Data Structures

About the Author

E Balagurusamy, former Vice Chancellor, Anna University, Chennai and
Member, Union Public Service Commission, New Delhi, is currently the
Chairman of EBG Foundation, Coimbatore. He is a teacher, trainer, and
consultant in the fields of Information Technology and Management. He holds
an ME (Hons) in Electrical Engineering and PhD in Systems Engineering
from the Indian Institute of Technology, Roorkee. His areas of interest include
Object-Oriented Software Engineering, E-Governance, Technology Management,
Business Process Re-engineering, and Total Quality Management.

A prolific writer, Dr Balagurusamy has authored a large number of research
papers and several books.

A recipient of numerous honors and awards, Dr Balagurusamy has been listed in the Directory of
Who’s Who of Intellectuals and in the Directory of Distinguished Leaders in Education.

Data Structures

E Balagurusamy

Chairman
EBG Foundation
Coimbatore

Education

McGraw Hill Education (India) Private Limited
CHENNAI

McGraw Hill Education Offices

Chennai New York StLouis San Francisco Auckland Bogotd Caracas
Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal
San Juan Santiago Singapore Sydney Tokyo Toronto

MR McGraw Hill Education (India) Private Limited
Published by McGraw Hill Education (India) Private Limited
444/1, Sri Ekambara Naicker Industrial Estate, Alapakkam, Porur, Chennai 600 116

Data Structures

Copyright © 2019 by McGraw Hill Education (India) Private Limited.

No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise or stored in a database or retrieval system without the prior written permission of the publishers. The pro-
gram listings (if any) may be entered, stored and executed in a computer system, but they may not be reproduced for publication.

This edition can be exported from India only by the publishers,
McGraw Hill Education (India) Private Limited.

(23456789 DI03074 22 21 20 19 [1§]
Printed and bound in India.

Print-Book Edition
ISBN (13): 978-93-5316-182-8
ISBN (10): 93-5316-182-7

E-Book Edition
ISBN (13): 978-93-5316-183-5
ISBN (10): 93-5316-183-5

Director—Science & Engineering Portfolio: Vibha Mahajan

Senior Portfolio Manager—Science & Engineering: Hemant K Jha
Associate Portfolio Manager—Science & Engineering: Tushar Mishra

Production Head: Satinder S Baveja
Copy Editor: Taranpreet Kaur

General Manager—Production: Rajender P Ghansela
Manager—Production: Reji Kumar

Information contained in this work has been obtained by McGraw Hill Education (India), from sources believed to be reliable.
However, neither McGraw Hill Education (India) nor its authors guarantee the accuracy or completeness of any information published
herein, and neither McGraw Hill Education (India) nor its authors shall be responsible for any errors, omissions, or damages arising
out of use of this information. This work is published with the understanding that McGraw Hill Education (India) and its authors are
supplying information but are not attempting to render engineering or other professional services. If such services are required, the
assistance of an appropriate professional should be sought.

Typeset at APS Compugraphics, 4G, PKT 2, Mayur Vihar Phase-III, Delhi 96, and printed at

Cover Designer: APS Compugraphics
Cover Image Source: Shutterstock

Cover Printer:

Visit us at: www.mheducation.co.in

Write to us at: info.india@mheducation.com
CIN: U22200TN1970PTC111531

Toll Free Number: 1800 103 5875

Preface

About the Book

Data Structure is the way of storing data in a computer system. It allows an application to fetch and store
data in the computer’s memory in an efficient manner. It is very important to choose the correct type
of data structure while developing a software application. C is one of the first programming languages
that students of computer science get familiar with. It is also the language of choice while facilitating
the learning of programming concepts such as data structures.

The strength of Data Structures lies in its simple and lucid presentation of the subject which will help
beginners in better understanding of the concepts. It adopts a student-friendly approach to the subject
matter with many solved and unsolved examples, illustrations and well-structured C programs.

This book will prove to be a stepping stone in understanding the data structure concepts in an efficient
and organized manner, and also for revisiting the fundamentals of data structure.

Salient Features of the Book

* In-depth coverage of all important topics like Arrays, Linked lists, Stacks, Queues, Trees, Graphs,
Sorting, and Searching

¢ Dedicated chapter on Real Life Applications of Data Structures

* Explains run-time complexity of all algorithms

¢ Multiple-Choice Questions for university exams and interviews

* Innovative chapter features includes pedagogical aids like illustrations, programs, important commands
in programs, output and program analysis, note, checkpoint, key terms, solved problems, and review
questions.

What Sets This Book Apart

Chapter Opening Features

At the opening of each chapter, the outline lists the major headings, followed by an introduction to the
chapter. This will help students organize their study priorities.
In-chapter Features

Features like algorithms, pseudocodes, flowcharts and programs emphasize on a point or help teach a
concept. Commands in bold draw students’ attention to a particular section in the program.
Other Significant Features

Notes, Tips and Checkpoints are designed to provide extra information or alternative views or results
or interesting snippets of information related to the content of the chapter.
Chapter-end Features

Summary reviews the concepts while a list of key terms helps identify the vocabulary students need to
understand the concepts presented in the chapter. Students can assess their knowledge by answering the
basic review questions, programming exercises and multiple-choice questions.

Chapter Organization

This book is organized into 8 chapters, which explain concepts like Arrays, Stacks, Queues, Linked
Lists, Trees and Graphs.

Chapter 1 introduces algorithm and its related concepts. It also provides a brief introduction to
the different types of data structures. Chapter 2 discusses one of the commonly used derived data
types, i.e., array and explains how it is used as a data structure in different programming situations.
Chapter 3 explains the concept of linked list along with its different variants. Chapters 4 and 5
elucidates the restricted data structures, stacks and queues. These data structures are of great importance
in programming situations because of the specific restrictions that they apply on insertion and deletion
of data elements. Chapters 6 and 7 explain the non-linear data structures trees and graphs and their
related operations. These chapters also explain the various algorithms that are used to traverse these
data structures. Chapter 8 introduces two of the most common computing operations, i.e., searching
and sorting. It explains various searching and sorting techniques along with their related advantages
and disadvantages.

Acknowledgements
I would like to thank the following reviewers for their suggestions in improving the script:

Dr. K. Sasi Kala Rani Hindusthan Institute of Technology, Coimbatore
Shashank Dwivedi UCER, Allahabad, Uttar Pradesh

Rajiv Pandey Amity University Lucknow Campus, Lucknow, Uttar Pradesh
Mahua Banerjee Xavier Institute of Social Service, Ranchi, Jharkhand
Sameer Bhave Indore Professional Studies Academy, Indore, Madhya Pradesh
D Lakshmi, Adithya Institute of Technology, Coimbatore, Tamil Nadu
A Sharada G Narayanamma Institute of Technology and Science, Hyderabad,
Andhra Pradesh
Sincere thanks to the editorial team of McGraw Hill Education (India) for their support and cooperation.
Publisher’s Note

Remember to write to us. We look forward to receiving your feedback, comments, and ideas to enhance
the quality of this book. You can reach us at info.india@mheducation.com. Please mention the title and
authors’ name as the subject. In case you spot piracy of this book, please do let us know.

vi Preface

Contents

Preface
Roadmap to the Syllabus

UNIT-I LINEAR DATA STRUCTURES - LIST

Xiii

1. Introduction to Algorithm and Data Structures

1.1 Introduction /.2
1.2 Algorithms 7.2
1.2.1 Characteristics of an Algorithm /.3
1.2.2 Representation of an Algorithm /.3
1.2.3 Efficiency of an Algorithm 1.5
1.3 Asymptotic Notation /.6
1.3.1 Big-Oh Notation 1.6
1.3.2 Omega Notation /.7
1.3.3 Theta Notation 7.9
1.4 Introduction to Data Structures /.70
1.4.1 Characteristics of Data Structure 7.7/
1.5 Types of Data Structures 1.1/
1.5.1 Arrays [.12
1.5.2 Linked Lists /.12
1.5.3 Stacks 1.13
1.54 Queues [1.713
1.5.5 Trees [1.14
1.5.6 Graphs [.14
1.6 Data Structure Operations 1.15
1.6.1 Data Structure Efficiency 1.15
Summary 1.15
Key Terms 1.16
Multiple-Choice Questions 1.16
Review Questions 1.17

2. Arrays

2.1 Introduction 2.2
2.2 Types of Arrays 2.2
2.3 Representation of One-Dimensional Array in Memory 2.3

1.1

2.1

2.4 Array Traversal 2.3

2.5 Insertion and Deletion 2.5
2.5.1 Insertion 2.5
2.5.2 Deletion 2.8

2.6 Sorting and Searching 2.70
2.6.1 Sorting 2.10
2.6.2 Searching 2.13

2.8 Realizing Matrices using Two-Dimensional Arrays 2.16

2.9 Matrix Operations 2.18
2.9.1 Addition 2.18
2.9.2 Subtraction 2.2/
2.9.3 Multiplication 2.2/
2.9.4 Transpose 2.24

Solved Problems 2.26

Summary 2.27

Key Terms 2.27

Multiple-Choice Questions 2.28

Review Questions 2.29

Programming Exercises 2.29

3. Linked Lists 3.1

3.1 Introduction 3.2

3.2 Linked Lists—Basic Concept 3.2
3.2.1 Representation of Linked Lists 3.2
3.2.2 Advantages of Linked Lists 3.3
3.2.3 Disadvantages of Linked Lists 3.3
3.3 Linked List Implementation 3.3
3.3.1 Linked List Node Declaration 3.3
3.3.2 Linked List Operations 3.4
3.3.3 Linked List Implementation 3.7
3.4 Types of Linked Lists 3.15
3.5 Circular Linked List 3.75
3.5.1 Circular Linked List Operations 3./6
3.5.2 Circular Linked List Implementation 3.77
3.6 Doubly Linked List 3.24
3.6.1 Doubly Linked List Node Declaration 3.25
3.6.2 Doubly Linked List Operations 3.25
3.6.3 Doubly Linked List Implementation 3.27
Solved Problems 3.32
Summary 3.33
Key Terms 3.33

viii Contents

Multiple-Choice Questions 3.34
Review Questions 3.35
Programming Exercises 3.35

UNIT-II LINEAR DATA STRUCTURES - STACKS, QUEUES

4. Stacks 4.1

4.1 Introduction 4.2

4.2 Stacks 4.2
4.2.1 Stack Representation in Memory 4.2
4.2.2 Arrays vs. Stacks 4.3

4.3 Stack Operations 4.3
43.1 Push 44
432 Pop 44
4.3.3 An Example of Stack Operations 4.5

4.4 Stack Implementation 4.5
4.4.1 Array Implementation of Stacks 4.5
4.4.2 Linked Implementation of Stacks 4.1/

Solved Problems 4.16

Summary 4.19

Key Terms 4.19
Multiple-Choice Questions 4.20
Review Questions 4.21

Programming Exercises 4.22

5. Queues 5.1

5.1 Introduction 5.2

5.2 Queues—Basic Concept 5.2
5.2.1 Logical Representation of Queues 5.3

5.3 Queue Operations 5.4

5.4 Queue Implementation 5.6
5.4.1 Array Implementation of Queues 5.6
5.4.2 Linked Implementation of Queues 5./2

5.5 Circular Queues 5.17

5.6 Priority Queues 5.25

5.7 Double-Ended Queues 5.3/
Solved Problems 5.34
Summary 5.37

Key Terms 5.37

Contents ix

Multiple-Choice Questions 5.38
Review Questions 5.39
Programming Exercises 5.39

UNIT-III' NON LINEAR DATA STRUCTURES - TREES

6. Trees

6.1 Introduction 6.2

6.2 Basic Concept 6.2
6.2.1 Tree Terminology 6.2

6.3 Binary Tree 6.3
6.3.1 Binary Tree Concepts 6.4

6.4 Binary Tree Representation 6.5
6.4.1 Array Representation 6.5
6.4.2 Linked Representation 6.6

6.5 Binary Tree traversal 6.10
6.6 Binary Search Tree 6./7

6.7 Tree Variants 6.24
6.7.1 Expression Trees 6.25
6.7.2 Threaded Binary Trees 6.26
6.7.3 Balanced Trees 6.27
6.7.4 Splay Trees 6.30
6.7.5 m-way Trees 6.3/

Summary 6.33
Multiple-Choice Questions 6.34
Key Terms 6.34

Review Questions 6.35

Programming Exercises 6.35

UNIT-IV. NON LINEAR DATA STRUCTURES - GRAPHS

7. Graphs

7.1 Introduction 7.2
7.2 Basic Concept 7.2
7.3 Graph Terminology 7.3

7.4 Graph Implementation 7.4
7.4.1 Implementing Graphs using Adjacency Matrix 7.4
7.4.2 Implementing Graphs using Path Matrix 7.6
7.4.3 Implementing Graphs using Adjacency List 7.8

x Contents

7.5 Shortest Path Algorithm 7.1/
7.6 Graph Traversal 7.15

7.6.1 Breadth First Search 7.15
7.6.2 Depth First Search 7.16

Summary 7.17

Key Terms 7.17
Multiple-Choice Questions 7.17
Review Questions 7.18
Programming Exercises 7.18

UNIT-V SEARCHING, SORTING AND HASHING TECHNIQUES

8. Sorting and Searching

8.1 Introduction §&.2

8.2 Sorting Techniques 8.2
8.2.1 Selection Sort 8.3
8.2.2 Insertion Sort &8.7
8.2.3 Bubble Sort 8.70
8.2.4 Quick Sort 8.14
8.2.5 Merge Sort .19
8.2.6 Bucket Sort 8.23

8.3 Searching Techniques §&.28
8.3.1 Linear Search §8.28
8.3.2 Binary Search 8.3/
8.3.3 Hashing §8.34

Solved Problems 8.37

Summary 8.38

Key Terms 8.39

Multiple-Choice Questions 8.39

Review Questions 8.40

Programming Exercises 8.40

8.1

Contents xi

Roadmap to the Syllabus

Data Structures
Semester llI

Unit-I: LINEAR DATA STRUCTURES - LIST

Abstract Data Types (ADTs) — List ADT — array-based implementation — linked list implementation

—singly linked lists- circularly linked lists- doubly-linked lists — applications of lists —Polynomial
Manipulation — All operations (Insertion, Deletion, Merge, Traversal)

Chapter 1: Introduction to Algorithm and Data Structures
Chapter 2: Arrays

. Chapter 3: Linked Lists

Unit-1l: LINEAR DATA STRUCTURES - STACKS, QUEUES

Stack ADT — Operations - Applications - Evaluating arithmetic expressions- Conversion of Infix to

postfix expression - Queue ADT — Operations - Circular Queue — Priority Queue - deQueue — appli-
cations of queues

Chapter 4: Stacks

: Chapter 5: Queues

Unit-lll: NON LINEAR DATA STRUCTURES - TREES

Tree ADT — tree traversals - Binary Tree ADT — expression trees — applications of trees — binary

search tree ADT —Threaded Binary Trees- AVL Trees — B-Tree - B+ Tree - Heap — Applications of
heap.

Unit-IV: NON LINEAR DATA STRUCTURES - GRAPHS

Definition — Representation of Graph — Types of graph — Breadth-first traversal — Depth-first
traversal — Topological Sort — Bi-connectivity — Cut vertex — Euler circuits — Applications of graphs.

Unit-V: SEARCHING, SORTING AND HASHING TECHNIQUES

Searching- Linear Search — Binary Search. Sorting — Bubble sort — Selection sort — Insertion sort

— Shell sort — Radix sort. Hashing — Hash Functions — Separate Chaining — Open Addressing —
Rehashing — Extendible Hashing

xiv Roadmap to the Syllabus

UNIT-I

Linear Data Structures - List

CHAPTERS

Chapter 1: Introduction to Algorithm and Data Structures
Chapter 2: Arrays
Chapter 3: Linked Lists

INTRODUCTION TO
ALGORITHM AND DATA
STRUCTURES

1.1 Introduction

1.2 Algorithms
1.2.1 Characteristics of an Algorithm
1.2.2 Representation of an Algorithm
1.2.3 Efficiency of an Algorithm

1.3 Asymptotic Notations
1.3.1 Big-Oh Notation
1.3.2 Omega Notation
1.3.3 Theta Notation

1.4 Introduction to Data Structures
1.4.1 Characteristics of Data Structures

1.5 Types of Data Structures
1.5.1 Arrays
1.5.2 Linked Lists
1.5.3 Stacks
1.5.4 Queues
1.5.5 Trees
1.5.6 Graphs

1.6 Data Structure Operations
1.6.1 Data Structure Efficiency

Summary

PP HHEE O ROtT O DOA

Key Terms

Multiple-Choice Questions
Review Questions
Answers to Multiple-Choice Questions

1.1 INTRODUCTION

In the last two chapters, we learnt the basics of C programming language and its various programming
constructs. In this chapter, we will focus on one of the main starting points to developing programming
applications, i.e., algorithms. An algorithm is a set of instructions that defines the complete solution to
a given problem. It uses simple English language for writing the solution steps. It is quite possible to
have multiple algorithmic solutions for the same problem. In such cases, performance becomes the sole
criterion for choosing a specific solution. We can use various asymptotic notations, such as big-oh and
omega for assessing the performance or running time of an algorithm.

In this chapter, we will also get a brief introduction to data structures. Data structure is a collection
of data and the associated operations. Some of the commonly used data structures are arrays, stacks,
queues, linked lists, etc.

1.2 ALGORITHMS

An algorithm can be defined as a step by step procedure that provides solution to a given problem. It
comprises of a well-defined set of finite number of steps or rules that are executed sequentially to obtain
the desired solution.

To understand algorithms in a better way, let us consider a simple problem of identifying the smallest
number from a given list of numbers. Following is the algorithm for this problem:

Select the first number in the list and tag it as the smallest-so-far element.

1. For each subsequent element in the list.
2. Replace the smallest-so-far number with the list element if the latter is smaller.

3. Once all the numbers have been compared, the smallest-so-far number is considered as the
smallest number in the list.

In computing terms, an algorithm is described
a little differently. It is defined as a hierarchy of Input
steps used for computational procedures, which
usually starts with an input value and generates
the desired output. While defining an algorithm,
you must consider two primary factors, the time
it requires to solve ‘Fhe probljcm and th.e required Problem C—> Algorithm —>
memory space. For instance, if an algorithm takes
hours to solve a problem, then it is of no use.

Similarly, if an algorithm requires gigabytes of Computer
computer memory, then also it is not considered
an ideal algorithm. @

Figure 1.1 shows a simple illustration of how
algorithms are used for solving computational
problems.

An algorithm solves only a single problem
at a time. However, the same problem can be
solved using multiple algorithms. The benefit of

Output

Fig. 1.1 Use of algorithms for solving computational
problems

1.2 Data Structures

using multiple algorithms to solve the same problem is purely situational. One algorithm could be more
efficient for a particular set of inputs or for a specific variation of the problem while another algorithm
could be more efficient for some different set of inputs or for some different variation of the problem.
The use of multiple algorithms is more evident while solving sorting problems. One sorting algorithm
could be efficient for sorting a large collection of integers while another sorting algorithm could be more
efficient for sorting a large collection of strings. Thus, in this case the choice of a particular algorithm
solely depends on the type of input values.

1.2.1 Characteristics of an Algorithm

There are certain key characteristics that an algorithm must possess. These characteristics are:
1. An algorithm must comprise of a finite number of steps.
It should have zero or more valid and clearly defined input values.
It should be able to generate at least a single valid output based on a valid input.
It must be definite, i.c., each instruction in the algorithm should be defined clearly.
It should be correct, i.c., it should be able to perform the desired task of generating correct output
from the given input.
There should be no ambiguity regarding the order of execution of algorithm steps.
It should be able to terminate on its own, i.e., it should not go into an infinite loop.

nhAhw

S

1.2.2 Representation of an Algorithm

You can represent an algorithm in a number of ways, right from normal English language phrases to
graphical representation using flow charts. However, such representations are mainly useful when the
algorithm is simple and small.

Another way of representing an algorithm is the pseudocode. Pseudocode is an informal representation
of the algorithm that provides a complete outline of a program so that the programmers can easily
understand it and transform it into a program using the programming language of their choice. The
structure and syntax of pseudocode is quite similar to typical programming language constructs, thus
it is easy to transform it into a program. Since there are no tight syntactical constraints associated
with developing a pseudocoded algorithm, the programmer has the liberty to focus only on getting the
solution logic right.

While representing an algorithm in pseudocode form, you must use certain conventions consistently
throughout the algorithm. This helps in easy understanding of the algorithm. Following are some of the
general conventions that are followed while writing pseudocode:

1. Provide a valid name for the algorithm written using pseudocode.
For each line of instruction, specify a line number.
Always begin an identifier name with English alphabet.
It is not necessary to explicitly specify the data type of the variables.
Always indent the statements present inside a block structure appropriately.
Use read and write instructions to specify input and output operations respectively.
Use if or if else constructs for conditional statements. You must end an if statement with the
corresponding end if statement. Further, each if construct should be vertically aligned, depicted
as follows:

A ol

Introduction to Algorithm and Data Structures 1.3

If (conditional expression)
Statement
end-if

Or

If (conditional expression)

Statement
else

Statement
end-if

8. For looping or iterative statements, you can use for or while looping constructs. A for loop
must end with an end for statement while a while loop must end with an end while statement,
as depicted below:

for i = 1 to 10 do

{
Statement 1

Statement n

}

end-for

while (conditional expression) do

{
Statement 1

Statement n

}

end-while

9. Use logical and relational operators whenever logical or relational operations are to be performed.
For example,
i=7
i <3

J

vV A

i
10. Represent an array or list element by specifying the name of the array followed by its index

within square brackets. For instance, A[i] will represent the i element of the array A.
Let us now go through some examples of algorithms created using pseudocode.

Example 1.1 Write an algorithm to interchange two numbers.

Interchange (X, Y)
Step 1: Begin
Step 2: Set X = X + Y

1.4 Data Structures

Step 3: Set ¥ =X - Y

Step 4: Set X = X - Y

Step 5: Write (X, Y)
6:

Step End

Example 1.2 Write an algorithm to calculate the average of 15 numbers.

Average (avg, sum)
Step 1: Begin

Step 2: Set avg = 0.0 and sum = 0
Step 3: for i = 1 to 15 do

Step 4: Read (a)

Step 5: sum = sum + a

Step 6: end-for

Step 7: avg = sum/15

Step 8: Write (avg)

Step 9: End

Example 1.3 Write an algorithm to sort n numbers.

Sort (a, n)

Step 1: Begin

Step 2: Read (n)

Step 3: for 1 = n to 2 do
Step 4: for j = 1 to i-1 do
Step 5: if a[j]l>alj+1l] then
Step 6: Interchange a[j] and a[j+1]
Step 7: end-if

Step 8: end-for

Step 9: end-for

Step 10: End

1.2.3 Efficiency of an Algorithm

Whenever we refer the term efficiency in the context of algorithms, it points at two aspects: one, whether
the algorithm runs faster; and two, whether it uses lesser amount of memory space. Thus, an efficient
algorithm will always create the best possible tradeoff between its running time and memory space
consumption.

The function that derives the running time of an algorithm and its memory space requirements for a
given set of inputs is referred as algorithm complexity. Time complexity is the measure of the running
time of an algorithm for a given set of inputs. Space complexity is the measure of the amount of memory
space required by an algorithm for its complete execution, for a given set of inputs.

Time complexity is typically measured by counting the number of primitive or elementary steps
performed by the algorithm for its complete execution. These steps are machine independent and
their count is directly dependent on the size of input data set. The representation or expression of time
complexity is done asymptotically, as we shall see in the subsequent section.

Introduction to Algorithm and Data Structures 1.5

1.3 ASYMPTOTIC NOTATION

Asymptotic notation is the most simple and easiest way of describing the running time of an algorithm.
It represents the efficiency and performance of an algorithm in a systematic and meaningful manner.
Asymptotic notations describe time complexity in terms of three common measures, best case (or ‘fastest
possible”), worst case (or ‘slowest possible’), and average case (or ‘average time’).
The three most important asymptotic notations are:

1. Big-Oh notation

2. Omega notation

3. Theta notation

1.3.1 Big-Oh Notation

The big-oh notation is a method that is used to express the upper bound of the running time of an
algorithm. It is denoted by ‘O’. Using this notation, we can compute the maximum possible amount of
time that an algorithm will take for its completion.

Definition Consider f(n) and g(n) to be two positive functions of n, where n is the size of the input data.
Then, f(n) is big-oh of g(n), if and only if there exists a positive constant C and an integer 7, such that
f(n) < Cg(n) and n> n,

Here, f(n) = O(g(n))
Figure 1.2 shows the graphical representation of big-oh notation.

A
Cg(n)

f(n)

v
=)

o
fin) =0 (g(n))
Fig. 1.2 Graphical representation of big-oh notation
Some of the typical complexities (computing time) represented by big-oh notation are:
1. O(1) — Constant

2. O(n) — Linear
3. O(n?) = Quadratic

1.6 Data Structures

4. O(n®) — Cubic
5. O(2") — Exponential
6. O(logn) — Logarithmic

Example 1.4 Derive the big-oh notation, if f{n) = 8n + 7 and g(n) = n.

Solution To show f{n) is O(g(n)), we must consider positive constants C and integer n, such that
[fn) < Cg(n) for all n > n,

or8n+7<Cnforalln>n,

Let C=15.

Now, we must show that 8n + 7 < I5n.

or7<7n

orl<n

Therefore, f{n) =8n + 7 < 15n for all n > 1, where C =15 and n,= 1.

Hence, fin) = O(g(n)).

Example 1.5 Derive the big-oh notation, if f{n) = 2n + 2 and g(n) = n’.
Solution Given, fin) = 2n +2 and g(n) = n*

Forn=1,
fin)=2(1)+2
g(n) = (1)

i.e., fln) > g(n)

Forn=2,
fin)=2(2)+2
g(n) = (2

i.e., fln) > g(n)

Forn=3,
fin)=23)+2
=8
g(n) = (3)*
=9

Le., fin) <g(n)
Therefore, f(n) < Cg(n) is true if n > 2.

1.3.2 Omega Notation

The omega notation is a method that is used to express the lower bound of the running time of an algorithm.
Omega notation is denoted by ‘Q’. Using this notation, you can compute the minimum amount of time
that an algorithm will take for its completion.

Introduction to Algorithm and Data Structures 1.7

Definition Consider f{n) and g(n) to be two positive functions of n, where n is the size of the input data.
Then, f(n) is omega of g(n), if and only if there exists a positive constant C and an integer #,, such that
fln) > Cg(n) and n > n,

Here, f(n) = Q(g(n))

Figure 1.3 shows the graphical representation of omega notation.

f(n)

Cg(n)

v
=]

o
f(n) =0 (g(n))
Fig. 1.3 Graphical representation of Omega notation

Example 1.6 Deduce the omega notation if f{n) = 2n*> + 4 and g(n) = 6n.
Given, f(n) = 2n*> + 4 and g(n) = 6n.

Forn=0,
fin)=2(0)>+ 4
=4
&(n) =6(0)
=0
i.e., f(n) > g(n)
Forn=1,
fin)=2(1>+4
=2+4
=6
g(n)=6(1)
=6
ie., fin)=g(n)
Forn=2,

fin)=2Q2)*+4

1.8 Data Structures

=8+4

=12
g(n) =6(2)
=12
i.e., fin) = g(n)
Forn=3,
fim =203 +4
=18+4
=22
&(n) =6(3)
=18

Le., fin) > g(n)
Therefore, we can say that f{n) > Cg(n), if n > 2.

Example 1.7 Deduce the omega notation if f{rn) = 2n + 6 and g(n) = 2n.
Given, f(n) =2n + 6 and g(n) = 2n.

Forn=0,
fin)=2(0)+6
=6
g(n)=2(0)
=0
i.e., fln) > g(n)
Forn=1,
fin)=2(1)+6
=2+6
=8
g(n)=2(1)
=2

Le., fin) > g(n)
Therefore, we can say that f{n) > Cg(n), forn > 1.

1.3.3 Theta Notation

The theta notation is a method that is used to express the running time of an algorithm between the lower
and upper bounds. Theta notation is denoted by ‘0°. Using this notation, we can compute the average
time that an algorithm will take for its completion.

Definition Consider f{n) and g(n) to be two positive functions of n, where 7 is the size of the input
data. Then, f(n) is theta of g(n), if and only if there exists two positive constants C; and C,, such that,
C, g(n) <fln) < Cyg(n)

Here, /(n) = O(g(n)).

Introduction to Algorithm and Data Structures 1.9

Figure 1.4 shows the graphical representation of theta notation.
J Cag(n)
fn)

C19(n)

no
f(n) =0(g(n))

Fig. 1.4 Graphical representation of Theta notation

Example 1.8 Deduce the theta notation if f{n) = 2n + 8.

Let fin) =2n+ 8 > 5n where n > 2
Similarly, f(n) =2n + 8 > 6n where n>2
and f(n) =2n + 8 <7n where n > 2
Thus, 57 <2n+8 <7n, forn>2,

Here C;=5and C, =7

Hence, fin) =2n + 8 = 0(n)

1.4 INTRODUCTION TO DATA STRUCTURES

In simple terms, data structure can be defined as a representation of data along with its associated
operations. It is the way of organizing and storing data in a computer system so that it can be used
efficiently. This organization can be in the form of a group of data elements stored under one name.
Here, the data elements are referred as members of the data structure.

Depending on the type of data structures, the members can be of different types and lengths. Some
of the examples of data structures include arrays, linked lists, binary trees, stacks, etc. Algorithms are
used to manipulate the data structures in a number of different ways, like sorting the data elements or
searching a particular data item.

The design and implementation of a typical data structure is associated with the definition of the
operations that can be performed on the data structure. The specification of these data structure operations
is done with the help of algorithms.

1.10 Data Structures

1.4.1 Characteristics of Data Structure

Data structures help in storing, organizing, and analyzing the data in a logical manner. The following
points highlight the need of data structures in computer science:

. It depicts the logical representation of data in computer memory.

2. It represents the logical relationship between the various data elements.

3. It helps in efficient manipulation of stored data elements.

4. It allows the programs to process the data in an efficient manner.

—

1.5 TYPES OF DATA STRUCTURES

Data structures are primarily divided into two classes, primitive and non-primitive. Primitive data
structures include all the fundamental data structures that can be directly manipulated by machine-level
instructions. Some of the common primitive data structures include integer, character, real, boolean, etc.
Non-primitive data structures, on the other hand, refer to all those data structures that are derived from
one or more primitive data structures. The objective of creating non-primitive data structures is to form
sets of homogeneous or heterogeneous data elements.

Non-primitive data structures are further categorized into two types: linear and non-linear. In linear
data structures, all the data elements are arranged in a linear or sequential fashion. Examples of linear
data structures include arrays, stacks, queues, linked lists, etc. In non-linear data structures, there is no
definite order or sequence in which data elements are arranged. For instance, a non-linear data structure
could arrange data elements in a hierarchical fashion. Examples of non-linear data structures are trees
and graphs.

Figure 1.5 shows the classification of different types of data structures.

Data Structures

Primitive Data Non Primitive Data
Structures Structures

Linear Data Non Linear Data
Structures Structures

Fig. 1.5 Types of data structures

Introduction to Algorithm and Data Structures 1.11

The subsequent sections give a brief overview of some of the important data structures. Each of these
data structures will be covered in detail in later chapters.

1.5.1 Arrays

An array is a collection of similar type data elements stored at consecutive locations in the memory.
Typical examples of arrays include list of integers, group of names, etc. The group of array elements is
referred with a common name called array name. Access to individual array elements is provided with
the help of an index identifier. In C language, array index starts with 0. For example, list[5] refers to
the 6™ element of the array “list’.

Figure 1.6 shows the logical representation of arrays.

Array Index — arr[0] arr[1] arr[2] arr[3] arr[4]

2 6 7 3 8

Address — 6000 6002 6004 6006 6008 6010
Array

Fig. 1.6 Logical representation of arrays

Application of Arrays Arrays are particularly used in programs that require storing large collection
of similar type data elements.

Note For more information on arrays, refer to Chapter 4.

1.5.2 Linked Lists

Linked list is a data structure used for storing data in the form of a list. It comprises of multiple nodes
connected to each other through pointers. Each node comprises of two parts. One part contains the data
value while the other part contains a pointer to the next node in the list.

Linked lists eliminate one of the main disadvantages associated with arrays, that is inefficient
utilization of memory space. A linked list blocks only that much amount of memory space as is required
for storing its constituent data elements. Every time a new element is to be inserted into the linked list, a
corresponding new node is created. This is in contrast to arrays, which block a fixed amount of memory
space irrespective of their precise requirement.

Figure 1.7 shows the logical representation of a linked list.

5 N 5 B o

Fig. 1.7 Logical representation of linked lists

1.12 Data Structures

Application of Linked Lists Linked lists are used in situations where there is a need for dynamic
memory allocation. For instance, a number of data structures like stacks, queues, trees, etc., are
implemented with the help of linked lists.

Note For more information on linked lists, refer to Chapter 5.

1.5.3 Stacks

Stack is a linear data structure that maintains a list of elements in such - 16

amanner that elements can be inserted or deleted only from one end of P

the list. This end is referred as top of the stack. Stack is based on the

Last-In-First-Out (LIFO) principle, which means the element that is 99

last added to the stack is the one that is first removed from the stack.

A stack of books can be considered similar to a stack data structure

as it allows the books to be added or removed only from the top end

of the stack and not from the middle. 8
Figure 1.8 shows the logical representation of a stack.

4

4

2

Fig. 1.8 Logical representation

Application of Stacks Stacks are typically used in the imple- of stacks
mentation of system processes, such as compilation and program
control.

Note For more information on stacks, refer to Chapter 6.

1.5.4 Queues

Queue is a linear data structure that maintains a list of elements in such a manner that elements are inserted

from one end of the queue (called rear) and deleted from the other end (called fronf). Queue is based on

the First-In-First-Out (FIFO) principle, which means the element that is first added to the queue is also

the one that is first removed from the queue. A queue of people standing at a bus stop can be considered

similar to a queue data structure as people join the queue at the back and leave the queue from the front.
Figure 1.9 shows the logical representation of a queue.

22 Tfié 3 4)
Front Rear
Queue

Fig. 1.9 Logical representation of queues

Introduction to Algorithm and Data Structures 1.13

Application of Queues Queues are typically used in the implementation of key system processes
such as CPU scheduling, resource sharing, etc.

<

Note For more information on queues, refer to Chapter 7.

1.5.5 Trees
Tree is a linked data structure that arranges its nodes in the °

form of a hierarchical tree structure. Each node comprises of
zero or more child nodes. The node present at the top of the tree
structure is referred as root node. Data is accessed from the tree

data structure through various tree traversal methods.

Figure 1.10 shows the representation of a tree. 0 e

Application of Trees Tree data structure is typically used .
for storing hierarchical data, implementing search trees, and Fig.1.10 Tree
maintaining sorted data.

$

Note For more information on trees, refer to Chapter 8.

1.5.6 Graphs

Graph is a linked data structure that comprises of a group
of vertices called nodes and a group of edges. An edge
is nothing but a pair of vertices. Graph data structure
realizes the mathematical concept of graphs. The edges
of a graph are typically associated with certain values
also called weights. This helps to compute the cost of
traversing the graph through a certain path.
Figure 1.11 shows the representation of a graph.

Fig. 1.11 Graph

Application of Graphs One of the typical application areas of graphs is in the modelling of
networking systems. It helps to compute the cost of transmitting data from a particular network path.

£

Note For more information on trees, refer to Chapter 9.

1.14 Data Structures

1.6

DATA STRUCTURE OPERATIONS

There are several common operations associated with data structures that are used for manipulating the
stored data. While defining a data structure, you also need to define these associated operations. The
following operations are most frequently performed on any data structure type:

1.
2.

3.
4.

Traversing It is the process of accessing each record of a data structure exactly once.
Searching It is the process of identifying the location of a record that contains a specific key
value.

Inserting It is the process of adding a new record in to a data structure.

Deleting It is the process of removing an existing record from a data structure.

Apart from these typical data structure operations, there are some other operations associated with
data structures, such as

1.

2.

Sorting It is the process of arranging the records of a data structure in a specific order, such as
alphabetical, ascending, or descending.

Merging It is the process of combining the records of two different sorted data structures to
produce a single sorted data set.

1.6.1 Data Structure Efficiency

Table 1.1 lists the efficiency of various data structure types for different operations.

Table 1.1 Efficiency of various data structure types

Data Structure Insert Search Delete
Array O(n) O(n) O(n)
Linked List o(1) O(n) O(n)
Stack o(1) - o(1)
Queue o(1) - o(1)
Tree (Sorted) O(logn) O(logn) O(logn)
Summary
¢ Analgorithm is a well-defined set of finite number of steps or rules that are executed sequentially
to obtain the desired solution.
¢ Algorithms can be represented in the form of pseudocode or flowcharts.
¢ The function that derives the running time of an algorithm and its memory space requirements
for a given set of inputs is referred as algorithm complexity.
¢ Asymptotic notations describe time complexity in terms of three common measures, best case,

worst case, and average case.

Introduction to Algorithm and Data Structures 1.15

L 2R 2R 2R 4

*

*
*
*

The various types of asymptotic notations are big-oh, omega, and theta.

Data structure is the way of organizing and storing data in a computer system.

Data structures are primarily divided into two classes, primitive and non-primitive.

Primitive data structures include all the fundamental data structures such as integer, character,
real, etc.

Non-primitive data structures are the ones that are derived from one or more primitive data
structures. Examples of non-primitive data structures include arrays, linked lists, stacks, queues,
etc.

An array is a collection of similar type data elements stored at consecutive locations in the
memory.

Linked list is a collection of nodes connected to each other through pointers.

Stack is a linear data structure that stores the data elements based on Last-In-First-Out (LIFO)
principle, which means the element that is last added to the stack is the one that is first removed
from the stack.

Queue is a linear data structure that stores the data elements based on First-In-First-Out (FIFO)
principle, which means the element that is first added to the stack is also the one that is first
removed from the stack.

Tree is a linked data structure that arranges its nodes in the form of a hierarchical tree structure.
Graph is a linked data structure that comprises of a group of vertices called nodes and a group
of edges.

Key Terms

Pseudocode It is an informal representation of the algorithm that provides a complete outline
of a program.

Time complexity It is the measure of the running time of an algorithm.

Space complexity It is the measure of the amount of memory space required by the algorithm
for its complete execution.

Big-oh It is an asymptotic notation that expresses the upper bound of the running time of an
algorithm.

Omega It is an asymptotic notation that expresses the lower bound of the running time of an
algorithm.

Theta It is an asymptotic notation that expresses the running time of an algorithm between the
lower and upper bounds.

LIFO It stands for Last-In-First-Out i.e., the principle on which stacks are based.

FIFO It stands for First-In-First-Out i.e., the principle on which queues are based.

Root node It is the node present at the top of a tree data structure.

Multiple-Choice Questions

1.1 Which of the following is not true for algorithms?

(a) Itis a set of instructions that defines the solution for a given problem.
(b) It can be represented in the form of pseudocode or flowchart.

1.16 Data Structures

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

(c) It should have at least one valid input value.
(d) Itis possible to have multiple algorithms for the same problem.

Efficiency of an algorithm is a tradeoff between which of the following factors?
(a) Time and Space
(b) Input and Output
(¢) Compilation time and Running time
(d) None of the above
Big-oh notation is a method that is used to express the of the running time of an
algorithm.
(a) Lower bound (b) Upper bound
(¢) Lower and upper bound (d) None of the above
notation is a method that is used to express the running time of an algorithm

between the lower and upper bounds.

(a) Big-oh (b) Beta

(¢) Theta (d) Omega

Which of the following is the correct representation of the Omega notation?
(@) fin)=Cg(n) (b) fin) < Cg(n)

(c) C,gn) <fin)<Cyg(n (d) None of the above
Which of the following is an example of primitive data structure?
(a) Integer (b) Array

(c) Character (d) Stack

Which of the following data structure is based on FIFO principle?
(a) Tree (b) Graph

(c) Stack (d) Queue

A linked list blocks only that much amount of memory space as is required for storing its
constituent data elements.

(a) True (b) False

Which of the following data structure arranges its nodes in the form of a hierarchical structure?
(a) Stac (b) Graph

(c) Linked List (d) Tree

Which of the following is a typical data structure operation?

(a) Insert (b) Delete

(c) Search (d) All of the above

Review Questions

1.1
1.2
1.3
14
1.5
1.6
1.7

What is an algorithm? Explain with the help of an example.

List the characteristics of an algorithm.

How are algorithms represented? Explain with the help of an example.

What is algorithm complexity?

What is an asymptotic notation? Explain the various types of asymptotic notations.
What is a data structure? What are its various characteristics?

What are the different types of data structures?

Introduction to Algorithm and Data Structures 1.17

1.8 Explain any two non-primitive data structures.
1.9 What is a tree? Why is it used?

1.10 List the typical operations associated with derived data structure types.

Answers to Multiple-Choice Questions

1.1 () 1.2 (a) 1.3 (b) 14 (c)
1.6 (a)and (c) 1.7 (d) 1.8 (a) 1.9 (d)

1.18 Data Structures

1.5 (a)
1.10 (d)

ARRAYS

2.1 Introduction

2.2 Types of Arrays
2.3 Representation of One-Dimensional Array in Memory
2.4 Array Traversal

2.5 Insertion and Deletion
2.5.1 Insertion
2.5.2 Deletion

2.6 Sorting and Searching
2.6.1 Sorting
2.6.2 Searching

2.7 Representation of Multi-Dimensional Array in Memory
2.8 Realizing Matrices Using Two-Dimensional Arrays

2.9 Matrix Operations
2.9.1 Addition
2.9.2 Subtraction
2.9.3 Multiplication
2.9.4 Transpose

Solved Problems
Summary

Key Terms
Multiple-Choice Questions
Review Questions
Programming Exercises

Answers to Multiple-Choice Questions

P HHtFE O ROtT O DOA

2.1 INTRODUCTION

In Chapter 2, we briefly introduced one of the most important and commonly used derived data types,
called array. In this chapter, we will observe how array is used as a data structure in different programming
situations. We will also get familiar with the logical representation of arrays in memory.

An array is regarded as one of the most fundamental entities for storing logical groups of data. It
also forms the basis for implementing some advanced data structures, like stacks and queues, as we
shall see in the later chapters.

Typically, an array is defined as a collection of same type elements. That means, it can store a group
of integers, characters, strings, structures, and so on. However, an array cannot store different type
elements like a group of integers and fractions, or a group of strings and integers. Following are some
of the characteristics associated with arrays:

1. Ituses a single name for referencing all the array elements. The differentiation between any two
elements is made on the basis of index value.
It stores the different elements at consecutive memory locations.
Its name can be used as a pointer to the first array element.
Its size is always a constant expression and not a variable.
5. It does not perform bound checking on its own. It has to be implemented programmatically.

Before we delve further into exploring array as a data structure, let us first identify the different

types of arrays.

e

2.2 TYPES OF ARRAYS

As already explained, an array is a logical grouping of same type data elements. Now, it is quite possible
that each of these elements is itself an array. Further, each of the elements of the sub array could also
be an array. This forms the basis of characterizing an array into different types, as depicted in Table 2.1.

Table 2.1 Types of arrays

Array Type Description C Representation Example

One-dimensional array It is a group of same | array][] A group of integers.
type data elements, such {2,5,6,1,9}
as integers, floats, or
characters.

Multi-dimensional array | It is a group of data | array[[]..[] A group of strings.
elements, where each {“Ajay”, “Vikas”,
element is itself an array. “Amit”, “Sumit”}

The various instances of multi-dimensional arrays are two-dimensional (2D) array, three-dimensional
(3D) array, four-dimensional (4D) array, and so on. The choice of a particular multi-dimensional array
depends on the programming situation at hand. For instance, if we are required to realize a 3 X 3 matrix
programmatically, then we can do so by declaring a two dimensional array, say M[3][3]. Here, each
dimension of the array M signifies the row and column of the matrix respectively. Multi-dimensional
arrays are covered in greater detail later in this chapter. For now, let us focus on implementing and
manipulating one-dimensional array.

2.2 Data Structures

2.3 REPRESENTATION OF ONE-DIMENSIONAL ARRAY IN MEMORY

The elements of a one-dimensional array are stored at consecutive locations in memory. Each of the
locations is accessed with the help of array index identifier to retrieve the corresponding element.
Consider the following integer array:
arr[5] = {2, 6, 7, 3, 8}
Here, arr is a five-element integer array. Figure 2.1 shows the representation of array arr in memory:

Array Index — arr[0] arr[1] arr[2] arr[3] arr[4]
Identifiers

2 6 7 3 8

Memory Locations — 6000 6002 6004 6006 6008 6010
Array arr[5]

Fig. 2.1 Array representation in memory

As shown in Fig. 2.1, each array element is stored at consecutive memory locations, i.e., 6000, 6002,
6004, and so on. The location of the first element, i.e., 6000 is also referred as the base address of the array.

If we know the base address of an array, then we can find the location of its individual elements by
using a simple formula, which is

Address of A[k] = B + W * k

Here,

A[] is the array.

B is the base address, i.c., the address of the first element.

W is the word size or the size of an array element.

k is the index identifier.

For instance, the address of the third element of array arr stored at index location 2 would be

Address of arr[2] = 6000 + 2 * 2

= 6000 + 4

6004

Note The word size of a data type is decided by the programming language being used and the
hardware specifications.

2.4 ARRAY TRAVERSAL

While working with arrays, it is often g Check Point
required to access the array elements; that

is, reading values from the array. This is 1. What is a base address?

achieved with the help of array traversal. Ans. Itis the memory address of the first element
It involves visiting the array elements and of an array.

storing or retrieving values from it. Some of 2. How are array elements stored in memory?
the typical situations where array traversal Ans. The elements of an array are stored at
may be required are: consecutive locations in memory.

Arrays 2.3

Printing array elements,

Searching an element in the array, @ Mind _]og
Sorting an array, and so on —
Algorithm What is ‘array index out of bound’?

))) 1t is a runtime error that is encountered when a
Example2.1 Write analgorithm to sequentially program tries to reference as address location

traverse an array. outside of the defined array limits.

traverse (arr[], size)
Step 1l: Start

Step 2: Set i =0
Step 3: Repeat Steps 4-5 while i < size
Step 4: Access arr[i]
Step 5: Set i =1 + 1
Step 6: Stop
Program

Example 2.2 Write a C program to traverse each element of an array and print its value on the console.

Program 2.1 performs array traversal and prints the array elements as output. It uses the algorithm
depicted in Example 2.1.

Program 2.1 C program to traverse each element of an array and print its value

#include <stdio.h>
#include <conio.h>

void traverse(int*, int); /*Function prototype for array traversal*/
void main ()

{

J.-nt afr (531 = {2 ’ 6’ 7, 3’ 8 ki Specifying array values at the time
int N=5; of writing a program is referred as

clrscr(); compile-time initialization.

printf (“Press any key to perform array traversal and display its elements:
\n\n”) ;
getch () ;

traverse (arr,N) ; /*Calling traverse function*/

getch () ;
}

void traverse (int *array, int size)

{

int 1i;
for (i=0;i<size;i++)
printf (Yarr[%d] = %d\n”,i,array[i]); /*Accessing array element and

printing it*/
}

2.4 Data Structures

Output

Press any key to perform array traversal and display its elements:

arr[0] = 2
arr[l] = 6
arr[2] =7
arr[3] = 3
arr[4] = 8

Program analysis

Key Statement Purpose

void traverse(int*, int); Declares the prototype for the traverse() function for traversing
an array

traverse(arr,N); Calls the traverse() function for traversing the array arr
containing N elements

for(i=0;i<size;i++) Uses the for loop to access the array elements with each
iteration

Tip While traversing an array, the index identifier should be updated carefully so that array

out of bound situation does not arise. In this situation, the program tries to access a
location outside of the reserved memory block, which is an illegal operation.

2.5 INSERTION AND DELETION

array while deletion is the task of removing an element
from the array. The point of insertion or deletion that is
the position where an element is to be inserted or deleted 1. What is array traversal?

holds vital importance, as we shall see in the subsequent ~ Ans. Itis the task of visiting the array
sections. elements and storing or retrieving values

from it.

Insertion is the task of adding an element into an existing
g Check Point

2. Whatis the need for array traversal?
Ans. It is required in almost all array
related operations, such as sorting,
searching, printing, etc.

2.5.1 Insertion

If an element is to be inserted at the end of the array, then
it can be simply achieved by storing the new element
one position to the right of the last element. However,
the array must have vacant positions at the end for this to be feasible. Alternatively, if an element is
required to be inserted at the middle, then this will require all the subsequent elements to be moved one
place to the right. Figure 2.2 depicts the insertion of an element into an array.

Arrays 2.5

—1 3 5 22 77

A0l ANl A2l Al A4l Al Alf]
Initial Array A

-1 3 5 22 77 4

A0 Al A2l A[3] A4 ARl Alf]

Array contents after element 4 is inserted at the end

—1 3 4) 22 77

A[0] A1l A2l A[B] A4l A[5] Alf]
Array contents after element 4 is inserted at index location 2

Fig. 2.2 Array insertion
Algorithm

Example 2.3 Write an algorithm to perform array insertion.
The following algorithm inserts an element P at index location k in the array A[N], where k<=N.

insert (A[N], k, P)
Step 1: Start

Step 2: Set 1 = N
Step 3: Repeat Steps 4-5 while i >=k
Step 4: Set A[i+1l] = A[i]
Step 5: Set 1 =1 -1
Step 6: Set A[k] = P
Step 7: Set N =N + 1
Step 8: Stop
Program

Example 2.4 Write a C program to perform array insertion.

Program 2.2 performs array insertion and prints the updated array elements as output. It uses the algorithm
depicted in Example 2.3.

Program 2.2 Array insertion

#include <stdio.h>
#include <conio.h>

void main ()

{
int array(10] = {-1, 3, 5, 22, 77};

2.6 Data Structures

int i, k, N, P;
clrscr();

N = 5;

printf (“The contents of the array are:\n”);
for (i=0; i<N; i++)
printf (“array[%d] = %d\n”,i,array[i]); /*Printing array elements*/

printf (“\nEnter the element to be inserted:\n”);
scanf (“%d”, &P) ;

printf (“\nEnter the index location where %d is to be inserted:\n”, P);
scanf (“%d”, &k) ;

for (i=N;i>=k;i-)

array[it+l]=arrayl[i];
\ The existing array elements need
array[k] = P; to be moved to make space for the

N=N+ 1; new element.

printf (" \nThe contents of the array after array insertion are:\n”);

for (1=0; 1<N; 1i++)

printf (“array[%d] = %d\n”,i,array([i]); /*Printing array elements after
array insertion*/

getch () ;
}

Output

The contents of the array are:

array[0] = -1
array[l] = 3
array[2] = 5
array([3] = 22
arrayl[4] = 77

Enter the element to be inserted:
19

Enter the index location where 19 is to be inserted:
1

The contents of the array after array insertion are:

array[0] = -1
array([l] = 19
arrayl[2] = 3
array[3] = 5
arrayl[4] = 22
arrayl[5] = 77

Arrays 2.7

Program analysis

Key Statement Purpose
for(i=N;i>=k;i—) Shuffles the array elements to the right to create space for inserting a
array|i+1]=arrayli]; new element.
array|k| = P; Inserts a new element at the point of insertion.
N=N+1; Increments the total number of array elements by 1.

2.5.2 Deletion

The deletion of elements follows a similar procedure as insertion. The deletion of element from the
end is quite simple and can be achieved by mere updation of index identifier. However, to remove an
element from the middle, one must move all the elements present to the right of the point of deletion,
one position to the left. Figure 2.3 depicts the deletion of an element from an array.

-1 3 5 22 77

A[O] A1l A2l ABB] A4l A[B] Alf]
Initial Array A

-1 3 5 22

A[0] Al A2l A[3] A4 ARl Alf]

Array contents after element is deleted from the end

-1 3 22 77

A[0] A1l A2l A[B] A4l A[5] Alf]
Array contents after an element is deleted from index location 2
Fig. 2.3 Array deletion

Algorithm

Example 2.5 Write an algorithm to perform array deletion.
The following algorithm deletes the element at index location k in the array A[N], where k<=N.

delete (A[N], k)
Step 1: Start

Step 2: Set D = A[k]

Step 3: Set 1 =k

Step 4: Repeat Steps 5-6 while i <=N-1
Step 5: Set A[i] = A[i+1]

Step 6: Set 1 =1 + 1

2.8 Data Structures

Step 7: Set N =N - 1
Step 8: Stop

Program

Example 2.6 Write a C program to perform array deletion.

Program 2.3 performs array deletion and prints the updated array elements as output. It uses the algorithm
depicted in Example 2.5.

Program 2.3 Array deletion

#include <stdio.h>
#include <conio.h>

void main ()

{

int array[1l0] = {-1, 3, 5, 22, 77};
int i, k, N, D;

clrscr();

N = 5;

printf (“"The contents of the array are:\n”);
for (i=0; 1<N; i++)
printf (Yarray[%d] = %d\n”,i,array([i]); /*Printing array elements*/

printf (“"\nEnter the index location from where element is to be deleted:\n”);
scanf (“%d”, &k) ;

D = arrayl[k];

for (i=k;i<=N-2;i++)
array[i]=array[i+l];
The existing array elements need

to be moved to fill the vacant space

N=N-1; created by the deleted element.

printf ("\n%d element deleted from index location %d\n”,D,k);

printf (“"\nThe contents of the array after array deletion are:\n”);
for (1=0; 1<N; i++)
printf (“array[%d] = %d\n”,i,array([i]); /*Printing array elements after
array deletion*/

getch () ;
}

Arrays 2.9

Output

The contents of the array are:

array[0]
array([1l
arrayl[2
array|[3
arrayl[4

= -1
=3
=5
= 22
= 77

Enter the index location from where element is to be deleted:

3

22 element deleted from index location 3

The contents of the array after array deletion are:

array[0]
arrayl[1l]
arrayl[2]
array|[3]

= -1
=3
5
= 77

Program analysis

Key Statement

Purpose

D = array|K];

Retrieves the element value that is to be deleted.

for(i=k;i<=N-2;i++)
array|i]=array|i+1];

Shuffles the array elements to the left to fill the vacant space
created after deleting the array element.

N=N-1;

Decrements the total number of array elements by 1.

ﬁote For large-sized arrays, inserting an element at the middle could be a considerable
programming overhead as it would require the other elements to the moved from their
current positions.

2.6 SORTING AND SEARCHING

Sorting and searching are two of the most)
common operations performed on arrays. Check Point

The sorting operation arranges the elements

of an array in a specific order or sequence.
Searching, on the other hand, locates a

specific element in the array.

2.6.1 Sorting

1. What is array insertion and deletion?
Ans. The task of adding an element into an
existing array is called array insertion while the
task of deleting an existing element from the array
is called array deletion.

2. What is a point of insertion?

Sorting involves comparing the array Ans. It is the location in the array where a new
elements with each other and shuffling them element is to be inserted.

until all the elements are sorted. There are a

2.10 Data Structures

number of sorting techniques that are applied to sort an array in an efficient manner. We shall explore
these sorting techniques in Chapter 10. Here, let us focus on one of the most basic sorting techniques
called bubble sort.

Bubble sort operates on an array in such a manner that the largest element is brought to the end of
the array with each successive iteration. It repeatedly compares two consecutive elements and moves
the largest amongst them to the right. This process is repeated for each pair of elements until the current
iteration moves the largest element to the end.

Consider the following integer array:

arr[5] = {5, 4, 3, 2, 1}

Here, arr is a five-element integer array. It will take four iterations or passes to sort this five-element
array. Each pass will bring the largest element to the end of the array. Here’s a snapshot of the array
contents after each of the four passes:

Initial Array - arr[5] = {5, 4, 3, 2, 1}
Pass 1 - arr[5] = {4, 3, 2, 1, 5}
Pass 2 - arr[5] = {3, 2, 1, 4, 5}
Pass 3 - arr[5] = {2, 1, 3, 4, 5}
Pass 4 - arr[5] = {1, 2, 3, 4, 5}

As shown above, the fourth pass produces the sorted array.
Algorithm
Refer to Section 10.2.3 for the algorithm on applying bubble sorting technique to sort an array.

Program

Example 2.7 Write a C program to sort an array of five elements.
Program 2.4 implements bubble sorting technique to sort an array of five elements.
Program 2.4 Bubble sorting technique

#include <stdio.h>
#include <conio.h>

void main ()

{

int array[5]= {5, 4, 3, 2, 1};
int i, k, j, temp;

clrscr();

printf ("\nThe initial array elements are:\n”);
for (i=0;i<5;1i++)
printf (“array[%d] = %d\n”,i,array[i]); /*Printing initial array*/

for (i=5;i>1;i—) /*Outer loop for controlling the number of passes*/
for (j=0;j<i-1;j++) /*Inner loop for controlling the number of comparisons
made in a pass*/

if (arrayl[j]l>array[j+1])

Arrays 2.1

{
/*Swapping adjacent elements*/
temp = array[j+1];

array[j+1l] = array[3jl; If the swap operation moves the

array[j] = temp; larger element towards the right then
} the array is sorted in ascending order,
otherwise it is sorted in descending
X order.
printf (“"\nThe sorted elements are:\n”);
for (1=0;i<5;i++)
printf (Yarray[%d] = %d\n”,i,array([i]); /*Printing sorted array*/

getch () ;
}

Output

The initial array elements are:
array[0]
array[1l
arrayl[2
array[3
array[4

|
=N WS a

]
]
]
]

The sorted elements are:
array[0]
array[1l
arrayl[2
array|[3
array[4

|
g w N

]
]
]
]

Program analysis

Key Statement Purpose

for(i=5;i>1;i—) Uses for loop to control the number of passes of bubble
sort algorithm

for(j=0;j<i-1;j++) Uses for loop to compare the array elements in each pass
of bubble sort algorithm

temp = array[j+1];

array[j+1] = arrayl[j];

array|[j] = temp; Swaps two array elements

ﬁote Just like an integer array, sorting can also be applied to an array of floats, characters,
structures, and so on.

2.12 Data Structures

2.6.2 Searching
@Check Point

Searching is the process of traversing an array
to find out if a specific elemgnt is present in 1. What is sorting?
the array or not. If the search is successful, the
index location of the element is returned. There
are various searching mechanisms that can be
employed to search an element in an array.
We shall explore these searching techniques in
Chapter 10. Here, let us focus on one of the most elements?
basic searching techniques called linear search. Ans. n—1.

The linear search technique traverses an array
sequentially to search the desired element. It starts the search with the first element and moves towards
the end in a step-by-step fashion. At each step, it matches the element to be searched with the array
element, and if there is a match, the location of the array element is returned.

Consider the following integer array:

arr[5] = {22, 19, 4, 8, 10}

Here, arr is a five element integer array. If we apply linear search to the array arr to search element
4, then the search will be successful as element 4 is present in the array. The search module will return
index location 2 as the search result because element 4 is the third element in the array.

Ans. Itis the task of arranging the elements
of an array in a sequence.

2. How many passes does bubble sorting
technique require to sort an array of n

Algorithm
Refer to Section 10.3.1 for the algorithm on applying linear search on an array.

Program

Example 2.8 Write a C program to perform linear search on an array.
Program 2.5 applies linear searching technique on an array of five elements.
Program 2.5 Performing linear search on an array

#include <stdio.h>

#include <conio.h>

void main ()

{

int array([5] = {22, 19, 4, 8, 10};
int i, flag, k, index;

clrscr();

flag = 0;
printf (“The contents of the array are:\n”);

for (i=0;1<5; i++)
printf (Yarray[%d] = %d\n”,i,arrayl[i]l); /*Printing array elements*/

Arrays 2.13

printf ("\nEnter the element to be searched:\n”);
scanf (“%d”, &k) ;

for (i=0;1i<5;i++) /*Scanning array elements one by one*/
if (k==arrayl[i])
{

flag = 1; /*Successful Search*/

index il g
break;
} The flag variable is updated to signal
else successful search.
;
if (flag==1)

printf (“Search is successful! Element %d is present at index location
%$d in the array”, k,index) ;

else /*Successful Search*/

printf (“Unsuccessful Search!”);

getch () ;
}
Output
The contents of the array are:
array[0] = 22
array[l] = 19
arrayl[2] = 4
array[3] = 8
array[4] = 10

Enter the element to be searched:
4
Search is successful! Element 4 is present at index location 2 in the array

Program analysis

Key Statement Purpose
scanf(“%d”,&K); Reads the key value that needs to be searched
in the array.
if (k==array [i]) Compares the key value with each array
element.
break; Takes the program control out of the for loop
as soon as the search is successful.

ﬁote Just like an integer array, searching can also be performed on an array of floats, characters,
Sstructures, and so on.

2.14 Data Structures

2.7 REPRESENTATION OF
MULTI-DIMENSIONAL ARRAY IN MEMORY

Let us recall that a multi-dimensional array is an array of
arrays. Unlike one-dimensional arrays which have only
one subscript, a multidimensional array has multiple g Check Point
subscripts. For example, a two-dimensional array, one Sl
of the most widely used instances of multi-dimensional
arrays, has two subscripts. It is used to programmatically
realize a matrix with its first subscript representing the
row and the second subscript representing the column
of a matrix.

The representation of a two-dimensional array in
memory is not like the gird-like structure of a matrix. ~ 'ould the searching technique require to
Instead, it is same as the one-dimensional array traverse in an n-element array?
representation in memory. It either stores the array Ans. n
elements row by row (row major order) or column by
column (column major order). Figure 2.4 illustrates these

1. What is searching?

Ans. Searching is the process of
determining if a specific element is present
in the array or not.

2. At a maximum, how many elements

representations:
Array [3][3] Array [3][3]
11 110)
21 Coloumn 1 1.2 Row 1
3,1 1,3 J
. 12 21])
Eﬁg;e;ﬁ;}t[g’;l?: of zﬁzreze;tgtion of
memory in E:> 2.2 Gelgiy 2 in mémf)r]}E , l:> i Rowiz
column-major order 3.2 row-major order 23 J
1,8 31|)
23 Coloumn 3 3.2 Row 3
33 3.3 Y,

Fig. 2.4 Representation of two-dimensional array in memory

As shown in Fig. 2.4, the elements of a two-dimensional array are stored at consecutive memory
locations. The only difference is in the order in which these elements are stored in memory. In column-
major order, the elements are stored column-by-column while in row-major order the elements are
stored row-by-row. Both these memory representations are intrinsic to a programming language and
the programmer does not have a choice of selecting a particular representation format for storing array
elements.

Arrays 2.15

The formula for computing the address location of a multi-dimensional array element in row major
implementation is given below:

Address of A[i,Jj] = B + W (n (i - LBR) + (j - LBC))

Here,

1. A[][] is the multidimensional array.

2. B is the base address.

3. W is the word size or the size of an array element.

4. n is the number of columns.

5.1, j are the index identifiers.

6. LBR is the lower bound of row index.

7. LBC is the lower bound of column index.

Similarly, the formula for computing the address location of a multi-dimensional array element in
column major implementation is given below:

Address of A[i,J] = B + W (m (j — LBC) + (i - LBR))

Here, m represents the number of rows.

Example 2.9 A 10 x 12 matrix is @ .
implemented using array A[10] [12]. If the Check Point

base address of the array is 200 and the word
size is 2 then compute the address of the element
A[4,7] in:

(a) Row major order
(b) Column major order 2. What is column-major order?

Assume that the lower bound of both row and _ Ans. Itis the memory representation of a two-
column indices is 1. dimensional array in column-by-column fashion.

1. What is row-major order?
Ans. It is the memory representation of a
two-dimensional array in row-by-row fashion.

Solution (a) Row major order
Addressof A[i,j] = B + W (n (i - LBR) + (j - LBC))
Addressof A[4,7] = 200 + 2 (12 (4 - 1) + (7 - 1))
=200 +2 (42)
=284
(b) Column major order
Addressof A[i,7] = B + W (m (j — LBC) + (i - LBR))
Address of A[4, 7] 200 + 2 (10 (7 - 1) + (4 - 1))
=200 +2 (63)
=326

2.8 REALIZING MATRICES USING TWO-DIMENSIONAL ARRAYS

Two-dimensional arrays are most commonly used for
realizing matrices. The first subscript signifies the rows
of a matrix while the second subscript signifies the
columns. Operation on these array-represented matrices
can be performed through simple programming.

Figure 2.5 depicts the realization of a matrix through
a two-dimensional array:

@ Mind Jog

What is a square matrix?
1t is the matrix that has equal number of
rows and columns.

2.16 Data Structures

0,0 01 02 03
M[3J4 — 1,0 44 12 1,3
20 21 22 23

Fig. 2.5 Matrix represented by two-dimensional array

Figure 2.5 shows the subscript values for each of the elements of the matrix M[3][4].

Program
Example 2.10 Write a C program to realize a 3xX3 matrix.
Program 2.6 realizes a 3 x 3 matrix using a two-dimensional array.

Program 2.6 3x3 matrix using two-dimensional array

#include <stdio.h>
#include <conio.h>

void main ()

{

int i,3j,M[3]1[3];
clrscr();

/*Reading matrix elements*/
printf (“Enter the elements of the 3 X 3 matrix:\n”);
for (i=0,;i<3;i++)

for (j=0;3<3;j++)

{

printf ("M[%d] [%d] = “,1,7);

scanf (“%d”,&M[i] [j]) ;

}

/*Printing matrix elements*/
printf (“"The matrix represented by the 3 X 3 2D array is:\n”);
for (i=0;1<3;1i++)

{

printf (M\n\t\t)
for .(j =08 3?3 #J ++‘)‘ ‘ \ The indentation and display of the
printf (%% (MI1T03T) 7

two-dimensional array elements is
} done in such a manner so to represent
a real matrix.

getch () ;
}

Output

Enter the elements of the 3 X 3 matrix:
M[0][0] =1

Arrays 217

M[O] [1] = 2
M[O][2] = 3
M[1][0] = 4
M[1][1] =5
M[1][2] = 6
M[2][0] = 7
M[2][1] = 8
M[2][2] = 9

The matrix represented by the 3 X 3 2D array is:

1 2 3
4 5 6
7 8 9

Program analysis

Key Statement

Purpose

int i,j,M[3][3];

Declares a two-dimensional array to represent a 3 X 3 matrix

for(i=0;i<3;i++)

Uses for loop to iterate through each row of the matrix

for(j=0;j<3;j++)

Uses for loop to iterate through each column of the matrix

scanf(“%d”,&M(i] [j]);

Reads the matrix elements

2.9 MATRIX OPERATIONS

The various operations associated with matrices are:

1. Addition

2. Subtraction
3. Multiplication
4. Transpose

2.9.1 Addition

Addition is the task of adding individual elements of two matrices. For instance,

If matrix A =

And, matrix B =

Then, A + B =

2.18 Data Structures

al
a4
a7

bl
b4
b7

a2 a3
ab a6
a8 asd
b2 b3
b5 b6
b8 b9

al+bl a2+b2 a3+b3
ad+b4d aS5+b5 ab6+bo
a7+b7 a8+b8 a9%+b9

Program
Example 2.11 Write a C program to perform addition on two 3x3 matrices.

Program 2.7 Adding on two 3X3 matrices

#include <stdio.h>
#include <conio.h>

void main ()

{

int i,3,A[3]1[3]1,B[3]1([3]1,C[3]1I[3]~;
clrscr();

printf (“Enter the elements of 3 X 3 matrix A:\n”);
for (1i=0;i<3;i++)

{

for (3=0;3<3; j++)

{

printf ("A[%d] [%d] = “,1,73);

scanf (“%d”, &A[1]1[Jj]);/*Reading the elements of 1lst matrix*/

}

}

printf (“Enter the elements of 3 X 3 matrix B:\n”);
for (i=0;i<3;1i++)

{

for (j=0;3<3;j++)

{

printf ("B[%d] [%d] = “,1,73);

scanf (“%d”,&B[1][Jj]);/*Reading the elements of 2nd matrix*/

}

}

printf ("\nThe entered matrices are: \n”);
for (1=0;1<3;1i++)
{

printf (M\n”) ;

for (3=0;3<3; j++)

printf (%% “,A[1][3]1);/*Displaying the elements of matrix A*/
printf (M\t\t”);

for (3=0;3<3; j++)

printf («%d «,B[1][j]);/*Displaying the elements of matrix B*/
}

for (i=0;1<3;i++)
for (§J=0;3<3; j++)
C[i][3j] =A[i][j]1+B[i][j];/*Computing the sum of two matrices*/

printf ("\n\nSum of A and B is shown below: \n”);

Arrays 2.19

for (i=0;1i<3;i++)
{
printf (M\n”) ;
for (§J=0;3<3; j++)
printf (“%d “,C[1]1[3]1);/*Displaying the result*/
}

getch () ;
}

Output

Enter the elements of 3 X 3 matrix A:
A[0] [0]
A[0][1] =
A[0] [2] =
A[1][0] =
A[1][1
Afl] [2
A[2][
Al2] [
Al2] [
Enter the

[=

[

[2

[0

[

[

[

[

[2

NNV NND R PR e

]
]
]
1[1]

102]

1001 =
1[1]

1[2]

lements of 3 X 3 matrix B:
B[O][O
B[O] [1
B[O]
B[1]
B[1]
B[1]
B[2]
B[2]
B[2]

1
2
0
1

|
N

]
]
]
]
] =
]
]
]
]

The entered matrices are:

1 1 1 2 2 2
1 1 1 2 2 2
1 1 1 2 2 2

3 3 3
3 3 3
3 3 3

Program analysis

Key Statement Purpose

Clillj] =Alillj]+BIlilljls Adds the elements of 4 and B matrices and stores the result at corresponding positions
of the resultant matrix C

2.20 Data Structures

2.9.2 Subtraction

Subtraction is the task of subtracting individual elements of two matrices. For instance,

al a2 a3
If matrix A = a4 ab ao
a7 a8 ag

bl b2 b3
b4 b5 b6
b7 b8 b9

And, matrix B

al-bl a2-b2 a3-b3
a4-b4d a5-bb ab-bb6
a7-b7 a8-b8 a9-b9
A C program to perform matrix subtraction will be same as matrix addition (see Example 2.11). We
just need to replace the +sign with a —sign.

Then, A - B

2.9.3 Multiplication

Matrix multiplication is not as simple as matrix addition or subtraction. It uses a certain formula to
generate multiplication result. For instance,

al a2 a3
If matrix A = ad ab a6
a7 as a9
bl b2 b3
And, matrix B = b4 b5 b6
b7 b8 b9
albl+a2b4d+a3b’7 alb2+a2b5+a3b8 alb3+a2b6+a3b9
Then, A X B = a4dbl+abbd+abb’ adb2+abb5+a6b8 ad4b3+abb6+abb9
a7bl+a8b4+a%b7 a7b2+a8b5+a9%b8 a7b3+a8b6+a9%b09

For two non-square matrices, multiplication is feasible only if the number of columns in the left
matrix is equal to the number of rows in the right matrix. Thus, if a M X N matrix is multiplied with a
N X P matrix, then the resultant matrix would be a M X P matrix.

Program

Example 2.12 Write a C program to perform multiplication on two 3x3 matrices.
Program 2.8 Multiplying on two 3 X 3 matrices

#include <stdio.h>
#include <conio.h>

Arrays 2.21

void main ()
{
int 1,3,%k,A[3]1[3]1,B[31[3],C[3]11[3];
clrscr();
printf (“Enter the 3 X 3 matrix A:\n”);
for (1=0;i<3;i++)
{
for (3=0;3<3; j++)
{
printf ("A[%d] [%d] = “,1,73);
scanf (“%d”, &A[1][]]);/*Reading the elements of the 1lst matrix*/
}
}

printf (“Enter the 3 X 3 matrix B:\n”);
for (i=0;1<3;i++)

{

for (7J=0;j<3; j++)

{

printf (“"B[%d] [%d] = “,1,73);

scanf (“%d”,&B[1][]]);/*Reading the elements of the 2nd matrix*/

}

}

printf (“"\nThe entered matrices are: \n”);

for (1=0;i<3;i++)
{
printf (M\n”) ;
for (j=0;3<3;j++)
{
printf (“%d\t”,A[1]1[]j]);/*Displaying the elements of matrix A*/
}
printf («\t\t») ;
for (j=0;3<3;j++)
{
printf (“%$d\t”,B[i][j]);/*Displaying the elements of the matrix B*/
}
}
/*Multiplying the two matrices*/
for (1=0;1i<3;i++)
for (j=0;3<3;j++)
{
C[i]1[]J1=0;
for (k=0; k<3; k++)
C[i][j1=C[i][J1+A[i] [k]1*B[k][]];
}

printf ("\n\nThe product of the two matrices A X B is shown below: \n”);

2.22 Data Structures

for (i=0;1<3;1i++)

{

printf (M\n”) ;

for (j=0;3<3;j++)

{
printf (“&d\t”,C[i]1[j]); /*Displaying the result*/
}

}

getch () ;
}

Output
Enter the elements of 3 X 3 matrix A:
A[0][0] 1
A[0][1] = 2
A[0][2] = 3
A[1][0] = 4
A[l][1] =5
A[l][2] = 6
A[2][0] = 7
A[2][1] = 8
A[2]1[2] = 9
Enter the elements of 3 X 3 matrix B:
B[0][0] = 9
B[O][1] = 8
B[O][2] = 7
B[1][0] = 6
B[1][1] = 5
B[1][2] = 4
B[2][0] = 3
B[2][1] = 2
B[2][2] = 1

The entered matrices are:

2 3 9 8
5 6 6 5 4
7 8 9 3 2

The product of the two matrices A X B is shown below:
30 24 18

84 69 54
138 114 90

Arrays 2.23

Program analysis

Key Statement Purpose

CLil[GI=CIilljl+AL K] *BIK][j]s Multiplies the elements of 4 and B matrices and stores the result at
corresponding positions of the resultant matrix C

2.9.4 Transpose

In simple words, transposing a matrix refers to the task of changing the rows into columns and columns
into rows. For instance,
al az a3
If matrix A = a4 ab a6
a7 a8 a9
al a4 a7
Then, transpose(A) = a2 ab a8
a3 a6 a9

Program

Example 2.13 Write a C program to transpose a given 3 X 3 matrix.
Program 2.9 (C program to transpose 3 X 3 matrix

#include <stdio.h>
#include <conio.h>

void main ()
{
int i,j,A[3]([3],T[3][3];
clrscr();
printf (“Enter a 3 X 3 matrix:\n”);
for (1i=0;i<3;i++)
{
for (7=0;j<3; j++)
{
printf ("A[%d] [%3d] = “,1i,3);
scanf (“%d”, &A[1]1[Jj]); /*Reading the elements of the 3X3 matrix*/
}
}

printf ("\nThe entered matrix is: \n”);
for (1=0;1<3;1i++)
{
printf (M\n”) ;
for (§J=0;3<3; j++)
{
printf (“&d\t”,A[i][]J]); /*Displaying the matrix*/
}
}

2.24 Data Structures

for (1=0;1<3;1i++)
{

for (§J=0;3<3; j++)

T[i][j]=A[j]1[i]; /*Computing matrix transpose*/
}

printf (“"\n\nThe transpose of the matrix is: \n”);

for (1=0;i<3;i++)
{
printf (M\n”) ;
for (3=0;3<3; j++)
{
printf (“"&d\t”,T[1i]1[j]); /*Displaying the resultant transposed matrix*/
}
}

getch () ;
}

Output
Enter a 3 X 3 matrix:
A[0][0] =1
A[0][1] = 2
A[0][2] = 3
A[1][0] = 4
A[l][1] =5
A[l]l[2] = 6
A[2][0] = 7
A[2][1] = 8
A[2][2] = 9

The entered matrix is:

1 2 3
4 5 6
7 8 9

The transpose of the matrix is:

1 4 7
2 5 8
3 6 9

Program analysis

Key Statement Purpose

Tlillj1=Aljllil; Transposes each element of the matrix 4 and stores the result in the matrix 7

Arrays 2.25

ﬁote Adequate checks must be included in a program to ensure that non-compatible matrices
are not operated.

@ Check Point

1. What is matrix addition?
Ans. It is the task of adding the relative elements of two matrices.

2. What is matrix transpose?
Ans. It is the task of changing the rows into columns and columns into rows.

Solved Problems

Problem 2.1 Consider the following array of integers:
35 18 7 12 5 23 16 3 1
Create a snapshot of the above array for the following operations:
Inserting element 99 at index location 2.
Deleting the first element of the array.
Solution
Array contents after insertion: 35 18 99 7 12 5 23 16 3 1
Array contents after deletion: 18 7 12 5 23 16 3 1

Problem 2.2 Consider the following array of integers:
74 39 35 32 97 84
Create a snapshot of the above array after the sorting operation is performed on it.
Solution
Initial array 74 39 35 32 97 84
Sorted array 32 35 39 74 84 97

Problem 2.3 Consider the following array of integers:
74 39 35 32 97 84
How many elements would need to be traversed before search operation is completed on the
following items:
32
83
Solution
4
6

Problem 2.4 Consider the following array of integers::
35 54 12 18 23 15 45 38

2.26 Data Structures

Deduce the address of the 4™ element (index location 3), if the base address is 3000. Assume that
the word size is 2.
Solution Address of arr[3] =3000 +2 * 3
=3000+6
=3006

Problem 2.5 A two-dimensional array A[5][10] is implemented in row order manner in the memory.
Deduce the address of the A[3][5] element, if the base address of the array is 3000 and the word size is
2. Assume the lower bound of row and column indices to be 1.

Solution Address of A[i,j]=B + W (n (i— LBR) + (j — LBC))

Address of A[3,5]=3000+2 (10 3-1)+(5-1))
=3000+2 (24)
=3048

Problem 2.6 Solve Problem 5 in case of column order implementation.
Solution Address of A[i,j]=B + W (m (j — LBC) + (i — LBR))
Address of A[3,5]=3000+2(53-1)+(5-1))

=3000+2 (14)

=3028

Summary

Arrays are characterized as one-dimensional and multi-dimensional arrays.

One-dimensional arrays are stored at consecutive locations in memory.

Array traversal involves visiting the array elements and storing or retrieving values from it.

Insertion is the task of adding an element into an existing array while deletion is the task of

removing an element from the array.

Sorting involves arranging the elements of an array in a specific order or sequence.

Searching involves locating a specific element in an array.

¢ Multi-dimensional array either stores the array elements in row major order or column major
order.

¢ Two-dimensional arrays are most commonly used for realizing matrices.

¢ Common operations performed on matrices are: addition, subtraction, multiplication, transpose.

L 2R R 2R 4

L R 2

Key Terms

¢ Array An array is defined as a collection of same type elements, such as integers, characters,
strings, structures, and so on.

¢ One-dimensional array It is a group of same type data elements, such as integers, floats, or
characters.

¢ Multi-dimensional array It is a group of data elements, where each element is itself an array.

¢ Array subscript It is the index identifier used to identify individual array elements.

Arrays 2.27

L R R 2 4

Base address It is the memory address of the first element of an array.

Sorting It involves arranging the elements of an array in a specific order or sequence.
Searching It involves locating a specific element in an array.

Row major order It is the memory representation of a two-dimensional array in row-by-row
fashion.

Column major order It is the memory representation of a two-dimensional array in column-
by-column fashion.

Multiple-Choice Questions

2.1

2.2

2.3

24

2.5

2.6

Which of the following is not true about arrays?

(a) It uses a single name for referencing all the array elements.

(b) Its name can be used as a pointer to the first array element.

(¢) It performs automatic bound checking on its own.

(d) It stores the different elements at consecutive memory locations.

Which of the following is an incorrect array representation?

(a) {2,5,6,1,9}

(b) {2.5,5.5,6.8,1.0,9.7}

(c) {°S’,), 6,4, P’}

(d) All of the above are correct

While performing array insertion, the elements to the right of the point of insertion are required
to be moved in which direction?

(a) Right

(b) Left

(c) They are not required to be moved

(d) None of the above

While performing array deletion, the elements to the right of the point of deletion are required
to be moved in which direction?

(a) Right

(b) Left

(c) They are not required to be moved

(d) None of the above

Which of the following is a representation of multi-dimensional array in memory?
(a) Row major order

(b) Column major order

(c) Sequential order

(d) Both (a) and (b)

Address of A[i,j1 =B + W (m (j — LBC) + (i — LBR)) is the formula for computation of memory
addresses of which of the following array representations?

(a) Column major order

(b) Row major order

(¢) Sequential order

(d) None of the above

2.28 Data Structures

2.7 A multi-dimensional array A[3][7] possesses how many number of elements?
(a) 10 (b) 21
(c) 17 (d) None of the above
2.8 Transposing a matrix refers to
(a) converting rows into columns
(b) converting columns into rows
(c) Both (a) and (b)
(d) None of the above

Review Questions

2.1 What is an array? What are its various types?
2.2 Explain the representation of a one-dimensional array in memory with the help of an illustration.
2.3 What is array traversal? Why is it used?
2.4 What are the typical operations associated with arrays? Explain.
2.5 Write an algorithm for deleting an element at index location k in the array A[N].
2.6 What is the difference between sorting and searching?
2.7 Explain the representation of a two-dimensional array in memory with the help of an illustration.
2.8 Explain with the help of an illustration how a 2 X 2 matrix is stored in memory using column
major order representation.
2.9 What is matrix multiplication? Explain with the help of an example.
2.10 What is the significance of transposing a matrix?

Programming Exercises

2.1 Write a C program to find the smallest element in an integer array.

2.2 Write a C program to read a value and insert it at the middle of an integer array.

2.3 Write a C program to sort an array of 10 integers.

2.4 Write a C program to demonstrate searching on an array of ten integers.

2.5 Write a C program to show how matrices are realized using two-dimensional arrays.
2.6 Write a C program to perform matrix subtraction.

2.7 Write a C program to perform transpose of a matrix.

Answers to Multiple-Choice Questions

2.1 (c) 22 (c) 2.3 (a) 24 (b) 2.5 (d)
2.6 (a) 2.7 (b) 2.8 (c)

Arrays 2.29

LINKED LISTS

3.1 Introduction

3.2 Linked Lists - Basic Concept
3.2.1 Representation of Linked Lists
3.2.2 Advantages of Linked Lists
3.2.3 Disadvantages of Linked Lists

3.3 Linked List Implementation
3.3.1 Linked List Node Declaration
3.3.2 Linked List Operations
3.3.3 Linked List Implementation
3.4 Types of Linked Lists

3.5 Circular Linked List
3.5.1 Circular Linked List Operations
3.5.2 Circular Linked List Implementation

3.6 Doubly Linked List
3.6.1 Doubly Linked List Node Declaration
3.6.2 Doubly Linked List Operations
3.6.3 Doubly Linked List Implementation

Solved Problems
Summary

Key Terms

P HHtFE O ROtT O DOA

Multiple-Choice Questions
Review Questions
Programming Exercises

Answers to Multiple-Choice Questions

3.1 INTRODUCTION

In the previous chapter, we learnt about arrays and how they are used for storing same type data elements
in memory. While arrays are a good way of grouping same data together, they also have a key limitation
associated with them. An array is allocated fixed amount of memory space before a program is executed.
Thus, if there is a need at run time to store more data in the array than its actual capacity, then there is
no way of doing this. This is where a linked list becomes more useful. It allows for dynamic allocation
of memory space at run time. Thus, there is no need to block memory space at compile time.

Linked list is a collection of nodes or data elements logically connected to each other. Whenever
there is a need to add a new element to the list, a new node is created and appended at the end of the
list. In this chapter, we will learn how a linked list is implemented and how common operations like
insertion and deletion are performed on it. We will also learn about linked list variants, that is circular
linked list and doubly linked list.

3.2 LINKED LISTS—BASIC CONCEPT

Linked list is a collection of data elements stored in such a manner that each element points at the next
element in the list. The elements of a linked list are also referred as nodes. Each node has two parts:
INFO and NEXT. The INFO part contains the data element while the NEXT part contains the address
of the next node. The NEXT part of the last node of the list contains a NULL value indicating the end of
the list. The beginning of the list is indicated with the help of a special pointer called FIRST. Similarly,
the end of the list is indicated by a pointer called LAST.

3.2.1 Representation of Linked Lists

Unlike arrays, the nodes of a linked list need not occupy contiguous locations in memory. Instead, they
can be stored at discrete memory locations, logically connected with each other through node NEXT.
Figure 3.1 depicts the logical representation of a linked list.

FIRST 1 l(LAST

INFO1 NEXT1 » INFO2 NEXT2 |- » INFON NEXTN

;ﬁ

Node

NULL

P

Pointer to the

Data element
next node

Fig. 3.1 Logical representation of a linked list

As shown in the above representation, the first and last nodes of the list are indicated by two distinct
pointers, FIRST and LAST.

3.2 Data Structures

3.2.2 Advantages of Linked Lists

Some of the key advantages of linked lists are:
1. Linked lists facilitate dynamic memory management by allowing elements to be added or deleted
at any time during program execution.
2. The use of linked lists ensures efficient utilization of memory space as only that much amount
of memory space is reserved as is required for storing the list elements.
3. Itis easy to insert or delete elements in a linked list, unlike arrays, which require shuffling of
other elements with each insert and delete operation.

3.2.3 Disadvantages of Linked Lists

Apart from the advantages, linked lists also possess certain limitations, which are:
1. A linked list element requires more memory space in comparison to an array element because
it has to also store the address of the next element in the list.
2. Accessing an element is a little more difficult in linked lists than arrays because unlike arrays,
there is no index identifier associated with each list element. Thus, to access a linked list element,
it is mandatory to traverse all the preceding elements.

3.3 LINKED LIST IMPLEMENTATION

The implementation of a linked list involves two tasks:
1. Declaring the list node
2. Defining the linked list operations

3.3.1 Linked List Node Declaration

Since a linked list node contains two parts, INFO and NEXT, a structure construct is best suited for its
realization. The following structure declaration defines a linked list node:

struct node

{

int INFO;

struct node *NEXT;

}i

typedef struct node NODE;

The above structure declaration defines a new data type called NODE that represents a linked list
node. The node structure contains two members, INFO for storing integer data values and NEXT for
storing address of the next node.

The statement, struct node *NEXT, indicates that the pointer NEXT points at same structure type
i.e. node. Such structures that contain pointer references to their own types are called as self-referential
structures.

Linked Lists 3.3

3.3.2 Linked List Operations

The typical operations performed on a linked list are:
1. Insert
2. Delete
3. Search
4. Print
1. Insert The insert operation adds a new element to the linked list. The following tasks are performed
while adding the new element:
(a) Memory space is reserved for the new node.
(b) The element is stored in the INFO part of the new node.
(¢) The new node is connected to the existing nodes in the list.
Depending on the location where the new node is to be added, there are three scenarios possible,
which are:
(a) Inserting the new element at the beginning of the list
(b) Inserting the new element at the end of the list
(¢) Inserting the new element somewhere at the middle of the list
Inserting a new element at the beginning or end of the list is easy as it only requires resetting the
respective NEXT fields. However, if the new element is to be added somewhere at the middle of the list
then a search operation is required to be performed to identify the point of insertion.
Figures 3.2 (a) and (b) show the insertion of a new element between two existing elements of a
linked list.

—> D1 N2 D2 N3

Node N1 Node N2

New Node X

Fig 3.2 (a) Creating a new element

—> D1 X D2 N3 —>
Node N1 _‘ ’7 Node N2

o T [

New Node X

Fig 3.2 (b) Inserting the newly created element
Example 3.1 Write an algorithm to insert an element at the end of a linked list.
insert (value)

Step 1: Start

3.4 Data Structures

Step 2: Set PTR = addressof (New Node)
//Allocate a new node and assign its address to the pointer PTR
Step 3: Set PTR->INFO = value;
//Store the element value to be inserted in the INFO part of the new node
Step 4: If FIRST = NULL, then goto Step 5 else goto Step 7
//Check whether the existing list is empty
Step 5: Set FIRST=PTR and LAST=PTR
//Update the FIRST and LAST pointers
Step 6: Set PTR->NEXT = NULL and goto Step 8
Step 7: Set LAST->NEXT=PTR, PTR->NEXT=NULL and LAST=PTR
//Link the newly created node at the end of the list
Step 8: Stop

2. Delete The delete operation removes an existing element from the linked list. The following tasks
are performed while deleting an existing element:

(a) The location of the element is identified.

(b) The element value is retrieved. In some cases, the element value is simply ignored.

(¢) The link pointer of the preceding node is reset.

Depending on the location from where the element is to be deleted, there are three scenarios possible,
which are:

(a) Deleting an element from the beginning of the list.

(b) Deleting an element from the end of the list.

(c) Deleting an element somewhere from the middle of the list.

Deleting an element from the beginning or end of the list is easy as it only requires resetting the first
and last pointers. However, if an element is to be deleted from within the list then a search operation
is required to be performed for locating that element. Figures 3.3 (a) and (b) show the deletion of an
element that is present between two existing elements of a linked list.

—> D1 N2

v

D2 N3

v

D3 N4

Node N1 Node N2 Node N3

;

Node to be deleted
Fig 3.3 (a) Identifying the node to be deleted

Resetting the pointer

—> D1 N2 J D2 N3 L D3 N4

Node N1 Node N2 Node N3

Deleted node

Fig 3.3 (b) Deleting the node

Linked Lists 3.5

Example 3.2 Write an algorithm to delete a specific element from a linked list.

delete (value)
Step 1: Start
Step 2: Set LOC = search (value)
//Call the search module to search the location of the node to be
deleted and assign it to LOC pointer
Step 3: If LOC=NULL goto Step 4 else goto Step 5
Step 4: Return (“Delete operation unsuccessful: Element not present”) and
Stop
Step 5: If LOC=FIRST goto Step 6 else goto Step 10
//Check if the element to be deleted is the first element in the list
Step 6: If FIRST=LAST goto Step 7 else goto Step 8
//Check if there is only one element in the list
Step 7: Set FIRST=LAST=NULL and goto Step 9
Step 8: Set FIRST=FIRST->NEXT
Step 9: Return (“Delete operation successful”) and Stop
Step 10: Set TEMP=LOC-1
//Assign the location of the node present before LOC to temporary
pointer TEMP
Step 11: Set TEMP->NEXT=LOC->NEXT
//Link the TEMP node with the node being currently pointed by LOC
Step 12: If LOC=LAST goto Step 13 else goto Step 14
//Check 1f the element to be deleted is currently the last element in
the list
Step 13: Set LAST=TEMP
Step 14: Return (“Delete operation successful”)
Step 15: Stop

3. Search The search operation helps to find an element in the linked list. The following tasks are
performed while searching an element:

(a) Traverse the list sequentially starting from the first node.

(b) Return the location of the searched node as soon as a match is found.

(c) Return a search failure notification if the entire list is traversed without any match.

The NEXT pointers help in traversing the linked list from start till end.

Example 3.3 Write an algorithm to search a specific element in the linked list.

search (value)
Step 1: Start
Step 2: If FIRST=NULL goto Step 3 else goto Step 4
//Check if the linked list is empty
Step 3: Return (“Search unsuccessful: Element not present”) and Stop
Step 4: Set PTR=FIRST
Step 5: Repeat Steps 6-8 until PTR!=LAST
//Repeat Steps 6-8 until PTR is not equal to LAST
Step 6: If PTR->INFO=value goto Step 7 else goto Step 8
Step 7: Return (“Search successful”, PTR) and Stop
Step 8: Set PTR=PTR->NEXT

3.6 Data Structures

Step 9: If LAST->INFO=value goto Step 10 else goto Step 11
//Check if the element to be searched is the last element in the list
Step 10: Return (“Search successful”, LAST) and Stop
Step 11: Return (“Search unsuccessful: Element not present”)
Step 12: Stop

4. Print The print operation prints or displays the linked list elements on the screen. To print the
elements, the linked list is traversed from start till end using NEXT pointers.

Example 3.4 Write an algorithm to print all the linked list elements.

print ()

Step 1: Start

Step 2: If FIRST=NULL goto Step 3 else goto Step 4
//Check if the linked list is empty

Step 3: Display (“Empty List”) and Stop

Step 4: If FIRST=LAST goto Step 5 else goto Step 6
//Check if the list has only one element

Step 5: Display (FIRST->INFO) and Stop

Step 6: Set PTR=FIRST

Step 7: Repeat Steps 8-9 until PTR!=LAST
//Repeat Steps 8-9 until PTR is not equal to LAST

Step 8: Display (PTR->INFO)
//Displaying list elements

Step 9: Set PTR=PTR->NEXT

Step 10: Display (LAST->INFO)
//Displaying last element

Step 11: Stop

3.3.3 Linked List Implementation

Linked list implementation involves declaring its structure and defining its operations. The following
example shows how a linked list is implemented using C language.

Example 3.5 Write a program to implement a linked list and perform its common operations.

Program 3.1 implements a linked list in C. It uses the insert (Example 3.1), delete (Example 3.2), search
(Example 3.3) and print (Example 3.4) algorithms for realizing the common linked list operations.

Program 3.1 Implementation of linked list
#include<stdio.h>

#include<conio.h>

/*Linked list declaration*/

struct node Here, the structure declaration of the

{ linked list node has been done globally
int INFO; so as to enable all the functions in the
struct node *NEXT; program to create its instances.

}i

Linked Lists 3.7

/*Declaring pointers to first and last node of the linked list*/
struct node *FIRST = NULL;
struct node *LAST = NULL;

/*Declaring function prototypes for linked list operations*/
void insert(int) ;

int delete(int) ;

void print(void) ;

struct node *search (int);

void main ()

{

int numl, num2, choice;
struct node *location;

/*Displaying a menu of choices for performing linked list operations*/
while (1)

{
clrscr
printf
printf ("\nl - Insert”);

()7
(
(
printf (*\n2 - Delete”);
(
(
(

“"\n\nSelect an option\n”);

printf (*\n3 - Search”);
printf (“\n4 - Print”);
printf (“"\n5 - Exit”);

printf ("\n\nEnter your choice: “);
scanf (“%d”, &choice);

switch (choice)

{

case 1:

{

printf ("\nEnter the element to be inserted into the linked list: “);
scanf (“%d”, &numl) ;

insert(numl) ; /*Calling the insert() function*/

printf ("\n%d successfully inserted into the linked list!”,numl) ;
getch () ;

break;

}

case 2:

{

printf (“"\nEnter the element to be deleted from the linked list: “);
scanf (“%d”, &numl) ;

num2=delete (numl) ; /*Calling the delete() function */

if (num2==-9999)

printf ("\n\t%d is not present in the linked list\n\t”,numl) ;

else

3.8 Data Structures

printf ("\n\tElement %d successfuly deleted from the linked list\n\t”, num2) ;
getch () ;
break;

}

case 3:

{

printf ("\nEnter the element to be searched: “);

scanf (“%d”, &numl) ;

location=search(numl); /*Calling the search() function*/

if (location==NULL)

printf ("\n\t%d is not present in the linked list\n\t”,numl) ;
else

{

if (location==LAST)

printf ("M\n\tElement %d is the last element in the list”,numl);
else

printf ("\n\tElement %d is present before element %d in the linked list\

n\t”,numl, (location->NEXT)->INFO) ;

}

getch() ;

break;

}

case 4:

{

print(); /*Printing the linked list elements*/
getch () ;

break;

}

case 5:
{

exit (1) ;
break;

}

default:
{

printf ("\nIncorrect choice. Please try again.”);

getch () ;
break; If an incorrect choice is entered, an
} error prompt is generated.

}
}
}

/*Insert function*/

Linked Lists 3.9

vold insert (int value)
{
/*Creating a new node*/
struct node *PTR = (struct node*)malloc (sizeof (struct node)) ;

/*Storing the element to be inserted in the new node*/
PTR->INFO = value;

/*Linking the new node to the linked list*/
if (FIRST==NULL)

{

FIRST = LAST = PTR;
PTR->NEXT=NULL;

}

else

{

LAST->NEXT = PTR;
PTR->NEXT = NULL;
LAST = PTR;

}

}

/*Delete function*/
int delete (int wvalue)

{

struct node *LOC, *TEMP;
int i;

i=value;

LOC=search(i); /*Calling the search() function*/

if (LOC==NULL) /*Element not found*/
return (-9999) ;

if (LOC==FIRST)

{

if (FIRST==LAST)
FIRST=LAST=NULL;
else
FIRST=FIRST->NEXT;
return (value) ;

}

for (TEMP=FIRST; TEMP->NEXT !=LOC; TEMP=TEMP->NEXT)
7 - Here, a single semi-colon indicates that the

TEMP->NEXT=LOC->NEXT; for loop is not executing any instructions; it
if (LOC==LAST) is simply used to update the TEMP pointer

through linked list traversal.

3.10 Data Structures

LAST=TEMP;
return (LOC->INFO) ;
}

/*Search function*/
struct node *search (int wvalue)

{
struct node *PTR;

if (FIRST==NULL) /*Checking for empty list*/
return (NULL) ;

/*Searching the linked list*/

for (PTR=FIRST; PTR!=LAST; PTR=PTR->NEXT)

if (PTR->INFO==value)

return (PTR); /*Returning the location of the searched element*/

if (LAST->INFO==value)

return (LAST) ;

else

return (NULL) ; /*Returning NULL value indicating unsuccessful search*/

/*print function*/
void print ()

{

struct node *PTR;

if (FIRST==NULL) /*Checking whether the list is empty*/
{

printf ("\n\tEmpty List!!”);

return;

}

printf ("\nLinked list elements:\n”);

1f (FIRST==LAST) /*Checking if there is only one element in the list*/
{

printf (“"\t%d”, FIRST->INFO) ;

return;

}

/*Printing the list elements*/

for (PTR=FIRST; PTR!=LAST; PTR=PTR->NEXT)
printf (“"\t%d”, PTR->INFO) ;

printf («\t%d», LAST->INFO) ;

Linked Lists 3.11

Output

Select an option

1 - Insert
2 - Delete
3 - Search
4 - Print
5 - Exit

Enter your choice: 4
Empty List!!

Select an option

1 - Insert
2 - Delete
3 - Search
4 - Print
5 - Exit

Enter your choice: 1
Enter the element to be inserted into the linked list: 1
1 successfully inserted into the linked list!

Select an option

1 - Insert
2 - Delete
3 - Search
4 - Print
5 - Exit

Enter your choice: 1
Enter the element to be inserted into the linked list: 2
2 successfully inserted into the linked list!

Select an option

1 - Insert
2 - Delete
3 - Search
4 - Print
5 - Exit

3.12 Data Structures

Enter your choice: 1
Enter the element to be inserted into the linked list: 3
3 successfully inserted into the linked list!

Select an option

1 - Insert
2 - Delete
3 - Search
4 - Print
5 - Exit

Enter your choice: 3
Enter the element to be searched: 5
5 is not present in the linked list

Select an option

1 - Insert
2 - Delete
3 - Search
4 - Print
5 - Exit

Enter your choice: 3
Enter the element to be searched: 2
Element 2 is present before element 3 in the linked list

Select an option

1 - Insert
2 - Delete
3 - Search
4 - Print
5 - Exit

Enter your choice: 2
Enter the element to be deleted from the linked list: 2

Element 2 successfully deleted from the linked list

Linked Lists 3.13

Select an option

1 - Insert
2 — Delete
3 - Search
4 - Print
5 - Exit

Enter your choice: 4

Linked list elements:

Select an option

1 - Insert
2 — Delete
3 - Search
4 - Print
5 - Exit

Enter your choice: 5

Program analysis

Key Statement

Purpose

void insert(int);

int delete(int);

void print(void);

struct node *search (int);

Declares the prototypes for the functions that perform
linked list operations

while(1)

Initiates an infinite loop for displaying a menu of
options; the loop terminates only when exit() function
is called from the enclosing statement block

switch(choice) Uses switch statement to select an appropriate case block
as per user’s choice
insert(numl); Calls the insert() function for inserting an element into

the linked list

num2=delete(num1);

Calls the delete() function for deleting an element from
the linked list

location=search(numl);

Calls the search() function for searching an element in
the linked list

print(); Calls the print() function for printing the linked list
elements
default: Refers to the default instruction block which is executed

when the user enters an incorrect choice

3.14 Data Structures

Key Statement Purpose
PTR->INFO = value; Stores a value in the INFO part of the linked list node
FIRST = LAST = PTR; Initializes the FIRST and LAST pointers of the linked list
LAST->NEXT = PTR; Stores an address value in the NEXT part of the linked
list node

3.4 TYPES OF LINKED LISTS

Depending on the manner in which its nodes are interconnected with each other, linked lists are categorized
into the following types:

1. Singly linked list In this type of linked list, each node points at the successive node. Thus, the
list can only be traversed in the forward direction. The linked list implementation that we saw
in the previous section is an example of singly linked list.

2. Circular list In this type of linked list, the first and the last node are logically connected with
each other, thus giving the impression of a circular list formation. Actually, the NEXT part of
the last node contains the address of the FIRST node, thus connecting the rear of the list to its
front.

3. Doubly linked list In this type of linked list, a node points at both its preceding as well as
succeeding nodes. Thus, the list can be traversed in both forward as well as backward directions.

3.5 CIRCULAR LINKED LIST

The only difference between singly linked list and circular linked list is that the last node of singly linked
list points at NULL while the last node of circular linked list points at the first list element. That means,
the NEXT part of the last node of a circular linked list contains the address of its FIRST node. One of
the main advantages of circular linked list is that it allows traversal of the complete list from any of its
node, which is not possible with singly or doubly linked lists.

Figure 3.4 depicts the logical representation of a circular linked list.

FIRST —l f LAST

—» INFO1 NEXT1 —»| INFO2 NEXT2 |« > INFON NEXTN

1 ~

Node

<

Data element Pointer to the
next node

A

Pointer to the first node

Fig. 3.4 Logical representation of a circular linked list

Linked Lists 3.15

The implementation of a circular linked list involves two tasks:
1. Declaring the list node
2. Defining the list operations
The declaration of the circular linked list node is similar to the declaration of the singly linked list
node. However, the definition of certain operations of a circular linked list is slightly different than that
of the singly linked list.

3.5.1 Circular Linked List Operations

The typical operations performed on a circular linked list are:
1. Insert
2. Delete
3. Search
4. Print
1. Insert The insert operation in a circular list is performed in the same manner as a singly linked
list. The only exception is when the element is inserted at the end of the list. In such a case, the NEXT
pointer of the newly inserted node is assigned the address of the first element in the list, thus ensuring
that the list stays circular.

Example 3.6 Write an algorithm to insert an element at the end of a circular linked list.

insert (value)
Step 1: Start
Step 2: Set PTR = addressof (New Node)
//Allocate a new node and assign its address to the pointer PTR
Step 3: Set PTR->INFO = value;
//Store the element value to be inserted in the INFO part of the new node
Step 4: If FIRST = NULL, then goto Step 5 else goto Step 7
//Check whether the existing list is empty
Step 5: Set FIRST=PTR and LAST=PTR
//Update the FIRST and LAST pointers
Step 6: Set PTR->NEXT = FIRST and goto Step 8
//Create a circular link
Step 7: Set LAST->NEXT=PTR, PTR->NEXT=FIRST and LAST=PTR
//Add the newly created node at the end of the list and link it with
the first node
Step 8: Stop

2. Delete The delete operation in a circular list is performed in the same manner as a singly linked
list. The only exception is when the element to be deleted is at the end of the list. In such a case, the
NEXT pointer of the second last node in the list is assigned the address of the first element to ensure
that the list stays circular.

Example 3.7 Write an algorithm to delete an element from a circular linked list.

delete (value)
Step 1: Start
Step 2: Set LOC = search (value)

3.16 Data Structures

//Call the search module to search the location of the node to be
deleted and assign it to LOC pointer
Step 3: If LOC=NULL goto Step 4 else goto Step 5
Step 4: Return (“Delete operation unsuccessful: Element not present”)
and Stop
Step 5: If LOC=FIRST goto Step 6 else goto Step 11
//Check if the element to be deleted is the first element in the list
Step 6: If FIRST=LAST goto Step 7 else goto Step 8
//Check if there is only one element in the list
Step 7: Set FIRST=LAST=NULL and goto Step 10
Step 8: Set FIRST=FIRST->NEXT
//Reset the FIRST pointer
Step 9: Set Last->NEXT=FIRST
//Link the last node with the updated FIRST pointer
Step 10: Return (“Delete operation successful”) and Stop
Step 11: Set TEMP=LOC-1

//Assign the location of the node present before LOC to temporary
pointer TEMP
Step 11: Set TEMP->NEXT=LOC->NEXT
//Link the TEMP node with the node being currently pointed by LOC
Step 12: If LOC=LAST goto Step 13 else goto Step 15
//Check 1f the element to be deleted is currently the last element in
the list
Step 13: Set LAST=TEMP
Step 14: Set TEMP->NEXT=FIRST
//Create circular link
Step 15: Return (“Delete operation successful”)
Step 16: Stop

3.Search The search operation in a circular linked list is performed in the same manner as a singly
linked list. The circular list also provides the additional flexibility of starting the search from anywhere
in the list. An unsuccessful search is signified when the same node is reached from where the search
was started.

4. Print The print operation in a circular list is performed in the same manner as a singly linked
list. The circular nature of the list allows us to start the print operation from anywhere in the list.

3.5.2 Circular Linked List Implementation

The implementation of circular linked list involves declaring its structure and defining its operations.
The following example shows how a circular linked list is implemented in C.

Example 3.8 Write a program to implement a circular linked list and perform its common operations.

Program 3.2 implements a circular linked list in C. It uses the insert (Example 3.6) and delete (Example
3.7) algorithms for realizing the insert and delete operations on the circular linked list. For performing
the search and print operations, the same algorithms (Example 3.3 and Example 3.4) have been used
that were earlier used for implementing a singly linked list.

Linked Lists 3.17

Program 3.2 Implementation of a circular linked list

#include<stdio.h>
#include<conio.h>

/*Circular linked list declaration*/
struct cl node
{
int INFO;
struct cl node *NEXT;
}i

/*Declaring pointers to first and last node of the list*/
struct cl_node *FIRST = NULL;
struct cl_node *LAST = NULL;

/*Declaring function prototypes for list operations*/
void insert(int) ;

int delete(int) ;

void print(void) ;

struct cl_node *search (int);

void main ()

{

int numl, num2, choice;
struct cl node *location;

/*Displaying a menu of choices for performing list operations*/
while (1)

{
clrscr
printf
printf (“\nl - Insert”);

() s
(
(
printf (“"\n2 - Delete”);
(
(
(

\n\nSelect an option\n”) ;

ANY

printf ("\n3 - Search”);
printf (“\n4 - Print”);
printf (“"\n5 - Exit”);

printf ("\n\nEnter your choice: “);
scanf (“%d”, &choice);

switch (choice)
{
case 1:

{

printf (“\nEnter the element to be inserted into the circular linked list: “);
scanf (“%d”, &numl) ;

insert(numl) ; /*Calling the insert() function*/

printf ("\n%d successfully inserted into the linked list!”,numl) ;

3.18 Data Structures

getch () ;
break;

}

case 2:

{

printf ("\nEnter the element to be deleted from the circular linked list: “);
scanf (“%d”, &numl) ;

num2=delete (numl) ; /*Calling the delete() function */

if (num2==-9999)

printf ("\n\t%d is not present in the list\n\t”,numl) ;

else

printf ("\n\tElement %d successfully deleted from the list\n\t”,num2);
getch () ;

break;

}

case 3:

{

printf (“"\nEnter the element to be searched: “);

scanf (“%d”, &numl) ;

location=search(numl); /*Calling the search()function*/

if (location==NULL)

printf ("\n\t%d is not present in the list\n\t”,numl) ;

else

printf ("\n\tElement %d is present before element %d in the circular linked
list\n\t”,numl, (location->NEXT)->INFO) ;

getch () ;

break;

}

case 4:

{

print () ; /*Printing the list elements*/
getch () ;

break;

}

case 5:

{
exit (1)
break;

}

default:

{

printf (“"\nIncorrect choice. Please try again.”);
getch () ;

break;

Linked Lists 3.19

/*Insert function*/
void insert (int wvalue)
{
/*Creating a new node*/
struct cl node *PTR = (struct cl node*)malloc(sizeof (struct cl node));

/*Storing the element to be inserted in the new node*/
PTR->INFO = value;

/*Linking the new node to the circular linked list*/
1if (FIRST==NULL)

{

FIRST = LAST = PTR;

PTR->NEXT=FIRST;

1 The instruction PTR->NEXT =FIRST

else links the newly added node with the

{ first node in the list, thus depicting a

circular arrangement.
LAST->NEXT = PTR;

PTR->NEXT = FIRST;
LAST = PTR;

1

}

/*Delete function*/
int delete (int wvalue)

{

struct cl node *LOC, *TEMP;
int i;

i=value;

LOC=search (i); /*Calling the search() function*/

if (LOC==NULL) /*Element not found*/
return (-9999) ;

if (LOC==FIRST)

{

if (FIRST==LAST)
FIRST=LAST=NULL;
else

{
FIRST=FIRST->NEXT;
LAST->NEXT=FIRST;

3.20 Data Structures

}

return (value) ;

}

for (TEMP=FIRST; TEMP->NEXT !=LOC; TEMP=TEMP->NEXT)
if (LOC==LAST)

{

LAST=TEMP;

TEMP->NEXT=FIRST;

}

else

TEMP->NEXT=LOC->NEXT;

return (LOC->INFO) ;

/*Search function*/
struct cl node *search (int value)

{
struct cl node *PTR;

1if (FIRST==NULL) /*Checking for empty list*/
return (NULL) ;

1f (FIRST==LAST && FIRST->INFO==value) /*Checking if there is only one
element in the list*/
return (FIRST) ;

/*Searching the linked list*/

for (PTR=FIRST; PTR!=LAST; PTR=PTR->NEXT)

if (PTR->INFO==value)

return (PTR); /*Returning the location of the searched element*/

if (LAST->INFO==value)
return (LAST) ;

else
return (NULL) ; /*Returning NULL value indicating unsuccessful search*/

/*print function*/
void print ()

{

struct cl node *PTR;

if (FIRST==NULL) /*Checking whether the list is empty*/
{

Linked Lists 3.21

printf ("M\n\tEmpty List!!”);
return;

}

printf ("M\nCircular linked list elements:\n”);

1f (FIRST==LAST) /*Checking if there is only one element in the list*/
{

printf (“\t%d”, FIRST->INFO) ;

return;

}

/*Printing the list elements*/

for (PTR=FIRST; PTR!=LAST; PTR=PTR->NEXT)
printf (“\t%d”, PTR->INFO) ;

printf («\t%d», LAST->INFO) ;

}

Output

Select an option

1 - Insert
2 - Delete
3 - Search
4 - Print
5 - Exit

Enter your choice: 4
Empty List!!

Select an option

1 - Insert
2 - Delete
3 - Search
4 - Print
5 - Exit

Enter your choice: 1
Enter the element to be inserted into the circular linked list: 1
1 successfully inserted into the linked list!

Select an option

1 - Insert
2 - Delete
3 - Search

3.22 Data Structures

4 - Print
5 - Exit

Enter your choice: 1
Enter the element to be inserted into the circular linked list: 2
2 successfully inserted into the linked list!

Select an option

1 - Insert
2 - Delete
3 - Search
4 - Print
5 - Exit

Enter your choice: 1
Enter the element to be inserted into the circular linked list: 3

3 successfully inserted into the linked list!

Select an option

1 - Insert
2 - Delete
3 - Search
4 - Print
5 - Exit

Enter your choice: 3
Enter the element to be searched: 2

Element 2 is present before element 3 in the circular linked list

Select an option

1 - Insert
2 - Delete
3 - Search
4 - Print
5 - Exit

Enter your choice: 3

Linked Lists 3.23

Enter the element to be searched: 3

Element 3 is present before element 1 in the circular linked list

1 3

\ The presence of element 3 before

element 1 confirms the circular nature

of the list.
Select an option
1 - Insert
2 - Delete
3 - Search
4 - Print
5 - Exit
Enter your choice: 5
Program analysis
Key Statement Purpose

struct cl_node *FIRST = NULL;
struct cl_node *LAST = NULL;

Declares pointers to the first and last nodes of the
circular linked list

void insert(int);

int delete(int);

void print(void);

struct cl_node *search (int);

Declares the prototypes for the functions that perform
operations on the circular linked list

insert(numl1);

Calls the insert() function for inserting an element into
the circular linked list

num2=delete(num1);

Calls the delete() function for deleting an element from
the circular linked list

location=search(num1);

Calls the search() function for searching an element in
the circular linked list

print();

Calls the print() function for printing the elements of
the circular linked list

3.6 DOUBLY LINKED LIST

Each node of a doubly linked list has three parts: INFO, NEXT, and PREVIOUS. The INFO part contains
the data element while the NEXT and PREVIOUS parts contain the address of the next and previous
nodes respectively. The NEXT part of the last node of the list contains a NULL value indicating the
end of the list. The beginning of the list is indicated with the help of a special pointer called FIRST.

The main advantage of a doubly linked list is that it allows both forward and backward traversal.
Figure 3.5 depicts the logical representation of a doubly linked list:

3.24 Data Structures

FIRST LAST

PREV1 INFO1 NEXT1 PREV2 INFO2 NEXT2 |--»| PREVN | INFON | NEXTN
7Y

N

* Null —

Node
Data
Pointer element Pointer
to the to the
previous next
node node

Fig. 3.5 Logical representation of a doubly linked list

The implementation of a doubly linked list involves two tasks:
1. Declaring the list node
2. Defining the list operations

3.6.1 Doubly Linked List Node Declaration

The following structure declaration defines the node of a doubly linked list:

struct node
{
int INFO;
struct node *NEXT;
struct node *PREVIOUS;
bi
typedef struct node NODE;
The above structure declaration defines a new data type called NODE that represents a doubly linked
list node. The node structure contains three members, INFO for storing integer data values, NEXT for
storing address of the next node, and PREVIOUS for storing the address of the previous node.

3.6.2 Doubly Linked List Operations

The typical operations performed on a doubly linked list are:

Insert

Delete

Search

Print

Insert The insert operation in a doubly linked list is performed in the same manner as a singly
linked list. The only exception is that the additional node pointer PREVIOUS is also required
to be updated for the new node at the time of insertion.

i

Linked Lists 3.25

Example 3.9 Write an algorithm to insert an element at the end of a doubly linked list.

insert (value)
Step 1: Start
Step 2: Set PTR = addressof (New Node)
//Allocate a new node and assign its address to the pointer PTR
Step 3: Set PTR->INFO = value;
//Store the element value to be inserted in the INFO part of the new
node
Step 4: If FIRST = NULL, then goto Step 5 else goto Step 7
//Check whether the existing list is empty
Step 5: Set FIRST=PTR and LAST=PTR
//Update the FIRST and LAST pointers
Step 6: Set PTR->NEXT = PTR -> PREVIOUS = NULL and goto Step 8
Step 7: Set LAST->NEXT=PTR, PTR->PREVIOUS = LAST, PTR->NEXT=NULL, and
LAST=PTR
//Link the newly created node at the end of the list
Step 8: Stop

2. Delete The delete operation in a doubly linked list is performed in the same manner as a singly
linked list. The only exception is that the additional node pointer PREVIOUS of the adjacent
node is also required to be updated at the time of deletion.

Example 3.10 Write an algorithm to delete an element from a doubly linked list.

delete (value)
Step 1: Start
Step 2: Set LOC = search (value)
//Call the search module to search the location of the node to be
deleted and assign it to LOC pointer
Step 3: If LOC=NULL goto Step 4 else goto Step 5
Step 4: Return (“Delete operation unsuccessful: Element not present”)
and Stop
Step 5: If LOC=FIRST goto Step 6 else goto Step 10
//Check if the element to be deleted is the first element in the list
Step 6: If FIRST=LAST goto Step 7 else goto Step 8
//Check if there is only one element in the list
Step 7: Set FIRST=LAST=NULL and goto Step 9
Step 8: Set FIRST->NEXT->PREVIOUS=NULL and FIRST=FIRST->NEXT
Step 9: Return (“Delete operation successful”) and Stop
Step 10: Set TEMP=LOC-1
//Assign the location of the node present before LOC to temporary
pointer TEMP
Step 11: If LOC=LAST goto Step 12 else goto Step 13
Step 12: Set LAST=TEMP, TEMP->NEXT=NULL and goto Step 15
Step 13: Set TEMP->NEXT=LOC->NEXT
Step 14: Set LOC->NEXT->PREVIOUS=TEMP
//Delete the LOC node and set the adjacent NEXT and PREVIOUS pointers
Step 15: Return (“Delete operation successful”)
Step 16: Stop

3.26 Data Structures

3. Search The search operation in a doubly linked list is performed in the same manner as a singly
linked list. The doubly linked list also provides the additional flexibility of starting the search
from the end and moving backwards towards the front.

4. Print The print operation in a doubly linked list is performed in the same manner as a singly
linked list. The doubly linked list also allows you to print the list elements in reverse order by
starting from the end and moving backwards towards the front.

3.6.3 Doubly Linked List Implementation

The implementation of doubly linked list involves declaring its structure and defining its operations.
The following example shows how a doubly linked list is implemented in C.

Example 3.11 Write a program to implement a doubly linked list and perform its common operations.
Program 3.3 implements a doubly linked list in C. It uses the insert (Example 3.9) and delete (Example
3.10) algorithms for realizing the insert and delete operations on the doubly linked list. For performing
the search and print operations, the same algorithms (Example 3.3 and Example 3.4) have been used
that were earlier used for implementing a singly linked list.

Program 3.3 [mplementation of a doubly linked list

#include<stdio.h>
#include<conio.h>

/*Doubly linked list declaration*/
struct dl node

{

int INFO;

struct dl node *NEXT;

struct dl node *PREVIOUS;

}i

/*Declaring pointers to first and last node of the doubly linked list*/
struct dl_node *FIRST = NULL;
struct dl_node *LAST = NULL;

/*Declaring function prototypes for list operations*/
void insert(int) ;

int delete(int) ;

void print(void) ;

struct dl_node *search (int);

void main ()

{
int numl, num2, choice;
struct dl node *location;

/*Displaying a menu of choices for performing list operations*/
while (1)

Linked Lists 3.27

{

clrscr
printf
printf ("\nl - Insert”);

()7
(
(
printf (“\n2 - Delete”);
(
(
(

\n\nSelect an option\n”);

w

printf (“\n3 - Search”);
printf (“\n4 - Print”);
printf (“"\nb5 - Exit”);

printf ("\n\nEnter your choice: “);
scanf (“%d”, &choice);

switch (choice)

{

case 1:

{

printf ("\nEnter the element to be inserted into the doubly linked list: “);
scanf (“"%d”, &numl) ;

insert(numl); /*Calling the insert() function*/

printf (“"\n%d successfully inserted into the linked list!”,numl) ;
getch () ;

break;

}

case 2:

{

printf (“"\nEnter the element to be deleted from the doubly linked list: “);

scanf (“%d”, &numl) ;

num2=delete (numl) ; /*Calling the delete() function */

if (num2==-9999)

printf ("\n\t%d is not present in the doubly linked list\n\t”,numl) ;

else

printf ("\n\tElement %d successfully deleted from the doubly linked list\
n\t”,num2) ;

getch () ;

break;

}

case 3:

{

printf (“\nEnter the element to be searched: “);

scanf (“%d”, &numl) ;

location=search(numl); /*Calling the search () */

if (location==NULL)

printf ("\n\t%d is not present in the list\n\t”,numl) ;
else

{

if (location==LAST)

printf (“\n\tElement %d is the last element in the list”,numl) ;

3.28 Data Structures

else

printf ("\n\tElement %d is present before element %d in the doubly linked
list\n\t”,numl, (location->NEXT)->INFO) ;

}

getch() ;

break;

}

case 4:

{

print () ; /*Printing the list elements*/
getch () ;

break;

}

case 5:
{

exit (1)
break;

}

default:

{

printf (“"\nIncorrect choice. Please try again.”);
getch () ;

break;

}

}

}
}

/*Insert function*/
void insert (int value)
{
/*Creating a new node*/
struct dl_node *PTR = (struct dl_node*)malloc(sizeof (struct dl_node)) ;

/*Storing the element to be inserted in the new node*/
PTR->INFO = value;

/*Linking the new node to the doubly linked list*/
if (FIRST==NULL)

{

FIRST = LAST = PTR;

PTR->NEXT=NULL;

PTR->PREVIOUS=NULL;

}

else

{

Linked Lists 3.29

LAST->NEXT = PTR;
PTR->NEXT = NULL;
PTR->PREVIOUS = LAST;
LAST = PTR;

}

}

/*Delete function*/
int delete(int wvalue)

{

struct dl node *LOC, *TEMP;
int i;

i=value;

LOC=search(i); /*Calling the search() function*/

if (LOC==NULL) /*Element not found*/
return (-9999) ;

if (LOC==FIRST)

{

if (FIRST==LAST)
FIRST=LAST=NULL;

else

{
FIRST->NEXT->PREVIOUS=NULL;
FIRST=FIRST->NEXT;

}

return (value) ;

}

for (TEMP=FIRST; TEMP->NEXT ! =LOC; TEMP=TEMP->NEXT)
if (LOC==LAST)
{

LAST=TEMP;

TEMP->NEXT=NULL; A doubly linked list requires two

} pointers to be updated, NEXT and
PREVIOUS.

else

{
TEMP->NEXT=LOC->NEXT;
LOC->NEXT->PREVIOUS=TEMP;

}
return (LOC->INFO) ;

3.30 Data Structures

/*Search function*/
struct dl node *search (int value)

{
struct dl node *PTR;

if (FIRST==NULL) /*Checking for empty list*/
return (NULL) ;

1f (FIRST==LAST && FIRST->INFO==value) /*Checking if there is only one
element in the list*/
return (FIRST) ;

/*Searching the linked list*/

for (PTR=FIRST; PTR!=LAST; PTR=PTR->NEXT)

if (PTR->INFO==value)

return (PTR); /*Returning the location of the searched element*/

if (LAST->INFO==value)

return (LAST) ;

else

return (NULL); /*Returning NULL value indicating unsuccessful search*/

/*print function*/
void print ()

{

struct dl node *PTR;

if (FIRST==NULL) /*Checking whether the list is empty*/
{

printf ("\n\tEmpty List!!”);

return;

}

printf ("\nDoubly linked list elements:\n”);

if (FIRST==LAST) /*Checking if there is only one element in the list*/
{

printf (“"\t%d”, FIRST->INFO) ;

return;

}

/*Printing the list elements*/

for (PTR=FIRST; PTR!=LAST; PTR=PTR->NEXT)
printf (“\t%d”, PTR->INFO) ;

printf («\t%d», LAST->INFO) ;

Linked Lists 3.31

Output
The output of this program is same as Example 3.5 (singly linked list implementation).

Program analysis

Key Statement Purpose

struct dl_node *FIRST = NULL; Declares pointers to the first and last nodes of the

struct dl_node *LAST = NULL; doubly linked list

void insert(int); Declares the prototypes for the functions that perform

int delete(int); operations on the doubly linked list

void print(void);

struct dl_node *search (int);

insert(num1); Calls the insert() function for inserting an element into
the doubly linked list

num2=delete(num1); Calls the delete() function for deleting an element from
the doubly linked list

location=search(num1); Calls the search() function for searching an element in
the doubly linked list

print(); Calls the print() function for printing the elements of
the doubly linked list

struct dl_node *PTR = (struct dl_node*) Creates a new node of the doubly linked list using

malloc(sizeof(struct dl_node)); dynamic memory allocation

PTR->NEXT = NULL; Updates both the NEXT and PREVIOUS pointers of the

PTR->PREVIOUS = LAST; node of a doubly linked list

Solved Problems

Problem 3.1 Write the code snippet for declaring the node of a singly linked list that stores students-
related data.

Solution

struct student

{

char name[30];
int rollno;
float percentage;

1

struct node
{
struct student S;
struct node *NEXT;
}i
typedef struct node NODE;

3.32 Data Structures

Problem 3.2 Write a C function to print the elements of a doubly linked list in reverse order.

Solution

/*print function*/
void print ()

{

struct node *PTR;

if (FIRST==NULL) /*Checking whether the list is empty*/
{

printf ("M\n\tEmpty List!!”);

return;

}

printf ("M\nLinked list elements:\n”);

1f (FIRST==LAST) /*Checking if there is only one element in the list*/
{

printf (“"\t%d”, FIRST->INFO) ;

return;

}

/*Printing the list elements in reverse order*/
for (PTR=LAST; PTR!=FIRST; PTR=PTR->PREVIOUS)
printf (“\t%d”, PTR->INFO) ;

printf («\t%d», FIRST->INFO) ;

Summary

¢ Linked list is a collection of nodes or data elements logically connected to each other.

¢ Each node of a linked list has two parts: INFO and NEXT. The INFO part contains the data
element while the NEXT part contains the address of the next node in the list.

¢ The implementation of a linked list involves declaring the list node and defining the list
operations.

¢ The typical operations performed on a linked list are: insert, delete, search and print.

¢ The various types of linked lists are: singly linked list, doubly linked list, and circular linked
list.

¢ Inacircular linked list, the first and last nodes are logically connected with each other through
the NEXT pointer.

¢ In adoubly linked list, a node points at both its preceding as well as succeeding nodes.

Key Terms

¢ Singly linked list Is a type of a linked list, in which each node points at the successive node.
¢ Circular list Is a type of a linked list, in which the last element points at the first element in the
list, thus, giving the impression of a circular list formation.

Linked Lists 3.33

*

Doubly linked list Is a type of a linked list, in which a node points at both its preceding as well
as succeeding nodes.

INFO Is a part of a linked list node that stores the element value.

NEXT Is a part of a linked list node that stores the address of the next node.
PREVIOUS Is a part of a linked list node that stores the address of the previous node.
FIRST Is a pointer to the first node of a linked list.

LAST Is a pointer to the last node of a linked list.

Insert Inserts an element into a linked list.

Delete Deletes an element from a linked list.

Search Search the linked list for a specific element.

Print Prints the elements of a linked list.

L R SR R R S K 2R 2R 4

Multiple-Choice Questions

3.1 Which of the following is not true about linked lists?
(a) Itisacollection of linked nodes.
(b) It helps in dynamic allocation of memory space.
(c) Tt allows direct access to any of the nodes.
(d) It requires more memory space in comparison to an array.
3.2 Which node pointers should be updated if a new node B is to be inserted in the middle of A and
C nodes of a singly linked list?
(a) NEXT pointer of A and NEXT pointer of C
(b) NEXT pointer of B and NEXT pointer of C
(c) NEXT pointer of B
(d) NEXT pointer of A and NEXT pointer of B
3.3 A ccircular linked list contains four nodes {A, B, C, D}. Which node pointers should be updated
if a new node E is to be inserted at end of the list?
(a) NEXT pointer of D and NEXT pointer of E
(b) NEXT pointer of E
(c) NEXT pointer of E and NEXT pointer of A
(d) NEXT pointer of E and START POINTER
3.4 Which node pointers should be updated if a new node B is to be inserted in the middle of A and
C nodes of a doubly linked list?
(a) NEXT pointer of A, PREVIOUS pointer of B, NEXT pointer of C, and PREVIOUS pointer

of C

(b) NEXT pointer of A, PREVIOUS pointer of B, NEXT pointer of B, and PREVIOUS pointer
of C

(c) NEXT pointer of A, PREVIOUS pointer of A, NEXT pointer of B, and PREVIOUS pointer
of C

(d) None of the above

3.5 Which of the following statements is true about doubly linked list?
(a) It allows list traversal only in forward direction.
(b) It allows list traversal only in forward direction.
(c) It allows list traversal in both forward and backward direction.
(d) It allows complete list traversal starting from any of the nodes.

3.34 Data Structures

3.6 Which of the following statements is true about circular linked list?
(a) It allows complete list traversal starting from any of the nodes.
(b) It allows complete list traversal only if we begin from the FIRST node.
(c) Like singly and doubly linked lists, the NEXT part of the last node of a circular linked list
contains a NULL pointer indicating end of the list.
(d) None of the above
3.7 Youare required to create a linked list for storing integer elements. Which of the following linked
list implementations will require maximum amount of memory space?
(a) Singly linked
(b) Doubly linked
(c) Circular
(d) All of the above will occupy same space in memory
3.8 Which of the following linked list types allows you to print the list elements in reverse order?
(a) Doubly
(b) Singly
(c) Circular
(d) None of the above

Review Questions

3.1 What is a linked list? What are its various types?

3.2 Explain the representation of a linked list in memory with the help of an illustration.
3.3 Explain the typical operations that are performed on a linked list.

3.4 Explain the key advantages and disadvantages of linked lists.

3.5 What is a circular linked list? How is it different from a normal linked list?

3.6 What is a doubly linked list? Why is it used?

3.7 Write the algorithm for searching an element in a singly linked list.

3.8 Write the algorithm for inserting an element in a circular linked list.

Programming Exercises

3.1 Write a code snippet for declaring the node of a doubly linked list.

3.2 Write a C function to delete a node from a singly linked list.

3.3 Write a C function to insert a new node at the end of a circular linked list.

3.4 Write a C function to print the elements of a linked list.

3.5 Write a C function to print the elements of a doubly linked list in both forward and backward
directions.

Answers to Multiple-Choice Questions

3.1 () 32 (d) 33 (a) 3.4 (b) 3.5 (c)
3.6 (a) 3.7 (b) 3.8 (a)

Linked Lists 3.35

UNIT-II

Linear Data Structures — Stacks,
Queues

CHAPTERS

Chapter 4: Stacks
Chapter 5: Queues

STACKS

4.1 Introduction

4.2 Stacks
4.2.1 Stack Representation in Memory
4.2.2 Arrays Vs Stacks

4.3 Stack Operations
4.3.1 Push
4.3.2 Pop
4.3.3 An Example of Stack Operations

4.4 Stack Implementation
4.4.1 Array Implementation of Stacks
4.4.2 Linked Implementation of Stacks

Solved Problems

Summary

Key Terms

Multiple-Choice Questions

Review Questions

Programming Exercises

Answers to Multiple-Choice Questions

0P8 HHHtEE O ROAT O DA

4.1 INTRODUCTION

In the previous chapters, we learnt how arrays are used for implementing linear data structures. Arrays
provide the flexibility of adding or removing elements anywhere in the list. But there are certain linear
data structures that permit the insertion and deletion operations only at the beginning or end of the list,
but not in the middle. Such data structures have significant importance in systems processes such as
compilation and program control.

Stack is one such data structure which is in fact one of the very first data structures that students get
familiar with while studying this subject.

4.2 STACKS

Stack is a linear data structure in which items are

added or removed only at one end, called top of

the stack. Thus, there is no way to add or delete

elements anywhere else in the stack. A stack is

based on La}s,t—In-First—Out (LIFO) principle that Ashuehae I:l>
means the data item that is inserted last into the

stack is the first one to be removed from the stack.

We can relate a stack to certain real-life objects and

situations, as shown in Figs. 4.1 (a) and (b). Fig. 4.1(a) Stack of books

As we can see in Fig. 4.1, one can add a new
book to an existing stack of books only at its top
and nowhere else. Similarly, a plate cannot be ~ Aplate can not be :> %
added at the middle of the plates stack; one has addatat the middle
to first remove all the plates above the insertion
point for the new plate to be added there. Another
apt example of a stack is a set of bangles worn by Indian
women on their arms. A bangle can only be worn from @ Mind Jog
one side of the hand and to remove a bangle from the ==
middle one has to first remove all the prior bangles. Who discovered stacks?

The concept of stack in data structures follows the Stack was first proposed in 1957 by a
same analogy as the stack of books or the stack of German computer scientist Friedrich
plates. We may use a stack in data structures to store L. Bauer.
built-in or user-defined type elements depending upon
our programming requirements. Irrespective of the type of elements stored, each stack implementation
follows similar representation in memory, as explained next.

Fig. 4.1(b) Stack of plates

4.2.1 Stack Representation in Memory

Just like their real world counterparts, stacks appear as a group of elements stored at contiguous locations
in memory. Each successive insert or delete operation adds or removes an item from the group. The top
location of the stack or the point of addition or deletion is maintained by a pointer called top. Figure
4.2 shows the logical representation of stacks in memory.

4.2 Data Structures

As we can see in Fig. 4.2, there are six elements in the stack with element 16 being at the top of the

S;Ck' Top —— 16
4

Note The logical representation of stacks showing stack 99
elements stored at contiguous memory location

might be true in case of their array implementation

but the same might not be true in case of their linked
implementation, as we shall study later in this chapter.

(N[>

Fig. 4.2 Logical representation
of stacks

4.2.2 Arrays vs. Stacks

While both arrays and stacks may look to be similar in their logical representation, they are different in
several aspects, as explained in Table 4.1.

Table 4.1 Arrays vs. Stacks

Arrays Stacks

Arrays provide the flexibility of adding or removing data | Stacks restrict the insertion or deletion of
elements anywhere in the list, i.e., at the beginning, end or | elements to only one place in the list i.e. the
anywhere in the middle. While this flexibility may seem to | top of the stack. Thus, there are no associated
be a boon in certain situations, the same may not be true in | overheads of shifting other elements to new
situations where frequent insertions or deletions are required. | locations.

This is because; each insertion or deletion in arrays requires
the adjoining elements to be shifted to new locations, which
is an overhead.

By using arrays, a programmer can realize common scenarios | Stacks find their usage as vital in solutions to
where grouping of records is required, for example inventory | advanced systems problems such as recursion
management, employee records management, etc. control, expression evaluation, etc.

@ Check Point

1. What is a stack?
Ans. Stack is a linear data structure in which items are added or removed only at one end, called top.

2. What is LIFO?
Ans. Last-In-First-Out (LIFO) principle specifies that the data item that is inserted last into the

stack is the first one to be removed from the stack.

4.3 STACK OPERATIONS

There are two key operations associated with the stack data structure: push and pop. Adding an element
to the stack is referred as push operation while reading or deleting an element from the stack is referred
as pop operation. Figures 4.3 (a) and (b) depict the push and pop operations on a stack.

Stacks 4.3

Top —> 5

- Pushing Element 5 4

99 99
4 ———> 2
2 2
8 8
Stack before Push Stack after Push

Fig.4.3(a) Push operation

Top —> 16 Top —> 4
4 Pushing Element 99
99 from top of the stack 4
- ———> 2
2 8
8 Stack after Pop
Stack before Pop

Fig. 4.3(b) Pop operation

Note Top is the cornerstone of the stack data structure as it points at the entry/exit gateway
of the stack.

4.3.1 Push

As we can see in Fig. 4.3 (a), the push operation involves the following subtasks:
1. Receiving the element to be inserted
2. Incrementing the stack pointer, top
3. Storing the received element at new location of top
Thus, the programmatic realization of the push operation requires implementation of the above
mentioned subtasks, as we shall see later in this chapter.

Tip What happens if the stack is full and there is no more room to push any new element? Such
a condition is referred as stack overflow. It is always advisable to implement appropriate
overflow handling mechanisms in a program to counter any unexpected results.

4.3.2 Pop

As we can see in Fig. 4.3 (b), the pop operation involves the following subtasks:
Retrieving or removing the element at the top of the stack.
Decrementing the stack pointer, top.

4.4 Data Structures

Thus, the programmatic realization of the pop
operation requires implementation of the above @ Mind Jog
mentioned subtasks, as we shall see later in this chapter. =
Some pop implementations require the popped Which programming language provide
element to be returned back to the calling function while ~ built-in support for stacks?
others may simply focus on updating the stack pointer ~ LISP and Python
and ignore the popped element all together. The choice
of a particular type of implementation depends solely on the programming situation at hand.

Tip What happens if the stack is empty and we want to perform the pop operation? Such a
condition is referred as stack underflow. It is always advisable to implement appropriate
underflow handling mechanisms in a program to counter any unexpected results.

4.3.3 An Example of Stack Operations

Figure 4.4 shows how the stack contents change after a series g Check Point
of push and pop operations.

We can see in this figure how stack contents change by 1. What is a push operation?
the push/pop operations occurring at one end of the stack, Ans. Adding an element into the
i.e., its top. stack is referred as push operation.

2. What is a pop operation?
4.4 STACKIMPLEMENTATION Ans. Reading or deleting an

element from the stack is referred as
pop operation.

Stack implementation involves choosing the data storage

mechanism for storing stack elements and implementing

methods for performing the two stack operations, push and pop. A typical implementation of the push

operation checks if there is any room left in the stack, and if there is any, it increments the stack counter

by one and inserts the received item at the top of the stack. Similarly, the implementation of the pop

operation checks whether or not the stack is already empty, if it is not, it removes the top element of the
stack and decrements the stack counter by one.

@ Mind Jog We can implement stacks by using arrays or linked

e lists. The advantages or disadvantages of array or linked

Is stack a restricted data structure? implementations of stacks are the same that are associated

Yes, because limited operations can be with such types of data structures. However, both

performed on it. implementation types have their own usage in specific
situations.

4.4.1 Array Implementation of Stacks

The array implementation of stacks involves allocation of fixed size array in the memory. Both stack
operations (push and pop) are made on this array with a constant check being made to ensure that the
array does not go out of bounds.

Stacks 4.5

Initial Empty Stack Top —

Empty Stack
Push (3), Push (5)
Top —> 5
3
Stack Contents
Pop ()
Top —> 3
Stack Contents
Top —> 6
Push(7), Push (99), Push (6) 959
3
Stack Contents

Pop (), Pop ()

Top ——> 7
3
Stack Contents

Push (50) Top —> 570
3

Stack Contents

Top ——

Pop (), Pop (), Pop ()

Empty Stack

Fig4.4 Stack operations

4.6 Data Structures

Push Operation The push operation involves checking whether or not the stack pointer is pointing
at the upper bound of the array. If it is not, the stack pointer is incremented by 1 and the new item is
pushed (inserted) at the top of the stack.

Example 4.1 Write an algorithm to implement the push operation under array representation of stacks.

push (stack [MAX] ,element)
Step 1: Start

Step 2: If top = MAX-1 goto Step 3 else goto Step 4
Step 3: Display message ”“Stack Full” and exit

Step 4: top = top + 1

Step 5: stack[top] = element

Step 6: Stop

The above algorithm inserts an element at the top of a stack of size MAX.

Pop Operation The pop operation involves checking whether or not the stack pointer is already
pointing at NULL (empty stack). If it is not, the item that is being currently pointed is popped (removed)
from the stack (array) and the stack pointer is decremented by 1.

Example 4.2 Write an algorithm to implement the pop operation under array representation of stacks.

pop (stack [MAX] ,element)
Step 1: Start

Step 2: If top = -1 goto Step 3 else goto Step 4
Step 3: Display message ”“Stack Empty” and exit
Step 4: Return stack[top] and set top = top - 1
Step 5: Stop

The above algorithm removes the element at the top of the stack.

Implementation

Example 4.3 Write a program to implement a stack using arrays and perform its common operations.

Program 4.1 implements a stack using arrays in C. It uses the push (Example 4.1) and pop (Example
4.2) algorithms for realizing the common stack operations.

Program 4.1 [mplementing a stack using arrays

/*Program for demonstrating implementation of stacks using arrays*/

#include <stdio.h> If we do not initialize the top variable then it
#include <conio.h> may continue to store garbage value which
may lead to erroneous results

int stack[100]; /*Declaring a 100 element stack array*/ /
int top=-1; /*Declaring and initializing the stack pointer*/

void push(int); /*Declaring a function prototype for inserting an element
into the stack*/

Stacks 4.7

int pop(); /*Declaring a function prototype for removing an element from
the stack*/

void display(); /*Declaring a function prototype for displaying the
elements of a stack*/

volid main ()

{
int choice; Here, while (1) signifies an infinite looping
; _ _ condition that'll continue to execute the
int numl=0, num2=0; . o
. / statements within until a jump statement
while (1) is encountered

{
clrscr();
/*Creating an interactive interface for performing stack operations*/
printf (“Select a choice from the following:”);

printf ("\n[l] Push an element into the stack”);

printf ("\n[2] Pop out an element from the stack”);

printf ("\n[3] Display the stack elements”);

printf ("\n[4] Exit\n”);

printf ("\n\tYour choice: “);

scanf (“%d”, &choice) ;

switch (choice)

{

case 1:

{

printf ("\n\tEnter the element to be pushed into the stack: “);
scanf (“%d”, &numl) ;

push(numl) ; /*Inserting an element*/

break;

}

case 2:

{

num2=pop () ; /*Removing an element*/

printf ("\n\t%d element popped out of the stack\n\t”,num2);
getch () ;

break;

}

case 3:

{

display(); /*Displaying stack elements*/
getch () ;

break;

}

case 4:
exit (1);

4.8 Data Structures

break;
Default blocks are always advisable

_ in switch-case constructs as it allows
default: handling of incorrect input values
printf ("\nInvalid choice!\n”);
break;

}
}
}

/*Push function*/
void push(int element)

{
if (top==99) /*Checking whether the stack is full*/

{

printf (“Stack is Full.\n”); The upper bound of 99 shows that
getch () ; this stack can store a maximum of
100 elements

exit (1) ;

}

top=top+l; /*Incrementing stack pointer*/
stack[top]=element; /*Inserting the new element*/

}

/*Pop function*/
int pop ()
{
if (top==-1) /*Checking whether the stack is empty*/

{
printf ("\n\tStack is Empty.\n”);

getch () ; \ Here, NULL value is
exit (1) ; represented by -1
}

return (stack[top--1); /*Returning the top element and decrementing the

stack pointer*/

}

void display ()
{
int 1i;
printf ("\n\tThe various stack elements are:\n”);
for (i=top;i>=0;1i--)
printf ("\t%d\n”,stack[i]); /*Printing stack elements*/

ip The above code shows storage of an integer type element into the stack. However,
we may store other built-in or user-defined type elements in the stack as per our own

requirements.

Stacks 4.9

Output

Select a choice from the following:
[1] Push an element into the stack
[2] Pop out an element from the stack
[3] Display the stack elements

[4] Exit

Your choice: 1

Enter the element to be pushed into the stack:

Select a choice from the following:
[1] Push an element into the stack
[2] Pop out an element from the stack
[3] Display the stack elements

[4] Exit

Your choice: 1

Enter the element to be pushed into the stack:

Select a choice from the following:
[1] Push an element into the stack
[2] Pop out an element from the stack
[3] Display the stack elements

[4] Exit

Your choice: 1

Enter the element to be pushed into the stack:

Select a choice from the following:
[1] Push an element into the stack
[2] Pop out an element from the stack
[3] Display the stack elements

[4] Exit

Your choice: 3

The various stack elements are:
3

2

1

Select a choice from the following:
[1] Push an element into the stack
[2] Pop out an element from the stack
[3] Display the stack elements

[4] Exit

4.10 Data Structures

Your choice: 2
3 element popped out of the stack

Select a choice from the following:
[1] Push an element into the stack
[2] Pop out an element from the stack
[3] Display the stack elements

[4] Exit

Your choice: 3

The various stack elements are:
2
1

Select a choice from the following:
[1] Push an element into the stack
[2] Pop out an element from the stack
[3] Display the stack elements

[4] Exit

Your choice: 4

Program analysis

Key Statement Purpose
int stack[100]; Declares an array to represent a stack
void push(int);
int pop(); Declares prototypes for the functions that perform stack operations
void display();
push(num1); Calls the push() function for inserting an element into the stack
num2=pop(); Calls the pop() function for deleting an element from the stack
display(); Calls the display() function for displaying the stack elements
top=top*+1; Inserts an element at the top of the stack and updates the stack pointer
stack[top]=element;

4.4.2 Linked Implementation of Stacks

The linked implementation of stacks involves dynamically allocating memory space at run time while
performing stack operations. Since, the allocation of memory space is dynamic, the stack consumes
only that much amount of space as is required for holding its data elements. This is contrary to array-

Stacks 4.1

implemented stacks which continue to occupy a fixed memory space even if there are no elements
present. Thus, linked implementation of stacks based on dynamic memory allocation technique prevents
wastage of memory space.

Note The linked implementation of stacks is based on dynamic memory management techniques,
which allow allocation and deallocation of memory space at runtime.

Push Operation The push operation under linked implementation of stacks involves the following
tasks:

1. Reserving memory space of the size of a stack element in memory

2. Storing the pushed (inserted) value at the new location

3. Linking the new element with existing stack

4. Updating the stack pointer

Example 4.4 Write an algorithm to implement the push operation under linked representation of
stacks.

push (structure stack, element, next, wvalue)

Step 1: Start

Step 2: Set ptr=(struct stack*)malloc(sizeof (struct stack)), to reserve a
block of memory for the new stack node and assign its address to pointer ptr
Step 3: Set ptr->element=value, to copy the inserted value into the new node
Step 4: Set ptr->next=top, to link the new node to the current top node
Step 5: Set top = ptr to designate the new node as the top node

Step 6: Return

Step 7: Stop

The above algorithm inserts an element at the top of the stack.

Pop Operation The pop operation under linked implementation of stacks involves the following
tasks:

1. Checking whether the stack is empty

2. Retrieving the top element of the stack

3. Updating the stack pointer

4. Returning the retrieved (popped) value

Example 4.5 Write an algorithm in C to implement the pop operation under linked representation
of stacks.
pop (structure stack, element, next)
Step 1: Start
Step 2: If top = NULL goto Step 3 else goto Step 4
Step 3: Display message ”“Stack Empty” and exit
Step 4: Set temp=top->element, to retrieve the element at top node of the
stack
Step 5: Set top=top->next, to designate the next stack node as the top node
Step 6: Return temp
Step 7: Stop

The above algorithm removes the element at the top of the stack.

4.12 Data Structures

Implementation

Example 4.6 Write a program to implement a stack using linked lists and perform its common
operations.

Program 4.2 implements a stack using linked lists in C. It uses the push (Example 4.4) and pop (Example
4.5) algorithms for realizing the common stack operations.

Program 4.2 [mplementation of stack using linked list

/*Program for demonstrating implementation of stacks using linked list*/
#include <stdio.h>

#include <conio.h>

. Each stack element comprises of two

struct stack / *Declaring the fields, one for storing the stack element

structure for stack elements*/ value and another for storing a pointer
{ to the next element in the stack

int element;
struct stack *next; /*Stack element pointing to another stack element*/
}*top;

void push (int) ; /*Declaring a function prototype for inserting an element
into the stack*/

int pop(); /*Declaring a function prototype for removing an element from
the stack*/

void display(); /*Declaring a function prototype for displaying the
elements of a stack*/

void main ()

{

int numl, num2, choice;

while (1)

{

clrscr () ;

/*Creating an interactive interface for performing stack operations*/
printf (“Select a choice from the following:”);
printf ("\n[1l] Push an element into the stack”);
printf ("\n[2] Pop out an element from the stack”);
printf ("\n[3] Display the stack elements”) ;

printf ("\n[4] Exit\n”);

printf ("\n\tYour choice: “);

scanf (“%d”, &choice) ;

switch (choice)

{

case 1:

{
printf ("\n\tEnter the element to be pushed into the stack: “);
scanf (“"%d”, &numl) ;

Stacks 4.13

push (numl) ; /*Inserting an element*/
break;

}

case 2:

{

num2=pop () ; /*Removing an element*/

printf ("\n\t%d element popped out of the stack\n\t”,num?2);
getch () ;

break;

}

case 3:

{

display(); /*Displaying stack elements*/
getch () ;

break;

}

case 4:
exit (1) ;
break;

default:

printf (“"\nInvalid choice!\n”);
break;

}

}

}

malloc function is used for dynamic
/*Push function*/ or runtime reservation of space for

void push(j_nt value) new stack elements

{
struct stack *ptr;

ptr=(struct stack*)malloc (sizeof (struct stack)); /*Dynamically allocating
memory space to store stack element*/

ptr->element=value; /*Assigning value to the newly allocated stack
element*/

/*Updating stack pointers*/
ptr->next=top;

top=ptr;

return;

}

/*Pop function*/
int pop ()
{

4.14 Data Structures

if (top==NULL) /*Checking whether the stack is empty*/

{

printf ("\n\STACK is Empty.”); If the stack is empty then the stack

getch () ; pointer (top) will point at NULL
exit (1) ;

}

else

{
int temp=top->element; /* Retrieving the top element*/
top=top->next; /*Updating the stack pointer*/
return (temp); /*Returning the popped value*/
}
}

void display ()

{

struct stack *ptrl=NULL;

ptrl=top;

printf (“"\nThe various stack elements are:\n”);
while (ptrl!=NULL)

{

printf (“$d\t”,ptrl->element); /*Printing stack elements*/
ptrl=ptrl->next;

}

}

Output

The output of the above program is same as the output of the program shown in Example 4.3.

Program analysis

Key Statement Purpose
struct stack Uses linked list to represent a stack and declares the stack pointer
{
int element;
struct stack *next;
}*top;
void push(int); Declares prototypes for the functions that perform stack
int pop(); operations
void display();
push(numl); Calls the push() function for inserting an element into the stack
num2=pop(); Calls the pop() function for removing an element from the stack
display(); Calls the display() function for displaying the stack elements
ptr->element=value; Inserts an element at the top of the stack and updates the stack
ptr->next=top; pointer
top=ptr;

Stacks 4.15

Tip 1t is advisable to check the overflow condition even with linked implementation of stacks,
as in certain situations the available memory may also run out of space.

Tip 1tis a good programming practice to release unused memory space so as to ensure efficient
memory space utilization.

@ Check Point

1. What is array implementation of stacks?
Ans. It involves allocation of fixed size array in the memory for storing stack elements. Both
push and pop operations are performed on this array-implemented stack.

2. What is linked implementation of stacks?
Ans. It involves dynamic allocation of memory space at run time while performing stack
operations.

Solved Problems

Problem 4.1 The contents of a stack S are as follows:

Stack (S) 99 2 44 8
Index 0 1 2 3 T 4 5 6 7

The stack can store a maximum of eight elements and the top pointer currently points at index 3.
Show the stack contents and indicate the position of the top pointer after each of the following stack
operations:
(a) Push (S, 5)
(b) Push (S, 7)
(¢) Pop (S)
(d) Pop ()
(e) Pop (S)
(f) Push(S,-1)
Solution
Push (S, 5)
Stepl Top=Top+1=3+1=4
Step 2 S[Top]=S[4]=5
Stack contents

Stack (S): 99 2 44 8 5
Index: 0 1 2 3 4 T 5 6 7

4.16 Data Structures

Push (S, 7)

Step 1 Top=Top+1=4+1=5

Step 2 S [Top] =S [5]=

Stack contents

Stack (S):

99

44

Index:

0

51

Pop (S)

Step 1 Item =S [Top] =S [5]=7
Step 2 Top=Top—1=5-1=4

Stack contents

Stack (S)

99

44

Index

0

41

Pop (S)

Step I Ttem =S [Top] =S [4]=35
Step 2Top=Top—-1=4-1=3

Stack contents

Stack (S)

99

44

Index

0

31

Pop (S)

Step I Ttem =S [Top] =S [3]=8
Step 2Top=Top-1=3-1=2

Stack contents

Stack (S)

99

44

Index

0

21

Push (S, -1)

Step]l Top=Top+1=2+1=3
Step 2 S[Top]=S[3]=-1
Stack contents

Stack (S)

99

44

-1

Index

0

2

31

Problem 4.2 Consider the following two states of a stack S:

State 1

Stack (S)

99

Index

0

State 2

Stack (S)

99

Index

31

Stacks 4.17

Write the series of push and pop operations that will transition the stack S from State 1 to State 2.

Solution

Step 1 Pop (S)
Step 2 Pop (S)
Step 3 Pop (S)
Step4 Pop (S)
Step 5 Push (S, 5)
Step 6 Push (S, -1)
Step 7 Push (S, 6)

Problem 4.3 Consider the following stack S:

Stack (S) 99 2 44 8

Index 0 1 2 31 4 5

What will be result of the following statements?
i=0;

while (i I=5)

{

push (S, i);

i=i+1;

/

Solution

Step I push (S,0) - Top=4,S[4]=0

Step 2 push(S,1) > Top=5,S[5]=1

Step 3 push (S, 2) — Top = 6 — Stack Overflow

Problem 4.4 Consider the following stack S:

Stack (S) 99 2 44 8

Index 0 1 2 31 4 5

What will be result of the following statements?
i=0;
while (i I=5)
{
item = pop (S);
i=i+1;
/
Solution
Step I pop (S) item =8, Top =2
Step 2 pop (S) item =44, Top = 1
Step 3 pop (S) item =2, Top=0
Step 4 pop (S) — item = 99, Top = NULL
Step 5 pop (S) — Stack Underflow

4.18 Data Structures

Problem 4.5 The linked implementation of stacks eliminates the limitation of array implementation
that restricts the number of stack elements below the array upper bound. So, is it true to say that a stack
overflow condition can never occur with linked implementation of stacks? Justify your answer.

Solution No, it is not correct to say that a stack overflow condition can never occur with linked
implementation of stacks. This is because; the system memory is also available till a certain extent. If
we continue to push elements into a stack then a situation will arise when the system memory will run
out of space causing the malloc function to return a NULL pointer. In this situation, the stack would be
considered to be in an overflow state.

Problem 4.6 Identify and correct the logical error in the following statement that performs pop
operation on a stack S.
item = S[--top];

Solution: The statement,

item = S[--top];

contains the prefix operator --, which decrements the value of top by one. The new value now pointed
by top is then popped and allocated to the variable item. However, this is not the top value of the stack.
To pop out the top value of the stack we must use -- as the postfix operator, as shown below.

item = S[top--];

The above statement will first retrieve the top value of the stack and then decrement the top pointer by one.

Summary

¢ Astack is a linear list in which elements are added and removed only from one end called top
of the stack.

¢ Stacks are based on Last-In-First-Out or LIFO principle that means, the element added last into
the list is the first one to be removed.

¢ Inserting an element into a stack is referred as push operation while removing an element from
the stack is referred as pop operation.

¢ Stacks can be implemented through arrays or linked lists.

¢ The array implementation of stacks reserves a fixed amount of memory space in the form of an
array for storing stack elements.

¢ Thelinked implementation of stacks uses dynamic memory management techniques for allocating
the memory space for storing a new stack element at run time.

¢ Since linked implementation of stacks is based on dynamic memory allocation it is more efficient
as compared to array-based implementation.

¢ The various application areas of stacks are expression evaluation, program control, recursion
control, etc.

Key Terms

¢ Stack It is a linear data structure in which items are added or removed only at one end.
¢ Stack top It is that end of the stack from where insertions and deletion of elements takes place.

Stacks 4.19

LIFO It stands for Last-In-First-Out i.e., the principle on which stacks are based.

Push It refers to the task of inserting an element into the stack.

Pop It refers to the task of deleting an element from the stack.

Array implementation It refers to the realization of stack data structure using arrays.
Lined implementation It refers to the realization of stack data structure using linked lists.

L 2R R R 2R 4

Multiple-Choice Questions

4.1 Which of the following is not true for stacks?
(a) Itis a linear data strucure.
(b) It allows insertion/deletion of elements only at one end
(c) Itis widely used by systems processes, such as compilation and program control
(d) TItis based on First-In-First-Out principle
4.2 Which of the following is not an example of a stack?
(a) Collection of tiles one over another
(b) A set of bangles worn by a lady on her arm
(¢) Aline up of people waiting for the bus at the bus stop
(d) A pileup of boxes in a warchouse one over another
4.3 Tower of Hanoi can be regarded as a problem of which of the following data structures?

(a) Stack (b) Queue
(¢) Graph (d) Tree
4.4 Recursive function calls are executed using which of the following data structures?
(a) Stack (b) Queue
(¢) Graph (d) Tree

4.5 1f2, 1,5, 8 are the stack contents with element 2 being at the top of the stack, then what will be
the stack contents after following operations:

Push (11)
Pop ()
Pop ()
Pop ()
Push(7)
(a) 11,2,1 (b) 8,11,7
(¢) 7,5,8 (d) 5,8,7
4.6 Which of the following is best suitable for storing a simple collection of employee records?
(a) Stack (b) Queue
(¢) Array (d) None of the above

4.7 1If ‘top’ points at the top of the stack and ‘stack []’ is the array containing stack elements, then
which of the following statements correctly reflect the push operation for inserting ‘item’ into
the stack?

(a) top =top + 1; stack [top] = item;
(b) stack [top] = item; top = top + 1;
(c) stack [top++] = item;

(d) Both (a) and (¢) are correct

4.20 Data Structures

4.8

4.9

4.10

If “top’ points at the top of the stack and ‘stack []’ is the array containing stack elements, then
which of the following statements correctly reflect the pop operation?

(a) top =top — I; item = stack [top];

(b) item = stack [top]; top =top — 1;

(c) item = stack [--top];

(d) Both (b) and (c) are correct

If a pop operation is performed on an empty stack, then which of the following situations will
occur?

(a) Overflow (b) Underflow

(¢c) Array out of bound (d) None of the above

Which of the following is not a stack application?

(a) Recursion control

(b) Expression evaluation

(c) Message queuing

(d) All of the above are stack applications

Review Questions

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9
4.10
4.11
4.12
4.13

4.14
4.15

What is a stack? Explain with examples.

Briefly describe the LIFO principle.

What is a top pointer? Explain its significance.

What are the different application areas of stack data structure?

Give any four real-life examples that principally resemble the stack data structure.
Explain the logical representation of stacks in memory with the help of an example.
Explain push and pop operations with the help of examples.

Deduce the contents of an empty stack after the execution of the following operations in sequence:
Push (6)

Push (8)

Push (-1)

Pop ()

Push (7)

Pop ()

Pop ()
What will happen if we keep on pushing elements into a stack one after another?

What will happen if we continue to pop out elements from a stack one after another?

How are stacks implemented?

What is the advantage of linked implementation of stacks over array implementation?

What role does dynamic memory management techniques play in linked implementation of
stacks?

Briefly explain the overflow and underflow conditions along with their remedies.

Can an overflow situation occur even with linked implementation of stacks that uses dynamic
memory allocation techniques? Explain.

Stacks 4.21

Programming Exercises

4.1 Write a function in C to perform the push operation on an array-based stack that can store a
maximum of 50 elements. Make sure that the overflow condition is adequately handled.

4.2 Write a function in C to perform the pop operation on a linked implementation of stack. Make
sure that the underflow condition is adequately handled.

4.3 A stack contains N elements in it with TOP pointing at the top of the stack. It is required to
reverse the order of occurrence of the N elements and store them in the same stack. Write a C
program to achieve the same.

4.4 Modify the C program solution of Question 4.3 to store the N elements in sorted fashion with
the largest element stored at the TOP.

4.5 A linked list implemented stack containing unknown number of elements is given. You are
required to count the number of elements present in the stack. Write a function count () in C
that uses the pop operation to count the number of elements in the stack but does not actually
remove the elements from the stack.

4.6 The Tower of Hanoi problem comprises of three towers with discs initially stacked on to the first
tower. The requirement is to replicate the initial stack of discs into another tower while adhering
to the following conditions:

(a) Alarger disk can not be placed on a smaller disk
(b) Only one disc can be shifted at a time
Write a C program to find a solution to the above problem using stacks.
4.7 An input text string comprises the following:
(a) Letters
(b) Digits
(c) Special Characters
Write a program in C that accepts a text string from the user and stores its individual characters
in three different stacks, i.e., L (for storing letters), D (for storing digits) and SC (for storing
special characters). The program should terminate as soon as a ‘~’ symbol is encountered.
4.8 A stack is represented by the following structure declaration:

struct STACK
{
int ELEMENT][100];
int TOP;
1

Write the push () and pop () functions in C for the above stack.

Answers to Multiple-Choice Questions

41 (d) 42 (c) 43 (a) 44 (a) 45 ()
46 (c) 47 (a) 48 (b) 4.9 (b) 4.10 (c)

4.22 Data Structures

QUEUES

5.1 Introduction
5.2 Queues—Basic Concept
5.2.1 Logical Representation of Queues
5.3 Queue Operations
5.3.1 Insert
5.3.2 Delete
5.3.3 An Example of Queue Operations
5.4 Queue Implementation
5.4.1 Array Implementation of Queues
5.4.2 Linked Implementation of Queues
5.5 Circular Queues
5.6 Priority Queues
5.7 Double-Ended Queues
Solved Problems
Summary
Key Terms
Multiple-Choice Questions
Review Questions
Programming Exercises

P HHtFE O ROtT O DOA

Answers to Multiple-Choice Questions

5.1 INTRODUCTION

In Chapter 6, we learnt how stacks are different from arrays and how they store the data in memory. In
this chapter, we will learn about another linear data structure called queues. While stacks allow insertion
and deletion of data only at one end, queues restrict the insertion and deletion of data at two distinct
ends. Just like stacks, queues also hold great significance in the implementation of key system processes
such as CPU scheduling, resource sharing, etc.

5.2 QUEUES—BASIC CONCEPT

Queue is a linear data structure in which items are inserted at one end called ‘Rear’ and deleted from
the other end called ‘Front’. Queues are based on the First-In-First-Out (FIFO) principle that means the
data item that is inserted first in the queue is also the first one to be removed from the queue. We can
relate queues to certain real-life objects and situations, as shown in Figs. 5.1 (a) and (b).

Queue of people |:>

A new object can not be
added at the middle of
an assembly line

Fig.5.1(b) An assembly line

As we can see in Fig. 5.1(a), a person can join a queue of waiting people only at its tail end while
the person who joined the queue first becomes the first one to leave the queue. Likewise, the objects in
an assembly line (Fig. 5.1(b)) also follow the same analogy. Another example of queue is the line up
of vehicles at the toll booth. The vehicle that comes first to the toll booth leaves the booth first while

5.2 Data Structures

the vehicle that comes last leaves at the last; thus, observing FIFO principle. The concept of queue in
data structures follows the same analogy as the queue of people or the queue of vehicles at toll booth.

An instance of queue implementation is a system of networked computers and resources where there
are multiple users sharing one common printer amongst them. When a user on the network sends a print
request, the request is added to the print queue. When the request reaches at the front it gets executed
and is removed from the print queue. This ensures orderly execution of users’ print requests. Figure 5.2
depicts this scenario.

Printer = C A D B 1

Print Oueue '&

Print Requests

f N
O|lO|®w| >

Fig. 5.2 Queue implementation

As we can see in the Fig. 5.2, four users, A, B, Cand D
share a single printer on the network. When a user sends a @ Mind Jog
print request, it gets added to the print queue. User Csends =~
the first print request, thus it gets added at the front of the ~ What is the meaning of enqueue and
print queue. Similarly, print requests from other users are ~ dequeue?
also added in the queue as per their request order. Now, AIl queue insertions are termed as
based on FIFO analogy, the printer will first process print ~ enqueue while all queue deletions are
request of user C, followed by A, D and user B at the last. ~ termed as dequeue.

5.2.1 Logical Representation of Queues

Just like their real world counterparts, queues appear as a group of elements stored at contiguous locations
in memory. Each successive insert operation adds an element at the rear end of the queue while each
delete operation removes an element from the front end of the queue. The location of the front and rear
ends are marked by two distinct pointers called front and rear.

Figure 5.3 shows the logical representation of queues in memory.

As we can see in the above figure, there are five elements in the queue with —2 at the front and 4 at
the rear.

EAEAEA AN

T T

Front Rear

Fig. 5.3 Logical representation of queues

Note The logical representation of queues showing queue elements stored at contiguous memory
location might be true in case of their array implementation but the same might not be
true in case of their linked implementation, as we shall study later in this chapter.

Queues 5.3

@ Check Point
5.3 QUEUE OPERATIONS

1. What is a queue?

There are two key operations associated with Ans: Queue is a linear data structure in which items
the queue data structure: insert and delete. The are inserted at one end called ‘Rear’ and deleted from
' ’ the other end called ‘Front’.

insert operation adds an element at the rear
end of the queue while the delete operation
removes an element from the front end of the
queue. Figures 5.4 (a) and (b) depict the insert
and delete operations on a queue.

2. What is FIFO?

Ans: First-In-First-Out (FIFO) principle specifies
that the data item that is inserted first in the queue
is also the first one to be removed from the queue.

|2]22]77] 3] 4] [2[22][77] 3] 4] 5 |
T T Inserting element 5 1 T
Front Rear :> Front Rear
Queue before insert Queue after insert

Fig. 5.4(a) Insertoperation

|—2 I 22 | 77 | 3 | 4 | 5 | Deleting element from | 22 | 1y | 3 | 4 | 5 I
T t front end of queue T ?
Front Rear :> Front Rear
Queue before delete Queue after delete

Fig. 5.4(b) Delete operation

ﬁote The front and rear indicators are quite significant in queue s context as they point at entry
and exit gateways of the queue.

1. Insert As we can see in Fig. 5.4(a), the insert operation involves the following subtasks:

(a) Receiving the element to be inserted.

(b) Incrementing the queue pointer, rear.

(c) Storing the received element at new location of rear.

Thus, the programmatic realization of the insert operation requires implementation of the above
mentioned subtasks, as we shall see later in this chapter.

Tip Before inserting a new element, it needs to be checked whether the queue is already full.
If the queue is already full then a new element cannot be added at its rear end. Such a
situation is termed as queue overflow.

5.4 Data Structures

2. Delete As we can see in Fig. 5.4 (b), the delete operation involves the following subtasks:
Retrieving or removing the element from the front end of the queue.

Incrementing the queue pointer, front, to make it point to the next element in the queue.

Thus, the programmatic realization of the delete operation requires implementation of the above
mentioned subtasks, as we shall see later in this chapter.
Some queue implementations require the deleted element to be returned back to the calling function
while others may simply focus on updating the front pointer and ignore the deleted element all together.
The choice of a particular type of implementation depends solely on the programming situation at hand.

An example of queue operations

Figure 5.5 shows how the queue contents change after a series of insert and delete operations.

Initial Empty Front —>
Queue Rear —> | | | |
Empty Queue
LAl [[]
Insert (A) + +
Front Rear
lals | [|
Insert (B)
Front Rear
L alBfc] |
Insert (C) 4 A
Front Rear
| lefc[|
Delete () + +
Front Rear
| e lcf[z]
Insert (Z) + +
Front Rear
L | [cfz]
Delete () + +
Front Rear
Delete () | | | | & +|
A
Front Rear

Fig. 5.5 Queue operations

Queues 5.5

We can see in Fig. 5.5 how queue contents change with insert and delete operations occurring at rear
and front ends respectively.

Tip Before deleting an element, it needs to be checked whether the queue is already empty. If
the queue is already empty then there is nothing to be deleted. Such a situation is termed
as queue underflow.

5.4 QUEUE IMPLEMENTATION @ Mind Jog
- \ ¥4

Queue implementation involves choosing the data What is a bounded queue?

storage mechanism for storing queue elements and [t is a queue restricted to a fixed number
implementing methods for performing the two queue of elements.

operations, insert and delete. Like stacks, we can
implement queues by using arrays or linked lists.
The advantages or disadvantages of array or linked
implementations of queues are the same that are

associated with such types of data structures. However, @ Check Point

both types of implementation have their own usage in

specific situations. 1. Whatis a queue insert operation?
Ans. The queue insert operation

5.4.1 Array Implementation of Queues adds an element at the rear end of
the queue.

The array implementation of queues involves allocation 2. Whatis a queue delete operation?

of fixed size array in the memory. Both queue operations Ans. The queue delete operation

(insert and delete) are performed on this array with a removes an element from the front

constant check being made to ensure that the array does end of the queue.

not go out of bounds.

Insert Operation The insert operation involves checking whether or not the queue pointer rear is
pointing at the upper bound of the array. If it is not, rear is incremented by 1 and the new item is added
at the end of the queue.

Example 5.1 Write an algorithm to realize the insert operation under array implementation of queues.

insert (queue [MAX], element, front, rear)
Step 1: Start

Step 2: If front = NULL goto Step 3 else goto Step 6

Step 3: front = rear = 0

Step 4: queue[front]=element

Step 5: Goto Step 10

Step 6: if rear = MAX-1 goto Step 7 else goto Step 8

Step 7: Display the message, “Queue is Full” and goto Step 10
Step 8: rear = rear +1

Step 9: queue[rear] = element

Step 10: Stop

5.6 Data Structures

s
Tip

The above code shows insertion of an integer type element into the queue. However,
we may store other built-in or user-defined type elements in the queue as per our own
requirements.

Delete Operation The delete operation involves checking whether or not the queue pointer fiont is
already pointing at NULL (empty queue). If it is not, the item that is being currently pointed is removed
from the queue (array) and the front pointer is incremented by 1.

Example 5.2 Write an algorithm to realize the delete operation under array implementation of queues.

delete (queue [MAX], front, rear)

Step 1: Start
Step 2: If front = NULL and rear = NULL goto Step 3 else goto Step 4
Step 3: Display the message, “Queue is Empty” and goto Step 10
Step 4: if front != NULL and front = rear goto Step 5 else goto Step 8
Step 5: Set 1 = queue[front]
Step 6: Set front = rear = -1
Step 7: Return the deleted element i and goto Step 10
Step 8: Set 1 = queue[front]
Step 9: Return the deleted element i
Step 10: Stop
Implementation

Example 5.3 Write a program to implement a queue using arrays and perform its common operations.

Program 5.1 implements a queue using arrays in C. It uses the insert (Example 5.1) and delete (Example
5.2) functions for realizing the common queue operations.

Program 5.1 [mplementation of queue

/*Program for demonstrating implementation of queues using arrays*/
#include <stdio.h> If we do not initialize the front and
#include <conio.h> rear variables then they may continue

#include <stdlib.h>

to store garbage value which may
lead to erroneous results

int queue[100]; /*Declaring a 100 element queue array*/
int front=-1; /*Declaring and initializing the front pointer*/
int rear=-1; /*Declaring and initializing the rear pointer*/

void insert (int); /*Declaring a function prototype for inserting an element
into the queue*/
int del(); /*Declaring a function prototype for removing an element from

the queue*/

void display(); /*Declaring a function prototype for displaying the queue

elements*/

void main ()

Queues 5.7

int choice; Here, while (1) signifies an infinite
looping condition that’ll continue to
execute the statements within until a jump
< s is encountered

int numl=0, num2=0;
while (1)
{
/*Creating an interactive interface for performing queue operations*/
printf ("\nSelect a choice from the following:”);
printf ("M\n[l] Add an element into the queue”);
printf ("\n[2] Remove an element from the queue”);

(

(

printf ("\n[3] Display the queue elements”);
printf ("\n[4] Exit\n”);

printf ("\n\tYour choice: “);

scanf (“%d”, &choice) ;

switch (choice)

{

case 1:

{

printf ("\n\tEnter the element to be added to the queue: “);
scanf (“%d”, &numl) ;

insert(numl); /*Adding an element*/

break;

}

case 2:

{
num2=del () ; /*Removing an element*/
if (num2==-9999)

’

else
printf ("\n\t%d element removed from the queue\n\t”,num2) ;
getch () ;
break;
}
case 3:

{

display() ; /*Displaying queue elements*/
getch () ;

break;

}

case 4:

exit (1); Default blocks are always advisable
break; in switch-case constructs as it allows

handling of incorrect input values
dafamli o /

printf ("\nInvalid choice!\n”);
break;

5.8 Data Structures

/*Insert function*/

volid insert (int element)

{

if (front==-1) /*Adding element in an empty queue*/
{
front = rear = front+l;

queue [front] =lemeEni o The upper bound of 99 shows that

this queue can store a maximum of

return; 100 elements
} /

if (rear==99) /*Checking whether the queue is full*/
{

printf (“Queue is Full.\n”);

getch () ;

return;

}

rear=rear+l; /*Incrementing rear pointer*/
queue[rear]=element; /*Inserting the new element*/

/*Delete function*/
int del ()

{
int 1i;

if (front==-1 && rear==-1) /*Checking whether the queue is empty*/

{

printf (“"\n\tQueue is Empty.\n”);

getch () ;

return (-9999);

}

if (front!=-1 && front==rear) /*Checking whether the queue has only one
element left*/

{

i=queue[front];

front=-1;

rear=-1;

return (i) ;

}

return (queue [front++]); /*Returning the front most element and incrementing
the front pointer*/
}

Here, NULL value is represented by —1

/*Display function*/
void display ()
{

Queues 5.9

int 1i;
if (front==-1)
{
printf (“"\n\tQueue is Empty!\n”) ;
return;

}

printf ("\n\tThe various queue elements are:\n”);
for (i=front;i<=rear;i++)
printf (“"\t%d”,queue[i]); /*Printing queue elements*/

}
Output

Select a choice from the following:
[1] Add an element into the queue
[2] Remove an element from the queue
[3] Display the queue elements

[4] Exit

Your choice: 3
Queue is Empty!

Select a choice from the following:
[1] Add an element into the queue
[2] Remove an element from the queue
[3] Display the queue elements

[4] Exit

Your choice: 1
Enter the element to be added to the queue: 1

Select a choice from the following:
[1] Add an element into the queue
[2] Remove an element from the queue
[3] Display the queue elements

[4] Exit

Your choice: 1
Enter the element to be added to the queue: 2
Select a choice from the following:
[1] Add an element into the queue
2] Remove an element from the queue

[
[3] Display the queue elements
[4] Exit

5.10 Data Structures

Your choice: 1

Enter the element to be added to the queue:

Select a choice from the following:
[1] Add an element into the queue
[2] Remove an element from the queue
[3] Display the queue elements

[4] Exit

Your choice: 3

The various queue elements are:
123

Select a choice from the following:
[1] Add an element into the queue
[2] Remove an element from the queue
[3] Display the queue elements

[4] Exit

Your choice: 2
1 element removed from the queue

Select a choice from the following:
[1] Add an element into the queue
[2] Remove an element from the queue
[3] Display the queue elements

[4] Exit

Your choice: 2
2 element removed from the queue

Select a choice from the following:
[1] Add an element into the queue
[2] Remove an element from the queue
[3] Display the queue elements

[4] Exit

Your choice: 2

3 element removed from the queue
Select a choice from the following:
[1] Add an element into the queue

[2] Remove an element from the queue
[3] Display the queue elements

Queues 5.1

[4] Exit
Your choice: 3

Queue is Empty!

Program analysis

Key Statement

Purpose

int queue[100];

Declares an array to represent a queue

void insert(int);

Declares prototypes for the functions that perform

int del(); queue operations
void display();
insert(num1); Calls the insert() function for inserting an element into

the queue

num2=del();

Calls the del() function for deleting an element from
the queue

display();

Calls the display() function for displaying the queue
elements

rear=rear+1;
queue[rear|=element;

Inserts an element at the end of the queue and updates
the rear pointer

if(front==-1)

Checks whether or not the queue is empty

5.4.2 Linked Implementation of Queues

The linked implementation of queues involves dynamically allocating memory space at run time while
performing queue operations. Since, the allocation of memory space is dynamic, the queue consumes
only that much amount of space as is required for holding its data elements. This is contrary to array-
implemented queues which continue to occupy a fixed memory space even if there are no elements
present. Thus, linked implementation of queues based on dynamic memory allocation technique prevents
wastage of memory space.

Note The linked implementation of queues is based on dynamic memory management techniques,
which allow allocation and de-allocation of memory space at runtime.

Insert Operation The insert operation under linked implementation of queues involves the
following tasks:

Reserving memory space of the size of a queue element in memory
Storing the added (inserted) value at the new location

Linking the new element with existing queue

Updating the rear pointer

BN =

Example 5.4 Write an algorithm to realize the insert operation under linked implementation of
queues.

5.12 Data Structures

insert (structure queue, value, front, rear)

Step 1: Start

Step 2: Set ptr=(struct gqueue*)malloc (sizeof (struct queue)), to reserve a
block of memory for the new queue node and assign its address to pointer ptr
Step 3: Set ptr->element=value, to copy the inserted value into the new node
Step 4: if front = NULL goto Step 5 else goto Step 7

Step 5: Set front = rear = ptr
Step 6: Set ptr->next=NULL and goto Step 10
Step 7: Set rear->next=ptr
Step 8: Set ptr->next=NULL
Step 9: Set rear = ptr
1

Step 10: Stop
Delete Operation The delete operation under linked implementation of queues involves the
following tasks:

Checking whether the queue is empty.
Retrieving the front most element of the queue.
Updating the front pointer.

Returning the retrieved (removed) value

bl S

Example 5.5 Write an algorithm to realize the delete operation under linked implementation of
queues.

delete (structure queue, front, rear)
Step 1: Start

Step 2: if front = NULL goto Step 3 else goto Step 4
Step 3: Display message, “Queue is Empty” and goto Step 7
Step 4: Set 1 = front->element
Step 5: Set front = front->next
Step 6: Return the deleted element i
Step 7: Stop
‘Tip It is a good programming practice to release unused memory space so as to ensure efficient

memory space utilization.

Implementation

Example 5.6 Write a program to implement a queue using linked lists and perform its common
operations.

Program 5.2 implements a queue using linked lists in C. It uses the insert (Example 5.4) and delete
(Example 5.5) functions for realizing the common queue operations.

Program 5.2 [mplementation of queue

/*Program for implementing queue using linked list*/
#include<stdio.h>
#include<conio.h>

Queues 5.13

#include<stdlib.h>

struct queue /*Declaring the structure for queue elements*/
{
int element;
struct queue *next; /*Queue element pointing\to another queue element*/
}i
Each queue element comprises of two

o fields, one for storing the stack element
struct queue *front=NULL; value and another for storing a pointer

struct queue *rear = NULL; to the next element in the queue

void insert(int); /*Declaring a function prototype for adding an element
into the queue*/

int del(); /*Declaring a function prototype for removing an element from
the queue*/

void display(void); /*Declaring a function prototype for displaying the
elements of the queue*/

void main ()

{

int numl, num2, choice;

while (1)

{

/*Creating an interactive interface for performing queue operations*/
printf ("\n\nSelect an option\n”);

printf (“\nl - Insert an element into the Queue”);
printf ("\n2 - Remove an element from the Queue “);
printf (“\n3 - Display all the elements in the Queue”);
printf (M\n4 - Exit”);

printf ("\n\nEnter your choice: “);
scanf (“"%d”, &choice);

switch (choice)

{

case 1:

{

printf (“\nEnter the element to be inserted into the queue “);
scanf (“%d”, &numl) ;

insert(numl) ; /*Adding an element*/

break;

}

case 2:

{
num2=del () ; /*Removing an element*/
if (num2==-9999)

5.14 Data Structures

printf ("\n\tQueue is empty!!”);

else

printf ("M\n\t%d element removed from the queue\n\t”,num2) ;

getch () ;
break;

}

case 3:

{

display() ; /*Displaying queue elements*/

getch () ;
break;

}

case 4:
{

exit (1) ;
break;

}

default:
{

printf ("M\nInvalid choice.”);

getch () ;
break;

}

}

}

}

/*Insert function*/

void insert (int

{

value)

malloc function is used for dynamic
or runtime reservation of space for
new queue elements

struct queue *ptr = (struct queue*)malloc (sizeof (struct queue));/*Dynamically
declaring a queue element*/

ptr->element =
element*/

if (front==NULL)
{
front = rear =
ptr->next=NULL;
}

value;

/*Assigning value to the newly allocated queue

/*Adding element in an empty queue*/

ptr;

/*Updating queue pointers*/

else

Queues 5.15

{
rear->next = ptr;
ptr->next = NULL;
rear = ptr;
}

}

/*Delete function*/

int del () i ‘

{ If the queue is empty then the stack
. . pointer (front) will point at NULL
int 1;

if (front==NULL) /*Checking whether the queue is empty*/
return (-9999) ;

else

{

i=front->element; /*removing element from the start*/
front = front->next;

return (1) ;

}

}

/*Display function*/
void display ()
{
struct queue *ptr=front;
if (front==NULL)
{
printf (“"\n\tQueue is Empty!!”);
return;

}

else

{

printf ("\nElements present in the Queue are:\n”);
/*Printing queue elements*/

while (ptr!=rear)

{

printf («\t%d»,ptr->element) ;

ptr=ptr->next;

}

printf (“"\t%d”, rear->element) ;

}

}

Output

The output of the above program is same as the output of the program shown in Example 5.3.

5.16 Data Structures

Program analysis

Key Statement

Purpose

struct queue

{

int element;
struct queue *next;

}s

Uses linked list to represent a queue

struct queue *front=NULL;
struct queue *rear = NULL;

Declares queue pointers

void insert(int);

Declares prototypes for the functions that perform queue operations

int del();

void display(void);

insert(numl); Calls the insert() function for inserting an element into the queue
num2=del(); Calls the del() function for deleting an element from the queue
display(); Calls the display() function for displaying the queue elements

rear->next = ptr;
ptr->next = NULL;
rear = ptr;

Inserts an element at the end of the queue and updates the rear pointer

if(front==NULL)

Checks whether or not the queue is empty

5.5 CIRCULAR QUEUES

A circular queue is a queue whose start and
end locations are logically connected with each
other. That means, the start location comes after
the end location. If we continue to add elements
in a circular queue till its end location, then
after the end location has been filled, the next
element will be added at the beginning of the
queue. Circular queues remove one of the main
disadvantages of array implemented queues in
which a lot of memory space is wasted due to

@ Check Point

1. What is array implementation of queues?
Ans. It involves allocation of fixed size array in
the memory for storing queue elements. Both
insert and delete operations are performed on
this array.

2. What is linked implementation of queues?
Ans. It involves dynamic allocation of memory
space at run time while performing queue
operations.

inefficient utilization. Start
Figure 5.6 shows the logical representation of a +
circular queue. queue [0] queue [1]
As we can see in Fig. 5.6, the start location of the
queue comes after its end location. Thus, if the queue is ~ dueue [7] queue [2]
filled till its capacity, i.e., the end location, then the start ~End ——=—
location will be checked for space, and if it is empty,
the new element will be added there. Figure 5.7 shows queue [6] queus [3)
the different states of a circular queue during insert and i [] queue [4]

delete operations.

Fig. 5.6 Circular queue

Queues 5.17

Front Front
queut (0] queue [1] queuj o] queue [1]

queue [7] b queve 2] queue [7] » queue [2]
Rear ——
—~— Rear
queue [6] . queue [3] queue [6] queue [3]
queue [4] queue [5] queue [4]

queue [5]

1
Rear\iJeue [l queue [1]
queue [7] queue [2]
queue [6] queue [3]
queue [5] queue [4] ~ Rear

Fig. 5.7 Inserting and deleting elements in a circular queue

Insert Operation The insert operation for array implemented circular queues involves the following

tasks:
1. Checking whether the queue is already full.

2. Updating the rear pointer.
(a) If the queue is empty, set front and rear to point to the first location in the queue.

(b) Ifrear is pointing at the last location of the queue, set rear to point to the first location in the

queue.
(c) If none of the above situations exist, simply increment the rear pointer by 1.

3. Inserting the new element at the rear location.

Example 5.7 Write an algorithm to realize the insert operation for array-implemented circular queues.
insert (queue [MAX], front, rear, element)
Step 1: Start
Step 2: if (front = 0 and rear = MAX-1) OR front = rear+l goto Step 3 else
goto Step 4
Step 3: Display message, “Queue is Full” and goto Step 10

Step 4: if front = NULL goto Step 5 else goto Step 6

5.18 Data Structures

Step
Step
Step
Step
Step

Set front = rear = 0

if rear =

Set rear = 0

Set rear = rear + 1

Set queue[rear] = element
Stop

MAX-1 goto Step 7 else goto Step 8

Delete Operation The delete operation for array implemented circular queues involves the following

tasks:

1. Checking whether the queue is already empty.
2. Retrieving the element at the front of the queue.
3. Updating the front pointer.
(a) If the queue has only one element left, set front and rear to point to NULL.
(b) If front is pointing at the last location of the queue, set front to point to the first location in
the queue.
(c) If none of the above situations exist, simply increment the front pointer by 1.
4. Returning the element retrieved from the front location.

Example 5.8 Write an algorithm to realize the delete operation for array-implemented circular queues.

delete (queue [MAX], front, rear)
Step 1: Start
Step 2: if front =
Step 3: Display message,
Step 4: Set 1 = queue[front]
Step 5: if front =
Step 6: Set front = rear = NULL
Step 7: Return the deleted element
Step 8: if front = MAX-1 goto Step
Step 9: Set front = 0
Step 10: Return the deleted element
Step 11: Set front = front + 1
Step 12: Return the deleted element
Step 13: Stop

Implementation

NULL goto Step 3 else goto Step 4
“Queue is Empty” and goto Step 13

rear goto Step 6 else goto Step 8

i and go to Step 13
9 else goto Step 11

i and go to Step 13

Example 5.9 Write a program to implement a circular queue using arrays and perform its common
operations.

Program 5.3 implements a circular queue using arrays in C. It uses the insert (Example 5.7) and delete
(Example 5.8) functions for realizing the common queue operations.

Program 5.3 [mplementation of a circular queue using arrays

/*Program for demonstrating implementation of circular queues using arrays*/
#include <stdio.h>
#include <conio.h>

Queues 5.19

#include <stdlib.h>

int queue[5]; /*Declaring a 5 element queue array*/
int front=-1; /*Declaring and initializing the front pointer*/
int rear=-1; /*Declaring and initializing the rear pointer*/

void insert (int); /*Declaring a function prototype for inserting an element
into the circular queue*/

int del(); /*Declaring a function prototype for removing an element from
the circular queue*/

void display(); /*Declaring a function prototype for displaying the queue
elements*/

void main ()

{

int choice;

int numl=0, num2=0;

while (1)
{

/*Creating an interactive interface for performing queue operations*/
printf (“"\nSelect a choice from the following:”) ;
printf ("M\n[1l] Add an element into the queue”);
printf ("\n[2] Remove an element from the queue”);
printf ("\n[3] Display the queue elements”) ;
printf ("M\n[4] Exit\n”);

printf (“"\n\tYour choice: “);

scanf (“%d”, &choice) ;

switch (choice)

{

case 1:

{

printf ("\n\tEnter the element to be added to the queue: “);
scanf (“%d”, &numl) ;

insert (numl); /*Adding an element*/

break;

}

case 2:

{

num2=del () ; /*Removing an element*/

if (num2== (-9999))

else

printf ("\n\t%d element removed from the queue\n\t”,num2);
getch () ;
break;

}

5.20 Data Structures

case 3:

{

display(); /*Displaying queue elements*/
getch () ;

break;

}

case 4:
exit (1) ;
break;

default:

printf ("M\nInvalid choice!\n”);
break;

}

}

}

/*Insert function*/
void insert (int element)
{
if ((front==0 && rear ==4) || front==rear+l)
{
printf (“\tQueue is Full. Element %d cannot be added into the queue\
n”,element) ;
getch () ;
return;

}

if (front==-1) /*Adding element in an empty queue*/
{

front=0;

rear=0;

}
else if (rear==4)

rear=0; /*Setting rear pointer to start of queue*/
else

rear=rear+l; /*Incrementing rear pointer*/

queue [rear]=element; /*Inserting the new element*/

}

/*Delete function*/
int del ()

{

int i;

if (front==-1) /*Checking whether the queue is empty*/
{

printf (“"\n\tQueue is Empty.\n”);

Queues 5.21

getch () ;
return (-9999);
}

i=queue[front]; /*Retrieving the element at the front of the queue*/

if (front==rear) /*Checking whether the queue has only one element left*/
{

front=-1;

rear=-1;

return (i) ;

}

else if (front==4)

{

front=0; /*Setting the front pointer to start of queue*/
return (i) ;

}

elise

{

front=front+1l; /*Incrementing the front pointer*/
return (i) ;

}
}

/*Display function*/
void display ()
{
int 1i;
if (front==-1)
{
printf (“"\n\tQueue is Empty!\n”);
return;

}

printf ("\n\tThe various queue elements are:\n”);
i=front;

while (i'!=rear)

{

printf (“"\t%d”,queue[i]); /*Printing queue elements*/

if (i==4)

i=0;
else

1=1+1;

printf ("\t%d\n”,queue([i]); /*Printing the last element in the queue*/

5.22 Data Structures

Output

Select a choice from the following:
[1] Add an element into the queue
2] Remove an element from the queue

[
[3] Display the queue elements
[4] Exit

Your choice: 1

Enter the element to be added to the queue:

1
Select a choice from the following:
[1] Add an element into the queue
[2] Remove an element from the queue
[3] Display the queue elements
[4] Exit
Your choice: 1
Enter the element to be added to the queue: 2

Select a choice from the following:
[1] Add an element into the queue
2] Remove an element from the queue

[
[3] Display the queue elements
[4] Exit

Your choice: 1

Enter the element to be added to the queue: 3

Select a choice from the following:
[1] Add an element into the queue
2] Remove an element from the queue

[
[3] Display the queue elements
[4] Exit

Your choice: 1

Enter the element to be added to the queue: 4

Select a choice from the following:
[1] Add an element into the queue
2] Remove an element from the queue

[
[3] Display the queue elements
[4] Exit

Your choice: 1

Enter the element to be added to the queue: 5

Queues 5.23

Select a choice from the following:
[1] Add an element into the queue
2] Remove an element from the queue

[
[3] Display the queue elements
[4] Exit

Your choice: 3

The various queue elements are:
12345

Select a choice from the following:
[1] Add an element into the queue
2] Remove an element from the queue

[
[3] Display the queue elements
[4] Exit

Your choice: 1

Enter the element to be added to the queue:

6
Queue is Full.

Element 6 cannot be added into the queue

Select a choice from the following:
[1] Add an element into the queue
2] Remove an element from the queue

[
[3] Display the queue elements
[4] Exit

Your choice: 2

1 element removed from the queue

Select a choice from the following:
[1] Add an element into the queue
2] Remove an element from the queue

[
[3] Display the queue elements
[4] Exit

Your choice: 3

The various queue elements are:
2 345

Select a choice from the following:
[1] Add an element into the queue
2] Remove an element from the queue

[
[3] Display the queue elements
[4] Exit

5.24 Data Structures

Your choice: 1

Enter the element to be added to the queue: 6
Select a choice from the following:

[1] Add an element into the queue
[2] Remove an element from the queue
[3] Display the queue elements

[4] Exit

Your choice: 3

The various queue elements are:

2 3456

We can observe in the above output that a circular queue makes the best utilization of available
memory space by logically connecting the start and end locations.

Program analysis

Key Statement Purpose
if((front==0 && rear ==4) || Checks whether the circular queue is full or not
front==rear+1)
i=front; Traverses the elements of the circular queue
while(i!=rear)

5.6 PRIORITY QUEUES

Priority queue is a type of queue in which each g Check Point
element is assigned certain priority such that the]]
order of deletion of elements is decided by their 1+ Whatis a circular queue?

associated priorities. The order of processing or ~ AAMS- A circular queue is a queue whose start
deletion of elements in a priority queue is decided ~ and end locations are logically connected with
by the following rules: each other.

1. Anelementwith highest priority is deleted 2 Yhat is the advantage of circular queue?
Ans. The implementation of circular queues

ensures efficient utilization of memory space
in comparison to normal queues.

before all other elements of lower priority.

2. If two elements have the same priority
then they are deleted as per the order in
which they were added into the queue
(i.e., First-In-First-Out).

The implementation of priority queues may follow different approaches. For instance, elements may
be added arbitrarily into the queue and deleted as per their priority values or, the elements may be sorted
as per their priorities at the time of their insertion itself, and deleted in a sequential fashion. We’ll be
following the later approach for implementing priority queues.

The structure of a priority queue needs to be defined in such a manner that each queue node is able
to store both its value as well as its priority information. The following C structure defines the node of
a priority queue:

Queues 5.25

struct queue /*Node of a priority queue*/

{

int element;

int priority;

struct queue *next; /*Pointer to the next queue node*/

bi
Implementation

Example 5.10 Write a program to implement a priority queue using linked lists and perform its
common operations.

Program 5.4 implements a priority queue using linked lists in C.
Program 5.4 [Implementation of a priority queue using linked lists

/*Program for implementing priority queue using linked list*/
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>

struct queue /*Declaring the structure for queue node*/
{

int element;

int priority;

struct queue *next; /*Pointer to the next queue node*/

}i
struct queue *front=NULL;

void insert (int,int); /*Declaring a function prototype for inserting an
element into the queue*/

int del(); /*Declaring a function prototype for deleting an element from
the queue*/

void display(void); /*Declaring a function prototype for displaying the
queue elements along with their priority values*/

void main ()
{
int numl, num2, pr, choice;
while (1)
{
/*Creating an interactive interface for performing queue operations*/
printf ("\n\nSelect an option\n”) ;
printf (“\nl - Insert an element into the Queue”);
printf (“\n2 - Remove an element from the Queue “);
printf ("\n3 - Display all the elements in the Queue”);
printf (“"\n4 - Exit”);

5.26 Data Structures

printf ("\n\nEnter your choice: “);
scanf (“%d”, &choice);

switch (choice)
{
case 1:
{
printf ("\nEnter the element to be inserted into the queue “);
scanf (“%d”, &numl) ;
printf (“"\nEnter the priority of %d “,numl);
scanf (“%d”, &pr) ;
insert (numl,pr); /*Inserting an element*/
break;

}

case 2:

{

num2=del () ; /*Deleting an element*/

if (num2==-9999)

printf ("\n\tQueue is empty!!”);

else

printf ("\n\t%d element removed from the queue\n\t”,num?2) ;
getch () ;

break;

}

case 3:

{

display(); /*Displaying queue elements*/
getch () ;

break;

}

case 4:
{

exit (1) ;
break;

}

default:

{

printf ("M\nInvalid choice.”);
getch () ;

break;

}

}

}

Queues 5.27

/*Insert Function*/
void insert (int wvalue, int p)
{
struct queue *temp;
struct queue *ptr = (struct queue*)malloc (sizeof (struct queue));/*Dynamically
declaring a queue element*/

ptr->element = value; /*Assigning value to the newly allocated queue
element*/

ptr->priority=p; /*Assigning priority to the newly allocated queue
element*/

/*Checking if the newly allocated queue element needs to be inserted at
the front*/

if (front==NULL| |ptr->priority<front->priority)

{

ptr->next=front;

front = ptr;

}

else

{

temp=front;

/*Adding the newly allocated queue element as per priority*/

while (temp->next!=NULL && temp->next->priority<=ptr->priority)
temp=temp->next;

ptr->next = temp->next;

temp->next = ptr;

}

}

/*Delete Function*/
int del ()
{

int 1i;

if (front==NULL) /*Checking whether the queue is empty*/
return (-9999) ;

else

{

i=front->element; /*Removing elements as per priority*/
front = front->next;

return (i) ;

}

}

/*Display Function*/
void display ()

5.28 Data Structures

struct queue *ptr=front;

if (front==NULL)

{

printf (“"\n\tQueue is Empty!!”);
return;

}

else

{

printf (“\nElements present in the Queue are:\n”);
printf ("M\n\tElement\t\tPriority\n”) ;

/*Printing queue elements along with their priority*/
printf (“Front->");

while (ptr!=NULL)

{

printf ("\t %d\t\t %d\n”,ptr->element,ptr->priority);
ptr=ptr->next;

}

}

}

Output

Select an option
- Insert an element into the Queue
- Remove an element from the Queue

Display all the elements in the Queue
- Exit

DSw N
|

Enter your choice: 1
Enter the element to be inserted into the queue 10

Enter the priority of 10 3

Select an option

- Insert an element into the Queue

- Remove an element from the Queue
Display all the elements in the Queue
- Exit

Sw N
|

Enter your choice: 1

Enter the element to be inserted into the queue 20

Queues 5.29

Enter the priority of 20 2

Select an option

- Insert an element into the Queue

- Remove an element from the Queue
Display all the elements in the Queue
- Exit

DSw N
|

Enter your choice: 1
Enter the element to be inserted into the queue 30

Enter the priority of 30 1

Select an option

- Insert an element into the Queue

- Remove an element from the Queue
Display all the elements in the Queue
- Exit

DSw N
|

Enter your choice: 3
Elements present in the Queue are:

Element Priority
Front-> 30 1

20 2

10 3

Select an option

- Insert an element into the Queue
Remove an element from the Queue

- Display all the elements in the Queue
- Exit

DSw N
|

Enter your choice: 2

30 element removed from the queue

Select an option

1 - Insert an element into the Queue

5.30 Data Structures

2 - Remove an element from the Queue
3 - Display all the elements in the Queue

4 - Exit

Enter your choice: 3

Elements present in the Queue are:

Element Priority
Front-> 20 2
10 3

As we can see in the above output, irrespective of the order in which elements are added into the
queue, they are placed inside the queue as per their priorities and removed in the same fashion.

Program analysis

Key Statement

Purpose

sstruct queue
{
int element;
int priority;
struct queue *next;

Vs

Declares a priority queue node using linked list
representation

scanf(“%d”, &pr);

Reads the priority of the element being inserted into
the queue

>priority<=ptr->priority)
temp=temp->next;

while(temp->next!=NULL && temp->next- | Identifies the location where the new element is to be

inserted as per priority

5.7 DOUBLE-ENDED QUEUES

A double-ended queue is a special
type of queue that allows insertion
and deletion of elements at both ends,
i.e., front and rear. In simple words, a
double-ended queue can be referred as a
linear list of elements in which insertion
and deletion of elements takes place
at its two ends but not in the middle.
This is the reason why it is termed as
double-ended queue or deque.

Based on the type of restrictions
imposed on insertion and deletion of
elements, a double-ended queue is
categorized into two types:

@ Check Point

1. What is a priority queue?

Ans. It is a type of queue in which each element is
assigned certain priority such that the order of deletion of
elements is decided by their associated priorities.

2. What is order of deletion if two or more elements
in a priority queue have same priorities?

Ans. If two or more elements have the same priority then
they are deleted as per the order in which they were added
into the queue (i.e. First-In-First-Out).

Queues 5.31

1. Input-restricted deque It allows deletion from both the ends but restricts the insertion at only
one end.
2. Output-restricted deque It allows insertion at both the ends but restricts the deletion at only
one end.
Figure 5.8 shows the logical representation of a deque.

Deletion «— _» Deletion
lo[22]77[3| 4]5 [13]

f f

Front Rear

Insertion —> —— |nsertion

Fig. 5.8 Double-ended queue

As shown in Fig. 5.8, insertion and deletion of @ Mind J
elements is possible at both front and rear ends of the | ¥ Ind Jog
queue. As a result, the following four operations are

In which situation is a deque used?

possible for a double-ended queue: : : .
i fi . 6 dof th A deque is used for implementing
 itont Insertion & front end of fhe ducue. A-Steal job scheduling algorithm. This

algorithm helps perform task scheduling
for multiple processors.

2. d_front Deletion from front end of the queue.
3. i_rear Insertion at rear end of the queue.
4. d_rear Deletion from rear end of the queue.

Example 5.11 Write C functions to realize the four possible insert and delete operations for array-
implemented double-ended queues.
Program 5.5 i front() function

/*Insertion at front end*/

/*queue[100], front and rear are global variables*/

void i front (int element)

{

if (front==-1) /*Adding element in an empty queue*/

{

front = rear = front+l;

queue [front] = element;

return;

}

if (front==0) /*Checking whether the queue is full at the front end*/

{

printf (“Queue is Full.\n”);
getch () ;

return;

}

front=front-1; /*Decrementing rear pointer*/
queue [front]=element; /*Inserting the new element*/

5.32 Data Structures

Program 5.6 d_front()function

/*Deletion at front end*/
/*queue[100], front and rear are global variables*/
int d front ()

{

int 1i;

if (front==-1 && rear==-1) /*Checking whether the queue is empty*/

{

printf (“"\n\tQueue is Empty.\n”);

getch () ;

return (-9999);

}

if (front==rear) /*Checking whether the queue has only one element left*/
{

i=queue[front];

front=-1;

rear=-1;

return (i) ;

}

return (queue [front++]); /*Returning the front most element and incrementing

the front pointer*/

}
Program 5.7 i rear() function

/*Insertion at rear end*/

/*queue[100], front and rear are global variables*/
void i rear (int element)

{

if (rear==-1) /*Adding element in an empty queue*/

{

front = rear = rear+l;
queue [rear] = element;
return;

}

if (rear==99) /*Checking whether the queue is full at the rear end*/
{

printf (“Queue is Full.\n”);
getch () ;
return;

}

rear=rear+l; /*Incrementing rear pointer*/
queue [rear]=element; /*Inserting the new element*/

}
Program 5.8 d_rear() function

/*Deletion at rear end*/
/*queue[100], front and rear are global variables*/
int d rear()

{

Queues 5.33

int 1i;

if (front==-1 && rear==-1) /*Checking whether the queue is empty*/

{

printf (“"\n\tQueue is Empty.\n”);

getch () ;

return (-9999);

}

if (front==rear) /*Checking whether the queue has only one element left*/

{

i=queue [rear];

front=-1;

rear=-1;

return (i) ;

}

return (queue [rear—]); /*Returning the rear most element and decrementing
the rear pointer*/

}

@ Check Points

1. What is a double-ended queue?

Ans: A double-ended queue is a special type of queue that allows insertion and deletion of elements
at both ends, i.e., front and rear.

2. What are the different types of double-ended queues?

Ans: The two types of double-ended queues are input-restricted deque (insertion at one end,
deletion at both ends) and output-restricted deque (insertion at both ends, deletion at one end).

Solved Problems

Problem 5.1 The contents of a queue Q are as follows:

Queue (Q) 4 5 -9 66
Index 0 1 2 3 4 5 6 7
F? R?

The queue can store a maximum of eight elements and the front (F) and rear (R) pointers currently
point at index 0 and 3 respectively.
Show the queue contents and indicate the position of the front and rear pointers after each of the
following queue operations:
(a) Insert (Q, 16), (b) Delete (Q), (c) Delete (Q), (d) Insert (Q, 7), (e) Delete (Q),
(f) Insert (Q, —2)
Solution
(a) Insert (Q, 16)
Step] R=R+1=3+1=4
Step2 Q[R]=Q[4]=16

5.34 Data Structures

(b)

(©

(@)

(e)

®

Queue contents

Queue (Q) 4 5

66

16

Index 0 1

F1
Delete (Q)
Step 1 Ttem =Q [F]

=Q[0]=4
Step2 F=F+1=0+1=1

Queue contents

R1

Queue (Q) 5

66

16

Index 0 1

Delete (Q)
Step I Ttem=Q [F]
Step2 F=F+1=1

Queue contents

R1

Queue (Q)

66

16

Index 0 1

Insert (Q, 7)
Stepl R=R+1=4+1=5
Step 2 Q[R]=Q[5]=7

Queue contents

1

R1

Queue (Q)

66

16

Index 0 1

Delete (Q)
Step 1 Ttem=Q [F] =
Step2 F=F+1=2+

Queue contents

1

R1

Queue (Q)

66

16

Index 0 1

Insert (Q, -2)
Step]l R=R+1=5+1=6
Step 2 Q[R]=Q[6]=-2

Queue contents

F1

R1

Queues 5.35

Queue (Q) -9 66 16 7)
Index 0 1 2 3 4 5 6 7
Ft R1

Problem 5.2 Consider the following two states of a queue Q:

State 1
Queue (Q) 4 -1
Index 0 1 2 3 4 5 6 7
I Rt
State 2
Queue (Q) 3 11 22 33
Index 0 1 2 3 4 5 6 7
1 R?

Write the series of insert and delete operations that will transition the queue Q from State 1 to State 2.

Solution
Step 1 Delete (Q)
Step 2 Delete (Q)
Step 3 Insert (Q, 11)
Step 4 Insert (Q, 22)
Step 5 Insert (Q, 33)

Problem 5.3 Is there any limitation associated with array implemented queues?

Solution One of the key limitations of array implemented queue is that it may lead to an overflow
condition even when a number of its preceding locations are empty. Such a situation can be easily
avoided by implementing the queue in a circular fashion, which logically connects its front and rear ends.

Problem 5.4 Identify the error in the following structure declaration of a priority queue node:

struct queue /*Node of a priority queue*/

{
int element;
int priority;
} *next;

Solution In the linked implementation of a queue, the next pointer should be associated with each
node of the queue. Hence, next should be declared inside the structure declaration and not outside, as
shown below:

struct queue /*Node of a priority queue*/
{

int element;

int priority;

*next; /*Pointer to the next queue node*/

}

5.36 Data Structures

L 2R K 2R R SR 2R R 2 *

*

Summary

Queue is a linear data structure in which items are inserted at one end called ‘Rear’ and deleted
from the other end called ‘Front’.

Queues are based on the First-In-First-Out (FIFO) principle that means the data item that is
inserted first in the queue is also the first one to be removed from the queue.

There are two key operations associated with the queue data structure: insert and delete.
Queues can be implemented through arrays or linked lists.

The array implementation of queues reserves a fixed amount of memory space in the form of
an array for storing queue elements.

The linked implementation of queues uses dynamic memory management techniques for
allocating the memory space for storing a new queue element at run time.

Since linked implementation of queues is based on dynamic memory allocation it is more
efficient as compared to array-based implementation.

A circular queue is one whose start and end locations are logically connected with each other.
Circular queues remove one of the main disadvantages of array implemented queues in which
a lot of memory space is wasted due to inefficient utilization.

Priority queue is a type of queue in which each element is assigned certain priority such that
the order of deletion of elements is decided by their associated priorities.

A double-ended queue is a special type of queue that allows insertion and deletion of elements
at both ends, i.e., front and rear.

A double-ended queue can also be referred as a linear list of elements in which insertion and
deletion of elements takes place at its two ends but not in the middle.

A double-ended queue is categorized into two types: input-restricted deque and output-restricted
deque.

Key Terms

Queue It is a linear data structure based on the First-In-First-Out (FIFO) principle that means
the data item that is inserted first in the queue is also the first one to be removed from the queue.
Front It represents the front end of the queue from where elements are deleted.

Rear It represents the rear end of the queue where elements are added.

FIFO It stands for First-In-First-Out i.e., the principle on which queues are based.

Insert It refers to the task of inserting an element into the queue.

Delete It refers to the task of retrieving or deleting an element from the queue.

Array implementation It refers to the realization of queue data structure using arrays.

Lined implementation It refers to the realization of queue data structure using linked lists.
Circular queue It is a type of queue whose start and end locations are logically connected with
each other.

Priority queue It is a type of queue in which each element is assigned certain priority such that
the order of deletion of elements is decided by their associated priorities.

Double-ended queue It is a special type of queue that allows insertion and deletion of elements
at both ends, i.e., front and rear.

Queues 5.37

Multiple-Choice Questions

5.1 Which of the following statements is not true for queues?
(a) TItis a linear data structure.
(b) Tt allows insertion/deletion of elements only at one end.
(c) It has two ends front and rear.
(d) Ttis based on First-In-First-Out principle.
5.2 Which of the following statements is not an example of a queue?
(a) Collection of tiles one over another.
(b) A queue of print jobs.
(c) Aline up of people waiting for the bus at the bus stop.
(d) All of the above are queue examples.
5.3 CPU scheduler can be implemented by which of the following data structures?

(a) Stack (b) Queue
(c) Graph (d) Tree
5.4 Which of the following is a type of a queue?
(a) Circular queue (b) Priority queue
(c) Double-ended queue (d) All of the above

5.5 1If1, 2, 3, 4 are the queue contents with element 1 at the front and 4 at the rear, then what will
be the queue contents after following operations:
Insert (5)
Delete ()
Delete ()
Delete ()
Insert (6)
Insert (1)
Delete ()
(a) 5,6,-1 (b) 4,5,6,-1
() 1,2,6 (d 1,2,6,-1
5.6 Which of the following is best suitable for implementing a print scheduler?
(a) Stack (b) Queue
(c) Array (d) None of the above
5.7 If ‘front’ points at the front end of the queue, ‘rear’ points at the rear end of the queue and ‘queue
[1’ is the array containing queue elements, then which of the following statements correctly
reflects the insert operation for inserting ‘item’ into the queue?
(a) rear =rear + 1; queue [rear] =item; (b) front = front+ I; queue [front] = item;
(c) queue [rear++] = item; (d) Both (a) and (c) are correct
5.8 If ‘front’ points at the front end of the queue, ‘rear’ points at the rear end of the queue and ‘queue
[1’ is the array containing queue elements, then which of the following statements correctly
reflects the delete operation for deleting an element from the queue?
(a) item = queue [rear]; rear =rear + 1; (b) item = queue [front]; front = front + 1;

(c) item = queue [++front]; (d) Both (b) and (c) are correct
5.9 Ifadelete operation is performed on an empty queue, then which of the following situations will
occur?

5.38 Data Structures

5.10

(a) Overflow (b) Underflow

(c) Array out of bound (d) None of the above

Which of the following is not a queue application?

(a) Recursion control (b) CPU scheduling

(c) Message queuing (d) All of the above are queue applications

Review Questions

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

5.9
5.10
5.11
5.12
5.13
5.14
5.15

What is a queue? Explain with examples.

Briefly describe the FIFO principle.

What are front and rear pointers? Explain their significance.

What are the different application areas of queue data structure?

Give any three real-life examples that principally resemble the queue data structure.
Explain the logical representation of queue in memory with the help of an example.
Explain insert and delete queue operations with the help of examples.

Deduce the contents of an empty queue after the execution of the following operations in sequence:
Insert (9)

Insert (—7)

Delete ()

Insert (4)

Delete ()

Insert (18)

Delete ()

What is a priority queue? How is it different from a normal queue?

Explain the significance of double-ended queue.

How are queues implemented?

What is the advantage of linked implementation of queues over array implementation?
What is the objective of implementing a queue in circular fashion?

List the differences between stack and queue data structures.

How is a double-ended queue implemented?

Programming Exercises

5.1
5.2
5.3
5.4
5.5

Write a C function to print the elements of a queue implemented using linked list.

Write a C function to perform the delete operation on an array-implemented circular queue.
Write a C function to insert an element into a priority queue as per priority.

Write a C function to perform the delete operation at the end of a double-ended queue.

Write a C function to remove elements from a queue and store them in a stack. Also, display the
contents of the resultant stack.

Answers to Multiple-Choice Questions

5.1 (b) 52 (a) 53 (b) 54 (d) 5.5 (a)
5.6 (b) 5.7 (d) 5.8 (b) 59 (b) 5.10 (a)

Queues 5.39

UNIT-11I

Non Linear Data Structures — Trees

CHAPTER

Chapter 6: Trees

TREES

6.1 Introduction

6.2 Basic Concept
6.2.1 Tree Terminology

6.3 Binary Tree
6.3.1 Binary Tree Concepts

6.4 Binary Tree Representation
6.4.1 Array Representation
6.4.2 Linked Representation

6.5 Binary Tree Traversal
6.6 Binary Search Tree

6.7 Tree Variants
6.7.1 Expression Trees
6.7.2 Threaded Binary Trees
6.7.3 Balanced Trees
6.7.4 Splay Trees
6.7.5 m-way Trees
Summary
Key Terms
Multiple-Choice Questions

Review Questions

P HHtFE O ROtT O DOA

Programming Exercises

Answers to Multiple-Choice Questions

6.1 INTRODUCTION

Till now, we focussed only on linear data structures such as stacks, queues and linked lists. But, in
real-world situations, data relationships are not always linear. Tree is one such non-linear data structure
which stores the data elements in a hierarchical manner. Each node of the tree stores a data value, and
is linked to other nodes in a hierarchical fashion.

In this chapter, we will learn about the different types of trees and their related operations. Most
importantly, we will focus on binary tree and its variants, which are widely used in the field of computer
science.

6.2 BASIC CONCEPT

A tree is defined as a finite set of elements or nodes, such that
1. One of the nodes present at the top of the tree is marked as root node.
2. The remaining elements are partitioned across multiple subtrees present below the root node.
Figure 6.1 shows a sample tree T.

Fig.6.1 TreeT

Here, T is a simple tree containing ten nodes with A being the root node. The node A contains two
subtrees. The left subtree starts at node B while the right subtree starts at node C. Both the subtrees
further contain subtrees below them, thus indicating recursive nature of the tree data structure. Each
node in the tree has zero or more child nodes.

6.2.1 Tree Terminology

There are a number of key terms associated with trees. Table 6.1 lists some of the important key terms.

Table 6.1 Tree terminology

Key Term Description Example (Refer to Fig. 6.1)
Node It is the data element of a tree. Apart from | A, B, C, D
storing a value, it also specifies links to the
other nodes.

6.2 Data Structures

child nodes.

Key Term Description Example (Refer to Fig. 6.1)

Root It is the top node in a tree. A

Parent A node that has one or more child nodes | B is the parent node of D and E
present below it is referred as parent node.

Child All nodes in a tree except the root node are | H, I and J are child nodes of E
child nodes of their immediate predecessor
nodes.

Leaf It is the terminal node that does not have any | G, H, I, J and F are leaf nodes

Internal node

All nodes except root and leaf nodes are
referred as internal nodes.

B, C, D and E are internal nodes

till destination node.

Sibling All the child nodes of a parent node are | D and E are siblings
referred as siblings.
Degree The degree of a node is the number of subtrees | Degree of A is 2
coming out of the node. Degree of E is 3
Level All the tree nodes are present at different | A is at level 0
levels. Root node is at level 0, its child nodes B and C are at level 1
are at level 1, and so on.
G, H, I, J are at level 3
Depth or Height It is the maximum level of a node in the tree. | Depth of tree T is 3
Path It is the sequence of nodes from source node | A-B—E-J

6.3 BINARY TREE

Binary tree is one of the most widely used non-linear data structures in the field of computer science. It
is a restricted form of a general tree. The restriction that it applies to a general tree is that its nodes can
have a maximum degree of 2. That means, the nodes of a binary tree can have zero, one or two child

nodes but not more than that. Figure 6.2 shows a binary tree.

As shown in the above binary tree, all nodes have a maximum degree of 2. The maximum number

Fig. 6.2 Binary tree

of nodes that can be present at level n is 2”.

Trees 6.3

6.3.1 Binary Tree Concepts

Before we learn how binary trees are represented in memory, let us discuss some of the key concepts
associated with binary trees. Table 6.2 lists these key concepts.

Table 6.2 Binary tree concepts

Concept Description Example

Strictly binary tree Abinary tree is called strictly binary
if all its nodes barring the leaf nodes
contain two child nodes.

Complete binary tree | A binary tree of depth d is called
complete binary tree if all its levels
from 0 to d—I/ contain maximum
possible number of nodes and all
the leaf nodes present at level d are

placed towards the left side.

Perfect binary tree Abinary tree is called perfect binary
tree if all its leaf nodes are at the
lowest level and all the non-leaf

nodes contain two child nodes.

Balanced binary tree | A binary tree is called balanced
binary tree if the depths of the
subtrees of all its nodes do not differ

by more than 1.

6.4 Data Structures

6.4 BINARY TREE REPRESENTATION

The sequential representation of binary trees is done by
using arrays while the linked representation is done by using @ Check Point

linked lists.

1. What is a leaf?
Ans. It is the terminal node in a tree

6.4.1 Array Representation that does not have any child nodes.

In the array representation of binary trees, one-dimensional 2. What is a balanced binary tree?

array is used for storing the node elements. The following Ans. Abinary tree is called balanced

rules are applied while storing the node elements in the array: binary tree if the depths of the

1. The root node is stored at the first position in the subtrees of all its nodes do not differ
array while its left and right child nodes are stored by more than 1.

at the successive positions.
2. Ifanode is stored at index location 7 then its left child
node will be stored at location 2i+1 while the right child node will be stored at location 2i+2.
Let us consider a binary tree T,, as shown in Fig. 6.3.

Fig. 6.3 BinarytreeT,

Here, T, is a binary tree containing seven nodes with A being the root node. B and C are the left
and right child nodes of A respectively. Let us apply the rules explained earlier to arrive at the array
representation of binary tree T,. Figure 6.4 shows the array representation.

(Alelc[pof[eE|F[q]
AO] A[1] Al2] Al3] Al4] Al5] Al6]

Array A
2i+1=2"1+1=3 ‘2i+1=2*2+1=5‘
2i+2=2"1+2=4 2i+2=2"2+2=6

Fig. 6.4 Array representation of binary tree T,

Trees 6.5

Figure 6.4 shows the array index values for each of the tree nodes. Array A is used for storing the
node values.

Now, let us modify the binary tree T, a little by deleting nodes E and F. The revised array representation
of T, is shown in Fig. 6.5.

[AlBlc|p]-]-]c]
Al0] A1l Al2] A[3] Al4] Al5] Al6]

Array A
2i+1=2"1+1=3 2i+2=2"2+2=6

Fig. 6.5 Revised array representation of binary tree T,

As we can see in Fig. 6.5, even after removing two elements from the tree, it still requires the same
number of memory locations for storing the node elements. This is the main disadvantage of array
representation of binary trees. It efficiently utilises the memory space only when the tree is a complete
binary tree. Otherwise, there are always some memory locations lying vacant in the array.

6.4.2 Linked Representation

To avoid the disadvantages associated with array representation, linked representation is used for
implementing binary trees. It uses a linked list for storing the node elements. Each tree node is represented
with the help of the linked list node comprising of the following fields:

1. INFO Stores the value of the tree node.

2. LEFT Stores a pointer to the left child.

3. RIGHT Stores a pointer to the right child.

In addition, there is a special pointer that points at the root node. Figure 6.6 shows how linked list is

used for representing a binary tree in memory.

Fig. 6.6 Linked representation of binary tree

6.6 Data Structures

The linked representation of binary tree uses dynamic memory allocation technique for adding new
nodes to the tree. It reserves only that much amount of memory space as is required for storing its node
values. Thus, linked representation is more efficient as compared to array representation.

Example 6.1 Write a program to implement a binary tree using linked list.
Program 6.1 Implementation of a binary tree

#include <stdio.h>
#include <stdlib.h>

#include <conio.h> Here, the node of the tree is realised with
the help of a structure declaration. The
INFO field stores the node value while

struct blnftree the LEFT and RIGHT pointers point at
{ the left and right subtrees respectively.
int INFO;

struct node *LEFT, *RIGHT;
I

typedef struct bin tree node;

node *insert(node *,int); /*Function prototype for inserting a new node*/

void display (node *); /*Function prototype for displaying the tree nodes*/

int count = 1; /*Counter for ascertaining left or right position for the
new node*/

Since the root node has no parents, its
location is tracked with the help of a

okl ksl () special pointer called root.

{
struct node *root = NULL;
int element, choice;

clrscr();

/*Displaying a menu of choices*/

while (1)

{

clrscr();

printf (“Select an option\n”);

printf (“"\nl - Insert”);
(
(

w

printf (“"\n2 - Display”);
printf (“"\n3 - Exit”);

printf ("\n\nEnter your choice: “);
scanf (“%d”, &choice);

switch (choice)

{

case 1:

{

Trees 6.7

printf ("\n\nEnter the node value: “);

scanf (“%d”, &element) ;

root = insert(root,element); /*Calling the insert function for inserting
a new element into the tree*/

getch () ;

break;

}

case 2:

{

display(root); /*Calling the display function for printing the node
values*/

getch () ;

break;

}

case 3:

{
exit (1) ;
break;

}

default:
{

printf (“"\nIncorrect choice. Please try again.”);

getch () ;

break;

}

}

}
}
node *insert (node *r, int n) The use of dynamic memory allocation
{ ensures that memory space for a new

, node is allocated only at the time of
if (r==NULL)

its creation.
{ /
r=(node*) malloc (sizeof (node))

r->LEFT = r->RIGHT = NULL;
r->INFO = n;

count=count+1;

}

else

{

if (count%$2==0)

r->LEFT = insert(r->LEFT, n);
else

r->RIGHT = insert (r->RIGHT, n);
}

return (r) ;

6.8 Data Structures

void display(node * r)
{
if (r->LEFT!=NULL)
display (r->LEFT) ;
printf (*$d\n”, r->INFO) ;
if (r->RIGHT!=NULL)
display (r—->RIGHT) ;
}

Output

Select an option

1 - Insert
2 - Display
3 - Exit

Enter your choice: 1
Enter the node value: 1
Enter your choice: 1
Enter the node value: 2
Enter your choice: 1
Enter the node value: 3
Enter your choice: 1
Enter the node value: 4
Enter your choice: 1
Enter the node value: 5
Enter your choice: 1
Enter the node value: 6

Select an option

1 - Insert
2 - Display
3 - Exit

Enter your choice: 2

Trees 6.9

a w R~ N S o

Select an option

1 - Insert
2 - Display
3 - Exit

Enter your choice: 3

Program analysis

Key Statement Purpose
node *insert(node *,int); Declares function prototypes for inserting and
void display (node *); displaying binary tree nodes
root = insert(root,element); Calls the insert() function for inserting a new node into
the binary tree
display(root); Calls the display() function for displaying the binary
tree nodes
if(count%2==0) Checks the value of the count variable to insert the new
r->LEFT = insert(r->LEFT, n); node either in the left or right subtree
else
r->RIGHT = insert(r->RIGHT, n);

6.5 BINARY TREE TRAVERSAL

Traversal is the process of visiting the various elements of a data structure. Binary tree traversal can be
performed using three methods:
1. Preorder
2. Inorder
3. Postorder
1. Preorder The preorder traversal method performs the following operations:
(a) Process the root node (N).
(b) Traverse the left subtree of N (L).
(c) Traverse the right subtree of N (R).
2. Inorder The inorder traversal method performs the following operations:
(a) Traverse the left subtree of N (L).
(b) Process the root node (N).
(c) Traverse the right subtree of N (R).
3. Postorder The postorder traversal method performs the following operations:

6.10 Data Structures

(a) Traverse the left subtree of N (L).

(b) Traverse the right subtree of N (R).

(c) Process the root node (N).

Figure 6.7 shows an illustration of the different binary tree traversal methods.

Example 6.2 Consider the following binary tree:
Preorder-N-L-R

Inorder-L-N-R
Postorder—L-R-N

Root Node

Right Subtree

Fig. 6.7 Binary tree traversal

For the above binary tree, deduce the following:
(a) Preorder traversal sequence

(b) Inorder traversal sequence

(c) Postorder traversal sequence

Solution
(a) Preorder traversal sequence
A-B-D-E-G-C-F
(b) Inorder traversal sequence
D-B-G-E-A-C-F
(c) Postorder traversal sequence
D-G-E-B-F-C-A

Example 6.3 Write algorithms for the following:

(a) Preorder traversal
(b) Inorder traversal
(c) Postorder traversal

Solution
(a) Preorder

preorder (root)
Step 1: Start

Step 2: Display root

Step 3: Function Call preorder (root->LEFT)
Step 4: Function Call preorder (root->RIGHT)
Step 5: Stop

(b) Inorder

inorder (root)
Step 1: Start

Trees 6.11

Step 2: Function Call inorder (root->LEFT)
Step 3: Display root

Step 4: Function Call inorder (root—->RIGHT)
Step 5: Stop

(c) Postorder

postorder (root)
Step 1: Start

Step 2: Function Call postorder (root->LEFT)
Step 3: Function Call postorder (root->RIGHT)
Step 4: Display root

Step 5: Stop

Example 6.4 Modify the program shown in Example 6.1 to add preorder, inorder and postorder
traversals to the linked implementation of binary tree.

Program 6.2 Preorder, inorder, and postorder traversal of binary tree

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>

struct bin tree

{

int INFO;

struct node *LEFT, *RIGHT;
}i

Declaration of function prototypes
for each of the traversal methods.

typedef struct bin tree node;

/*Function prototype for inserting a new node*/
/*Function prototype for displaying preorder

node *insert(node *,int),;
void preorder (node ¥*);
traversal path*/

void inorder (node *); /*Function prototype for displaying inorder traversal
path*/

void postorder (node *); /*Function prototype for displaying postorder
traversal path*/

int count = 1; /*Counter for ascertaining left or right position for the
new node*/

void main ()

{
struct node *root = NULL;
int element, choice;

clrscr();

6.12 Data Structures

/*Displaying a menu of choices*/

while (1)
{

clrscr
printf

’
AN}

(

(

printf (“\nl
printf (“\n2
printf (“\n3
printf (“\n4
printf (“\nb

Insert”);
Preorder”) ;
Inorder”) ;
Postorder”) ;
Exit”) ;

Select an option\n”);

printf (“"\n\nEnter your choice: “);
&choice) ;

scanf (“%d”,

switch (choice)

{

case 1:

{

printf ("\n\nEnter the node value: “);
scanf (“%d”, &element) ;

root = insert (root,element) ;
a new element into the tree*/

getch () ;
break;

}

case 2:

{

/*Calling the insert function for inserting

preorder (root) ; /*Calling the preorder function*/

getch () ;
break;

}

case 3:

{

inorder (root) ; /*Calling the inorder function*/

getch () ;
break;

}

case 4:

{

postorder (root) ; /*Calling the postorder function*/

getch () ;
break;

}

case 5:

Trees 6.13

exit (1) ;
break;

}

default:

{

printf (“"\nIncorrect choice. Please try again.”);
getch () ;

break;

}

}

}

}

node *insert (node *r, int n)
{
if (r==NULL)
{
r=(node*) malloc (sizeof (node)) ;
r—>LEFT = r->RIGHT = NULL;
r—>INFO n;
count=count+1;
}
else
{
if (count%2==0)
r->LEFT = insert (r->LEFT, n);
else
r->RIGHT = insert (r->RIGHT, n);
}

return(r) ;

void preorder (node *r)
{
if (r!=NULL)
{
a wo ” _ o
printf (“$d\n”, r->INFO); Recursive function calls apply the
preorder (r-=>LEFT) ; ———— traversal sequence to each of the
preorder (r->RIGHT) ; nodes in the left and right subtrees.

}
}

void inorder (node *r)
{
if (r!=NULL)

{
inorder (r->LEFT) ;

6.14 Data Structures

printf (*$d\n”, r->INFO) ;
inorder (r->RIGHT) ;

}

}

void postorder (node *r)
{
if (r!=NULL)
{
postorder (r->LEFT) ;
postorder (r—->RIGHT) ;
printf (*$d\n”, r->INFO) ;
}
}

Output

Select an option

1 - Insert

2 - Preorder
3 - Inorder

4 - Postorder
5 - Exit

Enter your choice: 1
Enter the node value: 1
Enter your choice: 1
Enter the node value: 2
Enter your choice: 1
Enter the node value: 3
Enter your choice: 1
Enter the node value: 4
Enter your choice: 1
Enter the node value: 5
Enter your choice: 1

Enter the node value: 6

Trees 6.15

Select an option

1 - Insert

2 - Preorder
3 - Inorder

4 - Postorder
5 - Exit

Enter your choice: 2
1 -

2

Preorder traversal sequence I

O W o

Select an option

1 - Insert

2 - Preorder
3 - Inorder

4 - Postorder
5 - Exit

Enter your choice: 3

O]
4

Inorder traversal sequence I

o wE N

Select an option

1 - Insert

2 - Preorder
3 - Inorder

4 - Postorder
5 - Exit

Enter your choice: 4

e

Postorder traversal sequence I

= w o N

Select an option

1 - Insert
2 - Preorder

6.16 Data Structures

3 - Inorder

4 - Postorder

5 - Exit

Enter your choice: 5

Program analysis

Key Statement

Purpose

node *insert(node *,int);
void preorder(node *);
void inorder(node *);
void postorder(node *);

Declares the function prototypes for inserting a new
node and traversing the binary tree using different
traversal methods

preorder(root); Calls the preorder() function to traverse the binary tree
in preorder sequence

inorder(root); Calls the inorder() function to traverse the binary tree
in inorder sequence

postorder(root); Calls the postorder() function to traverse the binary tree

in postorder sequence

6.6 BINARY SEARCH TREE

A binary tree is referred as a binary search tree if for any

node n in the tree:

1. the node elements in the left subtree of n are lesser

in value than n.

2. the node elements in the right subtree of n are greater

than or equal to 7.

Thus, binary search tree arranges its node elements in a
sorted manner. As the name suggests, the most important
application of a binary search tree is searching. The average

g Check Point

1. Which node in a binary tree
does not have a parent node?
Ans. Root

2. Which tree traversal method
processes the root node first and
then the left and right subtrees?
Ans. Preorder

running time of searching an element in a binary search tree
is O (logn), which is better than other data structures like

array and linked lists.

(35
(22 (64
(19 @ @
@ G

Fig. 6.8 Binary search tree

Figure 6.8 shows a sample binary search tree.
As we can see in the figure, all the nodes in the left subtree are less

than the nodes in the right subtree.

The various operations performed on a binary search tree are:

1.

2.
3.
1.

Insert The insert operation involves adding an element into the
binary tree. The location of the new element is determined in such
a manner that insertion does not disturb the sort order of the tree.

Trees 6.17

Example 6.5 Write a C function for inserting an element into a binary search tree.

node *insert (node *r, int n)

{

if (r==NULL)

{

r=(node*) malloc (sizeof (node)) ;

BEABIEIE = BeRIMEINE = BUkh are required to identify the precise

r->INFO n; location where the new node will
} be inserted.

else if (n<r->INFO)

r->LEFT = insert (r->LEFT, n);

else if (n>r->INFO)

r->RIGHT = insert (r->RIGHT, n);

else if (n==r->INFO)

printf ("\nInsert Operation failed: Duplicate Entry!!”);

A series of recursive function calls

return(r) ;

}

2. Search The search operation involves traversing the various nodes of the binary tree to search
the desired element. The sorted nature of the tree greatly benefits the search operation as with
each iteration, the number of nodes to be searched gets reduced. For example, if the value to
be searched is less than the root value then the remainder of the search operation will only be
performed in the left subtree while the right subtree will be completely ignored.

Example 6.6 Write a C function for searching an element in a binary search tree.

void search (node *r,int n)

{

if (r==NULL)

{

printf (“\n%d not present in the tree!!”,n);
return;

}

else 1f (n==r->INFO)

printf ("\nElement %$d is present in the tree!!”,n);
else 1f (n<r->INFO)

search (r->LEFT,n) ;

else

search (r->RIGHT,n) ;

}

3. Delete The delete operation involves removing an element from the binary search tree. It is
important to ensure that after the element is removed from the tree, the other elements are shuffled
in such a manner that the sort order of the tree is regained. The delete operation is depicted in
Fig. 6.9.

6.18 Data Structures

Delete node 39

() @6

g N =
® @ —

Fig. 6.9 Deleting an element from binary search tree

As we can see in Fig. 6.9, if the node to be deleted is a leaf node, then it is simply deleted without
requiring any shuffling of other nodes. However, if the node to be deleted is an internal node then
appropriate shuffling is required to ensure that the tree regains its sort order.

Example 6.7 Write a C function for deleting an element from a binary search tree.

int del (node *r,int n)

{

node *ptr; 5 5)
i __p A return value of 0 signifies unsuccessful
if (r==NULL) search while a return value of 1 signifies
{ successful search.

return (0) ;

}

else 1if (n<r->INFO)
return (del (r=>LEFT,n)) ;
else 1if (n>r->INFO)
return (del (r-=>RIGHT,n)) ;
else

{

Trees 6.19

if (r->LEFT==NULL)

{

ptr=r;

r=r->RIGHT;

free (ptr);

return (1) ;

}

else if (r->RIGHT==NULL)
{

ptr=r;

r=r->LEFT;

free (ptr);

return (1) ;

}

else

{

ptr=r->LEFT;

while (ptr->RIGHT !=NULL)
ptr=ptr->RIGHT;
r->INFO=ptr->INFO;
return (del (r->LEFT, ptr—->INFO)) ;
}

}

}

4. Implementation The implementation of a binary search tree requires implementing the insert,
search, and delete operations.

Example 6.8 Write a C program for implementing a binary search tree.
Program 6.3 uses the insert (Example 6.5), search (Example 6.6), and delete (Example 6.7) functions.

Program 6.3 [mplementation of a binary tree

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>

struct BST

{

int INFO;

struct node *LEFT, *RIGHT;
}i

typedef struct BST node;

node *insert(node *,int); /*Function prototype for inserting a new node*/
void search(node *,int); /*Function prototype for searching a node*/

int del (node *,int); /*Function prototype for deleting a node*/

void display (node¥*) ;

void main ()

6.20 Data Structures

{

struct node *root = NULL;

int element,

clrscr();

/*Displaying a menu of choices*/

while (1)
{
clrscr (
printf (
printf (“\nl
printf (“\n2

(

(

(

’

printf (“\n3
printf (“\n4
printf (“\n5

printf ("\n\nEnter your choice:

scanf (“%d”,

switch (choice)

{

case 1:

{

printf ("\n\nEnter the node value:

choice, num,

“Select an option\n”);

Insert”) ;
Search”) ;
Delete”) ;
Display”);
Exit”) ;

&choice) ;

scanf (“%d”, &element) ;
root = insert(root,element); /*Calling the insert function for inserting

a new element into the tree*/

getch () ;
break;

}

case 2:

{

printf ("\nEnter the element to be searched:

scanf (“%d”, &num) ;
search (root,num) ;

getch () ;
break;

}

case 3:

{

printf ("\n\nEnter the element to be deleted:

scanf (“%d”, &num) ;
flag=del (root,num) ;

if (flag==1)

printf (“"\nElement %d deleted from the list”,num);

else

“).
’

\\) .
’

Trees 6.21

printf ("\nElement %d not present in the
getch () ;
break;

}

case 4:

{

display (root) ;
getch () ;
break;

}

case 5:
{

exit (1)
break;

}

default:
{

list”,num) ;

printf (“\nIncorrect choice. Please try again.”);

getch () ;
break;
}
}
}
}
void display(node * r)
{
if (r->LEFT!=NULL)
display (r->LEFT) ;
printf (*$d\n”, r->INFO) ;
if (r->RIGHT!=NULL)
display (r—->RIGHT) ;
}

Output

Select an option

1 - Insert
2 - Search
3 - Delete
4 - Display
5 - Exit

Enter your choice: 1

Enter the node value: 6

6.22 Data Structures

Enter

Enter

Enter

Enter

Enter

Enter

Enter

Enter

Enter

Enter

your choice: 1

the node value:

your choice: 1

the node value:

your choice: 1

the node value:

your choice: 1

the node value:

your choice: 1

the node value:

Select an option

Irrespective of the order in which elements
are added to the binary search tree, the insert

Sfunction always stores them in a sorted manner.

1 - Insert

2 - Search

3 - Delete

4 - Display

5 - Exit

Enter your choice: 4
1

2\

3

4

5

6

Enter your choice: 2
Enter the element to
7 not present in the
Enter your choice: 2
Enter the element to

Element 4 is present

be searched:

tree!!

be searched:

in the tree!!

7

4

Trees 6.23

Select an option

1 - Insert
2 - Search
3 - Delete
4 - Display
5 - Exit

Enter your choice: 3

Enter the element to be deleted: 8
Element 8 not present in the list
Enter the element to be deleted: 4
Element 4 deleted from the list

Select an option

1 - Insert
2 - Search
3 - Delete
4 - Display
5 - Exit

Enter your choice: 5

Program analysis

Key Statement Purpose
node *insert(node *,int); Declares function prototypes for performing operations
void search(node *,int); on the binary search tree
int del(node *,int);
void display(node*);
root = insert(root,element); Calls the insert()function for inserting a new node into

the binary search tree

search(root,num); Calls the search()function for performing search
operation on the binary search tree

flag=del(root,num); Calls the del()function for deleting an element from the
binary search tree

display(root); Calls the display()function for displaying the nodes of
the binary search tree

6.7 TREE VARIANTS

Based on the concept of trees, binary trees and binary search trees various tree variants have been
deduced. Each of these variants possesses distinct characteristics and serves specific purposes. For

6.24 Data Structures

example, balanced binary trees balance their nodes in such a way that the height of the tree is always
kept to a minimum, thus ensuring better average case performance at the time of searching.
In the subsequent sections, we will learn about the various tree variants.

6.7.1 Expression Trees

Expression tree is nothing but a binary tree containing mathematical expression. The internal nodes of
the tree are used to store operators while the leaf or terminal nodes are used to store operands. Various
compilers and parsers use expression trees for evaluating arithmetic and logical expressions.

Consider the following expression:

(atb)*(a—b/c)

The expression tree for the above expression is shown in Fig. 6.10.

Fig. 6.10 Expression tree

As shown in the above tree, the internal nodes store the operators while the leaf nodes store the
operands. While constructing a binary tree from a given expression, the following precedence rules
are followed:

1. Parentheses are evaluated first.

2. The exponential expressions are evaluated next.

3. Then, division and multiplication operations are evaluated.
4. Finally, addition and subtraction operations are evaluated.

Representing an expression using a binary tree has another key advantage. By applying the various
traversal methods we can deduce the other representations of an expression. For example, the preorder
traversal of an expression tree derives its prefix notation.

Table 6.3 shows the various expression notations deduced after traversing the expression tree shown
in Fig. 6.10.

Table 6.3 Expression notations

Expression Notation Traversal Method Example (Refer to Fig. 6.10)
Prefix Preorder *+ab—a/bc
Infix Inorder atb*a—a/c
Postfix Postorder ab+abc/-*

Trees 6.25

6.7.2 Threaded Binary Trees

Let us recall the structure declaration of a tree node described during the linked implementation of a
binary tree:

struct bin tree

{

int INFO;

struct node *LEFT, *RIGHT;

}i

As we can see in the above declaration, each node in a binary tree has two pointer nodes associated with
it, i.e., LEFT and RIGHT. Now, in case of leaf nodes, these pointers contain NULL values. Considering
the number of leaf nodes that are there in a typical binary tree, this leads to a lot of memory space getting
wasted. Threaded binary trees offer an innovative alternate to avoid this memory wastage.

In a threaded binary tree, all nodes that do not have a right child contain a pointer or a thread to its
inorder successor. The address of the inorder successor node is stored in the RIGHT pointer. But, how do
we distinguish between a normal pointer and a thread pointer? This is done with the help of a Boolean
variable, as shown in the below node declaration of a threaded binary tree:

struct t tree

{

int INFO;

struct node *LEFT, *RIGHT;
boolean LThread, RThread;
}i

ﬁote Just like a right thread points at the inorder successor, we can also make the left thread
to point at the postorder successor so as to deduce the postorder traversal sequence.

Figure 6.11 shows a threaded binary tree.

As shown in the figure, nodes D, E, F and H contain threads to
point at their inorder successors.

Now, what is the advantage of a threaded binary tree
representation? Try to recall the algorithm for inorder traversal
of a binary tree. The algorithm uses recursive function calls to
determine the inorder traversal path. The execution of recursive
function calls requires the use of stack and consumes both memory
as well as time. The threaded tree traversal allows us to determine

the inorder sequence using an iterative approach instead of a
recursive approach. Fig. 6.11 Threaded binary tree

Threads Y

6.26 Data Structures

Example 6.9 Write the algorithm for traversal of a threaded binary tree to generate the inorder

sequence.

Solution

inorder (node)
Step 1: Start
Step 2: Set current = leftmost (node)
//current refers to the current node

//leftmost function returns the left most node value in a subtree

Step 3: while current != NULL repeat Steps 4-7

Step 4: Display current

Step 5: If current->RThread != NULL goto Step 6 else goto Step 7
Step 6: Set current = current->RIGHT

Step 7: Set current = leftmost (current->RIGHT)

Step 8: Stop

leftmost (node)
Step 1: Start

Step 2: Set ptr = node

Step 3: if ptr = NULL goto Step 4 else goto Step 5
Step 4: Return NULL and goto Step 8

Step 5: while ptr->LEFT != NULL repeat Step 6

Step 6: Set ptr = ptr->LEFT

Step 7: Return ptr

Step 8: Stop

If we apply the above algorithm on the threaded binary tree shown in Fig. 6.11, then we will obtain

the following inorder sequence:
D-B-E-A-F-C-H-G

@ Check Point

1. In an expression tree, the internal nodes contain
Ans. operators, operands

2. In a threaded binary tree, a RIGHT thread points at the successor of a node.
Ans. Inorder

while the leaf nodes contain

& ®®© @

Balanced Binary Search Tree .
Unbalanced Binary Search Tree

Fig. 6.12 Binary search trees

6.7.3 Balanced Trees

In the previous sections, we saw how nodes
are added to a binary search tree. With
each addition of a node in a tree, there is a
possibility that the height of the tree may
also get changed. The height of a tree has
a direct affect on its efficiency to perform
the search operation. For instance, consider
the binary search trees shown in Fig. 6.12.

Trees 6.27

Both the binary search trees shown in the above figure contain the same nodes however the height of
the first tree is 2 while that of the second tree is 6. To search element 30 in the above trees, we need to
dig a lot deeper in the second tree as compared to the first tree. Thus, while implementing binary trees,
it is important to keep the height of the tree in check.

There are various binary search trees that keep the tree balanced whenever a new node is added by
shuffling the tree nodes appropriately. These are:

1. AVL tree

2. Red-Black tree
1.AVL tree AVL tree, also called height-balanced tree was defined by mathematicians Adelson, Velskii
and Landis in the year 1962. The main characteristic of an AVL tree is that for all its nodes, the height
of the left subtree and the height of the right subtree never differ by more than

At any point of time, an AVL tree node is in any one of the following states:

(a) Balanced The height of left subtree is equal to the height of right subtree.

(b) Lefi heavy The height of left subtree is one more than the height of right subtree.

(c) Right heavy The height of right subtree is one more than the height of left subtree.

Figure 6.13 shows an AVL tree.

Fig. 6.13 AVL tree

As shown in Fig. 6.13, the height of left and right subtrees of each node differs by not more than 1.

Now, how is an AVL tree created and maintained? This is done by associating a balance factor (BF)
with each node that keeps a track of the height balance for that particular node. BF for a node is calculated
by using the following formula:

BF = Height of Left Subtree — Height of Right Subtree

Let us apply the above formula to calculate the balance factor for each node of the AVL tree shown
in Fig. 6.13. Figure 6.14 shows the updated AVL tree.

6.28 Data Structures

Fig. 6.14 AVL tree with balance factors

As shown in Fig. 6.14, the balance factors of all the nodes are not more than 1, which is the key

characteristic of an AVL tree.
The structure declaration of an AVL tree node contains an additional field for storing the balance

factor, as shown below:
struct avl node

{
int INFO;
*RIGHT;

struct node *LEFT,

int BF;
}i
Whenever a new node is inserted in an AVL tree, a slight disbalance is created at the point of insertion
which reflects in the balance factors of the nodes in its preceding path till the root node. To restore the
balance of the tree, left and right rotations are carried out to move the nodes towards the right or left.

This is repeated until the balance factors of all the nodes are reduced below 1.
Figure 6.15 shows the insertion of node value 15 into the AVL tree shown in Fig. 6.14. It depicts how

the disbalance resulting out of the insert operation is corrected.

Rotating nodes 18
and 16 to the right
should restore
the balance

Fig. 6.15 Inserting an element in an AVL tree
Trees 6.29

The delete operation follows a similar approach. A left or right rotation may need to be carried out
if a node is deleted from an AVL tree.
2.Red-Black tree Red-Black tree is a self-balancing binary search tree that has an average running time
of O (logn) for insert, delete and search operations. As the name suggests, the red-black tree associates
a color attribute with each node, which can possess only two values, red or black. That means each
node in a red-black tree is either red or black colored. Apart from possessing the properties of a typical
binary search tree, a red-black tree possesses the following properties:

(a) Each node is either red or black in color.

(b) The root node is black colored.

(c) The leaf nodes are black colored. It includes the NULL children.

(d) The child nodes of all red-colored nodes are black.

(e) Each path from a given node to any of its leaf nodes contains equal number of black nodes. The

number of such black nodes is also referred as black-height (bh) of the node.

The above properties ensure that the length of the longest path from the root node to a leaf node is
less than roughly twice of the shortest path. This ensures that the balance of the tree is always kept under
check. The key advantage of a red-black tree is that its worst case running time is better than most of
the other binary search trees.

Figure 6.16 shows a red-black tree.

Fig. 6.16 Red-Black tree

The insert and delete operations on a red-black tree require small number of rotations as well as
change of colors of some of the nodes so that the tree complies with all the properties of a red-black
tree. However, the average running time of these operations is O (logn).

6.7.4 Splay Trees

The concept of splay trees is based on the assumption that when a particular element is accessed from a
binary search tree then there are high chances that the same element would be accessed again in future.
Now, if the element is placed deep in the tree then all such repetitive accesses would be inefficient. To
make the repetitive accesses of a node efficient, splay tree shifts the accessed node towards the root

6.30 Data Structures

two levels at a time. This shifting is done through splay rotations. Table 6.4 shows the various types of
splay rotations along with an illustration.

Table 6.4 Splay rotations

Splay Rotation Occurrence Ilustration

Zig When root node P is the P W)
parent of the node N being

accessed. (N) ® = D) (P)

Zigzag When node N is the right © Q)
child of parent P, which
itself is the left child of) @ o (P) (G)
grandparent G.
Or, when node N is the left © (N) » @3 @
child of parent P, which
itself is the right child of @ B
grandparent G.

Zigzig When both node N and © M)
parent P are left or right

child of grandparent G. (P) (@ IZ> 1) (P)

Splay rotations ensure that all future accesses of a node are efficient as compared to its first time access.
Let us now discuss what happens when typical tree-related operations are performed on a splay tree:

1. Insert New element is inserted at the root.

2. Search There are two possibilities:
(a) Successful search The searched node is moved to the root position.
(b) Unsuccessful search The last node accessed during the unsuccessful search operation is

moved to the root position.

3. Delete The element to be deleted is first brought to the root position. After deleting the root node,

the largest node in the left subtree is moved to the root position.

6.7.5 m-way Trees

Binary search trees are more suitable for smaller data sets where the data is static. However, for large data
sets which require dynamic access (example file storage); binary search trees are not exactly suitable.
For such cases, the nodes of the tree are required to store large amounts of data. This is achieved with
the help of m-way trees.
m-way search trees are an extension of binary search trees having the following properties:
1. Each node of the tree stores 1 to m—1 number of keys.
2. The keys are stored in a sorted manner inside the node.

Trees 6.31

3. Anode containing k values can have a maximum of k+1 subtrees.
4. The subtree pointed by pointer T; has values less than the key value of k; ;.
5. All the subtrees are m-way trees.

Figure 6.17 shows a sample m-way tree.

20 22

12 32 38

28 34 40 | 42

Fig. 6.17 Sample m-way tree

(a) B tree To ensure efficiency while searching an m-way tree it is important to control its height.
This is achieved with the help of B tree. A B tree is nothing but a height balanced m-way search tree.
A B tree of order m has the following properties:
i. Root node is either a leaf node or it contains child nodes ranging from 2 to m.
ii. All internal nodes contain a maximum of m—1 keys.
iii. Number of children of internal nodes ranges from m/2 to m.
iv. Number of keys stored in the leaf nodes ranges from (m—1)/2 to m—1. All the keys are stored in
a sorted manner.
v. All leaf nodes are at the same depth.
Figure 6.18 shows a sample B tree.

[4]5] | [11]12]13] [16]17]][20[21] |[26]28]29] [32]33]34] [40[45] | [62]68] |

Fig. 6.18 Sample B tree

An element is inserted in a B tree by first identifying the location where the new node should be
inserted. If the existing node is not full, the new element is inserted within the existing node and an
appropriate pointer is created linking it with the parent node. However, if the exiting node is full then it
is split into three parts. The middle part is accommodated with the parent node while the new element
is inserted in one of the child nodes.

Similarly, deletion of an element from a B tree is done by first removing the element from a node and
then carrying out appropriate redistributions to ensure that the tree stays true to its properties.

6.32 Data Structures

(b) B* tree B tree is a variant of B tree that is mainly used for implementing index sequential access
of records. The main difference between B tree and B tree is that in B tree data records are only stored
in the leaf nodes. The internal nodes of a B tree are only used for storing the key values. The key values
help in performing the search operation. If the target element is less than a key value then the search
proceeds towards its left pointer. Similarly, if the target element is greater than a key value then the
search proceeds towards its right pointer.

A B™ tree of order m has the following properties:

i. The internal nodes contain up to m—1 keys.

ii. The number of children of internal nodes lies between m/2 and m.
iii. The subtree between keys k1 and k2 contains values v such that k1<v<k2.
iv. All leaf nodes are at the same level.

v. All the leaf nodes are sequentially connected through a linked list.

BT tree is typically used for implementing index sequential file organization in a database. The internal
nodes are used for representing index values through which data records in the sequence set are accessed.

Figure 6.19 shows a sample B* tree.

12| |
5 16 [18 |

[2]5 —{12] }—[14]16}—{18] | —>[19]22]

Fig. 6.19 Sample B’ tree
g Check Point

1. In which situation is a zig-zig splay rotation performed?

Ans. When both node N and parent P are left or right child of grandparent G.
2. B+ tree implementation helps in performing search.
Ans. Index-sequential search.

Summary

¢ Tree is a non-linear data structure which stores the data elements in a hierarchical manner.

¢ Thetop node of a tree is marked as a root node while the remaining nodes are partitioned across
the subtrees present under the root node.

¢ A binary tree is a restricted form of a general tree that can have zero, one or two child nodes
but not more than that.

¢ Traversal is the process of visiting the various elements of a data structure. Binary tree traversal
can be performed using three methods: preorder, inorder and postorder.

¢ If N represents the parent node, L represents the left subtree and R represents the right subtree
then

Trees 6.33

L 2R R R R 2R 2K SR 3R 2R 2R 4

o preorder sequence N-L-R

0 inorder sequence L-N-R

0 postorder sequence L-R—N

A binary search tree arranges its node elements in a sorted manner. The node elements in the
left subtree are less than the parent node while the node elements in the right subtree are greater
than or equal to the parent node.

Expression tree is a binary tree whose internal nodes store operators while the leaf or terminal
nodes store the operands.

A threaded binary tree uses the empty NULL pointers of nodes to create threads to their inorder
successors. This increases the inorder traversal efficiency by preventing the use of recursive
function calls.

In an AVL tree, the height of the left subtree and the height of the right subtree differ by not more
than 1. Keeping the height of the tree in check ensures that the search efficiency is optimized.
Red-Black tree is a self-balancing binary search tree that has an average running time of O
(logn) for insert, delete and search operations. Each node in a red-black tree is colored either
red or black.

m-way search trees are a generalized form of binary search trees that are used for storing large
amounts of data. The two types of m-way trees are: B tree and B™ tree.

Key Terms

Root It is the top node in a tree.

Leaf It is the terminal node that does not have any child nodes.
Depth or Height It is the maximum level of a node in a tree.
INFO Stores the value of the tree node.

LEFT Stores a pointer to the left child.

RIGHT Stores a pointer to the right child.

Preorder Traverses the tree in N-L—R order.

Inorder Traverses the tree in L-N-R order.

Postorder Traverses the tree in L-R—N order.

Thread Stores the address of the inorder successor of a node in a threaded binary tree.
Balance factor Height of Left Subtree — Height of Right Subtree

Multiple-Choice Questions

6.1

6.2

6.3

All the child nodes of a parent node are referred as ?

(a) neighbors (b) siblings

(c) internal nodes (d) leaf nodes

The degree of a binary tree is

(a) 1 (b) 2

(c) 3 (d) n, where n is the number of nodes in the tree
The right pointer of a threaded binary tree points at

(a) NULL (b) Root

(c) inorder successor (d) postorder successor

6.34 Data Structures

6.4 The expression, (a+b)*(a—b) is stored in an expression tree. What will be its preorder sequence?

(a) (atb)*(a-b) (b) +ab-ab*
(c) ab+ab-* (d) *+ab-ab
6.5 Which of the following trees stores its elements in a sorted manner?
(a) General tree (b) Binary tree
(c) Binary search tree (d) None of the above

Review Questions

6.1 What is a tree? Explain any five key terms associated with a tree.

6.2 What is the difference between complete binary tree and perfect binary tree?

6.3 What are the two types of balanced binary trees? Explain with the help of an illustration.
6.4 What is the advantage of linked implementation of a binary tree over array implementation?
6.5 What are the different types of tree traversal methods? Explain with the help of an example.
6.6 Deduce the preorder and postorder sequences for the following binary tree:

6.7 What is a binary search tree? Explain with the help of an example.

6.8 What is an expression tree? Explain with the help of an example.

6.9 What is a splay tree? Explain the different types of splay rotations.
6.10 hat is an m-way tree? Explain the two instances of m-way trees.

Programming Exercises

6.1 Write a function in C to count the number of nodes in a binary tree.

6.2 Write a function in C to display the elements of a binary search tree in ascending order.
6.3 Write a function in C that displays all the leaf nodes of a binary tree.

6.4 Write a function in C that returns the degree of a binary tree node.

6.5 Write a C function that transforms a given binary tree into a binary search tree.

Answers to Multiple-Choice Questions

6.1 (b) 6.2 (b) 6.3 (c) 6.4 (d) 6.5 (c)

Trees 6.35

UNIT-IV

Non Linear Data Structures — Graphs

CHAPTER

Chapter 7: Graphs

GRAPHS

7.1 Introduction
7.2 Basic Concept
7.3 Graph Terminology
7.4 Graph Implementation
7.4.1 Implementing Graphs using Adjacency Matrix
7.4.2 Implementing Graphs using Path Matrix
7.4.3 Implementing Graphs using Adjacency List
7.5 Shortest Path Algorithm
7.6 Graph Traversal
7.6.1 Breadth First Search
7.6.2 Depth First Search
Summary
Key Terms

Multiple-Choice Questions

Review Questions

Programming Exercises

Answers to Multiple-Choice Questions

P HHtFE O ROtT O DOA

7.1 INTRODUCTION

Till now, we have learnt about different types of data structures, such as arrays, linked lists, trees, etc.
In this chapter, we will learn about another important data structure called graph. It is similar to the
mathematical graph structure, which comprises of a set of vertices connected with each other through
edges. Some of the typical operations performed on a graph data structure include finding possible paths
between two nodes and finding the shortest possible path.

Graph data structure finds its application in varied domains, such as computer network analysis,
travel application, chip designing, gaming and so on.

In this chapter, we will learn how a graph data structure is represented and what algorithms are used
for graph traversal. We will also learn about the shortest path algorithm that allows us to find the shortest
path between two nodes.

7.2 BASIC CONCEPT

A graph G consists of the following elements:
« Aset V of vertices or nodes where V = {v,, v,,

V3, ey Vo }
» Aset E of edges also called arcs where E = {e,,
€5, €3, «es €}

Here, G=(V, E).

Figure 7.1 shows a sample graph G.

In Fig. 7.1, e, is an edge between v, and v, vertices
while e, is an edge between v, and v; vertices. Thus, we
can generically represent an edge e as e = (u, v) where Fig.7.1 GraphG
e connects both u and v vertices.

Now, e = (u, v) means the same thing as e = (v, u). This means that the ordering of the vertices has
no significance here. Thus, we can call the graph G as undirected graph.

If we replace each edge of the Graph G with arrows, then it will become a directed graph or diagraph,
as shown in Fig. 7.2.

Fig. 7.2 Directed graph

In Fig. 7.2 graph, the set of vertices and edges are:
V(G) = {vy, v, V3, V4, Vs}
E(G) = {(vy, V2), (V25 V3), (V15 Vi), (V45 V3) 5 (V3 Vs))

7.2 Data Structures

7.3 GRAPH TERMINOLOGY

There are a number of key terms associated with the concept of graphs. Table 7.1 explains some of

these important key terms.

Table 7.1 Graph terminology

Key Terms

Description

Adjacent node

If e (u, v) represents an edge between u and v vertices then both u and v
are called adjacent to each other. That means, u is adjacent to v and v is
adjacent to u.

Predecessor node

If e (u, v) represents a directed edge from u to v then u is a predecessor
node of v.

Successor node

If e (u, v) represents a directed edge from u to v then v is a successor
node of u.

Degree Degree of a vertex is the number of edges connected to a vertex. For
example, in the graph shown in Fig. 7.1, the degree of vertex v is 3.

Indegree In a directed graph, indegree of a vertex is the number of edges ending
at the vertex.

Outdegree In a directed graph, outdegree of a vertex is the number of edges beginning
at the vertex.

Path A path is a sequence of vertices each adjacent to the next. For example,
in the graph shown in Fig. 7.2, the path between the vertices v; and v; is
V|—Vy—V3—Vs.

Cycle It is a path that starts and ends at the same vertex.

Loop It is an edge whose endpoints are same that is, ¢ = (u, u).

Weight It is a non-negative number assigned to an edge. It is also called length.

Order Order of a graph is the number of the vertices contained in the graph.

Labeled Graph It is a graph that has labeled edges.

Weighted Graph It is a graph that has weights assigned to each of its edges.

Connected Graph It is an undirected graph in which there is a path between each pair of nodes.

Strongly Connected Graph

It is a directed graph in which there is a route between each pair of nodes.

Complete Graph It is an undirected graph in which there is a direct edge between each pair
of nodes.
Tree It is a connected graph with no cycles.

ﬁote There are no standards defined related to the use of graph terminology. Thus, you may
find the same concept being referred with different names at different places. For instance,
a graph edge could also be referred as an arc or a link.

Graphs 7.3

7.4 GRAPH IMPLEMENTATION

Graphs are nothing but a collection of nodes
and edges. Thus, while representing graphs in
memory the only focus is on capturing details
related to the different vertices and edges.
Graphs can be implemented using the following
methods:

1. Adjacency matrix

2. Path matrix

3. Adjacency list

7.4.1 Implementing Graphs

Using Adjacency Matrix

Consider a graph G = (V, E) having N nodes.
The adjacency matrix of graph G is defined as
an N x N matrix A, where:

1. Ai’ i 1, if there is an edge from vertex v; to Vi Aij
2. and A; ;= 0, if there is no edge from vertex v; to v;
Let us try and understand the concept of adjacency matrix

Fig. 7.3.

@ Check Point

1. In a weighted directed graph, what does the
term weighted and directed signify?

Ans. The term weighted signifies that all the
edges of the graph are assigned an integer number
called weight. The term directed signifies that
each edge of the graph is a pointed arrow that
points from one vertex to the other.

2. What is indegree?

Ans. Indegree of a vertex is the number of edges
incident on the vertex.

SO | (||
S|Io|OC(O|~|N
S|l |O|—= O |Ww
SO |||~
SO~ OO |

1
2
with the help of an example: Consider the graph shown in 3
4
5

The adjacency matrix of the above graph will be

Here, 0s represent that there is no directed edge between
the corresponding vertices while 1s represent the presence of a
directed edge.

Example 7.1 Write a program in C to represent a graph using
adjacency matrix.

Program 7.1 represents the directed graph shown in Fig. 7.3 with
the help of adjacency matrix.

Program 7.1 C program to represent adjacency matrix Fig.7.3 Graph

#include <stdio.h>
#include <conio.h>

void main ()

{

int A[5][5];
int 1,3;
clrscr();

7.4 Data Structures

for (1=0;1i<5;i++)
for (3j=0;j<5; 3++)
A[i][j]=0; /*Initializing the array A*/

/*Creating adjacency matrix*/

A[0][0]=1;

1. Since, we have already initialized all
A[0][1]=1 '\ the elements of the adjacency matrix
A[0] [3]=1; to 0, we do not need to explicitly
A[l][2]=1; write the assignment statements for
A[2][4]=1; non-edges.

A[3][2]=1;

/*Printing Adjacency Matrix*/
printf (“Adjacency Matrix:”);
for (i=0;1i<5;1i++)

{

printf (“\n”) ;

for (3j=0;j<5; j++)
printf (“&d “,A[i]1[]J]);
}

getch () ;
}
Output

Adjacency Matrix:
1010

O O O O+
O O O O
o = O
O O O O
O O+ O

Program analysis

Key Statement Purpose

int A[5][S]; Declares a two-dimensional array for storing the
adjacency matrix

A[i][j]=0; Initializes the array A before storing the adjacency
matrix values

Advantages and Disadvantages

The advantage of adjacency matrix representation of a graph is that it is simple to implement. However
it also has certain disadvantages, such as the following:

1. It requires O (n?) memory space even if the adjacency matrix is sparse.

2. It proves to be an inefficient representation for graphs that have large number of vertices.

Graphs 7.5

7.4.2 Implementing Graphs Using Path Matrix

Consider a digraph G = (V, E) having N nodes. The path matrix of graph G is defined as an N X N
matrix P, where

L. P =1, if there is a path from vertex v; to Vis and

2. P; ;=0, if there is no path from vertex v; to v;.

Now, the path matrix P can be deduced using the adjacency matrix of G, as depicted below:

Py=A+A2+A3+. . . +AN

Here, A? is the square of the adjacency matrix A, A is the cube of A, and so on. All the non-zero
entries resulting from the addition operation above are replaced by 1 to arrive at the path matrix.

This method of deriving the path matrix by computing powers of adjacency matrix is not very efficient,
as it requires performing a number of matrix multiplication operations. Warshall has suggested a more
simplified method of deriving the path matrix from the adjacency matrix. Warshall’s method determines
the presence of a path between v; and v; by

1. identifying a direct path from v; to v;, and
2. identifying an indirect path from v; and v; that is, a path from v; to v, and v, to v;.
That is, P, ; = P; ; OR (P; AND P, ;)
Here, OR represents the logical OR operation and AND represents the logical AND operation.

Example 7.2 Write the Warshall’s algorithm for deriving the path matrix of a digraph G.

path matrix(Adjacency Matrix A[], N)
Step 1: Start

Step 2: Set P[] = A[]

Step 3: Set 1 = 3 =k =1

Step 4: Repeat Steps 5-10 while k <=N

Step 5: Repeat Steps 6-9 while i <=N

Step 6: Repeat Steps 7-8 while j <=N

Step 7: P[i,J] = P[i,j] OR (P[i,k] AND P[k,J])
Step 8: jJ = J + 1

Step 9: i =1 + 1

Step 10: k = k + 1
Step 11: Display path matrix P[]
Step 12: Stop

Example 7.3 Modify the program shown in Example 7.1 and apply Warshall’s algorithm to derive
the path matrix of a diagraph.

Program 7.2 uses Warshall’s algorithm to derive the path matrix of the digraph shown in Fig. 7.3.
Program 7.2 Deriving path matrix using Warshall’s algorithm
#include <stdio.h>

#include <conio.h>

int AND(int, dint); /* Function prototype for performing logical AND
operation*/
int OR(int, int); /* Function prototype for performing logical OR operation*/

7.6 Data Structures

void main ()

{

int A[5][5], P[5]1[5]1;

int 1i,3,k;
clrscr();

for (i=0;1<5; i++)
for (3j=0;3<5;j++)

A[i]1[]1=0;
/*Creating
A[0][0]=1;
A[0][1]1=1;
A[0][3]=1;
A[l][2]=1;
A[2][4]=1;
A[3][2]=1;
/*Printing

printf (“Adjacency Matrix:

adjacency matrix*/

adjacency matrix*/

for (i=0;1<5; i++)

{

printf (“\n”) ;
for (3j=0;3<5;j++)

printf (“%d
}

“yA[L][3])

for (1i=0;1i<5;i++)
for (3j=0;j<5; j++)
P[i][j]=A[1i][3];

/*Creating path matrix*/
for (k=0; k<5; k++)
for (1=0;i<5;i++)
for (3J=0;3<5; j++)

P[i][j]1=OR(P[i] [j],AND(P[i] [k],P[k][31))

/*Printing path matrix*/

printf ("\n\nPath Matrix:

for (i=0;1<5; i++)

{

printf (“\n”) ;
for (3j=0;3<5;j++)

printf (“%d
}

getch () ;

Y, PLi1[31)

\n”) ;

Applying Warshall s method. I

\n”) ;

Graphs 1.7

int AND(int x, int y)
{
return (x*y) ; Since the operands as:sociuted ‘with the
\ AND and OR operations are integers,
} we cannot apply the relational operators

of C to obtain the desired result.

int OR(int x, int y)
{

if (x==0 && y==0)
return (0) ;

else

return (1) ;

}
Output

Adjacency Matrix:

O O O o
O O O o
o P O O
O O O o
O O OO

Path Matrix:

oo oo+
oo oo
o O K
oo oo
SR

Program analysis

Key Statement Purpose

int A[5][5], P[S][5]; Declares two-dimensional arrays for storing adjacency
and path matrices

P][jI=Alljl; Copies the adjacency matrix values into the path matrix
array
P[i][jI=OR(P[i][j], AND(P[i] [Kk],P[K][]j])); Applies the Warshall’s method to generate the path

matrix values

printf(“%d “,P[i][j]); Prints the path matrix values

7.4.3 Implementing Graphs Using Adjacency List

Adjacency list is a linked representation of a graph. It consists of a list of graph nodes with each node
itself consisting of a linked list of its neighboring nodes. Figure 7.4 shows the adjacency list of the
directed graph shown in Fig. 7.3.

7.8 Data Structures

(

NULL

; > 1 > 2
; 3 > NULL
; > 5 > NULL
T > 3 | NULL
? > NULL

Fig. 7.4 Adjacency list

The adjacency list shown above contains five nodes with each node pointing towards its successor

nodes.

Example 7.4 Write a program in C to represent a graph using adjacency list.

Program 7.3 represents a directed graph using adjacency list.

Program 7.3 Representing graph using adjacency list

#include<stdio.h>
#include<conio.h>
#include<stdlib.h>

struct vertex

{

struct vertex *edge[10];
int id;
}node[10] ;

void display (int) ;

void main ()
{
int i,3,N;
char ch;
clrscr();

i=j=N=0;

printf (“Enter number of graph vertices:

scanf (“%d”, &N) ;
for (i=0; i<N; i++)
{

node[i].id=1i;

flush (stdin) ;

\\),
’

Graphs 7.9

for (3=0; j<N;j++)

{

flush (stdin) ;

printf (“Edge from %d to %d? (y/n): “,i+1,3j+1);
scanf (“%c”, &ch) ;

if(ch=="y’)
node[i] .edge[j]=&node[]] ;
else

node[i] .edge[j]=NULL;
}
}

display (N) ;
getch () ;

void display(int num)

{

int 1i,3;

printf (“\n”) ;

for (1=0; i<num; i++)

{

printf (“Edges of node[%d] are: “,i+1);
for (j=0; j<num; j++)

{

if (node[i] .edge[]j]==NULL)

continue;

printf (* (%$d-%d) “,i+1,node[i].edge[j]->1d+1) ;
}

printf (“\n”) ;

}

}

Output

Enter number of graph vertices: 3
Edge from 1 to 1? (y/n): n

Edge from 1 to 2? (y/n): y
Edge from 1 to 3?2 (y/n): y
Edge from 2 to 1? (y/n): y
Edge from 2 to 2? (y/n): n
Edge from 2 to 3? (y/n): y
Edge from 3 to 1? (y/n): n
Edge from 3 to 2? (y/n): y
Edge from 3 to 3?2 (y/n): y

Edges of node[l] are: (1-2) (1-3)
Edges of node[2] are: (2-1) (2-3)
Edges of node[3] are: (3-2) (3-3)

7.10 Data Structures

Program analysis

Key Statement Purpose

struct vertex Declares a structure to represent a graph node

{

struct vertex *edge[10];

int id;

inode[10];

void display(int); Declares the function prototype for displaying the graph

represented by adjacency list

if(ch=="y’) Stores information related to edges that is whether or
nodeli].edge[j]=&node[j]; not an edge is present between two vertices of the graph
else

node[i].edge[j|=NULL;

ﬁote Adjacency matrix and path matrix are both examples of sequential representation of
graphs. Adjacency list is an example of linked representation of graphs.

7.5 SHORTEST PATH ALGORITHM)
Check Point

One of the most common problems associated with graphs
is to find the shortest path from one node to the other. It
finds its relevance in a number of real-life applications.
For example, consider a scenario where a freight carrier

1. Write the Warshall’s relation for
computing a path matrix?
Ans. P[i,j] = P[i,j] OR (P[i,k] AND

departing from Delhi is required to drop consignments P[kj])
2. The end of adjacency list of a graph

node is signified by
Ans. NULL pointer

at Lucknow, Jaipur, Ahemadabad, Pune, and Hyderabad
airports. In this situation, the route taken by the carrier
is determined by assessing the distance between each
of these cities. The final route undertaken should be the
shortest path that covers all these cities. We can relate this scenario with a graph data structure where
each city represents a graph node while the distance between the cities represents the weight of the edges.

Consider the weighted digraph shown in Fig. 7.5.

The weight matrix of the above graph will be

el =R K =R Rl I *N
S|l |

SN | O I | O | W

S|o || |W|N

SO | |[([O|0|m

Fig. 7.5 Weighted digraph

Graphs 7.1

Here, W; ; represents the weight of the edge from node v; to v;. The value 0 signifies that there is
no direct edge between the corresponding nodes. Now, a modlﬁcatlon of the Warshall’s algorithm can
be applied to the weight matrix to derive the shortest path matrix SP that represents the weight of the
shortest possible path between any two nodes of a graph.

It begins with replacing all 0°s in the weight matrix with co, as shown below.

SP, ; 1 2 3 4 5
1 8 3 8 4 8
2 8 8 7 8 8
3 4 8 8 8 5
4 8 8 2 8 8
5 8 8 8 1 8

Now, the following relation is applied to arrive at the shortest path matrix:
SP; ;= Minimum of (SP; ;, SP; , + SPy ;)
The shortest path matrix obtained after applymg the above relation for each graph node is

SP, ; 1 2 3 4 5
1 8 3 6 11
2 11 14 7 13 12
3 8 5
4 2 7
5 7 10 3 8

Example 7.5 Write the modified Warshall’s algorithm for deriving the shortest path matrix of a
digraph G.

shortest path matrix(Path Matrix P[], N)
Step 1: Start

Step 2: Set 1 = j =1
Step 3: Repeat Steps 4-9 while i<=N
Step 4: Repeat Steps 5-8 while j<=N
Step 5: if P[1,3]=0 goto Step 6 else goto Step 7
Step 6: Set SP[i,jl= 8
Step 7: Set SP[i,jl=P[1i,7]]
8

Step 8: jJ = j + 1

Step 9: i =1 + 1

Step 10: Set 1 = j = k = 1

Step 11: Repeat Steps 12-17 while k<=N

Step 12: Repeat Steps 13-16 while i <=N

Step 13: Repeat Steps 14-15 while j <=N

Step 14: SP[i,j] = MINIMUM(SP[i,3], SP[i,k]+SP[k,7]

1
Step 15: j = J + 1
Step 16: i = 1 + 1
Step 17: k = k + 1

7.12 Data Structures

Step 18: Display shortest path matrix SP[]
Step 19: Stop

Example 7.6 Write a program in C to deduce the shortest path matrix of a weighted digraph G.

Program 7.4 uses modified Warshall’s algorithm to derive the shortest path matrix of the weighted
digraph shown in Fig. 7.5.

Program 7.4 Shortest path matrix of the weighted diagraph using modified Warshall’s algorithm

#include <stdio.h>
#include <conio.h>

int MIN(int,

two integers*/

void main ()

{

/*Function prototype for computing the minimum among

int P[5][51,

int 1i,3,k;
clrscr();

for (i=0;1i<5;i++)
for (3=0;3<5;j++)

P[1][3]=0;
P[0] [0]=8;
P[O] [1]=3;
P[0] [3]=4;
P[1][2]=7;
P[2] [0]=4;
P[2] [4]=5;
P[3][2]=2;
P[4] [3]=1;

printf (YPath Matrix:
for (i=0;1i<5;i++)

{

printf (“\n”) ;
for (3=0;3<5;j++)
printf (“&d\t”,P[1i][7]);

}

for (1=0;1<5;1++)
for (3j=0;j<5; j++)
if(P[1][J]1==0)
SP[1]1[31=999;

else

SP[i] [J1=P[i][]];

Graphs 7.13

for (k=0; k<5; k++)
for (i=0;1<5; i++)
for (3j=0;3<5;j++)

SP[i] [J]=MIN(SP[i][]j],SP[i] [k]+SP[k][]]);

printf ("\n\nShortest Path Matrix:

for (1=0;1<5;1++)

{

printf (“\n”) ;

for (3=0;3<5;j++)

printf (“%d\t”,SP[i] [j]) ;
}

getch () ;

int MIN (int x, int y)
{

\n”) ;

1f (x<=y) The reason for not including this code

return (x) within the main program is to ensure
r——— odularity and make the program less

else complex.
return (y) ;

}
Output

Path Matrix:

O O B O
O O O O W
O N O JOo
= O O O
O O U O O

Shortest Path Matrix:

8 3 6 4 11
11 14 7 13 12
4 7 8 6 5
6 9 2 8 7
7 10 3 1 8

Program analysis

Key Statement

Purpose

int P[5][5], SP[5][5];

Declares two-dimensional arrays for storing path and
shortest path matrices

SP[i][jl=MIN(SP[i][jI, SP[i] [k]+SP[K][j]);

Applies the modified Warshall’s algorithm for
generating the shortest path matrix values

printf(“%d\t”,SP[i][j1);

Prints the shortest path matrix values

7.14 Data Structures

7.6 GRAPH TRAVERSAL

One of the common tasks associated with graphs is to traverse or visit the graph nodes and edges in a
systematic manner. There are two methods of traversing a graph:
1. Breadth First Search (BFS)
2. Depth First Search (DFS)
Both these methods consider the graph nodes to be in one of the following states at any given point
of time:
1. Ready state
2. Waiting state
3. Processed state
The state of a node keeps on changing as the graph traversal progresses. Once the state of a node
becomes processed, it is considered as traversed or visited.

7.6.1 Breadth First Search

The BFS method begins with analyzing the starting node and then progresses by analysing its adjacent
or neighbouring nodes. Once all the neighbouring nodes of the starting node are analyzed, the algorithm
starts analyzing the neighboring nodes of each of the analyzed neighboring nodes. This method of graph
traversal requires frequent backtracking to the already analyzed nodes. As a result, a data structure is
required for storing information related to the neighboring nodes. The BFS method uses the queue data
structure for storing the nodes data.

Consider the graph shown in Fig. 7.6.

Fig. 7.6 Graph traversal

The BFS traversal sequence for the above graph will be: v, vy, V3, V4, Vs, Vg, V4, Vg. Another BFS
traversal sequence can be: vy, Vs, Vy, Vg, Vs, V4, V7, Vg.

Example 7.7 Write an algorithm for the BFS graph traversal method.

BFS(adj[], status[], queue[], N)
Step 1: Start

Step 2: Set status[] =1

Step 3: Push(queue, vl)

Graphs 7.15

Step 4: Set status[vl]=2

Step 5: Repeat Step 6-11 while queue[] is not empty

Step 6: V = Pop(queue) -w— Here, the pop operation signifies the
Step 7: status[V]=3 processing of a graph node.
Step 8: Repeat Step 9-11 while adj (V) 1is not empty

Step 9: If adj(V) = 1 goto step 10 else goto step 8
Step 10: Push (queue, adj (V))

Step 11: Set adjlv]=2

Step 12: Stop

Note Pop means removing an element from the queue while push means inserting an element
into the queue.

7.6.2 Depth First Search

Unlike the BFS traversal method, which visits the graph nodes level by level, the DFS method visits
the graph nodes along the different paths. It begins analyzing the nodes from the start to the end node
and then proceeds along the next path from the start node. This process is repeated until all the graph
nodes are visited.

The DFS method also requires frequent backtracking to the already analyzed nodes. It uses the stack
data structure for storing information related to the previous nodes.

Let us again consider the graph shown in Fig. 7.6. The DFS traversal sequence for this graph will be:
Vi, Va, V4, Vg, Vs, Vo, V3, Ve. Another DFS traversal sequence can be: v, v3, Vg, V4, Vg, Vo, Vs, V4.

Example 7.8 Write an algorithm for the DFS graph traversal method.

DFS(adj[], status[], stack[], N)

Step 1: Start .

Step 2: Set status[] =1 @ CheCk Point

Step 3: Push(stack, vl) .

Step 4: Set status[vl]=2 1. What is BFS?

Step 5: Repeat Step 6-11 while stack[] Ans. It is the method of traversing
is not empty a graph in such a manner that all

Step 6: V = Pop (stack) the vertices at a particular level are

Step 7: status[V]=3 visited first before proceeding onto

Step 8: Repeat Step 9-11\while adj (V) is the next level.

2. What is DFS?

Ans. It is the method of traversing a
graph in such a manner that all the
vertices in a given path (starting from
the first node) are visited first before
proceeding onto the next path.

not empty
Step 9: If adj(V) = 1 goto\step 10 else
goto step 8
Step 10: Push(stack, adj(V))
Step 11: Set adjlv]=2
Step 12: Stop

Here, the pop operation signifies the
processing of a graph node.

7.16 Data Structures

Summary

A graph G(V, E) consists of the following elements:

o AsetV of vertices or nodes where V.= {v,, v,, v3, ..., v, }

o AsetE of edges also called arcs where E = {e|, e,, €3,, €}

A graph can be implemented in three ways: adjacency matrix, path matrix, and adjacency list.
Adjacency matrix and path matrix are the sequential methods of representing a graph. Adjacency
matrix signifies whether there is an edge between any two vertices of the graph. Path matrix
signifies whether there is a path between any two vertices of the graph.

Adjacency list is a linked representation of a graph. It consists of a list of graph nodes with each
node itself consisting of a linked list of its neighboring nodes.

Breadth First Search or BFS is the method of traversing a graph in such a manner that all the
vertices at a particular level are visited first before proceeding onto the next level.

Depth First Search or DFS is the method of traversing a graph in such a manner that all the
vertices in a given path (starting from the first node) are visited first before proceeding onto the
next path.

Key Terms

Weighted graph It signifies that all the edges of the graph are assigned an integer number called
weight.

Directed It signifies that each edge of the graph is a pointed arrow that points from one vertex
to the other.

Adjacency matrix It is an N X N matrix containing 1s for all the direct edges of the graph and
containing Os for all the non-edges.

Path matrix It is an N X N matrix containing 1s for all the existing paths in a graph and containing
0Os otherwise.

Adjacency list It a list of graph nodes with each node itself consisting of a linked list of its
neighboring nodes.

Multiple-Choice Questions

7.1

7.2

Which of the following is not true for graph?

(a) Itis a set of vertices and edges.

(b) All of its vertices are reachable from any other vertex
(c) It can be represented with the help of an N X N matrix.
(d) All of the above are true

As per Warshall’s method, which of the following is the correct relation for computing the path
matrix?

(@) P;;=P;;OR(P; ,ANDP,)

(b) P;;=P;;AND(P; (ORP,)

() P, ;=P c(AND (P, ;ORP,)

(d) None of the above

Graphs 7.17

7.3

7.4

7.5

Review Questions

7.1
7.2
7.3
7.4
7.5
7.6

7.7

7.8
7.9

As per modified Warshall’s algorithm, which of the following is the correct relation for computing
the shortest path between two vertices in a graph?

(a) SP; j=Minimum of (SP; ;, SP; \ + SPy ;)

(b) SP; ;=Maximum of (SP; ;, SP; | + SPy ;)

(c) SP; ;=Minimum of (SP; i, SP,_; + SP; ;)

(d) None of the above

The number of edges incident on a vertex is referred as

(a) Degree
(b) Indegree
(c) Order

(d) Outdegree

Identify the BFS path for the following graph:
(a) 1-2-3-4-6-5

(b) 1-4-3-2-6-5

(¢) 1-2-34-5-6

(d) None of the above

What is a graph? Explain with an example.

List and explain any five key terms associated with graphs.

What are the different methods of representing a graph?

What is an adjacency matrix? How can you derive a path matrix from an adjacency matrix?
Explain adjacency list implementation of a graph with the help of an example.

What is the significance of computing the shortest path in a graph? Explain with the help of an
example.

Write the modified Warshall’s algorithm for computing the shortest path between two nodes of
a graph.

What is BFS? Explain with the help of an example.

What is DFS? Explain with the help of an example.

Programming Exercises

7.1
7.2

7.3
7.4

Write a C function to deduce the adjacency matrix for a given directed graph G.

Write a C function that takes as input the adjacency matrix and applies Warshall’s algorithm to
generate the corresponding path matrix.

Write a C program to implement a 3-node directed graph using adjacency list.

Write a C function that takes as input the path matrix and applies the shortest path algorithm to
generate the corresponding shortest path matrix.

Answers to Multiple-Choice Questions

7.1 (b) 72 (a) 73 (a) 7.4 (b) 7.5 (c)

7.18 Data Structures

UNIT-V

Searching, Sorting and
Hashing Techniques

CHAPTER

Chapter 8: Sorting and Searching

SORTING AND SEARCHING

8.1 Introduction

8.2 Sorting Techniques
8.2.1 Selection Sort
8.2.2 Insertion Sort
8.2.3 Bubble Sort

8.2.4 Quick Sort
8.2.5 Merge Sort
8.2.6 Bucket Sort

8.3 Searching Operations
8.3.1 Linear Search
8.3.2 Binary Search
8.3.3 Hashing

Summary

Key Terms

Multiple-Choice Questions

Review Questions

Programming Exercises

Answers to Multiple-Choice Questions

P HHtFE O ROtT O DOA

8.1 INTRODUCTION

Sorting and searching are two of the most common operations performed by computers all around the
world. The sorting operation arranges the numerical and alphabetical data present in a list, in a specific
order or sequence. Searching, on the other hand, locates a specific element across a given list of elements.
At times, a list may require sorting before the search operation can be performed on it.

A telephone directory is one such example where both sorting and searching techniques are applied.
The names of telephone subscribers are first alphabetically sorted and then posted on to the telephone
directory. If one needs to search the telephone number of a particular subscriber in the telephone directory
then it can be easily achieved by looking up the directory on the basis of the subscriber name. Now,
consider the same scenario in the absence of a sorted list of subscribers. It would become very tough and
painstaking to search the subscriber name in a directory where names are posted in a random fashion
without any definite order.

There are a number of sorting techniques that can be employed to sort a given list of data elements.
The suitability of a specific technique in a specific situation depends on a number of factors, such as

1. size of the data structure,
2. algorithm efficiency, and
3. programmer’s knowledge of the technique.

While all the sorting methods produce the same result, that is a list of sorted elements, it is one or
more of the above factors that play an important role in choosing a specific sorting technique in a given
situation.

In this chapter, we will discuss the various searching and sorting methods.

8.2 SORTING TECHNIQUES

Consider a list L containing n elements, as shown below.

L.,L, Ls ..., L,

Now, there are n! ways in which the elements can be arranged within the list. We can apply a sorting
technique to the list L to arrange the elements in either ascending or descending order.

If we sort the list in ascending order, then

L, <L,<L;..<L,

Alternatively, if we arrange the list in descending order, then

L,zL,=2L;...2L,

Example 8.1 Consider an array A containing five elements, as shown below.

22 7 & —1 5

A0l Al Al A[B] A4

What would be the resultant array if it is sorted in
ascending order
descending order

Solution Array A sorted in ascending order.

8.2 Data Structures

-1 3 5 22 i

A0l Al A2l A8l Al4]

Array A sorted in descending order.

77 22 5 3 —1

A0l A1l A2l A[B] A4]

As already explained, there are a number of methods
that can be used to sort a given list of elements. We will @ :
discuss the following sorting methods in the forthcoming . > Mind Jog

sections: What is the internal sorting?

1. Selection sort All sorting techniques which require
2. Insertion sort the data set to be present in the main
3. Bubble sort memory are referred as internal sorting
4. Quick sort techniques.
5. Merge sort
6. Bucket sort

Note The application of a sorting technique is not restricted to an array or a list alone. In fact,

we may apply sorting to other data structures such as structures or linked lists provided
there is a subelement in the data structure based on which sorting can be performed.

8.2.1 Selection Sort

Selection sort is one of the most basic sorting techniques. It works on the principle of identifying the
smallest element in the list and moving it to the beginning of the list. This process is repeated until all
the elements in the list are sorted.

Let us consider an example where a list L contains five integers stored in a random fashion, as shown
in Fig. 8.1.

[18] 3] 2[3]21]
List L

Fig. 8.1 Listofintegers

Now, if the list L is sorted using selection sort technique then first of all the first element in the list,
i.e., 18 will be selected and compared with all the remaining elements in the list. The element which is
found to be the lowest amongst the remaining set of elements will be swapped with the first element.
Then, the second element will be selected and compared with the remaining elements in the list. This
process is repeated until all the elements are rearranged in a sorted manner. Table 8.1 illustrates the
sorting of list L in ascending order using selection sort.

Sorting and Searching 8.3

Table 8.1 Selection sort

Pass Comparison Resultant Array
1 |18| |(2)] 33 | 21] |2 | 3 [18]33]21]
2 [2 [®]1 [3]21] [2 [3]18]33] 21]
()
3 2 | 3 |@]33]21] |2 | 3 [18]33]21]
——
4 2|3]1]33]|@)] |2 | 3 [18]21]33]
——
—~ —> denotes the currently selected element
—» denotes the smallest element identified
in the current pass

A single iteration of the selection sorting technique that brings the smallest element at the beginning
of the list is called a pass. As we can see in the above table, four passes were required to sort a list of
five elements. Hence, we can say that selection sort requires n—1 passes to sort an array of » elements.

Example 8.2 Write an algorithm to perform selection sort on a given array of integers.

selection(arr[], size)
Step 1: Start
Step 2: Set 1 = 0, loc = 0 and temp = 0
Step 3: Repeat Steps 4-6 while i < size
Step 4: Set loc = Min(arr, i, size)
Step 5: Swap the elements stored at arr[i] and a[loc] by performing the
following steps

I Set temp = a[loc]

IT Set al[loc] = alil]

ITIT Set al[i]=temp
Step 6: Set 1 = 1 +1
Step 8: Stop

Min (array[], LB, UB)
Step 1: Start

Step 2: Set m = LB

Step 3: Repeat Steps 4-6 while IB < U B

Step 4: if array[LB] < array[m] goto Step 5 else goto Step 6
Step 5: Set m = LB

Step 6: Set 1B = LB +1

Step 7: Return m

Step 8: Stop

Example 8.3 Write a C program to perform selection sort on an array of N elements.

Program 8.1 implements selection sorting technique in C. It uses the algorithm depicted in Example 8.2.

8.4 Data Structures

Program 8.1 Selection sort

/*Program for performing selection sort*/
#include <stdio.h>

#include <conio.h>

#include <stdlib.h>

void selection (int*, int); /*Function prototype for performing selection
sort*/
int Min(int*,int,int); /*Function prototype for finding minimum element in
the array*/
Function prototypes are declared

globally to allow one function call

void main () the other:

{

int *arr;
int i, N;
clrscr();

printf (“Enter the number of elements in the array:\n”);
scanf (“%d”, &N) ;

arr = (int*) malloc (sizeof (int)); /*Dynamic allocation of memory for the
array*/
printf (“Enter the %d elements to sort:\n”,N); The malloc function allocates only

o g g that much amount of memory space
=0;i<N;i++ -
for (i=0;i<N;i)) as is required for holding the array
scanf (“%d”, &arr[i]); /*Reading array elements*/ elements.

selection (arr,N); /*Calling selection function*/

printf ("\nThe sorted elements are:\n”);
for (1=0;i<N;i++)
printf (“%d\n”,arr[i]); /*Printing sorted array*/

getch () ;

void selection (int *a, int size)
{
int i=0,loc=0, temp=0;
for (i=0;i<size; i++)
{
loc=Min(a,i,size); /*Calling Min function*/
/*Swapping array elements*/
temp=a[loc];
a[locl=al[i];
a[i]=temp;

}

Sorting and Searching 8.5

int Min (int *array, int LB, int UB)
{

int m=LB;

/*Finding location of smallest element*/
while (LB<UB)

{

if (array[LB]<array[m])

m=LB;

ILIBAFF 2

}

return (m) ;

}
Output

Enter the number of elements in the array:
5

Enter the 5 elements to sort:

18

3

2

33

21

The sorted elements are:
2
3
18
21
33

Program analysis

Key Statement Purpose
loc=Min(a,i,size); Calls the Min() function to identify the location of the
smallest element
temp=a[loc]; Swaps the array elements to move the smaller elements
a[loc]=ali]; towards the start of the array
ali|]=temp;

Efficiency of Selection Sort Assume that an array containing n elements is sorted using selection
sort technique.
Now, the number of comparisons made during first pass = n—1
Number of comparisons made during second pass = n—2
Number of comparisons made during last pass = 1
So, total number of comparisons = (n—1) + (n-2) + + 1
=n*((n-1)/2
=0(n?)
Thus, efficiency of selection sort = O(n?)

8.6 Data Structures

Advantages and Disadvantages Some of the key advantages of selection sorting technique are:

1. It is one of the simplest of sorting techniques.

2. It is easy to understand and implement.

3. It performs well in case of smaller lists.

4. Tt does not require additional memory space to perform sorting.

The disadvantages associated with selection sort that prevent the programmers from using it often

are as follows:

1. The efficiency of O(n?) is not well suited for large sized lists.

2. It does not leverage the presence of any existing sort pattern in the list.

Note Selection sort is an internal sorting technique and requires the entire data structure to
be present in the main memory while performing sorting. As a result, it is not well suited
for sorting large sized data structures.

8.2.2 Insertion Sort

As the name suggests, insertion sort method sorts a
list of elements by inserting each successive element @ Check Point

in the previously sorted sublist. Such insertion of

elements requires the other elements to be shuffled 1. How many passes are required by the
as required. selection sort technique to sort an array
To understand the insertion sorting method, of N elements?

consider a scenario where an array A containing Ans. N-1
n elements needs to be sorted. Now, each pass of 2- Whatisthe mostsignificant disadvantage
the insertion sorting method will insert the element ©f selection sort? L
A[i] into its appropriate position in the previously Ans. One of the most critical disadvantages
sorted subarray, i.e., A[1], A[2], ...
following list describes the tasks performed in each
of the passes:

Pass 1 A[2] is compared with A[1] and inserted
either before or after A[1]. This makes A[1], A[2] a sorted sub array.

Pass 2 A[3] is compared with both A[1] and A[2] and inserted at an appropriate place. This makes
A[1], A[2], A[3] a sorted sub array.

Pass n—1 A[n] is compared with each element in the sub array A[1], A[2], A[3], ... A[n-1] and inserted
at an appropriate position. This eventually makes the entire array A sorted.

Let us revisit the list L containing five integers stored in a random fashion, as shown in Fig. 8.1.

Now, if the list L is sorted using insertion sort technique then first of all the second element in the
list, i.e., 3 will be selected and compared with the first element, i.c., 18. Since 3 is less than 18, the two
elements will be interchanged. This process is repeated until all the elements are rearranged in a sorted
manner. Table 8.2 illustrates the sorting of list L in ascending order using insertion sort technique.

Ali-1]. The of selection sort is that its efficiency of O(n?)
’ ' does not make it suitable for large sized lists.

Sorting and Searching 8.7

Table 8.2 Insertion sort

Pass Comparison Resultant Array

! 18 |(B3)] 2]33] 21] | 3|1] 2]21]33
——

2 [18] 3 [(@D]33] 21] [2 [3]18]33] 2
S —

3 | 2| 3 [18]G)] 21| |2 | 3]18]33] 21
| —

4 | 2| 3 [18]33]@D] | 3] 2[18]21]33
S —

——"> denotes the previously sorted sub array
Q —» denotes the current selection

As we can see in the above illustration, four passes were required to sort a list of five elements. Hence,

we can say that insertion sort requires n—1 passes to sort an array of »n elements.

Example 8.4 Write an algorithm to perform insertion sort on a given array of integers.

insertion(arr[], size)

Step
Step
Step
Step
Step
Step
Step
Step
Step
Step
Step
Step
Step

Example 8.5 Write a C program to perform insertion sort on an array of N elements.

Program 8.2 implements insertion sorting technique in C. It uses the algorithm depicted in
Example 8.4.

1:

O J oy U bW

9:

10:
11:
12:
13:

Start

Set i =1, j =0 and temp = 0
Repeat Steps 4-12 while i < size
Set temp = arr[i]

Set j = i-1
Repeat Steps 7-10 while j>=0

if arr[j] > temp goto Step 8 else goto Step 9
Set arr[j+1] = arr[j]
Branch out and go to Step 11

Set j = j-1

Set arr[j+1] = temp

Set 1 =1 + 1

Stop

Program 8.2 Insertion sort

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>

void insertion (int [], int); /*Function prototype for performing insertion
sort*/

8.8 Data Structures

void main ()
{
int *arr;
int i, N;
clrscr();

printf (“Enter the number of elements in the array:\n”);
scanf (“%d”, &N) ;

arr = (int*) malloc (sizeof (int)); /*Dynamic allocation of memory for the
array*/

printf (“Enter the %d elements to sort:\n”,N);
for (1i=0;1i<N;i++)
scanf (“%d”, &arr[i]); /*Reading array elements*/

insertion (arr,N); /*Calling insertion function*/

printf ("\nThe sorted elements are:\n”);
for (1=0;i<N; i++)
printf (“%d\n”,arr[i]); /*Printing sorted array*/

getch () ;

void insertion (int array[], int size)
{
int 1i,j,temp;
for (i=1;i<size;i++)
{
temp=array[i]; /*Selecting the next element to be inserted*/
/*Inserting the element in previously sorted sub array*/
for (j=i-1;3>=0;j-)
if (array[]j]>temp)
array[jt+l]=array[j]’

else
The break statement takes the control
break; . .
\ out of the looping construct as soon
array[jt+l]=temp; as the point of insertion is ascertained
} in the sorted sub array.

}
Output

Enter the number of elements in the array:
5

Enter the 5 elements to sort:

18

3

2

33

Sorting and Searching 8.9

21

The sorted elements are:
2
3
18
21
33

Program analysis

Key Statement Purpose
temp=arrayli]; Stores the next element to be inserted, in the temp
variable
for (j=i-1;j>=0;j—) Identifies the point of insertion for the element in the
if (array| j |>temp) previously sorted sub array
array| j+1]=array|j];
else
break;
array [j+1]=temp; Inserts the element at the identified location

Efficiency of Insertion Sort Assume that an array containing n elements is sorted using insertion
sort technique.

The minimum number of elements that must be scanned = n—1

For each of the elements the maximum number of shifts possible = n—1

Thus, efficiency of insertion sort = O(n?)

Advantages and Disadvantages Some of the key advantages of insertion sorting technique are:

1. It is one of the simplest sorting techniques that is easy to implement.

2. It performs well in case of smaller lists.

3. TItleverages the presence of any existing sort pattern in the list, thus resulting in better efficiency.
The disadvantages associated with insertion sorting technique are as follows.

1. The efficiency of O(n?) is not well suited for large sized lists.

2. It requires large number of elements to be shifted.

$

Tip Insertion sorting technique should not be used with lists containing lengthy records as
the worst case of O(n?) may result in inefficient performance.

8.2.3 Bubble Sort

Bubble sort is one of the oldest and simplest of sorting techniques. It focuses on bringing the largest
element to the end of the list with each successive pass. Unlike selection sort, it does not perform a
search to identify the largest element; instead it repeatedly compares two consecutive elements and
moves the largest amongst them to the right. This process is repeated for all pairs of elements until the
current iteration moves the largest element to the end of the list.

8.10 Data Structures

To understand the bubble sorting method,

consider a scenario where an array A containing @ Check Point
n elements needs to be sorted. In the first pass,

elements A[1] and A[2] are compared and if 1, What is the efficiency of insertion sort?
A[l] is larger than A[2] then the two values are Aps, The efficiency of insertion sort is O(n?).
swapped. Next, A[2] and A[3] are compared. The 2 What is the advantage of using insertion
last comparison of the first pass between A[n—1] sort?

and A[n] brings the largest element of the list to Ans. The advantage of using insertion sort
the end. The second pass repeats this process for technique is that it is easy to implement and

the remaining n—1 elements. Finally, the last pass it performs well for small sized lists.
compares only the first two elements i.e., A[1] and

A[2] to generate the sorted list.
Let us revisit the list L containing five integers stored in a random fashion, as shown in Fig. 8.1.
Table 8.3 illustrates the sorting of list L in ascending order using bubble sort:

Table 8.3 Bubble sort

Pass Comparison Resultant Array

! [18] 3 [2 [33] 21 | 3] 2 [18]21]33]

[3 [18] 2 [33]21]
Nt

[3|2|1w3[21|

| 3] 2 [18[33]21]

e
2 | 3] 2[18]21]33] |2 [3 [18]21]33]

=

| 2 3 [18]21]33]

v——
| 2] 3 [18]21]33]
N——

3 | 2 3 [18]21]33] |2 | 3] 18]21]33]

——

| 2 3 [18[21]33]
——

4 | 2 3 [18]21]33] |2 | 3 [18]21]33]

. —> denotes the pair of consecutive elements being compared

As we can see in the above illustration, four passes were required to sort a list of five elements. Hence,
we can say that bubble sort requires n—1 passes to sort an array of n elements.

Example 8.6 Write an algorithm to perform bubble sort on a given array of integers.

Sorting and Searching 8.11

bubble (arr[], size)
Step 1: Start

Step 2: Set 1 = size, j = 0 and temp = 0

Step 3: Repeat Steps 4-9 while i > 1

Step 4: Set j = 0

Step 5: Repeat Steps 6-8 while j < i-1

Step 6: if arr[j] > arr[j+1] goto Step 7 else goto Step 8

Step 7: Swap the elements stored at arr[j] and arr[j+1l] by performing the
following steps
I Set temp = a[j+1]
IT Set arr[j+1l] = arr[j]
ITTI Set al[jl=temp
Step 8: Set j =3 + 1
Step 9: Set 1 =1 -1
Step 10: Stop

Example 8.7 Write a C program to perform bubble sort on an array of N elements.
Program 8.3 implements bubble sorting technique in C. It uses the algorithm depicted in Example 8.6.

Program 8.3 [mplementation of bubble sorting technique

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>

void bubble (int [], int); /*Function prototype for performing bubble sort*/

void main ()
{
int *arr;
int i, N;
clrscr();

printf (“Enter the number of elements in the array:\n”);
scanf (“%d”, &N) ;

arr = (int*) malloc(sizeof (int)); /*Dynamic allocation of memory for the
array*/

printf (“Enter the %d elements to sort:\n”,N);
for (i=0;i<N;i++)
scanf (“%d”, &arr[i]); /*Reading array elements*/

bubble (arr,N); /*Calling bubble function*/

printf ("\nThe sorted elements are:\n”);

8.12 Data Structures

for (1=0;i<N; i++)
printf (“%$d\n”,arr[i]); /*Printing sorted array*/

getch () ;
}

void bubble (int arrayl[], int size)
{
int i, j, temp;
for (i=size;i>1;i-)
for (3j=0;j<i-1;j++)
if (array[jl>array[j+1])
{
/*Swapping adjacent elements*/ The outer loop controls the number
temp = array[j+1]; of passes while the inner loop
szr2 [§+1] = arr [51; controls the number of comparisons
CHEEEYY J = arrayljl; made in each pass.
array[j] = temp;
}
}

Output

Enter the number of elements in the array:
5

Enter the 5 elements to sort:

18

3

2

33

21

The sorted elements are:
2
3
18
21
33

Program analysis

Key Statement Purpose
if(array[j]>array[j+1]) Compares the adjacent array elements in each pass
temp = array|[j+1]; Swaps the array elements as per the sort order

array[j+1] = array|[j];
array|j] = temp;

Efficiency of Bubble Sort Assume that an array containing n elements is sorted using bubble sort
technique.

Number of comparisons made in first pass = n—1

Sorting and Searching 8.13

Number of comparisons made in second pass = n—2

Number of comparisons made in last pass = 1

Total number of comparisons made = (n—1) + (n-2) + ... + 1
=n*(mn-1)/2
=0(n?)

Thus, efficiency of bubble sort = O(n?)

Advantages and Disadvantages Some of the key advantages of bubble sorting technique are:

1. It is easy to understand and implement.
2. Itleverages the presence of any existing sort pattern in the list, thus resulting in better efficiency.
The disadvantages associated with bubble sorting technique are given below.
1. The efficiency of O(n?) is not well suited for large sized lists.
2. Itrequires large number of elements to be shifted.
3. Itis slow in execution as large elements are moved towards the end of the list in a step-by-step
fashion.

Note Bubble sort leverages any existing sort pattern in a list quite well. Its best case
efficiency on an already sorted list is O(n) which is better than a number of other sorting
techniques.

8.2.4 Quick Sort

As the name suggests, quick sort is one of the @ Check Point
fastest sorting methods that is based on divide

and conquer strategy. It divides the given list into
anumber of sub lists and then works on each of the
sub lists to obtain the sorted output. It first chooses
one of the list elements as a key value and then
tries to place the key value at its final position in 2. How many passes are required by bubble
the list. Once, the key value is positioned correctly, sort to sort an array of N elements?

the two sub lists to the left and right of the key Ans. N—1

value are processed in the similar fashion until the
entire list becomes sorted.

ﬁote

Consider an array containing six elements, as shown below.

34 99 5 2 57 40

Initially, the first list element i.e., 34 is chosen as the pivot element. Now, the list is scanned from
right to left to identify the first element that is less than 34. This element is 2. So, both the elements are
swapped and the list becomes:

1. Why is the bubble sorting technique slow
in execution?

Ans. Bubble sorting technique is considered
as slow because it moves the elements to the
end of the list in a step-by-step fashion.

The key value is also called as pivot element.

8.14 Data Structures

2 99 5 34 57 40

Now, the list is scanned from left to right till the place where 34 is stored and the control stops at
the first element that is greater than 34. This element is 99. So, both the elements are swapped and the
list becomes:

2 34 5 99 57 40

Now, the list is again scanned from right to left starting with element 99 and ending at element 34.
Element 5 is found to be lesser than 34, thus both the elements are swapped. Now, the list becomes:

2 5 34 99 57 40

Now, there are no elements present between 5 and 34, thus we can assume that 34 has attained its
final position in the list.

Now, the two sublists to the left and right of the pivot element are identified, as shown below:

2 5 (38) 99 57 40

——

Now, each of these lists is processed in the same fashion and eventually all the elements are placed
at appropriate positions in the final sorted list.

Example 8.8 Write an algorithm to perform quick sort on a given array of integers.

quick (arr[], LB, UB)

Step 1: Start

Step 2: Set pivot=0, nxt pvt=0, left=LB, right=UB

Step 3: Set pivot = arr[left] to select the first element as the pivot element

Step 4: Repeat Steps 5-14 while LB < UB

Step 5: Repeat Step 6 while arr[UB] >= pivot and LB < UB

Step 6: Set UB = UB - 1

Step 7: if LB is not equal to UB goto Step 8 else goto Step 10
Step 8: Set arr[LB]=arr[UB]

Step 9: Set LB = LB + 1

Step 10: Repeat Step 11 while arr[LB] <= pivot and LB < UB

Step 11: Set LB = LB + 1

Step 12: if 1B is not equal to UB goto Step 13 else goto Step 15

Step 13: Set arr|[UB]=arr[LB]

Step 14: Set UB = UB - 1

Step 15: Set arr[LB]= pivot

Step 16: Set nxt pvt = LB

Step 17: Set LB = left and UB = right

Step 18: if LB < nxt pvt goto Step 19 else goto Step 20

Step 19: Apply quick sort in the left sub list by calling module quick(arr,
LB, nxt pvt-1)

Step 20: if UB > nxt pvt goto Step 21 else goto Step 22

Step 21: Apply quick sort in the right sub list by calling module quick (arr,
nxt pvt+l, UB)

Step 22: Stop

Example 8.9 Write a C program to perform quick sort on an array of N elements.

Program 8.4 implements quick sorting technique in C. It uses the algorithm depicted in Example 8.8.

Sorting and Searching 8.15

Program 8.4 Implementation of quick sorting technique

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>

void quick(int [], int, int); /*Function prototype for performing quick
sort*/

void main ()

{

int *arr;
int i, N;
clrscr();

printf (“Enter the number of elements in the array:\n”);
scanf (“%d”, &N) ;

arr = (int*) malloc (sizeof (int)); /*Dynamic allocation of memory for the
array*/

printf (“Enter the %d elements to sort:\n”,N);
for (i=0;i<N;i++)
scanf (“%d”, &arr[i]); /*Reading array elements*/

quick (arr,0,N-1); /*Calling quick function*/

printf (“"\nThe sorted elements are:\n”);
for (1=0;i<N;i++)
printf (“$d\n”,arr[i]); /*Printing sorted array*/

getch () ;
}

void quick (int array[], int LB, int UB)
{

int pivot, nxt pvt, left, right;

left = LB;

right = UB;

pivot = array[left];

while (LB<UB)

{

/*Scanning the list from right to left to identify the element lesser

than pivot element*/

while ((array[UB] >= pivot) && (LB<UB))
UB—;

if (LB!=UB)
{

8.16 Data Structures

array[LBl=array[UB]; /*Shufling pivot element*/
LB++;
}

/*Scanning the list from left to right to identify the element greater
than pivot element*/

while ((array[LB]<=pivot) && (LB<UB))

LB++;

if (LB != UB)

{

array[UB] = array[LB]; /*Shuffling pivot element*/

UB—;

}

}

array[LB]=pivot;

nxt_pvt:LB; The quick sort module is called

IB=left: recursively until the entire list is
. d.

UB=right; ‘(///Smw

if (LB<nxt pvt)

quick (array, LB, nxt pvt-1);

if (UB>nxt pvt)

quick (array, nxt_pvt+l, UB);
}

Output

Enter the number of elements in the array:
6

Enter the 6 elements to sort:

34

99

5

2

57

40

The sorted elements are:
2
5
34
40
57
99

Program analysis

Key Statement Purpose
pivot = array/[left]; Initializes the pivot element
nxt_pvt=LB; Generates the next set of pivot, lower bound and upper
LB=left; bound values
UB-=right;

Sorting and Searching 8.17

Key Statement Purpose

if(LB<nxt_pvt) Recursively calls the quick() function as per the next set of
quick(array, LB, nxt_pvt-1); pivot, UB and LB values

if (UB>nxt_pvt)

quick (array, nxt_pvt+1, UB);

Efficiency of Quick Sort Assume that an array containing n elements is to be sorted using quick
sort technique. Let us analyze the efficiency of quick sort in best case and worst case scenarios.

Best Case In the best case, the pivot element always divides the list in to two equal halves. Here, we
are assuming that the number of elements in the list is a power of 2. That means, n = 2™ or m = log, n

Number of comparisons made in first pass =n

Number of comparisons made in second pass = 2*(n / 2)
Number of comparisons made in the third pass = 4*(n /4)
Number of comparisons made in the fourth pass = 8*(n /8)
Number of comparisons made in the k™ pass = k*(n /k)

Now, total number of comparisons = O(n) + O(n) + O(n) +...+ m ferms
=0(n *m)
=0O(n log n)

Thus, efficiency of quick sort in best case scenario = O(n log n)

Worst Case It may happen that the pivot element divides the lists in unequal partitions. In the worst
case, there would be no element in one of the lists while the other list will contain all the elements.

In such a case, number of comparisons made in first pass = n—1
Number of comparisons made in second pass = n—2
Number of comparisons made in last pass = 1
Total number of comparisons = (n—1) + (n-2) + ... +1
=n*(n-1)/2
=0(n?)
Thus, efficiency of quick sort in worst case scenario = O(n?)

Advantages and Disadvantages Some of the key advantages of quick sorting technique are:

1. Itis one of the fastest sorting algorithms.
2. Its implementation does not require any additional memory.
The disadvantages associated with quick sorting technique are as follows.
1. The worst case efficiency of O(n?) is not well suited for large sized lists.
2. Itsalgorithm is considered as a little more complex in comparison to some other sorting techniques.

Note The choice of the pivot element may have a direct impact on the performance of the quick
sort algorithm, considering that there could be some pre-existing sort order present in the
input list. As a result, different implementations of the quick sorting technique use first,
last, middle or at times some randomly chosen element as the pivot element.

8.18 Data Structures

8.2.5 Merge Sort

Merge sort is another sorting technique that is based g Check Point
on divide-and-copquer approagh. It divides a list 1. What s the best case efficiency of quick
into several sub lists of equal sizes and sorts them sort?
¥nd1v¥dually. It then merges the \./arlous.sub llsts Ans. O(nlogn).
in pairs to eventually form the original list, while
ensuring that the sort order is not disturbed.

Consider a list L containing n elements on
which merge sort is to be performed. Initially, the n
elements of the list L are considered as n different
sublists of one element each. Since, a list having one
element is sorted in itself, thus there is no further
action required on these sublists. Now, each of the sublists is merged in pairs to form n/2 sublists having
two elements each. While merging two lists the elements are compared and placed in a sorted fashion
in the new sublist. This process is repeated until the original list is formed with elements arranged in a
sorted fashion.

Consider an array containing six elements, as shown below:

34 99 5 2 57 40 8 29

Figure 8.2 shows how merge sort is performed on the above list.

2. What is a pivot element?

Ans. It is a key value that is selected and
shuffled continuously as per the quick sort
algorithm until it attains its final position
in the list.

InputList 34 99 5 2 57 40 8 29
VNS N
{34, 99} {2,5) {40, 57} (8, 29}
\ / N
{2, 5, 34, 99} {8, 29 40, 57}
\ /
Sorted List {2,5,8, 29, 34, 40, 57, 99}

Fig. 8.2 Merge sort

As we can see in the above illustration, the sorted sublists are progressively merged in each pass to
eventually generate the original list, sorted in ascending order.

Example 8.10 Write an algorithm to perform merge sort on a given array of integers.

mergesort (arr[], size)
Step 1: Start

Step 2: Set mid = 0

Step 3: if size = 1 goto Step 4 else goto Step 5
Step 4: Stop and return back to the calling module
Step 5: Set mid = size / 2

Step 6: Call module mergesort (arr, mid)

Sorting and Searching 8.19

Step 7: Call module mergesort (arr+mid, size-mid)
Step 8: Call module merge (arr, mid, arr+mid, size-mid)
Step 9: Stop

merge (a[], sizel, b[], size2)

(
Step 1: Start
Step 2: Initialize a temporary array, temp arrayl[sizel+size?2]
Step 3: Set i=0, j=0, k=0
Step 4: Repeat Step 5-9 while i < sizel and j < size?2
Step 5: If al[i] < b[j] goto Step 6 else goto Step 8
Step 6: Set temp arraylk] = a[i]
Step 7: Set k =k + 1 and 1 =1 + 1
Step 8: Set temp arraylk] = b[]]

Step 9: Set k =k + 1 and 7 = 3j + 1

Step 10: Repeat Step 11-12 while i < sizel
Step 11: Set temp arraylk] = alil

Step 12: Set k = k + 1 and 1 = 1 + 1

Step 13: Repeat Step 14-15 while j < size2
Step 14: Set temp arraylk] = b[]j]

Step 15: Set k = k + 1 and j = 3 + 1

Step 16: Set a[] = temp array[]

Step 17: Stop

Example 8.11 Write a C program to perform merge sort on an array of N elements.
Program 8.5 implements merge sorting technique in C. It uses the algorithm depicted in Example 8.10.

Program 8.5 [mplementation of merge sort technique in C

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>

void mergesort (int*, int); /*Function prototype for performing merge sort*/
void merge (int*, int, int*, int); /*Function prototype for merging two
arrays*/
void main ()
{
int *arr;
int i, N;
clrscr();

printf (“Enter the number of elements in the array:\n”);
scanf (“%d”, &N) ;

arr = (int*) malloc(sizeof (int)*N); /*Dynamic allocation of memory for
the array*/

printf (“Enter the %d elements to sort:\n”,N);
for (i=0;i<N;i++)

8.20 Data Structures

scanf (“%d”, &arr[i]); /*Reading array elements*/
mergesort (arr,N); /*Calling mergesort function*/

printf (“"\nThe sorted elements are:\n”);
for (i=0; i<N; i++)
printf (“%d\n”,arr[i]); /*Printing sorted array*/

getch () ;

void mergesort (int *array, int size)

{

int mid;

if (size==1)

return;

else

{

mid = size/2;

/*Making recursive calls to mergesort function*/
mergesort (array, mid) ;

mergesort (array+mid, size-mid) ;

merge (array, mid, array+mid, size-mid); /*Calling merge function*/
}

}

void merge (int *a, int sl, int *b, int s2)
{
int i, j, k, *temp arr;
temp arr=(int*) malloc((s2+sl) * sizeof (int)); /*Dynamic allocation of a
temporary array in memory*/

i=j=k=0;
while(i < sl && J < s2)
temp_arr[k++] = (alil<b[j]) ? alit++] : b[Jj++];

Here, the use of increment and conditional

while (i < sl
() operators has simplified the code and

temp arr[k++] = al[it++]; reduced it to a single line.
while(j < s2)
temp arr[k++] = b[j++];

for (1=0; i<k;i++)
al[i] = temp arr[i];

free (temp arr);

Sorting and Searching 8.21

Output

Enter the number of elements in the array:
8

Enter the 8 elements to sort:
34

9

5

2

57

40

8

29

The sorted elements are:
2
5
8
29
34
40
57
99

Program analysis

Key Statement Purpose
mid = size/2; Initializes the mid variable
mergesort(array, mid); Recursively calls the mergesort() function to sort the
mergesort(array+mid, size-mid); individual sub arrays
merge(array, mid, array+mid, size-mid); Calls the merge function to merge two sorted sub arrays

Efficiency of Merge Sort Assume that an array containing n elements is sorted using merge sort
technique. As we have already seen, merge sort is divided into two submodules. One module keeps
on dividing the list until n different sublists of one element each are generated. Alternatively, the other
module keeps on appending pairs of sublists until the main list with n elements is generated.

Now, the number of steps required for dividing the list = log,n
The number of steps required for merging the lists = log,n
Total number of steps = 2log,n
Now, in each step all n list elements are compared.
Thus, total number of comparisons made = n*2log,n

= 2nlog,n

= O(nlog,n)
Thus, efficiency of merge sort = O(nlog,n)

Advantages and Disadvantages Some of the key advantages of merge sorting technique are:

1. Itis a fast and stable sorting method.

8.22 Data Structures

2. It always ensures an efficiency of O(nlogn).

The disadvantages associated with merge sorting @ .
technique are as follows. Check Point

1. It requires additional memory space to 1. What is the efficiency of merge sort?
perform sorting. The size of the additional Ans. O(nlogn).

space is in direct proportion to the size of the

2. What is the most significant advantage

input list. . of merge sort?
2. Even though the number of comparisons Ans. It always ensures an efficiency of
made by merge sort are nearly optimal, its O(nlogn).
performance is slightly lesser than that of
quick sort.
8.2.6 Bucket Sort @ Mind Jog

Bucket sort distributes the list of elements across What is a stable sort?
different buckets in such a way that any bucket m It is that sorting medhodology which
contains elements greater than the elements of bucket preserves the original order of the
m-1 but less than the elements of bucket m+1. The duplicate values in [heﬁna[sorted list.
elements within each bucket are sorted individually
either by using some alternate sorting technique or by recursively applying bucket sort technique. In
the end, elements of all the buckets are merged to generate the sorted list. This technique is particularly
effective for smaller range of data series.

Consider a list containing ten integers stored in a random fashion, as shown in Fig. 8.3.

2 27 13 18 21 43 42 39 31 E

Fig. 8.3 List of integers

In the above list, all elements are between the range of 0 to 50. So, let us create five buckets for storing
ten elements each. Figure 8.4 shows how these buckets are used for sorting the list.

InputList => | 2 |27 [13[18| 21[43[42[39[31] 4]

List elements
distributed a cross =
buckets 4 18 | 21 | 31 | 42

2 13 | 27| 39 | 43

0-910-19 20-2930-3940-49

Sorted buckets =
4 18 | 27| 39 | 43

2 | 13| 21| 31| 42

0-9 10-1920-2930-3940-49

SortedList = | 2 | 4 [13] 18] 2127 31[39] 42] 43]
Fig. 8.4 Bucket sort

Sorting and Searching 8.23

As we can see in the above illustration, the list elements are first distributed as per their values across
different buckets. Then, each of the buckets are individually sorted and later merged to generate the
original sorted list.

Example 8.12 Write an algorithm to perform bucket sort on a given array of integers.

Assumption: The input list elements are within the range of 0 to 49.

bucket (arr[], size)
Step 1: Start

Step 2: Set 1 = 0, j = 0 and k =0

Step 3: Initialize an array c[5] and set all its values to 0; it keeps
track of the number of elements in each of the five buckets

Step 4: Create five buckets by initializing a 2-D array b[5][10] and set
all its values to 0

Step 5: Now, distribute the input list elements across different buckets.
To do this, repeat Steps 6-16 while i < size

Step 6: 1if 0 <= arr[i] <=9 then goto Step 7 else goto Step 8

Step 7: Set b[0][c[0]] = arr[i] and c[0] = c[0] + 1
Step 8: if 10 <= arr[i] <=19 then goto Step 9 else goto Step 10
Step 9: Set b[l][c[l]] = arr[i] and c[l] = c[1l] + 1

Step 10: if 20 <= arr[i] <=29 then goto Step 11 else goto Step 12
Step 11: Set b[2][c[2]] = arr[i] and c[2] = c[2] + 1

Step 12: if 30 <= arr[i] <=39 then goto Step 13 else goto Step 14
Step 13: Set b[3][c[3]] = arr[i] and c[3] = c[3] + 1

Step 14: if 40 <= arr[i] <=49 then goto Step 15 else goto Step 16
Step 15: Set b[4][c[4]] = arr[i] and c[4] = c[4] + 1

Step 16: Set 1 =1 + 1

Step 17: Sort each of the buckets b[][] by calling insertion sort module
insertion (&b[]1[],c[])

Step 18: Merge all the buckets together into the main array by setting
array [] = b[][]

Step 19: Stop

Example 8.13 Write a C program to perform bucket sort on an array of N elements.

Program 8.6 implements bucket sorting technique in C. It uses the algorithms depicted in Example 8.4
and Example 8.12.

Program 8.6 [mplementation of bucket sorting technique

#include <stdio.h>
#include <conio.h>

8.24 Data Structures

#include <stdlib.h>

void insertion (int*, int); /*Function prototype for performing insertion
sort*/
void bucket (int*, int); /*Function prototype for performing bucket sort*/

void main ()
{
int *arr;
int i, N;
clrscr();

printf (“Enter the number of elements in the array:\n”);
scanf (“%d”, &N) ;

arr = (int*) malloc (sizeof (int)); /*Dynamic allocation of memory for the
array*/

printf (“Enter the %d elements to sort:\n”,N);
for (1i=0;1<N;i++)
scanf (“%d”, &arr[i]); /*Reading array elements*/

bucket (arr,N); /*Calling bucket function*/

printf ("\nThe sorted elements are:\n”);
for (1=0;i<N;i++)
printf (*%d\n”,arr[i]); /*Printing sorted array*/

getch () ;

/*Insertion sort function for sorting elements in a bucket*/
void insertion (int *array, int size)
{

int i=0,3j=0, temp=0;

for(i=1l;i<size;i++)

{

temp=array[i];

for (j=i-1;3>=0;3-)

if (array[j]>temnp)
array[j+l]l=arrayl[]j];

else

break;

array[j+l]=temp;

}

}

void bucket (int *array, int size)

{

Sorting and Searching 8.25

int i, j, k, b[5][10];
int c[5];

for (1i=0;1i<5;i++)
c[1]1=0;

/*Distributing elements across different buckets*/
for (1=0;1<size;i++)

{

if (array[i]>=0 && array[i]<=9)

b[0] [c[0]++]=array[i];

if (array[i]>=10 && array[i]<=19)
b[l][c[l]++]=array[i];

if (array[i]>=20 && array[i]<=29)
b[2] [c[2]++]=array[i];

if (array[i]>=30 && array[i]<=39)
b[3][c[3]++]=array[i];

if (array[i]>=40 && array[i]<=49)
bl[4] [c[4]++]=array[i];
}

/*Sorting elements in each bucket using insertion sort*/

for (1i=0;i<5;i++)

if(c[i]'=0)

insertion(&b[i] [0], c[i]); /*Calling insert function*/

Here, elements in each of

the bucket are sorted using
insertion sort technique.

/*Merging buckets to form the original list*/
1=0;

k=0;

while (1i<5)

{

if(c[1i]==0)

{

i=i+1;

continue;

}

for (j=0;]j<c[i];j++)
array[k++]1=b[i] [j]/
i=i+1;

}

}

Output

Enter the number of elements in the array:
10

8.26 Data Structures

Enter the 10 elements to sort:
2
27
13
18
21
43
42
39
31
4

The sorted elements are:
2
4
13
18
21
27
31
39
42
43

Program analysis

Key Statement

Purpose

for(i=0;i<5;i++)
if (c[i]!=0)
insertion(&Dbli][0], c[i]);

Repeatedly calls the insertion() function to perform
insertion sort on each of the buckets

for(j=0;j<c[i];j++)
array[k++]=bli][j];

Forms the original array from the bucket elements

Note The bucket sort algorithm is particularly suited for lists having elements within a specific
range. The above program is based on the assumption that the elements in the input list
are within the range of 0 to 49.

Efficiency of Bucket Sorting Assume that an array containing n elements is sorted using bucket

sort technique.

In the worst case, all elements of the list will be placed in a single bucket.
Now, each bucket is sorted using insertion sort, whose efficiency = O(n?)
Thus, worst case efficiency of bucket sort = O(n?)

Advantages and Disadvantages Some of the key advantages of bucket sorting technique are:
1. It preserves the order of repetitive values in the list.
2. It performs well for large size lists having elements in a smaller range.

Sorting and Searching 8.27

The disadvantages of bucket sort are as follows:

1. It works only if the range of input values is fixed. g .
2. Itrequires additional space to perform the sorting Check Point

operation. 1. What is the worst case efficiency
of bucket sort?
8.3 SEARCHING TECHNIQUES Ans. O(n?).
2. What is the distinctive advantage
Searching refers to determining whether an element is of using bucket sort technique?
present in a given list of elements or not. If the element is Ans. It preserves the order of duplicate
found to be present in the list then the search is considered elements in the final sorted list.

as successful, otherwise it is considered as an unsuccessful
search. The search operation returns the location or address of the element found.
There are various searching methods that can be employed to perform search on a data set. The choice
of a particular searching method in a given situation depends on a number of factors, such as
1. order of elements in the list, i.e., random or sorted
2. size of the list
Let us explore the various searching methods one by one.

8.3.1 Linear Search

It is one of the conventional searching techniques that sequentially searches for an element in the list.
It typically starts with the first element in the list and moves towards the end in a step-by-step fashion.
In each iteration, it compares the element to be searched with the list element, and if there is a match,
the location of the list element is returned.

Consider an array of integers A containing n elements. Let k be the value that needs to be searched.
The linear search technique will first compare A[0] with k to find out if they are same. If the two values
are found to be same then the index value, i.e., 0 will be returned as the location containing k. However,
if the two values are not same then k will be compared with A[1]. This process will be repeated until
the element is not found. If the last comparison between k and A[n—1] is also negative then the search
will be considered as unsuccessful.

Figure 8.5 depicts the linear search technique performed on an array of integers.

Array A[8]

[2 [18]33]21] 5 | 99]42]

Fig. 8.5 Linear search

As shown in Fig. 8.5, the value k is repeatedly compared with each element of the array A. As soon as
the element is found, the corresponding index location is returned and the search operation is terminated.

8.28 Data Structures

Example 8.14 Write an algorithm to perform linear search on a given array of integers.

linear (arr[], size, k)
Step 1: Start

Step 2: Set 1 = 0

Step 3: Repeat Steps 4-6 while i < size

Step 4: if k = arr[i] goto Step 5 else goto Step 6
Step 5: Return i and goto Step 9

Step 6: Set 1 =1 + 1

Step 7: If 1 = size goto Step 8 else goto Step 9
Step 8: Return NULL and goto Step 9

Step 9: Stop

Example 8.15 Write a C program to perform linear search on an array of N elements.
Program 8.7 implements linear search technique in C. It uses the algorithm depicted in Example 8.14.

Program 8.7 Implementation of linear search technique

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>

int linear (int [], int, int); /*Function prototype for performing linear
search*/

void main ()

{

int *arr;

int i, N, k, index;
clrscr();

printf (“Enter the number of elements in the array arr:\n”);
scanf (“%d”, &N) ;

arr = (int*) malloc (sizeof (int)); /*Dynamic allocation of memory for the
array*/

printf (“"\nEnter the %d elements of the array arr:\n”,N);
for (i=0;1i<N;i++)
scanf (“%d”, &arr[i]); /*Reading array elements*/

printf (“"\nEnter the element to be searched:\n”);
scanf (“%d”, &k) ;

index=linear (arr,N,k); /*Calling linear function*/
/*Printing search results*/
if (index==-999)

printf (“\nElement %d is not present in array arr[%d]”,k,N);
else

Sorting and Searching 8.29

printf (“"\nElement %d 1is stored at index location %d in the
arr[%d]”,k,index,N) ;

getch () ;
}

int linear(int arrayl[], int size, int num)

{

int 1i;

for (i=0;i<size;i++) /*Scanning array elements one by one*/
if (num==array[i])

return(i); /*Successful Search*/

if (i==size)

return (-999); /*Unsuccessful Search*/

}
Output

Here, —999 is being used as a NULL
value to indicate unsuccessful search.

Enter the number of elements in the array arr:
8

Enter the 8 elements of the array arr:
3
2
18
33
21
5
99
42

Enter the element to be searched:
33

Element 33 is stored at index location 3 in the array arr([8]

Program analysis

array

Key Statement

Purpose

index=linear(arr,N,k);

Calls the linear() function to perform linear search on
the array arr

for(i=0;i<size;i++)
if (mnum==arrayli])

Compares each array element with the value that needs
to be searched

Efficiency of Linear Search Assume that an array containing n elements is to be searched for the
value k. In the best case, k£ would be the first element in the list, thus requiring only one comparison. In
the worst case, it would be last element in the list, thus requiring » comparisons.

To compute the efficiency of linear search we can add all the possible number of comparisons and

divide it by n.

8.30 Data Structures

Thus, efficiency of linear search=(/ +2 + ... +n)/n
=n(ntl)/2n
= 0(n)
Advantages and Disadvantages Some of the key advantages of linear search technique are:

1. It is a simple searching technique that is

easy to implement. @ Check Point

2. It does not require the list to be sorted in
a particular order. 1. What is the efficiency of linear search?

The disadvantages associated with it are as Ans. O(n).
follows: 2. What is the key advantage of linear

1. Itis quite inefficient for large sized lists. search?

2. It does not leverage the presence of any Ans. It does not require the list to be sorted
pre-existing sort order in a list. in a particular order.

8.3.2 Binary Search

Binary search technique has a prerequisite — it requires the elements of a data structure (list) to be already
arranged in a sorted manner before search can be performed in it. It begins by comparing the element
that is present at the middle of the list. It there is a match then the search ends immediately and the
location of the middle element is returned. However, if there is a mismatch then it focuses the search
either in the left or the right sub list depending on whether the target element is lesser than or greater
than middle element. The same methodology is repeatedly followed until the target element is found.

Binary search follows the same analogy as that of a telephone directory that we had discussed earlier.
One needs to keep focusing on a smaller subset of directory pages every time there is a mismatch.
However, such a search would not have been possible had the directory entries were not already sorted.

Consider an array of integers A containing eight elements, as shown in Fig. 8.6. Let k = 21 be the
value that needs to be searched.

Array A[8]

2 | 3[5][18[21]33]42] 99|

¢

K Middle Element

Fig. 8.6 Binary search

As we can see in Fig. 8.6, the array A on which binary search is to be performed is already sorted.
The following steps describe how binary search is performed on array A to search for value k:
1. First of all, the middle element in the array A is identified, which is 18.
2. Now, k is compared with 18. Since k is greater than 18, the search is focused on the right sub
list.
3. The middle element in the right sub list is 33. Since k is less than 33, the search is focused on
the left sub list, which is {21, 33}.

Sorting and Searching 8.31

4. Now, again k is compared with the middle element of {21, 33}, which is 21. Thus, it matches
with k.
5. The index value of 21, i.c., 4 is returned and the search is considered as successful.

Example 8.16 Write an algorithm to perform binary search on a given array of integers.

binary (arr[], size, num)
Step 1: Start

Step 2: Set 1 = 0, j = size, k =0

Step 3: Repeat Steps 4-9 while i <= j

Step 4: Set k = (i + j)/2

Step 5: If arr[k] = num goto Step 6 else goto Step 7
Step 6: return k and goto Step 11

Step 7: If arrayl[k] < num goto Step 8 else goto Step 9
Step 8: i = k + 1

Step 9: j = k - 1

Step 10: Return NULL and goto Step 11

Step 11: Stop

Example 8.17 Write a C program to perform binary search on an array of N elements.

Program 8.8 implements binary search technique in C. It uses the algorithm depicted in Example 8.16.
Program 8.8 [mplementation of binary search technique

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>

int binary(int [], int, int); /*Function prototype for performing binary
search*/

void main ()

{

int *arr;

int i, N, k, index;
clrscr();

printf (“Enter the number of elements in the array arr:\n”);
scanf (“%d”, &N) ;

arr = (int*) malloc (sizeof (int)); /*Dynamic allocation of memory for the
array*/

printf (“\nEnter the %d elements of the array arr in sorted format:\n”,N);
for (i=0;i<N;i++)

scanf (“%d”, &arr[i]); /*Reading array elements*/

printf (“"\nEnter the element to be searched:\n”);
scanf (“%d”, &k) ;

8.32 Data Structures

index=binary (arr,N,k); /*Calling binary function*/

/*Printing search results*/

if (index==-999)

printf (“"\nElement %d is not present in array arr[%d]”,k,N);

else

printf (“"\nElement %d 1is stored at index location %d in the array
arr[%d]”, k,index,N) ;

getch () ;
}

int binary(int arrayl[], int size, int num)
{

int i=0,j=size, k;

while (i<=7)

{

k=(1+3)/2;

if (array[k]==num)

return (k) ; /*Successful search*/
else if (arrayl[k]<num)

i=k+1;

else

j=k-1;

}

return (-999); /*Unsuccessful search*/

}
Output

Enter the number of elements in the array arr:
8

Enter the 8 elements of the array arr in sorted format:
2

3

5 We must ensure that we input elements in a
sorted manner as that is the prerequisite for

18 performing binary search.

21
33
42
99

Enter the element to be searched:
21

Element 21 is stored at index location 4 in the array arr([8]

Sorting and Searching 8.33

Program analysis

Key Statement Purpose

index=binary(arr,N,k); Calls the binary() function to perform binary search
on the array arr

if(array[k]==num) Returns the value of & in case of successful search
return(k);
else if (array[k]<num) Updates the values of i and j in case of unsuccessful
i=k+1; search
else
i=k-1;

Efficiency of Binary Search

Best Case The best case for a binary search algorithm occurs when the element to be searched is
present at the middle of the list. In this case, only one comparison is made to perform the search operation.

Thus, efficiency = O(1)

Worst Case The worst case for a binary search algorithm occurs when the element to be searched
is not present in the list. In this case, the list is continuously divided until only one element is left for
comparison.

Let n be the number of list elements and ¢ be the total number of comparisons made in the worst case.
Now, after every single comparison, the number of list elements left to be searched is reduced by 2.
Thus, ¢ =log2n

Hence, efficiency = O(log,n)

Advantages and Disadvantages Some of the key advantages of binary search technique are:

1. It requires lesser number of iterations.
2. Itis alot faster than linear search. .
The disadvantages associated with it are as follows: @ Check Point
1. Unlike linear search, it requires the list to be sorted 1. What is the worst case efficiency
before search can be performed. of binary search?
2. In comparison to linear search, the binary search Ans. O(log2n).
technique may seem to be a little difficult to implement.

2. What is the key prerequisite for
performing binary search?
8.3.3 Hashing Ans. The key prerequisite for
performing binary search is that the
input list must already be sorted.

So far we have learnt two of the most fundamental
searching techniques, i.e., linear and binary search.
Both these searching techniques find their usage across
varied programming situations. However, in case of large
databases, an altogether different searching technique is widely used. This technique is called hashing.

Hashing finds the location of an element in a data structure without making any comparisons. In
contrast to the other comparison-based searching techniques, like linear and binary search, hashing uses

8.34 Data Structures

a mathematical function to determine the location of an element. This mathematical function called hash

function accepts a value, known as key, as input and generates an output known as hash key. The hash
function generates hash keys and stores elements corresponding to each hash key in the hash table. The
keys that hash function accepts as input could be a digit associated with the input elements. In other
words, we can say that a hash table is a data structure, which is implemented by a hash function and
used for searching elements in quick time. In a hash table, hash keys act as the addresses of the elements.
Figure 8.7 depicts the hash functionality.

Array Hash Table
o | Key 1 |Element 1 Hash key 1 | Element 1
1 | Key 2 | Element 2 \ Hash Function / o oy 2 | Element2
-------------- / H(Key I) — Hash Key |
| | Keyl | Elementl Hash Key | | Element |
N | Key N |Element N Hash Keys N| Element N

Fig. 8.7 Hashing

Let us consider a simple example of a file containing information for five employees of a company.
Each record in that file contains the name and a three digit numeric Employee ID of the employee. In
this case, the hash function will implement a hash table of five slots using Employee IDs as the keys.
That means, the hash function will take Employee IDs as input and generate the hash keys, as shown
in Fig. 8.8.

Employee ID Name

Index Names
101 Name 1 1 Name 1
102 Name 2 Hash Function 2 Name 2
114 | Name3 | > [HiKey)=Key% 10 | > "5 [names
143 Name 4 4 Name 4
145 Name 5 5 Name 5

Fig. 8.8 (Generating hash keys

In the hash table generated in the above example, the hash function is Employee ID%10. Thus, for
Employee ID 101, hash key will be calculated as 1. Therefore, Namel will be stored at position 1 in
the hash table. For Employee ID 102, hash key will be 2, hence Name?2 will be stored at position 2 in
the hash table. Similarly, Name3, Name4, and Name5 will be stored at position 4, 3, and 5 respectively,
as shown in Fig. 8.5. Later, whenever an employee record is searched using the Employee ID, the hash
function will indicate the exact position of that record in the hash table.

Collision As we have already learnt, the hash function takes some key values as input, performs
some mathematical calculation, and generates hash key to ascertain the position in the hash table where
the record corresponding to the key will be stored. However, it is quite possible that the hash function

Sorting and Searching 8.35

generates same hash keys for two different key values. That means, two different records are indicated
to be stored at the same position in the hash table. This situation is termed as collision. As a result, a
hash function must be designed in such a way that the possibility of a collision is negligible. Various
techniques such as, linear probing, chaining without replacement, and chaining with replacement are
used to evade the chances of a collision.

Perfect Hashing Perfect hashing ensures that there is no possibility of collision occurrence. It can
be achieved only when the set of input keys are known beforehand. As a result, collision prevention
measures are programmatically included while developing the hash function.

Example 8.18 Write a program to implement a hash function. Assume that the input keys are within
the range 10001 and 10999.

Program 8.9 [mplementation of a hash function

#include <stdio.h>
#include <conio.h>

int hash (int); /*Function prototype for generating hash keys*/

void main ()

{
int key, hk;
clrscr();

printf (“Enter the next key:”);
scanf (“%d”, &key) ;

hk = hash (key) ;
printf ("\nThe hash key generated for the key %d is %d”, key,hk);

getch () ;

int hash (int k)

{
return(k - 10000);

}
Output
Enter the next key: 10765

The hash key generated for the key 10765 is 765

Program analysis

Key Statement Purpose
hk = hash(key); Calls the hash() function to generate the hash key value

8.36 Data Structures

Solved Problems

Problem 8.1 Consider the following array of integers:
3518712523163 1

Create a snapshot of the above array at each pass if
the bubble sorting technique is applied on it. g Check Point

Solution 1. What is a hash table?
Initial array 3518712523163 1 Ans. It is a data structure, which is
Pass 1 13518127231653 implemented by a hash function and used
Pass 2 13351812231675 for searching elements in quick time.
Pass 3 13535182316127 2. What is perfect hashing?
Pass 4 135735231816 12 Ans. Perfect hashing reduces the
Pass 5 135712352318 16 possibility of collision occurrence to zero.
Pass 6 135712163523 18
Pass 7 13571216183523
Pass 8 13571216 1823 35 (sorted array)

Problem 8.2 Consider the following array of integers:
7439353297 84
Create a snapshot of the above array at each pass if the selection sorting technique is applied on it.

Solution
Initial array 74 39 35 32 97 84
Pass 1 32 39 35 74 97 84
Pass 2 32 35 39 74 97 84
Pass 3 32 35 39 74 97 84
Pass 4 32 35 39 74 97 84
Pass 5 32 35 39 74 84 97 (sorted array)

Problem 8.3 Consider the following array of integers:
35 54 12 18 23 15 45 38
Create a snapshot of the above array at each pass if the quick sorting technique is applied on it.

Solution
Initial Array 35 54 12 18 23 15 45 38
Pass 1 18 54 12 35 23 15 45 38
Pass 2 18 15 12 35 23 54 45 38
Pass 3 12 15 18 35 23 54 45 38
Pass 4 12 15 18 35 23 54 45 38
Pass 5 12 15 18 35 23 54 45 38
Pass 6 12 15 18 54 23 35 45 38
Pass 7 12 15 18 38 23 35 45 54
Pass 8 12 15 18 23 38 35 45 54

Sorting and Searching 8.37

Pass9 12 15182338354554
Pass 10 12 151823 35384554
Pass 11 12151823 35384554
Pass 12 12151823 35384554
Pass 13 12 15 18 23 35 38 45 54 (sorted array)

Problem 8.4 Draw a flowchart for sorting three integers using insertion sort technique.

FLOWCHART

@ sort (num)
Read num [3]

Call sort (num)

{

Display the sorted
array num(]

Isi>=0
AND
temp<numl[i]

num[i+1] = temp

num[i+1] = num(i]

Summary

¢ Sorting is the process of arranging the numerical and alphabetical data present in a list, in a
specific order or sequence.

¢ Searching is the process of locating a specific element across a given list of elements.

¢ Selection sort works on the principle of identifying the smallest element in the list and moving
it to the beginning of the list.

¢ Insertion sort method sorts a list of elements by inserting each successive element in the
previously sorted sublist. The insertion of elements requires the other elements to be shuffled
appropriately.

¢ Bubble sort works by bringing the largest element to the end of the list with each successive
pass.

8.38 Data Structures

Quick sort is one of the fastest sorting methods that is based on divide and conqueror approach.
It revolves around a key element called pivot to perform the sorting operation.

Merge sort divides a list into several sublists of equal sizes and sorts them individually. The
sorted sublists are later merged to form the original list.

Bucket sort distributes the list of elements across different buckets and sorts each of the buckets
individually. These buckets are later merged to form the original sorted list.

Linear search is one of the conventional searching techniques that sequentially searches for an
element in the list

Binary search works on an already sorted list to perform the search operation. It repetitively
looks for the middle element of the list until the target element is found.

Hashing finds the location of an element in a data structure without making any comparisons.
It uses the hash function to determine the location of an element.

Collision is a situation where the hash function generates same hash keys for two different key
values.

Perfect hashing ensures that there is no possibility of collision occurrence.

Key Terms

Pivot It is a key value that is selected and shuffled continuously as per the quick sort algorithm
until it attains its final position in the list.

Bucket It represents a logical data structure for temporarily storing the elements that fall within
a specific range.

Hash It is a mathematical function that generates hash keys for indicating the location where
elements are to be stored in the hash table

Hash table It is a data structure, which is implemented by a hash function and used for searching
elements in quick time.

Multiple-Choice Questions

8.1

8.2

8.3

8.4

8.5

Which of the following is the fastest searching technique?

(a) Bubble (b) Quick

(c) Insertion (d) Bucket

Which of the following searching techniques mandatorily requires the list to be already sorted?
(a) Linear (b) Binary

(c) Hash (d) None of the above
Which of the following does not have an efficiency of O(n?)?

(a) Selection (b) Insertion

(c) Bubble (d) Merge

What is the worst case efficiency of bucket sorting technique?

(@) O (b) O(n)

(¢) On) (d) O(nlogn)

What is the worst case efficiency of binary search technique?

(@) O(logyn) (b) O(n)

(c) O(nlog,n) (d o

Sorting and Searching 8.39

8.6

8.7

8.8

Pivot element is associated with which of the following?

(a) Binary search (b) Quick sort

(c) Selection sort (d) Hashing

Which of the following searching techniques is most suitable for large databases?
(a) Hashing (b) Linear

(c) Binary (d) All of the above

What is the best case efficiency of binary search?

(@) O(1) (b) 0(0)

(c) O(n) (d) None of the above

Review Questions

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10

What is sorting? List the various sorting techniques.

What is searching? List the various searching techniques.

Why quick sort is considered the fastest sorting technique?

What is a pivot element? Where is it used?

Deduce the worst case efficiency of binary search technique.

What is bubble sorting? What is it considered to be slow?

Explain the insertion and selection sorting techniques with examples.
What is hashing? Explain with example.

What is a collision? How can it be prevented?

Explain the role of buckets in bucket sorting technique.

Programming Exercises

8.1
8.2

8.3

8.4
8.5

Write a program in C that takes as input five integers and displays them in a sorted sequence.
Write a C function that applies the bubble sorting technique to sort a set of alphanumeric characters
as per their ASCII values.

Write a C program that uses the insertion sorting technique to sort an array of structures. The
sorting must be performed on the basis of one of the structure members.

Write a C function that performs linear search on an array of real values.

Write a C program that sorts the given set of integers and performs binary search on them.

Answers to Multiple-Choice Questions

8.1 (a) 8.2 (b) 83 (d) 8.4 (a) 8.5 (a)
8.6 (b) 8.7 (a) 8.8 (a)

8.40 Data Structures

	Title
	Contents
	Unit-1 Linear Data Structures – List
	1 Introduction To Algorithm And Data Structures
	2 Arrays
	3 Linked Lists
	Unit-2 Linear Data Structures- Stacks, Queues
	4 Stacks
	5 Queues
	Unit-3 Non Linear Data Structures-Trees
	6 Trees
	Unit-4 Non Linear Data Structures-Graphs
	7 Graphs
	Unit-5 Searching, Sorting And Hashing Techniques
	8 Sorting And Searching

