. From the given options, which of the following metrics measures the certainty of a rule by

using threshold?

 (a) support (b) confidence

 (c) lift (d) cross-ratio

 3. How many numbers of frequent itemsets are possible of a dataset that contains k items?

 (a) 2k – 1 (b) 2k

 (c) 2k + 1 (d) 2k+1

 4. From the given options, which of the following packages provides the functionality for

association rules?

 (a) arules() (b) ts()

 (c) stat() (d) matrix()

 5. From the given options, which of the following functions combines the item matrices?

 (a) image() (b) combine()

 (c) c() (d) dim()

 6. From the given options, which of the following functions returns the dimension of an item

matrix?

 (a) dimnames() (b) combine()

 (c) c() (d) dim()

 7. From the given options, which of the following functions returns the frequency of itemset?

 (a) itemFrequency() (b) c()

 (c) frequency() (d) dim()

 d Frequent itemset generation: The frequent
itemset generation finds out the itemsets
that satisfy the minsup threshold. These
itemsets are called the frequent itemsets.

 d Itemset: An Itemset is a collection of dif-
ferent items. For example, {pen, pencil,
notebook} is an itemset.

 d Rule evaluation metric: Rule evaluation
metric measures the strength of an associa-
tion rule.

 d Rule generation: Rule generation extracts
all the high-confidence rules from each
frequent itemset.

 d Support: Support is a metric that measures
the usefulness of a rule using the minimum
support threshold.

 d Transactions: Transactions or a transaction
dataset is a collection of transactions where
each transaction is stored in tuple form such
as < transaction ID, item ID, …>.

Association Rules 453

 8. From the given options, which of the following functions displays the individual association
of the itemsets or rules?

 (a) image() (b) inspect()

 (c) items() (d) dim()

 9. From the given options, which of the following functions returns a set of items of the
itemsets?

 (a) image() (b) inspect()

 (c) items() (d) dim()

 10. From the given options, which of the following functions is used for calculating
dissimilarities?

 (a) interestMeasure() (b) random.transactions()

 (c) dissimilarity() (d) sample()

 11. From the given options, which of the following functions is used for measuring features of
a set of items and rules?

 (a) interestMeasure() (b) random.transactions()

 (c) dissimilarity() (d) sample()

 12. From the given options, which of the following functions is used for generating samples?

 (a) interestMeasure() (b) random.transactions()

 (c) dissimilarity() (d) sample()

 13. From the given options, which of the following functions is used for creating random
transactions?

 (a) interestMeasure() (b) random.transactions()

 (c) dissimilarity() (d) sample()

 14. From the given options, which of the following is different from others?

 (a) support (b) matching

 (c) confidence (d) improvement

 15. From the given options, which of the following is different from others?

 (a) affinity (b) Pearson

 (c) lift (d) dice

 sh o r T Qu e s T i o n s

 1. Briefly discuss the following with examples:
 (i) Association rule mining with its applications (ii) Frequent itemsets (iii) Association rules

(iv) support (v) Confidence (vi) Brute-force approach (vii) Two-step approach (viii) Arules
package

 2. Write pseudocode of the Apriori algorithm.

 3. What is the difference between “itemMatrix” and “transaction” class?

454 Data Analytics using R

 lo n g Qu e s T i o n s

 1. Explain the functions of candidate gen().

 2. Explain the methods of the “itemMatrix” and “transaction” classes.

 3. Explain the itemFrequency() function with syntax and example.

 4. Explain the support() function with syntax and example.

 5. Explain the ruleInduction() function with syntax and example.

 6. Explain the random.transactions() function with syntax and example.

 7. Explain the interestMeasure() function with syntax and example.

 8. Create a binary incidence matrix for a set of itemsets and convert it into transactions.

 9. Create a random sample transaction dataset and implement the apriori() function.

 10. Explain the measuring features for the set of itemsets and rules.

 pr a C T i C a l ex e r C i s e

 1. A retailer, “BigDailies” wants to cash in on their customers’ buying patterns. They want to
be able to enact targeted marketing campaigns for specific segments of customers. They
wish to have a good inventory management system in place. They wish to learn about
which items/products should be stocked up to provide ease of buying to customers, in
other words enhance customer satisfaction.

 Where should they start? They have had some internal discussions with their sales
and IT staff. The IT staff has been instructed to design an application that can house each
customer’s transaction data. They wish to have it recorded every single day for every single
customer and for every transaction made. They decide to meet after a quarter (3 months) to
see if there is some buying pattern.

 Presented below is a subset of the transaction data collected over a period of three
months:

Table Sample transactional data set

Transaction ID Transaction details

1 {bread, milk}

2 {bread, milk, eggs, diapers, beer}

3 {bread, milk, beer, diapers}

4 {diapers, beer}

5 {milk, bread, diapers, eggs}

6 {milk, bread, diapers, beer}

Association Rules 455

 Problem statement: Determine the association rules and also find out the support and
confidence of each association rule. Implement association rule mining in R (create binary
incidence matrix of the given itemsets, create itemMatrix, determine item frequencies,
use apriori() function with support of 0.02 and confidence of 0.5, use eclat() function with
support of 0.02).

Solution:

 The above table presents an interesting methodology called association analysis to discover
interesting relationship in large data sets. The unveiled relationship can be presented in the
form of association rules or sets of frequent items. For example, the following rule can be
extracted from the above data set:

{Diapers} Æ {Beer}

 It is pretty obvious from the above rule that a strong relationship exists between the sale of
diapers and beer. Customers who pick up a pack or two of diapers also happen to pick a
few cans of beers. Retailers can leverage this sort of rules to partake of the opportunity to
cross-sale products to their customers.

 Challenges that need to be addressed while progressing with association rule mining:

 d The larger the data set, the better would be the analysis results. However, working with
large transactional datasets can be and is usually computationally expensive.

 d Sometimes few of the discovered patterns could be spurious or misleading as it could
have happened purely by chance or fluke.

 Binary representation

 Let us look at how we can represent the sample data set in the Table below in binary format.

Transaction ID Bread Milk Eggs Diapers Beer

1 1 1 0 0 0

2 1 1 1 1 1

3 1 1 0 1 1

4 0 0 0 1 1

5 1 1 1 1 0

6 1 1 0 1 1

 Explanation of the above binary representation:

 Each row of the above table represents a transaction identified by a “Transaction ID”. An
item (such as Bread, Milk, Eggs, Diapers and Beer) is represented by a binary variable. A
value of 1 denotes the presence of the item for the said transaction. A value of zero denotes
the absence of the item from the said transaction. Example: for transaction ID = 1, Bread
and milk are present and are depicted by 1. Eggs, Diapers and Beer are absent from the
transaction and therefore denoted by zero. The presence of the item is more important than
its absence, and for the same reason an item is called as an asymmetric variable.

456 Data Analytics using R

 Itemset and Support Count

 Let I = {i1, i2, i3 …. in} be the set of all items in the market basket data set.

 Let T = {t1, t2, t3 …. tn} be the set of all transactions.

 Itemset: Each transaction, ti contains a subset of items from set I. A collection of zero or
more items is called an itemset. If an itemset contains k elements, it is called a k-item itemset.
Example: the itemset {Bread, Milk, Diapers, Beer} is called a 4-item itemset.

 Transaction width: Transaction width is defined as the number of items present in the
transaction. A transaction tj contains an itemset X, if X is a subset of tj. Example transaction
t6 contains the itemset {bread, diapers} but does not contain the itemset {bread, eggs}.

 Item support count: Support is an indication of how frequently the items appear in
the dataset. Item support count is defined by the number of transactions that contain a
particular itemset.

 Item Support Count can be expressed as follows: No. of transactions that contain a particular
itemset.

 Example: Support Count for {Diapers, Beer} is 4.

 Mathematically, the support count s(X), for an item set X, can be expressed as:

s(X) = |{ti|X Õ ti, ti Œ T}|,

 The symbol |-| denote the number of elements in the set.

 Association rule: It is an implication rule of the form X Æ Y where X and Y are disjoint
items, i.e. X « Y = f. To measure the strength of an association rule, we rely on two factors,
the support and the confidence.

 Support for an itemset is defined as:

Support (x1, x2…) =
No. of transactions containing (x1, x2…)

Total number of transactions (n)

Support for X Æ Y =
No. of transactions containing x1, x2 … and y1, y2 …

n (total number of transactions)

 Example:

 Support for {Milk, Diapers} Æ {Beer} as per the dataset in Figure 1, is as follows:

 Support for {Milk, Diapers} Æ {Beer} = 3 /6 = 0.5.

 Confidence of the rule is:

Confidence of ((x1, x2,…) implies (y1, y2,…) =
Support for (x1, x2,…) implies (y1, y2, …)

Support for (x1, x2,...)

Confidence of {Milk, Diapers} Æ {Beer} =
Support for {Milk, Diapers} Æ {Beer}

Support for {Milk, Diapers}

 Substituting, = 0.5/Support for {Milk, Diapers}

 = 0.5/0.67

 = 0.7462

Association Rules 457

 Implementation in R

 Step 1: Creating binary incidence matrix for the given itemsets

> sm <- matrix (c(1,1,0,0,0,1,1,1,1,1,1,1,0,1,1,0,0,0,1,1,1,1,1,1

,0,1,1,0,1,1), ncol=6)

> sm

 [,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 1 1 0 1 1

[2,] 1 1 1 0 1 1

[3,] 0 1 0 0 1 0

[4,] 0 1 1 1 1 1

[5,] 0 1 1 1 0 1

 Step 2: Setting the dimension names for items

> dimnames(sm) <- list(c(Bread”, “Milk”, “Eggs”, “Diapers”,

“Beer”), paste(Itemset”, c(1:6), sep =“”))

> sm

 Itemset1 Itemset2 Itemset3 Itemset4 Itemset5 Itemset6

Bread 1 1 1 0 1 1

Milk 1 1 1 0 1 1

Eggs 0 1 0 0 1 0

Diapers 0 1 1 1 1 1

Beer 0 1 1 1 0 1

 Step 3: Converting to itemMatrix

> IM <- as(sm, “itemMatrix”)

> IM

itemMatrix in sparse format with

 5 rows (elements/transactions) and

 6 columns (items)

 Step 4: Finding the number of elements (rows) in the itemMatrix

> length(IM)

[1] 5

 Step 5: Finding first 5 elements (rows) of the itemMatrix as list

> as(IM[1:5], “list”)

$Bread

[1] “Itemset1” “Itemset2” “Itemset3” “Itemset5” “Itemset6”

$Milk

[1] “Itemset1” “Itemset2” “Itemset3” “Itemset5” “Itemset6”

$Eggs

[1] “Itemset2” “Itemset5”

$Diapers

[1] “Itemset2” “Itemset3” “Itemset4” “Itemset5” “Itemset6”

$Beer

[1] “Itemset2” “Itemset3” “Itemset4” “Itemset6”

458 Data Analytics using R

 Step 6: Generating transpose

> as(IM[1:5], “ngCMatrix”)

6 x 5 sparse Matrix of class “ngCMatrix”

 Bread Milk Eggs Diapers Beer

Itemset1 | | . . .

Itemset2 | | | | |

Itemset3 | | . | |

Itemset4 . . . | |

Itemset5 | | | | .

Itemset6 | | . | |

 Step 7: Inspecting an itemMatrix

> inspect (IM)

 items

[1] {Itemset1, Itemset2, Itemset3, Itemset5, Itemset6}

[2] {Itemset1, Itemset2, Itemset3, Itemset5, Itemset6}

[3] {Itemset2, Itemset5}

[4] {Itemset2, Itemset3, Itemset4, Itemset5, Itemset6}

[5] {Itemset2, Itemset3, Itemset4, Itemset6}

 Step 8: Generating item frequency or support

> itemFrequency(IM, type=“absolute”)

 Itemset1 Itemset2 Itemset3 Itemset4 Itemset5 Itemset6

 2 5 4 2 4 4

 > itemFrequency(IM, type=“relative”)

 Itemset1 Itemset2 Itemset3 Itemset4 Itemset5 Itemset6

 0.4 1.0 0.8 0.4 0.8 0.8

 Step 9: Creating transactions using matrix

> TM <- as(sm, “transactions”)

> TM

transactions in sparse format with

 5 transactions (rows) and

 6 items (columns)

 Step 10: Displaying the summary of transactions

> summary(TM)

transactions as itemMatrix in sparse format with

 5 rows (elements/itemsets/transactions) and

 6 columns (items) and a density of 0.7

most frequent items:

 Itemset2 Itemset3 Itemset5 Itemset6 Itemset1 (Other)

 5 4 4 4 2 2

element (itemset/transaction) length distribution:

sizes

2 4 5

1 1 3

Association Rules 459

 Min. 1st Qu. Median Mean 3
rd
 Qu. Max.

 2.0 4.0 5.0 4.2 5.0 5.0

includes extended item information – examples:

 labels

1 Itemset1

2 Itemset2

3 Itemset3

includes extended transaction information – examples:

 transactionID

1 Bread

2 Milk

3 Eggs

 Step 11: Use of apriori() function to implement the Apriori algorithm

> am <- apriori(sm)

Apriori

Parameter specifications:

 confidence minval smax arem aval originalSupport maxtime support

 0.8 0.1 1 none FALSE TRUE 5 0.1

 minlen maxlen target ext

 1 10 rules FALSE

Algorithmic control:

 filter tree heap memopt load sort verbose

 0.1 TRUE TRUE FALSE TRUE 2 TRUE

Absolute minimum support count: 0

set item appearances …[0 item(s)] done [0.00s].

set transaction ..[6 item(s), 5 transaction(s)] done [0.00s].

sorting and recoding items … [6 item(s)] done [0.00s].

creating transaction tree … done [0.00s].

checking subsets of size 1 2 3 4 5 done [0.00s].

writing … [78 rule(s)] done [0.00s].

creating S4 object … done [0.00s].

> am

set of 78 rules

 Step 12: Summary of apriori() function

> summary(am)

set of 78 rules

rule length distribution (lhs + rhs):sizes

1 2 3 4 5

4 15 28 24 7

460 Data Analytics using R

 Min. 1st Qu. Median Mean 3rd Qu. Max

 1.000 3.000 3.000 3.192 4.000 5.000

summary of qualtity measures:

 support confidence lift

Min. :0.2000 Min. :0.8000 Min. :1.000

1st Qu. :0.4000 1st Qu. :1.0000 1st Qu. :1.000

Median :0.4000 Median :1.0000 Median :1.250

Mean :0.4667 Mean :0.9846 Mean :1.154

3rd Qu. :0.6000 3rd Qu. :1.0000 3rd Qu. :1.250

Max. :1.0000 Max. :1.0000 Max. :1.250

mining info:

 data ntransactions support confidence

 sm 5 0.1 0.8

 Step 13: Use of apriori function with a support of 0.02 and a confidence of 0.5

> am <- apriori(sm, parameter=list(supp=0.02, conf=0.5))

Apriori

Parameter specification:

 confidence minval smax arem aval originalSupport maxtime support

 0.5 0.1 1 none FALSE TRUE 5 0.02

 minlen maxlen target ext

 1 10 rules FALSE

Algorithmic control:

 filter tree heap memopt load sort verbose

 0.1 TRUE TRUE FALSE TRUE 2 TRUE

Absolute minimum support count: 0

set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[6 item(s), 5 transaction(s)] done [0.00s].

sorting and recoding items ... [6 item(s)] done [0.00s].

creating transaction tree … done [0.00s].

checking subsets of size 1 2 3 4 5 done [0.00s].

writing … [116 rule(s)] done [0.00s].

creating S4 object … done [0.00s].

 Step 14: Summary of apriori() function with support = 0.02 and confidence = 0.5

> summary(am)

set of 116 rules

rule length distribution (lhs + rhs):sizes

1 2 3 4 5

4 25 45 33 9

Association Rules 461

 Min. 1st Qu. Median Mean 3rd Qu. Max

 1.000 2.750 3.000 3.155 4.000 5.000

summary of quality measures:

 support confidence lift

Min. :0.2000 Min. :0.500 Min. :0.625

1st Qu. :0.4000 1st Qu. :0.750 1st Qu. :1.000

Median :0.4000 Median :1.000 Median :1.250

Mean :0.4483 Mean :0.856 Mean :1.137

3rd Qu. :0.6000 3rd Qu. :1.000 3rd Qu. :1.250

Max. :1.0000 Max. :1.000 Max. :1.667

mining info:

 data ntransactions support confidence

 sm 5 0.02 0.5

 Step 15: Using the eclat() function to generate frequent itemsets.

> em <- eclat(sm, parameter=list(supp=0.02))
Eclat

Parameter specification:
 tidLists support minlen maxlen target ext
 FALSE 0.02 1 10 frequent itemsets FALSE

Algorithmic control:
sparse sort verbose
 7 -2 TRUE

Absolute minimum support count: 0

Warning in eclat(sm, parameter = list(supp = 0.02))
 You chose a very low absolute support count of 0. You might run
out of memory! Increase minimum support.

create itemset ...
set transaction ...[6 item(s), 5 transaction(s)] done [0.00s].
sorting and recoding items … [6 item(s)] done [0.00s].
creating bit matrix … [6 row(s), 5 column(s)] done [0.00s].
writing ... [47 set(s)] done [0.00s].
Creating S4 object ... done [0.00s].

 Step 16: Summary of eclat() function.

> summary(em)
set of 47 itemsets

most frequent items:
 Itemset2 Itemset3 Itemset5 Itemset6 Itemset1 (Other)
 24 24 24 24 16 16

element (itemset/transaction) length distribution:sizes
 1 2 3 4 5

 6 14 16 9 2

462 Data Analytics using R

 Min. 1st Qu. Median Mean 3rd Qu. Max
 1.000 2.000 3.000 2.723 3.000 5.000

summary of qualtity measures:
 support
Min. : 0.2000
1st Qu. : 0.4000
Median : 0.4000
Mean : 0.4723
3rd Qu. : 0.6000
Max. : 1.0000

includes transaction ID lists: FALSE

mining info:
 data ntransactions support
 sm 5 0.02

Answers to MCQs:

 1. (a) 2. (b) 3. (a) 4. (a) 5. (c) 6. (d) 7. (a)

 8. (b) 9. (c) 10. (c) 11. (a) 12. (d) 13. (b) 14. (b)

 15. (c)

L E A R N I N G O U T C O M E

At the end of this chapter, you will be able to:

 c Implement text mining in R

 c Create a corpus and use transformation functions to remove punctuation marks,
stopwords, whitespaces, numbers, etc., from it

 c Create a document term matrix of the corpus and find frequent terms

11.1 intRoDuCtion

In recent years, text mining has become immensely popular in the research field. It
is used for extracting interesting and non-trivial information and knowledge from
different data sources. Text mining is also known as intelligent text analysis, text data
mining or knowledge-discovery in text (KDT). Data mining, natural language processing
(NLP), machine learning, information retrieval (IR), sentiment analysis, and knowledge
management are some of the popular techniques used in text mining. Most researchers use
text mining for their research work. Business analytics also uses text mining. Organisations
today, have huge mounds of data and they need an efficient technique for extracting useful
information from such huge volume of data. Text mining helps organisations do the same.

Pre-processing (categorisation and extraction) of document collections, storage of
intermediate representations and analysis using different techniques, such as clustering,
associations rules, trend analysis, visualisation of output, etc., are some necessary
operations in text mining. Figure 11.1 describes the sequential operations in a text

Text Mining

Chapter 11

464 Data Analytics using R

mining process. It follows the sequence of text pre-processing (syntactic/semantic text
analysis), feature generation, feature selection (simple counting–statistics), text/data
mining (supervised/unsupervised learning), and analysing results (making sense of data
– interpretation, visualisation).

Text preprocessing

(Semantic text analysis)

Feature generation

(Bag of words)

Feature selection

(simple counting)

Text/Data mining

(Classification and Clustering)

Analyzing Results

(Mapping and Visualisation)

Figure 11.1 Text mining process

In the following subsections, you will learn about the basic concept of text mining.

11.2 Definition of text Mining

Text mining extracts useful information from unstructured data. In unstructured data,
information does not have any specific format and it contains symbols, characters, or
numbers. For example, comments used on Facebook, tweets on Twitter, opinion or reviews
of any products or services are few examples of unstructured data. Text mining can be
used to extract useful knowledge, discover interesting patterns from unstructured data
and thus support decision making.

Text mining is useful to:
 d social scientists - to learn about shifting public opinion;
 d marketers - to learn about consumers’ opinions of products and services; and
 d it has even been used to predict the direction of stock markets.

Text mining is a knowledge-intensive process where a user interacts with some text
document collections using a set of analysis tools. Just like in data mining, text mining also
helps to extract useful information from data sources after identification and exploration
of text patterns. Here are some key elements of text mining.

Text Mining 465

11.2.1 Document Collection

Document collection is a group of text-based documents. Document collection contains
from thousand to tens of millions of documents. It can either be static or dynamic. A static
document collection is a document collection where initial complement of documents
remains unchanged. A dynamic document collection is a document collection where
documents change or are updated over time.

11.2.2 Document

A document is a group of discrete textual data within a collection. Business reports, e-mails,
legal memorandums, research papers, press releases, and manuscripts are documents.
There are two kinds of document—free format or semi-structured. A free format or weakly
structured document is a type of document that follows some typography, layout, and
makeup indicators. For example, research paper, press releases are few examples of free
format document. A semi-structured document is a type of document that uses field-type
metadata, such as HTML web pages, email, etc.

11.2.3 Document Features

Every document has some features or attributes that define it. The characters, words,
terms, and concepts are some common features of a document. These features have been
explained briefly below.

 d Characters are the most important features of a document. Characters create the
document. It can be individual component letter, numeric characters, special char-
acters, etc.; spaces are the basic blocks of a document.

 d Words are the second basic block element of a document. A word is a collection of
characters. It can be phrases, multi-word hyphenates, multiword expressions, etc.

 d Terms are single words in a document. It can also have multiword phrases that are
directly selected from native document.

 d Concept is a document feature generated through manual statistical method, rule-
based, or hybrid categorisation methods. Any word, phrase, or expression that
identifies the document is called the concept identifier, such as keyword.

11.2.4 Domain and Background Knowledge

In text mining, there are two types of knowledge—domain and background knowledge—
which are available for presenting data. A domain is a specialised area of interest for
which ontologies, taxonomies, and lexicons are developed. Domain includes broad
areas of subject matters such as finance, international law, biology, material science, etc.
Knowledge used in these domains is called domain knowledge. Background knowledge
is an extension of the domain knowledge. It is used in pre-processing operations of the
text mining system.

466 Data Analytics using R

11.3 A few ChAllenges in text Mining

 d Text mining deals with large datasets and encounters the usual challenges with
large datasets

 d Noisy data - Noisy data is often used as a synonym for corrupt data. It is data that
has a considerable amount of additional meaningless information. It is data that is
not easily comprehensible or understood by machines.

 d Word Ambiguity and Context Sensitivity – Ambiguous words lead to vagueness and
confusion. Context sensitiveness connotes “depending on context” or “depending
on circumstances”.

For example, Apple (the company) or apple (the fruit)
 d Complex and subtle relationship between concepts in text.

For example, “AOL merges with Time-Warner” “Time-Warner is bought by AOL”
 d Multilingual

11.4 text Mining vs. DAtA Mining

Differences Data Mining Text Mining

Definition Discovery of knowledge from
structured data, i.e. data housed
in structured databases or data
warehouses

Discovery of knowledge from
unstructured data, i.e. articles, website
text, blog posts, journals, emails,
memos, customer correspondence, etc.

Data representation Straight forward Complex

Methods Data analysis, machine learning,
statistics, neural networks

Data mining, NLP (natural language
processing), information retrieval

11.5 text Mining in R

Text mining also plays a major role in business analytics. R language provides a package
“tm” for text mining. This text-mining package, “tm” provides a framework for text mining
application within R. The main framework or structure for managing the documents in
R language is Corpus.

Corpus represents a collection of text documents in R. It is an abstract concept with
different implementations. It creates the corpora object that is held in the memory. Another
class of the package is VCorpus (Volatile Corpus) that is a virtual base class. The VCorpus
creates a volatile corpora, i.e. when the R object is destroyed, the whole corpus is lost.
Here is a basic syntax of the VCorpus function:

VCorpus(x, readerControl, …) or as.VCorpus(x)

where,

“x” argument contains a source object or a R object for as.VCorpus(x); “readerControl”
is an optional argument that contains a named list of control parameters for reading in

Text Mining 467

content from “x”. Here one parameter is a reader that is a function for reading in and
processing the format delivered by “x”. Another parameter is language that contains a
character giving the type of language. By default it is “en”; the dots, “…” define the other
optional arguments of the function.

In the example given below, a number of text files (“Demo2.txt”, “Demo3.txt”,
“DemoTM.txt”, “Freqdemo.txt”) are stored in a folder “tm” in “C:” drive. The “fname”
object stores these files using the function file.path(“C:”, “tm”). The dir(fname) displays
the names of all files in the folder. Now Corpus or VCorpus function represents these
documents into an object, “files”. Here “files” is called a Corpus. It shows that there are 4
documents in the folder “tm”. The summary() function shows the name of each document
in the folder (Figure 11.2).

Figure 11.2 Creating Corpus or documents in R

468 Data Analytics using R

In Figure 11.3, the VCorpus() function creates documents of a vector “Vfile” that

contains three arbitrary sentences (Figure 11.3).

Figure 11.3 Creating Corpus of the vector “Vfile”

In the example below, the inspect() function inspects the documents “files” created

through the VCorpus() function. Figure 11.4 shows that there are four documents in the

corpus “files”. Along with this, the function returns the number of characters that are

present in each document.

In text mining, terms are the features of a document. For implementing any operation,

it is better to convert the documents into a matrix form. The package “tm” provides some

functions that can identify these features and convert them into matrices. The package

provides two functions, “TermDocumentMatrix” and “DocumentTermMatrix” that create

a term-document matrix and document-term matrix from a corpus respectively. Here is

a basic syntax of both the functions:

TermDocumentMatrix(x, control)

Text Mining 469

or
DocumentTermMatrix(x, control)

Figure 11.4 Inspection of the documents using inspect() function

Where,

“x” argument contains a Corpus; “control” is an optional argument that contains a

named list of control parameters.

In the example below, the TermDocumentMatrix() function creates a term-document

matrix “tdmfiles” of the corpus “files” (Figure 11.5). The Docs() function returns

the number of documents of the corpus, nTerms() function returns the number of

470 Data Analytics using R

terms of the corpus, and Terms() function returns the names of each term of the cor-

pus. In Figure 11.6, the inspect() function does an inspection on the object of the

TermDocumentMatrix().

Figure 11.5 Creating a term document matrix of a Corpus “files”

In Figure 11.7, the DocumentTermMatrix() function creates a document-term matrix
“dtmf” of the corpus “Dc”. The inspect() function does an inspection on the object
of the DocumentTermMatrix().

Text Mining 471

Figure 11.6 Inspection of the term document matrix of a Corpus “files”

Figure 11.7 Creating a document term matrix of a Corpus “Dc”

472 Data Analytics using R

Additional Examples

Example 1

Objective: Create a corpus of the documents stored in folder “tm” in the “D:” drive.
Create a document term matrix. Determine the number of documents, frequency of the
terms in the documents, the terms in the documents, etc.

Step 1: Store a set of text files, “a1.txt”, “a2.txt”, “a3.txt” in a folder “tm” in the “D:” drive.
Read the path of the files “D:/tm” into variable, “fname”. The following are the contents
in the files, “a1.txt”, “a2.txt” and “a3.txt”.

a1.txt
Data Analysis using R

a2.txt
Statistical Data Analysis

a3.txt
Data Analysis and Text Mining

> fname <- file.path(“D:”, “tm”)

Step 2: Print out the value of the variable, “fname”
> fname

[1] “D:/tm”

Step 3: List out the names of the files stored in the path given by variable, “fname”. It
displays the names of the text files stored in “D:/tm”. The dir() function lists the files
stored in the directory/folder.

> dir(fname)

[1] “a1.txt” “a2.txt” “a3.txt”

Step 4: Create a corpus, “files” using “Corpus”. Corpus are collections of documents
containing (natural language) text.

> files <- Corpus(DirSource(fname))

Step 5: Print out the contents of the corpus, “files”. A corpus has two types of metadata.
Corpus metadata contains corpus specific metadata in form of tag-value pairs. Document level
metadata contains document specific metadata but is stored in the corpus as a data frame.

> files

<<SimpleCorpus>>

Metadata: corpus specific: 1, document level (indexed): 0

Content: documents: 3

Step 6: Create a volatile corpus, “files” using “VCorpus”. A volatile corpus is fully kept in
memory and thus all changes only affect the corresponding R object.

> files <- VCorpus(DirSource(fname))

Text Mining 473

Step 7: Print out the contents of the corpus, “files”.
> files
<<VCorpus>>
Metadata: corpus specific: 0, document level (indexed): 0
Content: documents: 3

Step 8: List the summary as given by the summary() function.

> summary(files)
Length Class Mode
a1.txt 2 PlainTextDocument list
a2.txt 2 PlainTextDocument list
a3.txt 2 PlainTextDocument list

Step 9: Inspect the contents of the corpus, “files”. The inspect() function display detailed
information on a corpus, a term-document matrix, or a text document.

> inspect(files)
<<VCorpus>>
Metadata: corpus specific: 0, document level (indexed): 0
Content: documents: 3

[[1]]
<<PlainTextDocument>>
Metadata: 7
Content: chars: 21

[[2]]
<<PlainTextDocument>>
Metadata: 7
Content: chars: 25

[[3]]
<<PlainTextDocument>>
Metadata: 7
Content: chars: 29

Step 10: Create a term-document matrix, “tdmfiles” using the “TermDocumentMatrix”
function.

> tdmfiles <- TermDocumentMatrix(files)

Step 11: Print out the contents of the term document matrix, “tdmfiles”

> Docs(tdmfiles)

[1] “a1.txt” “a2.txt” “a3.txt”

Step 12: Print the number of documents contained in the term document matrix, “tdmfiles”.

> nDocs(tdmfiles)

[1] 3

Step 13: Print the number of terms in the documents contained in the term document
matrix, “tdmfiles”.

474 Data Analytics using R

> nTerms(tdmfiles)
[1] 7

Step 14: Print the terms contained in the documents of the term document matrix,
“tdmfiles”.

> Terms(tdmfiles)

[1] “analysis” “and” “data” mining” “statistical”

[6] “text” “using”

Step 15: Inspect the term document matrix, “tdmfiles”.
> inspect(tdmfiles)
<<TermDocumentMatrix (terms: 7, documents: 3)>>
Non-/sparse entries : 11/10
Sparsity : 48%
Maximal term length : 11
Weighting : term frequency (tf)
Sample :

Docs
Terms a1.txt a2.txt a3.txt
 analysis 1 1 1
 and 0 0 1
 data 1 1 1
 mining 0 0 1
 statistical 0 1 0
 text 0 0 1
 using 1 0 0

Step 16: Convert the text in the documents of the corpus, “files” to lowercase. The
tm_map() function is an interface to apply transformation functions (also denoted as
mappings) to corpora.

> Dc <- tm_map(files, tolower)
> Dc
<<VCorpus>>
Metadata: corpus specific: 0, document level (indexed): 0
Content: documents: 3
>inspect(Dc)
<<VCorpus>>
Metadata: corpus specific: 0, document level (indexed): 0
Content: documents: 3

[[1]]
[1] data analysis using r

[[2]]
[1] statistical data analysis

[[3]]
[1] data analysis and text mining

Step 17: Use the colSums() function to form row and column sums and means for numeric
arrays (or data frames).

> freq <- colSums(as.matrix(tdmfiles))

Text Mining 475

Step 18: Find out the length of “freq”.
> length(freq)

[1] 3

Step 19: Print out the contents of “freq”.
> freq

 a1.txt a2.txt a3.txt

 3 3 5

Step 20: Order the documents as per the frequency using the order() function. order
returns a permutation which rearranges its first argument into ascending or descending
order, breaking ties by further arguments.

> ord <- order(freq)

> ord

[1] 1 2 3

Step 21: Convert the term document matrix, “tdmfiles” into a matrix, “mt”.
> mt <- as.matrix(tdmfiles)

Step 22: Print out the dimensions of the matrix, “mt”. The matrix, “mt” has 7 rows and
3 columns.

> dim(mt)

[1] 7 3

Step 23: Print the contents of the matrix, “mt”.
> mt
 Docs
Terms a1.txt a2.txt a3.txt
 analysis 1 1 1
 and 0 0 1
 data 1 1 1
 mining 0 0 1
 statistical 0 1 0
 text 0 0 1
 using 1 0 0

Step 24: Write the matrix, “mt” to the file, “D:/Dtmt.csv”.

> write.csv(mt, file= “D:/Dtmt.csv”)

Step 25: Read the contents of the file, “D:/Dtmt.csv”.
> read.csv(“D:/Dtmt.csv”)

 X a1.txt a2.txt a3.txt

1 analysis 1 1 1

2 and 0 0 1

3 data 1 1 1

4 mining 0 0 1

5 statistical 0 1 0

6 text 0 0 1

7 using 1 0 0

476 Data Analytics using R

Example 2:

Objective: To add a list of custom stop words to the original list of stop words. Remove
these stop words from the file, “a1.txt” stored in folder, “tm1” in the “D:” drive.

Step 1: Read the contents of the file, “D:/Stop.txt” into a data frame, “stop”. The file “D:/
Stop.txt” has a list of custom stop words. Given below is the content of the file, “D:/Stop.
txt”.

Custom_Stop_Words
oh!
Hmm
OMG
Hehe
Dude

> stop = read.table(“D:/Stop.txt”, header = TRUE)

Step 2: Print the class of “stop” and the list of custom stop words as contained in the
data frame, “stop”.

> class(stop)

[1] “data.frame”

 Custom_Stop_Words

1 oh!

2 Hmm

3 OMG

4 Hehe

5 Dude

Step 3: Convert the “Custom_Stop_words” column of the data frame, “stop” into a vector,
“stop_vec”.

> stop_vec = as.vector(stop$Custom_Stop_Words)

Step 4: Print the class of “stop_vec”.
> class(stop_vec)

[1] “character”

Step 5: Print the contents of the vector, “stop_vec”.
> stop_vec

[1] “oh!” “Hmm” “OMG” “Hehe” “Dude”

Step 6: Store the path, “D:/tm1” into the variable, “fname”. There is one file, “a1.txt”
present in the path, “D:/tmp”. Given below is the content of the file, “a1.txt” available
in the path, “D:/tm1”.

oh! said he
there was silence and then “Hmm”
Dude that is now how it works. Hehe Hehe
OMG is that you?

> fname <- file.path(“D:”, “tm1”)

Text Mining 477

Step 7: Print out the contents of the variable, “fname”.
> fname
[1] “D:/tm1”

Step 8: Create a corpus, “files” using the function, “Corpus”.
> files <- Corpus(DirSource(fname))

Step 9: Create a document term matrix, “dtm” using the function, “DocumentTermMatrix”.
> dtm <- DocumentTermMatrix(files)

Step 10: Print out the contents of the document term matrix, “dtm”.
> dtm
<<DocumentTermMatrix (documents: 1, terms: 15)>>
Non-/sparse entries : 15/0
Sparsity : 0%
Maximal term length : 7
Weighting : term frequency (tf)

Step 11: Convert the document term matrix, “dtm” into a matrix, “dtm.mat”.
> dtm.mat <- as.matrix(dtm)

Step 12: Print the contents of the matrix, “dtm.mat”.
> dtm.mat
 Terms
Docs and dude hehe hmm how now omg said silence that then there was works
 a1.txt 1 1 2 1 1 1 1 1 1 2 1 1 1 1
 Terms
Docs you
 a1.txt 1

Step 13: Add the list of custom stop words as contained in the vector, “stop_vec” to the
original list of stop words”.

> corpus <- tm_map(files, removeWords, c(stop_vec, stopwords(‘english’)))

Step 14: Again create a document term matrix, “dtm”.
> dtm <- DocumentTermMatrix(corpus)

Step 15: Print the contents of the document term matrix, “dtm”.
> dtm
<<DocumentTermMatrix (documents: 1, terms: 4)>>
Non-/sparse entries : 4/0
Sparsity : 0%
Maximal term length : 7
Weighting : term frequency (tf)

Step 16: Convert the document term matrix, dtm” into a matrix, “dtm.mat”.
> dtm.mat <- as.matrix(dtm)

Step 17: Print out the contents of the matrix, “dtm.mat”. Notice that the words such as
“oh!”, “omg”, “hmm”, “hehe” and “dude” have been removed. These words were the
custom stop words added to the original list of stop words.

478 Data Analytics using R

> dtm.mat
 Terms
Docs now said silence works
 a1.txt 1 1 1 1

11.6 geneRAl ARChiteCtuRe of text Mining systeMs

A text mining system takes documents as input and generates patterns, associations, and
trends as an output. A simple architecture of text mining system contains only input and
output system. A more common function level architecture of text mining system follows
some sequential processing. Figure 11.8 describes a general architecture of a text mining
system that is divided into four main tasks or areas.

Pre-processing tasks

Core mining operations

Presentation layer components

and browsing functionality

Refinement techniques

End user

Figure 11.8 General architecture of the text mining system

Pre-processing tasks, core mining operations, presentation layer components and
browsing functionality, and refinement techniques are the four major tasks. A brief
introduction of each task is given as follows.

11.6.1 Pre-processing Tasks

Pre-processing task is the first task that includes different routines, processes, and
methods necessary for preparing the input data. These convert the raw text or information
collected from different data sources into a canonical format (canonicalization is a process
for converting data that has more than one possible representation into a “standard”,
“normal”, or canonical form). It is a very necessary step before applying any feature
extraction methods on the document for obtaining new patterns of output.

Text Mining 479

11.6.2 Core Mining Operations

Core mining operation is the most important task of the text mining system. The pattern
discovery, incremental knowledge discovery algorithms, or trend analysis are the major
core mining operations. The knowledge discovery generates distribution and proportions,
associations, frequent and near frequent sets.

11.6.3 Presentation Layer Components

A presentation layer component task includes some graphical interface pattern browsing
functionalities and uses some query language. These tasks use some visualisation tools
and user-facing query editors, optimisers. Along this, it also uses character-based tools
and graphical tools that create and modify the concept of the document. It also creates
and modifies the annotated profiles for specific concepts or patterns.

11.6.4 Refinement Techniques

Refinement techniques are the last processing task of the text mining system. It filters the
redundant information and concept from the given input text document to generate a
well-optimised output. Suppression, ordering, clustering, pruning, classification are few
popular refinement techniques used in the text mining system.

A typical text mining system takes some input documents, performs pre-processing
tasks on it, and extracts the features or terms. The core mining operations categorise
and label these terms and features. Now the presentation layer does some browsing for
finding patterns and associations. At last, using some refinement methods, unnecessary
or repeated information is removed.

11.7 PRe-PRoCessing of DoCuMents in R

During text mining, the documents may contain any type of raw data. Hence, it is very
necessary to perform some pre-processing tasks on such raw data. Also, pre-processing is
also the first step of text mining system. The package “tm” provides a function tm_map()
for pre-processing of documents. This is also called transformation of documents.

The function tm_map() performs transformation on the corpus by modifying the docu-
ments. Since transformation functions, such as stemDocument(), stopwords(), work on
single text document, thus it is good to use these functions with the function tm_map() that
maps to all documents in a corpus. The basic syntax of the function tm_map() is as follows:

tm_map(x, fun, …)

where,
“x” argument contains any corpus; “fun” is a transformation function that takes a

text document as input and returns a text document. Table 11.1 describes few useful
transformation functions; the dots, “…” define the arguments to the fun (transformation
function).

480 Data Analytics using R

Table 11.1 Few useful transformation functions

Transformation Function Transformation Function Description

stripWhitespace() It removes the white space from the documents

tolower() It converts the terms of the documents into the lower case

stopwords() It removes the stop words

stemDocument(x, language = “”) It performs stemming on the document. For this, it is
necessary to load the package “snowballs”

removeNumbers() It removes the numbers from the text documents

removePunctuation It removes the punctuations from the text documents

In the example below, the tm_map() function performs some pre-processing tasks such
as removing punctuations, numbers, white space, and stemming on the documents of the
corpus “Dc”. Along this, the as.matrix() function creates a matrix from the document
term matrix “dtmf”. After the pre-processing of the raw data, it writes to a file. Here
write.csv() function writes it to a file “Dtmf.csv”. Figure 11.9 shows the pre-processing
of the Corpus and Figure 11.10 displays the output of the file “Dtmf.csv” as read.csv()
function reads the file.

Figure 11.9 Pre-processing of the Corpus

Before pre-processing the document, term matrix of the corpus “Dc” shows 274 terms
and as is evident from Figure 11.10, the generated output cannot be used for generating the
frequent itemset or rules using Apriori algorithm. After the pre-processing, the document
term matrix of the corpus “Dc” shows 186 terms and in the following figure, the generated
output can easily be used in the mining methods. Hence, it is necessary again to create a
document term or term document matrix after pre-processing of the corpus (Figure 11.11).

Text Mining 481

Figure 11.10 Reading the file Dtmf.csv

Figure 11.11 Document term matrix “dtmf” of the Corpus “Dc” after the pre-processing

482 Data Analytics using R

11.8 CoRe text Mining oPeRAtions

Core text mining operations are one of the most important tasks of the text mining system.
The distribution (proportions), frequent and near frequent sets, and associations are the three
main core text-mining operations. A brief introduction of each operation is given below.

11.8.1 Distribution (Proportions)

After getting the output from the pre-processing step, the core mining operations generate
pattern and find out the distribution of data in the collections in the text mining system.
Any text mining system uses distribution for the mining of text. This operation creates
meaningful subdivisions on a single document collection for comparison purpose; it is
also called the concept selection.

Table 11.2 describes some important definitions of distribution. Let D be a set of
documents and K define a set of concepts.

Table 11.2 Few useful distributions

Distribution Name Definition Formula

Concept selection Select some sub collection of the documents
labelled with one or more given concepts.

D/K

Concept proportion The proportion of a set of documents labelled
with a particular concept.

F(D,K) = |D/K|/|D|

Conditional concept
proportion

The proportion of a set of documents labelled
with a particular concept, which is itself labelled
with another concept.

F(D, K1/K2) = f(D/K2, K1)

Concept proportion
distribution

The proportion of a set of documents labelled
with some selected concepts.

FK(D, x)

Conditional
concept proportion
distribution

The proportion of a set of documents labelled
with all the concepts in K’ that are also labelled
with concept x.

FK(D, x|K’) = FK(D/K|K’, x)

11.8.2 Frequent and Near Frequent Sets

A frequent concept set is another basic type of pattern obtained from a document collection.
A frequent concept set is a set of concepts represented in the document collection with co-
occurrences at or above a minimal support level. This minimal support level is a threshold
parameter, s, i.e. all the concepts of the frequent concept set appear together in at least s
documents. It comes originally from the association rules where Apriori algorithm finds
out the frequent itemsets.

With reference to text mining, support is the number or percentage of documents that
contains given rules. It is called co-occurrence frequency. The confidence is the percentage
of the time that the rule is true. A frequent set is a query given by the conjunction of
concepts of the frequent set. This frequent set is partially ordered and contains the pruning
property, i.e. each subset of a frequent set is a frequent set.

Text Mining 483

11.8.3 Near Frequent Concept Set

It defines an undirected relation between two frequent sets of concepts. The degree of
overlapping is used to quantify the relation. For example, according to the number of
documents including all the concepts of the two concept sets defined by the distance
function between the concepts sets.

In R language, the package “tm” provides a function findFreqTerms() that finds out
the frequent terms in a document-term or term-document matrix. The basic syntax of the
function findFreqTerms() is as follows:

function findFreqTerms(x, lowfreq = 0, highfreq = inf)

where,
“x” argument contains either term-document matrix or document-term matrix;

“lowfreq” argument contains a numeric number that defines the lower frequency bound;
“highfreq” argument contains a numeric number that defines the upper frequency bound.

In the example below, findFreqTerms() function takes a document term matrix, “dtmf”
of the corpus “Dc” and returns the frequents terms. At first, it finds the frequent terms be-
tween frequencies 5 and 15. It indicates that there are only 14 terms between these frequen-
cies. After this, it finds the frequent terms with the low frequency 10 and 1 (Figure 11.12).

Figure 11.12 Use of the findFreqTerms() function

484 Data Analytics using R

11.8.4 Associations

In the previous chapter, you learnt about the association rules generated from frequent
Itemsets, relationship between two or more items, etc. With reference to text mining, as-
sociation defines the direct relation between the concept and set of concepts. An association
rule is an implication form of the expression X Æ Y, where X and Y are two sets of features.

In terms of text documents, the association defines the relationship or association between
two or more terms. For example, in a text file if two terms, such as “text” and “mining”
come together more than once, then there is a strong association between those two terms.

In R language, the package “tm” provides a function findAssocs() that identifies the
association between two or more terms in a document-term or term-document matrix.
The basic syntax of the function findAssocs() is as follows:

function findAssocs(x, terms, corlimit)

where,
“x” argument contains either term-document matrix or document-term matrix; “terms”

argument contains a character vector that holds the terms; “corlimit” argument contains a
numeric number for the lower correlation limits of each term in the range from zero to one.

In the example below, findAssocs() function takes a document term matrix, “dtmf”
of the corpus, “Dc” and finds out the association between the two terms “frequent”
and “itemset” with the correlation limit, 0.98. It shows that the word “frequent” has an
association 0.99 with the term “itemset” (Figure 11.13).

Figure 11.13 Use of the findAssocs() function

Text Mining 485

In the figure, findAssocs() is finding an association of the term “frequent” with all
other terms of the corpus. The user can observe that there is less association with the
words “closed” and “support” (Figure 11.14).

Figure 11.14 Use of the findAssocs() function with only one term “frequent”

11.9 using BACkgRounD knowleDge foR text Mining

There are two types of knowledge—domain and background knowledge—which are
used in text mining. Domain knowledge defines a specific specialisation that includes
ontologies, lexicons, and taxonomies, etc. In literature, background knowledge is used
instead of domain knowledge. It is used in many elements of text mining system, but
mostly in pre-processing operations. It plays a major role in classification and concept
extraction methodologies, enhancing the core mining algorithms, and in search refinement
techniques.

The constraints, attribute relationship rules, and hierarchical trees are the three main
forms of background knowledge. Most data mining applications use these forms.
Background knowledge is used in pre-processing operations of text mining system. It
enhances the feature extraction, validation activities, develops meaningful, consistent, and

486 Data Analytics using R

normalised concept hierarchies. For developing meaningful constraints for knowledge
discovery operations, background knowledge is used in text mining system.

11.10 text Mining QueRy lAnguAges

A query language interacts with any application. There are few query languages available
for interaction with text mining system. This language has some objectives which are as
follows:

 d A query language permits the users to specify and execute any search algorithms
defined for text mining.

 d It also allows the users to add many constraints to a search argument regarding
their need.

 d It can perform some auxiliary filtering and redundancy operations that minimise
the pattern overabundance in the output.

The text mining system provides either user-friendly graphical user interface or direct
command line interface for accessing query languages. The KDTL (Knowledge Discovery
in Text Language) is one of the text mining query languages developed in 1996.

Check Your Understanding

 1. What are unstructured data?

 Ans: In unstructured data, information does not have any specific format and it contains

symbols, characters, or numbers. For example, comments used on Facebook, tweets

on Twitter, opinion or reviews of any products or services are few examples of

unstructured data.

 2. What is static and dynamic document collection?

 Ans: A static document collection is a document collection where initial complement

of documents remains unchanged. A dynamic document collection is a document

collection where documents change or are updated over time.

 3. What do you mean by a freeformat or weakly structured document?

 Ans: A freeformat or weakly structured document follows some typography, layout,

and makeup indicators. Research paper, press release, are examples of freeformat

document.

 4. What are the four main components or tasks of the text mining system?

 Ans: Pre-processing tasks, core mining operations, presentation layer components and

browsing functionality, and refinement techniques are the four major tasks of the text

mining system.

Text Mining 487

11.11 Mining fReQuent PAtteRns, AssoCiAtions, AnD CoRRelAtions:

BAsiC ConCePts AnD MethoDs

In this section, you will learn about the basic concepts and methods of frequent patterns,
associations, and correlations that are an important part of text mining. The main objective
behind the development of frequent mining is to identify the inherent patterns in data,
i.e. which products are often purchased by customers, what is the subsequent purchase
pattern after purchasing some products, etc.

Market basket analysis, catalogue design, web log analysis, cross-marketing, sale
campaign analysis, and DNA sequence analysis are some applications of frequent patterns.
Market basket analysis is one of the most famous applications of frequent pattern.

11.11.1 Basic Concepts

Frequent pattern is a major concept in text mining. It helps researchers in finding
associations, correlations, distributions, clustering, classification, etc., in mining tasks.
 1. Frequent pattern: A frequent pattern is a type of pattern that frequently occurs

in a dataset. These patterns can be any itemsets, subsequences, or substructures.
For example, a set of items such as petrol, car, bike, tyre, etc., appear together in
a dataset. A frequent itemset is a set of items that frequently occur together in a
dataset.

 2. Frequent sequential pattern: A frequent sequential pattern is a frequent pattern
that frequently occurs in a serial manner in a dataset. It follows the concept of
subsequence, i.e. one-by-one. For example: first a car is purchased, then petrol,
tyre, and so on are bought in a sequential manner.

 3. Frequent structured pattern: A frequent structured pattern is a frequent pattern
that is constructed from a dataset that often occurs frequently. It follows the concept
of substructure, i.e. hierarchical form, such as subgraphs, sub lattices, subtrees, etc.

11.11.2 Market Basket Analysis: A Motivating Example

Market basket analysis is a common and classic example of frequent itemset mining.
The main objective is to identify the associations and correlations among a set of items.
Market basket analysis process analyses the buying behaviours of customers for identifying
the associations and correlations between different items purchased or placed in their
“shopping baskets”. This process of identifying associations helps a business organisation
to develop an effective marketing strategy. Through this, they identify the frequent items
purchased by the customers together.

Figure 11.15 provides an example of the market basket analysis. In the figure, each
customer has his or her own basket where he or she places items as per their needs. For
example, one customer picks and places milk, bread, and cereal in the basket, another
customer places milk, bread, and butter in the basket and so on. In simple words, each
basket contains some items that are related to each other and a market analyst finds out
the frequent items from looking into these different shopping baskets.

488 Data Analytics using R

Purchases milk, bread and cereal

Customer 1

Customer 3

Customer 2

Customer n

Purchases milk, bread, and butter

Purchases milk, bread, sugar and eggs

Purchases sugar and eggs

Market Analyst
Which items are frequently purchased

together by my customers?

Figure 11.15 Market basket analysis

Here, each item can be represented by a Boolean variable that represents the presence
or absence of that item, and each basket represents a Boolean vector of values that are
assigned to these Boolean variables. These Boolean vectors are analysed for finding the
buying pattern of the customers and items that are frequently associated or purchased
together. These patterns can be represented by association rules. The Support and
Confidence are two metrics that measures a rule’s interestingness. Here is a brief
introduction of few basic terms that are used in next subsections as follow:

Let I = {I1, I2, I3… Im} = a universal set of items

 D = {T1, T2, T3… Tn} = a set of all transaction in a given time where
 each transaction Ti is a set of items such that Ti Õ I

A Õ T is an itemset and |A| = k then it is called k itemset.

Occurrence frequency = Number of transactions that contain the itemset. It is also called
the frequency, count, support count, or absolute support of an itemset.

11.11.3 Association Rule

An association rule correlates the presence of one set of items with another set of items.
An association rule is an implication form of the expression X Æ Y, where X and Y are
two disjoint itemsets and X Õ I and Y Õ I, and X « Y = f.

Support

Support is a metric that measures the usefulness of an association rule by using the
minimum support threshold. The metric measures the number of events with such itemsets
that match both sides of the implications of the association rules.

Let X Æ Y be an association rule and D be a transaction set. Let n be the number of
transactions in D. Then the support of this rule is the percentage of the transactions in D

Text Mining 489

containing X » Y or the estimation of the probability Pr(X » Y). The support of the rule
X Æ Y is calculated using the following formula:

Support or sup = (X » Y).count/n or transactions that contain X and Y/|D|

Confidence

Confidence is a metric that measures the certainty of an association rule by using threshold.
It measures how often an event itemset that matches the left side of implication in the
association rule also matches the right side.

Let X Æ Y be an association rule and D be a transaction set. Then the confidence of this
rule is the percentage of the transactions in D containing both X and Y or the estimation
of the conditional probability Pr(Y | X). The confidence of rule X Æ Y is calculated using
the following formula:

Confidence or conf = (X » Y).count/X.count

Or

Confidence or conf = transactions that contain both X and Y/transactions that contain X

Or

Confidence or conf = support(X » Y)/support(X)

11.12 fReQuent iteMsets, CloseD iteMsets AnD AssoCiAtion Rules

In this section, you will learn about frequent itemsets, closed itemsets, and association
rules.

11.12.1 Frequent Itemset

An itemset that contains items that often occur together and are associated with each
other is called frequent itemset. The support of that itemset is greater than the minimum
support threshold. A minimum support threshold defines the relative support of itemset.
Lk represents the set of frequent k itemsets.

11.12.2 Closed Itemset

An itemset is a closed itemset in a dataset if there does not exist a proper super itemset.
If Q is a closed itemset in D, then there is an itemset R such that Q Õ R Õ D, where the
Support count(Q) = Support count(R).

An itemset is a closed frequent itemset in a dataset if it is closed and frequent. For
example, if Q is a closed and also a frequent itemset in D then Q is a closed frequent
itemset. An itemset is a maximal frequent itemset in a dataset if it is frequent and there
is no super itemset on this.

490 Data Analytics using R

11.12.3 Association Rule Mining

An association rule is an implication form of the expression X Æ Y, where X and Y are
two disjoint itemsets and X Õ I and Y Õ I, and X « Y = f.

For any two itemsets X and Y, if Support (X Æ Y) is at least a minimum support
threshold and confidence (X Æ Y) is at least minimum confidence threshold, then the
association rule (X Æ Y) is called a strong association rule.

The association rules mining two steps approach for mining:
 1. The first step is “frequent itemset generation” that finds out all frequent itemsets.

Each of these itemsets will occur at least as frequently as a predetermined minimum
support count.

 2. The second step is “rule generation” that generates strong association rules from the
frequent itemsets. These rules will have to satisfy minimum support and minimum
confidence.

Check Your Understanding

 1. What is a frequent pattern?

 Ans: A frequent pattern is a type of pattern that frequently occurs in a data set. These

patterns can be any itemsets, subsequences, or substructures.

 2. What is market basket analysis?

 Ans: Market basket analysis is a common and classic example of frequent itemset mining.

The main objective is to find out the associations and correlations among a set of items.

 3. What is occurrence frequency?

 Ans: Occurrence frequency is the number of transactions in the itemset. It is also called

frequency, count, support count, or absolute support of an itemset.

11.13 fReQuent iteMsets: Mining MethoDs

In this section, you will learn about the basic mining methods of frequent patterns,
associations, and correlations used for text mining. The main aim of the mining method
is to generate frequent itemsets and association rules.

11.13.1 Apriori Algorithm: Finding Frequent Itemsets

The Apriori algorithm is seminal algorithm developed by Agarwal and Srikant in 1994 for
mining the frequent itemsets. Apriori algorithm is a breadth-first algorithm that counts
transactions by following two-step approach and follows the concept of the Apriori
principle. The Apriori principle is the best strategy and an effective method to generate

Text Mining 491

frequent itemset. According to the Apriori principle, if an itemset is frequent, then all of its
subsets must also be frequent.

The Apriori principle eliminates some candidate itemsets without counting their support
values. Elimination of candidate itemsets is called the pruning of itemsets. The Apriori
principle uses the following property of the support measure:

" X Y: (X Õ Y) -> s(X) ≥ s(Y)

This property is called the anti-monotone property of support, where support of an
itemset never exceeds the support of its subsets. The principle does not require matching
every candidate against every transaction.

The Apriori algorithm identifies the frequent itemset, maximal frequent itemset,
and closed frequent itemset. The implementation of the algorithm also generates the
association rules. In this section, the Apriori algorithm generates all frequent itemsets,
where a frequent itemset is an itemset that has transaction support greater than minsup.

For efficient itemset generation, the algorithm should be sorted in lexicographic order.
Let {w[1], w[2], …, w[k]} is representing k itemsets and w contains the item w[1], w[2], …,
w[k] where w[1] < w[2]< … < w[k]. The pseudocode of the algorithm is as follows:

Apriori(T)

1. Ck ← init-pass(T) ; // First pass

2. F1 ← { f | f ŒC1 , f.count ≥minsup } // n = number of transaction
3. for (k = 2; Fk-1 ≠ f; k++) do // subsequent passess over T

4. Ck ← candidate-gen(Fk-1)

5. for each transaction t Œ T do // scan the data once

6. for each candidate c ŒCk do
7. if c is contained in t then

8. c.count++;

9. end

10. end

11. Fk ← { c ŒCk | c.count / n ≥ minsup }
12. end

13. return F ← UkFk

The algorithm uses a level-wise search for generating the frequent itemset and multiple
passes over the data. In each pass of the algorithm, it counts the supports of individual
items [line 1] and determines whether each of them is frequent [line 2]. F1 is the set of
frequent 1-itemsets. In each subsequent pass k, it follows the following three steps:

 1. It starts with the seed set of itemsets Fk-1 found to be frequent in the (k-1)th pass.
These seed sets generate the candidate itemsets Ck [line 4] that are possible frequent
itemsets using candidate gen() function

 2. In the second step, the transaction database scanned and the actual support of each
candidate itemset c in Ck is counted [line 5 to 10].

 3. At the end of the pass, it determines the actual frequent candidate itemsets.

The set of all frequent itemsets F is the final output of the algorithm.

492 Data Analytics using R

Candidate gen() Function

The candidate gen() function is used in the Apriori algorithm that contains two steps
Join and Pruning. They are as follows:
 1. The Join step [line 2–3] joins two frequent (k-1) itemsets for producing a possible

candidate c [line 6]. The two frequent itemsets f1 and f2 have exactly the same items
except the last one [line 3–5]. The c is added to the set of candidates Ck [line 7].

 2. The pruning step [line 8–11] determines whether all the k-1 subsets of c are in Fk-1.
If no one of them is in Fk-1, c cannot be frequent according to the downward closure
property and deleted from Ck.

The pseudocode of the candidate gen() function is as follows:

candidate gen(Fk-1)
1. Ck ← f // initialises the set of candidates
2. for all f1, f2ŒFk-1 // traverse all pairs of frequent itemsets
3. with f1 ={i1, i2, …, ik-2,ik-1} // differ only in the last item
4. and f2 ={i1, i2, …, ik-2,ik-1}
5. and ik-1 < i’k-1do // according to the sorted order
6. c ←{i1,…, ik-1,i’k-1} // join the two itemsets f1 and f2
7. Ck ← Ck »{c} // add the new itemset c to the candidates

8. For each (k-1)-subset s of c do
9. If (s œFk-1) then
10. delete c from Ck // delete c from the candidates
11. end
12. end
13. return

Consider the below example. Table 11.3 represents four transactions of the itemset {A,
B, C, D}. The Apriori algorithm determines the frequent itemsets with min. sup. = 50%
and min. conf. = 50%.

Table 11.3 Demo items

Transactions Items

T1 { A, B, C, D}

T2 { A, B}

T3 { A, B,C }

T4 { B, C }

Let us determine the frequency of each item as per the above table.

Frequency of Items

Items Support

A 3

B 4

C 3

D 1

Text Mining 493

Determine the frequent itemset—F1 after removing items with min. sup. = 50% = 2.

Items Support

A 3

B 4

C 3

Generate the candidate itemsets C2 – F1 X F1.

Items Support

A, B 3

A, C 2

B, C 3

Here, there is no itemset with min. sup. = 50% = 2 hence go on to generate the new
candidate Itemsets.

Items Support

A, B, C 2

After this, it cannot further process. Hence, the frequent itemset is {A, B, C} for the
given Table 11.3.

Implementation of Corpus Using apriori() function of the “arules”
Package

In the example below, the apriori() function of the “arules” package takes the matrix
“mt” (created in above examples) of the corpus “Dc” with support 0.98 and returns an
object. This object is used for finding the different correlation values in the further section.

11.13.2 Generating Association Rules from Frequent Itemsets

After generating the frequent itemsets from the transactions in a database, it is time to
generate all confidence association rules from the frequent itemsets, where a confident
association rule is a rule with confidence greater than minconf. This step is an optional step
as for many application frequent itemsets are sufficient and does not require generating
the association rules.

The following formula is used to generate the rules for every frequent itemset f that
contains subsets and for each subset a:

(f – a)Æ a if confidence = (f.count/(f – a).count) ≥ minconf

Where,
(f.count/(f – a).count) = support count of f((f – a))

f.count / n = support of the rule where n = number of transactions in the transaction set
This method is complex, hence an efficient algorithm and procedure is used that

generates the rules. Given below is the pseudocode of the algorithm with one item in the
consequent (subset of a):

494 Data Analytics using R

Figure 11.16 Implementation of the Apriori algorithm on text documents (Corpus)

genRules(F) // F = set of all frequent itemsets

1. for each frequent =itemset fk in F, k≥ 2 do
2. output every 1.item consequent rule of fk with confidence ≥ minconf and
 Support ← fk.count / n

3. H1 ← {consequents of all 1-item consequent rules derived from fk

above}

4. ap-genRules(fk, H1)

5. end

The pseudocode of the ap-genRules(fk, Hm) procedure is as follows:

ap-genRules(fk, Hm) // Hm = set of m-item consequents

1. if (k > m+1) AND (Hm≠f) then

2. Hm+1 ← candidate-gen(Hm)

3. for each hm+1 in Hm+1 do

4. conf ← fk.count / (fk - hm+1).count

5. if (conf ≥ minconf) then
6. output the rule (f - hm+1) Æhm+1 with confidence = conf and

support = fk.count /n

7. else

8. delete hm+1

9. end

10. ap-genRules(fk, Hm)

11. end

Text Mining 495

11.13.3 Improving the Efficiency of Apriori

Several variations are proposed that could improve the efficiency of Apriori-based mining.
Hash-based techniques, transaction reduction partitioning, sampling, and dynamic
itemset counting are some methods to improve the efficiency of Apriori. Here is a brief
introduction to each of these methods.

Hash-based Techniques

Hash-based techniques reduce the size of the candidate k itemset Ck for k > 1. A hash
technique uses key-value concept. Hence, it can be applied to the candidate itemsets. For
example, during scanning each transaction in the database for generating the frequent
1-itemsets [F1] from the candidate 1-itemsets in C1, the user can generate all hash table
structure and increase the corresponding bucket counts.

Transaction Reduction

Transaction reduction method reduces the number of transactions during scanning in
further iterations. For example, if a transaction does not contain any frequent k itemsets,
then it cannot contain any frequent (k+1) itemsets. Hence, such transactions can be
removed from further iterations. By removing such transactions, the user can increase
the efficiency of the Apriori.

Partitioning

Partitioning method partitions the data for finding candidate itemsets. For this, it uses
two phases. It can be applied where two database scan needs to generate the frequent
itemsets. The two phases are as follows:
 1. In phase 1, it subdivides the transactions of the dataset D into n non-overlapping

partitions. For each partition, local frequent itemsets are found by means of all
frequent itemsets within that partition. It is repeated for every partition. The
transaction ID of the transactions for each itemset is recorded into a special data
structure. It easily finds out the local frequent k itemsets for k = 1, 2 … in one scan
of the database.

 2. In phase 2, a second scan of the database D is completed in which the actual support
of each candidate is assessed for finding the global frequent itemsets.

Sampling

Sampling method generates a random sample and mines on a subset of a given dataset.
It searches the frequent itemsets in the subset instead of the whole database. The user is
required to select a sample size that fits into the main memory so frequent itemsets get in
one scan of the transactions. Sometimes, it uses a lower support threshold than minimum
support for finding frequent itemsets to avoid the problem of missing the global frequent
itemsets.

496 Data Analytics using R

Dynamic Itemset Counting

Dynamic itemset counting method adds the candidate itemsets at different points during
a scan. It is suitable for the database where it is partitioned into blocks using some start
points. These start points help in adding the new candidate itemsets.

11.13.4 A Pattern-growth Approach for Mining Frequent Itemsets

The Apriori algorithm has many advantages and a few drawbacks as well. The Apriori
algorithm needs to generate a large number of candidate sets and repeatedly scan the
database to check the candidates for pattern matching. Sometimes, this process becomes
very complex and time-consuming particularly when there is a need to find a frequent
pattern of size 100. Hence, to overcome this problem, another method is introduced for
mining the frequent itemsets that does not use candidate generation. This method is called
the frequent-pattern growth or FP tree.

Frequent pattern growth follows a divide-and-conquer technique that first compresses
the database, representing the frequent items into a frequent-pattern tree that retains the
itemset association information. After this, it divides the compressed database into a set
of conditional databases where each database is associated with one frequent item or
pattern fragment and then it mines each such database separately.

The method transforms from finding the long frequent patterns to searching the shorter
patterns recursively and concatenating the suffix. Least frequent items are used as suffix.
The method reduces the search costs but for larger databases, it does not produce a realistic
answer. It is an efficient method for mining the long and short frequent patterns.

The FP growth algorithm mines the frequent itemsets using an FP-tree by pattern
fragment growth. It takes the transaction database and the minimum support count
threshold as input and generates the complete set of frequent patterns as an output. The
algorithm follows the following steps:
 1. Scan the transaction database once and collect the set of frequent items F and their

support counts. For this, sort F in descending order of support count as the list of
frequent items L.

 2. Now create the root of an FP-tree and label it as “null”. Now for each transaction
Trans in D do the following:

 Select and sort the frequent items in Trans according to the order of L. Let the
sorted frequent item list in Trans be [p|P] where p is the first element and P is the
remaining list.

 Call insert_tree ([p|P], T) which is performed as follows: if T has a child N such
that N.item-name = p.item-name then increment N’s count by 1 else create a new
node N and let its count be 1, its parent link be linked to T and its node-link to the
nodes with the same item-name via the node-link structure. If P is nonempty, call
insert_tree(P, N) recursively.

Text Mining 497

 3. Now call procedure FP-growth (Tree, null) for mining the FP tree.

Procedure: FP-growth(Tree,α)

1. if Tree contains a single path P then

2. for each combination(β)of the nodes in the path P

3. generate pattern β U α with support count = minimum support

of nodes in β.

4. else for each ai in the header of Tree {

5. generate pattern β = ai U α with support count = ai.support

count;

6. construct β’s conditional pattern base and then β’s condi-

tional FP_tree Treeβ;

6. if Treeβ≠Ҩ

7. call FP_growth(Treeβ, β)

11.13.5 Mining Frequent Itemsets Using Vertical Data Format

The Apriori algorithm and the FP-growth method uses a horizontal data format where
a set of transactions are stored in the TID-itemset format [TID:itemset]. The vertical data
format is another method for mining frequent itemsets, where sets of transactions are
stored as items-TID set format [items:TID set]. Here items are the names of the items
and TID is a set of transaction identifiers that contains items. The Eclat algorithm uses
the vertical data format.

Tables 11.4 and 11.5 represent the horizontal database and the vertical database of Table
11.3 “Demoitems” respectively in the form of binary incidence matrix. A binary incidence
matrix uses two values either a one or a zero. In simple words, the matrix uses value 1
for items that are in the particular itemset or transaction and value 0 for items that are
not in the particular itemset.

Table 11.4 Horizontal database

Transactions Items

A B C D

T1 1 1 1 1

T2 1 1 0 0

T3 1 1 1 0

T4 0 1 1 0

Table 11.5 Vertical database

Items Transaction ID List

A T1 , T2 , T3

B T1, T2 , T3 , T4

C T1, T3, T4

D T1

498 Data Analytics using R

The vertical data format transforms the horizontal formatted dataset into a vertical
dataset format after scanning for mining the dataset. Here, the support count of an
itemset is the length of the transaction ID set of the itemset. It starts with k = 1, then uses
the frequent k itemsets to construct the candidate (k+1) itemsets. It is repeated with k
incremented by 1 each time until no frequent itemsets can be found.

This method efficiently generates the candidate (k+1) itemsets from the frequent k
itemsets as compared to the Apriori algorithm with no need to scan the dataset for finding
the support (k+1) itemsets. There is only one drawback of the method and that is it takes
more memory space and computation time for storing and executing the transaction-id
sets.

11.13.6 Mining Closed and Max Patterns

An itemset is a closed pattern if it is frequent and there are no super-patterns with the same
support, whereas an itemset is a max pattern if it is frequent and there are no frequent
super patterns. Mining such types of patterns is also a critical task as both are sub-patterns
of a long pattern. However, it is good to mine a set of closed frequent itemsets instead
of a set of all frequent itemsets.

To mine such closed or max frequent itemsets, the simplest method is to first mine the
complete set of frequent itemsets and then remove every frequent itemset (subset) that
carries the same support or greater support respectively. This method becomes expensive
and complex when the lengths of the frequent itemsets are too long.

In such situations, another simple method is to search the closed or max itemsets
directly during the mining process. It needs to prune the search space as soon as closed
or max itemsets are found. Itemmerging, Sub-itemset pruning, and Itemskipping are few
pruning techniques. Here is an introduction to these pruning techniques.

Itemmerging

Itemmerging method merges the frequent itemsets. If every transaction contains a frequent
itemset X and another itemset Y but not any proper superset of Y, then X U Y will design
a frequent closed itemset that does not require searching for any itemset that contains X
but no Y.

Sub-itemset Pruning

Sub-itemset pruning technique prunes the sub-itemsets. If a frequent itemset X is a proper
subset of an already found frequent closed itemset Y and support count(X) = support
count(Y) then X and all of X’s descendants in the set enumeration tree cannot be frequent
closed itemsets and it is easily pruned.

Item Skipping

Item skipping pruning technique skips the itemsets. If in-depth first mining of closed
itemsets is done at each level, there will be a prefix itemset X associated with a header

Text Mining 499

table and a projected database and a local frequent item p that has the same support in
several header tables at different levels then it will prune frequent item p from the header
tables at higher levels.

Whenever these pruning techniques are applied, it is necessary to check the following
conditions:

 d A superset checking that checks if the new frequent itemset is a superset of some
already found closed itemsets with the same support.

 d A subset checking that checks if the new frequent itemset is a subset of an already
found closed itemset with the same support.

Check Your Understanding

 1. What is Apriori algorithm?

 Ans: Apriori algorithm is a seminal algorithm developed by Agarwal and Srikant in 1994

for mining the frequent itemsets.

 2. What are hash-based techniques?

 Ans: Hash-based techniques reduce the size of the candidate k itemset Ck for k > 1. A hash

technique uses key-value concept hence it can also be applied to the candidate itemsets.

 3. What is dynamic itemset counting?

 Ans: Dynamic itemset counting method adds the candidate itemsets at different points

during a scan. It is suitable for the database where it is partitioned into blocks using

some start points.

 4. What pruning techniques are used for mining a closed pattern?

 Ans: Itemmerging, sub-itemset pruning, and item skipping, are few pruning techniques

used for mining the closed pattern.

11.14 PAtteRn evAluAtion MethoDs

Association rules mining follows the concept of support-confidence and uses minimum
support and confidence threshold. It generates different numbers of the rules. However,
sometimes, it does not create an effective output when mining is done with low support
threshold or done for long patterns. In this case, strong association rules become
uninteresting and misleading for the users. The next section discusses it.

11.14.1 Strong Rules are not Necessarily Interesting

For some application, the support-confidence framework does not give an interesting result
or a strong association rule. Unexpectedness, weak and strong belief, and action belief

500 Data Analytics using R

are some subjective measures of the association rules. The support (utility), confidence
(certainty), and few others are objective measures of the association rules. Different users
judge the rules using some subjective measures where the output of each user differs from
the others. However, the objective measures use statistics data that may generate the same
output. In this case, it may be true that strong rules are not necessarily interesting and
present a misleading rule in front of the user.

For example, consider transactions of items (pen and notebook) and assume nearly
10,000 such transactions are analysed. Further assume that your analysis reveals that 6,000
customer transactions include pens whereas 7,500 customer transactions include notebooks,
and 4,000 customer transactions include both. Proceeding with 30% minimum support
and 60% minimum confidence, a strong association rule is discovered student(A,“Pen”)
Æ student(A, “notebook”). It generates the support 40% and confidence 66% that satisfy
the minimum support and confidence. Although it is a strong rule but also a misleading
association rule as probability of purchasing notebook is 75% that is far greater than 66%.
It means the purchase of the pen and notebook is negatively associated with the purchase
of these items and decreases the likelihood of purchasing other items.

After analysing this example, it can be concluded that the confidence of a rule can be
deceiving in that it is only an estimate of the conditional probability of itemset Y given
itemset X. Since it does not measure the real strength of the rule hence strong rules are
not always necessarily interesting.

11.14.2 From Association Analysis to Correlation Analysis

Correlation is another objective measure for finding the association rules in data mining.
To improve the efficiency of the support and confidence measures, the correlation measure
is augmented to the support-confidence framework for the association rules. The new
augmented form of the rule is as follows:

X Æ Y [support, confidence, correlation]

This is a correlation rule that measures support, confidence, and correlation between
itemsets X and Y. There are different types of correlation measures that are available
and measures the correlation but for pattern evaluation mostly lift, Chi-squared (c²),
allConfidence, and cosine measures are used. Here is a brief introduction to all the
correlation measures as follows:

Lift

Lift is a simple correlation measure where the occurrence of itemset X is independent
of the occurrence of itemset Y if Pr(X » Y) = Pr(X)Pr(Y) otherwise itemsets X and Y are
dependent and correlated events. For the occurrence of itemset X and Y, the following
formula calculates the lift.

Lift(X, Y) = Pr(X » Y) / Pr(X)Pr(Y)

Text Mining 501

If the formula generates the output less than 1 then the occurrence of X is negatively
correlated with the occurrence of Y. In another case, if it generates the output greater
than 1 then the occurrence of X is positively correlated with the occurrence of Y. If it
generates the output equal to 1 then X and Y are independent and there is no correlation
between them.

Chi-squared

Chi-squared (c²) is another correlation measure that takes the squared difference between
the observed and expected value and adds it to all slots of the contingency table. The
following formula calculates the correlation using c² as follows:

c² =
2(observed expected)

expected

-
Â

all_confidence

The all_confidence is another correlation measure that measures the correlation between
the itemsets. For an itemset X, the following formula calculates the all_confidence as
follows:

all_confidence(X) or all_conf(X) = sup(X)/max_item_sup(X)

or

all_conf(X) = sup(X) /max{ sup(ij) | for all ij belongs to X)

where,
max{ sup(ij) | for all ij belongs to X) is a maximum (single) item support of all the items
in X. Due to this, it is called the max_item_sup of the itemset X.

The all_confidence of X is a minimal confidence among the set of rules ijÆ X Æij.

Cosine

Cosine is another horizontal lift measure for finding the correlation between the itemsets.
The following formula calculates the cosine measure of two itemset X and Y:

cosine(X, Y) =
Pr()

PrPr()

X Y

Y

»

or

cosine(X, Y) =
sup()

sup()sup()

X Y

X Y

»

11.14.3 A Comparison of Pattern Evaluation Measures

In the above section, you learnt about the different pattern evaluation measures for
measuring the performance of the frequency pattern. All four-correlation measures lift,

502 Data Analytics using R

Chi-squared, allConfidence, and cosine give good output for an independent case. As
compared to allConfidence and cosine, lift and Chi-squared give poor output for the
associations.

Amongst allConfidence and cosine measures, cosine gives a better result compared to
allConfidence as cosine considers the support of both itemsets, whereas allConfidence
considers only the maximal support of itemset. Along with this, sometimes a null
transaction (that does not contain any items) may also affect the performance of all the
measures.

In the example below (Figure 11.17), the interestMeasure() function takes the object
of apriori() and transactions dataset of the corpus “Dc” and returns the values of
different correlation measures such as lift, Chi-squared (c²), allConfidence, and cosine.
Since it is a dummy corpus, hence it does not give appropriate values for the measures.
In the previous chapter, this was discussed in detail.

Figure 11.17 Comparison between the pattern evaluation measures

Check Your Understanding

 1. What is correlation?

 Ans: Correlation is another objective measure for finding the association rules in data

mining.

(Continued)

Text Mining 503

11.15 sentiMent AnAlysis

Sentiment analysis is also referred to as emotion AI or opinion mining or subjectivity
analysis.

Picture this…

You have decided to buy a new cellphone, iPhone 6s Plus. You have been reading a lot of
online reviews of customers who have bought and experienced the product. You are also
looking at discussion forums where experts are comparing this model of the cellphone
with cellphones of similar genre. This is today where more than 80% of the customers
research the product before buying, thanks to the World Wide Web. They read the posts
from unknown buyers. However, this was not always the case. A decade or two earlier,
we checked with our friend, relative and family before buying an expensive product.

11.15.1 What Purpose does Sentiment Analysis Serve?

It helps to comprehend the attitude of a speaker or a writer with respect to some topic.
The attitude may be their judgment or evaluation, their affective state (the emotional state
of the writer or speaker), their reaction to an event, incident, interaction, document, etc.,
or the intended emotional communication.

11.15.2 What Does it Use?

It uses the following:
 d Text analysis
 d Natural language processing
 d Computational linguistics
 d Biometrics

11.15.3 What is the Input to Sentiment Analysis?

The input to sentiment analysis is the voice of customer data such as survey, blog posts,
reviews, tweets, social media, internet discussion groups, online reviews, etc.

 2. What is the lift?

 Ans: Lift is a simple correlation measure where the occurrence of itemset X is independent

of the occurrence of itemset Y if Pr(X » Y) = Pr(X)Pr(Y) otherwise itemsets X and Y are

dependent and correlated events.

 3. What is Chi-squared ?

 Ans: Chi-squared (c²) is another correlation measure that takes the squared difference

between the observed and expected value and adds it to all slots of the contingency

table.

504 Data Analytics using R

11.15.4 How does Sentiment Analysis Work?

 d Classifying the polarity of the given text—determine whether the expressed opinion
is positive, negative or neutral

 d Classifying the given text into one of the two classes—objective, subjective
 d Feature/aspect based sentiment

Sentiment = Holder + Target + Polarity

Holder here is the person who expresses the sentiment.
Target is about whom the sentiment/opinion is expressed.
Polarity is the nature of the sentiment: positive, negative or neutral

Example:

The games on iPhone 6s Plus has piqued the interest of the customers
Holder in the above example is the user or the reviewer
Target is iPhone 6s Plus
Polarity is positive

Credit Card Spending by Customer
Groups can be Identified by using

Business Needs

Big data is the collection and cross-referencing of large numbers and varieties
of data sets that allows organisations to identify patterns and categories of
cardholders through a multitude of attributes and variables.

Every time customers use their cards, big data suggests the products that
can be offered to the customers. These days many credit card users receive
calls from different companies offering them new credit cards as per their
needs and expenses on the existing cards. This information is gathered on
the basis of available data provided by vendors.

There are quite a few options available to customers to choose from.
Sometimes customers even switch their existing credit card companies. But
competition may not always work in the best interests of consumers. It also
involves bank’s profit. Competition may also be focused on particular features
of credit cards that may not represent long-term value or sustainability.
Those paying interest on balances may be paying more than they realise
or expect. Some consumers use up their credit limits quickly or repeatedly
make minimum payments without considering how they will repay their
credit card debt. A proportion of consumers may also be over-borrowing and
taking on too much debt, and there are signs that some issuers may profit

C
a
se

 St
u

dy

(Continued)

Text Mining 505

more from higher risk borrowers (by which we mean customers at greater
risk of credit default).

With the launch of this credit card market study, we intend to build up a
detailed picture of the market and assess the potential identified issues. We
plan to focus on credit card services offered to retail consumers by credit
card providers, including banks, mono-line issuers and their affinity and
co-brand partners.

While mass marketing continues to dominate most retailers’ advertising
budgets, one-to-one marketing is growing rapidly too. In this case study,
you will learn how to improve performance by communicating directly
with customers and delighting them with relevant offers. Personalised
communication is becoming a norm. Shoppers now expect retailers to provide
them with product information and promotional offers that match their needs
and desires. They count on you to know their likes, dislikes and preferred
communication method—mobile device, email or print media.

On the surface, generating customer-specific offers and communications
seems like an unnerving task for many retailers, but like many business
problems, when broken into manageable pieces, each process step or
analytical procedure is attainable. First, let’s assume you have assembled
promotions that you intend to extend as a group of offers (commonly called
“offer bank”) to individual customers. Each offer should have a business goal
or objective, such as:

 d Category void for cross or up-selling of a particular product or product
group

 d Basket builder to increase the customer’s basket size
 d Trip builder to create an additional trip or visit to the store or an ad-

ditional e-commerce session
 d Reward to offer an incentive to loyal customers

 d Text mining extracts useful information from unstructured data.
 d In unstructured data, information does not have any form obtained from natural language. For

example, comments used on Facebook, tweets in Twitter, opinions or reviews of any products or

services are examples of unstructured data.
 d Sequential operations of the text mining process include text pre-processing, feature generation,

feature selection, text/data mining and analysing results.
 d A document collection is a group of text-based documents and a major element of text mining. A

document collection can contain from thousands to tens of millions of documents.
 d A static document collection is a document collection where initial complement of documents

remains unchanged.

Summary

C
a
se

 St
u

dy

(Continued)

506 Data Analytics using R

 d A dynamic document collection is a document collection where documents change or are updated

over time.
 d A document is a group of discrete textual data within a collection and another major element of text

mining. The business report, e-mail, legal memorandum, research paper, press release, manuscript

are few examples of the document.
 d A freeformat or weakly structured document is a type of document that follows some typography,

layout, and makeup indicators. For example, research paper, press release are examples of freefor-

mat document.
 d A semi-structured document is a type of document that uses field-type metadata. For example,

HTML web pages, email, etc.
 d The characters, words, terms, and concepts are some common features of the document.
 d A term is a document feature that defines single words or multiword phrases in the document.
 d A term is a document feature that is generated through manual statistical method, rule-based, or

hybrid categorisation methods.
 d A domain is a specialised area of interest for which ontologies, taxonomies, and lexicons are de-

veloped.
 d Domain includes the broad areas of the subject matters such as finance, international law, biology,

material science and the knowledge used in these domains is called domain knowledge.
 d The background knowledge is an extension of the domain knowledge. It is used in the pre-processing

operation of the text mining system.
 d R language provides a package “tm” that provides a framework for text mining application within R.

The main framework or structure for managing the documents in the R language is Corpus.
 d A Corpus represents a collection of text documents in R. It is an abstract concept but several dif-

ferent implementations exist.
 d The VCorpus (Volatile Corpus) creates a volatile corpora meaning when the R object is destroyed

then whole corpus is gone.
 d The package “tm” provides the functions TermDocumentMatrix() and DocumentTermMa-

trix() that creates a term-document matrix and document-term matrix from a corpus respectively.
 d A text mining system takes documents as an input and generates the patterns, associations, trends

as an output.
 d Pre-processing tasks, core mining operations, presentation layer components and browsing func-

tionality, and refinement techniques are the four major tasks of the text mining system.
 d Pre-processing tasks converts the raw text or information collected from different data sources into

a canonical format.
 d Refinement techniques filter the redundant information and concept from the given input text docu-

ment to generate a well-optimised output. Suppression, ordering, clustering, pruning, classification

are few popular refinement techniques used in the text mining system.
 d The function tm_map() of the package “tm” performs the transformation on the corpus by modi-

fying the documents.
 d The distribution (proportions), frequent and near frequent sets, and associations are the three main

core text-mining operations.
 d The distribution operation creates meaningful subdivisions on a single document collection for

comparison purpose; it is also called the concept selection.
 d A frequent concept set is a set of concepts represented in the document collection with co-occur-

rences at or above a minimal support level.

(Continued)

Text Mining 507

 d The package “tm” provides a function findFreqTerms() that finds out the frequent terms in a

document-term or term-document matrix.
 d In terms of text documents, an association defines the relationship or association between two or

more terms. For example, in a text file if two terms such as “text” and “mining” occur together more

than once then there is a strong association between those two terms.
 d The package “tm” provides a function findAssocs() that determines the associations between

two or more terms in a document-term or term-document matrix.
 d The constraints, attribute relationship rules, and hierarchical trees are three main forms of the

background knowledge.
 d The KDTL (Knowledge Discovery in Text Language) is one of the text mining query language devel-

oped in 1996.
 d A frequent pattern is a type of pattern that frequently occurs in a data set. These patterns can be

any itemsets, subsequences, or substructures.
 d Market basket analysis, catalogue design, web log analysis, cross-marketing, sales campaign analysis,

and DNA sequence analysis are few applications of the frequent patterns.
 d Market basket analysis is a common and classic example of frequent itemset mining. The main

objective is to determine the associations and correlations among a set of items.
 d The occurrence frequency is the number of transactions in the itemset. It is also called frequency,

count, support count, or absolute support of an itemset.
 d An association rule correlates the presence of one set of items with another set of items.
 d Support is a metric that measures the usefulness of an association rule using the minimum support

threshold.
 d Confidence is a metric that measures the certainty of an association rule by using threshold.
 d A frequent itemset contains items that often occur together and are associated with each other.

In a frequent itemset, the support of that itemset is greater than the minimum support threshold.
 d An itemset is a closed frequent itemset in a dataset if it is closed and frequent.
 d The Apriori algorithm is a seminal algorithm developed by Agarwal and Srikant in 1994 for mining

the frequent itemsets.
 d Hash-based techniques, transaction reduction partitioning, sampling, and dynamic itemset counting

are few methods to improve the efficiency of the Apriori algorithm.
 d Hash-based techniques reduce the size of the candidate k itemset Ck for k > 1. A hash technique

uses key-value concept hence it can also apply to the candidate itemsets.
 d Transaction reduction method reduces the number of transactions during scanning in further itera-

tions.
 d Partitioning method partitions the data for finding candidates itemsets. For this, it uses two phases

and it can be applied where two database scan needs to generate the frequent itemsets.
 d Sampling method generates a random sample and mines on a subset of a given dataset. It searches

the frequent itemsets in the subset instead of the whole database.
 d Dynamic itemset counting method adds the candidate itemsets at different points during a scan. It

is suitable for a database that is partitioned into blocks by using some start points.
 d FP-growth follows a divide-and-conquer technique for mining frequent itemsets.
 d The vertical data format is another method for mining the frequent itemsets, where a set of transac-

tions are stored as items-TID set format [items:TID set].
 d Itemmerging, Sub-itemset pruning, and Item skipping are few pruning techniques used for mining

closed patterns.

(Continued)

508 Data Analytics using R

 d Correlation is another objective measure for finding the association rules in data mining.
 d Lift is a simple correlation measure, where the occurrence of itemset X is independent of the oc-

currence of itemset Y if Pr(X » Y) = Pr(X)Pr(Y) otherwise itemsets X and Y are dependent and cor-

related events.
 d Chi-squared (χ²) is another correlation measure that takes the squared difference between the

observed and expected value and adds it to all slots of the contingency table.

 Ke y Te r m s

 d Apriori algorithm: The Apriori algorithm is a
seminal algorithm developed by Agarwal and
Srikant in 1994 for mining frequent itemsets.

 d Chi-squared: Chi-squared (c²) is another
correlation measure that takes the squared
difference between the observed and ex-
pected value and adds it to all slots of the
contingency table.

 d Confidence: Confidence is a metric that
measures the certainty of an association rule
by using threshold.

 d Corpus: Corpus represents a collection of
text documents in R. It is an abstract concept.
However, there are different implementations.

 d Correlation: Correlation is another objective
measure for finding the association rules in
data mining.

 d Document: A document is a group of
discrete textual data within a document
collection.

 d Document collection: A document collec-
tion is a group of text-based documents.

 d Domain: A domain is a specialised area of
interest for which ontologies, taxonomies,
and lexicons are developed.

 d FP-growth: The FP-growth follows a divide-
and-conquer technique for mining frequent
itemsets.

 d Frequent concept set: A frequent concept
set is a set of concepts represented in the
document collection with co-occurrences at
or above a minimal support level.

 d Frequent pattern: A frequent pattern is a type
of pattern that frequently occurs in a data set.

 d KDTL: The KDTL (Knowledge Discovery
in Text Language) is one of the text mining
query languages developed in 1996.

 d Lift: Lift is a simple correlation measure
where the occurrence of itemset X is inde-
pendent of the occurrence of itemset Y if
Pr(X » Y) = Pr(X)Pr(Y).

 d Market basket analysis: Market basket
analysis is a common and classic example
of frequent itemset mining.

 d Occurrence frequency: The occurrence
frequency is the number of transactions in
an itemset.

 d Support: Support is a metric that measures
the usefulness of an association rule by us-
ing the minimum support threshold.

 d tm: R language provides a package “tm”
that provides a framework for text mining
application within R.

 d Term: A term is a document feature that
defines single words or multiword phrases
in the document.

 d Text mining: Text mining extracts useful
information from unstructured data.

 d Unstructured data: In unstructured data, in-
formation does not have any form obtained
from natural language.

 d VCorpus: VCorpus (Volatile Corpus) creates
a volatile corpora i.e., when the R object is
destroyed, then the whole corpus is lost.

 d Vertical data format: The vertical data format
is another method for mining frequent item-
sets, where a set of transactions are stored as
items-TID set format [items:TID set].

Text Mining 509

 mu l T i p l e Ch o i C e Qu e s T i o n s

 1. From the given options, which of the following is an example of weakly structured
document?

 (a) E-mail (b) Research paper

 (c) HTML web page (d) Message

 2. From the given options, which of the following is an example of semi-structured document?

 (a) E-mail (b) Research paper

 (c) Press-release (d) Report

 3. From the given options, which of the following is not a feature of a document?

 (a) Document collection (b) Term

 (c) Concept (d) Word

 4. From the given options, which of the following represents a collection of text documents in
R?

 (a) Document collection (b) Corpus

 (c) File (d) Document features

 5. From the given options, which of the following functions returns the number of documents
of the corpus?

 (a) Docs() (b) nTerms()

 (c) Terms() (d) DocumentTermMatrix

 6. From the given options, which of the following functions returns the number of terms of
the corpus?

 (a) Docs() (b) nTerms()

 (c) Terms() (d) DocumentTermMatrix

 7. From the given options, which of the following functions returns the terms of the corpus?

 (a) Docs() (b) nTerms()

 (c) Terms() (d) DocumentTermMatrix

 8. From the given options, which of the following functions creates the document term matrix
of the corpus?

 (a) Docs() (b) nTerms()

 (c) Terms() (d) DocumentTermMatrix

 9. From the given options, which of the following functions finds the frequent terms of corpus
in R?

 (a) nTerms() (b) tm_map()

 (c) findFreqTerms() (d) findAssocs()

 10. From the given options, which of the following functions finds an association between
terms of corpus in R?

 (a) nTerms() (b) tm_map()

 (c) findFreqTerms() (d) findAssocs()

510 Data Analytics using R

 11. From the given options, which of the following functions performs pre-processing of text
documents of the corpus in R?

 (a) nTerms() (b) tm_map()

 (c) findFreqTerms() (d) findAssocs()

 12. From the given options, which of the following functions removes white spaces of a text
document of the corpus in R?

 (a) nTerms() (b) tm_map()

 (c) stemDocument () (d) stripWhitespace()

 13. From the given options, which of the following functions contains the parameter “terms”?

 (a) nTerms() (b) findAssocs()

 (c) findFreqTerms() (d) tm_map()

 14. From the given options, which of the following methods improves the efficiency of the
Apriori algorithm?

 (a) Transaction reduction (b) Itemmerging

 (c) Item skipping (d) Sub-itemset pruning

 15. From the given options, which of the following pruning techniques is used during mining
of closed pattern?

 (a) Item skipping (b) dynamic itemset counting

 (c) Item generation (d) Sampling

 16. In which year was the Apriori algorithm developed?

 (a) 1996 (b) 1994

 (c) 1995 (d) 1997

 17. In which year was the KDTL text mining query language developed?

 (a) 1996 (b) 1994

 (c) 1995 (d) 1997

 18. From the given options, which of the following is not a core text mining operation?

 (a) Distribution (b) Frequent and near frequent sets

 (c) Associations (d) Refinement techniques

 19. From the given options, which of the following is not a component of the text mining
system?

 (a) Presentation layer components (b) Text document query language

 (c) Core text mining operations (d) Pre-processing task

 20. From the given options, which of the following document features defines single words or
multiword phrases in a document?

 (a) Characters (b) Terms

 (c) Words (d) Concept

Text Mining 511

 lo n g Qu e s T i o n s

 1. What is text mining? Explain with its applications.

 2. Explain the sequential process of the text mining process.

 3. Define document collection, document, and document features.

 4. Define Corpus and VCorpus.

 5. Explain the TermDocumentMatrix() function with syntax and an example.

 6. Explain the DocumentTermMatrix() function with syntax and an example.

 7. Explain the tm_map() function with syntax and an example.

 8. Explain the findFreqTerms() function with syntax and an example.

 9. Explain the findAssocs() function with syntax and an example.

 10. Write a note on the market basket analysis.

 11. Explain the methods used to improve efficiency of the Apriori algorithm.

 12. Explain the FP-Growth method.

 13. What are the types of pruning techniques used for mining closed patterns?

 14. Create a corpus from some documents and create its document term matrix.

 15. Create a corpus from some documents and perform the pre-processing operations on it.

 16. Create a corpus from some documents and create its matrix and transactions. Also, find out
the different correlation measures.

 pr a C T i C a l ex e r C i s e s

 1. Create a text file, “EnglishText.txt” in “D:/tm2” folder and copy the below lines into it:

 Excerpts from Martin Luther King’s I have a dream speech August 28 1963

 This will be the day when all of God’s children will be able to sing with new meaning, “My
country ‘tis of thee, sweet land of liberty, of thee I sing. Land where my fathers died, land
of the Pilgrims’ pride, from every mountainside, let freedom ring.”

 And if America is to be a great nation, this must become true. So let freedom ring from the
prodigious hilltops of New Hampshire. Let freedom ring from the mighty mountains of
New York. Let freedom ring from the heightening Alleghenies of Pennsylvania.

 Let freedom ring from the snow-capped Rockies of Colorado. Let freedom ring from the
curvaceous slopes of California. But not only that; let freedom ring from the Stone Mountain
of Georgia. Let freedom ring from Lookout Mountain of Tennessee.

512 Data Analytics using R

 Let freedom ring from every hill and molehill of Mississippi. From every mountainside, let
freedom ring.

 And when this happens, and when we allow freedom ring, when we let it ring from every
village and every hamlet, from every state and every city, we will be able to speed up that
day when all of God’s children, black men and white men, Jews and gentiles, Protestants
and Catholics, will be able to join hands and sing in the words of the old Negro spiritual,
“Free at last! Free at last! Thank God Almighty, we are free at last!”

 Create a corpus and use transformation functions to remove punctuation marks,

stopwords, whitespaces, numbers, etc., from the extract.

Solution:

 Step 1: Create a file, “EnglishText.txt” in the folder “tm2” in the “D:” drive.

> fname <- file.path(“D:”, “tm2”)

> fname

[1] “D:/tm2”

 Step 2: Create a corpus, “corpus”

> corpus <- Corpus(DirSource(fname))

> inspect(corpus)

<<SimpleCorpus>>

Metadata: corpus specific: 1, document level (indexed): 0

Content: documents: 1

Excerpts from Martin Luther King’s I have a dream speech August

28 1963\nThis will be the day when all of God’s children will be

able to sing with new meaning, “My co$

 Step 3: Remove punctuation marks from the corpus. The same is evident from inspecting
the corpus, “corpus”.

> corpus <- tm_map(corpus, removePunctuation)

> inspect(corpus)

<<SimpleCorpus>>

Metadata: corpus specific: 1, document level (indexed): 0

Content: documents: 1

Excerpts from Martin Luther Kings I have a dream speech August

28 1963\nThis will be the day when all of Gods children will be

able to sing with new meaning My countr$

 Step 4: Remove numbers from the corpus. The same is evident from inspecting the corpus,
“corpus”.

> corpus <- tm_map(corpus, removeNumbers)

> inspect(corpus)

<<SimpleCorpus>>

Text Mining 513

Metadata: corpus specific: 1, document level (indexed): 0

Content: documents: 1

Excerpts from Martin Luther King I have a dream speech August \

nThis will be the day when all of Gods children will be able to

sing with new meaning My country tis$

 Step 5: Remove stopwords from the corpus. The same is evident from inspecting the corpus,
“corpus”.

> corpus <- tm_map(corpus, removeWords, stopwords(‘English’))

> inspect(corpus)

<<SimpleCorpus>>

Metadata: corpus specific: 1, document level (indexed): 0

Content: documents: 1

Excerpts Martin Luther King I dream speech August This will

day Gods children will able sing new meaning My country tis

thee sweet land liberty thee I $

 2. Create a document term matrix of the above corpus and find the frequent terms between
frequencies 5 and 15.

Solution:

 Step 1: Create a document term matrix, “dtm” from the corpus, “corpus”.

> dtm <- DocumentTermMatrix(corpus)

 Step 2: Determine the terms that have frequency in the range of 5 to 15.

> findFreqTerms(dtm, lowfreq=5, highfreq=15)

[1] “every” “freedom” “let” “ring”

 Step 3: Determine the terms that have a frequency of 10.

> findFreqTerms(dtm, lowfreq=10)

[1] “freedom” “let” “ring”

 Step 4: Determine the terms that have a frequency of 1.

> findFreqTerms(dtm, lowfreq=1)

 [1] “able” “alleghenies” “allow” “almighty” “america” “and”

“august” “become” “black” “but”

[11] “california” “catholics” “children” “city” “colorado”

“country” “curvaceous” “day” “died” “dream”

[21] “every” “excerpts” “fathers” “free” “freedom” “from” “gen-

tiles” “georgia” “god” “gods”

[31] “great” “hamlet” “hampshire” “hands” “happens” “heighten-

ing” “hill” “hilltops” “jews” “join”

[41] “kings” “land” “last” “let” “liberty” “lookout” “luther”

“martin” “meaning” “men”

514 Data Analytics using R

[51] “mighty” “missisippi” “molehill” “mountain” “mountains”

“mountainside” “must” “nation” “negro” “new”

[61] “old” “pennsylvania” “pilgrims” “pride” “prodigious” “prot-

estants” “ring” “rockies” “sing” “slopes”

[71] “snowcapped” “speech” “speed” “spiritual” “state” “stone”

“sweet” “tennessee” “thank” “thee”

[81] “this” “tis” “true” “village” “white” “will” “words” “york”

Answers to MCQs:

 1. (b) 2. (a) 3. (a) 4. (b) 5. (a) 6. (b) 7. (c)

 8. (d) 9. (c) 10. (d) 11. (b) 12. (d) 13. (b) 14. (a)

 15. (a) 16. (b) 17. (a) 18. (d) 19. (b) 20. (b)

L E A R N I N G O U T C O M E

At the end of this chapter, you will be able to:

 c Perform parallel computing in R using the ‘doParallel’ and ‘foreach’ package

 c Use the ‘benchmark()’ function to compare the performance of single and parallel
execution of the foreach loop

12.1 IntroductIon

Parallel computing is the simultaneous use of multiple compute resources for solving
any complex problem. Parallel computing refers to the division of a problem into discrete
parts where each part further gets divided into a series of instructions. All these parts
and their respective instructions run concurrently on different processors. Due to this
simultaneous execution of different instructions, parallel computing is used to simulate,
model and solve complex and real world problems (Figure 12.1).

Set of instructions

Set of instructions

Traditional Computing

Processor

Processed data

Processor

Processor

Parallel Computing

Processed data

Figure 12.1 Traditional vs. parallel computing

Parallel Computing with R

Chapter 12

516 Data Analytics using R

Parallel computing is best used in image modelling of different situations like weather,
galaxy formation, climate change and so on. Every field, including science, engineering,
business industries and others are using parallel computing for solving their complex
problems. It saves time and increases the performance of their working. The field of big
data, data mining and databases also use parallel computing.

Parallel computing uses different hardware tools and software concepts for concurrent
execution. The hardware tools include multi-processors and multi-core computers
(distributed computers) containing multiple processing elements within a single machine.
This multi-core computer can be homogeneous or heterogeneous. The software concepts
include Shared memory, Pthreads, Open Multi-Processing (OpenMP), Message Passing
Interface (MPI), Distributed memory, and Parallel Virtual Machine (PVM).

R language is a free and open-source software language with multiple packages
that support statistical computing with graphics features. R is also a highly productive
language as it provides domain-specific packages with high-level expressiveness features.
R language has packages that support parallel computing. In the next subsection, you
will learn about parallel computing with R.

12.2 IntroductIon of r tool lIbrarIes

R language provides different packages for parallel computation. R packages have a special
property of high reusability. These features are used in high-performance computing.
Different repositories provide packages for parallel computing. The Comprehensive R
Archive Network (CRAN) is one of the repositories of R that defines different packages
group-wise for high-performance computing in their task view. Users can use the weblink
for checking a list of packages available for parallel computing within R. https://cran.r-
project.org/web/views/HighPerformanceComputing.html

Since different methodologies are used to implement parallel computing, R language
also divides their available packages of parallel computing into some groups. Each group
contains many packages to implement parallel computing. Table 12.1 highlights the
different packages of each group.

12.2.1 Motivation of Empowering R with HPC

R language efficiently executes small computations, such as statistical data analysis, data
mining applications, etc. Due to globalisation, every field is expanding its operations
across the world. This expansion would need a big database that can handle huge data.
To handle such a future need, big data analytics can be put to use. Big data uses complex
computations to achieve high-performance computing (HPC). Here are some highlights
that will help you understand why R language should be empowered with HPC.

 d R is a script-based language. The analysis-based solutions do not efficiently handle
large-scale computation. These solutions can be calculated in a few hours or days.

Parallel Computing with R 517

If the size of data increases, the execution time also increases. Complexity involved
in the computation of big data motivates developers to provide features or packages
that can perform HPC.

 d Sometimes R language abruptly stops the current execution of data that contains
a lot of information. This happens due to insufficient computational resources like
system memory. This is another reason why R is developed with HPC.

 d Although R language comes with a high-level expressiveness feature, it is still unable
to perform the fine-grained control that provides a high-level coding development
environment.

 d The runtime environment efficiently implements coding and simplifies coding
development. To simplify the process, additional time and resources are required
to do the computation. Hence, to reduce the time and utilisation effort, developers
develop HPC with R.

 d The design of the R framework is inspired from the 90s and it uses a single thread
execution mode. Due to this, R language specification and implementation cannot
utilise the modern computer infrastructure like parallel coprocessors, multiple cores,
or multi-node computing clusters. Hence, it is necessary to enable R language with
HPC.

The main aim to empower R with HPC is to scale up the processing of the R language
so that it efficiently implements the parallelism and reduces the computation time.

Table 12.1 R packages associated with high performance computing

Parallel Computing Concept Related Packages

Explicit Parallelism
(the programmer is responsible for (almost) every aspect of the
parallelization problem such as partitioning the program into
processes, mapping of these processes onto the processors and their
synchronization

Rmpi
Snow
pdbMPI
snowfall
foreach

Implicit Parallelism
(Wherein the compiler or interpreter can recognize opportunities
for parallelization and implement them without being told to do so

pnmath
romp
Rdsm
Rhpc

Grid Computing
(Is a computer network where in each computer’s resources (processing
power, memory, and data storage) is shared with every other computer
in the system. Authorized users can leverage the same for their
requirements)

multiR

Random Numbers rlecuyer
doRNG

Hadoop RHIPE
rmr
toaster

518 Data Analytics using R

12.3 opportunItIes In HPC to empower R

At present, there are many methods available in HPC that can easily empower R. It
is possible due to continuous development in the parallel, distributed, grid, or cloud
computing technologies. In addition, increasing computation demand is also forcing to
develop new technologies. An effective utilisation of these technologies in R can also give
high-performance computing in business analytics.

R language uses the available parallel computing technologies. In the following
subsections, you will learn about parallel computation within a single node and multiple
nodes.

12.3.1 Parallel Computation within a Single Node

When multiple processing units, including hosts CPUs, threads, or other units, are
simultaneously executed within a single computer system, then this single computer
system becomes a single node. The single node parallelism is executed within a single
computer. In a single computer, multiple processing units like host CPUs, processing
cores, or co-processing cards share memory to implement the single node parallelism. To
implement parallel processing within a single node, two methods are available namely:

Check Your Understanding

 1. What do you understand by parallel computing?

 Ans: Parallel computing is a type of computing that uses more than one resource for solving

any complex problem. It refers to the division of a problem into discrete parts where

each part further gets divided into a series of instructions.

 2. What are the types of software concepts used in parallel computing?

 Ans: The software concepts include Shared memory, Pthreads, Open Multi-Processing

(OpenMP), Message Passing Interface (MPI), Distributed memory, and Parallel Virtual

Machine (PVM).

 3. What is the need to empower R language with high-performance computing (HPC)?

 Ans: The main motivations to empower R language with high-performance computing are

as follows:
 d No efficient packages available to address the computation complexity of big data.
 d Insufficient computational resources.
 d The design and implementation of R language.
 d To reduce the time and efficient utilisation of resources.
 d Unable to utilise the modern computer infrastructure like parallel coprocessors.

Parallel Computing with R 519

 d Increase the number of CPUs within a node
 d Use the add-on processing devices

Out of the two methods, developers prefer the first method. Developers host multiple

identical CPUs with the help of additional sockets in a single node. There are multiple

processing cores or components that read and execute instructions within each CPU of

a single node. In addition, all these multiple processing cores are independent of each

other. A normal commercial computer has 8 to 16 cores. A single node can extend up to

72 processing cores according to the capability of multiple CPUs.

The second method uses add-on processing devices like an accelerator card to

implement parallel processing within a single node. These accelerator card coprocessors

contain many cores that run with lower frequency to provide high performance per chip.

These cards are also available in on-board memory units and processing units and they can

directly access data from this on-board memory. For example, GPGPU (general-purpose

computing on graphics processing units) is one of the graphics card used as an add-on

processing device. This card performs parallel processing on the graphic processing units

using vector computations.

12.3.2 Multi-node Parallelism Support

Single-node parallelism is easy to implement with a low cost; however, it has limited use

in research analysis work. To overcome such limitations, multi-node parallelism has been

developed. The multi-node parallelism uses more than one computer system, called a

cluster, to implement parallel processing. Just like single-node parallelism, there are two

methods in multi-node parallelism as well.
 d Use the traditional high-performance computing clusters
 d Use MapReduce programming paradigm

Message Passing Interface

The first method uses traditional high-performance computing clusters to implement

parallel processing. Here, a cluster is a group of interconnected computers that shares the

available resources. This individual single computer, also called node, has its own memory.

In these clusters, all the nodes are connected through more than one high-performance

switches. These switches provide high-performance communication between two nodes.

For establishing this communication, the most-widely used method is message passing

interface.

Message passing interface is a portable message-passing system that works on different

types of parallel computers. The system provides an environment where programs run

parallel and communicate with each other by passing messages. MPI also follows the

concept of master-slave or client-server system, where master system controls the cluster

and slave system performs computation and responds to the requests of the master.

520 Data Analytics using R

MPI also provides library routines that contain the syntax and semantics to design and

implement the message passing programs in various computer programming languages,

such as C, C++, Java, and others. The MPI interface comes with many features, such

as synchronisation, virtual topology, language-specific syntax, and communication

functionality between a set of processes that are mapped to other nodes. For performing

parallel computing, MPI sends codes to multiple processors. The current computers or

laptops have multiple cores that share memory. Each core uses the shared memory.

To implement MPI on a system, some message-passing programs are required. These

programs are called ‘mpirun/mpiexec’ that work with the processes (tasks) and every

core is assigned to a single process. These cores obtain maximum performance using the

agents that start the MPI programs. MPICH2 and OpenMPI are some examples of open

source implementation of the MPI. OpenMPI is one of the open source MPI programs.

It is used for the distributed memory model implementation. It is possible to execute

multiple threads on a single core computer using these programs.

MapReduce Programming Paradigm

The MapReduce programming paradigm is a new programming paradigm developed

by Google. This programming paradigm is specially designed for parallel distributed

processing of a large set of data to divide it into small regular-sized data. Parallel or

distributed processing system is a powerful framework that uses distributed processing

to process any large data.

This paradigm collects and stores data from different distributed nodes and performs

computation on each local node. After computation on each local node, the collected

output is transferred. In simple words, it converts a large dataset into a set of tuples, and

combines and reduces these tuples into a smaller set of tuples. In MapReduce, these tuples

are known as key-value pairs that are collected, sorted, and processed. The MapReduce

framework operates on these key-value pairs.

Due to the small size of tuples, it efficiently handles any big data and scales the data over

multiple nodes. This scaling feature can scale an application to execute over thousands of

machines in a cluster. Due to this scalability feature, the MapReduce paradigm has become

popular for big data analytics. Hadoop and Spark are few examples of implementation of

MapReduce programming. Section 12.3.3 explains the MapReduce paradigm in Hadoop.

MapReduce Algorithm

Map and Reduce are two main steps in MapReduce programming performed by a mapper

and reducer respectively. The map process views the input as a set of key-value pair and

the process produces a set of key-value pairs as an output. You will learn about each step

of the MapReduce algorithm in the subsection that follows.

Parallel Computing with R 521

Map process In this step, the master node of the distributed system takes the input data

that is delegated into key-value pairs and divides it into fragments that are assigned to

map tasks. Now, each computing cluster of the system is assigned to a number of map

tasks. These clusters distribute these map tasks among their nodes. Some intermediate

key-value pairs are also generated during the key-value pairs processing. According to

their key-values, these intermediate key-value pairs are sorted. After this, it is further

divided into a set of fragments.

In Figure 12.2, the input pairs are divided into different fragments. The map() function

of the map process assigns a single map task to each single input pair that generates an

output fragment. In simple words, the map() function generates a new output list.

Mapping function

Input list

Output list

Figure 12.2 Map process

Reduce Process In this step, each reduce task is assigned to a fragment that processes it

and generates the output into key-value pairs. Like map task, reduce task is distributed to

each node in the cluster. At last, the final output is sent to the master node of the system.

In Figure 12.3, the reduce process takes the new output list as an input list and reduces

it to the input values. It produces an aggregated value output.

Reducing function

Input list

Output value

Figure 12.3 Reduce process

522 Data Analytics using R

MapReduce Algorithm Example

Let us assume that there is a big file that contains a large amount of information about a

computer system. Here is some information on the file.

“Computer is an electronic device. The input devices, output devices, and CPU are major parts

of a computer system. Charles Babbage is the father of computers. The computer takes inputs from

the input devices and generates the output on the output devices…. ”

The MapReduce algorithm will find out the number of occurrences of specific words

in the file by using the following steps:

 1. The map process uses different mapping functions for looping each word. For

example, the map() function returns a key value for the key word “computer”.

 2. Similarly, different mapping functions return values for each key that are actual

words in the given file. The reduce process uses a reduce function that accepts the

generated output of the map function as an input in the form of key-value pair. It

looks like this, reduce(“computer” >= 3), (“input” >=2).

 3. The reduce function will add value for each increment of the loop and return a single

number for each word. Here, it will return 4 for the function reduce(“computer” >=

3) since the word “computer” has occurred 4 times in the given lines.

 4. For all the given words, the reduce function returns a numeric number for the

number of occurrences of these words in the file.

Check Your Understanding

 1. What do you mean by single-node parallelism?

 Ans: Single-node parallelism uses multiple processing cores within a single computer

system.

 2. In how many ways is single-node parallelism possible in R language?

 Ans: Single-node parallelism is possible in R language by either increasing the number of

CPUs within a node or using the add-on processing devices.

 3. What does message library routine refer to?

 Ans: Message library routine contains the syntax and semantics to design and implement

the message passing programs in various computer programming languages, such as

C, C++ and Java.

 4. What is Map process?

 Ans: The Map process is a part of the MapReduce. In this process, the master node of the

distributed system takes the input data that is delegated into key-value pairs and

divides it into fragments that are assigned to map tasks.

Parallel Computing with R 523

12.4 support for parallelIsm In R

The previous section explained the scope of parallelism in R. Further, you will learn how

R language supports parallelism. To support parallelism, R language provides different

packages. The following subsections will explain these packages.

12.4.1 Support for Parallel Execution within a Single Node in R

Single node parallelism uses multiple processing cores within a single computer system. R

language provides packages that support single-node parallelism. Multicore was the first

package of R language that implemented multiple cores on systems. These days, Multicore

package has been replaced by the package “parallel”, “doParallel” and “foreach” also

performs single-node parallelism. Here is an introduction to the packages.

parallel

The package “parallel” was introduced in R 2.14.0 to replace the packages “multicore”

and “snow”. It was introduced to mainly perform the random-number generation. It also

performs other parallel applications, such as vector/matrix operations, bootstrapping,

linear system solver, etc. Another new feature of this package is that it also performs

forking. Forking is a method for creating additional processing threads and generating

additional worker threads that run on different processing cores.

Nowadays, every physical CPU contains more than two cores for processing. Some

CPUs use their built-in multicore for parallel computing and some operating systems, such

as Windows follow the concept of logical CPUs that extend the number of cores. Users

can use the function detectCores() for finding the number of available cores in a CPU.

The mclapply() function of the “parallel” package does the single-node parallelism. It

can increase the number of cores in a CPU. The lapply() function of the “base” package

can be used in place of mclapply() function, if it is not supported. mclapply() is a

parallelized version of lapply(), it returns a list of the same length as x, each element

of which is the result of applying FUN to the corresponding element of x.

The function follows the concept of forking. Hence, it is not available on Windows

unless mc.cores = 1. The basic syntax of the function mclapply() is as follows:

mclapply(x, FUN, mc.cores,…)

where,

“x” argument contains either atomic or list vector or expressions vectors (for class object

use as.list for conversion object); “FUN” argument defines the definition of the function

applied to each element of x; “mc.cores” is an optional argument that defines the number

of cores to use, i.e. at most how many child processes will be run simultaneously. It must

be at least one, and parallelization requires at least two cores; the dots “…” define the

other optional arguments.

524 Data Analytics using R

Single-node Parallelism using mclapply()

In the following example, a function “DemoFunc” is applied on the function mclapply(),

where x is a list [1:5] and mc.cores is 1. Windows does not support more than 1. For the

operating system Unix, Linux, value of the mc.cores can be greater than 1 as they support

forking (Figure 12.4).

Figure 12.4 Use of parallel package

Single-node Parallelism in Windows Operating System using Clusters

Since Windows operating system does not work on forking, it is not possible to use more
than 1 in the mc.cores argument of the mclapply() function. If more than 1 is used in
Windows, then it will show an error. Figure 12.5 shows an example where value 8 is taken
in mc.cores. As explained earlier, it shows an error.

Parallel Computing with R 525

Figure 12.5 Trying multiple core in Windows

There are many options available to implement single node parallelism in Windows.

With the help of clusters function and parLapply() function, it is possible to implement

single node parallelism. Here are the steps for implementing single-node parallelism:

 1. Create clusters of child processes using makeCluster()

 2. Load the necessary R packages on the parLapply()

 3. Copy the necessary R objects to the cluster

 4. Distribute work to the cluster using clusterExport()

 5. Stop the cluster using stopCluster()

By following the above steps, implementation of any other parallel applications like

bootstrapping or random number generation is also possible.

526 Data Analytics using R

Function syntax Details

makeCluster(spec, type, …) Creates a cluster of a supported type. Default type
is “PSOCK”. It calls the makePSOCKcluster. Type
“Fork” calls makeForkCluster. makeForkCluster
creates a cluster by forking and therefore is not
available for Windows.

parLapply(cl = NULL, X, fun, ...)

where

cl is an object of class “cluster”. If NULL, use the

registered default cluster.

X is a vector (atomic or list)

fun is a function

Is a parallel version of lapply

clusterExport(cl = NULL, varlist,

envir = .GlobalEnv)

where

cl is an object of class “cluster”. If NULL, use the

registered default cluster.

varlist is a character vector of names of objects to export.

envir is environment from which to export variables

clusterExport assigns the values on the master
R process of the variables named in varlist
to variables of the same names in the global
environment of each node

stopCluster(cl = NULL)

where cl is an object of class “cluster”
Shut down the cluster

In Figure 12.6, makeCluster() function creates a cluster “cl”. The package “Matrix”
is loaded on the function parLapply() and copied. Then, the cluster is distributed by
using the function clusterExport(). The parLapply() function is used for doing the
calculation. Then, the cluster is stopped.

foreach

R language provides many looping facilities, such as foreach, while, etc., for executing
codes that need to be repeated multiple times. The package “foreach” provides new
looping facility and supports parallel execution. In simple words, this package executes
repeated operations on multiple cores or processors on a single node or multiple nodes.
Before implementing single mode parallelism, here are some important points on the
package foreach.

 d The package foreach uses “%do%” or “%dopar%” binary operators that execute
code repeatedly.

 d It provides combined feature that converts a list into a matrix.

To implement single-node parallelism by using the foreach package, it is necessary
to use parallel backend, such as doParallel, doMC, etc. These parallel backend, execute
foreach loops parallelly. To use this parallel backend, it is necessary to register it even when
“%dopar%” binary operator is used. This parallel backend acts as an interface between
foreach and parallel package.

makeCluster() and stopCluster() can also be used for defining the number of cores
in the parallel backend.

Parallel Computing with R 527

Figure 12.6 Single node parallelism in Windows

Example 1

In this example, parallel computing of a function “sqr” is carried out to calculate the square
of a number. After loading the foreach and doParallel packages, register the four doParallel
packages by using registerDoParallel(). Then, the foreach() function does parallel execu-
tion of the function. By default, it returns the output in the form of a list. By using the option
“.combine = c/cbind”, the output can be converted into columns or a matrix (Figure 12.7).

Example 2

In this example, parallel computing of a function “cube” is carried out to calculate the cube
of a number. After loading the foreach and doParallel packages, makeCluster() creates
a cluster “cl” that contains 8 clusters. It is then passed to the registerDoParallel()
function. Then, the foreach() function does parallel execution of the function “cube”.
After this, stopCluster stops the cluster (Figure 12.8).

528 Data Analytics using R

Figure 12.7 Single-node parallelism using foreach and doParallel

Figure 12.8 foreach and doParallel using clusters

Parallel Computing with R 529

Example 3

In this example, we execute the code sequentially using “%do%” and then in parallel
using “%doPar%” and compare the execution time (for sequential and parallel execution).

Step 1: Load the “doParallel” package.

> library(doParallel)

Loading required package: foreach

foreach: simple, scalable parallel programming from Revolution Analytics

Use Revolution R for scalability, fault tolerance and more.

http://www.revolutionanalytics.com

Loading required package: iterators

Loading required package: parallel

Step 2: Execute the sequential “foreach” loop. The below code calculates the sum of
hyperbolic tangent function results.

> system.time(foreach(i=1:10000) %do% sum(tanh(1:i)))

 user system elapsed

 6.13 0.02 6.99

Step 3: Change “%do%” to “%dopar%” to execute the code in parallel.

> system.time(foreach(i=1:10000) %dopar% sum(tanh(1:i)))

 user system elapsed

 6.09 0.00 6.13

Warning message:

executing %dopar% sequentially: no parallel backend registered

However, it may respond with a warning message which indicates that the loop ran
sequentially. This happens if we run “%dopar%” for the first time. To counter this, register
parallel backend and run the code in parallel. The execution time is much lower this time.
If the backend is registered without any parameters, by default it creates three workers
on a Windows platform and on a Unix platform, half the number of cores approximately.

> registerDoParallel()

> system.time(foreach(i=1:10000) %dopar% sum(tanh(1:i)))

 user system elapsed

 2.31 0.06 11.62

Step 4: Check the number of workers with getDoParWorkers().

> getDoParWorkers()

[1] 3

Step 5: Perform sequential execution of the code and observe the execution time.

> registerDoSEQ()

> getDoParWorkers()

[1] 1

> system.time(foreach(i=1:10000) %do% sum(tanh(1:i)))

 user system elapsed

 6.24 0.02 6.33

530 Data Analytics using R

Step 6: Explicitly set the number of workers and execute the code in parallel. Observe
the execution time.

> registerDoParallel(cores=2)
> getDoParWorkers()
[1] 2
> system.time(foreach(i=1:10000) %dopar% sum(tanh(1:i)))
 user system elapsed
 2.23 0.03 13.94

Step 7: Create a computational cluster manually. Once the code has been executed,
unregister the cluster by calling the stopCluster() function.

> cl <- makeCluster(2)
> registerDoParallel(c1)
> system.time(foreach(i=1:10000) %dopar% sum(tanh(1:i)))
 user system elapsed
 2.12 0.01 13.98
> stopCluster(cl)

Comparison between Single and Parallel Execution

By using the benchmark() function of “rbenchmark” parallel, it is possible to compare the
performance of single and parallel execution of the foreach loop. The benchmark() function
is based on all around system.time that evaluates any expression. It generates the output
into a data frame and returns many values, such as counts of replications, environment, rela-
tive, etc. The replication defines the number of times an expression needs to be evaluated,
environment defines where the expression runs, elapsed defines the execution time, etc.

Figure 12.9 compares the two expressions of the foreach package. The first expression
is based on single execution, whereas the second expression is based on parallel execution
of more than one process. For single execution, the package has an elapsed time 0.53,
whereas the parallel execution of five processes has an elapsed time 1.01 that indicates
that parallel execution takes less time compared to the single execution.

12.4.2 Support for Parallel Execution over Multiple Nodes with
Message Passing Interface

The multi-node parallelism uses computing clusters to implement parallel computing.
R language provides different packages that support multi-node parallelism by using MPI.
Section 12.2 described the basic concept of MPI that provides a portable interface to obtain
HPC using high-performance message passing operations. The Rmpi, SNOW (Simple
Network of Workstations), and pbdR are few popular packages of R that implement
multi-node parallelism through MPI. You will learn about these packages in this section.

Rmpi

Rmpi is one of the user-developed parallel packages of R language. Actually, Rmpi is an
interface or wrapper to use MPI for parallel computing using R. It follows the master/
slave paradigm. Hao Yu developed this package. It supports all types of operating systems.

Parallel Computing with R 531

The package supports the OpenMPI or MPICH2 message passing programs. For perform-
ing parallel processing on a single system, it is necessary to install such message passing
programs. Without this, it is not possible to perform parallel execution on a single machine.

The Rmpi package contains many functions. Table 12.2 below lists some useful functions
of the package for parallel computing.

Table 12.2 Some useful functions of Rmpi package

Function Name Function Description
mpi.universe.size() It returns the total number of available CPUs in a cluster
mpi.comm.size() It returns the number of processes
mpi.comm.rank() It returns the rank of a process. By default, rank of the master is

0 and rank of slave is 1 to the number of slaves
mpi.spawn.Rslaves(nslaves = mpi.
universe.size(), root = 0)

It spawns the R slaves

mpi.bcast.cmd(cmd = …) It transmits or executes the commands from master to all R slaves
mpi.remote.exec(cmd = …) It remotely executes the commands on R slaves and returns all

executed results back to masters
mpi.bcast.Robj2slave(obj, all =
FALSE)

It transmits or broadcasts an R object from the master to all
slaves

mpi.bcast.Rfunc2slave(obj) It transmits functions of all masters to slaves
mpi.bcast.Robj(obj, root =0) It collects the object of each member of the specified member

by the argument root
mpi.send.Robj(obj, destination, tag) It sends objects to the destination
mpi.recv.Robj(mpi.any.resource(),
mpi.any.tag())

It sends objects to the destination

mpi.close.Rslaves(dellog = FALSE) It shuts down all R slaves without deleting the current log files
of the slaves

mpi.exit() It terminates the MPI execution environment and detaches the
library Rmpi

Figure 12.9 benchmark() function

532 Data Analytics using R

Since the installation of OpenMPI or other similar programs is necessary for a single
system, it is important to learn about some pseudo codes.

Pseudocode for Creating Slaves

The following sample code sets 4 slaves and finds out the number of current slaves of
the system.

> # Loading library

> library(Rmpi)

>

> # Creating 4 slaves

> mpi.spawn.Rslaves(nslaves = 4)

>

> # getting the number of slaves

> mpi.comm.size()

[1] 4

>

> # return the rank

> mpi.comm.rank()

[1] 0

>

> # terminate execution

> mpi.exit()

Pseudocode for Message Passing

The following sample code defines a function for message passing, where one slave sends
the message to the next slave.

msgmpi <- function() {

find out the rank of first slave [Sender slave]

ranks <- mpi.comm.rank()

find out the rank of second slave [receiver slave]

rankr <- (ranks + 1) %% mpi.comm.rank()

rankr <- rankr + (rankr == 0)

Now send a message to the receiver

mpi.send.Robj(paste (“Sender ---“, ranks), dest = rankr, tag =

ranks)

Now receiver is receiving the message

recv.msg <- mpi.recv.Robj(mpi.any.source(), mpi.any.tag())

recv.tag <- mpi.get.sourcetag()

paste(“ Receiver received message----“, “recv.msg”, “recv.tag[1]”,

sep = “”)

}

Parallel Computing with R 533

SNOW

Simple network of workstations or SNOW is another R package that provides features
of simple parallel computing on a network of workstations. The package hides the
communication details and provides an abstraction layer. It uses many communication
methods sockets, MPI, Parallel Virtual Machine (PVM) via rpmv package, and
NetWorkSpaces (NWS) for doing parallel computing. It gives the best output, along with
the Rmpi package.

Like the Rmpi package, it follows the master/slave paradigm. In this paradigm, a master
R process uses the function makeCluster() for starting a cluster of worker processes.
Then, it uses some functions, such as clusterApply() for executing the R codes on the
worker process and returns the results back to the master.

The package provides many functions for the cluster, parallel programming, and
random number generation. Users can view the complete list of functions of the package
“SNOW” from the following link—https://cran.r-project.org/web/packages/SNOW/
index.html.

Table 12.3 describes some useful functions of the package for parallel computing. All
functions take a cluster object ‘cl’. “x” argument defines the matrix object, “X” argument
defines the array object and the “fun” argument defines the function definition in the
functions.

Table 12.3 Some useful functions of SNOW package used in parallel processing

Function Name Function Description

makeCluster(n, …) It creates the clusters according to the given value n in the function

makeCluster() It stops the current cluster

clusterExport(cl, val,…) It assigns the global value in the global environment of each node

parLapply(cl, x, fun,…) It is a parallel version of the lapply() function that returns a list of the same

length as x where each element is the result of applying fun to the corresponding

element of x

parSapply(cl, X, fun,…) It is a parallel version of the sapply() function that returns a vector

parAapply(cl, X, fun,…) It is a parallel version of the apply() function that returns a vector after

applying fun

parRapply(cl, x, fun,…) It is parallel rows apply function for a given matrix

parCapply(cl, x, fun,…) It is parallel columns apply function for a given matrix

parMM(cl, A, B…) It is parallel matrix multiply function that multiplies two given matrices A
and B

The following example creates 4 clusters by using the makeCluster(4) function.
A function “Demofunction” adds three numbers that are passed to the function
clusterExport(). Then, individual values of a, b, c are assigned into a data frame “df”.
The parRapply() function performs parallel execution of the function and returns the
output list. It is necessary to stop the cluster by using stopCluster() function (Figure
12.10).

534 Data Analytics using R

Figure 12.10 Example of SNOW package

pbdR

Programming with big data in R or pbdR is a series of R packages that contains many
other individual packages. It provides an environment for mathematics and statistical
computing with big data through high-performance statistical computation. It follows
the concept of MPI for communication that provides the flexibility during big analytics.
pbdR contains the following packages:

 d pbdMPI: The package is designed for MPI communication. It provides S4 classes
that directly interface MPI that supports the single program multiple data (SPMD).
For batch parallel execution, it is the best option.

 d pbdSLAP: The package is designed for scalable linear packages such as PBLAS,
BLACS, and ScaLAPAC.

 d pbdBASE: The package provides the core classes and methods for distributed data
types.

 d pbdDMAT: The package provides classes for distributed dense matrices for pro-
gramming with big data.

Parallel Computing with R 535

 d pbdNCDF4: The package allows multiple processes to write to the same file without
any manual synchronisation. It supports the terabyte-sized files.

The basic concept of pbdMPI package uses two functions. The first function is comm.
size() that returns the number of processes and the second function is comm.rank() that
returns the rank of a process. Like, snow and Rmpi packages, this package also needs
the installation of the message passing program like OpenMPI or other similar programs.

Pseudocode for Calculating Pie of Multiple Processes

The following sample code is calculating pie [p] of multiple processes:

> # Loading library

> library(pbdMPI)

> init()

>

> # initialize value

> np <- 1000000

>

> # defining function

> Demopi <- function(n) {

> + as.integer ((n[, 1] ^ 2 + x [, 2] ^ 2) <= 1)

> + }

>

> # function that calculates pi

> calp <- function(np) {

> + mt <- matrix(runif(np * 2), np, 2)

> + p <- Demopi(mt)

> + return (sum(p))

> + }

>

> # Now call the calp() for each process

> pr <- calp(np)

>

> # Now use reduce() to total across processes

> pr <- reduce(pr, op = “sum”)

> api <- 4 *pr / (comm.size() * np)

>

> # Release the memory

> finalize()

12.4.3 Packages Utilising Other Distributed Systems

The packages explained in the previous sections significantly manage data parallel
problems. It is also possible to solve such problems independently on different subsets of
data by using distributed programming. In distributed programming, big data is broken

536 Data Analytics using R

into different chunks and each chunk is then executed in parallel. The distributed system
is the system where a number of computers are distributed and a high-speed network
is used for communication among these computers. This system follows the concept of
distributed programming and uses some programming paradigm.

MapReduce is one of the programming paradigms that has been briefly explained in
Section 12.2. At present, Hadoop and Spark are the two most popular distributed systems
for big data analytics that use the concept of MapReduce programming paradigm.

Cloud systems are also a type of distributed system, where cloud is also a group of
distributed computers connected through high-speed network that use the Internet for
working. This system uses distributed processing for computing and users need to pay
as per their usage only. It is one of the biggest advantages of this system. Different cloud
service providers provide these services. Amazon’s EC2 and Google’s Cloud are the most
popular systems.

It is very efficient to use such systems in R language for analysing big data. It improves
the throughput of processing big data analytics problems. The CRAN task view and
other depositories define packages for such systems. Here is a brief introduction of these
systems and their respective available packages.

Hadoop

Hadoop is an open-source distributed system for distributed processing of huge data
on computer clusters. In 2005, Doug Cutting and Mike Cafarella developed it under the
terms of Apache License. Hadoop provides a distributed environment across clusters of
computers through simple programming models. It scales up from the single server to
thousands of servers with local computation and storage. Hadoop’s modules automatically
handle any hardware failure of individual machines within the framework.

Here are some of the best features of Hadoop:
 d The most important and powerful feature of Hadoop is “Hadoop Streaming” that

follows the concept of MapReduce programming paradigm. It permits users to create
and execute the Map and Reduce process with any executable script as the map-
per and/or the reducer respectively. For this, it is necessary that both the mapper
and the reducer should be executable, where the mapper reads the input from any
standard input and sends the output to any standard output.

 d Highly scalable storage platform of the Hadoop System stores and distributes very
big data across hundreds of inexpensive parallel servers. Due to this, every business
is trying to use this system for their benefit.

 d The affordable cost of Hadoop is also attracting organisations. It is very expensive
for any organisation to store huge data in traditional ways. By using Hadoop, or-
ganisations easily can reduce their storage cost.

 d The flexibility and usability features of Hadoop permit users to store structured
and unstructured data.

Parallel Computing with R 537

Due to all these features, not only organisations, but other fields like research are also
using Hadoop for different purposes, for example, log processing, data warehousing, rec-
ommendation systems, market campaign analysis and fraud detection, etc. The “Hadoop
Streaming” feature is used for generating reports to find answers to any historical queries.

R language provides many packages for Hadoop, such as RHIPE, RHadoop, toaster,
HistrogramTools, and RProtoBuf.

R Package—“rmr2” of the “RHadoop”

Revolution analytics developed a group of packages namely RHadoop. RHadoop is an
open source package that permits users to manage and analyse data with Hadoop by
using Hadoop streaming. It contains the following packages:

 d rhdfs: It provides connectivity to the Hadoop Distributed File System [HDFS] where
the user performs any operations in HDFS from within R.

 d rhbase: It provides connectivity to the HBASE distributed database using the Thrift
server where the user performs any operations in HBASE from within R.

 d rmr2: It provides functionality for statistical analysis through Hadoop MapReduce
functionality on a Hadoop cluster.

 d Plyrmr: It provides functionality for common data manipulation operations.
 d Ravro: It provides functionality to read and write the avro files from local and

HDFS file system.
In all the packages, the rmr2 package is a good option for big data analysis in

Hadoop system. It provides flexibility and allows integration within the R environment.
mapreduce() is one of the core functions of the package used for writing custom
MapReduce algorithms. The MapReduce algorithm uses key-value pairs, where the map()
function takes key-value pairs as input and the reduce() function generates output as
key-value pairs.

Let “k” and “v” be the key and value matrix respectively. The rmr2 package provides
a function keyval() that generates a list from the output key and value matrices. For
this, the key should be a matrix with a column and the same number of rows as the value
matrix. Along this, each matrix of the key matrix is matched with a row of the value
matrix. Here is a general syntax of the map() or reduce() function:

map = function (k, v)

{

 key = …

 val = …

 return(keyval(key, val))

}

To execute this function, it is necessary that Hadoop is running on the current system.
Here is a pseudocode for a mapreduce() function that counts words of any given text.
For the function, input should be text and the output will be a list with each word along
with its number of occurrences.

538 Data Analytics using R

mapreduce(

{

 in <- read.csv(“Demo.csv”),

out <- read.csv(“DemoOut.csv”),

map = function (k, v)

{

 key = v

 n = dim(v)[1]

 val = matrix(data = 1, nrow = n, ncol = 1)

 return(keyval(key, val))

}

 reduce = function (k, v)

{

 key = k[1, 1]

 val = sum(k[, 2])

 n = dim(v)[1]

 return(keyval(key, val))

}

)

Spark

Spark or Apache Spark is another open source system after Hadoop. The cluster-computing
framework of Spark is simple, sophisticated and easy to use. In 2009, it was originally
developed in AMPLab at UC Berkeley and in 2010, it was available as an open source
Apache project. It uses MapReduce technology for big data analytics and provides many
advantages compared to Hadoop. Here are some features of Spark.

 d Spark does not use Hadoop YARN for functioning. It uses its own streaming API and
independent processes for continuous batch processing on a very short interval. It is
faster than Hadoop in some cases. Spark does not have its own distributed storage
system. Most of the big data analytics prefer Spark over Hadoop.

 d The major difference between Spark and Hadoop is that Spark runs in-memory
on the cluster and does not require two-stage MapReduce paradigm like Hadoop.
Due to this in-memory feature, it can repeatedly access the same data with much
speed. It also runs as a standalone or top of a Hadoop cluster from where it can
directly access the data. The in-memory feature of Spark gives better performance
for machine learning algorithms.

 d The streaming feature of Spark is making the processing of big data analytics very
simple. It permits the user to pass data through various software functions that give
instance data analytics output. Due to this, the developers use it for graph processing
that easily maps the data relationship among different real world entities.

 d For the processing of plain data, Spark is the best option since it supports differ-
ent machine-learning algorithms and processes graphs. It permits the user to use a
single platform for everything instead of dividing it into many tasks. As compared
to Hadoop, Spark is more costly as Hadoop provides the service-offering feature.

Parallel Computing with R 539

Some of the other features include lazy optimisation of big data queries and higher

level API. It optimises the data processing steps and gives a better performance compared

to other big data technologies.

R Package—“SparkR”

R language provides package “SparkR” for establishing a connection between Spark and

R. SparkR is a lightweight frontend or R API that helps in using Apache Spark from R

language. Spark1.4 introduced R API with SparkDataFrame. SparkDataFrame is like a

table in a relational database or a data frame in R where data is organised into named

columns. Some of the features of this package are as follows:
 d It provides distributed data frame implementation that supports many operations

on large datasets, such as selection, grouping, aggregation, filtering, and any other

statistical or analytical functions.
 d Users can create SparkR data frame from the local R data frames or from any other

Spark data source HDFS, JSON, Hive, or Parquet.
 d It also supports mixing-in SQL queries and converting these query output to and

from data frames.

Installation and proper environment setting of Spark in the current system is necessary

for running different functions of the package “SparkR”. Table 12.4 lists some major

functions of SparkR packages that are used for creating a data frame and starting a session

with Spark. Users can view the complete list of functions of the package SparkR at the

following link—https://spark.apache.org/docs/1.6.0/api/R/.

Table 12.4 Major functions of SparkR

Function Description

sparkR.session() The function creates a SparkR session that connects the
R programs to a Spark cluster. The user can pass the
application names and spark package dependency in this
function

sparkR.init() The function creates a SparkR context that also connects
the R programs to a Spark cluster

createDataFrame(sqlcontext, data,…)

as.DataFrame(sqlcontext, data,…)

Where

Sqlcontext is any sql database object

data is any dataset

The function converts an R data frame or list into
DataFrame

read.df() The function creates SparkDataFrame from data sources

Here is a sample code (not executable) where package SparkR starts a session with

Spark within R. It converts a dataset into a data frame and creates a new data frame.

540 Data Analytics using R

> # Starting a session with Spark
> sc1 <- sparkR.init()
>
> # Creating session with SQL
> sqlcontext1 <- sparkRSQL.init()
>
> # Converting a dataset into data frame
> df <- as.DataFrame(sqlContext, dataset)
>
> # Creating a new data frame
> ddf <- createDataFrame(sqlContext, dataset)
>
> # Closing a session
> End()

Google Cloud

Google Cloud is a famous cloud-computing platform for storing large unstructured
data. Google developed it in 2011. The cloud platform follows the concept of distributed
processing, as the cloud is a group of computers connected via high-speed networks. Here
are some major features of the Google Cloud as follows:

 d Cloud storage permits world-wide storage and retrieval of a large amount of data at
any time. Along with the storage, it also provides services, such as serving website
content, distributing large data, storing data for archival and disaster recovery, or
allowing direct downloading of data.

 d The impressive network performance of Google Cloud is attracting different organi-
sations. It is to be noted that Google Cloud uses its own fibre network instead of
the public network. In Google Cloud, each instance is attached to a single network
that spans all regions without using virtual private network or any gateway.

 d By providing BigQuery and Google Cloud Dataflow, it offers different big data so-
lution in the big data analytics. The user can run the SQL queries using BigQuery
on huge data and can use the Google Cloud Dataflow for creating, monitoring, and
gleaning from a data processing pipeline.

 d Another major tool Cloud Debugger permits the user to assess, evaluate, and debug
the code in the production. It will help the developers during the development of
the code as they can set a point on a certain line of code and at any time server
request hits that line of code.

Due to the different features of Google Cloud, it is playing a major role in big data
analytics and data mining applications. Business analytics uses this during research work
to obtain a high-performance output. For this, they also use various available tools of the
Google cloud platform.

R Package—“googleCloudStorageR”

R language provides the package “googleCloudStorageR” for supporting an interaction
with Google Cloud Storage API in R language. This interface is a part of the “cloudyr”

Parallel Computing with R 541

project. To work with the Google cloud storage, users need to open a paid account in
Google cloud platform and grant an authentication. Here, the account is called a bucket.

If a user opens a bucket, then he or she receives an access key ID and secret access key
for working. All packages of the “cloudyr” project need the key ID and secret access key
in the environment variables. Also, the user needs to use Sys.setenv() or any other
functions for setting the environments.

Table 12.5 describes some major functions of “googleCloudStorageR” package used for
creating a data frame and starting a session with Spark. The user can view a complete list
of functions of the package “googleCloudStorageR” from the following link—https://
cran.r-project.org/web/packages/googleCloudStorageR/index.html.

Table 12.5 Major functions of the googleCloudStorageR

Function Description

gcs_auth(new_user = FALSE, no_auto = FALSE)

where,

new_user argument defines the user name if TRUE then re-

authenticate via Google login screen; no_auto is an optional

argument when TRUE then ignore the auto-authentication

settings

The function authenticates each session using
R with Google Cloud storage

gcs_create_bucket(name, projectID, …)

where,

name argument defines the name of the bucket; projectID

argument defines the valid ID of the Google Project

The function creates a new bucket in the
current project

gcs_get_bucket(name, …)

where,

name argument defines the name of the bucket

The function returns the information of the
given bucket

gcs_get_global_bucket(name, …)

where,

name argument defines the name of the bucket

The function returns the information of the
global bucket

gcs_list_buckets(projectID, …)

where,

projectID argument defines the name of the project that

contains buckets to list

The function returns the list of the buckets of
a particular project

gcs_upload(file, ….)

where,

File argument contains the name of the file to be uploaded

The function uploads any arbitrary file on the
google cloud storage. The file size should be
less than 5 MB

Here is a sample code (not executable) where package googleCloudStorageR starts
a session with Google Cloud Storage within R. It also explains some functions with
examples.

542 Data Analytics using R

> # Setting system environment

> Sys.setenv(“GCS_ClIENT_ID” = “Demokey”,

 “GCS_ClIENT_SECRET” = “DemoSecretkey”,

 “GCS_DEFALULT_BUCKET” = “DefaultBucket”,

 “GCS_AUTH_FILE = “ …/ file name”)

>

> # loading package

> library(googleCloudStorageR)

>

> # Getting authentication

> gcs_auth()

>

> # checking default bucket

> gcs_get_global_bucket()

[1] “DefaultBucket”

>

> # Uploading a file onto cloud

> write.csv(dataset, file = filename)

> gcs_upload(filename)

Amazon EC2

Amazon E2C or Amazon Elastic Compute Cloud is a type of web service that provides
distributed computing capacity in the Amazon Web Services (AWS) cloud. It is specially
designed for implementing cloud computing. Cloud computing is a type of distributed
computing where different computers are connected by using a high-speed Internetwork
and it uses the Internet for providing services. The “pay per use” is one of the most
important characteristics of the cloud services through which it has become popular for
big data analytics. Here are some of the features of Amazon E2C:

 d The simple web interface permits the users to obtain, configure, and control the
computing resources and run on the computing environment of Amazon. It provides
many services, such as simple mail services, content delivery network services, etc.
Due to this, it has become a market leader in the cloud computing market. The
content delivery network services are not available in Google Cloud.

 d The free Usage Tier permits to use micro-Windows instances in the Amazon, which
is not available in Google Cloud. It saves time to obtain and start any new server
instances in few minutes.

 d The customised networking equipment and corresponding protocols permit the
developers to build failure resilient applications. The developers separate them from
common failure through Amazon EC2.

Amazon EC2 provides a better performance as compared to Google Cloud. Google
Cloud is a public cloud that sometimes creates problems. Amazon EC2 provides more
number of services as compared to Google Cloud with excellent quality. It is giving a tough
competition to Google Cloud. The specific tools for media transcoding and streaming,

Parallel Computing with R 543

remote windows desktops, managed directory service, relational and NoSQL databases
are some examples of the exclusive services of Amazon EC2.

R package—“segue”

R language provides a package “segue” for implementing parallel processing on Amazon
EC2. The package “segue” runs on Mac or Linux operating system, but not on Windows.
It is pronounced as “sey-gwey” or “seg-wey”.

The segue package contains one main function lapply() for parallel processing of the
Elastic Map Reduce (EMR) engine, known as emrlapply(). It uses Hadoop streaming to
implement simple parallel computation with a fast and easy setup on Amazon’s EMR.
For using the Segue, it is necessary to have an account on Amazon Web Services and an
activated Elastic Map Reduce service.

Check Your Understanding

 1. List the names of some available R packages for single-node parallelism.

 Ans: The names of some available R packages for single-node parallelism are as follow:
 d parallel
 d foreach with doParallel

 2. What is forking?

 Ans: Forking is a method for creating additional processing threads and generating

additional worker threads that run on different processing cores.

 3. How many types of operators are used by ‘foreach’ package?

 Ans: The ‘foreach’ package uses “%do%” or “%dopar%” binary operators that execute code

repeatedly.

 4. What is the use of the makeCluster() function?

 Ans: The makeCluster() function creates the clusters according to the given value n in

the function.

 5. What is Hadoop?

 Ans: Hadoop is an open-source distributed system for doing distributed processing of huge

data on computer clusters. In 2005, Doug Cutting and Mike Cafarella developed it

under the terms of the Apache License.

12.5 comparIson of parallel packages In R

The above section explained some parallel packages of R language. Each package has
specific features and is built for some specific purpose. Fault tolerance defines continued

544 Data Analytics using R

operations even on the failure of some slaves. Load balancing is a parameter that spreads
the loading of tasks among resources to obtain optimal resources utilisation. Only snowFT
and biopara support fault tolerance, where Rmpi, snow, snowFT, and biopara support
load balancing.

Usability is another feature that describes how easily software can be deployed to obtain
a goal. For example, foreach, snow, pbdMPI, Rmpi, googleCloudStorageR, spark have a
complete list of the API whereas rmr or segue has no complete API.

The performance of the packages depends on the design and efficient implementation,
technology, or hardware factors. Hence, a benchmark is used to assess the performance
of the parallel packages using different metrics. For this, R language provides a package
“rbenchmark”. The package “rbenchmark” contains only a single function benchmark()
for evaluating the performance of parallel packages in R. Table 12.6 shows a comparison
between some major parallel packages in R

Table 12.6 Parallel packages in R

Package
Name

Version Features Technology Download Link/Document
Link

parallel NA d Replaces multicore and

snow
 d Simple parallel processing
 d Efficient and ease of use

Clustering https://stat.ethz.ch/R-
manual/R-devel/library/
parallel/doc/parallel.pdf

foreach 1.4.3 d Uses looping for parallel

processing
 d Enhances the doMC, doPar-

allel, RUnit
 d Efficient and ease of use

Looing
constructs

https://cran.r-project.org/
web/packages/foreach/
index.html

doparallel 1.0.10 d Enhances RUnit
 d Foreach parallel adaptor

Parallel
processing

https://cran.r-project.org/
web/packages/doParallel/
index.html

Rmpi 0.6-6 d Interface to MPI APIs
 d Not very efficient, low er-

ror, provide satisfied output
 d Highly developed

MPI
implementation

https://cran.r-project.org/
web/packages/Rmpi/
index.html

snow 0.4-1 d Defines simple parallel

processing
 d Efficient, compatible with

other packages, low errors
 d Provide satisfied output,

Highly developed

MPI
implementation

https://cran.r-project.org/
web/packages/snow/
index.html

pbdMPI 0.3-2 d Interface to MPI as based

on SPMD
 d Simple but not efficient
 d Provides satisfied output

and developing

MPI
implementation

https://cran.r-project.org/
web/packages/pbdMPI/
index.html

Parallel Computing with R 545

Check Your Understanding

 1. What is fault tolerance?

 Ans: Fault tolerance defines continued operations even on the failure of some slaves.

 2. What is rbenchmark?

 Ans: rbenchmark is a package of the R language that provides the function benchmark().

Sales Forecasting

Today household products are sold by deploying sales forecast and using
events, exhibitions, sales, etc. Retailers use location details to influence the
supply chain. But, sometimes it is not that simple for retailers to handle the
demand chain. In such cases, they hire professionals to help them forecast
sales by using historical data or predicting cognitive behaviour of customers
depending upon their location. In order to ensure good sale even in bad
markets, retail store network needs to understand the condition of the market.
Sales forecast is the process of making customers happy. There are many
companies from local market to e-commerce too which use this technology.
These days most of the companies use parallel computing with the help of
big data. Hadoop, MapReduce, Spark, Machine Learning, and Cognitive
Intelligence (computing), etc., are some of the technologies that are used by
companies.

Hadoop, MapReduce, and Spark are the latest software that are used to
handle such problems. However, there are some new technologies that are
used to minimise the effort in computing the results for sales forecast. Retail
market depends heavily on future sales trends to increase revenue and satisfy
customers. These days, we have technology to predict sales for every 10–15
days with nearly 98% accuracy.

In this case study, you will learn about Spark that is being used from past
2 years in the market. It is the most useful optimisation tool used for parallel
computing. Spark engine runs on Hadoop, Mesos, and Standalone or in
the cloud environment. Depending upon the size of the database, it can be
performed on HDFS, Cassandra, HBase and EC3. The best thing about Spark
is its Fault Tolerance property with packages of Java, Python, and R.

For forecasting sales and understanding cognitive nature of customers,
many companies use a cluster of techniques. Take a look at an example.

C
a
se

 St
u

dy

(Continued)

546 Data Analytics using R

Input from UX/UI includes:

if “Nearest neighbor clustering” is selected, cluster.

method=”single”

if “Fathest neighbor clustering” is selected, cluster.

method=”complete”

if “Average clustering” is selected, cluster.

method=”average”

only one of the three options can be, and must be, se-

lected

Here, as an example, suppose “Average clustering” is se-

lected, I set cluster.method=”average”

This needs to be changed, depending on the selection

from UX/UI

cluster.method=”average”

png(“test.png”,width=800,height=600)

options(bitmapType=”cairo”)

require(“XLConnect”)

wb <- loadWorkbook(“example_data.xlsx”)

df1 <- readWorksheet(wb, sheet =”sheet1”)

#extracting ID

id=df1[,1]

df1=df1[,-1,drop=FALSE]

#keep only numeric columns

#categorical columns will be ingnored

df1 <- df1[sapply(df1,is.numeric)]

n.col=ncol(df1)

if (n.col<2) plot(0,pch=””,ylab=””,xlab=””,axes=FALSE,main

=”Error: at least 2 numeric variables are required.”)

if (n.col>1)

{

 df1=as.matrix(df1)

 rownames(df1)=id

 d <- dist(df1, method = “euclidean”)

 fit <- hclust(d, method=cluster.method)

 plot(fit,ylab=”Distance”,xlab=”Sample ID”,sub=””)

}

dev.off()

C
a
se

 St
u

dy

(Continued)

Parallel Computing with R 547

The output depends on the files users want to use. Big data provides many
exciting opportunities for discovering knowledge that might be relevant to
this task in unconventional ways. However, it also raises important questions
of theory and method. On the theoretical side, there are questions about what
the value of data known today might be for what might be happening around
now (nowcasting) or to what might happen months or years later (forecasting).
On the method side, there is the need to avoid drawing unreliable conclusions,
and to find ways to reduce the dimensionality of the information in big data
in ways which enable it to be turned into meaningful knowledge.

These days many companies and even e-commerce sites use graph theory.
They implement the basis of user information under the mean of their choice
they like or dislike. This also helps them in understanding the new trends
in the market, sales and discount they need to offer to customers for gaining
their interest. Implementing graph mining can help retailers maintain their
most important customers. This also helps them to approach a new customer
through the shortest path. It is like a stock market share which we can sell
to users. Many international banks are reading information of users to offer
them different kinds of credit cards and policies on the basis of their needs.

Some of the techniques to do this are Bayesian techniques: Kalman filtering,
spike-and-slab regression, and model averaging, significance testing (forward
and backward stepwise regression, Gets); information criteria; principle
component and factor models (e.g. Stock and Watson) and Lasso, ridge
regression and other penalised regression models.

Another important approach is directed algorithmic text analysis (DATA).
The approach is based on searching particular terms in textual databases.
Textual data is more comparative in nature. It involves mutual indexing and
referring information to another node. However, in contrast to the econometric
approaches, this methodology is based upon a theory of human cognitive,
behaviour changes as per the radical uncertainty. The search is directed by
the theory. This direction dramatically reduces the dimensionality of the
search under graph search engine as they look forward for the shortest path
to get valuable insights by the customer to hit the right users to complete
their needs in the market.

C
a
se

 St
u

dy

 d The simple concept of parallel computing is that it divides a problem into discrete parts, where each

part is further divided into a series of instructions.

 d Image modelling of different situations, such as weather, galaxy formation, climate change, etc.,

data mining applications, big data analytics, database applications are few of the major applications

where parallel computing can be applied.

Summary

(Continued)

548 Data Analytics using R

 d Different hardware tools, such as the multiprocessors and multicore computers (distributed comput-

ers) containing multiple processing elements within a single machine are used in parallel computing.

This multi-core computer can be homogeneous or heterogeneous.

 d CRAN or Comprehensive R Archive Network (CRAN) is one of the repositories of R language that

defines different packages group wise for high-performance computing in their task view.

 d The main motivations that empower R language with high-performance computing (HPC) are no ef-

ficient packages available for the computation complexity of the big data, insufficient computational

resources, the design, and implementation of R language, to reduce the time and efficient utilisa-

tion of resources, unable to utilise the modern computer infrastructure like parallel coprocessors.

 d When multiple processing units including hosts CPUs, threads, or other units simultaneous execute

within a single computer system then this single computer system becomes a single node.

 d The MPI or message passing interface is a portable message-passing system that works on different

types of parallel computers. The system provides an environment where programs run in parallel

and communicate with each other by passing messages to each other.

 d The message library routine contains the syntax and semantics to design and implement the mes-

sage passing programs in various computer programming languages like C, C++, Java, and others.

 d The MapReduce programming paradigm is a new programming paradigm developed by Google.

This programming paradigm is specially designed for parallel or distributed processing of large set

of data into small regular-sized data.

 d Parallel and foreach with doParallel are the names of some available R packages for the single-node

parallelism.

 d Rmpi, SNOW, pbdR are the names of some available R packages for the multi-node parallelism.

 d Forking is a method for creating additional processing threads and generating additional worker

threads that run on different processing cores.

 d The function detectCores() finds out the number of available cores of the current CPU.

 d The mclapply() function of the “parallel” package does the single node parallelism. The func-

tion can increase the number of cores in the CPU

 d The “foreach” is a package of the R language that provides new looping facility and supports paral-

lel execution.

 d The “foreach” package uses “%do%” or “%dopar%” binary operators that execute code repeatedly.

 d The package “foreach” provides .combine feature that converts the list into a matrix.

 d The registerDoParallel() function registers the doParallel packages in R environment.

 d The SNOW (Simple Network of Workstations) is an R package that provides the feature of the simple

parallel computing on a network of workstations.

 d The pbdR is a series of R packages that contains many other individual packages. It provides an

environment for mathematics and statistical computing with Big Data through high-performance

statistical computation.

 d Hadoop is an open-source distributed system for doing distributed processing of huge data on

computer clusters. In 2005, Doug Cutting and Mike Cafarella developed it under the terms of the

Apache License.

 d The RHadoop is an open source package that permits user to manage and analyse the data with

Hadoop using Hadoop streaming.

 d The RHadoop contains the packages rhdfs, rhbase, rmr2, plyrmr, and ravro .

 d The mapreduce() is one of the core function of the package rmr2 used for writing custom Ma-

pReduce algorithms.

(Continued)

Parallel Computing with R 549

 d Spark or Apache Spark is an open source system with cluster-computing framework.

 d A SparkDataFrame is like a table in a relational database or a data frame in R where data is organised

into named columns.

 d R language provides package “googleCloudStorageR” for interaction with Google Cloud Storage API

in R language.

 d Amazon E2C is a type of web service that provides distributed computing capacity in the Amazon

Web Services [AWS] cloud.

 d R language provides a package “segue” for implementing parallel processing on Amazon EC2. The

package “segue” runs on Mac or Linux operating system but not on windows.

 d Usability is another feature that describes how easily software can be deployed to obtain a goal.

 d A benchmark is used to assess the performance of parallel packages using different metrics.

 Ke y Te r m s

 d Amazon E2C: Amazon E2C is a type of
web service that provides the distributed
computing capacity in the Amazon Web
Services (AWS) cloud.

 d Benchmark: Benchmark is used to assess
the performance of parallel packages using
different metrics.

 d Big data: Big data is a type of data that
contains huge information. It is a directory
that contains the installed packages.

 d Cloud: A cloud is a group of distributed
computers connected via high-speed net-
works.

 d Cloud computing: Cloud computing is
a type of distributed computing where
computers are connected via high-speed
networks.

 d Cluster: A cluster is a group of interconnect-
ed computers that share available resources.

 d CRAN: CRAN or Comprehensive R Archive
Network (CRAN) is one of the repositories
of R language that defines different pack-
ages group-wise for high-performance
computing in their task view.

 d Distributed computing: Distributed com-
puting is a type of computing where
computers are connected via a high-speed
network and share resources.

 d Fault tolerance: Fault tolerance defines the
continued operations even on the failure of
some slaves.

 d Google Cloud: Google Cloud is a famous
cloud-computing platform for storing large
unstructured data.

 d Grid computing: Grid computing is a type
of distributed computing where multiple
computers share resources.

 d Hadoop: Hadoop is an open-source distrib-
uted system used for distributed processing
of huge data on computer clusters.

 d High-performance computing: High-per-
formance computing is a type of computing
that supports parallel processing to obtain
an efficient and reliable output.

 d Load balancing: Load balancing is a param-
eter that spreads the loading of tasks among
resources to obtain optimal resources utili-
sation.

 d Map: Map is a process that takes input data
delegated into key-value pairs and divides
it into fragments assigned to map tasks.

 d MapReduce: The MapReduce program-
ming paradigm is a new programming
paradigm developed by Google that divides
a large set of data into small regular-sized
data.

550 Data Analytics using R

 mu l T i p l e Ch o i C e Qu e s T i o n s

 1. From the given options, find the odd one out.

 (a) Multi-processors (b) Multi-core computers

 (c) Pthreads (d) CPU

 2. From the given options, find the odd one out.

 (a) Shared memory (b) MPI

 (c) Pthreads (d) CPU

 3. From the given options, which of the following packages is used for explicit parallelism?

 (a) SNOW (b) Pnmath

 (c) Romp (d) Rdsm

 4. From the given options, which of the following packages is used for implicit parallelism?

 (a) Rhpc (b) pdbMPI

 (c) foreach (d) Rmpi

 5. From the given options, which of the following packages is used for grid computing?

 (a) SNOW (b) multiR

 (c) Rmpi (d) Rdsm

 6. From the given options, which of the following packages is used for Hadoop?

 (a) Rmpi (b) pdbR

 (c) foreach (d) RHIPE

 7. From the given options, which of the following packages supports single-node parallelism?

 (a) parallel (b) sparkR

 (c) Rmpi (d) rmr2

 8. From the given options, which of the following packages is defined for Amazon EC2?

 (a) segue (b) sparkR

 (c) googleCloudStorageR (d) RHIPE

 d MPI: MPI or message passing interface is
a portable message-passing system that
works on different types of parallel com-
puters.

 d OpenMPI: OpenMPI is a message-passing
program used for implementing MPI.

 d Parallel computing: Parallel computing
divides a problem into discrete parts, where
each part is further divided into a series of
instructions.

 d rbenchmark: rbenchmark is a package
of R language that provides the function
benchmark().

 d Reduce: Reduce is a process that gener-
ates an output into key-value pairs after
grouping.

 d Spark: Spark or Apache Spark is an open
source system with cluster-computing
framework.

 d SparkDataFrame: SparkDataFrame is like
a table in a relational database or a data
frame in R, where data is organised into
named columns.

 d Usability: Usability is another feature that
describes how easily software can be de-
ployed to obtain a goal.

Parallel Computing with R 551

 9. From the given options, which of the following packages contains the binary operators?

 (a) Parallel (b) sparkR

 (c) foreach (d) rmr2

 10. From the given options, which of the following packages contains the mclapply()
function?

 (a) Segue (b) SNOW

 (c) parallel (d) RHIPE

 11. From the given options, which of the following functions returns the number of processes?

 (a) comm.size() (b) comm.rank()

 (c) makeCluster() (d) install.packages()

 12. From the given options, which of the following packages contains the function comm.
rank()?

 (a) Rmpi (b) pdbR

 (c) foreach (d) SNOW

 13. From the given options, which of the following packages contains the function parMM()?

 (a) Rmpi (b) pdbR

 (c) foreach (d) SNOW

 14. From the given options, which of the following packages contains the function .combine
feature?

 (a) Rmpi (b) pdbR

 (c) foreach (d) SNOW

 15. From the given options, which of the following packages contain the function read.df()?

 (a) Rmpi (b) sparkR

 (c) segue (d) rmr2

 16. From the given options, which of the following packages contain the function gcs_auth()?

 (a) segue (b) rmr2

 (c) googleCloudStorage2 (d) Rmpi

 sh o r T Qu e s T i o n s

 1. What are the advantages and applications of parallel processing?

 2. What are the hardware tools and software concepts used in parallel processing?

 3. What are the reasons to empower R with high-performance computing?

 4. What is the difference between single and multi-node parallelism?

 5. How are single-node parallelism and multi-node parallelism in R implemented?

 6. What is the difference between Map and Reduce process?

 7. How is the single-node parallelism implemented in Windows?

552 Data Analytics using R

 lo n g Qu e s T i o n s

 1. Explain the working of message passing interface mechanism.

 2. Explain the MapReduce programming paradigm.

 3. Why is support forking not supported by Windows. Explain.

 4. Explain the Rmpi package and its functions.

 5. Explain the functions of SNOW package. How is parallel processing implemented by using
the SNOW package? Give an example.

 6. What is the pbdR package and rmr2 package?

 7. Write a note on the functioning of sparkR package.

 8. What is the googleCloudStorageR package?

 9. Write about the functions of the googleCloudStorageR package.

 10. Explain some performance metrics that compare the packages of R.

 pr a C T i C a l ex e r C i s e s

 1. What will be the output of the following syntax?

lapply(2:5, function(x) c(x, x^2, x^3))

Solution:
> lapply(2:5, function(x) c(x, x^2, x^3))

[[1]]

[1] 2 4 8

[[2]]

[1] 3 9 27

[[3]]

[1] 4 16 64

[[4]]

[1] 5 25 125

 2. What will be the output of the following function?

lapply(1:3/2, round, digits = 3)

Parallel Computing with R 553

Solution:
> lapply(1:3/2, round, digits=3)

[[1]]

[1] 0.5

[[2]]

[1] 1

[[3]]

[1] 1.5

 3. Determine the number of cores in the system (hint: use detectCores()) and use it to
create a cluster (hint: use makeCluster()). What will be the output of running the below
code?

library(parallel)

calculate the number of cores

no_cores <- detectCores() -1

cl <- makeCluster(no_cores)

call the parallel version of lapply(), parLapply

parLapply(cl, 2:4, function(exponent) 2^ exponent)

Solution:
> library(parallel)

> # Calculate the number of cores

> no_cores <- detectCores() – 1

> no_cores

[1] 1

> # Initiate cluster

> cl <- makeCluster(no_cores)

> cl

socket cluster with 1 nodes on host ‘localhost’

> # call the parallel version of lapply(), parLapply

> parLapply(cl, 2:4,

+ function(exponent)

+ 2^exponent)

[[1]]

[1] 4

[[2]]

[1] 8

[[3]]

[1] 16

> # stop the cluster

> stopCluster(cl)

554 Data Analytics using R

 4. What will be the output of the following code?

library(doParallel)

no_cores <- detectCores() - 1

cl <- makeCluster(no_cores)

registerDoParallel(cl)

base <- 3

foreach(exponent = 2:4, .combine = c) %dopar% base^exponent

foreach(exponent = 2:4, .combine = rbind) %dopar% base^exponent

foreach(exponent = 2:4, .combine = list, .multicombine = TRUE)

%dopar% base^exponent

Solution:

> library(doParallel)

Loading required package: iterators

Loading required package: parallel

> no_cores <- detectCores() – 1

> cl<-makeCluster(no_cores)

> registerDoParallel(cl)

> base <- 3

> foreach(exponent = 2:4,

+ .combine = c) %dopar%

+ base^exponent

[1] 9 27 81

>foreach(exponent = 2:4,

+ .combine = rbind) %dopar%

+ base^exponent

 [,1]

result.1 9

result.2 27

result.3 81

> foreach(exponent = 2:4,

+ .combine = list,

+ .multicombine = TRUE) %dopar%

+ base^exponent

[[1]]

[1] 9

[[2]]

[1] 27

[[3]]

[1] 81

Parallel Computing with R 555

 5. What will be the output of the following code?

x <- 1:100

x

y = Map({function(a) a *3}, x)

unlist(y)

x = seq(1,20,2)

x

Reduce(function(x , y) x+y, x)

Solution:
> x <- 1:100

> x

 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

 [19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

 [37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

 [55] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

 [73] 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

 [91] 91 92 93 94 95 96 97 98 99 100

> y = Map({function(a) a *3}, x)

> unlist(y)

 [1} 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54

 [19] 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102 105 108

 [37] 111 114 117 120 123 126 129 132 135 138 141 144 147 150 153 156 159 162

 [55] 165 168 171 174 177 180 183 186 189 192 195 198 201 207 207 210 213 216

 [73] 219 222 225 228 231 234 237 240 243 246 249 252 255 258 261 264 267 270

 [91] 273 276 279 282 285 288 291 294 297 300

> x = seq(1,20,2)

> x

 [1] 1 3 5 7 9 11 13 15 17 19

> Reduce(function(x, y) x+y, x)

[1] 100

Answers to MCQs:

 1. (c) 2. (d) 3. (a) 4. (a) 5. (b) 6. (d) 7. (a)

 8. (a) 9. (c) 10. (c) 11. (a) 12. (b) 13. (d) 14. (c)

 15. (b) 16. (c)

	Title
	Contents
	1 Introduction to R
	2 Getting Started with R
	3 Loading and Handling Data in R
	4 Exploring Data in R
	5 Linear Regression using R
	6 Logistic Regression
	7 Decision Tree
	8 Time Series in R
	9 Clustering
	10 Association Rules
	11 Text Mining
	12 Parallel Computing with R

