
DATA STRUCTURES USING C

1000 Problems and

Solutions

About the Author

Sudipta Mukherjee was born in 1980. He is an Electronics and Communication Engineer and is presently

working with Tata Consultancy Services (TCS) Limited as a software developer. Besides his routine

consultancy job, Mr. Mukherjee had taught in the global training centre of TCS and was awarded �Best

Faculty� for the year for teaching Good Programming Skills, C, UNIX and Java. From his childhood he

had a great passion for computers and wished to do something new apart from general academics. In

2002, he got associated with Kasamba Inc. as an outsourcing programmer which has a large clientele

around the world. He did his certification in C, C++, and UNIX from Ramakrishna Mission, with affiliation

from Chicago University. In 2003, he wrote a solutions manual for the book Object Oriented Programming

with C++, second edition by E. Balagurusamy. This was his debut effort as a young author. This material

was much appreciated and accepted by Tata McGraw-Hill Publishing Company. Mr. Sudipta Mukherjee

is a member of IEEE (Institute of Electrical and Electronics Engineers). Mr. Mukherjee�s research interest

includes Data Mining, Automatic Text Processing, Tool Development and Artificial Intelligence.

Sudipta Mukherjee

Software Developer

Tata Consultancy Services

India

Tata McGraw-Hill Publishing Company Limited
NEW DELHI

McGraw-Hill Offices
New Delhi New York St Louis San Francisco Auckland Bogotá Caracas

Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal

San Juan Santiago Singapore Sydney Tokyo Toronto

DATA STRUCTURES USING C

1000 Problems and

Solutions

Published by the Tata McGraw-Hill Publishing Company Limited,

7 West Patel Nagar, New Delhi 110 008.

Copyright © 2008, by Tata McGraw-Hill Publishing Company Limited.

No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise or stored in a database or retrieval system without the prior written permission of

the publishers. The program listings (if any) may be entered, stored and executed in a computer system, but they may not

be reproduced for publication.

This edition can be exported from India only by the publishers,

Tata McGraw-Hill Publishing Company Limited

ISBN (13): 978-0-07-066765-5

ISBN (10): 0-07-066765-9

Managing Director: Ajay Shukla

General Manager: Publishing�SEM & Tech Ed: Vibha Mahajan

Asst. Sponsoring Editor: Shalini Jha

Editorial Executive: Nilanjan Chakravarty

Executive�Editorial Services: Sohini Mukherjee

Senior Production Executive: Anjali Razdan

General Manager: Marketing�Higher Education & School: Michael J Cruz

Product Manager: SEM & Tech Ed: Biju Ganesan

Controller�Production: Rajender P Ghanesla

Asst. General Manager�Production: B L Dogra

Information contained in this work has been obtained by Tata McGraw-Hill, from sources believed to be reliable.

However, neither Tata McGraw-Hill nor its authors guarantee the accuracy or completeness of any information

published herein, and neither Tata McGraw-Hill nor its authors shall be responsible for any errors, omissions, or

damages arising out of use of this information. This work is published with the understanding that Tata McGraw-Hill

and its authors are supplying information but are not attempting to render engineering or other professional services.

If such services are required, the assistance of an appropriate professional should be sought.

Typeset at The Composers, 260, C.A. Apt., Paschim Vihar, New Delhi 110 063 and printed at

Adarsh Printers, C-50-51, Mohan Park, Naveen Shahdara, Delhi 110 032

Cover Printer: Rashtriya Printers

RALQCRDXRBCZR

Dedicated

To

My beloved parents, Dipali Mukherjee and Subrata Mukherjee

My uncle Tushar Mukherjee

and

 My mentor Eknath Das

Preface

Data are the blood of any application that we develop. A data structure is like the viscera that pumps and

carries that blood. In other words, data structure is the heart of any application we design. Selection of a data

structure can drastically enhance the performance of the system.

The main motivation behind this book is to show the application of several data structures for different

diverse problems. Matrix multiplication can be used to calculate the total revenues of a chain of departmental

stores. In other data structure books we find the logic of matrix multiplication but their applications are not

available. Moreover, data structure is taught as a stand-alone subject devoid of application of other fields of

science. In this book the relationship between data structure and other fields of science like numerical meth-

ods, applied statistics, physics, etc., are shown with a variety of problems. While I studied data structure, there

was no such book available which covered all the basic algorithms of different data structures and their appli-

cations. So I decided to write one for future students of data structures.

This book is mainly written for the students of BE, BSc (Comp Sc.), BSc (IT), BCA, and MCA but it can be

used by students of any data structure course because it covers a variety of data structures and teaches its

readers how to create their own data structures to serve a specific need. Students who are preparing for GATE

examination on Computer Science will also find this book useful. Undergraduate students who know about C

arrays and structures can skip chapters 1 and 2. Other than this exception, the chapters are arranged in an order

in which they should be read.

�Before we start� discusses what a data structure is and why it is needed. This section gives the reader an

overview of a data structure and its importance in programming different applications.

Chapter 1 discusses arrays, starting from declaring an array to how arrays can be used in console based

animation programs.

Chapter 2 discusses structures that is the basic building block of all the data structures.

Chapter 3 discusses all kinds of linked lists. Linked list is the most basic pointer-based data structure and is

the building block of other different data structures.

Chapter 4 discusses string handling. This chapter covers different string processing functions and their appli-

cations in solving some interesting problems like �UPC product code verification�, �Credit card number veri-

fication�, etc.

Chapter 5 discusses recursion, a powerful programming technique. This chapter shows how recursion can be

useful in diverse programmatic situations starting from a very common example of generating Fibonacci

numbers to solving nonlinear equations using recursive root finding methods and recursive creation of fractals

like Koch Snowflake.

Chapter 6 discusses stack data structure. Besides describing the usual push, pop algorithms, in this chapter a

new data structure, MTF list, has been introduced and modeled using stacks. A tray of stack is also modeled

under the name of saguaro stacks. Stacks are used greatly in parsers. An XML parser is written to introduce the

capacity which this simple data structure has to offer.

Chapter 7 discusses Queue data structure. In this chapter it has been shown how real-time queues can be

simulated using queues. MTF is also modeled using queues.

Chapter 8 discusses Tree data structure. In this chapter different types of tree data structure and their methods

have been discussed. Trees are very important data structures and find applications in lot of problems. A

diverse set of problems have been identified and presented in order to showcase this immense capacity of tree

data structures.

Chapter 9 discusses Graph data structure. Graph is probably the most complicated data structure and has

application in almost all fields of science and technology. In this chapter the basic graph theory algorithms are

implemented in order to get the reader interested in this subject. Graph theory is so massive that complete

coverage of the algorithms available till date are out of scope of this book and can easily be accommodated as

content of another title.

Chapter 10 discusses sorting algorithms. The chapter starts with a broader classification of algorithms and

then implementation of the algorithms with their time and space complexities shown on tabular and graphical

ways. There are good comparison graphs that show which algorithm is better. Apart from these, the chapter has

a list of problems where sorting is the key to solve.

Chapter 11 discusses hashing techniques. Broad classification of hashing algorithms have been classified and

implemented in full-length programs. Besides this, it has been shown how hashing can be used in computer

security softwares.

Chapter 12 discusses ADT. This chapter shows how to create a new ADT, what are the different types of

methods an ADT can have and how to distinguish them, etc. This chapter must be read before the chapters 13,

14 and 15.

Chapter 13 discusses Date data structure. This chapter shows how to create different functions that deal with

dates. Knowledge of these will enable the reader to implement date-involved calculations in different applica-

tions.

Chapter 14 discusses Map data structure. A map is basically a hash table that is nothing but a collection of

key-value pairs. This chapter shows how a simple map can be used in design of a phone book, a dictionary and

a Random Ciphering Machine (RCM).

Chapter 15 discusses the Currency data structure. A Currency can also be represented as a double. But that

doesn�t convey the intention of the programmer. Thus the code becomes less readable and in turn, less main-

tainable. So in order to create a more programmer-friendly code, a separate data type for currency is needed.

In this chapter it has been shown how different currencies can be modeled using C structures and several

methods are also defined that operate on this data structure.

Chapter 16 discusses File Handling in C. This chapter mainly shows how to save and retrieve data from

permanent storage files. Before reading this chapter, reading the chapter on string is mandatory.

Appendix A: Project Ideas. This section gives some exciting and innovative ideas to the reader to implement.

Appendix B: Bibliography, for further reading.

I am open to constructive criticism, comments and suggestion for the improvement of this book. Please let

me know if you find anything worth reporting.

O�Fallon, MO SUDIPTA MUKHERJEE

xx Preface

Acknowledgements

During the writing of this book, I have been helped by many people in innumerable ways, who provided

constructive criticism, spontaneous encouragement and shared responsibilities. In this section I would like to

take the privilege to thank them all. First, I want to thank Mr. Subhabrata Chakrabarty, Assistant General

Manager (Eastern India), TMH, for encouraging me to work hard toward the completion of this book. This

book would not have taken birth at all without the immense help and support that I got from my editors Ms.

Shalini Jha and Mr. Nilanjan Chakravarty. During this project my family has been very supportive as

always. I would like to take this opportunity to thank the following reviewers who took out some of their

valuable time to read this script and offer valuable suggestions.

Dr. M.P. Sebastian National Institute of Technology, Department of Computer Science and Engineer-

ing, Calicut

Mr. Amit Jain Radha Govind Engineering College (UPTU), Anuyogipuram, Meerut.

Prof. Shashi Mogalla Professor, Department of Computer Science and Engineering, College of Engi-

neering, Andhra University, Visakhapatnam.

Mr. U. A. Deshpande Department of Electronics and Computer Science, Vishveshwaraya National Insti-

tute of Technology, Nagpur.

Mr. S. D. Deshpande Assistant Professor, Computer Science and Engineering Department, Shri Sant

Gajanan Maharaj College of Engineering, Maharashtra

Mr. Sanjay Goswami Lecturer, Department of Computer Applications, Narula Institute of Technology,

Agarpara, Kolkata.

Words will fall short to explain how my parents Mr Subrata Mukherjee and Mrs. Dipali Mukherjee

always kept my moral high. My special thanks go to Mr. Tushar Mukherjee, my youngest uncle, who bought

me a desktop computer while I was in college and most of my passion today for programming is due to the time

I spent on that system. Special thanks to my colleagues and seniors in TCS-ILP training centre at Bhubaneswar

and Trivandrum, to Suman Bhattacharya, Meera Sidhardhan, Jayanthi K.P., Sumit Bose and Ashish

Ghosh for their interest in this project and encouragement.

Last but not the least, I want to thank my friends Anindya Ghosh, Vinit Sharma and Supratim Chatterjee

here in Mystic Cove, for encouraging me to pursue this project and their spontaneous feedback and homely

concern. Thanks to you all!

O�Fallon, MO SUDIPTA MUKHERJEE

Contents

Preface xix

Acknowledgements xxi

1 ARRAY�EASY, CONTIGUOUS, ELEGANT! 1

Introduction 1

1.1 How to Initialize an Array 1

1.2 How to Traverse an 1D Array using Index 2

1.3 How to Manipulate Elements of the Array 3

1.4 How to Add Array Elements in a Specific Region 4

1.5 How to Add Elements in the Odd and Even Places in the Array 4

1.6 How to Perform Operations Involving External Variables 5

1.7 How to Find Function Values 7

1.8 How to Solve a Demographical Application, a Problem of Vital Statistics 7

1.9 Where to Apply 3D Arrays 8

1.10 How to Delete a Particular Item from an Array 9

1.11 How to Delete an Item from a Particular Location 10

1.12 How to Find the Maximum Number in an Array 11

1.13 How to Find the Minimum Number in an Array 12

1.14 How to Sort the Array Alphabetically 12

1.15 How to Check If a String is a Palindrome or not 13

1.16 How to Search for an Array Element 14

1.17 How to Make the Array Elements Unique 14

1.18 How to Find the Mean of the Array Elements 16

1.19 How to Find Weighted Average of an Array of Numbers 16

1.20 How to Find the Median of the Array Elements which are Already Sorted 17

1.21 How to Find the Mode of the Array Elements 17

1.22 How to Find the Range of the Array Elements 18

1.23 How to Find Standard Deviation of an Array 18

1.24 How to Find the Variance of the Array Elements 19

1.25 How to Find an Interpolated Value using Newton�s Forward Difference Interpolation 20

1.26 How to Interpolate using Lagrange�s Interpolation Formula 21

1.27 How to Find a Regression Line on X or Y 23

1.28 How to Find Simple Aggregation Index Number 24

1.29 How to Find the Simple Average of a Price-Relative Index 25

1.30 How to Find Laspeyre�s Index Number 26

1.31 How to Find Paasche�s Index Number 26

1.32 How to Find Bowley�s Index Number 26

1.33 How to Find Fisher�s Index Number 27

1.34 How to Find Marshall�Edward Index Number 27

1.35 How to Represent a Matrix Using 2D Arrays 27

1.36 How to Add Two 3 ¥ 3 Matrices 27

1.37 How to Subtract Two 3 ¥ 3 Matrices 28

1.38 How to Multiply Two Matrices 28

1.39 How to Calculate Revenues using Matrix Multiplication 30

1.40 Multiplication of Two 2 ¥ 2 Matrices using Strassen�s Algorithm which uses

7 Multiplications and 18 Additions 30

1.41 How to Find the Hadamard Product of Two Matrices 31

1.42 How to Find the Kronecker Product of Two Matrices 32

1.43 How to Find the Transpose of a Matrix 34

1.44 How to Find the Inverse of a Square Matrix 34

1.45 How to Find the Upper Triangular of a Matrix 35

1.46 How to Find a Strict Upper Triangular Matrix 36

1.47 How to Find the Lower Triangular of a Matrix 37

1.48 How to Find a Strict Lower Triangular Matrix 37

1.49 How to Create a Toeplitz Matrix from a given Row and Column 38

1.50 How to Find whether a Matrix is Symmetric or not 39

1.51 Representing a Sparse Matrix as Arrays 39

1.52 3D Array Applications How to use a 3D Array to Store and Manipulate the

Literacy Details of 5 Cities around a Year 42

1.53 How to Return More than One Value from a Function 43

1.54 How to Clone String Tokenizer Class of Java 44

1.55 Conversion of Binary to Decimal 44

1.56 How to Design a Chart for Share Trading 45

1.57 How to Find HHI Index 46

1.58 How to Find GINI Coefficient Measurement for a City 47

1.59 How to Find whether Three given Numbers are in AP, GP or HP 48

1.60 Animation of Different Signaling Formats 49

1.61 A Well-known Cryptographic Technique�Cipher Text 54

1.62 Decoder Program for the above Encrypter 55

1.63 How to Find the Histogram of a 256 Gray Scale Image 55

1.64 How to Convert a Gray Scale Image to Binary Image/Negative Image 56

Revision of Concepts 57

Review Questions 58

Programming Problems 59

2 STRUCTURES�THE BUILDING BLOCKS 61

Introduction 61

2.1 Use of typedef 61

2.2 Accessing the Structure Elements 62

2.3 Some Built-in useful Structures in Turbo C (under DOS) 63

2.4 How to Define a Structure that Represents a Point in 3D 63

2.5 How to Find the Centroid of a Polygon using Point Structure 64

2.6 How to Find the Distance between Two Points in 3D 64

2.7 How to Find the Area of Any Regular Polygon 65

2.8 How to Test Collinearity for Three Points 65

2.9 How to Check IF a Triangle is Equilateral 66

2.10 How to Check IF a Triangle is Isosceles 66

2.11 How to Model a Triangle using Point Structure? 66

2.12 How to Check IF a Triangle is Right Angled 67

2.13 How to Find whether a Triangle is Equilateral or not 67

2.14 How to Model a Tetrahedron using Triangles 68

viii Contents

2.15 How to Model a Rectangle using Struct and Enum 68

2.16 How to Model a Trapezium using Point 69

2.17 How to Check whether a Trapezium is Equilateral or not 69

2.18 How to Find whether a Point is within a Triangle or not 70

2.19 How to Find whether a Point is within a Rectangle or not 71

2.20 How to Find whether a Point is within a Circle or not 71

2.21 How to Find whether Two Circles are Touching Internally or not 71

2.22 How to Find whether Two Circles are Touching Externally or not 72

2.23 How to Model a Straight Line in Slope Format 72

2.24 How to Model a Straight Line in XY Intercept Format 72

2.25 How to Convert an XY Intercept form Line to Slope Format Line 73

2.26 How to Convert a Slope Line Format to XY Intercept Format 73

2.27 How to Find whether Two Lines are Parallel or not 73

2.28 How to Find the Point of Intersection of Two Straight Lines 73

2.29 How to Find the Tangent on any Point on a Circle 73

2.30 How to Model a Parabola using a Straight Line and Point 74

2.31 How to Find the Tangent on any Point on a Parabola 74

2.32 How to Find the Normal on any Point on a Parabola 74

2.33 How to Model an Ellipse 74

2.34 How to Find the Area of an Ellipse 75

2.35 How to Find the Tangent at any Point of an Ellipse 75

2.36 How to Find the Normal at any Point of an Ellipse 75

2.37 How to Model a Prism using Structure 75

2.38 How to Model a Circular Cylinder 76

2.39 How to Find the Surface Area of a Cylinder 76

2.40 How to Model a Cone 77

2.41 How to Find the Area of a Cone 77

2.42 How to Find the Volume of the Cylinder Defined by a Circle and Point 77

2.43 How to Find the Area of the Prism 78

2.44 How to Find out whether a Point is within an Ellipse or not 78

2.45 How to Find out whether a Point is within a Hyperbola or not,

Assume that the Major or Minor Axes are Given 78

2.46 How to Model a Rhombus 79

2.47 How to Find the Area of a Rhombus 79

2.48 How to Model Vectors as Structure 79

2.49 How to Write a Function to Add Vectors 79

2.50 How to Find the Weighted Sum of Vectors 80

2.51 How to Find IF the Weighted Sum of Vectors is an Affine Summation or not 80

2.52 How to Write a Function to Find DOT Product of Two Vectors 81

2.53 How to Write a Function to Find Cross Product of Two Vectors 81

2.54 How to Write a Function for Scalar Multiplication of a Vector 82

2.55 How to Find Dot Product of Three Vectors 82

2.56 How to Find whether Three Vectors are Coplanar or not 82

2.57 How to Find the Cross Product of Three Vectors 82

2.58 How to Find the Scalar Product of Four Vectors 83

2.59 How to Find the Vector Product of Four Vectors 83

2.60 How to Model a Complex Number as a Structure 83

2.61 How to do Conversion from Polar to Rectangular Form and vice versa 84

2.62 How to Add Complex Numbers 84

2.63 How to Subtract One Complex Number from another 85

Contents ix

2.64 How to Multiply Two Complex Numbers 85

2.65 Proving De Moivre�s Theorem using Polar Complex Structure 86

2.66 How to Write a Phonebook Simulation Program using Structure 86

2.67 How to Model a Bank Account as a Combination of Structures 89

2.68 How to Write a POS (Point of Sale) Simulation using Structure 91

Revision of Concepts 102

Review Questions 103

Programming Problems 103

3 LINKED LIST�SCATTERED YET LINKED! 105

Introduction 105

3.1 Single Linked List 106

3.2 Double Linked List 107

3.3 Circular Linked List 108

3.4 What do you Mean by Array of Linked Lists? 108

3.5 Linked List in C and Predictors 109

3.6 Linked List Function Philosophy of this Chapter 109

3.7 How to Insert a Node at the end of a Single Linked List�The Node may be the

First Node of the Linked List 111

3.8 How to Insert a Node at the Front of the Single Linked List 111

3.9 How to Find the Front Element of the Single Linked List 112

3.10 How to Find the Back Element of the Single Linked List 112

3.11 How to Traverse the Single Linked List 113

3.12 How to Count the Number of Nodes in a Single Linked List 113

3.13 How to Find the Frequency of an Item in a Single Linked List 113

3.14 How to Search a Particular Item in the Single Linked List 114

3.15 How to Find the Address of a Particular Node in a Single Linked List 114

3.16 How to Insert Nodes at a Particular Location in a Single Linked List 115

3.17 How to Insert Nodes before a Particular Node in a Single Linked List 116

3.18 How to Display all the Contents of a Single Linked List 116

3.19 How to Find the Maximum Element from a Single Linked List 116

3.20 How to Find the Minimum Element from a Single Linked List 117

3.21 How to Edit the Content of a Particular Node with a Given Value 117

3.22 How to Write a Function to Merge Two Linked Lists 118

3.23 How to Write a Function to Insert a List within Another List 119

3.24 How to Swap the Head and Tail Node (i.e. The First and the Last Node)

of the Single Linked List 120

3.25 How to Swap the Contents of Any Two Other Nodes apart from Head and Tail 121

3.26 How to Delete a Particular Node given by an Index Number 121

3.27 How to Delete a Range of Elements from a List 122

3.28 How to Delete Alternate Elements from a Single Linked List 122

3.29 How to Make the List Entries Unique 123

3.30 How to Delete the First Element of the List 123

3.31 How to Delete the Last Element of the List 124

3.32 Linked List and Predicates 124

3.33 What are the Attributes and Methods of a Polynomial as a Data Structure? 125

3.34 How to Represent a Polynomial using a Single Linked List 126

3.35 Polynomial Tool Box 126

3.36 How to Add a New Term to a Polynomial 127

3.37 How to Add Two Polynomials and Return Their Sum 128

x Contents

3.38 How to Multiply Two Polynomials 128

3.39 How to Find the Differentiation of a Polynomial 128

3.40 How to Calculate the Integral of a Polynomial 128

3.41 How to Evaluate the Value of the Polynomial at a Value 129

3.42 How to Find the Definite Integral Value of a Function 129

3.43 How to Display a Polynomial 129

3.44 How to Find the Value of a Composite Function 129

3.45 How to Add a New Term to a Polynomial 130

3.46 How to Add Two Polynomials of Three Variables 131

3.47 How to Multiply Two Polynomials of Three Variables 131

3.48 How to Differentiate a Polynomial with Respect to x 132

3.49 How to Differentiate a Polynomial with Respect to y 132

3.50 How to Differentiate a Polynomial with Respect to z 132

3.51 How to Integrate the Polynomial with Respect to x Assuming the

Other Two Variables are Keeping Constant 132

3.52 How to Integrate a Polynomial with Respect to y Assuming the

Other Two Variables are Keeping Constant 133

3.53 How to Integrate a Polynomial with Respect to z Assuming the

Other Two Variables are Keeping Constant 133

3.54 How to Integrate a Polynomial when All Three Variables are Varying 133

3.55 How to Evaluate a Polynomial at Given Values of x, y and z 133

3.56 How to Integrate a Polynomial within a Given Limit 134

3.57 Some Applications of Polynomial Toolbox 134

3.58 How to Find the Curl of a Function of Three Variables 134

3.59 Huge Numbers: Application of Linked Lists 135

3.60 How to Store Two Huge Integers as Single Linked List and then Add those

Two Numbers and Display the Summation 136

3.61 Digital Signal Processing 138

3.62 How to Find the Length of a Signal 138

3.63 How to Find the Index of a Given Amplitude in a Signal 139

3.64 How to Add a New Value at the End of a Signal 139

3.65 How to Add a New Value at the Front of a Signal 140

3.66 How to Return the First Signal Node Pointer 140

3.67 How to Return the Last Signal Node Pointer 141

3.68 How to Insert a Node at a Particular Location of a Signal 141

3.69 How to Display a Digital Signal 141

3.70 How to Get the Amplitude of the First Signal Node 142

3.71 How to Get the Amplitude of the Last Signal Node 142

3.72 How to Find Frequency of a Particular Amplitude in a Given Signal 142

3.73 How to Get the Address of a Signal Node Given the Index 142

3.74 How to Get the Amplitude of a Signal at a Particular Point 143

3.75 How to Check whether a Digital Signal is Even or Not 143

3.76 How to Check whether a Digital Signal is Causal 143

3.77 How to Check whether a Digital Signal is Anti-Causal 144

3.78 How to Check whether a Digital Signal is Non-Causal 145

3.79 How to Add at the End of a Single Circular Linked List 146

3.80 Double Linked List 146

3.81 How to Add a Number at the End of a Double Linked List 147

3.82 How to Add a Number at the Front of a Double Linked List 147

3.83 How to Go to the Next Node of a Double Linked List 147

Contents xi

3.84 How to Go to the Previous Node of a Double Linked List 148

3.85 How to Display the Double Linked List in Forward Direction 148

3.86 How to Display the Double Linked List in Backward Direction 148

3.87 How to Insert a Value at a Location in the Linked List 148

3.88 How to Add a Number at the end of a Circular Doubly Linked List 149

3.89 Linked List Applications in Biochemistry 149

3.90 How to Hybridize Two Single DNA Strands to One DNA 151

3.91 How to Melt One DNA to a Couple of Strands 152

3.92 How to Emulate Linking of One DNA Strand to the Other 153

3.93 How to Represent a Sparse Matrix using Jagged Arrays 153

3.94 How to Add an Item in the Sparse Matrix 154

3.95 How to Add a Jagged Row to the Jagged Representation of the Sparse Matrix 155

3.96 How to Accept the Sparse Matrix Details from the User and Create the

Jagged Array of Linked Lists to Represent the Matrix in a Space-efficient Way 156

3.97 Representation of Handwritten Signatures using Jagged Arrays 157

3.98 How to Model Simple Content Management System using Linked List 157

3.99 How to Model Workflow Engine System (Like K2.NET) using Linked List 161

3.100 A Comparison between Arrays and Linked Lists 161

Revision of Concepts 163

Review Questions 163

Programming Problems 164

4 STRINGS�DATABASE TO DNA! 165

Introduction 165

4.1 Some Key Facts about Strings in C 165

4.2 C-Style String 166

4.3 How to Initialize at the Time of Declaration 166

4.4 How to Initialize Strings using user-Defined Values 166

4.5 How to Initialize One String with Another String 167

4.6 How to Initialize a String using Character Values 167

4.7 How to Initialize a String using ASCII Values 167

4.8 Introduction to some Built-in Turbo C String Library Functions 168

4.9 Designing Utility Tools using these Two Functions 172

4.10 A Tool for Changing Case of Few Chosen Abbreviations in a File (Using strupr()) 173

4.11 How to Reverse a String 174

4.12 How to Set Characters of a String with Another Character 175

4.13 How to Find the First Occurrence of a Character of a Substring within Another String 176

4.14 How to Find the Location from where Two Strings Start to Differ 177

4.15 How to Create the Duplicate of a String in a Memory-Efficient Manner 178

4.16 How to Tokenize a given String 178

4.17 What do you mean by Prefix of a String? 179

4.18 What do you mean by Suffix of a String? 180

4.19 What do you mean by Subsequence of a String? 181

4.20 How to Check whether a String is a valid ISBN or not 194

4.21 How to Check Validity of a Social Insurance Number (SIN) Code 195

4.22 How to Check whether a given Credit Card Number is Valid or not 195

4.23 How to Change the Case of a Sentence to Sentence Case 200

4.24 How to Toggle the Case of the Letters of a Sentence 200

4.25 How to Find out the Soundex Code for a given Word 205

Review Questions 207

Programming Problems 207

xii Contents

5 RECURSION�TIME AND AGAIN! 208

Introduction 208

5.1 Different types of Recursion 208

5.2 Pitfalls of Recursion.. 209

5.3 Fibonacci Numbers and Golden Ratio 209

5.4 Random Number Generation using Recursion 212

5.5 How to Generate Pseudo Random Numbers(PRNs) using

Von Numann�s Middle Squaring Method 213

5.6 How to Generate the Ackermann�s Function 216

5.7 What is Inverse Ackermann�s Function? 216

5.8 How to Generate TAK Function for given Variables 216

5.9 Solving Non-Linear Equations using Recursion 221

5.10 Pattern Generation using Recursion 229

5.11 How to Write a Recursive Function to Generate the Numbers of the Pascal Triangle 232

5.12 What is the Relationship between Pascal Triangle Numbers and Fibonacci Numbers? 233

5.13 How to Write a Recursive Function to Generate the Numbers of the Bell Triangle.

To Accept Two Numbers, One for Row and the Other for Column 233

5.14 Application of Bell Numbers 234

5.15 How to Write a Recursive Function to Generate the Numbers of Bernoulli Triangle 234

5.16 How to Write a Recursive Function to Generate the Numbers of Catalan�s Triangle 235

5.17 What is the Recursive Relation that Generates a Catalan Number? 236

5.18 Solving Euler�s Polygon Division using a Catalan Number 236

5.19 DYCK Path and Catalan Number 236

5.20 Ballot Problem and Catalan Number 237

5.21 How to Write a Recursive Function to Generate the Numbers of Losanitsch�s Triangle 237

5.22 How to Write a Recursive Function to Generate the Numbers of the Leibnitz Harmonic Triangle 238

5.23 L-System, Recursion and more Fractals 242

5.24 Fractal Generation using Recursion 243

5.25 Koch Curve 243

5.26 Koch Snowflake 243

5.27 Recursion in Natural Scene Generation 244

Revision of Concepts 245

Review Questions 245

Programming Problems 246

6 STACK�ONE UPON ANOTHER 247

Introduction 247

6.1 Model a Stack as a Struct 247

6.2 How to Initialize the Stack Modeled above 248

6.3 How to Pop The MRA Element from the above Stack 249

6.4 How to Display the Stacktop Element 249

6.5 How to Swap the Top Two Elements 250

6.6 Putting it All Together using Arrays 250

6.7 Model a Stack using a Linked List 251

6.8 Pushing an Element 252

6.9 How to Pop an Element from the Stack 252

6.10 How to Peep at the Stack Top 253

6.11 How to Swap the Top Two Elements 253

6.12 How to Write a Parenthesis Matcher using Stack 258

6.13 Switchbox Routing Problem 258

Contents xiii

6.14 Saguaro Stack 265

6.15 How to Write the Algorithm to use a Saguaro Stack to Check a Wrongly Entered URL 267

6.16 What is an MTFL? 271

6.17 How to Model an MTFL using Two Stacks which are themselves Modeled by a Linked List 271

6.18 How to Find the Most Sought Item in a Departmental Store using an MTF List 276

6.19 What is Backtracking? 277

6.20 How to Develop a Backtracking Algorithm to Find a Path in a Maze using Stack 277

Revision of Concepts 282

Review Questions 282

Programming Problems 283

7 QUEUE�WAITING OR PRIVILEGED? 284

Introduction 284

7.1 How to Model a Linear Queue using an Array 284

7.2 How to Initialize the Linear Queue Defined above 285

7.3 How to Append an Element in the Queue 285

7.4 How to Delete from a Queue 286

7.5 How to Search an Element in the Queue 288

7.6 How to Display the Elements in a Queue 289

7.7 Model a Queue using a Linked List 289

7.8 How to Append an Item to a Linked Queue 290

7.9 How to Delete the Front Item of a Queue 291

7.10 How to Search an Element in a Queue 291

7.11 How to Display the Elements of a Queue 292

7.12 Model a Linear Queue using two Stacks 294

7.13 How to Model a Stack using two Queues 295

7.14 Model a Circular Queue using Structure 297

7.15 Model a Priority Queue using an Array 298

7.16 Model a Priority Queue using a Single Linked List 302

7.17 An Application of Priority Queue�Scheduling Appointments 309

7.18 How to Model a Deque (Double-Ended Queue) using a Linked List 316

7.19 How to Model a Move to Front List (MTFL) using a Queue 317

7.20 How to Simulate the Queue in Front of the Cash Counter 318

Revision of Concepts 322

Review Questions 323

Programming Problems 324

8 TREES�EXPLORER TO GENETICS! 325

Introduction 325

8.1 What are the Different Ways Trees are Represented? 327

8.2 What is a Strictly Binary Tree? 327

8.3 What is an almost Complete Binary Tree? 327

8.4 What is a Complete Binary Tree? (Also known as Perfect Binary Tree) 327

8.5 What is a Weak Binary Tree? 328

8.6 What is a Strong Binary Tree? 328

8.7 How to Model a Binary Tree using an Array 329

8.8 How to Find whether a Node is a Right Child of its Parent 333

8.9 How to Find the Address of the Sibling of a Node 335

8.10 How to Find the Address of the Uncle of a Node 335

8.11 How to Traverse the Tree �In-order� 335

xiv Contents

8.12 What is a Binary Search Tree? 337

8.13 How to Search a Value in a BST 340

8.14 What is the Right Rotation on a BST? 341

8.15 Some Areas of Application of BST 342

8.16 What is an Expression Tree? 343

8.17 What is a Decision Tree? 347

8.18 Binary Search Tree and Games 348

8.19 How to Handle Multiple Subjects in such an Adaptive Test 351

8.20 How to Convert a Multiway Tree to a Binary Tree 353

8.21 What is the Balance Factor of a BST? 354

8.22 How to Balance a Binary Search Tree 355

8.23 What is a Splay Tree? 356

8.24 What is a Heap? 358

8.25 What are the Different Approaches to Create a Heap? 358

8.26 How to Implement a Binary Heap using Array 359

8.27 What is an AVL Tree? 359

8.28 How to Insert an Element to an AVL Tree 359

8.29 What is a BSP Tree? 360

8.30 What is a Quad Tree? A 2D Variation of BSP (Also known as Q-tree)? 360

8.31 How to Get the North-East Uncle of a Quad Tree Node 362

8.32 How are Images Represented using a Quad Tree? 364

8.33 How to Convert a Quad Tree to a Binary Tree 365

8.34 Superimposing Multiple Binary Images using a Binary Tree 365

8.35 Handwriting Recognition using Quad Tree 367

8.36 How to Compress Images using a Quad Tree 368

8.37 What is an Octree? 370

8.38 What is a Trie? 371

8.39 How to Model a Trie using Linked List 371

8.40 How to Add a Key to a Trie 372

8.41 How to Search a Key in a Trie 372

8.42 How to Find whether a Key in a Trie can be Deleted or Not 375

8.43 How to use a Trie for Spell Checking 376

Review Questions 377

Programming Problems 377

9 GRAPHS�MATHEMATICS TO WAN 378

Introduction 378

9.1 What are the Different Ways Graphs are Represented? 378

9.2 How to Add an Edge in a Graph Modeled by Adjacency Matrix 379

9.3 How to Remove an Edge in a Graph Modeled by Adjacency Matrix 379

9.4 What is a Path Matrix? 379

9.5 How to Find whether a Graph is a Tree or not 379

9.6 What is Minimum Spanning Tree of a Graph? 380

9.7 Prim�s Algorithm 380

9.8 Kruskal�s Algorithm to find the MST 381

9.9 Reverse Delete Algorithm to find the MST 382

9.10 What is a Directed Acyclic Graph or DAG? 384

9.11 What is Topological Sorting of a DAG? 384

9.12 How to Find whether a Graph is Planer or not 392

Contents xv

9.13 Breadth First Search (BFS) 396

9.14 Depth First Search (DFS) 398

Revision of Concepts 398

Review Questions 399

Programming Problems 399

10 SORTING�MICRO, MACRO, MAMMOTH 400

Introduction 400

10.1 Functions in this Chapter 400

10.2 Sorting Algorithms Classifications 400

10.3 Exchange Sort Algorithms 400

10.4 What is the Time Complexity of Bubble Sort? 403

10.5 What is Odd-Even Transposition Sort? 404

10.6 What is the Time Complexity of Bidirectional Bubble Sort? 406

10.7 What is the Time Complexity of Comb Sort? 409

10.8 Insertion Sort Algorithms 410

10.9 What is the Time Complexity of Insertion Sort? 410

10.10 Comparison with the Ideal O(N^2) Curve 411

10.11 What is the Time Complexity of Binary Insertion Sort? 413

10.12 Problems with Insertion Sort: Shifting 413

10.13 Explain the Library Sort Algorithm (Also known as Gapped Insertion Sort) 414

10.14 What is the Time Complexity of Shell Sort? 415

10.15 Selection Sort Algorithms 416

10.16 What is the Time Complexity of Selection Sort? 417

10.17 What is Bingo Sort? 418

10.18 Hybrid Sort Algorithms 418

10.19 What is J-Sort? 418

10.20 Divide-N-Conquer Sorting Algorithms 419

10.21 How to Write a Function to Demonstrate Quick Sort 419

10.22 What is the Time Complexity of Quick Sort? 419

10.23 How to Select the Pivot in Quick Sort 420

10.24 What is the Time Complexity of Merge Sort? 421

10.25 What is the Time Complexity of Stooge Sort? 422

10.26 Distribution Sorting Algorithms 422

10.27 Bucket Sort 422

10.28 Performance Comparisons of the Sorting Algorithms with O (n^2) Time Complexity 423

10.29 Performance Comparisons of the Sorting Algorithms with O (n log n) Time Complexity 424

10.30 Bogo Sort and Friends 424

10.31 Tree Sort 425

10.32 Lexicographic Sort 425

10.33 Radix Sort 426

10.34 Address Calculation Sort using Hashing 426

10.35 Application of Sorting 428

10.36 What is Clustering? 428

10.37 Business Clustering 428

10.38 Finding the Shortest Path 428

10.39 Finding the Most Wanted DVD in the City 428

10.40 Finding the Greatest Online Scorer in the Online Pool Competition 428

10.41 Finding the Largest Shape when their Dimensions are Given 429

Revision of Concepts 429

Review Questions 430

Programming Problems 430

xvi Contents

11 HASHING�ACCIDENT OR CHOICE? 431

Introduction 431

11.1 Concept of Collision and its Resolution 431

11.2 Some Key Facts and Jargons about Hashing 433

11.3 How to Demonstrate the Separate Chaining Method for Hashing

Elements in a Hash Table 435

11.4 What is Coalesced Hashing? 437

11.5 What are the Variations of Coalesced Hashing (Linked Hashing)? 441

11.6 What is a Hash Chain and what is its Utilization for OTP? 441

11.7 How is a Hash Tree used to Check the Data Integrity of a Media Downloaded

from a Peer-to-Peer (P2P) Network 443

Review Questions 444

Programming Problems 444

12 ADT�DELIVERED INBUILT PLUMBING! 445

12.1 The Black-Box Concept 445

12.2 ADT 445

12.3 ADT Design in C 446

12.4 Designing your own ADT 446

Review Questions 448

Programming Problems 448

13 DATE�TODAY WAS TOMORROW!! 449

Introduction 449

13.1 How to Find the Day of Week (Sun, Mon, etc) 453

13.2 How to Find the Date of the Next Nth Sunday, from a given Date 456

13.3 How to Find the Date of the Previous Nth Sunday, from a given Date 458

13.4 Wrapper Functions: Increases the Readability of Your Code 459

13.5 Interaction with the System Built in Date Structure 464

13.6 Interaction with the Real World 465

Review Questions 467

Programming Problems 468

14 MAP�PHONEBOOK, DICTIONARY, CRYPTOGRAPHY 469

Introduction 469

14.1 How to Represent a Map 469

14.2 How to Define a Predicator over a Map and use it from a Client 474

14.3 How to know who is who�s Friend from the Buddy List 474

14.4 How to Design a Random Cipher Encoder using a Map 475

14.5 Application of Map of Maps 476

14.6 Multilanguage Word Map 477

14.7 Key Interlinked Map (KIM) 477

Review Questions 478

Programming Problems 478

15 CURRENCY�NO PRIMITIVE PLEASE! 479

Introduction 479

15.1 A Practical Application: Getting the Lowest Bid Amount 484

Contents xvii

15.2 How to Convert USD to GBP and vice versa 485

15.3 How to Convert USD to GBP and vice versa Datewise 486

Review Questions 487

Programming Problems 487

16 FILE HANDLING�SEED, SAVE, SHARE 488

Introduction 488

16.1 What is File? 488

16.2 What does the Function rewind() Do? 492

16.3 How to Simulate UNIX cat Command 496

16.4 How to Simulate UNIX grep Command with Exact Match 497

16.5 How to Simulate UNIX Grep Command for Switch�V 498

16.6 How to Print those Lines of a File that Contain a Word that Sounds like a given Word 503

16.7 How to Replace a Character in a File with Another Character 503

16.8 How to Replace a Word in a File with Another Word 504

16.9 How to Compare Two Text Files Line by Line 505

16.10 How to Print Same Lines of Two Files 506

16.11 How to Copy a File from a Source to a Destination 507

16.12 File Handling in Console-Based Games 524

16.13 Function Definitions 532

Review Questions 537

Programming Problems 538

Appendix A: Project Ideas! 539

Appendix B: Bibliography 543

Index 545

xviii Contents

Before We Start

Whom is the Book for? Beginners who have just picked up C and want to try their hands on some data

structures can use this book. This book could be used as a supplement to any undergraduate data structure

course.

Intermediate programmers who have a grip over C and common data structures will come to know about

other data structures like �tries�, �Hash Maps� and how to design them using age-old C building blocks like

arrays, structures, etc.

Expert programmers can use this book as a handy data structure reference. So this is a book for everyone

who deals with data structures!!

Happy Structuring!

Best of Luck J

Organization of this Book Programming examples are the prime focus of this book. It attempts to teach

its reader how to apply well-known data structures to solve problems in diverse areas/fields. There is an

algorithm for approximate string matching that finds application in cellphones, DNA matching and statistical

analysis for medicine grouping. Here, we will learn the algorithm as a topic with more inputs for its application

to solve real-world problems, rather than beating around the theory of the algorithm.

Compilers and OS I have used Microsoft Visual Studio 6.0, Microsoft Visual Studio Express Edition and

Turbo C(for some programs) to code the applications. But these codes can be compiled in Turbo C 3.5 or

higher under DOS. Whenever any part of the code is compiler specific, that is clearly mentioned. My PC runs

on Microsoft Windows XP Professional. You can use any Windows OS.

What is a Data Structure? A Data Structure is nothing but a container for data. As water is to a container,

data are to data structures. In simple terms, it is a structure that could hold your data. Thus, the name data

structure is justified.

Why do we need One? For simple applications like arithmetic manipulations, we can do away with user-

defined data structures, but for rather serious applications where we need to store a lot of information like age,

name, address, etc., we need to have things like �Data Structures�. Sometimes it may happen that any of the

inbuilt data structures (although C has only one �array�) does not solve a particular need. Then we shall have to

write our customized data structures using the available primitive data structures of the language.

1

Array
Easy, Contiguous, Elegant!

INTRODUCTION

An array is the most basic data structure that C offers. Let�s say we have to find the average marks

obtained in a subject by students of a class or, assume that we shall have to find the histogram of a gray-

level image. In these two cases we have a couple of choices. We can either store all the values in

different variables and use them, or we can create an array that will hold all these values in contiguous

memory locations. In C, arrays are declared as follows:

<data type> Array_Name [Number of elements in the array]

For example,

int array[20] is an array of 20 integers.

1.1 HOW TO INITIALIZE AN ARRAY

There are many ways to initialize an array.

Initialization: While Declaring the Array

1. int codes[10]={1,2,3,4,5,6,7,8,9,10};

2. int codes[10]={0};//Only in C++

3. int codes[10]={1,2};

4. int codes[10];

Here, codes is an �integer array of ten elements�, which has 10 elements initialized with values rang-

ing from 1 to 10. In the second statement, all the values of the codes array are initialized to 0. In the third

statement, the first two of the codes array are set to 1 and 2, and the rest 8 values are left blank. The last

statement doesn�t initialize anything. If you don�t initialize the array then it will be full of junk/garbage

items.

2 Data Structures using C

Initialization Using a Loop

A loop can be used to initialize when the array declared is very long or when the array elements have a

logic associated with the array index. For example, suppose we want to plot the ramp function which is

given by f (x) = x. In this case, we will use a loop to initialize the array. The code snippet shows how to

initialize an array for the ramp function.
int myRamp[100];
int i;
for(i=0;i<100;i++)
{

myRamp[i]=i;//This is same as f(x) = x
}

Initialization: With Values from Another Array

Sometimes, one array needs to be filled with values from other arrays with/without manipulations.

In Cipher text applications we need to slide the characters. This is done mainly for copying one array

to the other. An example is shown below.
char myAlphabets[]={�a�,�b�,�c�,�d�};
char yourAlphabets[4];
int I;
for(I=0;I< strlen(myAlphabets);I++)
{

yourAlphabets[I]=myAlphabets[I];
}

Initialization: With Specific Values

Sometimes we need to arbitrarily initialize the specific values of an array. Say, we want to initialize the

10th element of an array, and then we will write a[9] = 24. As the array index starts from zero, the 10th

element is a[9]. But one should be careful while initializing the specific values so that it doesn�t go

beyond the bound of the array because C doesn�t check for array index overflow error.

1.2 HOW TO TRAVERSE AN 1D ARRAY USING INDEX

This is a trivial problem. In data structures, we need to traverse an array very often. We could trans-

verse an array using any logic. For this purpose, we could use a simple loop. We can access the array

elements by array index or by a pointer of the same type as that of the elements of the array. In case we

want to access the elements of the array by a pointer, we need to initialize the pointer with the base

address of the array, i.e. the address of the first element. Here it is shown how to access the elements

using an index.
//In C Using Index
int my_array_name[4]={10,20,30,40};
int counter=0;
for(counter=0;counter<4;counter++)

printf(�%d\n�,my_array_name[counter]);

An array name is nothing but a pointer to the same array.

How to Traverse a One-dimensional Array Using Pointer

//Using Pointer
int my_array_name[4]={10,20,30,40};
int counter=0;
for(counter=0;counter<4;counter++)

printf(�%d\n�,*(my_array_name+counter));

Array (Easy, Contiguous, Elegant!) 3

How to Traverse a Two-dimensional Array Using Index

int my_2d_array[10][10];
//Assume that the array my_2d_array is already pre-filled.
int i,j;
//Traversing the array
for(i=0;i<10;i++)//Walk Down-wise the rows.

for(j=0;j<10;j++)//Walk across the columns.
printf(�%d�, a[i][j]);

printf(�\n�);

How to Traverse a 2D Array Using Pointer

for(i=0;i<10;i++)
for(j=0;j<10;j++)
printf(�%d�,*(*(a+i)+j));

printf(�\n�);

1.3 HOW TO MANIPULATE ELEMENTS OF THE ARRAY

In data structure, you might have to take the summation of the elements of the array or do some kind of

a mathematical operation on them. To make things complicated, you may need to operate functions over

array indices and then use the elements of those indices which satisfy a predefined condition, as argu-

ments of another function. Here is a code that prints the square of the even numbers from one to ten.

#include <stdio.h>
#include <conio.h>
#include <math.h>

int isEven(int m)
{
 return m%2==0?1:0;
}

int main()
{
 int a[10];
 int i;
 for(i=0;i<9;i++)
 a[i]=i+1;
 for(i=0;i<9;i++)

 {
 //Checking whether the index is even or not
 if(isEven(i+1))
 //Can perform any mathematical operation like
 //Add
 //Multiplication
 printf("%f\n",pow((float)a[i],2));
 }
 getch();
 return 0;
}

4 Data Structures using C

You may also be required to operate functions over a particular section of the array. For example, if you

want to find whether a number is divisible by 11 or not, then you need to find the difference between the

sum of digits in even and odd places. Some examples of manipulation of array elements are listed below.

1. Add the array elements.

2. Multiply the array elements.

3. Add elements in the even places.

4. Add elements in the odd places.

5. Find f (x) of where x is the set of array elements.

6. Add a number to each element of the array.

7. Subtract a number from each element of the array.

8. Multiply a number to each element of the array.

9. Divide all array elements by a number.

10. Add a number to specific array elements.

11. Subtract a number from specific array elements.

12. Multiply a number to specific array elements.

13. Divide specific array elements by a number.

14. Find all even array elements.

15. Find all odd array elements.

16. Find the square of the array elements, and so on�

1.4 HOW TO ADD ARRAY ELEMENTS IN A SPECIFIC REGION

This function will add all the elements of the array and will return the sum to the calling method. This

function will take the array name and start and finish indices as arguments. Here is the C code.

int Add(int array[],int start,int finish)
{

int i=start;
int sum = 0;
for(;i<=finish;i++)

sum+=array[i];
return sum;

}

This method will add all the array elements whose locations fall between the start and finish index

inclusive of the two. Say, there is an array like

int a[]={1,2,3,4,5,66,7,8,9,10,11,12};

And we want to add 1 to 5; then we will call the above method as Add(a,0,6).

This function can be used to find out the summation of all the array elements if the start index is 0 and

the last index is the number of array elements�1. That means for the above array, if we want to find the

summation of the entire array elements then we should write

Add(a,0,11);

1.5 HOW TO ADD ELEMENTS IN THE ODD AND EVEN PLACES IN THE ARRAY

To add elements within a specific region we can pass the start and finish index as shown in the C code

above. We can make this function even more intelligent. This intelligent function can be used to sum

those integers in the even place of the array or the odd place elements, or can be made to return the sum

of all the elements in the specified range. A flag will be passed as the third argument. If the argument is

0 then the method will return sum of all the elements in the specified range including the start and finish

Array (Easy, Contiguous, Elegant!) 5

index. If the argument is 1, then it will return the sum of only the even place numbers. If the argument is

2, then this method would return the sum of all integers in the odd place within the specified range by

start and finish. Here is the code in C.
double ArrayAdd(double array[],int start,int finish,int flag)
 {

int i=start;
double sum = 0;
if(flag==0)//Add all the elements from start to finish
{

for(;i<=finish;i++)
sum+=array[i];

}
if(flag==1)//Adding only the even place numbers
{

if(start%2==0)//Where to really start from?
i=start;

else
i=start+1;

for(;i<=finish;i+=2)
sum+=array[i];

}

if(flag==2)//Adding only the odd place numbers
{

if(start%2!=0)//Where to really start from?
i=start;

else
i=start+1;

for(;i<=finish;i+=2)
sum+=array[i];

}
return sum;

}
Have you noticed that we can use this function as the building block of our program? Can you write

a program that will find whether a given number is divisible by 11 or not without using the module(%)

operator? Try it! Use this addition method. [Clue: The solution will be recursive in nature].

1.6 HOW TO PERFORM OPERATIONS INVOLVING EXTERNAL VARIABLES

Sometimes, you will have to multiply the array elements by an external variable or constant. One very

clear example of this is magnifying the value of a vector in all three coordinates. A function can be

written in C/C++ that will allow doing any mathematical operation involving array elements and an

external constant or a variable. Here is the code in C.
void ExtOp(int array[],const float MyCon,int start,int finish)
 {
 int i=start;
 for(;i<finish;i++)

 {
 //Write your Code here

 array[i]*= MyCon;
 printf("%d ",array[i]);

 }
 }

6 Data Structures using C

How to Multiply the Elements of an Array

int mult=1;
void multiplyelements(int array[],int size)
{
 for(i=0;i<size;i++)
 mult*=array[size];
}

How to Add only the Even Elements in the Array

int evenadd(int array[],int size)
{
 int i=0;
 int Sum=0;
 for(; i<size;i++)
 {
 if(array[i]%2==0)//If the element is even or not
 Sum+=array[i];
 }
 return Sum;
}

How to Add only the Odd Elements in the Array

int oddadd(int array[],int size)
{
 int i=0;
 int Sum=0;
 for(; i<size;i++)
 {
 if(array[i]%2!=0)
 Sum+=array[i];
 }
 return Sum;
}

How to Add an Element to Every Element of the Array

void addanumber(int array[],int size,int number)
{
 int i;
 for(i=0;i<size;i++)
 {
 array[i]+=number;
 }
}

How to Subtract an Element from Every Element of the Array

void subanumber(int array[],int size,int number)
{
 int i;
 for(i=0;i<size;i++)
 {
 array[i]-=number;
 }
}

Array (Easy, Contiguous, Elegant!) 7

How to Multiply an Element to Every Element of the Array
void mulnumber(int array[],int size,int number)
{
 int i;
 for(i=0;i<size;i++)
 {
 array[i]*=number;
 }
}
This type of multiplication in case of vectors are known as amplitude modification.

How to Divide an Element from Every Element of the Array
void DivideByANumber(int array[],int size,int number)
{
 int i;
 for(i=0;i<size;i++)
 {
 array[i]/=number;
 }
}

How to Square Each Element of the Array
void SquareArrayElements(int array[],int size,int number)
{
 int i;
 for(i=0;i<size;i++)
 {
 array[i]=pow(array[i],2);
 }
}

1.7 HOW TO FIND FUNCTION VALUES

Functions are the most-used mathematical operations. They are most popular as they help us to under-

stand the relationship between one variable with another from a scientific point of view. Thus, functions

have widespread applications in science, commerce, sociology and biotechnology.

1.8 HOW TO SOLVE A DEMOGRAPHICAL APPLICATION, A PROBLEM OF

VITAL STATISTICS

A demographical problem tells that, in a city, every year 10% of the population gets married and 3% of

the couples married in the previous year plan to have babies. Now we are given a list of the population

in the city for the last 10 years. We shall have to find how many people got married in the tenth year and

how many of them planned to have their babies in the next year, i.e., the 11th year. We can easily write a

method that will give us how many people get married each year and then we can get to know how many

of them are actually planning to have their babies. Here is the C code to solve this problem.

long HowManyGotMarriedEachYear (long Population)
{
 long PeopleWhoGotMarried;
 PeopleWhoGotMarried=Population*0.1;
 return PeopleWhoGotMarried;

}

8 Data Structures using C

We have created an array for holding the population of the city. And then with each year�s population,

we shall call this method that will return the count for people who got married that year. Then we can

store the value in the same array. Here is the call to this method.

long pop[]={1111,2222,3333,4444};
long mar[4];
int i =0;
for(;i<4;i++)

printf(�%l\n�,HowManyGotMarriedEachYear(pop[i]));

This gives the output.

111

222

333

444

as expected of 10% of the total population. To find the number of couples who want their babies on the

5th year we will have to find 3% of 10% population on the 4th year, that is, 444. So the answer is

printf(�Children on 5th year is
%l�,HowManyGotMarriedEachYear(pop[3])*0.03);

There can be innumerable other applications.

Can you extend this to find out how many toddlers (0�4 year kids) are there on the 11th year, assum-

ing no kid died in the past 4 years.

1.9 WHERE TO APPLY 3D ARRAYS

You may wonder why and when should we use a 3D array. There can be many situations where we may

need to use a 3D or multi-dimensional array. Always remember, that for a given problem with n degrees

of freedom, we need an n-dimensional array to solve the problem.

For example, if you want to keep track of the locus of a moving particle in 3D using Cartesian

coordinates, then the coordinates in the three axes need to be stored. We can find at any particular point

of time where the particle was by using these array elements.

Fig. 1.1

Let�s use an array of double coordinates[100][100][100] that will hold the coordinate values in x, y,

and z . These types of storages can help us solve many problems of particle dynamics, e.g. modeling

Brownian motion, etc. This problem can be more easily solved with structures. Please refer the chapter

on structure for the point structure and its usage in geometrical applications.

Array (Easy, Contiguous, Elegant!) 9

1.10 HOW TO DELETE A PARTICULAR ITEM FROM AN ARRAY

Deletion in an array can be done in two ways. They are

1. Deletion by item

2. Deletion by location

Suppose there is an array, which contains the following integers 1,2,3,4,5. And we want to delete 3.

Before deletion, the situation is like this.

Elements 1 2 3 4 5

Index 0 1 2 3 4

After deletion the memory will be like this.

Elements 1 2 4 5 0

Index 0 1 2 3 4

Fig. 1.2

So to delete 3, we have to do the following:

1. Find the location of the item to be deleted.

2. For all elements which come to the right of the element to be deleted, the index decreases by one.

For those which come before the element to be deleted, the index would remain the same.

3. The element to be deleted is overwritten by the immediate next element.

4. This process continues till the end of the array.

Notice the above diagram. The indices of the elements after the deleted item have decreased by unity.
void delete_item(int a[],int size,int x)
{

int i;
int flag=0;
for(i=0;i<size;i++)

if(a[i]==x)//Searching the number to delete.
{

flag=1;//The number searched is found
break;

}
if(flag==1)
//Shifting rest-all elements to the left by unity

for(int k=i;k<size-1;k++)
a[k]=a[k+1];

else
printf("The value is not found!");

}

int main()
{

int a[10]={1,2,3,4,5,6,7,8,9,10};
display(a,10);
getch();
delete_item(a,10,3);
display(a,9);
getch();
return 0;

}

10 Data Structures using C

1.11 HOW TO DELETE AN ITEM FROM A PARTICULAR LOCATION

Sometimes, we may want to delete a particular item from a particular location. In this case, the item in

that location is not important. It is only the location in the array that is important. It is like saying �delete

the 4th item of the array from the beginning� or �delete every 2nd element from the end�. In these cases

we need not search for the element in the array. All we have to do is to shift the position of the rest items

to the left accordingly. Here is an example. Say there is a character array like

char myCodes[]={�X�,�Y�,�W�,�Z�,�D�,�C�,�B�,�A�};

We want to delete the 4th element of the array. For that we need to write a function that will take the

array and looks for the specified location and deletes the element from the identified location. It will

return true if the deletion is successful, else it will return �false�.

int delete_by_location(char myCodes[], int delete_location)
{

int flag = 0;
if(delete_location>=0 && delete_location<size)
{

for(int i=delete_location;i<strlen(myCodes)-1;i++)
array[i]=array[i+1];

flag = 1;//If deletion is successful
}
return flag;

}

There can be more complex situations when we want to delete elements from an array following a

particular pattern or depending on some condition. Here, we will discuss only deletion that follows

a particular pattern. Consider, there is a situation where we have to delete every 2nd element of the array

from the start. That means if initially the array looks like

Elements 1 2 3 4 5 6 7

Index 0 1 2 3 4 5 6

then after deletion it will look like

Elements 1 3 5 7

Index 0 1 2 3

Fig. 1.3

Let�s have a close look at the index of the array before and after deletion. Let�s call the array before

deletion old_array and after deletion let the name be new_array. Then from the above two figures, we

can clearly conclude that

new_array[0] = old_array[0];

new_array[1] = old_array[2];

new_array[2] = old_array[4];

new_array[3] = old_array[6];

In general, we can say that new_array[i] = old_array[2*i] = old_array[i + i/1]

That means if we want to delete every 4th element from an array then the new array elements will be

given by new_array[counter]=old_array[counter + counter /3]. After deletion the number

Array (Easy, Contiguous, Elegant!) 11

of elements of the array will be given by Initial Length � Initial Length/(Index of the first item to be

deleted + 1). So if initially the array holds 20 elements and we delete every 4th element of the array then

after deletion the number of elements of the array will be given by

New Length = Initial Length � Initial Length/(Index of the first item to be deleted + 1)

New Length = 20 � 20/(3+1) = 20 � 5 = 15.

Here is the C Code to delete every 4th element from an array.
#include <conio.h>
#include <stdio.h>

int main()
{

int a[]={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20};
 //Deleting every 4th element of the array
 for(int i=0;i<20;i++)
 a[i] = a[i + i/3];
 //Displaying the array after deleting the elements
 for(int i=0;i<20-20/(3+1);i++)

printf(�%d �,a[i]);
 printf(�\n�);
 getch();
return 0;
}

Here is the generalized code to delete any element of the array.

#include <conio.h>
#include <stdio.h>

int main()
{
 int whichnumber;
 int a[]={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20};
 printf(�Enter which number you want to delete :�);
 scanf(�%d�,&whichnumber);
 for(int i=0;i<20;i++)
 a[i] = a[i + i/(whichnumber-1)];
 //Displaying the array after deleting the elements
 for(int i=0;i<20-20/whichnumber;i++)

printf(�%d �,a[i]);
 printf(�\n�);
 getch();
return 0;
}

1.12 HOW TO FIND THE MAXIMUM NUMBER IN AN ARRAY

To find the maximum value of the array is a simple task. What is needed is just a comparison of two

items. If one is more than the other then the index for the maximum of the two values is stored in a

temporary variable. At the end, the value is returned. The number of loops it takes to find the maximum

number from an array is = number of items in the array,

Here is the C code for finding the maximum number from an integer array.

12 Data Structures using C

int FindMaximumNumber(int array[],int size)
{

int max=array[0];
for(i=1;i<size;i++)
{

if(array[i]>max)
max = array[i];

}
return max;

}

1.13 HOW TO FIND THE MINIMUM NUMBER IN AN ARRAY

Like the maximum number of the array, we can find the minimum number of the array. In this case the

logic in the conditional operator will be just the reverse. Here is the C code.

int FindMinimumNumber(int array[],int size)
{

int min = array[0];
for(int i=0;i<size;i++)

 {
if(array[i]<=min)

 min = array[i];
 }

return min;
}

1.14 HOW TO SORT THE ARRAY ALPHABETICALLY

This is a very common task in programming. To sort alphabetically we can use the library method

strcmp() and if we choose to ignore case then we can use the function strcmpi() from the string

libraries. Here, a string array that holds a few names, is taken and then is sorted alphabetically in C.

void AlphaSort(char *array[],int size)
{

char *temp;
for(int j=0;j<size;j++)
for(int i=0;i<j;i++)
{

if(strcmp(array[i],array[i+1])>0)
 {

 strcpy(temp,array[i]);
 strcpy(array[i],array[i+1]);
 strcpy(array[i+1],temp);

 }
 }
//Displaying the sorted array
for(int i=0;i<size;i++)

printf(�%s\n�,array[i]);

}

This method is capable of sorting names and alphanumeric codes alphabetically. Try this method

with the following arrays:

Array (Easy, Contiguous, Elegant!) 13

char *names[]={"Zamal","Fakir","Amal","Kalam"};
char *codes[]={"A235","Z324","B325"};

call the method like AlphaSort(names, 4);

1.15 HOW TO CHECK IF A STRING IS A PALINDROME OR NOT

A palindrome is a symmetrical string of characters that will read the same whichever direction you read

it. There is a misconception that there can be palindrome words only. This is not true. There can be

palindrome sentences also. One example is �Was it a cat I saw�. This sentence is taken from Alice in

Wonderland .To find whether a string is a palindrome or not, people normally reverse the string and then

check it with the original string. We can do this using a library function in C. It is much better to use a

library function whenever we can do so instead of coding by hand. It makes the code faster and more

readable.

Here is the C code.

int IsItAPalindrome(char *whatever)
{
 //To increase the readability of the code enum is used

enum{NOT_PALINDROME,PALINDROME};
if(strcmpi(whatever,strrev(whatever))==0)

return PALINDROME;
else

 return NOT_PALINDROME;
}

Here we have used two library functions.

strcmpi(): Compares two constant strings ignoring their case

strrev(): reverses a given string

The above program will work only for single words. Palindromes like

�Madam I�m adam� or �was it a cat I saw� will not be checked by the above program.

To find whether these strings are palindromes or not, we shall have to extract the special characters

from the string first. Here is a code that performs that.

#include <string.h>
#include <stdio.h>
#include <ctype.h>

int main()
{

char s[20]="Madam I'm Adam";
char cs[20]="";
char *rcs="";
int k=0;
int i=0;
int flag=0;
for(i=0;i<strlen(s);i++)
{
 //Anything other than characters is not considered.

if((s[i]>='a' && s[i]<='z') ||
 (s[i]>='A' && s[i]<='Z'))
{

14 Data Structures using C

 cs[k]=s[i];
 k++;
}

}
if(strcmp(cs,strrev(cs))==0)

 printf("It's a Palindrome\n");
else

 printf("It's not a Palindrome\n");
return 0;
}

1.16 HOW TO SEARCH FOR AN ARRAY ELEMENT

This is one of the most trivial activities of the array. But this is needed very often. There are many ways

to find an array element. But here the most powerful method has been shown. That is a bit time consum-

ing but it never fails. This method of searching is called linear searching. This method takes four

arguments. They are

1. Array name

2. Start index, from where to search

3. Finish index, where to finish searching

4. What to find

Here is the C code of the method to find an element in an integer array.

int Find(int array[],int start,int finish,int whattofind)
{

enum{NOT_FOUND,FOUND};
int search_result = NOT_FOUND;
int i;
for(i=start;i<finish;i++)

 //Checking if this is the one we are searching for
if(array[i]==whattofind)
{

search_result = FOUND;//We got it!
break;

}
return search_result;

}

As you can see this method uses enum variables to store the status of the search. This increases the

readability of the code. Always try to use such variables for status. The added advantage of enum is that

there is no need to explicitly initialize the variables. They are automatically initialized starting from

zero.

Break is used to come out of the loop as soon as the searched element is found. Otherwise we need to

run through the entire loop, which will be expensive computationally.

1.17 HOW TO MAKE THE ARRAY ELEMENTS UNIQUE

If you are familiar with databases then you may know that there is a command in SQL called DISTINCT

that is used for selecting distinct (i.e., unique) field values from the tables.

Array (Easy, Contiguous, Elegant!) 15

There can be many other situations like this where you need to find the unique values of the array.

Suppose you want to do a statistical analysis of the marks obtained by the students in a class. There will

be many students whose marks will be the same. So you need to make the marks unique before you find

their frequencies (i.e., how many students score a particular mark). The method below takes the array

name and its size as arguments and makes the array elements unique.

Now we are going to use this Find() method to build another utility that will display only distinct

elements of an array. Here is the C code that will make an integer array unique.

#include <stdio.h>
#include <conio.h>

int Find(int array[],int start,int finish,int whattofind)
{

enum{NOT_FOUND,FOUND};
int search_result = NOT_FOUND;
int i;
for(i=start;i<finish;i++)

if(array[i]==whattofind)
{

search_result = FOUND;
break;

}
return search_result;

}

void Distinct(int a[],int size)
{

int flag=0;
printf("%d\n",a[0]);
for(int i=1;i<size;i++)
{

if(!Find(a,0,i-1,a[i]))//Sliding the window
printf("%d\n",a[i]);

}
}

int main()
{

int a[]={1,2,3,4,2,3,4,5,6,7,8,9,4,8,9};
Distinct(a,15);
return 0;

}

Here the algorithm for making array elements unique is demonstrated. Let�s assume that the array to

be made unique is as in the above example.

int a[]={1,2,3,4,2,3,4,5,6,7,8,9,4,8,9};

The strategy is, starting from the 2nd index (i.e., 1) the loop will rotate till the end of the array. And

while the loop counter is in (i-1) th place then the Find() method will be called to search whether a[i]

exists between 0 and i-1 or not. If a[i] exists, then clearly it is a repetition and thus is not shown in the

console. Otherwise, the value a[i] will be shown.

16 Data Structures using C

Say, for example, in the array a[] above, a[1] = 2 and a[4] = 2 also. So while the loop counter is at 4

it will check all the values of the array from 0 to 4-1(and that is 3). So the method finds that

a[1] = a[4] thus clearly 2 is repeated in the array and will not be shown again as it has already been

shown once. In case we need to return the new distinct array, try to figure out what modification is

needed.

1.18 HOW TO FIND THE MEAN OF THE ARRAY ELEMENTS

Mean is the average of the array elements. Here is the C code for finding the average of an integer array.

double Mean(int array[],int size)

double Mean(int array[],int size)
{

double avg=0;
int i=0;
for(;i<size;i++)

avg+=(double)array[i]/(double)(size);
return avg;

}

Do you realize that this is nothing but �Operations with External Constants� as discussed above?

1.19 HOW TO FIND WEIGHTED AVERAGE OF

AN ARRAY OF NUMBERS

In the above case, equal weightage has been given to each array element. But in some situations we will

have to calculate the weighted average of a set of numbers where each one of them will have a different

weightage than the other. A common example is grading in exam papers. An important subject will be

given more weightage than others. The formula for weighted average is

Weighted average =

(Summation of product of weightages and

 number associated with that weightage)

Summation of weightages

Here is a C code that finds the weighted average of a student in 4 subjects, each of which has predefined

weightages.

#include <stdio.h>
double WMean(double marks[],double weights[],int size)
{

double MarksWeightageProductSum=0;
double WeightageSum=0;
int i=0;

 for(i=0;i<size;i++)
 {

MarksWeightageProductSum+=marks[i]*weights[i];
WeightageSum+=weights[i];

 }
 return MarksWeightageProductSum/WeightageSum;
}

Array (Easy, Contiguous, Elegant!) 17

int main()
{

double w[]={1,2,3,4};
double m[]={100,78,89,78};
printf("%f\n",WMean(m,w,4));
getch();
return 0;

}

1.20 HOW TO FIND THE MEDIAN OF THE ARRAY ELEMENTS

WHICH ARE ALREADY SORTED

#include <stdio.h>

float median(float array[],int size)
{
 int n=0;
 n=size/2;
 if(size%2!=0)
 return array[n];
 else
 return (array[n]+array[n+1])/2;
}

int main()
{
 float array[9]={1,2,3,4,5,6,7,8,9};
 printf("%f\n",median(array,9));
 return 0;
}

1.21 HOW TO FIND THE MODE OF THE ARRAY ELEMENTS

The mode of a set of elements is the element that occurs for the maximum number of times.

So it is really easy to find the mode of an array of elements. As we need to find the frequency of

each element in the array, a separate method is written. The method below returns the frequency of a

number in an array of elements.

int Count(int a[],int size,int x)
{

int i,frequency=0;
for(i=0;i<size;i++)
{

if(a[i]==x)
frequency++;

}
return frequency;

}

Now this method will be used to find the mode of an array of elements. Here is the C code.

18 Data Structures using C

int Mode(int a[],int size)
{

int temp=0;
int i;
temp = a[0];
for(i=0;i<size;i++)
{

if(Count(a,size,a[i])<Count(a,size,a[i+1]))
temp = a[i+1];

}
return temp;

}

So here, the frequency of each element is checked and then the element that has the maximum fre-

quency is returned, which is the mode of the array.

1.22 HOW TO FIND THE RANGE OF THE ARRAY ELEMENTS

To find the range of a set of n numbers, the smallest number is subtracted from the largest number.

This measures how widely the numbers are dispersed. For example, the range of

4, 3, 8,12,23,37 is 37 � 3 = 34

Here is the code that finds the range of an integer array.

#include <stdio.h>
#include <conio.h>

int FindMaximumNumber(int array[],int size)
{

//See code above
}
int FindMinimumNumber(int array[],int size)
{

//see code above
}
int main()
{

int a[]={123,121,245,365,2,155};
printf("Range is %d\n",

 FindMaximumNumber(a,6)- FindMinimumNumber(a,6));
getch();

}

1.23 HOW TO FIND STANDARD DEVIATION OF AN ARRAY

Another way to measure the dispersion of a set of numbers is standard deviation which measures the

distance between the arithmetic mean and the set of numbers. To calculate the standard deviation of a set

of numbers, first the average is found and then the average is subtracted from each element and then

their difference is squared and then the squared differences are summed up. Standard deviation is the

square root of the average of the squared differences.

Here is the code to find the standard deviation, for which the method to find mean (defined above)

will be used.

Array (Easy, Contiguous, Elegant!) 19

//This program finds the standard deviation of a set of numbers
#include <stdio.h>
#include <math.h>
#include <conio.h>

//This method returns the Average of the numbers
double Mean(double array[],int size)
{

int i=0;
double sum=0;
for(;i<size;i++)

sum+=array[i];
return sum/size;

}
//This method returns the addition of the numbers
double Add(double array[],int start,int finish)
{

int i=start;
double sum = 0;
for(;i<=finish;i++)

sum+=array[i];
return sum;

}

int main()
{

int i=0;
double a[]={1,2,3,4};
double b[5];
double MeanOfNumbers = Mean(a,4);
for(i=0;i<4;i++)
{

double x = a[i]-MeanOfNumbers;
b[i]=pow(x,2);

}
printf("Standard Deviation is = %f\n",sqrt(Add(b,0,3)/3));
getch();
return 0;

}

1.24 HOW TO FIND THE VARIANCE OF THE ARRAY ELEMENTS

The variance of a collection of items is the square of the standard deviation.

printf("Variance of the array is = %f\n",Add(b,0,3)/3);

Compare the bold line entry in the above two lines of code. Here, we are passing the calculated

standard deviation to the outer sqrt() method.

20 Data Structures using C

1.25 HOW TO FIND AN INTERPOLATED VALUE USING

NEWTON�S FORWARD DIFFERENCE INTERPOLATION

#include <stdio.h>
#include <math.h>

int fact(int n)
{

 if(n==1)
 return 1;
 else
 return fact(n-1)*n;
}

float calculatex(float height,int x)
{
 float nr=1;
 int k;
 for(k=0;k<=x;k++)
 nr*=(float)(height-k);
 if(x==0)
 return nr;
 else
 return nr/(float)fact(x+1);
}

int diff(int y[],int m)
{
 return y[m+1]-y[m];
}

int main()
{

int x[20];
int y[20];
int i=0;
int j=0;
int k=0;
int noe=0;
static int count=0;
int dx=0;
static float sy = 0;
static float height = 0.0;
printf("No of observations :");
scanf("%d",&noe);
printf("Determination Point :");
scanf("%d",&dx);
for(i=0;i<noe;i++)
{

Array (Easy, Contiguous, Elegant!) 21

printf("Enter independent variable :");
scanf("%d",&x[i]);
printf("Enter the dependent variable :");
scanf("%d",&y[i]);
}
sy+=y[0];
 height = (float)(dx - x[0])/(float)noe;
for(i=0;i<noe-1;i++)
{
 for(j=0,k=0;k<noe-i-1;j++,k++)
 {
y[k]=diff(y,j);

 }
 sy+=calculatex(height,i)*y[0];

 }
 printf("Value at %d is %f\n",dx,sy);

return 0;

 }

1.26 HOW TO INTERPOLATE USING LAGRANGE�S INTERPOLATION

FORMULA

#include <stdio.h>
#include <conio.h>

int calculateNr(int x[],int size,int dx,int n)
{
 int result=1;
 int i;

 for(i=0;i<size;i++)
 {

if(n!=i)
{

result*=(dx-x[i]);
}

 else
result*=1;

 }
 return result;
}

int calculateDr(int x[],int size,int k)
{
 int result=1;
 int i;

 for(i=0;i<size;i++)

22 Data Structures using C

 {
 if(i!=k)
 {

 }

 else
result*=1;

 }
 return result;
}

int main()
{

int x[20];
int y[20];
int i=0;
int j=0;
int k=0;
int noe=0;
static int count=0;
int dx=0;
static float sy = 0;
static float height = 0.0;
printf("No of observations :");
scanf("%d",&noe);
printf("Determination Point :");
scanf("%d",&dx);
for(i=0;i<noe;i++)
{
printf("Enter independent variable :");
scanf("%d",&x[i]);
printf("Enter the dependent variable :");
scanf("%d",&y[i]);
}

for(i=0;i<noe;i++)
{

sy+=y[i]*((float)calculateNr(x,noe,dx,i)/
 (float)calculateDr(x,noe,i));

}
printf("%f\n",sy);

}

Array (Easy, Contiguous, Elegant!) 23

1.27 HOW TO FIND A REGRESSION LINE ON X OR Y

#include <stdio.h>
#include <conio.h>
#include <math.h>

float x[100];
float y[100];

int main()
{

int NoElements;
float Sum_X=0;
float Sum_Y=0;
float Sum_XY=0;
float Sum_sqrx=0;
float Sum_sqry=0;
int i=0;
float a;
float b;
printf("How many elements :");
scanf("%d",&NoElements);
printf("Enter the values for independent
variable :");

for(i=0;i<NoElements;i++)
{
scanf("%f",&x[i]);

Sum_X +=x[i];
Sum_sqrx+=(float)pow(x[i],2);
}

printf("Enter the values for dependent
variable :");
for(i=0;i<NoElements;i++)
{
scanf("%f",&y[i]);

Sum_Y+=y[i];
Sum_sqry+=(float)pow(y[i],2);
}

for(i=0;i<NoElements;i++)
Sum_XY=x[i]*y[i];

b = (NoElements*Sum_XY - Sum_X*Sum_Y)
 /((NoElements - 1)*Sum_sqry);

a = (Sum_XY - b*Sum_sqry)/Sum_Y;

printf("%f %f\n",a,b);

return 0;

}

24 Data Structures using C

1.28 HOW TO FIND SIMPLE AGGREGATION INDEX NUMBER

This is a statistic which assigns a single number to several individual statistics in order to quantify

trends. The best-known index in the United States is the consumer price index, which gives a sort of

�average� value for inflation based on price changes for a group of selected products. The Dow Jones

and NASDAQ indexes for the New York and American Stock Exchanges, respectively, are also index

numbers.

Let pn be the price per unit in period n, qn be the quantity produced in period n, and vn ∫ pn qnbe the

value of the n units. Let qa be the estimated relative importance of a product. There are several types of

indices defined, among them are those listed in the following table.

Index Abbr. Formula

Bowley index PB
1

()
2

L PP P+

Fisher index PF L PP P

Geometric mean index PG

/ D
D

v
v

n

D

p

p

1 S
È ˘Ê ˆÍ ˙PÁ ˜Í ˙Ë ¯Î ˚

Harmonic mean index PH 2

n n

nD

n

p q

p q

p

Â

Â

Laspeyres� index PL

n n

D n

p q

p q

Â
Â

Marshall�Edgeworth index PME

()

()

n D n

D n

p q q

v v

+

+
Â

Â

Mitchell index PM

n n

D n

p q

p q

Â
Â

Paasche�s index PP

n n

D n

p q

p q

Â
Â

Walsh index PW

D n n

D n n

q q p

q q p

Â
Â

#include <stdio.h>
#include <conio.h>

int previous[20];
int next[20];
int i;

Array (Easy, Contiguous, Elegant!) 25

int noElements;
int Sum_N=0;
int Sum_D=0;

int main()
{
 printf("Enter the number of entries :");
 scanf("%d",&noElements);
 for(i=0;i<noElements;i++)
 {
 printf("Enter previous value :");
 scanf("%d",&previous[i]);
 Sum_P+=previous[i];
 printf("Enter next value :");
 scanf("%d",&next[i]);
 Sum_N+=next[i];
 }

 printf("Simple Aggregation Index number is
 :%f\n",(float)Sum_N/(float)Sum_P);

 return 0;

}

1.29 HOW TO FIND THE SIMPLE AVERAGE OF A PRICE-RELATIVE INDEX

#include <stdio.h>
#include <conio.h>

int previous[20];
int next[20];
int i;
int noElements;
int Sum_N=0;
int Sum_D=0;
int Sum=0;

int main()
{
 printf("Enter the number of entries :");
 scanf("%d",&noElements);
 for(i=0;i<noElements;i++)
 {
 printf("Enter previous value :");
 scanf("%d",&previous[i]);
 printf("Enter next value :");
 scanf("%d",&next[i]);
 Sum+=(float)next[i]/(float)previous[i];
 }

26 Data Structures using C

 printf("Simple Average of Price Relative Index is
 :%f\n",Sum/noElements);

 return 0;

}

1.30 HOW TO FIND LASPEYRE�S INDEX NUMBER

float Laspeyres()
{
 for(i=0;i<noElements;i++)
 {

printf("Enter previous value :");
scanf("%d",&previous[i]);
printf("Enter next value :");
scanf("%d",&next[i]);
printf("Enter the previous quantity :");
scanf("%d",&pquantity[i]);
printf("Enter the next quantity :");
scanf("%d",&nquantity[i]);
Sum_N+=next[i]*pquantity[i];
Sum_D+=previous[i]*pquantity[i];

 }
 return (float)Sum_N/(float)Sum_D;

}

1.31 HOW TO FIND PAASCHE�S INDEX NUMBER

float Paasche()
{

printf("Enter previous value :");
scanf("%d",&previous[i]);
printf("Enter next value :");
scanf("%d",&next[i]);
printf("Enter the previous quantity :");
scanf("%d",&pquantity[i]);
printf("Enter the next quantity :");
scanf("%d",&nquantity[i]);
Sum_N+=next[i]*pquantity[i];
Sum_D+=previous[i]*nquantity[i];
return (float)Sum_N/(float)Sum_D;

}

1.32 HOW TO FIND BOWLEY�S INDEX NUMBER

Bowley�s index number is the average of Laspeyre�s and Paasche�s index numbers.

float Bowley()
{
 return (Laspeyres()+Paasche())*0.5;
}

Array (Easy, Contiguous, Elegant!) 27

1.33 HOW TO FIND FISHER�S INDEX NUMBER

Fisher�s index number is nothing but the geometric mean of Laspeyre�s and Paasche�s index numbers.

float Fisher()
{
 return sqrt(Laspeyres()*Paasche());
}

1.34 HOW TO FIND MARSHALL�EDWARD INDEX NUMBER

float MarshallEdward()
{

printf("Enter previous value :");
scanf("%d",&previous[i]);
printf("Enter next value :");
scanf("%d",&next[i]);
printf("Enter the previous quantity :");
scanf("%d",&pquantity[i]);
printf("Enter the next quantity :");
scanf("%d",&nquantity[i]);
Sum_N+=(pquantity[i]+nquantity[i])*next[i];
Sum_D+=(pquantity[i]+nquantity[i])*previous[i];
return (float)Sum_N/(float)Sum_D;

}

1.35 HOW TO REPRESENT A MATRIX USING 2D ARRAYS

We know that a matrix has rows and columns. So we can map them as a 2D array programmatically.
This is shown below. Say, for example, we have a matrix like

1 3 5
4 5 1
1 4 6

Then this matrix can be written in the form of a 2D integer array like

int AMatrix [3][3] = {1,3,5,4,5,1,1,4,6};

To increase the readability of the code, i.e., to make the array look more like a 3 ¥ 3 matrix, we can

write it like

int AMatrix[3][3]={
 1,3,5,
 4,5,1,

 1,4,6
 };

In all the problems below, a static array has been used. For any practical purposes where you don�t
know previously what will be the count, linked lists are a better choice than arrays. Arrays are, of course,
easier to access and process than linked lists on the other hand, and are chosen when we have large
volume of the same type of data.

1.36 HOW TO ADD TWO 3 ¥¥¥¥¥ 3 MATRICES

Programmatically, as you can see, adding two matrices is nothing but adding two 2-dimensional array

element by element. Here is the code to add two matrices.

28 Data Structures using C

void Add(int mat1[3][3], int mat2[3][3])
{

 int result[3][3];
 for(int i= 0;i<3;i++)
 {

 for(int j=0;j<3;j++)
result[i][j]=mat1[i][j]+mat2[i][j];

 }
 //Displaying the Sum here

 for(int i= 0;i<3;i++)
 {

 for(int j=0;j<3;j++)
printf("%d ",result[i][j]);

printf("\n");
 }

}

This method of addition assumes that there are no errors in the dimensions for adding successfully.

And this method can only add two 3 by 3 matrices. To make this method generic, we can declare the

arrays in the global section of the program. See the code below.

void Add(int rows, int cols)
{

 for(int i= 0;i<rows;i++)
 {

 for(int j=0;j<cols;j++)
result[i][j]=mat1[i][j]+mat2[i][j];

 }
}

In this case all the three arrays, mat1, mat2 and result, are 2D arrays and they are declared global.

Addition of matrices is very straightforward. Here, for a 2D array we need two loops as we have

2 dimensions. If we have a 3D array then we can add it by using 3 loops, and so on.

Can you think of a situation where we will need a 3D array or even more dimensions?

1.37 HOW TO SUBTRACT TWO 3 ¥¥¥¥¥ 3 MATRICES

Subtraction is the same as that of addition. Only the sign needs to be changed!

1.38 HOW TO MULTIPLY TWO MATRICES

Multiplication of two matrices is only possible if and only if the number of rows of one is same as that of

the number of columns of the other. Here is the C code to multiply two 2D arrays or matrices.

#include <stdio.h>
#include <conio.h>

int A[10][10];
int B[10][10];
int C[10][10];

int ar=0,ac=0,br=0,bc=0,cr=0,cc=0;

Array (Easy, Contiguous, Elegant!) 29

int i=0,j=0,k=0;
int main()
{

printf("Enter Details about the first matrix :\n");
printf("How many rows :");
scanf("%d",&ar);
printf("How many cols :");
scanf("%d",&ac);
for(i=0;i<ar;i++)
{

for(j=0;j<ac;j++)
{

printf("Enter element for row %d col %d :",i+1,j+1);
scanf("%d",&A[i][j]);

}
}

printf("Enter Details about the second matrix :\n");
printf("How many rows :");
scanf("%d",&br);
printf("How many cols :");
scanf("%d",&bc);
for(i=0;i<br;i++)
{

for(j=0;j<bc;j++)
{

printf("Enter element for row %d col %d :",i+1,j+1);
scanf("%d",&B[i][j]);

}
}

if(ac!=br)
printf("Dimensions don't match.\n");

else
{

cr = ar;
cc = bc;
//loop control
for(i = 0; i < ar; i++)

for(j = 0; j < bc; j++)
for(k = 0; k < ac; k++)

C[i][j]+=A[i][k]*B[k][j];

}
for(i=0;i<cr;i++)
{

for(j=0;j<cc;j++)
printf("%d ",C[i][j]);

printf("\n");
}

getch();
return 0;

}

30 Data Structures using C

1.39 HOW TO CALCULATE REVENUES USING MATRIX MULTIPLICATION

Fig. 1.4

1.40 MULTIPLICATION OF TWO 2 ¥¥¥¥¥ 2 MATRICES USING STRASSEN�S

ALGORITHM WHICH USES 7 MULTIPLICATIONS AND 18 ADDITIONS

Strassen�s algorithm for matrix multiplication is based on a recursive divide and conquer scheme. Given

n by n matrices A and B we wish to calculate C = AB. To see how this algorithm works, we first divide

the matrices as follows:

11 12

21 22

C C

C C
=

11 12 11 12

21 22 21 22

A A B B

A A B B

It is assumed that each block is square. This can be achieved by padding the matrices. Strassen

showed how C can be computed using only 7 block multiplications and 18 block additions:

P1 = (A11 + A22)(B11 + B22)

P2 = (A21 + A22) * B11

P3 = A11 * (B12 � B22)

P4 = A22 * (B21 � B11)

P5 = (A11 + A12) * B22

P6 = (A21 � A11) * (B11 + B12)

P7 = (A12 � A22) * (B21 + B22)

C11 = P1 + P4 � P5 + P7

C12 = P3 + P5

C21 = P2 + P4

C22 = P1 + P3 � P2 + P6

Here is the C function to calculate the product.

Array (Easy, Contiguous, Elegant!) 31

void StrassenMult ()
{

int P1=(A[0][0]+A[0][1])*(B[0][1]+B[1][0]);
int P2=(A[1][0]+A[1][1])*B[0][0];
int P3=(B[0][1]-B[1][1])*A[0][0];
int P4=(B[1][0]-B[0][0])*A[1][1];
int P5=(A[0][0]-A[0][1])*B[1][1];
int P6=(A[1][0]-A[1][1])*(B[0][0]+B[0][1]);
int P7=(A[0][1]-A[1][1])*(B[1][0]+B[1][1]);
int C11=P1+P4-P5+P7;
int C12=P3+P5;
int C21=P2+P5;
int C22=P1+P3-P2+P6;
printf("%d %d\n%d %d\n",C11,C12,C21,C22);

}

This algorithm is not popular because of the following reasons.

l This algorithm is not numerically stable.

l This algorithm demands more space.

Coppersmith and Winograd�s algorithm is the best known matrix multiplication algorithm which uses

arithmetic progression.

1.41 HOW TO FIND THE HADAMARD PRODUCT OF TWO MATRICES

If two matrices are of same dimensions, then apart from the normal matrix multiplication, there is

another product called Hadamard product or Entrywise product. The Hadamard product of two matrices

of order m ¥ n is denoted by

A ◊◊◊◊◊ B which is also an m ¥ n matrix. Every element in the product matrix is nothing but the product of

that element in the component matrices. That means (A ◊◊◊◊◊ B)[i][j] = A[i][j] * B[i][j]

Given below is an example.

Hadamard Product

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

a a a b b b

a a a b b b

a a a b b b

È ˘ È ˘
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙Î ˚ Î ˚

=

11 11 12 12 13 13

21 21 22 22 23 23

31 31 32 32 33 33

. . .

. . .

. . .

a b a b a b

a b a b a b

a b a b a b

È ˘
Í ˙
Í ˙
Í ˙Î ˚

1 4 2 1 2 4

2 0 0 3 1 0

3 5 2 2 0 3

È ˘ È ˘
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙Î ˚ Î ˚

=

1 1 4 2 2 4 1 8 8

2 3 0 1 0 0 6 0 0

3 2 5 0 2 3 6 0 6

¥ ¥ ¥È ˘ È ˘
Í ˙ Í ˙¥ ¥ ¥ =Í ˙ Í ˙
Í ˙ Í ˙¥ ¥ ¥Î ˚ Î ˚

#include <stdio.h>
#include <conio.h>

int A[10][10];
int B[10][10];
int rows=0,cols=0;
int Hadamard[10][10];

32 Data Structures using C

void scanmatrices()
{

int i,j;
for(i=0;i<rows;i++)

for(j=0;j<cols;j++)
{

printf("A[%d][%d] = ",i+1,j+1);
scanf("%d",&A[i][j]);
printf("B[%d][%d] = ",i+1,j+1);
scanf("%d",&B[i][j]);

}
}

void displayHadamard()
{

int i,j;
for(i=0;i<rows;i++)
{

for(j=0;j<cols;j++)
printf("%d",A[i][j]*B[i][j]);

printf("\n");
}

}

int main()
{

printf("Enter number of rows :");
scanf("%d",&rows);
printf("Enter number of columns :");
scanf("%d",&cols);
scanmatrices();
displayHadamard();
return 0;

}

1.42 HOW TO FIND THE KRONECKER PRODUCT OF TWO MATRICES

This product also known as Tensor product or Direct Matrix Product and has heavy applications in

System Theory.

The Kronecker product of two matrices is a block matrix which is calculated using the following rule as

shown in the figure below.

If A is an m ¥ ¥ ¥ ¥ ¥ m matrix and B is an n ¥¥¥¥¥ n matrix then their Kronecker product will yield a matrix

of mn ¥¥¥¥¥ mn. This product is also known as Tensor Product or �Direct Product�.

Array (Easy, Contiguous, Elegant!) 33

Kronechker Product

3

11 12

21 22

31 32

A

a a

a a

a a

Æ 2
È ˘
Í ˙
Í ˙
Í ˙Î ˚

2

Ø
ƒ 11 12 13

21 22 23

B

b b b

b b b

Æ 3
È ˘
Í ˙
Î ˚

= 3

11 11 11 12 11 13 12 11 12 13

11 21 11 22 11 23 12 23

21 11 21 12 21 13 22 13

21 21 21 22 21 23 22 23

31 11 31 12 31 13 32 13

31 21 31 22 31 23 32 21 32 23

K

a b a b a b a b a b

a b a b a b a b

a b a b a b a b

a b a b a b a b

a b a b a b a b

a b a b a b a b a b

Æ 6
ÆÈ ˘

Í ˙
Í ˙

ØÍ ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

L

M

Tensor Product

Direct Product

(A)n ¥ n ƒ (B)m ¥ m = (K)(mn ¥ mn)

1 2 3 4

3 1 2 0

A B

È ˘ È ˘
ƒÍ ˙ Í ˙

Î ˚ Î ˚
≠ ≠

=

3 4 6 8

2 0 4 0

9 12 3 4

6 0 2 0

K

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

≠

Fig. 1.5

//Arrays declared above are used here also.
void KroneckerProduct()
{

//As because all the variables are available
//globally then no need to declare them again
int i,j,k,l,alpha,beta;
int kmr = ar*br;
int kmc = ac*bc;

for(i=0;i<ar;i++)
for(j=0;j<ac;j++)

for(k=0;k<br;k++)
for(l=0;l<bc;l++)
{

alpha=br*(i-1)+k+br;
beta =bc*(j-1)+l+bc;

 C[alpha][beta]=A[i][j]*B[k][l];
}

 //Displaying the Kronecker Product of two matrices.

for(i=0;i<kmr;i++)
{

for(j=0;j<kmc;j++)
printf("%d",C[i][j]);

printf("\n");
}

}

34 Data Structures using C

Although we discussed Hadamard and Kronecker products in line with matrix multiplication, don�t

have the misconception that they are the same as matrix multiplication.

1.43 HOW TO FIND THE TRANSPOSE OF A MATRIX

The transpose of a matrix is a matrix formed, from the original where the rows of the original matrix are

columns of the transpose matrix. Say, for example, we have a 3 by 3 matrix like

1 2 3

6 7 8

4 5 9

Then its transpose will be

1 6 4

2 7 5

3 8 9

Let�s examine this phenomenon closely from a programming point of view. Let�s call the original

array as M and the transpose matrix as MT. Then M[1][0] = 6 and in the transpose of this matrix we find

that MT [0][1] = 6. So we can conclude that programmatically, transposing a matrix is just swapping the

index variables. Technically speaking,

MT[Row][Column] = M[Column][Row];

Here is a C code that finds the transpose of a matrix.

void show_transpose(float mat[][10],int row,int col)
{
 int i,j;

for(i=0;i<row;i++)
{

for(j=0;j<col;j++)
printf("%f\t",mat[j][i]);

printf("\n");
}

}

This method displays the transpose of a matrix.

1.44 HOW TO FIND THE INVERSE OF A SQUARE MATRIX

This is one of the tough problems programmatically to be done on a matrix. There are many algorithms

to find the inverse of a matrix. Here, Gaussian Elimination Technique is used. The other methods

include LU Decomposition, Matrix Equation, etc. Here is the C code to find the inverse of a matrix and

display it also.

void Inverse(float mat[][10],int r,int c)
{

float b[10][10],ratio,a[10][10];
int i,j, k;
if(r==c)
{
clrscr();
for (i=0;i<r;i++)
{

for(j=0;j<c;j++)
{

Array (Easy, Contiguous, Elegant!) 35

{
 //Copying values of mat into a

a[i][j]=mat[i][j];
b[i][j]=0;

}
b[i][i]=1;

}
for(k=0;k<r;k++)
{

for(i=0;i<c;i++)
{

if(i==k)
continue;

else
{
ratio=a[i][k]/a[k][k];
for(j=0;j<c;j++)
{

a[i][j]-=ratio*a[k][j];
b[i][j]-=ratio*b[k][j];

}
}

}
}
for(i=0;i<r;i++)
{

for(j=0;j<c;j++)
b[i][j]/=a[i][i];

}
for(i=0;i<r;i++)
{

for(j=0;j<c;j++)
printf("%f\t" ,b[i][j]);

printf("\n");
}

 }

1.45 HOW TO FIND THE UPPER TRIANGULAR OF A MATRIX

Triangular matrices make many matrix-related calculations easy. There can be two types of triangular

matrices�upper triangular matrix and lower triangular matrix. In an upper triangular matrix, the ele-

ments above the main diagonal remain as they are and the elements below the diagonal are zero. An

upper triangular matrix can be formed from a matrix very easily. Let�s have a close look at the matrix.

Now the upper triangular matrix formed from this will be The elements below the main diagonal are set to zero.

Fig. 1.6

36 Data Structures using C

Let�s name the 2D array that is representing the upper diagonal of this matrix, MyMatrix. So pro-

grammatically, in MyMatrix

MyMatrix [0][0] = 12

MyMatrix [0][1] = 34

MyMatrix [0][2] = 67

MyMatrix [1][0] = 0

MyMatrix [1][1] = 56

MyMatrix [1][2] = 65

MyMatrix [2][0] = 0

MyMatrix [2][1] = 0

MyMatrix [2][2] = 63

Have a close look at the bold lines above. Can you see that columns are less than rows? So the

strategy to find the upper triangular matrix from a given matrix is to set all those elements whose rows

are greater than their columns to zero. Here it is achieved programmatically in C.

void triu(int matrix[][3],int rows,int cols)
{

int i=0;
int j=0;
for(;i<rows;i++)
{

for(j=0;j<cols;j++)
{

if(j<i)
printf("0 ");

else
printf("%d ",matrix[i][j]);

 }
printf("\n");

 }

}

1.46 HOW TO FIND A STRICT UPPER TRIANGULAR MATRIX

A strict upper triangular matrix is an upper triangular matrix in which the main diagonal elements are

also zero. So just changing an operator in the above code can do this. Here is the code to find the strict

upper triangular matrix.

void strict_triu(int matrix[][3],int rows, int cols)
{

int i=0;
int j=0;
for(;i<rows;i++)
{

for(j=0;j<cols;j++)
{

 //For including the Diagonal Elements

Array (Easy, Contiguous, Elegant!) 37

 //the operator has been changed to
 //<= because for diagonal elements the row index
 //and the column index are same.

if(j<=i)
printf("0");

else
printf("%d",matrix[i][j]);

}
printf("\n");

 }

}

1.47 HOW TO FIND THE LOWER TRIANGULAR OF A MATRIX

Finding the lower triangular matrix is similar to that of finding the upper triangular matrix. Except in this

case the elements above the main diagonal will be zero. Here is the code to find the lower triangular

matrix.

void tril(int matrix[][3],int rows,int cols)
{

int i=0;
int j=0;
for(;i<rows;i++)
{

for(j=0;j<cols;j++)
{

if(j>i)
printf("0");

else
printf("%d",matrix[i][j]);

}
printf("\n");

 }

}

1.48 HOW TO FIND A STRICT LOWER TRIANGULAR MATRIX

Like in the case of upper triangular matrix, here also the diagonal elements along with the elements

above it are made zero. Here is the code to make a matrix a strict lower triangular matrix.

void strict_tril(int matrix[][3],int rows,int cols)
{

int i=0;
int j=0;
for(;i<rows;i++)
{

for(j=0;j<cols;j++)
{

 //For including the Diagonal Elements

38 Data Structures using C

 //the operator has been changed to
 //>= because for diagonal elements the row index
 //and the column index are same.

if(j>=i)
printf("0");

else
printf("%d",matrix[i][j]);

}
printf("\n");

 }

}

1.49 HOW TO CREATE A TOEPLITZ MATRIX FROM A GIVEN ROW AND

COLUMN

If the elements of a matrix are all constants and show a particular symmetry where all elements on a

diagonal parallel to the main one of the matrix are same, then that matrix is known as a Toeplitz matrix

after its discoverer Otto Toeplitz. Here is an example.

a b c d e

f a b c d

g f a b c

h g f a b

j h g f a

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

 Main digaonal

Fig. 1.7

Given a row and a column vector, a Toeplitz matrix can be constructed by the following rule.

C[i][j] = cols[i-j+1] where i-j>=0
C[i][j] = rows[j-i+1] where j-i>0

This code creates and prints the Toeplitz matrix which is created from a given row and column vector.

void Toeplitz(int rows[10],int cols[10],int r,int c)
{

 for(i=0;i<r;i++)
 for(j=0;j<c;j++)
 {
 if(i-j>=0)
 T[i][j]=cols[i-j+1];
 if(j-i>0)
 T[i][j]=rows[j-i+1];
 }
 for(i=0;i<r;i++)

{

P
ar

al
le

l
D

ia
g
o
n
al

s

¸
ÔÔ
˝
Ô
Ǫ̂

Array (Easy, Contiguous, Elegant!) 39

 {
 for(j=0;j<c;j++)
 printf("%d ",T[i][j]);
 printf("\n");
 }

}

1.50 HOW TO FIND WHETHER A MATRIX IS SYMMETRIC OR NOT

A matrix is said to be symmetrical if the element at (i, j) location is same as that of at (j, i) location.

This code below finds out whether the given matrix is symmetric or not.

enum {NO,YES};

int IsSymmetricMatrix(int Matrix[][10],int rows,int cols)
{
 int status=YES;
 for(i=0;i<rows;i++)
 for(j=0;j<cols;j++)
 {
 if(Matrix[i][j]!=Matrix[j][i])
 {
 status = NO;
 break;
 }
 }
return status;
}

1.51 REPRESENTING A SPARSE MATRIX AS ARRAYS

A sparse matrix is a matrix of whose 1/3 elements are only non-zero and rest are all zero. So to repre-

sent this type of matrix if we use the traditional array then there will be a problem regarding space. There

are many ways to store the sparse matrix. In almost every way there are three entries. One for rows, one

for columns and the other for elements. Normally, structures are used to represent sparse matrix in C.

Here is one such matrix.

typedef struct element
{

int rowpos;
int colpos;
float val;

}element;
typedef struct spmat
{

int noe;
int no_row;
int no_col;
element data[25];

}spmat;

As you can see, typedef is used. So there is no need to name the same structure keyword again and

again.

40 Data Structures using C

Here is the code to accept a sparse matrix that is stored in the following structures.

void InputSparse(spmat sp)
{

int i,j,k,flag=0;
clrscr();
printf("How many rows :");
scanf("%d",&sp.no_row);
printf("How many columns :");
scanf("%d",&sp.no_col);
printf("How many nonzero elements :");
scanf("%d",&sp.noe);
for(i=0;i<sp.noe;i++)
{

printf("Enter the row position :");
scanf("%d",&sp.data[i].rowpos);
printf("Enter the column position :");
scanf("%d",&sp.data[i].colpos);
printf("Enter the value in position [%d,%d] :",
sp.data[i].rowpos,sp.data[i].colpos);
scanf("%f",&sp.data[i].val);

}
}

How to Add Two Sparse Matrices

/*---------------------
Adds two sparse matrix
-----------------------*/
void add_spmat(spmat s1,spmat s2)
{

int i=0,j=0,z,k,n;
clrscr();
if((s1.no_row!=s2.no_row)||(s1.no_col!=s2.no_col))
{

gotoxy(22,22);
cprintf(" ERROR: PARAMETER MISMATCH...can't add");
gotoxy(22,23);
MES;

}
addresult.noe=s1.noe+s2.noe;
for(k=0;k<addresult.noe;k++)
{

if(i>=s1.noe)
{

n=0;
break;

}
if(j>=s2.noe)
{

n=1;

Array (Easy, Contiguous, Elegant!) 41

break;
}
z=check_add_spmat(s1.data[i].rowpos,s1.data[i].colpos,
s2.data[j].rowpos,s2.data[j].colpos);
if(z==0)
{

addresult.data[k].val=s1.data[i].val+s2.data[i].val;
addresult.data[k].rowpos=s1.data[i].rowpos;
addresult.data[k].colpos=s1.data[i].colpos;
i++;
j++;

}
if(z==1 || z==3)
{

addresult.data[k].val=s2.data[j].val;
addresult.data[k].rowpos=s2.data[j].rowpos;
addresult.data[k].colpos=s2.data[j].colpos;
j++;

}
if(z==2 || z==4)
{

addresult.data[k].val=s1.data[i].val;
addresult.data[k].rowpos=s1.data[i].rowpos;
addresult.data[k].colpos=s1.data[i].colpos;
i++;

 }
}
if(n==0)
{

for(j;j<s2.noe;j++)
{

addresult.data[k].val=s2.data[j].val;
addresult.data[k].rowpos=s2.data[j].rowpos;
addresult.data[j].colpos=s2.data[j].colpos;
k++;

}
}
if(n==1)
{

for(i;i<s1.noe;i++)
{

addresult.data[k].val=s1.data[i].val;
addresult.data[k].rowpos=s1.data[i].rowpos;
addresult.data[k].colpos=s1.data[i].colpos;
k++;

}
}
addresult.noe=k;
addresult.no_row=s1.no_row;
addresult.no_col=s1.no_col;

}

Here you may have noticed that a method called check_add_spmat () is called to find which sparse

matrix dimension to use. Here is the definition for this method.

42 Data Structures using C

/*--
used to check which sparse has to be used
and whence to add the two sparse matrices.
--*/
int check_add_spmat(int a,int b,int c,int d)
{

 int result;
if((a==0) && (b==d))

result=0;
if(a>c)

result=1;
if(a<c)

result=2;
if((a==c) && (b>d))

result=3;
if((a==c) && (b<d))

result=4;
 return result;

}

1.52 3D ARRAY APPLICATIONS HOW TO USE A 3D ARRAY TO STORE AND

MANIPULATE THE LITERACY DETAILS OF 5 CITIES AROUND A YEAR

One real-life example may be a demographic application where we want to find the literacy percentage

in 10 cities and in 10 years. So we will store this information in a 3D array. First, we will store the years

and then we will store the cities and then we will store the number of literate people in a city in that

particular year. After we have this info, we can answer any query related to the literacy rates, like which

city has the highest number of literate people in any year, or which city showed maximum increase in

literacy percentage in the years and such other queries.

Here is the C code to achieve what we discussed above.
#include <stdio.h>

int main()
{

int year=0;
int city=0;
int month=0;
int WhichYear=0;
int Literacy[5][5][12];

for(year=0;year<5;year++)
{

for(city=0;city<5;city++)
for(month=0;month<12;month++)
{

 printf("How many literate people were there in
 %d in city_%d in month %d",year,city,month);
 scanf("%d",&Literacy[year][city][month]);

}
}
printf("Which Year you want to know about ?");
scanf("%d",&WhichYear);
for(city=0;city<5;city++)

for(month=0;month<12;month++)

Array (Easy, Contiguous, Elegant!) 43

 printf("There were %d literate people in
 %d in city_%d in month %d",
 Literacy[WhichYear][city][month],year,city,month);

 return 0;
}

Have you noticed how easily we can calculate the literacy rate of a city in any month of the given

year? So whenever we have more than one unique dimension we should go for arrays. By unique

dimension I mean independent variables. Like if you know the interdependency of two variables before-

hand, there is no point to store them in two different arrays. In some books you will find that. But that is

not a good practice.

In some chemical reactions, there can be 70 to 80 parameters that you have to keep track of. And to

make things worse they are absolutely independent. So shall we use an array of dimension 70 then? Well

that is one option but of course not the best. In that case you should use an array of structures. We will

take up this in the chapter on structures.

1.53 HOW TO RETURN MORE THAN ONE VALUE FROM A FUNCTION

In C normally we can return only one value from a function. But there may be cases when we need to

send more than one values from a function, we can use arrays very well. Here is an example. This

program takes an integer array and returns the sum and their product of the elements to the calling

function. Here is the C code. This is a trivial situation. But the technique is given below.
#include <stdio.h>
#include <conio.h>
int* Pool(int array[],int size)
{

int *x;
int i=0;
int a[2]={0,1};

for(i=0;i<size;i++)
{

a[0]+=array[i];//Putting the Summation of array values
a[1]*=array[i];//Putting the Product of array values

}
 //Assigning the base address of the array to the
 //Integer Pointer
 x=&a[0];
 //Returning the whole array

return x;
}

int main()
{

int a[]={1,2,3,4};
 int *c;
 c = Pool(a,4);

printf("Sum = %d\nProduct = %d\n",c[0],c[1]);
getch();
return 0;

}

44 Data Structures using C

So you have learnt how to return multiple values from a C function using arrays and pointer. There

can be many situations where you can find this technique useful.

The next application is a sample use of this concept. The code is not fully written for this application.

A part is left for the reader to code.

1.54 HOW TO CLONE STRING TOKENIZER CLASS OF JAVA

In Java there is a very useful class that allows separating all parts of a string with a specific delimiter.

Say, for example, telephone number. You can enter the telephone number as

CountryCode-CityCode-AreaCode-Number. Now let�s imagine you are writing an application where

you need to validate these codes. For that you need each of these codes extracted from the entire phone

number. We can write a method which will take the phone number and the delimiter as input and will

return an array of codes. The first of the array returned will be Country Code; the second one will be City

Code, and so on.
char** ExtractCodesFromPhoneNumber(char *PhoneNumber,char delm)
{

 //Logic to Extract Codes. This part is left for the reader
char *codes[]={"91","033","2671","2431"};
char **p;
p=&codes[0];
return p;

}

int main()
{

char phonenumber[17]="91-033-2671-2431";
char **p=ExtractCodesFromPhoneNumber(phonenumber,'-');
printf("%s\n%s\n%s\n%s\n",*p,*(p+1),*(p+2),*(p+3));
getch();

0return 0;
}

ExtractCodesFromPhoneNumber()method returns a pointer to a 2D character array. p is a pointer

to the array of codes obtained from the passed PhoneNumber. Now the values are returned from the

method to main ().

There can be many other uses of this utility. Say, for example, you are given the job to find out how

many people in Kolkata have an email account with yahoo. Then what can you do? You can email a text

document writing your email to your friends asking them to forward it to as many people as they know.

Each recipient will have to write their email in that file. After that the last recipient will send it back

to you. Now you read that notepad file into a 2D character array and then use this utility with the

delimiter as �@�. After that check how many tokens contain yahoo and you will get the count. Try it.

We will implement this method in the chapter on strings.

1.55 CONVERSION OF BINARY TO DECIMAL

Suppose you have a very big binary number like 1000011101100110011100010110110 and you need to

convert it to the equivalent decimal number. This may be difficult if you think of doing it the normal

way. Let�s store this number in an integer array and manipulate each bit so as to get the final answer.

Here is how we should approach this problem.

Array (Easy, Contiguous, Elegant!) 45

#include <stdio.h>
#include <math.h>//Used for pow()
#include <conio.h>

int BinaryToDecimal(int Binary[],int size)
{

static int Sum=0;
int i=0;
for(i=0;i<size;i++)

Sum+=pow(2,size-i-1)*Binary[i];
return Sum;

}
int main()
{

int Binary[]={1,0,1,0,1,0,1,1,0,0,1,1};
printf("%d\n",BinaryToDecimal(Binary,12));
getch();
return 0;

}

1.56 HOW TO DESIGN A CHART FOR SHARE TRADING

Suppose, for example, you want to buy some shares. But before you want to buy the shares you want to

be sure for yourself. So you decide to keep an eye on the values of the shares from different companies

in different sectors for a few months before you actually invest your money in the share trading. So for

this you need to maintain a chart which will give you the information instantly. A chart can be viewed as

a multidimensional array from a programmer�s point of view. Here is a C code to do this.

// Chart.cpp : Defines the entry point for the console application.
//

#include <stdio.h>

#define COMPANIES 7
#define SECTORS 5
#define MONTHS 12
#define SHARES 2

int main()
{

char *companynames[]=
{"Microsoft","TCS","Infosys","Reliance","intel","Dell","IBM"};

char *sectors[]=
{"Software","Learning","Development","Others"};

char *months[]=
{"JAN","FEB","MAR","APR","MAY","JUN","JUL","AUG",

 "SEP","OCT","NOV","DEC"};
int shares[COMPANIES][SECTORS][MONTHS][SHARES];
int co,se,mo,sh;
for(co=0;co<COMPANIES;co++)
{

for(se=0;se<SECTORS;se++)
{

for(mo=0;mo<MONTHS;mo++)
{

46 Data Structures using C

for(sh=0;sh<SHARES;sh++)
{

printf("Enter Share %d value
for\n",sh+1);

printf("%s in %s in %s sector :",
companynames[co],months[mo],sectors[se]);

 scanf("%d",&shares[co][se][mo][sh]);
}

}
}

}
return 0;

}

//This part of the code reads from console the details of the
//shares for different companies and stores them in the 4D array.
//So you can access the details anytime

Suppose you want to know the share value for Reliance in the Learning Sector in October. Then it can

be found easily, because the computer stores it in an easily accessible 4D array. Look at the Literacy

Rate example above to find out how to do this. As an exercise you can add up the year with this array to

keep a yearly track if you want. You can plug File Handling to save the details in a file permanently. Try it!

Companies January February March April …. >>

Microsoft S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4

Fig. 1.8

The chart will look something like this where S1 and S2 denotes the price of shares in 1st sector, 2nd

sector, and so on. You can add more parameters. This will be a lot easier when we finish structures.

1.57 HOW TO FIND HHI INDEX

HHI stands for Herfindahl�Hirschman Index. This is a commonly accepted measure of market concen-

tration. It is calculated by squaring the market share of each firm competing in a market, and then

summing the resulting numbers. The HHI number can range from close to zero to 10,000. The HHI is

expressed as

HHI = s1^2 + s2^2 + s3^2 + ... + sn^2 (where sn is the market share of the ith firm).

The closer a market is to being a monopoly, the higher the market�s concentration (and the lower its

competition). If, for example, there were only one firm in an industry, that firm would have 100%

market share, and the HHI would equal 10,000 (100^2), indicating a monopoly. Or, if there were thou-

sands of firms competing, each would have nearly 0% market share, and the HHI would be close to zero,

indicating nearly perfect competition.

We can use an array to check if a business sector is close to monopoly or not. And moreover we can

tell which business company in that sector runs the monopoly service.
#include <conio.h>

long FindHHI(double x[],int size)
{

long sum = 0;
int i = 0;
for(i=0;i<size;i++)

Array (Easy, Contiguous, Elegant!) 47

{
sum+=pow(x[i],2);
printf("%d\n",sum);

}
return sum;

}
int main()
{

double MarketShares[]={222,334,343,566,233};
//Printing the HHI
printf("HHI is %d",FindHHI(MarketShares,5));
getch();
return 0;

}

The US Department of Justice considers a market with a result of less than 1,000 to be a competitive

marketplace; a result of 1,000�1,800 to be a moderately concentrated marketplace; and a result of

1,800 or greater to be a highly concentrated marketplace. As a general rule, mergers that increase the

HHI by more than 100 points in concentrated markets raise antitrust concerns.

1.58 HOW TO FIND GINI COEFFICIENT MEASUREMENT FOR A CITY

To measure the inequality among the people of a city from one another, a coefficient is used named

�Gini Coefficient�. The Gini coefficient, invented by the Italian statistician Corado Gini, is a number

between zero and one that measures the degree of inequality in the distribution of income in a given

society. The coefficient would register zero (0.0 = minimum inequality) for a society in which each

member received exactly the same income and it would register a coefficient of one (1.0 = maximum

inequality) if one member got all the income and the rest got nothing...

The Gini coefficient (or Gini ratio) is a summary statistic of the Lorenz Curve and a measure of

inequality in a population. The Gini coefficient is most easily calculated from unordered size data as the

�relative mean difference�, i.e. the mean of the difference between every possible pair of individuals,

divided by the mean size m (mu),

G =
1 1

22 m

= = -Â Ân n
i ji j x x

n
We can use arrays to calculate the Gini coefficient of a city. Here, mu denotes the mean income and n

is the total population on which the survey is done.
double Gini(double array[],int size)
{

int i=0;
int j=0;
double sum_1=0;
double sum_2=0;
double result=0;
for(i=0;i<size;i++)
{

for(j=0;j<size;j++)
sum_1+=array[i]-array[j];//For the first level sum

 sum_2+=sum_1;//For the second level summation
}
result =abs(sum_2/(2*pow(size,2)*Mean(array,size)));
return result;

}

48 Data Structures using C

The value returned will be anything between zero and one. If all the elements in the income array are

made equal then Gini coefficient will be zero and that means wealth is equally distributed among all.

Notice that Mean() method discussed earlier is used here. Try to reuse as many building blocks as

possible. To do that you need to write the methods in such a way that you can fit them with diverse

requirements.

1.59 HOW TO FIND WHETHER THREE GIVEN NUMBERS ARE IN AP, GP

OR HP

#include <stdio.h>
#include <conio.h>

enum status{NO,YES};

int isAP(float n[])
{

int isitanAP;
if(n[1]-n[0]==n[2]-n[1])

isitanAP = YES;
else

isitanAP = NO;
return isitanAP;

}

int isHP(float n[])
{

int isitaHP;
int cn[3];
int i;
for(i=0;i<3;i++)

cn[i]=1/n[i];
if(cn[1]-cn[0]==cn[2]-cn[1])

isitaHP = YES;
else

isitaHP = NO;
return isitaHP;

}

int isGP(float n[])
{

int isitaGP;
float r1 = n[1]/n[2];
float r2 = n[0]/n[1];
printf("%f %f",r1,r2);

if(r1 == r2)
isitaGP = YES;

else
isitaGP = NO;

return isitaGP;
}

Array (Easy, Contiguous, Elegant!) 49

int main()
{

float numbers[3];
int i;
for(i=0;i<3;i++)
{

printf("Enter number %d :",i+1);
scanf("%f",&numbers[i]);

}
if(isAP(numbers))
{

printf("AP");
printf("Common Difference :%f",numbers[1]-numbers[0]);

}
if(isHP(numbers))

printf("HP");
if(isGP(numbers))
{

printf("GP");
printf("Common Ratio :%f",(numbers[0]/numbers[1]));

}
return 0;

}

1.60 ANIMATION OF DIFFERENT SIGNALING FORMATS

Example 1.1 Write a program to plot different signaling formats. Accept a bit stream (stream of

1 and 0) and then write the program to plot the following formats.

Unipolar Non Return To Zero

Unipolar Return To Zero

Polar_Non Return To Zero

Polar Return To Zero

Manchester

Bipolar Non Return To Zero

Bipolar Return To Zero

/*Program plots signaling formats for a given bit stream*/

THIS PROGRAM WILL WORK ONLY IN TURBO C , UNDER DOS

Just copy and paste this code and run. This program has some characters that are non-printable

without a compiler.

Solution

#include <stdio.h>
#include <string.h>
#include <dos.h>
#include <conio.h>

void unipolar_nrz(char *,int);
void unipolar_rz(char *,int);
void polar_nrz(char *,int);
void polar_rz(char *,int);
void manchester(char *,int);

50 Data Structures using C

void bipolar_nrz(char *,int);
void bipolar_rz(char *,int);

int accept_bitstream(char *);

int main()
{

char *bitstream;
int size=0;
size=accept_bitstream(bitstream);
_setcursortype(_NOCURSOR);
unipolar_nrz(bitstream,size);
getch();
unipolar_rz(bitstream,size);
getch();
polar_nrz(bitstream,size);
getch();
polar_rz(bitstream,size);
getch();
manchester(bitstream,size);
getch();
bipolar_nrz(bitstream,size);
getch();
bipolar_rz(bitstream,size);
getch();
return 0;

}

int accept_bitstream(char *bitstream)
{

clrscr();
printf("Enter a bitstream :");
fflush(stdin);
gets(bitstream);
return strlen(bitstream);

}

void unipolar_rz(char bitstream[],int n)
{

clrscr();
gotoxy(1,2);
printf("Unipolar Return to zero format for bitstream \n %s "
,bitstream);
for(int i=0,k=0;k<n;i++,k++)
{

gotoxy(4+2*i,8);
printf("%c",bitstream[k]);
if(bitstream[k]=='1')
{

gotoxy(4+2*i,10);
printf("%c",'ÄÄ');

}
else
{

Array (Easy, Contiguous, Elegant!) 51

gotoxy(4+2*i,11);
printf("ÄÄ");

}
delay(100);

}

}
void unipolar_nrz(char bitstream[],int n)
{

clrscr();
gotoxy(1,2);
printf("Unipolar Non return to zero format for bitstream \n%s"
,bitstream);
for(int i=0,k=0;k<n;i++,k++)
{

gotoxy(4+2*i,8);
printf("%c",bitstream[k]);
if(bitstream[k]=='1')
{

gotoxy(4+2*i,10);
printf("ÄÄ");

}
else
{

t (4 2*i 11)
gotoxy(4+2*i,11);
printf("ÄÄ");

}
delay(100);

}
}
void polar_nrz(char bitstream[],int n)
{

clrscr();
gotoxy(1,2);
printf("Polar Non return to zero format for bitstream \n %s ",
bitstream);
for(int i=0,k=0;k<n;i++,k++)
{

gotoxy(4+2*i,8);
printf("%c",bitstream[k]);
if(bitstream[k]=='1')
{

gotoxy(4+2*i,10);
printf("ÄÄ");

}
else
{

gotoxy(4+2*i,12);
printf("ÄÄ");

}
delay(100);

}
}

52 Data Structures using C

}
void polar_rz(char bitstream[],int n)
{

clrscr();
gotoxy(1,2);
printf("Polar Return to zero format for bitstream \n %s ",
bitstream);
for(int i=0,k=0;k<n;i++,k++)
{

gotoxy(4+2*i,8);
printf("%c",bitstream[k]);
if(bitstream[k]=='1')
{

gotoxy(4+2*i,10);
printf("Ä");

}
else
{

gotoxy(4+2*i,12);
printf("Ä");

}
delay(100);

}
}
void manchester(char bitstream[],int n)
{

clrscr();
gotoxy(1,2);
printf("Manchester format for bitstream \n %s "
,bitstream);
for(int i=0,k=0;k<n;i++,k++)
{

gotoxy(4+2*i,8);
printf("%c",bitstream[k]);
if(bitstream[k]=='1')
{

gotoxy(4+2*i,10);
printf("Ä");
gotoxy(5+2*i,12);
printf("Ä");

}
else
{

gotoxy(4+2*i,12);
printf("Ä");
gotoxy(5+2*i,10);
printf("Ä");

}
delay(100);

}
}

/*Plots Bipolar Non return to zero format*/
void bipolar_nrz(char bitstream[],int n)
{

l ()

Array (Easy, Contiguous, Elegant!) 53

clrscr();
printf("Bipolar Non Return to Zero format for bitstream \n %s "
,bitstream);
int flag=0;
for(int k=0;k<n;k++)
{

gotoxy(4+2*k,8);
printf("%c",bitstream[k]);
if(bitstream[k]=='1'&&flag==0)
{

gotoxy(4+2*k,10);
printf("ÄÄ");
flag=1;
continue;

}
if(bitstream[k]=='0')
{

gotoxy(4+2*k,11);
printf("ÄÄ");

}
if(bitstream[k]=='1'&&flag==1)
{

gotoxy(4+2*k,12);
printf("ÄÄ");
flag=0;

}
delay(100);

}
}

void bipolar_rz(char bitstream[],int n)
{

clrscr();
printf("Bipolar Return to Zero format for bitstream \n %s "
,bitstream);
int flag=0;
for(int k=0;k<n;k++)
{

gotoxy(4+2*k,8);
printf("%c",bitstream[k]);
if(bitstream[k]=='1'&&flag==0)
{

gotoxy(4+2*k,10);
printf("Ä");
flag=1;
continue;

}
if(bitstream[k]=='0')
{

gotoxy(4+2*k,11);
printf("ÄÄ");

}
i i

54 Data Structures using C

if(bitstream[k]=='1'&&flag==1)
{

gotoxy(4+2*k,12);
printf("Ä");
flag=0;

}
delay(100);

}
}

Some screenshots of the above program output:

And so on..

Fig. 1.9

1.61 A WELL-KNOWN CRYPTOGRAPHIC TECHNIQUE�CIPHER TEXT

Cipher text is a popular encryption technique. What we do in cipher text is that we either move each

character to the left or right. One example is �Hello�. If it is encrypted with +1 Cipher then it will be

�Ifmmp�. This is normal Cipher text. We can have a customized cipher also. There we will have a

predefined character for each. Like I = K, L = A, and so on. This selection of letters to represent other

letters or this mapping can be absolutely random. Write a program to encrypt a given text to the plane +1

cipher text.
#include <stdio.h>
#include <conio.h>
#include <ctype.h>
#include <string.h>

char* cipher(char s[])
{

char temp[200];
int i;
for(i=0;i<strlen(s);i++)
{

if(isaplha(s[i]))
 //Moving one letter towards right

s[i]=toascii(s[i])+1;
}

return s;
}

Array (Easy, Contiguous, Elegant!) 55

int isaplha(char c)
{

if((c>='a' && c<='z') || (c>='A' && c<='Z'))
return 1;

else
return 0;

}

int main()
{

char text[200]="I am an artist!! See my paintings!!";
printf("%s",cipher(text));
getch();
return 0;

}

1.62 DECODER PROGRAM FOR THE ABOVE ENCRYPTER

char* decipher(char s[])
{

int i;
for(i=0;i<strlen(s);i++)
{

if(isaplha(s[i]))
s[i]=toascii(s[i])-1;

}

return s;
}

See the bold line above. If you compare you can see, we increased the ASCII by unity when we

encrypted the text. So while decrypting we decreased the ASCII of each character of the encrypted text

by unity. This is called a linear cipher text. This is the simplest of the linear ciphers.

1.63 HOW TO FIND THE HISTOGRAM OF A 256 GRAY SCALE IMAGE

As you may know that in a 256 gray scale image, black is 0 and pure white is 255. The rest are within

these two maxima. In the histogram of the given image, we find the frequency of all the pixel values

present in the image.

#include <stdio.h>
#include <conio.h>

int whichshade(int pixelvalue)
{

int i=0;
for(i=0;i<256;i++)

if(pixelvalue==i)
break;

return i;
}

//This method displays the Histogram in a Tabular Format.
//You can feed the same values to graphics software

56 Data Structures using C

//to see the plot. I have used Excel to plot the
void displaypixelstats(int pixelcounts[])
{

int i=0;
for(i=0;i<256;i++)

printf("Gray Scale Shade : %d Count :
%d\n",i,pixelcounts[i]);

}
int main()
{

char file[20];
int pixelvalue;
//Container of Pixel Count
int pixelcounts[255];
FILE *fp;
int i;
//Initializing the container
for(i=0;i<256;i++)

pixelcounts[i]=0;
printf("Enter the gray scale image file name :");
fflush(stdin);
scanf("%s",file);
fp = fopen(file,"r");
while(!feof(fp))
{

fscanf(fp,"%d",&pixelvalue);
pixelcounts[whichshade(pixelvalue)]++;

}
fclose(fp);
displaypixelstats(pixelcounts);
getch();
return 0;

}

1.64 HOW TO CONVERT A GRAY SCALE IMAGE TO BINARY IMAGE/

NEGATIVE IMAGE

Here, we ask the user to enter a particular threshold value and the binary image filename.
#include <stdio.h>
#include <conio.h>

int main()
{

int threshold=0;
FILE *fpi;
FILE *fpo;
char iimage[20];
char oimage[20];
int pixelvalue=0;

printf("Enter the input gray scale image name :");
fflush(stdin);
scanf("%s",iimage);

printf("Enter the output binary image name :");

Array (Easy, Contiguous, Elegant!) 57

fflush(stdin);
scanf("%s",oimage);

printf("Enter the Threshold Value :");
scanf("%d",&threshold);

fpi = fopen(iimage,"r");
fpo = fopen(oimage,"w");
while(!feof(fpi))
{

fscanf(fpi,"%d ",&pixelvalue);
if(pixelvalue<threshold)

fprintf(fpo,"%d",0);
else

fprintf(fpo,"%d",1);
}
printf("Converted to Binary!\n");
fclose(fpi);
fclose(fpo);
return 0;

}

R E V I S I O N O F C O N C E P T S

Fig. 1.10

Some Key Facts about Arrays

1. Arrays can hold only one type of elements. That means an integer array can only hold integers but

can�t hold a float value.

58 Data Structures using C

2. You can make an array for any data type, even pointers.

3. Array elements are stored in contiguous memory locations.

4. An array index start from zero.

5. Base address of the array is a pointer to the array itself.

6. Each element in an array can be accessed individually using either an index or pointer.

7. Array elements can be accessed by pointers faster.

8. Pointer access is faster than index access.

9. Arrays can be passed to function as arguments.

10. Whenever we just say array it refers to a one-dimensional array.

11. There is nothing called 2D array, it is an array of single-dimensional arrays.

12. In case of a 2D array the number of rows are not mandatory at the time of declaring the array.

13. 2D arrays are used to represent matrices.

14. Whenever the maximum number of elements to be processed is known at the beginning of the

program, the best choice is an array, or an array-based data structure because of fastest access.

R E V I E W Q U E S T I O N S

1. What is wrong in the following declaration int a[3][];

2. Is the declaration double a[][10]; valid ?

3. What are the constraints or limitations of an array?

4. What is the difference between a[5] and 5[a];

5. Given the following declaration: int x[10][20]; Explain what each of the following represents:

a. x b. x + i c. *(x + i)
d. *(x + i) + j e. *(*(x + i) + j) f. x[0]

g. x[i] h. x[i] + j i. *(x[i] + j)

6. What will this fetch *a(a + strlen(a) � 1);

7. What is the difference between strcpy() and strcat()

8. Can we achieve the same goal using any of the two ?

9. Is the following for loop valid? If no, then why ? If yes, then what does it do ?

int counter=0;

for(;array[counter]!=�\0�;counter++); Assume array is a character array.

10. Can we take an integer array as input using scanf()?

11. What do we need to print a character array in the console?

12. When do we use puts() over printf()?

13. Which of the two printf() and puts() is more versatile and why?

14. Can we resize an array in C ?

15. Assume that you have a 4-dimensional array a[10][10][10][10]. What is the syntax to get the last

element printed using index?

16. Use pointers for the above questions.

17. There is an integer array a and a float array b. What type of warning you will get when you try the

following *(a+2) = *(b+1);

18. There is an integer array int a[]={1,2,3,4,5,6}; will the following line of code printf(�%d�,*(a�1));

compile ? If not why?

Array (Easy, Contiguous, Elegant!) 59

P R O G R A M M I N G P R O B L E M S

1. Write a C program to shuffle the numbers in an integer array, like, if the original contents are 1,2,3
then return an array that holds the shuffled array contents So the output will look like

{1, 2, 3}

{1, 3, 2}

{2, 1, 3}

{2, 3, 1}

{3, 1, 2}

{3, 2, 1}

2. Write a C program to convert a decimal number to BCD. See the link http://www.danbbs.dk/
~erikoest/bcd.htm for more details regarding BCD.

3. Change the above program to find PACKED BCD using arrays.
4. Accept any 4 non-repetitive letters from users and generate all the possible combinations.
5. Create an array of 26 characters and then scan letters till the user presses Esc key. If the number of

characters entered before Esc is hit is greater than 26 then clear the array and start filling it again
from the beginning.

6. Write a program that converts a string to an integer using 2 arrays. For example, if we enter 4567
as string then it will convert it to an integer. C has a built in function for this called atoi() [Array to
integer] what is asked here is to write your own definition for atoi().

7. Write a function rank() that returns the rank of a given matrix.
8. How do we find the determinant of a given matrix of dimension 3?
9. Write a function that returns the eigenvalues of a given matrix.

10. Write a program to find whether a matrix is a Monge matrix or not.
11. A Hankel matrix is a matrix where all the elements below the first antidiagonal of the matrix are

zero. For example,
1 2 3 4
2 3 4 0
3 4 0 0
4 0 0 0

Is a Hankel matrix formed from the integer array [1, 2, 3, 4]. Write a program that will take an
integer array as input and display the Hankel matrix.

12. Write a function eye() that accepts an integer and creates an identity matrix of the given size.
13. Imagine that you are recruited by the IT team in the weather office. You have to write a program

that can help them to keep track of temperature and humidity in 10 metro cities round the year.
How will you design it?

14. Is this a valid C array declaration int array[sizeof(double)];
15. Write a program to create a game interface for Tic-Tac-Toe where two users

can play. The computer will only play the role of telling who has chances of
winning and ultimately will decide when to finish the game and who is the
winner. [Hint: From the image we can see that (0,0), (1,1) , (2,2) is a winning
combination, and so on.]

16. Perform a statistical analysis to find out which metro city has the highest degree of change as per

temperature is concerned. Add one more dimension to make room for year. Now enter the past 10

year�s data for all 10 metros. Can you tell what will be the temperature next October in metro no. 10.

60 Data Structures using C

17. What will be the statement to access the 4th element in a 2 ¥ 3 array?

18. What will be the syntax to access mnth element in an m ¥ n array?

37. Write a program to check whether two eye matrices sum to the same diagonal or not?

38. What is the meaning of a[][10]?

39. Which of the following declaration is not correct?

(a) int boxsizes[20]

(b) Integer boxSizes[20]

(c) LongInteger bigBoxSizes[20]

(d) All are valid declaration

40. What is bad about the following code snippet?

 float d[4]={1,2,3,4};
 printf(�%f�,d[d[d[1]]+2]);

41. What will be printed for this code snippet? printf(�%d�,*d);

42. Suppose we have an array of 2 dimensions like a[20][30]. If the starting address is 65000 then

what will be the location of nth and kth element on the array?

43. What will be the content of the following array arloop?

float arloop[20];
for(loop=0;loop<20;loop++)

for(foo=0;foo<28;foo++);
arloop[loop] = foo;

44. A seven segment LED display can be modeled using an array of

bits (1 and 0). Write a program that will accept a bit stream of 7

bits and will tell what the digit is, e.g. 0 maps to A, B, C, D, E,

F. (See figure)

45. Relationships can be modeled us-

ing arrays. Let there be three arrays.

The first two are of character point-

ers and the last one is of integers.

The first one, say for example

stores the names of the grandpar-

ents� second one the name of the

grandchildren and the third one will

store the number of grandchildren

each grandparent has. Write a pro-

gram that will allow the users to

enter a grandparent�s name and will

return the names of the grandchil-

dren. The user might enter a grand-

child�s name too and in that case

the program should tell the grandparent�s name. Let�s assume that there is no name conflict. How

will you prevent a name conflict ?

46. Write a function to find out the similarity index of two arrays. Similarity index of two arrays is the

percentage of locations where they have the same value.

47. Write a function to assign Boolean values to a two-dimensional array that serves as the input to an

array of 7 segment displays. Once the array is set, print the output that will be shown on the display.

48. Write a program to allow 4 players to play the board game Ludo.

2

Structures

The Building Blocks

INTRODUCTION

In the last chapter we have learnt about arrays, the most basic data structure offered by the C language.

An array has a couple of potential disadvantages. Primarily, arrays can store only one type of variable.

An integer array can only store integers, and so on. On the other hand, array elements are stored in

contiguous memory locations. But to model real-life entities, we need some data container that can store

data of multiple types. Structures step in there. In this chapter we will learn about structures, and how to

define them. After we get acquainted with this beautiful building block of data structure, we will discuss

about their different and diverse usages.

In C, the struct keyword is used to define a structure. Structures are used to define more complex data

structures like linked lists, trees, graphs, etc.

A simple structure

struct Student
{
 char name[20];
 char course[10];
 int age;
};

typedef is a keyword that makes the defining of structures simple.

2.1 USE OF typedef

typedef is a keyword in C. It allows us to define the new data types. In more specific words, typedef

allows programmers to give a name to their data types. typedef is typically used with structures. If we

use typedef with a structure while defining the structure then the structure name becomes just a built-

in data type like int or float, and we can create new structure-type objects using that name only. Every

time we declare a type of that structure, the struct keyword need not be written. So using typedef saves

62 Data Structures using C

a lot of typing and makes the code much more readable and conceptual. Judicial use of typedef and

enum enable us to do literal coding (where the code is self-explanatory, least amount of documentation

is needed). Here is an example.

typedef struct MotorCar
{
 char *model_number;
 long kilometers;
 int year_of_mfg;
 int month_of_mfg;
 char* manufacturer;
 char *owner;
 double engine_efficiency;
}MotorCar;

After we have defined the above structure, we can use MotorCar just like another built-in primitive

data type as

MotorCar MyOldMaruti;
MotorCar MyNewSantro;
MotorCar *PointerToOldCar;

As you can see, every time we don�t have to use the struct keyword and the code becomes easy to

understand and maintain.

2.2 ACCESSING THE STRUCTURE ELEMENTS

The structure elements or the attributes of a structure can be accessed using any of the two operators

.(Dot) or -> (Arrow). When we have a pointer to the structure, the arrow operator is used. Otherwise the

elements are accessed by Dot(.) operator. Say, we want to initialize the attributes of MyOldMaruti which

is a type of MotorCar class. Here is how we can do this.

MyOldMaruti.model_number = �MARUTIZENDLXI�;
MyOldMaruti.kilometers = 45234;
MyOldMaruti.year_of_mfg = 1999;
MyOldMaruti.month_of_mfg = 10;
MyOldMaruti.manufacturer = �MARUTI UDYOG LTD�;
MyOldMaruti.owner = �Jacob�;
MyOldMaruti.engine_efficiency = 89.56;

If we want to initialize the structure elements using a pointer, then we have to use the arrow operator.

Here is how we can do that.

MotorCar *PointerToOldCar;
PointerToOldCar->model_number = �MARUTIZENDLXI�;
PointerToOldCar->kilometers = 45234;
PointerToOldCar->year_of_mfg = 1999;
PointerToOldCar->month_of_mfg = 10;
PointerToOldCar->manufacturer = �MARUTI UDYOG LTD�;
PointerToOldCar->owner = �Alexandar�;
PointerToOldCar->engine_efficiency = 89.56;

A structure is one of the most useful data structures that is used to create more complex data

structures.

Structures (The Building Blocks) 63

2.3 SOME BUILT-IN USEFUL STRUCTURES IN TURBO C (UNDER DOS)

Date This structure is used to get/set the system date. We need to create an object to this structure in

order to read the system date and set the same. Here is the structure defined.

struct date {

 int da_year; /* current year */

 char da_day; /* day of the month */

 char da_mon; /* month (1 = Jan) */

};

To read the system date, we use the getdate function. Here is the C code for that.

int main(void)

{

 struct date d;

 getdate(&d);

 printf("The current year is: %d\n", d.da_year);

 printf("The current day is: %d\n", d.da_day);

 printf("The current month is: %d\n", d.da_mon);

 return 0;

}

Time

struct time {
 unsigned char ti_min; /* minutes */
 unsigned char ti_hour; /* hours */
 unsigned char ti_hund; /* hundredths of seconds */
 unsigned char ti_sec; /* seconds */
};

Like we used getdate to read the system date, we have to use gettime to read the system time.

File This structure is used for reading from a file and writing to a file. Apart from that, using this

structure we can get information about a particular file in the system. Here is the File structure.

typedef struct FILE{
 short level;
 unsigned flags;
 char fd;
 unsigned char hold;
 short bsize;
 unsigned char *buffer, *curp;
 unsigned istemp;
 short token;
} FILE;

2.4 HOW TO DEFINE A STRUCTURE THAT REPRESENTS A POINT IN 3D

To describe a point which is moving in three dimensions, we need three coordinates for the three axes.

We can store these three co-ordinates as elements of a structure instead of storing them separately. Thus

structure helps us to model real-world entities better. The point structure will look like

64 Data Structures using C

typedef struct Point
{
 double x_coordinate;
 double y_coordinate;
 double z_coordinate;
}Point;

After defining the above structure, we can create new variables of the type point as

Point themovingpoint;

Now this point structure will be used to solve a few geometrical problems. We will pass point-type

structure variables to different methods and there within those methods we will modify the values of the

variables.

2.5 HOW TO FIND THE CENTROID OF A POLYGON USING POINT STRUCTURE

All we have to do is to divide the summation of each coordinate for each point and then divide the

number by the number of vertices. Here is the code that accepts an array of point-type structures and

then returns a point-type structure that represents the centroid of the polygon.

Point getcentroid(Point P[],double size)
{

Point temp;
int i;
static double x=0;
static double y=0;
static double z=0;
for(i=0;i<size;i++)
{

x+=P[i].x_coordinate;
y+=P[i].y_coordinate;
z+=P[i].z_coordinate;

}
temp.x_coordinate=x/size;
temp.y_coordinate=y/size;
temp.z_coordinate=z/size;

return temp;
}

2.6 HOW TO FIND THE DISTANCE BETWEEN TWO POINTS IN 3D

In geometry finding the distance between the two points is basic for many geometrical problems. A

method can be written that accepts two point-type structures and returns the distance between them as a

double value. Here is the code for the method.

double distance(Point P1,Point P2)
{

return sqrt(
 pow(P1.x_coordinate-P2.x_coordinate,2)+
 pow(P1.y_coordinate-P2.y_coordinate,2)+
 pow(P1.z_coordinate-P2.z_coordinate,2));

}

Structures (The Building Blocks) 65

This method can be called to find the distance between two points. Using structures, we have made

the code look much more conceptual. If we don�t use structure, then to find the distance between two

points in 3D we need to pass 6 arguments instead of two and that makes the code unreadable.

2.7 HOW TO FIND THE AREA OF ANY REGULAR POLYGON

Area of a regular polygon is given by the formula

A =
2

cot
4

na
n
pÊ ˆ Ê ˆ

Á ˜ Á ˜Ë ¯ Ë ¯
where a is the arm length of the regular polygon and n is the number of arms.

double AreaOfAnyRegularPolygon
(Point AnyVertex, Point AdjacentVertex,int arms)
{

double armlength = distance(AnyVertex,AdjacentVertex);
return ((arms*pow(armlength,2))/4)*(1/tan(180/arms));

}

2.8 HOW TO TEST COLLINEARITY FOR THREE POINTS

We can check whether the three points in a plane are collinear or not by two ways. We can check

whether the slope for the line joining 1st and 2nd point and the slope for the line joining the 2nd and 3rd

point are equal or not. If the slopes are equal, then we can conclude that the points are collinear.

Otherwise, we can find the area formed by the three points that represent the vertices of the triangle.

If the triangle area is zero then we can conclude that the three points are collinear. Here is the code to test

collinearity using slopes. As the point structure is defined to model a point in 3D, then there will be three

types of slopes defined namely slope in XY plane, slope in YZ plane and slope in ZX plane. There are

three methods that calculate the slope in these three planes. So if we have to check whether the three

points are collinear or not in XY plane we will use the method that calculates the slope in XY plane, and

so on, for other planes.

Here is the code:

double slopeXY(Point P1,Point P2)
{

return (P2.y_coordinate-P1.y_coordinate)/(P2.x_coordinate-
P1.x_coordinate);
}

int iscolinearXY(Point P1,Point P2,Point P3)
{

int flag=0;
if(slopeXY(P1,P2) == slopeXY(P2,P3))

flag = 1;
else

flag = 0;
return flag;

}

66 Data Structures using C

2.9 HOW TO CHECK IF A TRIANGLE IS EQUILATERAL

Now we can use the distance method to find out whether a triangle is equilateral or not. We will pass the

three point type objects to the method and then calculate the distance between the points. If these dis-

tance values are same then the triangle is equilateral, otherwise the triangle is not equilateral. Here is the

code for the function.

int is Equilateral(Point P1,Point P2,Point P3)
{

int equal = 0;
double d1 = distance(P1,P2);
double d2 = distance(P2,P3);
double d3 = distance(P3,P1);

if(d1==d2 && d2==d3 && d3==d1)
equal = 1;//the triangle is equilateral

else
equal = 0;//the triangle is not equilateral

return equal;
}

This method can be used as a building block to other methods as distance() method is used here as

a building block. You must have noticed the main motivation for using structure to store the point details

will give the code much more conceptual look.

2.10 HOW TO CHECK IF A TRIANGLE IS ISOSCELES

Just by changing the operator in the above code we can find whether a triangle is isosceles or not. Here

is the method that checks whether three given points will make an isosceles triangle or not.

int isisosceles(Point P1,Point P2,Point P3)
{

int flag;
double d1 = distance(P1,P2);
double d2 = distance(P2,P3);
double d3 = distance(P3,P1);

 //Checking whether any two arm lengths are
 //equal or not..

if(d1==d2 || d2==d3 || d3==d1)
flag = 1;

else
flag = 0;

return flag;
}

2.11 HOW TO MODEL A TRIANGLE USING POINT STRUCTURE?

So long we have used point type structures separately to check whether a triangle is isosceles or not, and

so on. But to move one level up, we can model a triangle with Point type structures and other variables.

Here is the structure that will be representing a triangle.

Structures (The Building Blocks) 67

enum Type{ISOSCALES=0,EQUILATERAL,RIGHTANGLED,SCALENE};
typedef struct Triangle
{

Point P1;//Vertex 1
Point P2;//Vertex 2
Point P3;//Vertex 3
Point Centroid;
Point Orthocentre;
Point Incentre;
Point Circumcentre;
double area;
double perimeter;
enum Type type;

}Triangle;

After this structure is defined we can pass one triangle type object instead of three points. Thus, we

can extend the methods isEquilateral(), Isisosceles(), etc, to look even more conceptual. Moreover,

we can pass an array of triangles to these methods and return multiple values using pointers (See chapter

on arrays, More Applications Section) describing the type of each triangle passed.

2.12 HOW TO CHECK IF A TRIANGLE IS RIGHT ANGLED

To check whether a triangle is right angled or not we can check it using the slopes or by Pythagoras�s

Formula. Here is the code of the method that takes a triangle structure as object input and will return 1 or

0 depending on whether the triangle is right-angled or not. Here we have assumed that the triangle is

lying in the XY plane. For any other plane you just need to change the method.
int isrightangled(Triangle T)
{

if(slopeXY(T.P1,T.P2)*slopeXY(T.P1,T.P3)==-1 ||
 slopeXY(T.P1,T.P2)*slopeXY(T.P2,T.P3)==-1)

T.type = 1;//It is a right angled one
else

T.type = 0;//It is not
return T.type;

}

This approach to find whether a triangle is right angled or not is very easy, and computationally less

expensive than implementing Pythagoras� theorem.

2.13 HOW TO FIND WHETHER A TRIANGLE IS EQUILATERAL OR NOT

Here is the code to check whether a triangle is equilateral or not using this triangle structure.
int istriangleequilateral(Triangle T)
{

double d1 = distance(T.P1,T.P2);
double d2 = distance(T.P2,T.P3);
double d3 = distance(T.P3,T.P1);

if(d1==d2 || d2==d3 || d3==d1)
T.type = EQUILATERAL;

else
T.type = !EQUILATERAL;

return T.type;
}

68 Data Structures using C

This is far more readable and more of a conceptual level than the previous code. Notice carefully

how enum variable type is used to increase the readability. As point structure is used to model this

triangle structure, similarly this triangle structure can be used to model a tetrahedron. Conceptually a

tetrahedron is nothing but the combination of four equilateral triangles including the base triangle. We

can think a tetrahedron as special triangular pyramid whose all the sides are of equal area. Now we will

model triangular pyramid using triangle structure and then write methods to process the new structure.

2.14 HOW TO MODEL A TETRAHEDRON USING TRIANGLES

Let us first model a triangular pyramid using triangle structure. A triangular pyramid can be thought of

as a combination of four triangles including the base.

enum TypeOfTriangularPyramid{NOTTETRAHEDRON,TETRAHEDRON};

typedef struct TriangularPyramid
{

Triangle Side1;
Triangle Side2;
Triangle Side3;
Triangle Base;

 Point Centroid;//Centroid of the Pyramid
enum TypeOfTriangularPyramid type;

}TriangularPyramid;

Any triangular pyramid can be of two types. Either it is a tetrahedron or it is not. To make the code

more readable enum variable �TypeOfTriangularPyramid� is used.

Now a method is written that accepts a TriangularPyramid structure as input, and checks whether

the pyramid is a tetrahedron or not. Here is the code.

int isTetrahedron(TriangularPyramid tp)
{

if(istriangleequilateral(tp.Base)==EQUILATERAL
 && istriangleequilateral(tp.Side1) == EQUILATERAL
 && istriangleequilateral(tp.Side2) == EQUILATERAL
 && istriangleequilateral(tp.Side3) == EQUILATERAL)

tp.type = TETRAHEDRON;
else

tp.type = NOTTETRAHEDRON;

return tp.type;
}

This method returns 1 when the triangular pyramid is a tetrahedron, otherwise it returns 0. Thus it

gives more conceptual look to the code. As we know that tetrahedron is used extensively in 3D modeling,

we can use this structure to model more complex 3D solids.

2.15 HOW TO MODEL A RECTANGLE USING STRUCT AND ENUM

As we have modeled the triangle using point structures, we can model a rectangle using four Point type

structures and one enum variable that will determine whether the rectangle is a square or not. Here is the

structure that will model the structure rectangle.

Structures (The Building Blocks) 69

enum TypeOfRectangle{RECTANGLE,SQUARE};

typedef struct Rectangle
{

Point P[4];
double area;
double perimeter;
enum TypeOfRectangle type;

}Rectangle;

Notice, that the rectangle structure holds the area and perimeter separately even though we have
length and breadth defined in the structure. These variables are kept for the reverse calculations. If
sometimes we are given the area and perimeter then we can find the other values. Here in this structure,
unlike triangle, an array of point structure is kept instead of four different point variables. This approach
makes the code, much more compact.

2.16 HOW TO MODEL A TRAPEZIUM USING POINT

To model a Trapezium we need four points. Here is a structure that represents a Trapezium

enum TypeOfTrapezium{ISOSCALES_TRAPEZIUM,NOT_ISOSCALES};
typedef struct Trapezium
{

//When the user knows the co-ordinates of the points
Point P1;
Point P2;
Point P3;
Point P4;
//When somebody dont know the co-ordinates of the vertices.
double height;
double length;
double area;
double perimeter;

enum TypeOfTrapezium type;

}Trapezium;

A trapezium can be either iso-scales or not. So to model that we have used an enum variable.
TypeOfTrapezium in order to find what type of trapezium is this.

2.17 HOW TO CHECK WHETHER A TRAPEZIUM IS EQUILATERAL OR NOT

int isIsoscalesTrapezium(Trapezium T)
{

/*
 P1.......P2
 / \
P4/..........\P3

*/

double b=distance(T.P1,T.P4);

70 Data Structures using C

double c=distance(T.P2,T.P3);
if(b==c)

T.type = ISOSCALES_TRAPEZIUM;
else

T.type = NOT_ISOSCALES;
return T.type;
return 0;

}

2.18 HOW TO FIND WHETHER A POINT IS WITHIN A TRIANGLE OR NOT

enum Where{INSIDE=-1,ON,OUTSIDE};
int isPointWithinTriangle(Triangle T,Point P)
{
 Point MaxH;
 Point MaxV;
 int where=INSIDE;
 if(abs(T.P1.x_coordinate)>abs(T.P2.x_coordinate)
 && abs(T.P1.x_coordinate)>abs(T.P3.x_coordinate))
 MaxH = T.P1;
 if(abs(T.P2.x_coordinate)>abs(T.P1.x_coordinate)
 && abs(T.P2.x_coordinate)>abs(T.P3.x_coordinate))
 MaxH = T.P2;
 if(abs(T.P3.x_coordinate)>abs(T.P2.x_coordinate)
 && abs(T.P3.x_coordinate)>abs(T.P1.x_coordinate))
 MaxH = T.P3;

 if(abs(T.P1.y_coordinate)>abs(T.P2.y_coordinate)
 && abs(T.P1.y_coordinate)>abs(T.P3.y_coordinate))
 MaxV = T.P1;
 if(abs(T.P2.y_coordinate)>abs(T.P1.y_coordinate)
 && abs(T.P2.y_coordinate)>abs(T.P3.y_coordinate))
 MaxV = T.P2;
 if(abs(T.P3.y_coordinate)>abs(T.P2.y_coordinate)
 && abs(T.P3.y_coordinate)>abs(T.P1.y_coordinate))
 MaxV = T.P3;

 if(P.x_coordinate>MaxH.x_coordinate ||
 P.y_coordinate >MaxV.y_coordinate)
 where = OUTSIDE;

 if(iscolinearXY(T.P1,P,T.P2)
 || iscolinearXY(T.P1,P,T.P3)
 || iscolinearXY(T.P2,P,T.P3))
 where = ON;

 return where;
}

Structures (The Building Blocks) 71

2.19 HOW TO FIND WHETHER A POINT IS WITHIN A RECTANGLE OR NOT

int isWithinRectangle(Rectangle R,Point P)
{

/*
D................C
 : :
 : .P :
A:...............B

*/
int where;
if((P.x_coordinate>R.P1.x_coordinate)
&& (P.x_coordinate > R.P4.x_coordinate)
&& (P.x_coordinate<R.P3.x_coordinate)
&& (P.x_coordinate<R.P2.x_coordinate))

 where = INSIDE;

if(P.x_coordinate == R.P1.x_coordinate
 || P.x_coordinate == R.P2.x_coordinate
 || P.x_coordinate == R.P3.x_coordinate
 || P.x_coordinate == R.P4.x_coordinate)

 where = ON;
 else
 where = OUTSIDE;

 return where;
}

2.20 HOW TO FIND WHETHER A POINT IS WITHIN A CIRCLE OR NOT

//
int isWithinCircle(Circle c1,Point P)
{
 int where;

 if(distance(c1.centre,P)<c1.radius)
 where=INSIDE;
 if(distance(c1.centre,P)==c1.radius)
 where=ON;
 else
 where=OUTSIDE;
 return where;
}

2.21 HOW TO FIND WHETHER TWO CIRCLES ARE TOUCHING

INTERNALLY OR NOT

When two circles touch internally then the distance between their centers is less than the summation of

the radii of the circles.

72 Data Structures using C

enum Status{NO,YES};
int isTouchingInternally(Circle c1,Circle c2)
{
 if(distance(c1.centre,c2.centre)<c1.radius+c2.radius)
 return YES;
 else
 return NO;
}

2.22 HOW TO FIND WHETHER TWO CIRCLES ARE TOUCHING

EXTERNALLY OR NOT

When two circles touch externally then the distance between the centers of the circle is same as the

Summation of the radii.
enum Status{NO,YES};
int isTouchingExternally(Circle c1,Circle c2)
{
 if(distance(c1.centre,c2.centre)==c1.radius+c2.radius)
 return YES;
 else
 return NO;
}

Here is the structure that will be used to represent a straight line in this format.

2.23 HOW TO MODEL A STRAIGHT LINE IN SLOPE FORMAT
typedef struct StraightLine
{
 //When you supply the m and c
 double m;
 double c;
 //When you give the Points on the line
 Point P1;
 Point P2;
} StraightLine;

As you may have noticed, that to model a straight line y = 2x � 3.5 value of m = 2 and c = 3.5

Instead of m and c there are two points. These two points can be any two points on the line.

If the user doesn�t provide m and c, then we can calculate the slope m and constant c.

We can create above line like

StraightLine aline;
aline.m = 1;
aline.c = 0;

aline represents y = x.

2.24 HOW TO MODEL A STRAIGHT LINE IN XY INTERCEPT FORMAT

typedef struct StraightLineXYIntercept
{
 double a;
 double b;

 Point P1;

Structures (The Building Blocks) 73

 Point P2;
}StraightLineXYIntercept;

2.25 HOW TO CONVERT AN XY INTERCEPT FORM LINE TO SLOPE

FORMAT LINE

StraightLine convertFromStraightLineXYIntercept
 (StraightLineXYIntercept sxy)
{
 StraightLine sl;
 sl.m = -(sxy.a/sxy.b);
 sl.c = -(sxy.a*sxy.b);
 return sl;
}

2.26 HOW TO CONVERT A SLOPE LINE FORMAT TO

XY INTERCEPT FORMAT

StraightLineXYIntercept convertFromStraightLine(StraightLine sl)
{
 StraightLineXYIntercept sxyl;
 sxyl.a = -sl.c/sl.m;
 sxyl.b = c;//Y intercept
 return sxy l;
}

2.27 HOW TO FIND WHETHER TWO LINES ARE PARALLEL OR NOT

Two Straight lines are parallel to each other if and only if their slopes are equal.
enum {NOT_PARALLEL,PARALLEL};//An anonymous enum variable
int isParallel(StraightLine s1,StraightLine s2)
{
 if(s1.m == s2.m)
 return PARALLEL;
 else
 return NOT_PARALLEL;
}

2.28 HOW TO FIND THE POINT OF INTERSECTION OF

TWO STRAIGHT LINES

Point FindIntersctionPoint(StraightLine s1,StraightLine s2)
{
 Point PointOfIntersection;
 PointOfIntersection.x_coordinate = (s2.c-s1.c)/(s2.m-s1.m);
 PointOfIntersection.y_coordinate =
 s1.m*PointOfIntersection.x_coordinate+s1.c;
 return PointOfIntersection;
}

2.29 HOW TO FIND THE TANGENT ON ANY POINT ON A CIRCLE

 StraightLineXYIntercept TangentOnCircle(Circle cir,Point P)
{

74 Data Structures using C

 //xx'+yy' = a^2
 StraightLineXYIntercept Tangent;
 Tangent.a = pow(cir.radius,2)/P.x_coordinate;
 Tangent.b = pow(cir.radius,2)/P.y_coordinate;
 return Tangent;
}

2.30 HOW TO MODEL A PARABOLA USING A STRAIGHT LINE AND POINT

enum Direction{POSITIVE_X,POSITIVE_Y,NEGATIVE_X,NEGATIVE_Y};
typedef struct Parabola
{

Point Focus;
Point Vertex;
StraightLineXYIntercept axis;
StraightLineXYIntercept directrix;
enum Direction dir;

}Parabola;

2.31 HOW TO FIND THE TANGENT ON ANY POINT ON A PARABOLA

StraightLine TangentOnParabola(Parabola P,Point op)
{
 StraightLine Tangent;
 Tangent.m =
(double)2*distance(P.Vertex,P.Focus)/(double)op.y_coordinate;
 Tangent.c = 2*distance(P.Vertex,P.Focus)*op.x_coordinate;
 return Tangent;
}

2.32 HOW TO FIND THE NORMAL ON ANY POINT ON A PARABOLA

StraightLine NormalOnParabola(Parabola P,Point pop)
{

StraightLine Normal;
Normal.m = -pop.y_coordinate/(2*distance(P.Vertex,P.Focus));
Normal.c=(pop.x_coordinate*pop.y_coordinate)/(2*distance(P.Ver
tex,P.Focus)) + pop.y_coordinate;
return Normal;

}

2.33 HOW TO MODEL AN ELLIPSE

typedef struct Ellipse
{
 double Major;
 double Minor;
 Point Focus;
 Point RightEnd;
 Point LeftEnd;
 Point Up;
 Point Down;
} Ellipse;

Structures (The Building Blocks) 75

In this structure defining ellipse, we can replace the point focus by two straight lines describing the

major and the minor axis of the ellipse. In that case their point of intersection is nothing but the focus of

the ellipse.

So in that case the ellipse will look like

typedef struct Ellipse
{
 double Major;
 double Minor;
 StraightLineXYIntercept MajorAxis;
 StraightLineXYIntercept MinorAxis;
}Ellipse;

2.34 HOW TO FIND THE AREA OF AN ELLIPSE

To find the area of an ellipse we need the length of major and minor axes of the ellipse. That is, inde-

pendent of Focus.

Here is a C code that finds the area of an ellipse:

double getEllipseArea(Ellipse el)
{
 return M_PI*el.Major*el.Minor;
}

2.35 HOW TO FIND THE TANGENT AT ANY POINT OF AN ELLIPSE

StraightLineXYIntercept TangentOnEllipse(Ellipse elps,Point P)
{
 StraightLineXYIntercept sl;
 //Assuming an Ellipse whose major axis is X-Axis
 sl.a = pow(elps.Major,2)/P.x_coordinate;
 sl.b = pow(elps.Minor,2)/P.y_coordinate;
 return sl;
}

2.36 HOW TO FIND THE NORMAL AT ANY POINT OF AN ELLIPSE

Here, we will not directly use the normal equation. First let�s find the tangent at that point. Normal at that

point is nothing but a line which is perpendicular to the tangent and passes through that point.

StraightLine NormalOnEllipse(Ellipse elps, Point P)
{
 StraightLineXYIntercept TangentAtP = TangentOnEllipse(elps,P);
 StraightLine NormalAtP =
 convertFromStraightLineXYIntercept(TangentAtP);
 NormalAtP.m = -1/NormalAtP.m;
 NormalAtP.c = P.y_coordinate-NormalAtP.m*P.x_coordinate;
 return NormalAtP;

}

2.37 HOW TO MODEL A PRISM USING STRUCTURE

A prism is a geometrical shape that has a polygonal base and rectangular sides. The base of the prism

will be a regular polygon. Say for example, the base of a prism is an octagon, then the model for the

prism using rectangle and point structures in the compact form (using arrays of structures) will look like

76 Data Structures using C

typedef struct Prism
{

Point BaseVertices[8];//8 Equidistant Points on a Plane
double armlength;//Distance between any two
double height;//Height of the Prism
Rectangle AnyOneSide;//Any side of the Prism.

}Prism;

In this structure armlength is nothing but the distance between any two vertices of the regular octa-

gon. In a way, this armlength actually becomes the breadth of the rectangle and height of the prism

becomes the length for the rectangle. As in the previous case, here also the value of the armlength may

not seem mandatory but to reverse the calculation as discussed above, these variables are needed.

Thus, it shows that how the very first structure point is used to create more complex 3-dimensional

type of solids. These concepts can be enhanced further. After we discuss few other applications of

structures, at the end of this chapter point structure is shown again to model few other 2D and 3D

geometrical shapes.

2.38 HOW TO MODEL A CIRCULAR CYLINDER

A circular-cylinder is nothing but a combination of a circle and a point.

typedef struct Cylinder
{

//Coordinate Geometry Point Of View
Circle Base;
Point Top;

//Mensuration Point of View
double height;
double radius;
double volume;
double circulararea;

}Cylinder;

The height of the circular cylinder is the distance between the center of the base circle and the top

point. Do you realize that volume and total surface area of the cylinder is nothing but a function of radius

of the base circle and the height.

2.39 HOW TO FIND THE SURFACE AREA OF A CYLINDER

Total surface area of a cylinder is the area of two bases and the circular area. We can enum variables to

write an intelligent function to find the area of portions.

Here is the code. The height of the cylinder is nothing but the distance between the center of the base

and the top of the circle.

enum {BOTTOMORTOP, BOTH, SURFACE, ALL};

double getArea(Cylinder cin,enum whichpart part)
{

double area=0;
if(part==ALL)//All the surfaces

area =

Structures (The Building Blocks) 77

2*M_PI*pow(cin.Base.radius,2)+2*M_PI*cin.Base.radius*distance(cin.Base.
centre,cin.Top);

if(part==BOTTOMORTOP)
area = M_PI*pow(cin.Base.radius,2);

if(part==BOTH)//Both the surface only , not curved surface
area = 2*M_PI*pow(cin.Base.radius,2);

if(part==SURFACE)//Only the curved surface
area =

2*M_PI*cin.Base.radius*distance(cin.Base.centre,cin.Top);
return area;

}

2.40 HOW TO MODEL A CONE

typedef struct Cone
{

Circle Base;
Point Top;
Point AnyPointOnPerimeter;
double slantheight;
double height;

}Cone;

2.41 HOW TO FIND THE AREA OF A CONE

enum Where{INSIDE=-1,ON,OUTSIDE};
double getConeArea(Cone mycone,enum whichpart part)
{

double area=0;
mycone.slantheight =

distance(mycone.AnyPointOnPerimeter,mycone.Top);
mycone.height = distance(mycone.Base.centre,mycone.Top);

if(part==TOPORBOTTOM)
area = M_PI*pow(mycone.Base.radius,2);

if(part==SURFACE)
area = M_PI*mycone.Base.radius*mycone.slantheight;

if(part==ALL)
area = M_PI*mycone.Base.radius

 *(mycone.Base.radius + mycone.slantheight);
return area;

}

2.42 HOW TO FIND THE VOLUME OF THE CYLINDER DEFINED BY A

CIRCLE AND POINT

double getVolume(Cylinder cin)
{

return
M_PI*pow(cin.Base.radius,2)*distance(cin.Base.center,cin.Top);

}

78 Data Structures using C

2.43 HOW TO FIND THE AREA OF THE PRISM

Just like a cylinder we can write a function that will accept a flag and depending on the flag value it will

give us the area of a particular part of the prism.

enum whichpart{BOTTOMORTOP, BOTH, SURFACE, ALL};
double getPrismArea(Prism P,int arms,enum whichpart part)
{

P.armlength = distance(P.BaseVertices[0],P.BaseVertices[1]);
 P.AnyOneSide.breadth = P.armlength;

P.AnyOneSide.length = P.height;
if(part == TOPORBOTTOM)

area =
AreaOfAnyRegularPolygon(P.BaseVertices[0],P.BaseVertices[1],arms);

if(part == BOTH)
area =

2*AreaOfAnyRegularPolygon(P.BaseVertices[0],P.BaseVertices[1],arms);
if(part == SURFACE)

area = arms*P.AnyOneSide.length*P.AnyOneSide.breadth;
if(part == ALL)

area =
2*AreaOfAnyRegularPolygon(P.BaseVertices[0],P.BaseVertices[1],arms)+

 arms*P.AnyOneSide.length*P.AnyOneSide.breadth;
return area;

}

2.44 HOW TO FIND OUT WHETHER A POINT IS WITHIN AN ELLIPSE OR NOT

enum Where{INSIDE=-1,ON,OUTSIDE};
int isPointWithinEllipse(Ellipse elps,Point P)
{

//Lets assume that the Point is on the ellipse
int where=ON;
int value=pow(P.x_coordinate,2)/pow(elps.Major,2)

 +pow(P.y_coordinate,2)/pow(elps.Minor,2)-1;

if(value<0)
where = INSIDE;

if(value>0)
where = OUTSIDE;

return where;
}

2.45 HOW TO FIND OUT WHETHER A POINT IS WITHIN A HYPERBOLA

OR NOT, ASSUME THAT THE MAJOR OR MINOR AXES ARE GIVEN

enum Where{INSIDE=-1,ON,OUTSIDE};

int isPointWithinHyperbola(Hyperbola hyper,Point P)
{

//Lets assume that the Point is on the circle
int where=ON;

/

Structures (The Building Blocks) 79

int value=pow(P.x_coordinate,2)/pow(hyper.Major,2)
 -pow(P.y_coordinate,2)/pow(hyper.Minor,2)-1;

if(value<0)
 where = INSIDE;

if(value>0)
 where = OUTSIDE;

return where;
}

2.46 HOW TO MODEL A RHOMBUS

typedef struct Rhombus
{

Point P1;
Point P2;
Point P3;
Point P4;

}Rhombus;

2.47 HOW TO FIND THE AREA OF A RHOMBUS

double getRhombusArea(Rhombus Rom)
{

double base = distance(Rom.P1,Rom.P2);
Point R = NormalProjection(Rom.P4,Rom.P1,Rom.P2);
double height = distance(Rom.P4,R);
return base*height;

}

2.48 HOW TO MODEL VECTORS AS STRUCTURE

The structure is a very handy tool to store triplets. Modeling vectors using a structure like point, will

give the liberty to use vector as a built in data type. Here is the structure that will represent vectors.

typedef struct vector
{

double xmagnitude;//magnitude along unit vector i
double ymagnitude;//magnitude along unit vector j
double zmagnitude;//magnitude along unit vector k

}vector;

This will represent a vector. And we can write methods that accept vector as parameters and can

return a vector from a method. Some vector algebra logic will be implemented now using this vector

structure.

2.49 HOW TO WRITE A FUNCTION TO ADD VECTORS

A method is written using the vector structure that accepts an array of vector and returns a vector. Vector

addition is nothing but addition in each direction. A temporary vector is created and its variables are

initialized with the directed summation of vector magnitudes. After that this temporary vector is re-

turned as the sum of the passed vectors. Here is the code for the method.

80 Data Structures using C

vector addvectors(vector vectors[],int size)
{

vector temp;
static double x;
static double y;
static double z;
int i;
for(i=0;i<size;i++)
{

x+=vectors[i].xmagnitude;//Adding the x components
y+=vectors[i].ymagnitude;//Adding the y components
z+=vectors[i].zmagnitude;//Adding the z components

}
 //Assigning the magnitude of the temporary vector
 //using the summations above.

temp.xmagnitude = x;
temp.ymagnitude = y;
temp.zmagnitude = z;

return temp;//Returning the addition vector result
}

2.50 HOW TO FIND THE WEIGHTED SUM OF VECTORS

Sometimes it is needed to find the weighted sum of the vectors. This may happen heavily in application

of vectors where we represent some quantities by vector. Here is a code to find the weighted sum..

vector wightedAverage(vector vecs[],int size,double weight[])
{

vector wsum;
int i=0;
double ws;
for(i=0;i<size;i++)
{

vecs[i]=scalarmult(vecs[i],weight[i]);
ws+=weight[i];

}
wsum=addvectors(vecs,size);
return scalarmult(wsum,1/ws);

}

2.51 HOW TO FIND IF THE WEIGHTED SUM OF VECTORS IS AN

AFFINE SUMMATION OR NOT

If the summation of weights is unity then the vector summation is known as affine summation. Here is a

code to find whether the sum of a set of vectors is affine or not.

vector weightedAverage(vector vecs[],int size,double weight[])
{

vector wsum;
int i=0;
double ws;
for(i=0;i<size;i++)

Structures (The Building Blocks) 81

{
vecs[i]=scalarmult(vecs[i],weight[i]);
ws+=weight[i];

}
if(ws==1)//Summation of the weights is unity
printf(�Affine Sum\n�);

 else
printf(�Not affine Sum\n�);
wsum=addvectors(vecs,size);
return scalarmult(wsum,1/ws);

}

2.52 HOW TO WRITE A FUNCTION TO FIND DOT PRODUCT OF TWO VECTORS

The dot product of two vectors is nothing but a scalar value obtained by adding the product of the two

vectors in each direction. For example if the two vectors are like

V1 = a1 i + a2 j + a3 k

V2 = b1 i + b2 j + b3 k

Then their dot product will be a1b1 + a2b2 + a3b3. A method is written that accepts two vectors and

returns a scalar value as their dot product. Here is the code.

double dotproduct(vector v1,vector v2)
{

return v1.xmagnitude*v2.xmagnitude +
v1.ymagnitude*v2.ymagnitude +
v1.zmagnitude*v2.zmagnitude;

}

2.53 HOW TO WRITE A FUNCTION TO FIND CROSS PRODUCT OF TWO

VECTORS

The cross product of two vectors is another vector which is perpendicular to the plane in which the first

two belong. The direction (whether upward or downward) of the vector right hand rule. If two vectors

are A and B given by

A = Ax i + Ay j + Az k and

B = Bx i + By j + Bz k then their cross product C is given by

C = AxB = (AxBz � AzBy) i + (AzBx � AxBz) k + (AxBy � AyBx) k

Here is the code to find the cross product of two vectors. This method accepts two vectors and returns

the cross product vector.

vector crossproduct(vector v1,vector v2)
{

vector temp;
temp.xmagnitude = v1.ymagnitude*v2.zmagnitude �

 v1.zmagnitude*v2.ymagnitude;
temp.ymagnitude = v1.zmagnitude*v2.xmagnitude -

 v1.xmagnitude*v2.zmagnitude;
temp.zmagnitude = v1.xmagnitude*v2.ymagnitude �

 v1.ymagnitude*v2.xmagnitude;
return temp;

}

82 Data Structures using C

2.54 HOW TO WRITE A FUNCTION FOR SCALAR MULTIPLICATION OF A

VECTOR

Suppose we want to magnify the vector by a certain value or we want to diminish the value of each

component of the vector. A method can be written that accepts two parameters, one vector and the other

one is a scalar that magnifies or diminishes the value of each co-efficient of the vector. The method will

return the magnified or the diminished vector. Here is the code for that.

vector scalarmult(vector myvector,double scalar)
{

myvector.xmagnitude*=scalar;
myvector.ymagnitude*=scalar;
myvector.zmagnitude*=scalar;
return myvector;

}

When scalar is a fraction (0 < scalar < 1) then the returned vector will be diminished. On the other

hand when the scalar value is more than 1 then the returned vector will be a magnified one.

2.55 HOW TO FIND DOT PRODUCT OF THREE VECTORS

double scalartrippleproduct(vector a,vector b,vector c)
{

//a.(bXc)
vector temp;
temp = crossproduct(b,c);
return dotproduct(a,temp);

}

Notice that this above function internally calls the crossproduct() fnction to find the cross product of

the two vectors and then find the dot product with the first one.

2.56 HOW TO FIND WHETHER THREE VECTORS ARE COPLANAR OR NOT

The scalar triple product gives us the volume of a box whose dimensions are given by the three vectors.

So if the volume is zero then we can conclude that the vectors are co-planar. Here is a function that

accepts three vectors and return 1 if they are co-planar else they will return 0.

enum {NO,YES};
int isCoplanar(vector a,vector b,vector c)
{

if(scalartrippleproduct(a,b,c)==0)
return YES;

else
return NO;

}

2.57 HOW TO FIND THE CROSS PRODUCT OF THREE VECTORS

double scalartrippleproduct(vector a,vector b,vector c)
{

//a.(bXc)
vector temp;
temp = crossproduct(b,c);
return dotproduct(a,temp);

}

Structures (The Building Blocks) 83

Notice that how we have used the previous method �crossproduct()� while calculating the cross

product for three vectors.

2.58 HOW TO FIND THE SCALAR PRODUCT OF FOUR VECTORS

double scalarquadrapleproduct(vector a,vector b,vector c,vector d)
{

vector m;
vector n;
m = crossproduct(a,b);
n = crossproduct(c,d);
return dotproduct(m,n);

}

2.59 HOW TO FIND THE VECTOR PRODUCT OF FOUR VECTORS

vector vectorquadrapleproduct(vector a,vector b,vector c,vector d)
{

vector m;
vector n;
m = crossproduct(a,b);
n = crossproduct(c,d);
return crossproduct(m,n);

}

2.60 HOW TO MODEL A COMPLEX NUMBER AS A STRUCTURE

Like vectors, complex numbers can also be modeled using structures. In math.h two complex structures

are already defined. These are available in Turbo C ++ 3.5 compiler under DOS. Here are the two built

in structures

struct complex
{

double x,y;
}//used by cabs

struct _complexl
{

long double x,y;
}//Used by cabsl

But to represent complex numbers using C in MS VC++ environment we define the following

structure.

enum TypeOfComplexNumber{HasRealPart,PurelyImaginary};

typedef struct ComplexNumber
{

double real;
double imag;
enum TypeOfComplexNumber type;

}ComplexNumber;

We can also store a complex number in Polar format with r and theta. Here is a structure that model

a complex number in Polar format as

84 Data Structures using C

typedef struct PolarComplex
{

double r;
double theta;

}PolarComplex;

We can use these two structures, ComplexNumber and PolarComplex to write some conversion

routines. Both of these structures will be useful because sometimes the magnitude r and the argument

theta are only available instead of explicit real and imaginary values.

2.61 HOW TO DO CONVERSION FROM POLAR TO RECTANGULAR

FORM AND VICE VERSA

There will be many occasions when we will need to convert a polar complex number to rectangular form

or vice versa. After we have the above two structures defined, we can write two functions that do the

conversions from one form to the other. Here is the code.

//From rectangular form to polar form
PolarComplex ComplexNumber2PolarComplex(ComplexNumber c)
{

PolarComplex temp;
temp.r = sqrt(pow(c.real,2)+pow(c.imag,2));
temp.theta = atan(c.imag/c.real);
return temp;

}
//From polar form to rectangular form
ComplexNumber PolarComplex2ComplexNumber(PolarComplex pc)
{

ComplexNumber temp;
temp.real = pc.r*cos(pc.theta);
temp.imag = pc.r*sin(pc.theta);
return temp;

}

We will use these structures for different algorithms involving the complex numbers. The simple

ones include the complex number algebra. Here are those methods one by one.

2.62 HOW TO ADD COMPLEX NUMBERS

The addition of two complex numbers is the simplest operation possible in the complex number algebra.

Here is a method that takes an array of complex numbers and returns the resultant sum of them.

ComplexNumber addcomplexnumbers(ComplexNumber c[],int size)
{

int i;
ComplexNumber sum;
//Assigning inital values to avoid garbage in
sum.real = 0;
sum.imag = 0;

for(i=0;i<size;i++)
{

Structures (The Building Blocks) 85

//Adding the real parts
sum.real += c[i].real;
//Adding the imaginary parts
sum.imag += c[i].imag;

}
//Checking which type of complex number it is
if(sum.real==0)

sum.type = PurelyImaginary;
return sum;

}

Here we have added an array of complex numbers and returning their sum.

2.63 HOW TO SUBTRACT ONE COMPLEX NUMBER FROM ANOTHER

Subtraction of one complex number from another is simple. We will use complex number structure to

demonstrate the subtraction. To display the subtraction result in a polar format, just convert the same

using the conversion function already mentioned above. Here is a method that accepts two complex

number structures as parameters and return their subtraction, the second one is subtracted from the first

irrespective of the absolute value.

enum TypeOfComplexNumber{HasRealPart,PurelyImaginary};
ComplexNumber subtract(ComplexNumber c1,ComplexNumber c2)
{

ComplexNumber temp;
temp.real = c1.real - c2.real;
temp.imag = c1.imag - c2.imag;
if(temp.real==0)

temp.type = PurelyImaginary;
else

temp.type = HasRealPart;
return temp;

}

2.64 HOW TO MULTIPLY TWO COMPLEX NUMBERS

The multiplication of two complex numbers is simple. We just have to pass two complex number as

arguments and the method will return the multiplied complex number. Here is the code.

ComplexNumber multiply(ComplexNumber c1,ComplexNumber c2)
{

//(a + ib)*(c+id) = (ac-bd)+(bc+ad)i
ComplexNumber c;
c.real = c1.real*c2.real-c1.imag*c2.imag;
c.imag = c1.imag*c2.real+c1.real*c2.imag;
return c;

}

We can use this method recursively to find the multiplication of more than two complex numbers. In

that case, we will pass an array of complex numbers to the method.

86 Data Structures using C

2.65 PROVING DE MOIVRE�S THEOREM USING

POLAR COMPLEX STRUCTURE

To calculate the value of a complex number when raised by a scalar we use De Moivre�s theorem. This

theorem is based on the polar form of complex numbers. We can use the above defined polar complex

structure to write a method that will find De Moivre�s theorem, here is the code.

PolarComplex demoiver(PolarComplex c,int n)
{

c.theta*=n;
return c;

}

2.66 HOW TO WRITE A PHONEBOOK SIMULATION PROGRAM USING

STRUCTURE

We can create a phonebook using structure and File. Here the records will not be stored permanently in

a file instead they will be stored in an array of structure and then processed in runtime. That�s why it is

just a simulation. The phonebook will be able to store name, address, phone-number and email, etc. of

friends. The structure that will store these variables for each friend is

typedef struct Friend
{

char *name;
char *address;
char *phone;
char *email;
date birthday;//Only valid for Turbo C 3.5 Under DOS.
char gender;

}Friend;

So after this structure is defined we can use friend as a built in data type like int or float. The phonebook

will have the following operations:

l Add a new friend

l Modify an existing friend record

l Search a friend

As you can see we have used a structure Date[As we are using MS Visual Studio 6.0 so we can�t use

the date structure that is built in Turbo C 3.5 and onwards under DOS] to store date of birth of our

friends. This is one example how we can use structure within another structure to model any real world

entity like our friends in this case. We will take up several other examples later in this chapter.

A big array of friend type structures will be created and a global counter will be kept that will be

increased by unity every time a new entry is added. Here are the global variables that are used by all the

methods.

Friend Pals[10];//Array of friends
int count;//Total Number of friends
//loc is the variable for storing the index of the sought friend
int loc=-1;

Structures (The Building Blocks) 87

Now here is the code for adding a new friend

void addapal()
{

printf("Enter name :");
fflush(stdin);
gets(Pals[count].name);
printf("Enter Address :");
fflush(stdin);
gets(Pals[count].address);
printf("Enter Phone :");
fflush(stdin);
gets(Pals[count].phone);
printf("Enter email");
gets(Pals[count].email);
printf("Enter birthdate :");
scanf("%d%d%d",&Pals[count].bday.day,&Pals[count].bday.month,&Pal

s[count].bday.year);
printf("M/F :");
fflush(stdin);
scanf("%c",&Pals[count].gender);
printf("New Friend Successfully added !");
count++;//One friend is Just Added, so count is increased by 1

}

This bold line shows how to access one structure which is within another structure. Bday is a date

structure and Pals[count].Bday represents the date of birth of the current friend whose details are being

added. So in the Pals[count].bday.day is the day of the date of birth of the current friend, and so on.

The method to search is simple. The global variable loc is initialized with the value �1. If the search

is successful and the friend is found then value of loc will be overwritten with the index of the array

where the sought friend is found. Otherwise the initial value �1 will remain. Thus we can check whether

a search is successful or not using the value of the global variable loc. The search algorithm is linear. It

starts from the first entry and the loop rotates until the array is finished. If the sought friend is found it

breaks from the loop and the value of the breaking index is sent back to the calling method (From where

this search method is called, maybe main() may be some other method like modify() where it is neces-

sary to find the friend before further processing).

This search is an exact string search. That means if there is an entry where the name is �John Abraham�

and another entry �Johnathon Swift�and the search string for name is �John� then none of these will

match and the search will be unsuccessful. This will happen because we have used strcmpi() that

compares two strings ignoring case and returns 0 if they are exactly same. But if we want both these

names to match when the supplied name to search is �John� then strncmpi() method should be used

instead of strcmpi ().

int search()
{

char querystring[50];
int choice;
int d,m,y;
int i=-1;//Assuming that the Friend will not be present
printf("1.Search by name");
printf("2.Search by phone");
printf("3.Search by email");

88 Data Structures using C

printf("4.Search by birthdate");
printf("Enter your choice [1-4] :");
scanf("%d",&choice);
switch(choice)
{
case 1:printf("Enter name to search :");

 fflush(stdin);
 gets(querystring);
 for(i=0;i<count;i++)

 if(strcmpi(Pals[i].name,querystring)==0)
 break;

 break;
case 2:printf("Enter phone to search :");

 fflush(stdin);
 gets(querystring);
 for(i=0;i<count;i++)

 if(strcmpi(Pals[i].phone,querystring)==0)
 break;

 break;
case 3:printf("Enter email to search :");

 fflush(stdin);
 gets(querystring);
 for(i=0;i<count;i++)

 if(strcmpi(Pals[i].email,querystring)==0)
 break;

 break;
case 4:printf("Enter birthdate to search :");

 scanf("%d%d%d",&d,&m,&y);
 for(i=0;i<count;i++)

 if(Pals[i].bday.day == d && Pals[i].bday.month ==
m && Pals[i].bday.year == y)

 break;
 break;

}
return i;//returning the location of the friend sought

}

To display the records in the phonebook two methods have been written. They are self-explanatory.

Here are the codes.

void displayarecord(int loc)
{

printf("Name :%s\n",Pals[loc].name);
printf("Address :%s\n",Pals[loc].address);
printf("Phone :%s\n",Pals[loc].phone);
printf("Email :%s\n",Pals[loc].email);
printf("Birthdate :%d-%d-

%d\n",Pals[loc].bday.day,Pals[loc].bday.month,Pals[loc].bday.year);
printf("Sex :%c\n",Pals[loc].gender);

}
void display()

Structures (The Building Blocks) 89

{
int i=0;
printf("Count %d\n",count);
if(loc==-1)//All phonebook entries are to be traversed
{

for(i=0;i<count;i++)
{
displayarecord(i);
}

}
else//Only the sought entry
{

displayarecord(loc);
}

}

The last operation of the phonebook is to modify the details of a friend. To modify a friend�s details

first of all we need to find whether the friend�s details at all exist in the phonebook or not. So we will

have to call search() method from modify() method.

If the friend is not found then a proper message will be displayed otherwise the system will ask what

detail of the sought friend is to be modified. After user enters the new value for the chosen field the

program will overwrite the contents of that field for that particular friend array entry. Try to write this

modify code by yourself [Clue: You may find it useful to break search() function first and then proceed]

2.67 HOW TO MODEL A BANK ACCOUNT AS A COMBINATION OF

STRUCTURES

A bank account represents a real world entity. We can model it using struct. Here are the structures that

will be used to model a bank account.

enum TypeOfAccount{SAVINGS,CURRENT,CREDIT};
enum TypeOfIncome{SALARIED,BUSINESS};
enum TypeOfCreditCard{SILVER,GOLD,MANHATTAN};

typedef struct Date
{

int day;
int month;
int year;

}Date;
typedef struct Car
{
 char modelnumber[20];
 long kilometers;
 int yearofmfg;
 int monthofmfg;
 char manufacturer[40];
 char owner[40];
 double engineefficiency;

 int hasevermetaccident;
}Car;
typedef struct Home

90 Data Structures using C

{
char address[100];
char country;
long pincode;
int residing;
int abandoned;
int rented;
int own;

}Home;
typedef struct CreditCard
{

char creditcardnumber[16];
int csvnumber;
Date validupto;
long creditlimit;
enum TypeOfCreditCard type;

}CreditCard;
typedef struct Properties
{

Car cars[4];
Home homes[3];
CreditCard ccs[10];
int noofcreditcardsinuse;
double avgearningpermonth;

}Properties;
typedef struct BankAccount
{

enum TypeOfAccount whichaccount;
char accountholdername[40];
char accountnumber[10];
char address[100];
Date openingdate;
int age;
int sex;
double initialbalance;
Properties props;//What are the properties of accountholder
enum TypeOfIncome type;

}BankAccount;

Account or a credit card account For holding the type an enum variable is used. All

property details of the account holder are kept because income tax calculation will be based on these.

We can now use these structures to write a small banking application with the basic banking operations

like deposit funds, withdraw funds, balance enquiry, interest calculation, etc.

Say a bank has the following rules.

1. Initial balance can�t be less than 2500 for Saving account.

2. Interest rate for savings account is 7%.

3. If someone has more than one home then current account balance can�t be less than 3500.

4. If someone�s car has ever met with an accident then whenever he deposits some cash in savings

account 10% is cut and is given to the insurance company as a life insurance coverage.

5. Minimum amount withdraw from savings account is 500.

Structures (The Building Blocks) 91

6. If any of the car�s engine efficiency is less than 89% then each time he uses any of his credit

cards the accountholder will be charged 4% of the amount as an environmental protection

insurance.

Write a program that uses the above structures and for 10 clients. Use an array of BankAccount

Structure.

2.68 HOW TO WRITE A POS (POINT OF SALE) SIMULATION USING STRUCTURE

Items in a departmental store can be modeled as a structure. Thus we can write software using this

structure to simulate the process of a departmental store as we did in the phonebook program above.

Here is the structure that defines one item in a departmental store.

typedef struct Item
{

char itemname[20];
int itemcode;
float price;
int quantityinstock;
int ishighdemand;
int soldtoday;

}Item;

Here is the entire code. There is room for improvement as per validations are concerned. This code is

just for conveying the fact how structures can be used to solve our real-world problems.

Item itemsinstore[100];
int count=0;
int solditemcode;
//int loc=-1;

//Will show this message every time the stock is out for an item
void oos()
{

printf("Sorry this item is out of stock!\n");
}
//For adding a new item in the store.
void addanitem()
{

printf("Item Name :");
fflush(stdin);
gets(itemsinstore[count].itemname);
printf("Item Code :");
scanf("%d",&itemsinstore[count].itemcode);
printf("Item Price :");
scanf("%f",&itemsinstore[count].price);
printf("Quantity in stock :");
scanf("%d",&itemsinstore[count].quantityinstock);
printf("The new item added successfully");
count++;

}
//One sample of one item is soldout.
void soldoneitem(int whichitem,int howmanypiece)
{

92 Data Structures using C

if(itemsinstore[whichitem].quantityinstock<howmanypiece)
oos();

else
itemsinstore[whichitem].quantityinstock-=howmanypiece;

}
//Displaying the bill on console.
void preparebill(char *name,int whichitems[],int howmany[],int size)
{

int i;
float total=0;
printf("\n-------------------------------------\n");
printf("Bill for %s\n",name);
printf("-------------------------------------\n");
printf("Item Quantity Price \n");
printf("-------------------------------------\n");

for(i=0;i<size;i++)
{

printf("%d %s %d =
%f\n",itemsinstore[whichitems[i]].itemcode,

itemsinstore[whichitems[i]].itemname,

howmany[i],itemsinstore[whichitems[i]].price*howmany[i]);
total+=itemsinstore[whichitems[i]].price*howmany[i];

}
printf("------------------------------------\n");
printf("Total Bill Amount : %.2f + 1 percent VAT Tax =

%.2f\n",total,total*1.01);
printf("Thanks for shopping with us! Come Again\n");

}

void updatestock(int whichitem,int byhowmany)
{

itemsinstore[whichitem].quantityinstock+=byhowmany;
printf("Stock is updated successfully");

}

void updatepriceofanitem(int whichitem,float updatedprice)
{

itemsinstore[whichitem].price = updatedprice;
printf("Price has been changed successfully");

}

int searchanitem(int itemcode)
{

int i;
int loc=-1;
printf("Please wait while we serch :\n");
for(i=0;i<count;i++)

Structures (The Building Blocks) 93

{
if(itemsinstore[i].itemcode==itemcode)
{

loc=i;
break;

}
}
return loc;

}
void displaypricelist()
{

int i;
printf("--\n");
printf(" TODAYS PRICE LIST \n");
printf("---\n");
printf("Item Name | Item Code |

| Stock | Item Price\n");
printf("-------------------------------------\n");
for(i=0;i<count;i++)
{

 printf("%8s %d %d %.2f \n",
itemsinstore[i].itemname,
itemsinstore[i].itemcode,

 itemsinstore[i].quantityinstock,
 itemsinstore[i].price);

}
}

void showmenu()
{

////////clrscr();
printf("\n1.Add a new item\n");
printf("2.Update Price\n");
printf("3.Update stock\n");
printf("4.Show Pricelist\n");
printf("5.Sell an item\n");
printf("6.Exit\n");
printf("Choice [1-6]:");

}
int main(void)
{

int i;
int loc;
int choice;
int code;
int whichitem;
float price;
int more;
char name[50];
int size;
int howmany[100];
int whichitems[100];

94 Data Structures using C

do
{

loc = -1;
showmenu();
scanf("%d",&choice);
switch(choice)
{

 case 1:addanitem();
 break;

case 2:printf("Enter the code of the item you want to
update the price :");

 scanf("%d",&code);
 whichitem=searchanitem(code);
 if(whichitem==-1)

 printf("No Such item is there in the
store!\n");

 else
 {

 printf("Enter the new price ");
 scanf("%f",&price);
 updatepriceofanitem(whichitem,price);
 printf("Price is Updated

Successfully!");
 }
 break;

case 3:printf("Enter the code of the item you want to
update the stock:");

 scanf("%d",&code);
 whichitem=searchanitem(code);
 if(whichitem==-1)

 printf("No Such item is there in the
store!\n");

 else
 {

 printf("How many more :");
 scanf("%d",&more);
 updatestock(whichitem,more);
 printf("Stock is updated!\n");

 }
 break;

case 4:displaypricelist();
 break;

case 5:printf("Name Please :");
 fflush(stdin);
 gets(name);
 printf("How many items :");
 scanf("%d",&size);
 for(i=0;i<size;i++)
 {

 printf("Enter code :");

Structures (The Building Blocks) 95

 scanf("%d",&solditemcode);
 loc=searchanitem(solditemcode);

 if(loc==-1)
 {

 printf("Sorry! Wrong or Invalid ItemCode
Entered! Billing Process Terminated.\nHit a Key to Start Again!\n");

 getch();
 showmenu();
 break;

 }
 else
 {

 printf("Quantity :");
 scanf("%d",&howmany[i]);
 whichitems[i]=searchanitem(solditemcode);
 soldoneitem(whichitems[i],howmany[i]);

 }

 }
preparebill(name,whichitems,howmany,size);
break;

case 6:exit(0);
 break;

}
}while(1);

return 0;

}

Example 2.1 A perpendicular is drawn from an outside point on a line given by two points.

Write a program that accepts three points and then return the Point where the Perpendicular meets

the Straight line. Here is a diagram.

Fig. 2.1de

96 Data Structures using C

Solution

Point NormalProjection(Point outside,Point left, Point right)
{

Point temp;
double l = right.y_coordinate-left.y_coordinate;
double m = right.x_coordinate-left.x_coordinate;
double p = left.y_coordinate*right.x_coordinate -
left.x_coordinate*right.y_coordinate;
double q = m*outside.x_coordinate+l*outside.y_coordinate;
temp.x_coordinate = (m*q-l*p)/(pow(l,2)+pow(m,2));
temp.y_coordinate = (p+l*temp.x_coordinate)/m;
return temp;

}

Example 2.2 Suppose a plane mirror is modeled as a straight line. An object is placed before it.

So an image is generated at the back of the mirror which will be as far from the mirror as the object.

Write a function to find out the location of the image. The function will take three points as argu-

ments. The first one will represent the object, the next two will represent any two points on the plane

mirror. Here is a picture of the situation described.

Fig. 2.2de

Solution

Point imageLocation(Point Object,Point mirrorleft,Point mirrorright)
{

Point Image;
Point PointOfReflection;
Image.x_coordinate=0;
Image.y_coordinate=0;

 PointOfReflection =
NormalProjection(Object,mirrorleft,mirrorright);

 Image.x_coordinate = 2*PointOfReflection.x_coordinate -
 Object.x_coordinate;
 Image.y_coordinate = 2*PointOfReflection.y_coordinate �
 Object.y_coordinate;

return Image;

}

Structures (The Building Blocks) 97

Example 2.3 Write a function to find the conjugate of a complex number. Write another func-

tion to find the modulus of a complex number. Then using these two methods write one method to

find the division of complex numbers.

Solution

Before we write the method to calculate the division of two complex numbers we have to write a method

that finds the conjugate complex of a given complex number. Basically the divisions of complex num-

bers involve the multiplication of complex numbers. Here is the method to find the conjugate complex

of a given complex number.

ComplexNumber conjugate(ComplexNumber c)
{

ComplexNumber conjugate_of_c;
conjugate_of_c.real = c.real;
conjugate_of_c.imag = -c.imag;
return conjugate_of_c;

}

The division of two complex number follows the following steps.

l Multiply the numerator and denominator by the conjugate complex of the denominator.

l Separate the real and imaginary part

Multiplying a complex number with its conjugate gives the absolute value of the complex number.

Let�s write a method like cabs(), that calculates the absolute value of the supplied complex number.

Here is the method.

double modulus(ComplexNumber c)
{

return sqrt(pow(c.real,2)+pow(c.imag,2));
}

After we have the above two methods defined we can find division of two complex numbers very

easily using these functions. Here is the code of the method that returns a complex number as the

division result of the two complex numbers.

ComplexNumber divide(ComplexNumber numerator,ComplexNumber denominator)
{

ComplexNumber temp;
temp.real =

multiply(numerator,conjugate(denominator)).real/modulus(denominator);
temp.imag =

multiply(numerator,conjugate(denominator)).imag/modulus(denominator);
return temp;

}

If you notice carefully you can see how we have used the above defined methods conjugate and

multiply to calculate the division of two complex numbers.

Example 2.4 Define a structure called Student that has the following attributes Name (charac-

ter array of length 50), Age(integer 2 digit), Sex(one character either M or F). Standard.(one integer

value from 1 to 12). Create an array of 10 Students.Interactively fill the details of the students. Use a

loop to display the records. Write a method to search a particular student using Name. Write another

method to modify the details.

98 Data Structures using C

Solution

#include <stdio.h>
#include <conio.h>
#include <string.h>

typedef struct student
{

char name[40];
int age;
char sex;
int standard;

}student;

student schoolstudents[10];

int main()
{

int i=0;
char nametosearch[40];
printf("Enter Details about the students :");
for(;i<10;i++)
{

printf("Name :");
fflush(stdin);
gets(schoolstudents[i].name);
printf("Age :");
scanf("%d",&schoolstudents[i].age);
printf("Sex :");
fflush(stdin);
scanf("%c",&schoolstudents[i].sex);
printf("Standard [1-12]:");
scanf("%d",&schoolstudents[i].standard);

}
printf("Details Successfully Entered.\n");
//Displaying the records
for(i=0;i<10;i++)

printf("Name :%s\nAge : %d\n Sex :%c\n Standard :%d\n\n",
 schoolstudents[i].name,schoolstudents[i].age,

 schoolstudents[i].sex,schoolstudents[i].standard);

//Searching the record
printf("Enter the name of the student to search :");
fflush(stdin);
gets(nametosearch);
for(i=0;i<10;i++)

if(strcmpi(nametosearch,schoolstudents[i].name)==0)
printf("Name :%s\nAge : %d\n Sex :%c\n
Standard :%d\n\n",

schoolstudents[i].name,schoolstudents[i].age,
 schoolstudents[i].sex,schoolstudents[i].standard);

Structures (The Building Blocks) 99

return 0;
}

Write the modification part yourself. It involves searching of the student from the list.

Example 2.5 Define a structure called Medicine. The structure will have the following attributes.

�Name�, �Vendor�, �Manufacture Date�, �Expiry Date�, �Dosages�. Use the Date structure that is

defined in the chapter. Using this structure simulate the working of a Medical Shop. Write a method

that automatically generates a message whenever any particular medicine is low in stock.

Solution

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <string.h>

enum {NOTFOUND,FOUND};

#define MEDICINES 2

typedef struct Date
{

int day;
int month;
int year;

}Date;
typedef struct Medicine
{

char name[20];
char vendor[10];
char adultdosage[40];
char childdosage[40];
Date mfgdate;
Date expdate;
float price;
int thresholdquantity;
int quantity;

}Medicine;

Medicine meds[MEDICINES];

void buydrug(int i)
{

printf("Name of the drug :");
fflush(stdin);
scanf("%s",meds[i].name);
printf("Vendor of the drug :");
fflush(stdin);
scanf("%s",meds[i].vendor);
printf("Enter threshold quantity :");
scanf("%d",&meds[i].thresholdquantity);
printf("Enter mfg date :");
scanf("%d%d%d",&meds[i].mfgdate.day,&meds[i].mfgdate.month,&med

100 Data Structures using C

s[i].mfgdate.year);
printf("Enter exp date :");
scanf("%d%d%d",&meds[i].expdate.day,&meds[i].expdate.month,&med

s[i].expdate.year);
printf("Price :");
scanf("%f",&meds[i].price);
printf("Quantity :");
scanf("%d",&meds[i].quantity);
printf("Enter child dosage details :");
fflush(stdin);
scanf("%s",meds[i].childdosage);
printf("Enter adult dosage details :");

]

fflush(stdin);
scanf("%s",meds[i].adultdosage);
printf("Medicine Details Successfully Registered.\n");
printf("Total Payment to be made to the Supplier :

%.2f\n",meds[i].price*meds[i].quantity);
}
void updatedrugstock()
{

char drugname[20];
int dquantity=0;
int flag=NOTFOUND;
int i;
printf("Enter the name of the drug :");
fflush(stdin);
scanf("%s",drugname);
for(i=0;i<MEDICINES;i++)
{

if(strcmpi(drugname,meds[i].name)==0)
{

flag = FOUND;
break;

}
}
if(flag==NOTFOUND)

printf("The drug is not found\n");
if(flag==FOUND)
{

printf("Enter quantity :");
scanf("%d",&dquantity);
meds[i].quantity+=dquantity;

}
printf("Stock successfully updated \n");

}
int checkifavailable()
{

char drugtofind[20]="";
int flag=NOTFOUND;

Structures (The Building Blocks) 101

int i;
printf("Enter the name of the drug \n");
fflush(stdin);
scanf("%s",drugtofind);

for(i=0;i<MEDICINES;i++)
if(strcmpi(drugtofind,meds[i].name)==0)
{

flag = FOUND;
break;

}
if(flag==FOUND)

return i;
else

return -1;
}

void selldrug()
{

int howmany=0;
int i = checkifavailable();
if(i)
{

printf("Total available quantity :",meds[i].quantity);
printf("How many you want :");
scanf("%d",&howmany);
if(howmany>meds[i].quantity)

printf("Sorry We can give only %d",meds[i].quantity);
else
{

meds[i].quantity-=howmany;
printf("Dosage Details\n");
printf("Child Dosage : %s \n Adult

Dosage%s\n",meds[i].childdosage,
 meds[i].adultdosage);

printf("Bill Amount :%f\n",meds[i].price*howmany);
}

}
else

printf("Sorry the drug you are searching is not in our
stock\n");

}
int main()
{

int choice=0;
int i=0;
do
{

printf("1.Buy a new drug\n");
printf("2.Update stock\n");
printf("3.Sell drug\n");

i i i i \

102 Data Structures using C

printf("4.Check Availability of a drug\n");
printf("5.Quit\n");

scanf("%d",&choice);
switch(choice)

{
case 1:i++;

 if(MEDICINES)
buydrug(i);

 else
printf("Can't buy\n");

 break;
case 2:updatedrugstock();

 break;
case 3:selldrug();

break;
case 4:if(checkifavailable())

 printf("We have the drug\n");
 else

 printf("Sorry! we don't have the
medicine\n");

 break;
case 5:exit(0);

 break;
}

}while(1);
}

R E V I S I O N O F C O N C E P T S

Some Key Facts about Structures

1. Structures are used to create user defined data types.

2. A structure can hold different data types within it, unlike arrays.

3. A structure can have another structure within it.

4. A structure can be passed to the function as arguments.

5. A structure can be returned from methods.

6. In C++ structure can hold functions also.

7. The structures can be inherited in C++.

8. By default all the members of a structure are public in C++.

9. It serves as the building block of many complicated data structures like linked list, stack, queue,

tree, etc.

10. It is used for reading/writing images in C.

11. It is used to model real world entities. So they found application in inventory control systems. For

a departmental store, starting from the item to be sold to the salesman who sells that can be modeled

using structures.

12. It is also used in file compression algorithms like Mp3 file format etc.

Structures (The Building Blocks) 103

R E V I E W Q U E S T I O N S

1. Suppose we have defined DNA as a structure. How will you create an array of DNA structures for
100 people?

2. Say there is an attribute called Guanine in our DNA structure defined. What will be the syntax to
compare if Guanine content for first and last person matches or not. Assume that Guanine is a
character array and we have in total 100 people�s DNA sample information captured in the array of
DNA structures.

3. How will you declare an array of structure which contains 5 structures of 3 different types of
arrays? Be creative with the names!

4. typedef struct Point
{

 double x;
 double y;
 double z;

}Point;

What will be the output of the following statement

printf(�%d�,sizeaof(Point));

5. struct Number
{
int x;
float y;

};
Number wrongnumber;

Can you tell what is wrong in the above code ?
6. Write a structure definition to model a polynomial of 3 variables x,y,z along with coefficients and

constant terms. Do you think one structure will be sufficient? If not then what other structures you
want to write and what will they contain?

7. How will you read system date? Change the system date?
8. Which structure will you use for customizing your program for different locals?
9. typedef struct Point

{
Point p;
Point *pp;

}Point;

What is wrong with this declaration?
10. Point P [100];//Assume we are using the point structure defined in the Chapter

P[0] = P[1]; what will this statement do ?

P R O G R A M M I N G P R O B L E M S

1. Define a structure called �Polygon� which can be of maximum 50 arms using the Point structures.

Decrease the arm length in a regular fashion. Write a method to find the locus of the centroid. Is
the locus of the centroid a known function to you? If not, can you fit this curve with the points you
got for the moving centroid?

104 Data Structures using C

2. What will happen in the above case if the mirror rotates by theta degree.
3. How to find the point of intersection between a circle and a parabola?
4. How to find the point of intersection between a straight line and a circle?
5. How to find the exponentiation of the complex numbers?
6. In a room there are 100 particles for example. The particles can be modeled as moving points

ignoring their dimensions. Any particle�s x co-ordinate is changing as sin(i), y coordinate is chang-
ing as cos(i) and z coordinate is changing as tan(i) where i is the number of the particle. Using the
point structure, write a program to plot the paths.

7. A plane mirror creates an image which is at same distance as that of the object from mirror. It
means if any object is at a distance d from a plane mirror, its image will also be d distance at the
back of the mirror. Using point structure write a method image location() that accepts a point
structure and returns a point which represent the image location. Assume that the mirror is the x axis.

8. Extend the above method. Instead of assuming that mirror is x axis, accept two more points. Now
the line joining these two points is the mirror.

9. Assume that x axis is the plane mirror and it can be rotated about origin. Accept two arguments. A
Point and another scalar representing the degree of rotation. Then change the image location()
method properly to find the image location.

10. Write a method calculateany polygonarea() to calculate the area of any regular closed polygon.
The function should display proper message if the polygon is not regular. To represent the Polygon
an array of Points representing the vertices of the Polygon will be sent to the method. If everything
is ok, the function will return the area of the polygon.

11. Three points are given. Write a function to find out whether they are co-planer or not.
12. Write the same method for a triangle.
13. Write a function to calculate the exponentiation of one of the complex number by another. The

method will accept two complex numbers as input and then return a complex number where one is
raised to the power to another. Like if parameters passed to the function are a+ib and c+id then the
function will return a complex number which is given by (a+ib)^(c+id) where ^ denotes
exponentiation.

14. Forces are represented by vectors. Suppose there are n numbers of forces on a static body. Write a
function to accept maximum 10 different forces on a body and then try to find out whether the
body will be in equilibrium or not. If the body doesn�t stay in equilibrium when all these forces are
acted on simultaneously chances are it will move in a particular direction with some acceleration.
Try to find that direction vector and acceleration if any. Use the vector structure that is already
defined.

15. A body is in equilibrium due to the simultaneous application of three forces. Two of the forces are
given. Write a method to find out the third. [Clue: Use Lami�s Theorem]

16. Write a function that will take a starting Point and the number of arms and arm length as input.
Then the function will give us the co-ordinates of other vertices. Do you realize that there can be
more than one possible answer to this question ? If no starting point is given use origin (0,0) as the
starting point. [Clue: The question is not asking you to find all possible answers but only one of
them. And it takes two consecutive vertices of any polygon to draw a straight line]

17. Write a function to represent any polygon based pyramid using point structure.
18. Write a function to find the total area of such a pyramid.
19. Write a function to find the surface area of such a pyramid.
20. Write a function to find the volume of such a pyramid.
21. How to find that a given straight line is a tangent to a parabola at a particular point or not.
22. Write a function to find whether a sphere can reside in a pyramid or not.
23. Give an example of structure within structure?
24. Can this be viewed as containership? Explain your answer.

3

Linked List

Scattered Yet Linked!

INTRODUCTION

So far we have discussed array and structure. The main disadvantage of an array is that the memory

locations needed to store an array should be contiguous. Sometimes that might make an array usage

prohibitive. Then we need to use linked lists. The linked list is the most simple pointer based data

structure that allows the user to store the variables in the diverse locations. The linked lists are the

building block of any kind of pointer based data structure. In this chapter we will discuss about different

type of linked lists and then show how different variations of linked lists can be used to solve problems

from the polynomial mathematics to DNA reaction simulation.

Different Types of Linked Lists

Fig. 3.1 Classification of linked lists depending on number of pointers needed to implement

Argument There can be an argument that traversing backward in a single linked list is possible, but

should we do it? Our answer would be �No�. We shouldn�t kill the readability of the program to show

106 Data Structures using C

some fancy pointer acrobatics to the so called �naïve� audience. We should remember that in a multi

developer environment readability of the code is very important and we can�t kill that just to show our

Not-So-Legible pointer poetry. The above classification of linked list is done keeping the above lines in

mind. So the thumb rule is when we need One-Way-Traffic, single linked list is the choice. On the other

hand, Two-Way-Traffic will be best served by a double linked list. If we need to come back to the

starting point right after we visit the last node in the list, we should use the circular versions of single or

double linked lists.

3.1 SINGLE LINKED LIST

Each node of a single linked list is represented by a structure that holds the data and a pointer to the same

structure. The structure below represents a single linked list of the doubles.

Fig. 3.2

typedef struct node
{

double info;
struct node *next;

}node;

This structure denotes a single linked list of double values. To design a single linked list of a user

defined data we need to define the data first and then create a linked list of it. Here is an example.

//An user defined data
typedef struct Book
{

char *title;
char *author;
char *publisher;
int month_of_publication;
int year_of_publication;
int pages;
int price;
int edition;

Linked List (Scattered Yet Linked!) 107

}Book;
typedef struct A_Node_Of_Book_List
{

Book book_of_this_node;
struct A_Node_Of_Book_List *nextbookaddress;

}A_Node_Of_Book_List;

3.2 DOUBLE LINKED LIST

Fig. 3.3

Here is the structure that represents a node of the double linked list.

typedef struct node
{

int info;
struct node *next;
struct node *prev;

}node;

We will use the same user defined book structure above to show how to create a double linked list of

book structures. The changes are written in bold.

typedef struct A_Node_Of_Book_List
{

Book book_of_this_node;
Struct A_Node_Of_Book_List *nextbookaddress;//Where is Next Book ?
Struct A_Node_Of_Book_List *prevbookaddress;//Where is Prev Book ?

}A_Node_Of_Book_List

108 Data Structures using C

3.3 CIRCULAR LINKED LIST

Fig. 3.4

Here is the structure to represent a node of the circular linked list.

typedef struct node
{

int info;
struct node *next;

}node;

The circular linked list structure representation looks no different from its single linked list sister.

The only difference is that in the circular linked list, the last node�s next pointer points to the first node.

3.4 WHAT DO YOU MEAN BY ARRAY OF LINKED LISTS?

Surprised to see such a question? An array of the linked lists is nothing but the array of head pointers of

the few linked lists. If you remember, in C, for a 2D array all rows need to have same number of

columns. But using an array of linked list we can create such a 2D array that will have variable number

of columns in each row. In some languages, for example, C# this type of arrays are in-built and are

known as �Jagged Arrays�.

Jagged arrays can be used

l to store sparse matrix in a very space efficient manner

Linked List (Scattered Yet Linked!) 109

Fig. 3.5

l to use sparse matrix for solving the sparse linear systems in different areas

l to represent a dictionary of words where each word will have their synonyms and antonyms

l to store the location of occurrences of a character in a string

3.5 LINKED LIST IN C AND PREDICTORS

A predictor is a function that returns a Boolean value depending on some condition. Let me explain this.

Suppose we want to find all those elements in an integer linked list whose square is less than 100. Then

we need to write a function that checks whether the square of the argument passed is less than 100 or

not. That function is called a predictor.

Predictor function LOGIC can be anything as you can see. So to implement this LOGIC we use

function pointer in C. The function pointer passed to the linked list function will remain same. We will

just change the function that pointer actually points to. Here is a typical prototype of a linked list func-

tion that accepts a function pointer to match a particular set of elements.

void display_All(list *, predictor function pointer)

3.6 LINKED LIST FUNCTION PHILOSOPHY OF THIS CHAPTER

No matter how much we go ahead with linked list, the plain old C array is always a better choice as far

as simplicity and element accessing efficiency of the code is concerned. This fact is validated at the end

of the chapter with graphs. The functions developed and discussed in this chapter are designed such that

they allow you to manipulate linked list as if it is a close cousin of a C-array. The function names are

almost similar to the methods of generic sequence container classes(vector<> and list<>) in STL. One

more thing is worth noticing. Readability of a code is much more important at the cost of slightly low

efficiency, in a multi developer environment. The functions in this chapter and the chapters ahead,

especially Trees and Graphs follow this strategy.

110 Data Structures using C

Fig. 3.6

Here is the flow chart.

Fig. 3.7

Linked List (Scattered Yet Linked!) 111

3.7 HOW TO INSERT A NODE AT THE END OF A SINGLE LINKED LIST�

THE NODE MAY BE THE FIRST NODE OF THE LINKED LIST

Here is the code to append a node at the end of a single linked list. The first thing that has to be done is

to allocate memory for the new node. Then we have to check if that is the first node or not. These

functions are given names similar to their cousins in STL library for C++.

node* push_back(node *last,int info)
{

if(last==NULL)//If this is the first node
{

//Create Memory Space for this new node
last = (node *)malloc(sizeof(node));
last->data = info;
//Terminate the node properly using NULL
last->next = NULL;
//return the back of the list
return last;

}
//If it is not the first node
else

 {
//Creation of new node
node *p = (node *)malloc(sizeof(node));
if(p)//Check if memory is available for this node
{

//The last node from now on will be p
last->next = p;
p->data = info;
//The list will be terminated by NULL
p->next = NULL;

}
return p;//Returning the end of the linked list

}
}

3.8 HOW TO INSERT A NODE AT THE FRONT OF THE SINGLE LINKED

LIST

Here we are maintaining an integer linked list. We can create a linked list of any data type.

node* push_front(node *h,int info)
{

//Allocating memory for the new node
node *p = (node *)malloc(sizeof(node));
//Assigning the next pointer to the previous header of the list.
p->next = h;
//Assigning the data
p->data = info;
//Returning the newly created list header.
return p;

}

112 Data Structures using C

Fig. 3.8

3.9 HOW TO FIND THE FRONT ELEMENT OF THE SINGLE LINKED LIST

This is a wrapper function. This increases the readability to the code.

//returns the front element of the list
int front_element(node *h)
{

//where h points to the list header.
return first(h)->data;

}

Here we have passed the header node and here is the definition of the function first

node* first(node *h)
{

return h;
}

Please notice that the function first is a wrapper function. This function is used to give increase

readability of the program.

3.10 HOW TO FIND THE BACK ELEMENT OF THE SINGLE LINKED LIST

//returns the front element of the list
//This is a wrapper function that allows us to write more conceptual
//code.
int back_element(node *h)
{

return last(h)->data;
}

Linked List (Scattered Yet Linked!) 113

Here we have passed the header node and here is the definition of the function last

//This function returns the address of the last node of the list.
//This is a wrapper function.
node* last(node *h)
{

node *p = h;
for(;p->next!=NULL;p=p->next);
return p;

}

3.11 HOW TO TRAVERSE THE SINGLE LINKED LIST

//Display the list of numbers
void display(node *h)
{

node *p = h;
for(;p!=NULL;p=p->next)

 printf("Value = %d Address %u Next Address %u\n",
 p->data,p,p->next);
}

3.12 HOW TO COUNT THE NUMBER OF NODES IN A SINGLE LINKED LIST

int count(node *h)
{

int numberofnodes=0;
node *p = h;
if(p==NULL)

return 0;
else
{

for(;p!=NULL;p=p->next)
numberofnodes++;

return numberofnodes;
}

}

Note: Have you noticed that counting the nodes as in this above function is a function of O(n) time

complexity. As C allows global variable, we can keep a global variable that will keep the track of nodes

as we add or delete them. Then the counting problem can be solved at O(1) time but this process

involves some amount of extra work in the other processes like insert, delete or add, which is accept-

able, because incrementing a variable by unity is very trivial and is of O(1) complexity.

3.13 HOW TO FIND THE FREQUENCY OF AN ITEM IN A SINGLE LINKED

LIST

//This function returns the frequency of a particular element
int frequency(node *h,int value)
{

int freq=0;

114 Data Structures using C

node *p = h;
for(;p!=NULL;p=p->next)

if(p->data==value)
freq++;

return freq;
}

3.14 HOW TO SEARCH A PARTICULAR ITEM IN THE SINGLE LINKED

LIST

This function returns the location index of the variable s as in an array.

int searchindex(node *h,int s)
{

int search_status = NOTFOUND;
int c=0;
node *p = h;
for(;p!=NULL;p=p->next)
{

c++;
if(p->data==s)
{

search_status = FOUND;
break;

}
}
if(search_status == FOUND)

return c;
else

 //The item is not found so we are returning an impossible index -1
return -1;

}

3.15 HOW TO FIND THE ADDRESS OF A PARTICULAR NODE

IN A SINGLE LINKED LIST

//This function returns the address of the
//variable at a particular location
node* get_address(node *h,int index)
{

node *p = h;
int c = 0;
for(;p!=NULL;p=p->next)
{

c++;
if(c==index)

break;
}
return p;

}

Linked List (Scattered Yet Linked!) 115

3.16 HOW TO INSERT NODES AT A PARTICULAR LOCATION IN A SINGLE

LINKED LIST

Fig. 3.9

//inserting a node at a particular location
node* insert(node *h,int location,int info)
{

int c=0;
node *p=h;
node *r=p;
node *q=(node *)malloc(sizeof(node *));
if(location<count(h))
{

//Finding out the location where it matches
//the given location
for(;p!=NULL;p=p->next)
{

c++;
if(c==location)

break;
}
q->next = p->next;
p->next = q;
q->data = info;

}

return r;
}

This function can be used to insert an element before or after a particular element in the list.

We will discuss that now.

116 Data Structures using C

3.17 HOW TO INSERT NODES BEFORE A PARTICULAR NODE IN A

SINGLE LINKED LIST

This case is nothing but a special case of inserting at a particular location.

To insert an element before a particular element, we need to subtract 1 from the location of the item

before which we want to insert the element.

puts("Enter the value of the before which you want to\
 insert this node :");
scanf("%d",&sv);
//Finding the location of the integer before which
//we have to insert the number
loc = searchindex(c,sv);
if(loc!=-1)//Checking if the element at all exists
{

puts("Enter the value for this new node :");
scanf("%d",&value);
//Insert before that element.
//Please note that this insert before will not
//work if you want to insert a node before the
//first node (Header Node) of the list.
//In that case you shall have to use push_front()
//function.
c = insert(c,loc-1,value);
puts("Inserted before the specified node");

}

3.18 HOW TO DISPLAY ALL THE CONTENTS OF A SINGLE LINKED LIST

The next pointer of the last node contains NULL. That means until the next value of the node pointer is

NULL the list exists. So to display the contents of the list the C code is

void display(node *h)
{

node *p = h;

 //Let�s travel towards the end,
 //till we encounter a null value

for(;p!=NULL;p=p->next)
printf("Value = %d Address %u Next Address %u\n",

 p->data,p,p->next);
}

3.19 HOW TO FIND THE MAXIMUM ELEMENT FROM A SINGLE

LINKED LIST

int findmax(node *h)
{

node *p;

Linked List (Scattered Yet Linked!) 117

int max=0;
p = h;
max = p->data;
while(p!=NULL)
{

//Is the current data value more than the previous
if(p->data>max)
{

max=p->data;
}
//Let�s move to the next memory block.
p = p->next;

}
return max;

}

3.20 HOW TO FIND THE MINIMUM ELEMENT FROM A SINGLE

LINKED LIST

int findmin(node *h)
{

node *p;
int min=0;
p = h;
min = p->data;
while(p!=NULL)//Rotate till we come to the end of the list.
{

if(p->data<=min)
{

min=p->data;
}
p = p->next;

}
return min;

}

//Please note that we are using a Single Linked List of integers to show the typical operations possible.

//All these operations are logically (NOT syntactically) Valid for all other user defined data types.

3.21 HOW TO EDIT THE CONTENT OF A PARTICULAR NODE WITH A

GIVEN VALUE

node* replace(node *h,int location,int info)
{

int c=0;
node *p=h;
node *r=p;
node *q=(node *)malloc(sizeof(node *));
if(location<count(h))

118 Data Structures using C

{
//Finding the location of the target node
for(;p!=NULL;p=p->next)
{

c++;//increase the count
if(c==location-1)//Are we on the target node yet ?

break;
}
q = p->next;
q->next = p->next->next;
q->data = info;

}
return r;

}

3.22 HOW TO WRITE A FUNCTION TO MERGE TWO LINKED LISTS

//This function merges two-linked list as per user requirement
/*
 merge (l1,l2,s1,f1,s2,f2)
 this will merge two single linked lists.
 Suppose the lists are l1= 12,13,14,15 and l2 = 16,17,18,19

 If we want the merged list to be 12 13 18 19 then we should
 call merge like

 merge(l1,l2,1,2,3,4)

 if we want the list to be an end to end merge where the resultant
 list will be
 12 13 14 15 16 17 18 19

 then we should call merge as

 merge(l1,l2,1,count(l1),1,count(l2))

 If we want the merge list to be like

 12 13 14 15 17

 Notice here only one element from the second list is being merged
 with the first list. In this
 case we should call merge like

 merge(l1,l2,1,count(l1),2,2);

*/

node* merge(node *list_1,node *list_2
,int start_1,int finish_1,int start_2,int finish_2)

Linked List (Scattered Yet Linked!) 119

{
int i;
node *p = NULL,*q;
//Putting the first value in the
//merged linked list
p = push_back(p,get_value(list_1,start_1));
q = p;
for(i=start_1+1;i<=finish_1;i++)

p = push_back(p,get_value(list_1,i));
for(i=start_2;i<=finish_2;i++)

p = push_back(p,get_value(list_2,i));
return q;

}

3.23 HOW TO WRITE A FUNCTION TO INSERT A LIST WITHIN ANOTHER

LIST

Let me explain the question. Suppose there are two linked lists whose contents are like

11 12 13 14 24 34 44 54

and 15 16 17 18. Now we want to insert this second list within the first list starting from a customized

position and up to a defined number of terms.

node* insertOneinAnother(node *list_1,node *list_2
 ,int start_1,int howmany)
{

int i=0;
int x=0;
for(i=1;i<=howmany;i++)
{

//Getting the ith value from the second list.
x=get_value(list_2,i);
//Note that how insert() is used
list_1 = insert(list_1,start_1+i-1,x);

}
return list_1;

}

Here is how to call this function:

clrscr();
//creating the first list
a = push_back(a,11);
c = a;//This assignment means c will point to the head of the list
a = push_back(a,12);
a = push_back(a,13);
a = push_back(a,14);
a = push_back(a,24);
a = push_back(a,34);
a = push_back(a,44);
a = push_back(a,54);

//creating the second list
d = push_back(d,15);

120 Data Structures using C

e = d; //This assignment means e will point to the head of the list
d = push_back(d,16);
d = push_back(d,17);
d = push_back(d,18);

//inserting first 3 elements of the second list starting
//after the third element in the first list
c = insertOneinAnother(c,e,3,3);
display(c);
getch();

 This above code will display

Value = 11 Address 2280 Next Address 2288
Value = 12 Address 2288 Next Address 2296
Value = 13 Address 2296 Next Address 2376
Value = 15 Address 2376 Next Address 2384
Value = 16 Address 2384 Next Address 2392
Value = 17 Address 2392 Next Address 2304
Value = 14 Address 2304 Next Address 2312
Value = 24 Address 2312 Next Address 2320
Value = 34 Address 2320 Next Address 2328
Value = 44 Address 2328 Next Address 2336
Value = 54 Address 2336 Next Address 0

The inserted entries are bolded and shaded.

If you want to insert the entire second list in the first starting after the third element in the first list then

the code above will change like

//Notice how count() is used.
c = insertOneinAnother(c,e,3,count(e));

Always we should try to write functions that can be reused as much as possible.

3.24 HOW TO SWAP THE HEAD AND TAIL NODE (I.E. THE FIRST AND

THE LAST NODE) OF THE SINGLE LINKED LIST

//This function swaps the head and the tail
//or the front and the back element of the list
node* swap_head_tail(node *h)
{

node *p = h;
//Holding the front element data in a temporary variable
int temp = p->data;
//Now putting the back element value in the front element.
p->data = back_element(h);
//Lets go back to back element. As the function back_element()
//is read only, we can�t use this for setting the values.

//Notice the ; we just rotate here till the end.
for(;p->next!=NULL;p=p->next);
p->data = temp;
return p;

}

Linked List (Scattered Yet Linked!) 121

3.25 HOW TO SWAP THE CONTENTS OF ANY TWO OTHER NODES APART

FROM HEAD AND TAIL

//This function swaps the contents of any two nodes in the list
//apart from head and tail. For swapping head and tail info we need to
//use swap_head_tail()

node* swap(node *h,int loc_a,int loc_b)
{
 int temp;
 node *p=h;
 //Finding the value at the first location
 temp = get_value(h,loc_a);

 //replacing the location a value with loc_b value.
p=replace(p,loc_a,get_value(h,loc_b));
//replacing location b value with the value previously present at
//location a

 p=replace(p,loc_b,temp);
 return p;
}

3.26 HOW TO DELETE A PARTICULAR NODE GIVEN BY AN INDEX

NUMBER

//This function deletes a particular node from a list.
//This function will be used later in more complex deletion scenarios.
node* delete_at(node *h,int location)
{

int c=0;
node *p=h;
node *r=p;
node *x;
//Traverse till the end of the list in the worst case
if(location<count(h))
{

//loop till we find the location
for(;p!=NULL;p=p->next)
{

//lets go to the next node,
c++;

//See the beauty of the above expression.
//We are using linked list

//still this expression gives a look and feel
//of the plain old handy C array

//Human Readable Location:
//if you want to delete the fifth element
//it is actually the fourth in the list
//so human readable location is 5
//but actual location is 4

.

122 Data Structures using C

//Are we on the target node (The node to be deleted)
if(c==location-1)

break;
}

 //Identify which memory location
//to free
x = p->next;
//The next node of the deleted node will
//now be the next node.
p->next = p->next->next;
//free that location
free(x);

}
return r;

}

3.27 HOW TO DELETE A RANGE OF ELEMENTS FROM A LIST

//deletes a particular range of elements
node* delete_range (node *h,int start,int finish)
{

node *p=h;
int c=0;
int k=0;
for(c=start,k=0;c<=finish;c++,k++)
//Lets see how the following statement work
//At first when c = 0 and k = 0 then c-k = 0
//So the first element of the list is deleted.
//Next time again the first element is deleted and
//so on. Thus we end up deleting a range of numbers
//specified by start and finish.

delete_at(h,c-k);
return p;

}

Notice carefully how this function uses delete_at() internally.

Try Yourself: Try to draw the list for each loop status. That will help you visualize the concept better.

3.28 HOW TO DELETE ALTERNATE ELEMENTS FROM A

SINGLE LINKED LIST

Suppose you have the first 100 natural numbers stored in a single linked list. Now we want to keep only
the odd elements in the list. So the even elements need to be deleted. In these types of situations, this
function will prove to be handy.

//deletes alternate elements from the list
node* delete_alternate(node *h, int start,int finish)
{

node *p=h;
int c=0;
for(c=start;c<=finish;c++)

Linked List (Scattered Yet Linked!) 123

 //carefully notice the difference in the call to
 //delete_at() function.
 delete_at(h,c);

return p;
}

3.29 HOW TO MAKE THE LIST ENTRIES UNIQUE

//ORACLE function distinct is used to display
//the distinct entries in a database table.
//we will use the same function name here

node* distinct(node *list)
{

node *a=NULL;
int i=0;
int j=0;
for(i=1;i<count(list);i++)
{

//For each element check whether it
//occurred in any other place in the list or not

for(j=1;j<count(list);j++)
{

//When i==j the element is not a copy,
//rather it is the original element.
//For all other cases if the values match then
//that element is nothing but a copy of the sought
//original element. So we shall have to delete that
//entry.
if(i!=j && get_value(list,i)==get_value(list,j))
{

list = delete_at(list,j);
}

}
}
return list;//The list now contains no duplicate entry

}

3.30 HOW TO DELETE THE FIRST ELEMENT OF THE LIST

//Deletes the first element
node* pop_front(node *h)
{
 node *x = h;//identifying the first node that has to be freed
 node *p = h->next;
 free(x);//freeing the memory space.
 return p;
}

124 Data Structures using C

3.31 HOW TO DELETE THE LAST ELEMENT OF THE LIST

//Deletes the last node
node* pop_back(node *h)
{
 node *p = h;
 node *r = p;
 for(;;)
 {
 //Look out if we are on the last but one node or not
 if(p->next->next==NULL)
 {
 //If yes then free the last node
 free(p->next->next);
 p->next = NULL;
 //come out of the loop
 break;
 }
 //else continue to travel
 p=p->next;
 }
 return r;
}

3.32 LINKED LIST AND PREDICATES

Think of your smart mobile phone that allows you to send you SMS to different list of friends at a single

shot. It basically keeps a list of friends and depending on your response it creates a predicate function

that determines whom to send the SMS and whom not to.

Here is such a predicate.

bool canSend(int ID)
{
 enum {NO,YES};
 //Lets assume that get_value returns a PhoneBook Entry Object
 //that has a gender property which is a char (M/F)
 if(get_value(PhoneBook,ID).gender = = �M�)
 return YES;
 else
 return NO;
}

The above function takes an integer ID that depicts the ID of the current phone book entry. If the user

chooses to send the SMS only to men, then the phone�s list processor internally calls something like the

above predicate method.

Say an insurance company chooses to give special discount to their customers, who are over 30,

married and earn less than 20,000 per month. In a typical scenario, all these details will be stored in a

linked list of customer structures. We need to write a predicate function that will decide for ourselves

whether the insurance company (our client for the time being) can give the discount or not.

Linked List (Scattered Yet Linked!) 125

bool canGiveDiscount(int ID)
{
 enum {NO,YES};
 Customer CurrentCustomer = get_value(Customers,ID);
 if(CurrentCustomer.isMarried == YES && CurrentCustomer.age >=30)
 return YES;
 else
 return NO;

}

Now let�s see how to call these predicates

for(j=1;j<count(Customers);j++)
{
 if(canGiveDiscount(j) = = YES)
 {
 //Process Discount Logic here
 }
 else
 {

//All other unfortunate customers
//who are out of this scheme!

 //data will be processed here
 }
}

3.33 WHAT ARE THE ATTRIBUTES AND METHODS OF A POLYNOMIAL AS

A DATA STRUCTURE?

Polynomial as a data structure

Attributes : Coefficient

Power

If the polynomial is of one variable then there will be only power for the single variable.

In case the polynomial is monic (A polynomial is monic if all the coefficient is one) , then the coeffi-

cient is one. Any constant towards the tail of the polynomial is nothing but a term with power zero.

Operations possible on polynomials are as follows.

Addition of two polynomials ,

Time Complexity : O(m+n), where m, n are the length of the polynomials

Multiplication of two polynomials

Time Complexity : O(m*n), where m, n are the length of the polynomials

Checking if two polynomials are same or not

Time Complexity : O(m) where m is the length of the smaller polynomial.

All the above-mentioned operations are performed on the polynomials represented with the linked

list. The next few sections of this chapter deal with this topic at length. After we learn about the repre-

sentation of single variable polynomial we will move to deal with the three variable polynomials and

then we will explore their applications to solve some vector calculus problems.

:

126 Data Structures using C

3.34 HOW TO REPRESENT A POLYNOMIAL USING A SINGLE LINKED LIST

Here are the structures that are used to represent a polynomial.

typedef struct polynode
{
 float coef;
 int power;
} polynode;

A polynomial can be thought of a chain or a list of polynodes. The struct polynomial below depicts a

polynomial.

typedef struct polynomial
{
 polynode info;
 struct polynomial *next;
} polynomial;

3.35 POLYNOMIAL TOOL BOX

Example 3.1 Write a program that performs the following things:

1. Accepts a polynomial from the user

2. Prints the polynomials

3. Adds two polynomials

4. Multiplies two polynomials

5. Evaluates a polynomial for a specific value

6. Differentiates a polynomial

7. Integrates a polynomial without limits (Indefinite integration, i.e. in this case it will return

another polynomial)

8. Integrates a polynomial with limits

9. Finds the composite function denoted by fog where one polynomial represents f(x) and the

other represents g(x)

Fig. 3.10

Linked List (Scattered Yet Linked!) 127

Solution

typedef struct PolyNode
{

double coeff;
double power;
struct PolyNode *next;

}PolyNode;

3.36 HOW TO ADD A NEW TERM TO A POLYNOMIAL

Polynomial AddNewTerm(Polynomial poly, double c,double p)

Polynomial AddNewTerm(Polynomial poly, double c,double p)
{
 int flag = 0;
 if(poly==NULL)
 {
 poly = (Polynomial) malloc(sizeof(PolyNode));
 poly->coeff = c;
 poly->power = p;
 poly->next = NULL;
 return poly;
 }
 else
 {
 Polynomial temp = poly;
 for(;temp!=NULL;temp=temp->next)
 {
 if(temp->power == p)
 {
 temp->coeff+=c;

 flag = 1;
 return poly;
 }
 }
 if(flag==0)
 {
 Polynomial t =
(Polynomial)malloc(sizeof(PolyNode));
 t->coeff = c;
 t->power = p;
 t->next = poly;
 return t;
 }
 }
}

128 Data Structures using C

3.37 HOW TO ADD TWO POLYNOMIALS AND RETURN THEIR SUM

Polynomial AddPoly(Polynomial first,Polynomial second)
{
 Polynomial sum = NULL;
 Polynomial tf = first;
 Polynomial ts = second;

 for(;tf!=NULL;tf=tf->next)
 sum = AddNewTerm(sum,tf->coeff , tf->power);
 for(;ts!=NULL;ts=ts->next)
 sum = AddNewTerm(sum,ts->coeff , ts->power);
 return sum;
}

3.38 HOW TO MULTIPLY TWO POLYNOMIALS

Polynomial MultiplyPoly(Polynomial first,Polynomial second)
{
 Polynomial f=first,s=second,result=NULL;
 for(;f!=NULL;f=f->next)
 for(;s!=NULL;s=s->next)
 result = AddNewTerm(result,f->coeff * s->coeff, f->power + s->power);
 return result;
}

3.39 HOW TO FIND THE DIFFERENTIATION OF A POLYNOMIAL

Polynomial DiffPoly(Polynomial poly)
{
 Polynomial diffpoly = NULL;
 Polynomial t = poly;
 for(;t!=NULL;t=t->next)
 diffpoly = AddNewTerm(diffpoly,t->coeff*t->power,t->power-1);
 return diffpoly;
}

3.40 HOW TO CALCULATE THE INTEGRAL OF A POLYNOMIAL

Polynomial IntPoly(Polynomial poly)
{
 Polynomial intpoly = NULL;
 Polynomial t = poly;
 for(;t!=NULL;t=t->next)
 intpoly = AddNewTerm(intpoly,t->coeff/(t->power + 1),t->power+1);
 return intpoly;
}

Linked List (Scattered Yet Linked!) 129

3.41 HOW TO EVALUATE THE VALUE OF THE POLYNOMIAL AT A VALUE

double EvaluatePoly(Polynomial poly,double value)
{
 Polynomial t = poly;
 double sum = 0;
 for(;t!=NULL;t=t->next)
 sum+=t->coeff*pow(value,t->power);
 return sum;
}

3.42 HOW TO FIND THE DEFINITE INTEGRAL VALUE OF A FUNCTION

double DefIntPoly(Polynomial poly, double LowerBound, double
UpperBound)
{
 Polynomial IntegratePolynomial = IntPoly(poly);
 return EvaluatePoly(IntegratePolynomial,UpperBound)
 - EvaluatePoly(IntegratePolynomial,LowerBound);
}

3.43 HOW TO DISPLAY A POLYNOMIAL

void display(Polynomial p)
{
 Polynomial t = p;
 for(;t!=NULL;t=t->next)
 if(t->coeff!=0)
 printf("%.0f*(x)^%.0f + ",t->coeff,t->power);
}

3.44 HOW TO FIND THE VALUE OF A COMPOSITE FUNCTION

double CompositeFun(Polynomial f, Polynomial g,double value)
{
 return EvaluatePoly(f,EvaluatePoly(g,value));
}

Example 3.2 Write a program that performs the following:

1. Accept a polynomial of three variables (x,y,z) from the user

2. Prints such a polynomial

3. Adds two such polynomials

4. Multiply two such polynomials

5. Evaluate such a polynomial for a specific value of x, y and z

6. Differentiate such a polynomial with respect to x, y and z

7. Integrate a polynomial without limits (Indefinite Integration, in this case it will return another

polynomial)

130 Data Structures using C

8. There are three polynomials f (x,y,z), g(x,y,z), h(x,y,z) and s(x,y,z). then write a function to cal-

culate f (g(x,y,z),h(x,y,z),s(x,y,z)). This is known as the composite function.

Fig. 3.11

//This structure represents
//a particular node of a three variable
//polynomial.

Solution

typedef struct PolyNode
{
 double coeff;
 double power_x;
 double power_y;
 double power_z;
 struct PolyNode *next;
}PolyNode;

typedef PolyNode* Polynomial;

3.45 HOW TO ADD A NEW TERM TO A POLYNOMIAL

Polynomial AddNewTerm(Polynomial poly, double c,double px,double py,double pz)
{
 int flag = 0;
 if(poly==NULL)
 {
 poly = (Polynomial) malloc(sizeof(PolyNode));
 poly->coeff = c;
 poly->power_x = px;

Linked List (Scattered Yet Linked!) 131

 poly->power_y = py;
 poly->power_z = pz;
 poly->next = NULL;
 return poly;
 }
 else
 {
 Polynomial temp = poly;
 for(;temp!=NULL;temp=temp->next)
 {
 if(temp->power_x == px
 && temp->power_y == py
 && temp->power_z == pz)
 {
 temp->coeff+=c;

 flag = 1;
 return poly;
 }
 }
 if(flag==0)
 {
 Polynomial t = (Polynomial)malloc(sizeof(PolyNode));
 t->coeff = c;
 t->power_x = px;
 t->power_y = py;
 t->power_z = pz;
 t->next = poly;
 return t;
 }
 }
}

3.46 HOW TO ADD TWO POLYNOMIALS OF THREE VARIABLES

Polynomial AddPoly(Polynomial first,Polynomial second)
{
 Polynomial sum = NULL;
 Polynomial tf = first;
 Polynomial ts = second;

 for(;tf!=NULL;tf=tf->next)
 sum = AddNewTerm(sum,tf->coeff , tf->power_x,tf->power_y ,tf->power_z);
 for(;ts!=NULL;ts=ts->next)
 sum = AddNewTerm(sum,ts->coeff , ts->power_x,ts->power_y ,ts->power_z);
 return sum;
}

3.47 HOW TO MULTIPLY TWO POLYNOMIALS OF THREE VARIABLES

Polynomial MultiplyPoly(Polynomial first,Polynomial second)
{

132 Data Structures using C

 Polynomial f=first,s=second,result=NULL;
 for(;f!=NULL;f=f->next)
 for(;s!=NULL;s=s->next)
 result = AddNewTerm(result,f->coeff * s->coeff
 ,f->power_x + s->power_x,f->power_y + s->power_y
 ,f->power_z + s->power_z);
 return result;
}

3.48 HOW TO DIFFERENTIATE A POLYNOMIAL WITH RESPECT TO X

Polynomial ddx(Polynomial poly)
{
 Polynomial diffpoly = NULL;
 Polynomial t = poly;
 for(;t!=NULL;t=t->next)
 diffpoly = AddNewTerm(diffpoly,t->coeff*t->power_x
 ,t->power_x-1,t->power_y,t->power_z);
 return diffpoly;
}

3.49 HOW TO DIFFERENTIATE A POLYNOMIAL WITH RESPECT TO Y

Polynomial ddy(Polynomial poly)
{
 Polynomial diffpoly = NULL;
 Polynomial t = poly;
 for(;t!=NULL;t=t->next)
 diffpoly = AddNewTerm(diffpoly,t->coeff*t->power_y
 ,t->power_x,t->power_y-1,t->power_z);
 return diffpoly;
}

3.50 HOW TO DIFFERENTIATE A POLYNOMIAL WITH RESPECT TO Z

Polynomial ddz(Polynomial poly)
{
 Polynomial diffpoly = NULL;
 Polynomial t = poly;
 for(;t!=NULL;t=t->next)
 diffpoly = AddNewTerm(diffpoly,t->coeff*t->power_z
 ,t->power_x,t->power_y,t->power_z-1);
 return diffpoly;
}

3.51 HOW TO INTEGRATE THE POLYNOMIAL WITH RESPECT TO X

ASSUMING THE OTHER TWO VARIABLES ARE KEEPING CONSTANT

Polynomial Intx(Polynomial poly)
{

Polynomial intpoly = NULL;
Polynomial t = poly;
for(;t!=NULL;t=t->next)

Linked List (Scattered Yet Linked!) 133

intpoly = AddNewTerm(intpoly,t->coeff/(t->power_x + 1),
t->power_x+1,t->power_y,t->power_z);

return intpoly;
}

3.52 HOW TO INTEGRATE A POLYNOMIAL WITH RESPECT TO Y

ASSUMING THE OTHER TWO VARIABLES ARE KEEPING CONSTANT

Polynomial Inty(Polynomial poly)
{
 Polynomial intpoly = NULL;
 Polynomial t = poly;
 for(;t!=NULL;t=t->next)

 intpoly = AddNewTerm(intpoly,t->coeff/(t->power_y + 1)
 ,t->power_x,t->power_y+1,t->power_z);
 return intpoly;
}

3.53 HOW TO INTEGRATE A POLYNOMIAL WITH RESPECT TO Z

ASSUMING THE OTHER TWO VARIABLES ARE KEEPING CONSTANT

Polynomial Intz(Polynomial poly)
{
 Polynomial intpoly = NULL;
 Polynomial t = poly;
 for(;t!=NULL;t=t->next)
 intpoly = AddNewTerm(intpoly,t->coeff/(t->power_z + 1)
 ,t->power_x,t->power_y,t->power_z+1);
 return intpoly;
}

3.54 HOW TO INTEGRATE A POLYNOMIAL WHEN ALL THREE

VARIABLES ARE VARYING

Polynomial IntPolyxyz(Polynomial poly)
{
 return Intz(Inty(Intx(poly)));
}

3.55 HOW TO EVALUATE A POLYNOMIAL AT GIVEN VALUES OF

X, Y AND Z

double EvaluatePolyxyz(Polynomial poly,double value_x,double value_y,double value_z)
{
 Polynomial t = poly;
 double sum = 0;
 for(;t!=NULL;t=t->next)
 sum+=t->coeff*(pow(value_x,t->power_x) + pow(value_y,t->power_y)

(l)) + pow(value_z,t->power_z));
 return sum;
}

134 Data Structures using C

3.56 HOW TO INTEGRATE A POLYNOMIAL WITHIN A GIVEN LIMIT

double DefIntPoly(Polynomial poly, double LowerBound_x, double UpperBound_x
 ,double LowerBound_y, double UpperBound_y
 ,double LowerBound_z, double UpperBound_z)
{
 Polynomial IntegratePolynomial = IntPolyxyz(poly);
return EvaluatePolyxyz(IntegratePolynomial,UpperBound_x,UpperBound_y,UpperBound_z)
-EvaluatePolyxyz(IntegratePolynomial,LowerBound_x,LowerBound_y,LowerBound_z);
}

3.57 SOME APPLICATIONS OF POLYNOMIAL TOOLBOX

How to Calculate the Divergence of a Function in Three Variables

Let F(F1,F2,F3) be a vector field, where F1, F2 and F3 are functions of x, y and z continuously differ-

entiable with respect to x, y and z. Then the divergence of F is defined by

div F =
31 2 ∂∂ ∂

— ◊ = + +
∂ ∂ ∂

FF F

x y z
F

The name divergence is well chosen, because it is a measure of how much the vector v spreads out

from the point in question. As in the above figure, the vector has a large (positive) divergence.

If the arrows point inwards, then the vector will have a very large (nega-

tive) divergence, where F1, F2 and F3 are nothing but functions of x, y

and z. So the divergence is nothing but the summation of the partially

differentiated polynomials. We have already written functions to find par-

tial differentiation of a polynomial and function to add two polynomials.

Combining these two functions we can easily find the divergence of a

given vector field.

//v(x)
void show_divergence(poly vx,poly vy,poly vz)
{
 poly r;
 r = addpoly(ddx(vx),ddy(vy));
 r = addpoly(r,ddz(vz));
 printpoly(r);
}

3.58 HOW TO FIND THE CURL OF A FUNCTION OF THREE VARIABLES

Fig. 3.13

Fig. 3.12

Linked List (Scattered Yet Linked!) 135

With the functions declared above we can write some highly readable and efficient routines for some

electromagnetic functions.

//This function displays the Curl in human readable format
void show_curl(poly vx,poly vy,poly vz)
{
 poly r,s,t,w,y,z;
 printf("x_cap(");
 r=ddy(vz);
 s=ddz(vy);
 s->info.coef=-s->info.coef;
 t=AddPoly(s,r);
 display(t);
 printf(")");

 printf("+ y_cap(");
 r=ddz(vx);
 s=diffpoly_x(vz);
 r->info.coef=-r->info.coef;
 t=AddPoly(s,r);
 display(t);
 printf(")");

 printf("+ z_cap(");
 r=ddx(vy);
 s=ddy(vx);
 s->info.coef=-s->info.coef;
 t=AddPoly(s,r);
 display(t);
 printf(")");
}

3.59 HUGE NUMBERS: APPLICATION OF LINKED LISTS

Write a function that allows the user to create a single linked list of integers with variable number of

integers. Use va_arg.

//This function creates a single linked list of integers
//passed as arguments. The three dots (�) are known as
//ellipsis and used to tell the compiler that this function
//is capable of accepting variable number of arguments
//(Though of the same type).
//The function scans the integers and put them in a linked list till it
//encounters a -1.

node* createlist(char *msg,...)
{
 node *p=NULL,*q;
 va_list ap;
 int arg;
 int c=0;
 va_start(ap,msg);

136 Data Structures using C

 while((arg=va_arg(ap,int))!=-1)
 {
 p = push_front(p,arg);
 if(c==0)
 q = p;
 c++;

 } nerd
 puts(msg);
 return p;
}

Here it is shown how to call this function

node *c=NULL;
c = createlist("Huge 1",1,2,3,4,5,6,7,8,9,2,3,2,3,2,4,3,4,3,4,-1);
display(c);

for the above code c will now represent a linked list with content

1,2,3,4,5,6,7,8,9,2,3,2,3,2,4,3,4,3,4

In some cases we need to do arithmetical operations with huge integers. By huge, we mean that the

number of digits of the integer is so large that it can�t be stored in any built-in C data type. In these

scenarios, linked list can prove to be useful.

3.60 HOW TO STORE TWO HUGE INTEGERS AS SINGLE LINKED LIST AND

THEN ADD THOSE TWO NUMBERS AND DISPLAY THE SUMMATION

//This function adds two HUGE
//positive integers
//like
//huge 1 = 1234567892323243434
//huge 2 = 3434324234243242342

node* addhuge(node *one,node *two)
{
 node *sum=NULL,*s;
 node *ss=NULL,*sss;
 int i=0;
 int z=0;
 int x=0;
 int c=0;
 int y;
 for(i=1;i<count(one);i++)

 {
 sum = push_back(sum,get_value(one,i) + get_value(two,i));
 if(c==0)
 s = sum;
 c++;
 }
 for(i=1;i<=count(s);i++)

Linked List (Scattered Yet Linked!) 137

 {
 if(i==1)
 {
 x = get_value(s,1);
 if(x>=10)
 ss = push_front(ss,x-10);
 else
 ss = push_front(ss,x);
 sss = ss;
 }
 else
 {
 if(get_value(s,i-1) >= 10)
 {
 y = get_value(s,i) + 1;
 if(y>=10)
 ss = push_front(ss,y-10);
 else
 ss = push_front(ss,y);
 }
 else
 {
 y = get_value(s,i);
 if(y>=10)
 ss = push_front(ss,y-10);
 else
 ss = push_front(ss,y);

 }

 }

 }

 z = back_element(one) + back_element(two);
 if(back_element(s)>=10)
 z+=1;
 ss = push_front(ss,z);

 return ss;
}
To add two huge numbers and to show their sum, here is how to call the above functions..

c = createlist("Huge 1",1,2,3,4,5,6,7,8,9,2,3,2,3,2,4,3,4,3,4,-1);
display(c);//Showing the first Huge Number

d = createlist("Huge 2",3,4,3,4,3,2,4,2,3,4,2,4,3,2,4,2,3,4,2,-1);
display(d);//Showing the second Huge Number

puts("Sum");
display(addhuge(c,d));//Showing the sum of the two huge numbers.

138 Data Structures using C

Try yourself: Try to find out the multiplication of two such huge numbers using linked list. There are few

good algorithms. Among them Karatsuba Algorithm is quite popular among computer scientists. Try to

implement that Algorithm using linked lists.

3.61 DIGITAL SIGNAL PROCESSING

How to Model a Digital Signal using Linked List

It takes two attributes to describe a digital signal, where

the signal starts on the timeline (i.e. whether the signal

is causal, anti-causal or non-causal) and what is the am-

plitude at any particular point of time.

So a structure can be defined to represent a signal in

discrete timeline or to represent a digital signal.

typedef struct Signal
{
 int time;
 int amplitude;
 struct Signal *next;
}Signal;

Now we can create a linked list of this structure to

represent a digital signal. Basically the linked list code for holding the integer variables need to be

modified slightly to represent a signal. Here is the code of the building block functions.

Here only those functions are listed whose source code is slightly changed in order to create a digital

signal. Carefully notice that the functions that only modify the content of a node are changed.

3.62 HOW TO FIND THE LENGTH OF A SIGNAL

The function name has been changed to length() because length of a signal makes more sense than

count() of a signal.

//All digital signals that we handle are finite length signals.
int length(Signal *h)
{
 int count=0;
 Signal *p = h;
 if(p==NULL)
 return 0;
 else
 {
 for(;p!=NULL;p=p->next)
 count++;
 return count;
 }
}

Fig. 3.14

Linked List (Scattered Yet Linked!) 139

3.63 HOW TO FIND THE INDEX OF A GIVEN AMPLITUDE IN A SIGNAL

int searchindex(Signal *h,int amp)
{
 int search_status = NOTFOUND;
 int c=0;
 Signal *p = h;
 for(;p!=NULL;p=p->next)
 {
 c++;
 if(p->amplitude==amp)
 {
 search_status = FOUND;
 break;
 }
 }
 if(search_status == FOUND)
 return c;
 else
 return -1;
}

3.64 HOW TO ADD A NEW VALUE AT THE END OF A SIGNAL

//Notice: The same push_back() function that has been
//used in Integer linked list described above in this chapter
//The changes are highlighted.

Signal* push_back(Signal *last,int t,int amp)
{
 if(last==NULL)
 {
 last = (Signal *)malloc(sizeof(Signal));
 last->time = t;
 last->amplitude = amp;
 last->next = NULL;
 return last;
 }
 else
 {
 Signal *p = (Signal *)malloc(sizeof(Signal));
 if(p)
 {
 last->next = p;
 p->time = t;
 p->amplitude = amp;
 p->next = NULL;
 }
 return p;
 }
}

140 Data Structures using C

3.65 HOW TO ADD A NEW VALUE AT THE FRONT OF A SIGNAL

Signal* push_front(Signal *h,int t,int amp)
{
 Signal *p = (Signal *)malloc(sizeof(Signal));
 p->next = h;
 p->time = t;
 p->amplitude = amp;
 return p;
}

Digital signal processing finds application in many diverse areas. While working on a stored digital

signal, we may need to change particular amplitude (amplitude in a particular location) with another

value. Here is the code.

Signal* replace(Signal *h,int location,int t,int amp)
{
 int c=0;
 Signal *p=h;
 Signal *r=p;
 Signal *q=(Signal *)malloc(sizeof(Signal *));
 if(location<length(h))
 {
 //
 for(;p!=NULL;p=p->next)

 {
 c++;
 if(c==location-1)
 break;
 }

 q = p->next;
 q->next = p->next->next;
 q->time = t;
 q->amplitude = amp;

 }

 return r;

}

3.66 HOW TO RETURN THE FIRST SIGNAL NODE POINTER

Signal* first(Signal *h)
{
 return h;
}

Linked List (Scattered Yet Linked!) 141

3.67 HOW TO RETURN THE LAST SIGNAL NODE POINTER

Signal* last(Signal *h)
{
 Signal *p = h;
 for(;p->next!=NULL;p=p->next);
 return p;
}

3.68 HOW TO INSERT A NODE AT A PARTICULAR LOCATION OF A

SIGNAL

Signal* insert(Signal *h,int location,int t,int amp)
{
 int c=0;
 Signal *p=h;
 Signal *r=p;
 Signal *q=(Signal *)malloc(sizeof(Signal *));
 if(location<length(h))
 {
 //
 for(;p!=NULL;p=p->next)

 {
 c++;
 if(c==location)
 break;
 }
 q->next = p->next;
 p->next = q;
 q->time = t;
 q->amplitude = amp;

 }
 return r;
}

3.69 HOW TO DISPLAY A DIGITAL SIGNAL

//Display the digital signal
//For simplicity it is assumed that the time line for this signal
//is entered serially. By that we mean suppose a signal starts at -2 and
//finishes at 4, then it is assumed that the entries started from time
//t = -2.
//The display pattern is
void display(Signal *h)
{
 Signal *p = h;
 for(;p!=NULL;p=p->next)
 printf("x[%d] = %d\n",p->time,p->amplitude);
}

142 Data Structures using C

3.70 HOW TO GET THE AMPLITUDE OF THE FIRST SIGNAL NODE

//returns the first amplitude of the signal
int front_element(Signal *h)
{
 return first(h)->amplitude;
}

3.71 HOW TO GET THE AMPLITUDE OF THE LAST SIGNAL NODE

//returns the last amplitude of the signal
int back_element(Signal *h)
{
 return last(h)->amplitude;
}

3.72 HOW TO FIND FREQUENCY OF A PARTICULAR AMPLITUDE IN A

GIVEN SIGNAL

int frequency(Signal *h,int amp)
{
 int freq=0;
 Signal *p = h;
 for(;p!=NULL;p=p->next)
 if(p->amplitude==amp)
 freq++;
 return freq;
}

3.73 HOW TO GET THE ADDRESS OF A SIGNAL NODE GIVEN THE INDEX

//This function returns the address of the
//signal node at a particular location
Signal* get_address(Signal *h,int index)
{
 Signal *p=h;
 int c=0;
 for(;p!=NULL;p=p->next)
 {
 c++;
 if(c==index)
 break;
 }
 return p;
}

Linked List (Scattered Yet Linked!) 143

3.74 HOW TO GET THE AMPLITUDE OF A SIGNAL AT A PARTICULAR

POINT

//This returns the value at a particular address
//It is always nice to have an array like indexing
//facility.
int get_value(Signal *h,int index)
{
 return get_address(h,index)->amplitude;
}

3.75 HOW TO CHECK WHETHER A DIGITAL SIGNAL IS EVEN OR NOT

A digital signal is said to be even if it is symmetric about the y

axis. That means, the right half of the signal is a mirror image of

the left half with respect to origin. Here is the picture of an even

digital signal.

int isEven(Signal *x)
{

int i=0,j=0;
int even=YES;
int len = length(x);
int mid = ceil(len/2);
for(i=len,j=1;i>=mid;i--,j++)
{

if(get_value(x,i)!=get_value(x,j))
{

even = NO;
break;

}
}
return even;

}

3.76 HOW TO CHECK WHETHER A DIGITAL SIGNAL IS CAUSAL

A signal is said to causal signal if and only if the signal has non zero values for time t >0.

That means before t = 0, all the amplitudes are zero for a causal signal. Here is a causal signal shown in

the picture.

enum {NO,YES};
int isCausal(Signal *x)
{

int causal = YES;
Signal *p=x;
for(;p!=NULL;p=p->next)
{

//Any value at the negative discrete time zone?
if(p->time<0)

Fig. 3.15

144 Data Structures using C

Fig. 3.16

 {
 causal = NO;
 break;
 }
 }
 return causal;
}

3.77 HOW TO CHECK WHETHER A DIGITAL SIGNAL IS ANTI-CAUSAL

Fig. 3.17

Linked List (Scattered Yet Linked!) 145

A signal is said to be anticausal if the signal has non-zero amplitudes only in negative time. So for time

t = 0 or more all the amplitudes of an anti-causal signal are zero. Here is an anti-causal signal picture.

int isAntiCausal(Signal *x)
{

int anticausal = YES;
Signal *p=x;
for(;p!=NULL;p=p->next)
{

//Any amplitude at the positive discreet time zone is
//greater than zero or not
if(p->time>=0)
{

anticausal = NO;
break;

}
}
return anticausal;

}

3.78 HOW TO CHECK WHETHER A DIGITAL SIGNAL IS NON-CAUSAL

Here is a non-causal signal:

Fig. 3.18

A signal is said to be non-causal if the signal has values in both negative and positive time zone.

So from the definitions we can say that a non-causal signal is a signal which is neither causal nor anti-

causal. Using the above two functions we can write a single line function that will tell us whether a

signal us non-causal or not. Here is the code:

int isNonCausal(Signal *x)
{
 return !isCausal(x) && !isAntiCausal(x);
}

See how this function isNonCausal() is written as the combination of isCausal() and

isAntiCausal()

146 Data Structures using C

3.79 HOW TO ADD AT THE END OF A SINGLE CIRCULAR LINKED LIST

To maintain a circular single linked list. We need to maintain a global pointer of type node that will be

modified every time we add a node at the front. Let�s call this firstnode. 26326

node* push_back(node *last,int info)
{

//If this is the first node of the circular linked list.
 if(last==NULL)

{
last = (node *)malloc(sizeof(node));
last->data = info;
last->next = NULL;
return last;

}
else
{

node *p = (node *)malloc(sizeof(node));
if(p)
{

last->next = p;
p->data = info;
//The next pointer of the last node
//now points to the first node.

//First Node is nothing but a pointer
//of type node* that is modified every time

p->next = FirstNode;
}
return p;

}
}

Apart from the above change, everything else will remain same as that of Single Linked List.

So those functions are not duplicated here.

3.80 DOUBLE LINKED LIST

How to Write a Structure to Model a Double Linked List of Integers

typedef struct node
{
 int data;
 struct node *next;
 struct node *prev;
}node;

Linked List (Scattered Yet Linked!) 147

3.81 HOW TO ADD A NUMBER AT THE END OF A DOUBLE LINKED LIST

node* push_back(node *last,int info)
{
 //If this is the first node of the double linked list.
 if(last==NULL)
 {
 last = (node *)malloc(sizeof(node));
 last->data = info;
 last->next = NULL;
 last->prev = NULL;
 return last;
 }
 else
 {
 node *p = (node *)malloc(sizeof(node));
 if(p)
 {
 last->next = p;
 p->data = info;
 p->next = NULL;

//The previous last node now becomes the
//last but one node of the list

 p->prev = last;
 }
 return p;
 }
}

3.82 HOW TO ADD A NUMBER AT THE FRONT OF A DOUBLE LINKED

LIST

node* push_front(node *h,int info)
{
 node *p = (node *)malloc(sizeof(node));
 p->prev = NULL;
 p->next = h;
 p->data = info;
 return p;
}

3.83 HOW TO GO TO THE NEXT NODE OF A DOUBLE LINKED LIST

node* Next(node *ANode)
{
 return ANode->next;
}

148 Data Structures using C

3.84 HOW TO GO TO THE PREVIOUS NODE OF A DOUBLE LINKED LIST

node* Prev(node *ANode)
{
 return ANode->prev;
}

For the above two methods please note that the return value will be null in case the given node don�t

have a previous or next node.

3.85 HOW TO DISPLAY THE DOUBLE LINKED LIST IN FORWARD

DIRECTION

//Display the list of numbers
void display_forward(node *head)
{
 node *p = head;
 for(;p!=NULL;p=p->next)
 printf("Value = %d Address %u Next Address %u\n",
 p->data,p,p->next);
}

3.86 HOW TO DISPLAY THE DOUBLE LINKED LIST IN BACKWARD

DIRECTION

void display_backward(node *tail)
{
 node *p = tail;
 for(;p!=NULL;p=p->prev)
 printf("Value = %d Address %u Next Address %u\n",
 p->data,p,p->prev);
}

3.87 HOW TO INSERT A VALUE AT A LOCATION IN THE LINKED LIST

node* insert_at(node *head,int index,int value)
{
 node *n = head;
 int i = 0;
 for(;head!=NULL;head=head->next)
 {
 i++;
 if(i==index)
 {
 node *p = (node *)malloc(sizeof(node));
 p->next = head->next;
 head->next->prev = p;
 p->prev = head;

Linked List (Scattered Yet Linked!) 149

 p->data = value;
 head->next = p;
 break;
 }
 }
 return n;
}

Rest all functions will be same as those of Single Linked List. Moreover, if you notice carefully, you

will discover that push_back() and push_front() functions, serve as the building block of other insertions

functions like insert(), insertOneinAnother(), etc.

3.88 HOW TO ADD A NUMBER AT THE END OF A CIRCULAR

DOUBLY LINKED LIST

node* push_back(node *last,int info)
{
 //If this is the first node of the double linked list.
 if(last==NULL)
 {
 last = (node *)malloc(sizeof(node));
 last->data = info;
 last->next = NULL;
 last->prev = NULL;
 return last;
 }
 else
 {
 node *p = (node *)malloc(sizeof(node));
 if(p)
 {
 last->next = p;
 p->data = info;
 p->next = FirstNode;

//The next pointer of the last node
//now points to the first node.

 p->prev = last;
 }
 return p;
 }
}

Please note that the Firstnode is nothing but a node pointer that is updated as and when we add a node

in front of the list.

3.89 LINKED LIST APPLICATIONS IN BIOCHEMISTRY

Representations of the DNA Strand using Linked List

DNA Deoxyribonucleic Acid
l Blueprint of life (has the instructions for making an organism)

l Established by James Watson and Francis Crick

150 Data Structures using C

l Codes for your genes

l Shape of a double helix

l Made of repeating subunits called nucleotides

Gene Gene a segment of DNA that codes for a

protein, which in turn codes for a trait (skin tone,

eye color..etc), a gene is a stretch of DNA.

Nucleotide Nucleotide consists of a sugar,

phosphate and a base.

Nucleotides (also called Bases)

Adenine, Thymine, Guanine, Cytosine or A, T, G, C

Nucleotides pair in a specific way�called the Base-

Pair Rule

Adenine Pairs to Thymine

Guainine Pairs to Cytosine

Memory Helper�think �A T Granite
City��which is where you live
*The rungs of the ladder can occur in any order (as

long as the base-pair rule is followed)

How the Code Works
For instance, a stretch of DNA could be

AATGACCAT�which would code for a different

gene than a stretch that read: GGGCCATAG.

Those 4 bases have endless combinations just like the letters of the alphabet can combine to make

different words.

A DNA Strand (Single or Double) can be represented with a double linked list as shown below.

Fig. 3.20

We can create a Single Strand of a DNA using a double linked list. We can read a list of nucleotides

from a notepad file and then create a strand as a linked list. The code snippet below shows how we can

emulate a DNA using couple of Double Linked List.

enum {NO,YES};
enum {NOTFOUND,FOUND};

typedef struct node
{

i

Fig. 3.19

Linked List (Scattered Yet Linked!) 151

char nucleotide;
struct node *prev;
struct node *next;

}node;

node *head=NULL;

typedef struct DNA
{

node *strand_1;
node *strand_2;

}DNA;

The primitive bio-operations that can be performed on DNA molecules are:

l Shortening

l Cutting

l Hybridization

l Melting

l Linking or Ligation, and

l Multiplication.

Of these, the molecules that undergo hybridization, melting and ligation in parallel, thereby enhance the

power of bio-computing.

All these primitive DNA operations can be easily emulated by using the DNA Structure.

3.90 HOW TO HYBRIDIZE TWO SINGLE DNA STRANDS TO ONE DNA

Before discussing the hybridization and other bio operations performed by the DNA, one needs to

understand WC_Compatibility. Adenine only pairs with Thyamine, and Guanine only bonds with Cyto-

sine. So Adenine or A is compatible to Thyamine or T on the other hand Guanine or G is compatible with

Cytosine or C. This phenomenon is termed as WC_Compatibility in honour to the scientists Watson and

Creek who discovered the DNA helix model.

Hybridization

Two single strands, which are WC-complement of each other, are joined laterally through H-bond to

form a double strand. Our virtual model implements this reaction as a C function hybridize (S1*, S2*)

which takes two DNA strands, i.e., two linked lists, as input and checks the WC-complementarity for

each nucleotide. If all the nucleotide pairs satisfy complimentarily, it joins them by making the element

of one DNA structure. Notice the code of the function below.

Fig. 3.21

152 Data Structures using C

The input couple of strands are A-C-T-G and T-G-A-C

And these two makes up the component strands for the DNA.

DNA Hybridize(node *S1,node *S2)
{

int WC_Compatible = NO;
DNA tempDNA;
node *temp1 = S1;
node *temp2 = S2;
for(;temp1!=NULL;temp1->next,temp2->next)
{

//Checking for WC_Compatibility
if(((S1->nucleotide=='A' && S2->nucleotide =='T')
 ||(S2->nucleotide=='A' && S1->nucleotide =='T'))
 && (S1->nucleotide=='G' && S2->nucleotide =='C')
 ||(S2->nucleotide=='C' && S1->nucleotide =='G'))

WC_Compatible = YES;
else

WC_Compatible = NO;
break;

}
if(WC_Compatible==YES)
{

tempDNA.strand_1 = S1;
tempDNA.strand_2 = S2;
return tempDNA;

}

 else
 {
 tempDNA.strand_1 = NULL;
 tempDNA.strand_2 = NULL;
 return tempDNA;
 }
}

3.91 HOW TO MELT ONE DNA TO A COUPLE OF STRANDS

Melting

The weak H-bonds between complementary bases are broken by heating a double strand, yielding two

single strands. This reaction is emulated by the C function melt (S*) which takes a double strand, i.e. a

pointer to a laterally linked list pair, as input, and removes lateral links (the H-Bonds) between the

corresponding nodes of the two lists.

Linked List (Scattered Yet Linked!) 153

Fig. 3.22

Here is the function that returns the DNA strands after it melts.

node** Melt(DNA d)
{
 node* temp[2];
 temp[0] = d.strand_1;
 temp[1] = d.strand_2;
 return temp;
}

3.92 HOW TO EMULATE LINKING OF ONE DNA STRAND TO

THE OTHER

This reaction involves head to head joining of single strands by phosphodiester bonds in the presence of

a certain class of enzymes called Ligases. The emulation is done by ligate (S1*, S2*) which takes two

single strands as input and joins them end to end as shown in the figure below.

Fig. 3.23

Here is the function that ligates two single DNA strands.

node* Ligate(node *S1,node *S2)
{
 return merge(S1,S2,1,count(S1),1,count(S2));
}

See how the merge function is being used in the ligate code.

3.93 HOW TO REPRESENT A SPARSE MATRIX USING JAGGED ARRAYS

A sparse matrix can be space efficiently using Jagged Arrays. A Matrix is said to be Sparse if the total

number of non-zero elements in the matrix is not more than 1/3rd of the total number of elements. In the

chapter on Arrays, we have seen how Sparse Matrices can be represented using 2D numeric arrays. But

that has got a disadvantage with it. Lot of memory space is wasted due to this storage technique.

154 Data Structures using C

The jagged array can represent the sparse matrices in a space efficient manner. Here is a picture of the

concept.

Fig. 3.24

Here are two structures that are designed to represent the above representation of sparse matrix using

a jagged array of linked lists.

typedef struct Node
{
 int value;
 int col;
 Node *Next;//Horizontal Next
}Node;

typedef struct JaggedArray
{
 Node *Data;//Pointer to the column of values
 struct JaggedArray *Next;//Vertical Next
}JaggedArray;

3.94 HOW TO ADD AN ITEM IN THE SPARSE MATRIX

//The following function adds an item represented by column and value
//at the end of a list. This linked list represents a particular row of
//the sparse matrix.

Linked List (Scattered Yet Linked!) 155

Node* push_back_node(Node *last,int col,int val)
{

if(last==NULL)//If this is the first Node
{

//Create Memory Space for this new Node
last = (Node *)malloc(sizeof(Node));
last->col = col;
last->value = val;
//Terminate the Node properly using NULL
last->next = NULL;
//return the back of the list
return last;

}
 //If it is not the first Node

else
{

//Creation of new Node
Node *p = (Node *)malloc(sizeof(Node));
if(p)//Check if memory is available for this Node
{

//The last Node from now on will be p
last->next = p;
p->col = col;
p->value = val;
//The list will be terminated by NULL
p->next = NULL;

}
return p;//Returning the end for the linked list

}
}

3.95 HOW TO ADD A JAGGED ROW TO THE JAGGED REPRESENTATION

OF THE SPARSE MATRIX

JaggedArray* push_back_jaggedrow(JaggedArray *last,Node *info)
{

if(last==NULL)//If this is the first node
{

 //Create Memory Space for this new node
last = (JaggedArray *)malloc(sizeof(JaggedArray));
last->data = info;
//Terminate the node properly using NULL
last->next = NULL;
//return the back of the list
return last;

}
//If it is not the first node
else
{

//Creation of new node
JaggedArray *p = (JaggedArray *)malloc(sizeof(JaggedArray));
if(p)//Check if memory is available for this node.

156 Data Structures using C

{
//The last node from now on will be p
last->next = p;
p->data = info;
//The list will be terminated by NULL
p->next = NULL;

}
return p;//Returning the end for the linked list

}
}

3.96 HOW TO ACCEPT THE SPARSE MATRIX DETAILS FROM THE USER

AND CREATE THE JAGGED ARRAY OF LINKED LISTS TO REPRESENT

THE MATRIX IN A SPACE-EFFICIENT WAY

0 0 0 1 0

0 0 0 0 0

0 2 0 0 0

0 0 0 0 0

0 0 0 3 5

In the program below we will create the above sparse matrix using the structures jagged array.
int main()
{
 //Storing the following sparse matrix in the Jagged Array of linked list.

 //0 0 0 1 0
 //0 0 0 0 0
 //0 2 0 0 0
 //0 0 0 0 0
 //0 0 0 3 5
 Node *n = NULL,*cn = NULL;
 JaggedArray *head = NULL,*chead = NULL;
 n = push_back_node(n,4,1);
 head = push_back_jaggedrow(head,n);
 chead = head;
 n = NULL;
 head = push_back_jaggedrow(head,n);
 n = push_back_node(n,2,2);
 head = push_back_jaggedrow(head,n);
 n = NULL;
 head = push_back_jaggedrow(head,n);
 n = push_back_node(n,4,3);
 cn = n;
 n = push_back_node(n,5,5);
 head = push_back_jaggedrow(head,cn);

 for(;chead!=NULL;chead = chead->next)
 for(;chead->data!=NULL;chead->data=chead->data->next)
 printf("Col = %d Val = %d\n",chead->data->col,chead-
>data->value);

 getch();
 return 0;
}

Here is a screenshot of the sample run of the program.

Linked List (Scattered Yet Linked!) 157

Co1 = 4 Ua1 = 1

Co1 = 2 Ua1 = 2

Co1 = 4 Ua1 = 3

Co1 = 5 Ua1 = 5

So we have retained all the intelligent information to reconstruct the sparse matrix using less memory

than that of array representation.

3.97 REPRESENTATION OF HANDWRITTEN SIGNATURES

USING JAGGED ARRAYS

Signature on white paper with black ink is nothing but a sparse matrix of black dots (specifically Pixels).

The above image shows the signature of Neil Armstrong. This is an image

of dimension 311 * 350 (The image above is scaled down due to proper

view), that means in total there are 108850 pixels of which only 633 ele-

ments are black dots and rest all are white. So the intelligent information

of the above image is residing in only 633/108850 part of the total size of

the image. That means the image is highly sparse and can be represented

as a sparse matrix. Now we have already shown that a sparse matrix can

be efficiently stored as a jagged array, so the signatures can also be stored

as jagged arrays.

3.98 HOW TO MODEL SIMPLE CONTENT

MANAGEMENT SYSTEM USING LINKED LIST

Fig. 3.26

Fig. 3.25

158 Data Structures using C

In a content management system there are three types of people involved. The readers, authors/contribu-

tors and the moderators. The readers will only have the read access to the documents on the other hand

the authors/moderators and the contributors can edit the documents. These are some of the possible

operations on the documents in the content management software.

l Add a new document to a group

l Move a document from one group to the other

l Change the publication status of a document

l Add a reader/user

l Add a user to the Moderator Group

l Remove a user from the Moderator Group

l Add a user to the contributor group

l Remove a user from the contributor group

We can create a linked list of the document objects that will hold pointers to their contributors and

users. There will be a separate list of users for each group. The sketch given describes the CMS system.

Fig. 3.27

Here is a structure that represents users of the CMS:

enum TypeOfUser{USER,MODERATOR};

typedef struct User
{

//

Linked List (Scattered Yet Linked!) 159

 int UserType;//What can this user do?
 char *UserID;//User�s ID
 char *Name;
 int NumberOfPosts;//How many posts have this user done?
}User;
Here is a structure that represents documents of the CMS:

typedef struct Document
{
 int DocumentID;//What is the access ID?
 int PublishedStatus;//What is the publication status?
 User Author;//Who wrote it?
 User Moderator;//Who approved it?
 struct User *Contributors;//Who can modify it?
}Document;

The entities of this program are users and the documents. Their details will be stored in the delimited

files as shown.

The following function is written to load all the existing users in the file. Don�t feel worried if you

don�t understand the function well. This function uses a function called Split(). You can jump to the
chapter on string to read about it.

User* LoadUsers()
{
 char line[81];
 int count = 0;
 String *toks = NULL;
 User *us = NULL,*users = NULL;
 User u;
 FILE *fp = fopen("C:\\users.txt","r");
 while(!feof(fp))
 {
 fgets(line,81,fp);
 toks = split(line,"-");
 if(toks->next!=NULL)
 {
 strcpy(u.UserID,toks->s);
 toks=toks->next;
 strcpy(u.Password,toks->s);
 toks=toks->next;
 strcpy(u.Name,toks->s);
 toks = toks->next;
 u.UserType = atoi(toks->s);
 us = push_back_User(us,u);
 count++;
 if(count==1)
 users = us;
 }
 }

160 Data Structures using C

 fclose(fp);

 return users;
}

The program on CMS should be able to perform at least the following..
int menu()
{
 int choice = 0;
 puts("1.Add a new user");
 puts("2.Post a new article");
 puts("3.Publish a document");
 puts("4.Review a document");
 puts("5.Make an User the moderator");
 puts("6.List all published document");
 puts("7.List all unpublished document");
 puts("8.List all published document from an author");
 puts("9.Exit System");
 scanf("%d",&choice);
 return choice;
}
Here are two functions that puts one document at the end of document list.
Document* push_back_Document(Document *last,Document d)
{
 if(last==NULL)
 {
 last = (Document *)malloc(sizeof(Document));
 last->next = NULL;
 last->prev = NULL;
 last->Author = d.Author ;
 last->Contributors = d.Contributors;
 last->DocumentID = d.DocumentID;
 strcpy(last->DocumentURL , d.DocumentURL);
 last->Moderator = d.Moderator;
 return last;
 }
 else
 {
 Document *p = (Document *)malloc(sizeof(Document));
 last->next = p;
 p->prev = last;
 p->next = NULL;
 p->Author = d.Author ;
 p->Contributors = d.Contributors;
 p->DocumentID = d.DocumentID;
 strcpy(p->DocumentURL , d.DocumentURL);
 p->Moderator = d.Moderator;

 return p;

 }
}

When a document will be added, by default the publication status will be unpublished.

Try yourself: Finish this simulation using these structures and functions and the flow chart above

and use your creativity.

Linked List (Scattered Yet Linked!) 161

3.99 HOW TO MODEL WORKFLOW ENGINE SYSTEM (LIKE K2.NET)

USING LINKED LIST

Fig. 3.28

Here is a k2.net workflow image.
Workflow engines are systems that allow its

users to create a flow of work for a particular
activity. Suppose in a bank a customer applies
for the home loan, then the telesales stuff of the
bank will gather the information from the cus-
tomer and will initiate the process. Once initi-
ated the refinance loan request will move to the
pending list of the manager. Once the manager
thinks everything is ok, then he marks the refi-
nance request as approved and then the request
will be moved to the processor�s pending list.
Once the processor does all the required opera-
tions, then the request is marked as complete.

Basically this workflow grows around a list
of requests.

Try to create a workflow engine using linked
lists.

3.100 A COMPARISON BETWEEN

ARRAYS AND LINKED LISTS

When someone asks �What is the better data
structure? array or linked list?� the reverse
question should be �What you want to do most
with your data structure?� Fig. 3.29

162 Data Structures using C

Select an array If
l The maximum number of elements are known at the start of the program.
l The elements will be accessed in a random fashion mostly.
l There could be occasions to access the elements sequentially.
l There would be ideally no insertion or deletion inside the length of the array.
l All the additions and deletions will be at the end of the array.

Select a linked list if
l Random insertion/dele-

tion of the elements oc-
cur most of the times

l Accessing array ele-
ments (Either Sequential
or Random) will be very
rare

From the above graphs we
can conclude that for a linked
list the sequential access is al-
most 8 times slower than ar-
ray and for random access
array access is close to 5 times
faster than linked list access.
The following curves are gen-
erated using data from 10 sam-
ple runs.

Fig. 3.30

Follows the same scale and axis as the previous one

Linked List (Scattered Yet Linked!) 163

R E V I S I O N O F C O N C E P T S

1. Linked list was first discovered by Allen Newell, Cliff Shaw and Herbert Simon in 1955 at RAND
corporation for their Information Processing Language (IPL) which was used for many early Arti-
ficial Intelligence (AI) programs.

2. Linked list is the simplest pointer based data structure and it serves as the base for several other
pointer based complex data structures like trees, graphs, etc.

3. It is better than array as far as memory management is considered, because memory allocations
need not be contiguous. But accessing elements from a linked list is slower than that from an array
because in the later memory is contiguous.

4. Linked list access is slower than that of the array access. Specifically in such occasions where the
elements of the list need to be processed in a random fashion and we know previously how many
elements need to be processed array is a better choice over linked list. When we know that we will
use the data in the list as we go down or as we go up then linked list is the best data structure
available.

5. A node of a single linked list holds one pointer to the next node.
6. Normally A node of a double linked list holds two pointers. One to the next node and the other to

the previous node. You can design a double linked list that holds only a single pointer and then
using some pointer arithmetic you can find the address of the previous element. But this approach
kills the conceptual look and feel of your code and should be strictly avoided until there is a special
need.

7. A node in circular linked list holds one pointer to the next node. But here the next pointer of the
last node points to the first node. Thus the list is circular.

8. Unlike array, linked list can grow and diminish in run time. So, whenever the nature of a list is
dynamic, linked list is a better choice over array.

9. Whenever there is a list of items to be processed at run time then the linked list is the best data
structure to store the data.

10. The data field in the linked list can be anything, a primitive data type or a user defined data. In
most of the cases, it will be the user defined data (Efficiently represented as C structure).

11. The data field in the linked list can be another linked list. This allows linked list to become a very
useful data structure. The functional programming language LISP uses the linked list data struc-
ture to build its compiler and linked list is the inherent data structure in this language.

R E V I E W Q U E S T I O N S

1. What is wrong about the following statement node* r = push_back(r,11); given that push_back

accepts an object of type node to be pushed at the end of the list.

2. Write a single line statement to find the maximum elements of a merged linked list.

3. Write statements to add the 11,14,10,13,12 in an ascending order to a linked list. Just write the

client code that calls functions described in this chapter.

4. Write statements to insert two repetitions of the sequence 45,90 after 13 in the sequence

11,22,13,34,56.

5. Write a statement to delete the nth element of the above linked list.

164 Data Structures using C

P R O G R A M M I N G P R O B L E M S

1. Write a function to delete all occurrences of an item from a linked list if a condition is true. The

condition should be passed to the function as a predicate.

2. Write a function to copy the items of one linked list to another if the condition is satisfied. The

condition should be passed to the function as a predicate.

3. Write a program to calculate the mean of a linked list of double variables.

4. Write a program to calculate the median of a linked list of double variables.

5. Write a program to calculate the mode of a linked list of double variables.

6. Write a program to calculate the standard deviation of a linked list of double variables.

7. Write a program to calculate the variance of a linked list of double variables.

8. Write a function that accepts a jagged linked list of linked lists of doubles and returns the mean,

median, mode, standard deviation, variance of these lists.

9. Write a program that accepts a linked list of point structure (for details on point structure refer

Chapter on Structure) and determine whether these points can be vertices of a polygon or not.

10. Write a function to swap alternate nodes of a linked list.

11. Write a function to copy the contents of a linked list to another if the condition is satisfied.

12. Write a function push_back_if() that pushes an element at the end of the linked list if that element

satisfies a particular condition. Basically this is a wrapper method that will check the validity of

the element before addition and then will use push_back.

13. Write a function get_locations_if() that returns the location of the elements on the linked list, if the

condition is satisfied.

14. Write a function find_first_if() will return the first element that matches the condition given.

15. Write a function find_last_if() will return the last element that matches the condition given.

16. Write a function find_all_where() that will return all the elements of the list that matches the

criterion supplied by the predicate.

17. Write a function collect(int power) that will accept two polynomials and then will collect the terms

of both the polynomials whose power is supplied as the function parameter.

18. Write a function arethesefactors() that will accept a linked list of polynomials and a single polyno-

mial. If the product of the elements of the linked list of polynomials is same as the stand alone

supplied polynomial then those polynomials are factors of the solitary polynomial and the function

will return 1 else it will return 0.

19. Write a function samepoly() that checks whether two argument polynomials are same or not.

20. Write a function monicpoly () that will return 1 if the polynomial supplied as argument is monic. A

polynomial is said to be monic if the coefficient of the highest degree term of the polynomial is

one.

21. Write a function subtractpoly() that will return the result of the subtraction between two polynomials.

22. Two digital signals are given. Write a function for the resonance signal.

4

Strings
Database to DNA!

INTRODUCTION

In this chapter we will learn how to represent a string in C. In computer science, we deal regularly with
strings everywhere, starting from details of customer in a service industry to DNA strands in the bio-
chemistry lab. C doesn�t offer string as a basic built in data structure. We use char array or char pointer
to simulate string behavior. This type of representation is commonly known as C-Style String Represen-
tation. Once we learn basic string initialization, then we will learn about the C-library functions which
will be the building blocks for some user defined functions that we build towards the later of this chap-
ter. Moreover linked lists are also used to represent strings and store them. Most contemporary object
oriented programming languages, like Java and C#, support splitting a given string by delimiters. We
will create such a function in this chapter. This function will take a string and a delimiter to chop it and
will return a linked list of chopped strings. Later in the book, especially in the chapter on file handling
we will use this function for reading delimited notepad files and process them.

4.1 SOME KEY FACTS ABOUT STRINGS IN C

l C- Strings are nothing but NULL (�\0�) terminated character array.
l char *string; is a pointer to a C-style string.
l char string[20] is a C-Style string, that can hold 20 characters
l %s is used to scan string from console using scanf()..
l There is no need to give �&� sign while scanning a string from the console, because in C, strings

are nothing but null terminated character array and the array name is the pointer to itself.
l For using built-in C-Style string manipulation functions you need to include string.h in the

program.
l Strings are used to represent a variety of data, starting from name of a person in a database table to

a DNA strand of an individual.
l Fast String matching algorithms like Boyer Moore and KMP are used for matching DNA strands,

protein patterns, cancer cell repetition pattern, etc.

166 Data Structures using C

l String processing also finds application to find �Plagiarism�. Mostly �Rabin-Karp� algorithm is

used to detect it.

l String comparison algorithms/methods are used in different areas like �Spell Checking�, �DNA
matching�, �Adaptive Text Prediction using T9 dictionary for mobile phones�, etc.

4.2 C-STYLE STRING

A C-Style String is a null(�\0�) terminated character array. Here is a picture of a C-Style String

J A C O B \0

The Null Character

If the character array named �Name� stores this C-Style String then

Name[0] = �J�;
Name[1] = �A�;
Name[2] = �C�;
Name[3] = �O�;
Name[4] = �B�;
Name[5] = �\0�;

These C-Style strings can be initialized in so many ways as discussed later.

String Initialization

C-Style Strings can be initialized in many ways. From now on C-Style strings will be referred by just

�string�.

4.3 HOW TO INITIALIZE AT THE TIME OF DECLARATION

While declaring the string, we can initialize it. Here are few examples.

//Not Calculative. Codes is the pointer to the string
//We can store any length string.
char *codes=�wxy8#455j%32�;

//Calculative Initialization
//The name below has exactly 15 characters
//and thus it has been stored in
//a character array of 16 pockets. The
//last pocket of the array is for storing the null character.
char name[16]=�Jacob Alexander�;

4.4 HOW TO INITIALIZE STRINGS USING USER-DEFINED VALUES

Most of the cases you will be interested to initialize the string using user defined/supplied values. We
can use scanf() or gets() method for scanning the, user string inputs, but there is a difference. In case
there is a blank space in the input then if we try to scan it using scanf() it will scan only till that part when
the scanf() encountered a space. On the other hand if we use gets() we can scan strings with white
spaces in between them. Here is one example:

Strings (Database to DNA!) 167

char *name;
printf(�Enter your name :�);
fflush(stdin);
gets(name);

If you enter �Brian Kernighan� while asked for the name, the name array will store it like

name

B R i a n <space> K e r n i n g h a n \0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

<space> denotes a single space character

The integers denote the locations of the characters in the name. Later it will be shown how to extract

a part of a given string. Then we can use that function to extract the first, middle and the last name.

4.5 HOW TO INITIALIZE ONE STRING WITH ANOTHER STRING

One string can be initialized with another string or part of it (substring). Here is an example.

char *s=�STEPANOV�;
char *copy_of_a=a;

Here copy_of_a is a string and contents the value of a. This is done when the string a will be manipu-
lated and at the end we again need to use the initial value of the string a. In such cases value of a will be
copied in some other character arrays.

4.6 HOW TO INITIALIZE A STRING USING CHARACTER VALUES

We can use characters separately to fill a string. Here is one example.

char a[5]={�A�,�B�,�C�,�D�,�E�};

This above declaration is same as
//Easy and looks Professional.
char *a=�ABCDE�;

4.7 HOW TO INITIALIZE A STRING USING ASCII VALUES

In some real life applications, mostly in cryptography, we get ASCII values of characters instead of the
characters. Fortunately, C allows us to assign ASCII Values to assign a C String. The ASCII Value for
�\0� (Null character that marks the end of a C-Style String) is zero. So the end value should be 0. Here is
an example.

char a[6]={65,66,67,68,69,0};
puts(a);

The output of this snippet will be
ABCDE

Initializing a string with ASCII values is the only possible solution when we need to put some una-

vailable (in the keyboard) characters in the array. For example think of a situation where we are
programming for a biological institute and we need to print human genome symbols for both genders
Here are pictures of the symbols:

G The Male Genome Symbol

E The Female Genome Symbol

168 Data Structures using C

The following program prints these patterns.
#include <stdio.h>
#include <string.h>

int main()
{

char s[2]={12,11};
printf("The Female Symbol :%c\n",s[0]);
printf("The Male Symbol :%c\n",s[1]);
return 0;

}

Here is the output of the program,

The Female Symbol:E

The Male Symbol:G

This scheme for initializing strings are highly used in cryptography and user interface design for

console based C programs. (You will find these applications in departmental stores).

4.8 INTRODUCTION TO SOME BUILT-IN TURBO C STRING LIBRARY

FUNCTIONS

The functions are grouped and discussed according to the jobs they perform.

Finding the Length of the String

Functions used:

strlen()

To find the length of the string we can use library method strlen(). The following code snippet explains
how to use strlen().
char *name=�Sir Issac Newton�;
printf(�Name is of length :%d�,strlen(name));

S i r I s s a c N e w t o n \0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

strlen() returns length of the string including the null character. So the length of the string returned is 16.

Concatenating Two C-Style Strings

Functions used:
l strcat()

l strncat()

strcat()

To concatenate two strings entirely (One is concatenate at the end of the other) we can use strcat () as
shown below.
char *firstname = �John�;
//Note the carefully left blank space before the family name.
//If this blank space is not left then, given name and family name will
//be close and not readable

char *familyname=� Gottamann�;

printf(�Full Name :%s�,strcat(firstname,familyname));

Strings (Database to DNA!) 169

The output of this program will be John Gottamann

strncat()

This function is used when we need to concatenate up to some predefined number of characters of one
string at the end of the other. Here is an example.
char *firstname = �John�;
char *familyname=� Gottamann�;
printf(�Full Name :%s�,stnrcat(firstname,familyname,5));

This code will output John Got.

Comparing Two Strings

Functions used:
l strcmp()
l strcmpi() [A macro]
l stricmp() [Same as strcmpi() but it is a function]
l strncmp()
l strncmpi()

strcmp()

Two strings can be compared using the built-in library function strcmp(). This method compares two
strings considering case. That means if we compare the strings �World� and �wOrLd� then its compari-
son will tell us that the strings are not equal. In case the two passed arguments are equal then this
function returns zero. Otherwise this method will return a non zero value. Here is an example.
char *a=�world�;
char *b=�worm�;
if(strcmp(a,b)==0)

printf(�Two Strings are same �);
else

printf(�They are unequal�);

The output of this program snippet will be �They are unequal� as the two strings are unequal.
Besides using this built-in function you can write your own string comparison method. The algorithm

is to check letter by letter and then proceed until you encounter the null character or a mismatch.
There are two other methods that are used to compare strings. They are

strcmpi()

This functions compares two strings ignoring their cases. This function also returns 0 in case the two
string values are same. Two Strings �World� and �wOrLd� are same to strcmpi(). So the output of the
code snippet

char *s=�World�;
char *t=�wOrLd�;
if(strcmpi(s,t)==0)

printf(�The two strings are same�);
else

printf(�The strings are different�);

strncmp()

It accepts three arguments, two strings and one integer. It checks two strings up to that nth character. In
case they are same, then zero is returned. Otherwise, non zero value is returned. This function becomes
particularly handy, when we search for names in address-book programs. Suppose you want to find out
that how many names are there in the address-book that starts with �Ja�, then we can do something like

170 Data Structures using C

//Start searching
//Till the end of the address book
//pick the name of the person in a string called �Name� then

if(strncmp(Name,�Ja�,strlen(�Ja�))==0)

 //Show the name

strlen(�Ja�) = 2. So the above piece of code will return success for all those entries in the
address book entries for which, the first 2 letters of the name are �Ja�, like �Jacob�, �Jack�, �Jasmin�,
�Jana�, etc.
But it will return false for �Jonathon�, because here only the first character matches.

strncmpi()

Same as strcmp(). The only difference is that this function is case-insenstive. This function compares
two strings up-to nth character ignoring their case. So in the above example (of address-book) the best
suited method is strncmpi() because that will match names starting with �Ja�, �jA�, �JA� and �ja��
This function also returns 0 on success and a non-zero value on failure.

Copying a String to Another

Functions used:
l stpcpy()

l strcpy()

l strncpy()

stpcpy()

This function copies all the characters of one string to other empty string till it reaches the null character.
So this function is appropriate when you are trying to add some more characters at the logical end of the
string being copied.

#include <stdio.h>
#include <string.h>
#include <conio.h>

int main()
{

char *a="FRANKFURT";
char *b="�;
stpcpy(b,a);
puts(b);
getch();
return 0;

}

strcpy()

This function copies one string to another blank string. This function is mainly used for assigning the
new string variables.

#include <stdio.h>
#include <string.h>
#include <conio.h>

int main()
{

Strings (Database to DNA!) 171

char *a="FRANKFURT";
char *b="Hamburg";
//We will swap the contents of the strings using strcpy
char *temp="";
clrscr();
printf("Before Swapping a = %s and b = %s\n",a,b);
strcpy(temp,a);
strcpy(a,"");
strcpy(a,b);
strcpy(b,"");
strcpy(b,temp);
printf("After Swapping a = %s and b = %s\n",a,b);
getch();
return 0;

}

The output of the program will be

Before Swapping a = FRANKFURT and b = Hamburg
After Swapping a = Hamburg and b = FRANKFURT

strncpy()

This function is similar to that of strcpy(), but it will copy up to the nth character of the source string.
Suppose we have the complete name for a person and we want to extract the first name. To do that, we

first need to find out the index of the first white space in the string. Then we need to copy part of the
string from starting to the index one less than the index of the first white space.

#include <stdio.h>
#include <string.h>
#include <conio.h>

int main()
{

char *name="Jacob Alexander";
char *fname="";
int i;
clrscr();
//Finding the location of the first whitespace.
for(i=0;name[i]!=' ';i++);
printf("%d ",i);
strncpy(fname,name,i);
//Putting the null character manually.
fname[strlen(fname)]='\0';
puts(fname);
getch();
return 0;

}

The output of this code will be
Jacob.

Changing Case of a String to Lower or to UPPER

Functions used
l strlwr()

l strupr()

172 Data Structures using C

strlwr()

This function returns a string which is a lower cased version of the argument string.

strupr()

This function returns a string which is a upper cased version of the argument string.

4.9 DESIGNING UTILITY TOOLS USING THESE TWO FUNCTIONS

Correcting Wrong Case Program in C/C++ (Using strlwr())

When PASCAL programmer migrate to C/C++, he often goes wrong syntactically, because in PASCAL
almost everything is written in CAPITAL letters while in C/C++ family, languages are written in small
letters. But there are some alimony also. In C/C++ the built-in constants (like M_PI in <math.h>) are all
written in capital letters.

Assuming that there is no built-in constants used in a particular C/C++ Program, we can write an
application that can correct a wrong case C Program to correct case. Here is a typical input file.

//test.C
#INCLUDE <STDIO.H>
#INCLUDE <stdlib.h>
#include <CONIO.H>

int MAIN ()
{

puts ("I am here");
RETURN 0;

}

The program accepts the filename and then displays the corrected version of the program.
#include <stdio.h>
#include <string.h>
#include <conio.h>

int main()
{

char *line;
FILE *fp;
clrscr();
//Open the input �wrong case� program file
fp = fopen("D:\\test.C","r");
if(fp)
{

while(!feof(fp))
{

fgets(line,81,fp);
puts(strlwr(line));

}
}
else

perror("Error");
getch();
return 0;

}

Strings (Database to DNA!) 173

Here is the output of the program.

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>

int main ()
{

puts ("i am here");
return 0;

}

Try to extend this application that will take care of the following situations:

1. User defined constants like #define USD2INR 44.5 should not be changed to lower case.
2. User defined function name like draw_rectangle() should not be changed to lower case.
3. Inbuilt constant names (like M_PI_2) and macro names (like EOF) should not be changed to lower

case.

4.10 A TOOL FOR CHANGING CASE OF FEW CHOSEN ABBREVIATIONS IN

A FILE (USING STRUPR())

Abbreviations are normally written in CAPITAL letters, like WHO, UNICEF, etc. It is really painful to
capitalize these words while editing a file. A small C program can be written that can do these changes
with little or no effort. Here is the strategy. The program will first open the file where these abbreviations
need to be changed and then read that file word � by � word. If any word exactly matches to any of these
abbreviations supplied to the code then the program will change those words to uppercase and display it.
We can redirect the corrected output to another text file.

Here is the program source.

#include <stdio.h>
#include <string.h>
#include <conio.h>

int main()
{

char *line;
FILE *fp;
clrscr();
fp = fopen("D:\\who.txt","r");
if(fp)
{

while(!feof(fp))
{

fscanf(fp,"%s",line);
if(strcmpi(line,"who")==0 ||

 strcmpi(line,"unicef")==0)
printf("%s ",strupr(line));

else
printf("%s ",line);

}
}

174 Data Structures using C

else
perror("Error");

getch();
return 0;

}

Who.txt contains
WHO, the World Health Organization, had identified 7th June 2006 as Global Polio Eradication Day.

Who said that whosoever may tell you that these 2 drops are useless, you shouldn�t listen to them. unicef
and who requested the state and central government to take necessary measures to assure that all the kids
up to the age of 5, get the polio vaccine as per who standard. unicef along with local ngos are trying their
best to ensure that no child is left out from this gigantic who - unicef effort. I will take my children to the
nearest polio booth. As a who doctor, I ask you to do so my friend! let�s fight polio along with who,
unicef and ngos.
and the output of the program will be
WHO the World Health Organization had identified 7th June 2006 as Global Polio Eradication Day.
WHO said that whosoever may tell you that these 2 drops are useless, you shouldn�t listen to them.
UNICEF and WHO requested the state and central government to take necessary measures to assure
that all the kids up to the age of 5, get the polio vaccine as per WHO standard. UNICEF along with
local NGOs are trying their best to ensure that no child is left out from this gigantic WHO - UNICEF

effort. I will take my children to the nearest polio booth. As a WHO doctor, I ask you to do so my friend!
Let�s fight polio along with WHO, UNICEF and NGOs.

See the changes are made bold
Try extending this program with the following changes.

1. Try to make the changes (i.e. capitalization) interactively. For example there may be a sentence
like who doesn�t know who? It actually means who doesn�t know WHO ? Whenever an abbrevia-
tion from the pool of abbreviations is found, display the full line and then ask user whether to
change that abbreviation or not. If yes then make the case change, else skip it and continue search
for next matching abbreviation.

2. Create a pool of abbreviations
3. Allow users to add new abbreviations.

4.11 HOW TO REVERSE A STRING

Functions
l strrev()

strrev ()

This function returns a string which is reverse of the input string. In string processing reversing a string
is very trivial and important operation.

#include <stdio.h>
#include <conio.h>

int main()
{

char *s=�ABACAS�;
printf(�Original String : %s\n�,s);
printf(�Reverse String : %s\n�,strrev(s));
return 0;

}

Strings (Database to DNA!) 175

This will display

Original String: ABACAS

Reverse String: SACABA
See the Palindrome Example in the Array Chapter to know how to use this method.

4.12 HOW TO SET CHARACTERS OF A STRING WITH ANOTHER

CHARACTER

Functions Used
l strset ()

l strnset()

strset()

This function is used to set all the characters of a string to another user given character. Here is a sample
code to explain how the function behaves.

#include <stdio.h>
#include <string.h>

int main()
{

char *s=�abcdefghijklmnop�;
char symbol = �x�;
printf(�The original string is : %s\n�,s);
printf(�After setting with x :%s\n�,strset(s,symbol));
return 0;

}

The output of the program will be
The original string is: abcdefghijklmnop
After setting with x: xxxxxxxxxxxxxxxx

strnset()

Sometime you may be interested to set only a particular number of characters from the start of the string.
In those situations, you have to use strnset(). This function sets the first n characters of a string to
another character as given by the user.

#include <stdio.h>
#include <string.h>

int main()
{

char *s=�abcdefghijklmnop�;
char symbol = �x�;
printf(�The original string is : %s\n�,s);
printf(�After setting with x up to first 4 characters

:%s\n�,strnset(s,symbol,4));
return 0;

}

The output of the program will be
The original string is: abcdefghijklmnop
After setting with x up to first 4 characters: xxxxefghijklmnop

176 Data Structures using C

These functions can be used in computer secrecy projects. For example, you may have noticed that when
you buy something over internet using your credit card, the digits of the credit card are set to some
different characters. Sometimes all the characters are set and sometime some predefined range of char-
acters are set. These sorts of operations can be achieved using these two functions.

4.13 HOW TO FIND THE FIRST OCCURRENCE OF A CHARACTER

OF A SUBSTRING WITHIN ANOTHER STRING

Functions used:
l strchr()

l strstr()

strchr()

This function finds for the first occurrence of the sought character. Finding the occurrence of a character

in a string is very common and trivial operation in the string algorithms. Instead of writing a loop by

yourself you can use this function.

strchr(string_to_search, char_to_search) returns a pointer to the location where the sought character is

found for the first time. So by subtracting the base pointer to the string from the returned pointer we can

get the index of the character�s first occurrence.

#include <stdio.h>
#include <conio.h>
#include <string.h>

int main()
{

char *s=�Life is beautiful�;
printf(�The first occurrence of e is at %d\n�,

 strchr(s,�e�)-s);
return 0;

}

The output of the program will be

The first occurrence of e is at 3

strstr()

This function is used for finding out the first occurrence of a substring/word from a given string. This is

syntactically the same as strchr(). This function returns the substring that starts from the given word. For

example if the given string is

char *s = �Life is beautiful�;

And the search pattern/word is �is� then if we call strstr() as strstr(s,�is�) then it will return

is beautiful

Using similar pointer arithmetic as in strchr() we can find the index location of the first occurrence of

the sought word. Here is the code

#include <stdio.h>
#include <conio.h>
#include <string.h>

int main()

Strings (Database to DNA!) 177

{
char *s=�Life is beautiful�;
printf("The first occurrence of \"is\" is at

 %d\n",strstr(s,"is")-s);
return 0;

}

The output of this code is

The first occurrence of �is� is at 5

4.14 HOW TO FIND THE LOCATION FROM WHERE TWO STRINGS START

TO DIFFER

Functions used:
l strspn()

l strcspn()

strspn()

This function is used to find the location of a string where it started to differ from another given string.
Here is a code snippet to demonstrate the function�s behaviour.

#include <stdio.h>
#include <string.h>
#include <malloc.h>

int main()
{

char *s="12345678";
char *t="1234ffsf";
printf("The strings intersect at %d\n",strspn(s,t));
return 0;

}

This program prints
The strings intersect at 4

The point where from the strings start differing is sometime referred as their intersection point.

strcspn()

This is just the complimentary function of strspn(). This function finds that position in a string till when
it doesn�t match with another string. Here is the code
#include <stdio.h>
#include <string.h>
#include <malloc.h>

int main()
{

char *s="12345678";
char *t="ffsf5678";
printf("The strings intersect at %d\n",strcspn(s,t));
return 0;

}

Here is the output of the program:
The strings intersect at 4

178 Data Structures using C

4.15 HOW TO CREATE THE DUPLICATE OF A STRING IN A

MEMORY-EFFICIENT MANNER

Function used: strdup()

strdup()

This function creates a duplicate string of the passed argument. Very often we need to keep copies of a
string before we process it further. At the end of processing we can use this duplicate copy for some
operations. Here is a code to demonstrate its use.

#include <stdio.h>
#include <string.h>

int main()
{

char *s=�Able was I as I saw Elba�; //A Palindromic String!
char *dup_s = strdup(s);
printf(�Duplicate String : %s\n�,dup_s);
free(dup_s);
return 0;

}

This will print
Duplicate String: Able was I as I saw Elba

4.16 HOW TO TOKENIZE A GIVEN STRING

Function used:
l strtok ()

strtok()

This function is great for tokenizing needs. Do you remember that in Array chapter we tried to design
some clone to stringtokenizer of Java. The same type of application can be performed by this neat and
portable function in C. Suppose we have a string like

12,400

And we want to extract part of the string that is leading �,� and the trailing part. Here is the code:

#include <stdio.h>
#include <string.h>

int main()
{

char *s=�12,400�;
 printf(�Part before , is %s\n�,strtok(s,�,�));

printf(�Part after , is %s\n�,strtok(NULL,�,�));

return 0;
}

This will print
Part before , is 12
Part after , is 400

Strings (Database to DNA!) 179

So you may have noticed that to get the trailing part (Whichever part of the string is after the delimiter)
we need to call strtok(NULL,�delimiter�); after calling strtok(stringname, �delimiter�) ;

This function can be very handy to extract part of a code or phone number. Typically any land line
number has three parts. They are country code, city code and the phone number. We can write a small
program from which we will accept a phone number from the user and then extract these three sections
from that number. Here is the code and the sample output.

#include <stdio.h>
#include <string.h>

int main()
{

char s[16];
puts("Enter Number as [country_code-City_code-Phone Number ,

 Eg 123-456-12345678] :");
gets(s);
char *p;
p=strtok(s,"-");
printf("Country Code : %s\n",p);
p = strtok(NULL,"-");
printf("City Code : %s\n",p);
printf("Phone Number : %s\n",strtok(NULL,"-"));
return 0;

}

A Sample Run of this code
Enter Number as [country_code-City_code-Phone Number , Eg 123-456-12345678]:
91-011-25882746
Country Code: 91
City Code: 011
Phone Number: 25882746

Next in this chapter there is a function Split() that uses strtok() internally to tokenize a given line with

a given delimiter. If you want, you can jump there to understand how that works.

4.17 WHAT DO YOU MEAN BY PREFIX OF A STRING?

A string is said to be prefix of another string if the second one starts with the first. For example �Won-
der� is a prefix of the string �Wonderful� because �Wonderful� starts with �Wonder�.

Example 4.1 Write a program to find whether a string is a prefix of another string or not.

Solution

int isPrefix(char *Text,char *Pattern)
{

int Pref = 1;
int i = 0;
int j = 0;
if(Text[0]==Pattern[0])
{

for(i=0,j=0;i<strlen(Pattern);i++,j++)

180 Data Structures using C

{
for(i=0,j=0;i<strlen(Pattern);i++,j++)
{

if(Text[j]!=Pattern[i])
{

Pref = 0;
break;

}
}

}
else

Pref = 0;
return Pref;

}

4.18 WHAT DO YOU MEAN BY SUFFIX OF A STRING?

A string is said to be suffix of another string if the second one ends with the first. For example �long� is
a Suffix of the string �Lifelong� because �Lifelong� ends with �long�. Later in this chapter you will find
two functions startswith() and endswith() that can be re-written as wrappers of these two functions
isPrefix() and isSuffix(). Try that yourself!

Example 4.2 Write a program to find whether a string is a suffix of another string or not.

Solution

int isSuffix(char *Text,char *Pattern)
{

int i = 0;

int j = 0;
int Suff = 1;
if(Text[strlen(Text)-1]==Pattern[strlen(Pattern)-1])
{

for(i=strlen(Text)-2,j=strlen(Pattern)-2;j>=0;i--,j--)
{

if(Text[i]!=Pattern[j])
{

Suff = 0;
break;

}

}
}
else

Suff = 0;
return Suff;

}

Strings (Database to DNA!) 181

4.19 WHAT DO YOU MEAN BY SUBSEQUENCE OF A STRING?

Sometimes people misunderstand subsequence as a substring, which is not correct. There is a subtle
difference between these two. A string is called a subsequence of the another string, if the characters of
the first occur in the second from left to right, but not necessarily in contiguous locations unlike substrings.
For example �Wine� is a subsequence of the string �World is not enough�.

Example 4.3 Write a program to find whether a string is subsequence of another string or not.

Assume that the alphabets present in both the strings are unique.

Solution This version works only when a and b do not have any duplicate characters.

int isSubSequence(char *a,char *b)
{

//Wonderful
//oder
int iss = 1;
int i = 0, j = 0 , k = 0;
int arr[30];
for(i=0;i<strlen(b);i++)
{

for(j=0;j<strlen(a);j++)
{

if(b[i]==a[j])
{

arr[k] = j;
k++;

}
}

}
for(i=0;i<k-1;i++)
{

if(arr[i+1]<arr[i])
{

iss = 0;
break;

}
}
return iss;

//O(MN)
}

This above function finds whether b is a subsequence of a or not, provided a and b do NOT have any
duplicate characters. The time complexity of the above code is O(MN + K) where M is the length of the
text, N is the length of the Pattern b.

Try Yourself: Try to modify this above program to allow duplicate in pattern a and b:

For example the above code will say that �order� is a subsequence for �wonderful� but it will fail to

identify that �rental� is a subsequence of �ornamental� because �a� occurs once before �e� and the

above program does not store location information of characters of the word.

182 Data Structures using C

Maintain a linked list of the positions for each character. Write a structure to store each character

and its location list. Now once you preprocess the main word (example �Ornamental� in the figure)

then you will be ready for checking whether another string (Like rental) is a subsequence of it or not.

The picture explains the rest for you. Try it!

How to Check whether a Word starts with a Prefix or not

int startsWith(char *string,char *pattern)
{
int start = 1;
int i=0;
for(;i<strlen(pattern);i++)
{

if(string[i]!=pattern[i])
{

start=0;
break;

}
}
return start;

 }

We can also write the above method using strncmp as

int startsWith(char *string,char *pattern)
{

 return strncmp(string,pattern,strlen(pattern));
}

How to Check whether a Word Ends with a given Suffix or not.

 //This function returns the reverse of a string
 char* rstring(char *s)
 {

char rs[30];
int i;
int j;

.

Strings (Database to DNA!) 183

for(i=strlen(s)-1,j=0;i>=0;i--,j++)
rs[j]=s[i];

rs[j]='\0';
return rs;

 }
 //This function finds out whether the given string with the given
pattern

int endsWith(char *string,char *pattern)
 {

char rs[20],rp[20];
strcpy(rs,rstring(string));
strcpy(rp,rstring(pattern));
return startsWith(rs,rp);//Notice how startsWith() is re-

used.
 }

Example 4.4 Write a function to check whether a string matches the following basic asterisk (*)

wild character matches or not. Namely,

<pattern>*

 *<pattern>

<pattern1>*<pattern2>

<pattern>

Solution Here is a simple function that uses the startsWith and endsWith function defined above in
order to match the four wildcard patterns mentioned. It doesn�t work for a generalized combination of
those wildcard characters.

int wildCharMatch(char *string,char *pattern)
{

char t[20];
char *p = strchr(pattern,'*');
int starindex = p - pattern;
if(pattern[0]=='*')
{

if(pattern[strlen(pattern)-1]=='*')
{

strcpy(t,substring(pattern,1,strlen(pattern)-2));
return strstr(string,t)!=NULL?1:0;

}
else
{

strcpy(t,substring(pattern,1,strlen(pattern)-1));
return endsWith(string,t);

}
}

if(pattern[strlen(pattern)-1]=='*')
{

strcpy(t,substring(pattern,0,strlen(pattern)-2));
return startsWith(string,t);

}
if(i d ! 0 || i d ! l () 1)

184 Data Structures using C

if(starindex!=0 || starindex!=strlen(pattern)-1)
{

strcpy(t,substring(pattern,0,starindex-1));
if(startsWith(string,t)==1)
{

strcpy(t,substring(pattern,starindex+1,strlen(pattern)-1));
return endsWith(string,t);

}
}

else
return 0;

}

How to accept a String of Words Delimited with Space and Return a Linked

List of Those Words as char*

typedef struct String
{

char s[20];
struct String *next;

}String;

String* push_back_String(String *last,char *s)
{

if(last==NULL)
{

last = (String *)malloc(sizeof(String));
strcpy(last->s,s);
last->next = NULL;
return last;

}
else
{

String *p = (String *)malloc(sizeof(String));
last->next = p;
strcpy(p->s,s);
p->next = NULL;
return p;

}
}

//This function splits the given string by the provided delimeter.

String* split(char *string,char *del)
{

String* h=NULL;
String* ch=NULL;
char *p;
p = strtok(string,del);
h = push_back_String(h,p);
ch = h;
while((p=strtok(NULL,del))!=NULL)

Strings (Database to DNA!) 185

h = push_back_String(h,p);
return ch;//Returning the head of the list

}

How to Count the Total Number of Words in a Sentence

int countWords(String *words)
{

int totalwords = 0;
String *cwords=words;
for(;cwords!=NULL;cwords=cwords->next)

totalwords++;
return totalwords;

}

How to Replace a Word by another Word from a Phrase

char* replace(char phrase[81],char *word,char *newword)
{

int count = 0;
int i,j=0;
String *words = NULL;
words = split(phrase," ");
String *cwords = NULL, *modphrase = NULL;
char newphrase[81];
for(;words!=NULL;words=words->next)
{

if(strcmp(words->s,word)==0)
{

cwords = push_back_String(cwords,newword);
count++;
if(count==1)

modphrase = cwords;
cwords = push_back_String(cwords," ");

}
else
{

cwords = push_back_String(cwords,words->s);
count++;
if(count==1)

modphrase = cwords;
cwords = push_back_String(cwords," ");

}

}

for(;modphrase!=NULL;modphrase=modphrase->next)
for(i=0;i<strlen(modphrase->s);i++,j++)

newphrase[j]=modphrase->s[i];

newphrase[j]='\0';

return newphrase;

}

186 Data Structures using C

When called with the following client code
char phrase[]={"A hundred fathoms a hundred fathoms away from home."};
strcpy(t,replace(phrase,"fathoms","miles"));
puts(t);

it prints the following string.

A hundred miles a hundred miles away from home.

How to Delete all Occurrences of a given Word from a Sentence

char* DeleteWord(char *sentence,char *word)
{

int i=0,j=0;
char cs[200];
char modifiedsentence[200];
int count = 0;
String *cwords = NULL;
String *modifiedline = NULL;
strcpy(cs,sentence);

String *words = split(cs," ");
for(;words!=NULL;words=words->next)
{

if(strcmpi(words->s,word)!=0)
{

cwords = push_back_String(cwords,words->s);
count++;
if(count == 1)

modifiedline = cwords;
cwords = push_back_String(cwords," ");

}

}
for(;modifiedline!=NULL;modifiedline=modifiedline->next)

for(i=0;i<strlen(modifiedline->s);i++,j++)
modifiedsentence[j] = modifiedline->s[i];

modifiedsentence[j] = '\0';

return modifiedsentence;
}

Here is a client code snippet that demonstrates the usage of the above function.
strcpy(t,"Anger is never without reason but seldom with a good one�);
strcpy(t,DeleteWord(t,"without"));
strcpy(t,DeleteWord(t,"reason"));
strcpy(t,DeleteWord(t,"but"));
strcpy(t,DeleteWord(t,"seldom"));
strcpy(t,DeleteWord(t,"with"));
strcpy(t,DeleteWord(t,"a"));
strcpy(t,DeleteWord(t,"one"));
puts(t);

This outputs

Anger is never good

Strings (Database to DNA!) 187

How to Display Text in a Word Wrap Mode

void wordWrap(char *longsentence,int wordsperline)
{

int count = 0;
String *words = NULL;
words = split(longsentence," ");
for(;words!=NULL;words=words->next)
{

printf("%s ",words->s);
count++;
if(count==wordsperline)
{

count=0;
printf("\n");

}
}

}

When called by the following client code
int main()
{

char *t;
strcpy(t,"Few people are capable of expressing with equanimity
opinions which differ from the prejudices of their social
environment. Most people are even incapable of forming such
opinions Albert Einstein");
wordWrap(t,3);//Wraps the text with maximum three words per line

getch();
return 0;

}

it generates the following output:
Few people are

capable of expressing

with equanimity opinions

which differ from

the prejudices of

their social environment.

Most people are

even incapable of

forming such opinions

Albert Einstein

How to Demonstrate the Random Cipher Encryption of a Text

char* encrypt(char *pwd)
{

char *epwd;
int i,j;

//Add more symbols if you want
char a[]={'a','b','c','d','e','f','g','h','i','j','k'

,'l','m','n','o','p','q','r','s','t','u','v','w','x','y','z',
'1','2','3','4','5','6','7','8','9','0'};

char b[]={'0','9','8','7','6','5','4','3','2',
'1','z','y','x','w','v','u','t','s','r','q','p','o','n','m','l',

'k','j','i','h','g','f','e','d','c','b','a'};

188 Data Structures using C

for(i=0;i<strlen(pwd);)
{

for(j=0;j<strlen(a);j++)
{

if(pwd[i]==a[j])
{

epwd[i]=b[j];
i++;

}
}

}
epwd[i]='\0';
return epwd;

}

How to Decrypt a Text Encrypted with the Above Function

char* decrypt(char *pwd)
{

char *dpwd;
int i,j;
char a[]={'a','b','c','d'

 ,'e','f','g','h'
 ,'i','j','k','l'
,'m','n','o','p','q'
,'r','s','t','u','v'
,'w','x','y','z','1'
,'2','3','4','5','6'
,'7','8','9','0'};

char b[]={'0','9','8','7'
 ,'6','5','4','3','2'
 ,'1','z','y','x','w'
 ,'v','u','t','s','r'
 ,'q','p','o','n','m'
 ,'l','k','j','i','h'
 ,�g','f','e','d','c'
 ,'b','a'};

for(i=0;i<strlen(pwd);)
{

for(j=0;j<strlen(a);j++)
{

if(pwd[i]==b[j])
{

dpwd[i]=a[j];
i++;

}
}

}
dpwd[i]='\0';
return dpwd;

}

 ,'l','k','j','i','h'
 ,�g','f','e','d','c'
 ,'b','a'};

for(i=0;i<strlen(pwd);)

Strings (Database to DNA!) 189

{
for(j=0;j<strlen(a);j++)
{

if(pwd[i]==b[j])
{

dpwd[i]=a[j];
i++;

}
}

}
dpwd[i]='\0';
return dpwd;

}

How to Represent a String as a Linked List of Characters

typedef struct character
{

char c;
struct character *next;
struct character *prev;

}character;

typedef character* string;

How to Create a New String Using the Above Linked List Representation of

the Strings

string push_back(character *last,char c)
{

if(last==NULL)
{

last = (character *)malloc(sizeof(character));
last->c = c;
last->next = NULL;
last->prev = NULL;
return last;

}
else
{

character *p = (character *)malloc(sizeof(character));
last->next = p;
p->prev = last;
p->c = c;
return p;

}
}

string createNew(char *ns)
{

character *cs = NULL;
character *s = NULL;
int i = 0;
for(i=0;i<strlen(ns);)
{

s = push_back(s,ns[i]);
i++;
if(i==1)

cs = s;
}

190 Data Structures using C

s=push_back(s,'\0');
return cs;

}

How to Display such a String Represented by a Linked List
void displayString(string s)
{

for(;s!=NULL;s=s->next)
{

if(s->c=='\0')
break;

else
putc(s->c,stdout);

}
}

How to Extract Substring of a String Starting from an Index and Ending at
Another Index
char* substring(char *string,int start,int end)
{

char *temp;
int i,j;
for(i=start,j=0;i<=end;i++,j++)

temp[j] = string[i];
temp[j] = '\0';
return temp;

}

How to Trim a Specified Number of Characters from the Left of a Given String
char* trimleft(char *word,int index)
{

char *tl;
int last = strlen(word);
strcpy(tl,substring(word,index,last));
return tl;

}

This function will trim the specified number of characters from the left of the given word. Here is
how to call the function.

trimleft(�,Wonderful�,1) will return �Wonderful�

How to Trim a Specified Number of Characters from the Right of a Given String
char* trimright(char *word,int index)
{

char *t;
int x = strlen(word);
strcpy(t,substring(word,0,x-index-1));
return t;

}

The function will trim the specified number of characters from the right of the given word. Here is
how to call the function

trimright(�Lovely�,2) will return �Love�

How to Pad n Number of Specified Characters to the Left of a String

char* padleft(char *word,char c,int n)
{

char *t;

Strings (Database to DNA!) 191

int i;
for(i=0;i<n;i++)

t[i]=c;
t[i]='\0';
strcat(t,word);
return t;

}
The function will pad n number of characters c at the left of the word. Here is an example run.

padleft(�100.00�,�$�,1) will return $100.00

How to Pad n Number of Specified Characters to the Right of a String

//In this function we have not used strcat()

char* padright(char *word,char c,int n)
{

char *t;
int i,j;
for(i=0;i<strlen(word);i++)

t[i]=word[i];
for(j=i;j<n+i;j++)

t[j]=c;
t[j]='\0';
return t;

}

This function will pad the given word at the left with the given number of characters at the right side.
Like if the function is called like padright(�chapter0�,�?�,2) will return �chapter0??�
We can use these building block functions to create the following functions.

How to Trim White Spaces from Both Sides of a Word

//It is assumed that the word passed as a parameter to this function has

//whitespaces on both sides.

char* trim(char *word)
{

char *templ;
char *tempr;
int i = 0;
int index = 0;
for(;i<strlen(word);i++)
{
 if(word[i]!=' ')
 {

 index = i;
 break;

 }
 }

strcpy(templ,trimleft(word,index));//Left whitespaces trimmed

for(i=0;i<strlen(templ);i++)
{

if(templ[i]==' ')
break;

}
strcpy(tempr,trimright(templ,i));//Right whitespaces trimmed

return tempr;

}

How to Pad a String with a Specified Character and an Alignment Choice
enum {ALLIGN_LEFT = -1, ALLIGN_CENTER, ALLIGN_RIGHT};

192 Data Structures using C

char *pad(char *word,int totalwidth,char c,int allignment)
{

//-1 left 0 center 1 right
char temp[100];
int len = strlen(word);
if(allignment==ALLIGN_LEFT)
{

//If we have to make the string appear left alligned,
//we have to pad characters to its right hand side

strcpy(temp,padright(word,c,totalwidth-len));
return temp;

}
if(allignment==ALLIGN_RIGHT)
{

//If we have to make the string appear right alligned,
//we have to pad characters to its left hand side.

strcpy(temp,padleft(word,c,totalwidth-len));
return temp;

}
if(allignment==ALLIGN_CENTER)
{

//If we have to make the string appear center alligned
//we shall have to pad same number of characters to its both ends.

strcpy(temp,padleft(word,c,(totalwidth-len)/2));
strcpy(temp,padright(temp,c,(totalwidth-len)/2));
//Warning! We might be less than the total number of characters,

//So lets add them at the end.

if(strlen(temp)<totalwidth)
strcpy(temp,padright(temp,c,totalwidth-strlen(temp)));

return temp;
}

}

Here is a sample client code snippet that demonstrates the above function pad():

strcpy(t,pad("Love",20,'.',ALLIGN_LEFT));
puts(t);
printf("Length = %d\n",strlen(t));
strcpy(t,pad("Love",20,'.',ALLIGN_CENTER));
puts(t);
printf("Length = %d\n",strlen(t));
strcpy(t,pad("Love",20,'.',ALLIGN_RIGHT));
puts(t);
printf("Length = %d\n",strlen(t));

And here is the output of this code..

Love................

Length = 20

........Love........

Length = 20

................Love

Length = 20

How to Remove all the Blank Spaces in a Phrase

char* sweepwspace(char *phrase)
{

int i = 0,j=0;
char temp[100];

for(;i<strlen(phrase);i++)

Strings (Database to DNA!) 193

{
if(phrase[i]!=' ')
{

temp[j]=phrase[i];
j++;

}
}
temp[j]='\0';
return temp;

}

How to Extract all the k-grams of a String for a given k

String* kgrams(char *line,int k)
{

int i = 0;
int count = 0;

char temp[50];
//deleting all the white spaces
strcpy(line,sweepwspaces(line));

String *words = NULL,*ktokens = NULL;
int total = strlen(line)-k-1;
for(;i<=total;i+=k)
{

strcpy(temp,substring(line,i,i+k-1));
words = push_back_String(words,temp);
count++;
if(count == 1)

ktokens = words;
}
return ktokens;

}

k-grams are used for generating the digital fingerprint of intelligent materials like a document. See the
end of chapter on file. There is an algorithm called Winnowing which uses k-grams to detect plagiarism.
Different nearest neighbor identification algorithms, like �Near Duplicate Document� finding in a web
search uses k grams.

How to check whether a String is a Valid UPC (Universal Product Code)

Code or not

Each product being sold in the market has a different product code. This code is known as Universal

Product Code or UPC in short. This concept was first introduced for making grocery store checkout

194 Data Structures using C

time faster. The first digit in the UPC tells about the type of the product. The last digit (6 in this case) is
the check digit. This digit tells the scanner whether the code had been read properly or not.

The algorithm to check whether UPC is valid or not is popularly known as Module 10 algorithm or as
Luhn Algorith according to its discoverer Hans Peter Luhn.
Step 1: The even place digits are added
Step 2: The number at odd places are multiplied by 3 and then the sum of the digits of all generated

numbers are found.
Step 3: If the total of the numbers obtained in step 1 and step 2 is divided by 10.
Step 3: If the remainder is 0 that means the UPC code is valid. Otherwise it means that the UPC code is

invalid.
int digsum(int number)
{

int sum = 0;
while(number!=0)
{

sum+=number%10;
number/=10;

}
return sum;

}

int isValidUPC(char *UPC)
{

String *kgs = kgrams(UPC,1);

int count = 1;
int EvenSum = 0;
int OddSum = 0;
for(;kgs!=NULL;kgs=kgs->next)
{

if(count%2!=0)
OddSum+=digsum(atoi(kgs->s));

else
EvenSum+=atoi(kgs->s);

count++;
}

return (EvenSum + 3 * OddSum)%10==0;

}

4.20 HOW TO CHECK WHETHER A STRING IS A VALID ISBN OR NOT

The algorithm to check whether an ISBN number is valid or not is just a dialect of 10 module algorithm
described as follows.

Strings (Database to DNA!) 195

int isValidISBN(char *ISBN)
{

String *kgs = NULL;
int weight = 1;
int sum = 0;
if(strlen(ISBN)!=10)

return 0;
else
{

kgs = kgrams(ISBN,1);
for(;kgs->next!=NULL; kgs = kgs->next ,weight++)

sum+=atoi(kgs->s)*weight;
if(sum%11==atoi(kgs->s))

return 1;
else

return 0;
}

}

4.21 HOW TO CHECK VALIDITY OF A SOCIAL INSURANCE NUMBER (SIN) CODE

In Canada, every person has a social insurance number which
is unique and used for identification. This number can be vali-
dated with a variant of Check Digit or Module 10 algorithm.
This algorithm is implemented in the function below.
int isValidSIN(char *SIN)
{

String *kgs = kgrams(SIN,1);

int count=1;

int EvenSum = 0;
int OddSum = 0;
for(;kgs!=NULL;kgs=kgs->next)
{

if(count%2==0)
//Find digit sum of numbers we get by multiplying the

digits at
//even locations.

EvenSum+=digsum(atoi(kgs->s)*2);
else

OddSum+=atoi(kgs->s);
count++;

}

return (EvenSum + OddSum)%10==0;

}

4.22 HOW TO CHECK WHETHER A GIVEN CREDIT CARD NUMBER IS

VALID OR NOT

To validate a credit card number three things need to be tested. First of all we need to find out whether

196 Data Structures using C

the card has a proper length for its type or not. For example, if the card is of type �VISA� then the length
of the card needs to be validated. Once that is done, then it is checked whether the card number starts
with a predefined globally accepted prefix for VISA type cards or not. Once all these criteria are passed
then the number is validated using check digit or Luhn or Module 10 algorithm.

The following two functions implement the algorithm.
int IsValidCheckDigit(char *ccn)
{

String *kgs = kgrams(ccn,1);

int count = 1;
int EvenSum = 0;
int OddSum = 0;
for(;kgs!=NULL;kgs=kgs->next)
{{

if(count%2==0)
EvenSum+=digsum(2*atoi(kgs->s));

else
OddSum+=digsum(atoi(kgs->s));

count++;
}
return (EvenSum + OddSum)%10==0;

}

int isValidCreditCard(char *type, char *ccn)
{

if(strcmpi(type,"American Express")==0)
{

if(strlen(ccn)==15)
{

if(startsWith(ccn,"34")==1 || startsWith(ccn,"37")==1)
{

if(IsValidCheckDigit(ccn)==1)
return 1;

else
return 0;

}
else

return 0;
}

else
return 0;

}
if(strcmpi(type,"Carte Blanche")==0 || strcmpi(type,"Diners Club")==0)
{

if(strlen(ccn)==14)
{

if(startsWith(ccn,"300")==1
 || startsWith(ccn,"301")==1
 || startsWith(ccn,"302")==1

|| startsWith(ccn,"303")==1
 || startsWith(ccn,"304")==1

|| startsWith(ccn,"305")==1
 || startsWith(ccn,"36")==1

|| startsWith(ccn,"38")==1)
{

if(IsValidCheckDigit(ccn)==1)
return 1;

Strings (Database to DNA!) 197

else
return 0;

}
else

return 0;
}
else

return 0;
}

if(strcmpi(type,"Discover")==0)
{

if(strlen(ccn)==16)
{

if(startsWith(ccn,"6011")==1)
{

if(IsValidCheckDigit(ccn)==1)
return 1;

else
return 0;

}
else

return 0;
}
else

return 0;
}

if(strcmpi(type,"Enroute")==0)
{

if(strlen(ccn)==15)
{

if(startsWith(ccn,"2014")==1 || startsWith(ccn,"2149")==1)
{

if(IsValidCheckDigit(ccn)==1)
return 1;

else
return 0;

}
else

return 0;
}
else

return 0;
}

if(strcmpi(type,"JCB")==0)
{

if(strlen(ccn)==15 || strlen(ccn)==16)
{

if(startsWith(ccn,"3")==1
 || startsWith(ccn,"2131")==1 || startsWith(ccn,"1800")==1)

{
if(IsValidCheckDigit(ccn)==1)

return 1;
else

return 0;
}
l

198 Data Structures using C

else
return 0;

}
else

return 0;
}

 if(strcmpi(type,"Maestro")==0)
{

if(strlen(ccn)==16)
{

if(startsWith(ccn,"6")==1 || startsWith(ccn,"5020")==1)
{

if(IsValidCheckDigit(ccn)==1)
return 1;

else
return 0;

}
else

return 0;
}
else

return 0;
}

 if(strcmpi(type,"Mastercard")==0)
{

if(strlen(ccn)==16)
{

if(startsWith(ccn,"51")==1
 || startsWith(ccn,"52")==1
 || startsWith(ccn,"53")==1

|| startsWith(ccn,"54")==1
|| startsWith(ccn,"55")==1)
{

if(IsValidCheckDigit(ccn)==1)
return 1;

else
return 0;

}
else

return 0;
}
else

return 0;
}

 if(strcmpi(type,"Solo")==0)
{

if(strlen(ccn)==16 || strlen(ccn)==18 || strlen(ccn)==19)
{

if(startsWith(ccn,"6334")==1 || startsWith(ccn,"6767")==1)
{

if(IsValidCheckDigit(ccn)==1)
return 1;

else
return 0;

}
else

Strings (Database to DNA!) 199

return 0;
}
else

return 0;
}

 if(strcmpi(type,"Switch")==0)
{

if(strlen(ccn)==16 || strlen(ccn)==18 || strlen(ccn)==19)
{

if(startsWith(ccn,"4903")==1 ||
startsWith(ccn,"4905")==1

|| startsWith(ccn,"4911")==1

|| startsWith(ccn,"4936")==1

|| startsWith(ccn,"564182")==1

|| startsWith(ccn,"633110")==1

|| startsWith(ccn,"6333")==1

|| startsWith(ccn,"6759")==1)

{
if(IsValidCheckDigit(ccn)==1)

return 1;
else

return 0;
}
else

return 0;
}
else

return 0;
}

 if(strcmpi(type,"Visa")==0)
{

if(strlen(ccn)==13 || strlen(ccn)==16)
{

if(startsWith(ccn,"4")==1)
{

if(IsValidCheckDigit(ccn)==1)
return 1;

else
return 0;

}
else

return 0;
}
else

return 0;
}

if(strcmpi(type,"Visa Electron")==0)
{{

if(strlen(ccn)==16)
{

if(startsWith(ccn,"417500")==1
 ||startsWith(ccn,"4917")==1 || startsWith(ccn,"4913")==1)

{
if(IsValidCheckDigit(ccn)==1)

return 1;
else

200 Data Structures using C

return 0;
}
else

return 0;
}
else

return 0;
}

 }

4.23 HOW TO CHANGE THE CASE OF A SENTENCE TO SENTENCE CASE

Sometimes we miss the capitalization after fullstop while composing a letter or a doc. We can correct
our text by passing them to the function below. This function makes sure that every character that
follows a dot (�.�) is in upper case.
char* SentenceCase(char *sentence)
{

int i,index=0;
for(i=0;i<strlen(sentence);i++)
{

if(sentence[i]=='.')
sentence[i+1]=toupper(sentence[i+1]);

}
return sentence;

}

When called with the following client code snippet
char *t;
strcpy(t,�I am here.let�s folk again!�);
strcpy(t,SentenceCase(t));
puts(t)

the following output is generated.

I am here.Let�s folk again!

Try Yourself: Try to change the above program so that it can handle random capitalization. For example,
a call to SentenceCase() like
strcpy(t,�I am here.lET�s FoLk agAin!�);
strcpy(t,SentenceCase(t));
puts(t)

should output
I am here. Let�s folk again.

4.24 HOW TO TOGGLE THE CASE OF THE LETTERS OF A SENTENCE

This function toggles the case of each letter in the sentence or the phrase passed.

char* ToggleCase(char *sentence)
{

int i,index=0;
char *toggledsentence;
for(i=0;i<strlen(sentence);i++)
{

if(sentence[i]>='a' && sentence[i]<='z')
{

Strings (Database to DNA!) 201

toggledsentence[i] = toupper(sentence[i]);
continue;

}
if(sentence[i]>='A' && sentence[i]<='Z')
{

toggledsentence[i] = tolower(sentence[i]);
continue;

}
else
{

toggledsentence[i] = sentence[i];
continue;

}
}
toggledsentence[i]='\0';
return toggledsentence;

}

When called with the following client code snippet
char *t;
strcpy(t,�I am here.let�s fOlk agAin!�);
strcpy(t, ToggleCase(t));
puts(t)

the following output is generated.
i AM HERE.LET�S FoLK AGaIN!

How to Calculate the Frequency of a given Word in a Sentence
int WordFrequency(char *sentence,char *word)
{

int freq = 0;
char *csen;
strcpy(csen,sentence);
String *words = split(csen," ");

for(;words!=NULL;words=words->next)
if(strcmp(words->s,word)==0)

freq++;
return freq;

}

To know how this function can be called, see the next question.

How to Display the Word Histogram of a given Sentence
void WordHistogram(char *sentence)
{

char *longsentence;
char *mostusedword;
strcpy(longsentence,sentence);
String *words = split(sentence," ");

for(;words!=NULL;words=words->next)
printf("%s %d\n",words->s,WordFrequency(longsentence,

words->s));
}

Here is a client code snippet that demonstrates how to use the above
function.

202 Data Structures using C

strcpy(t,"Anger is never without a reason but it is seldom with a good
one");
WordHistogram(t);

The following output is generated for this client call.

Anger 1

is 2
never 1

without 1
a 2

reason 1
but 1

it 1
is 2
seldom 1

with 1

a 2
good 1

one 1

Try Yourself: As you can see this program shows same word multiple times if it occurs multiple times

in the sentence. Create an user defined Word-Frequency List to remove this duplication.

How to Find the Most Used Word in a Sentence/Phrase/String
char* MostUsedWord(char *sentence)
{

char longsentence[100];
int maxf;
char mostusedword[30];
strcpy(longsentence,sentence);
String *words = split(sentence," ");

maxf = WordFrequency(longsentence,words->s);
for(;words!=NULL;words=words->next)

if(maxf<WordFrequency(longsentence,words->s))
strcpy(mostusedword,words->s);

return mostusedword;
}

When called with the following client code snippet,
char *t,*s;
strcpy(t,"If you miss the train I'm on you will know that I am gone");
strcpy(s,MostUsedWord(t));
puts(�The most used word is �);
puts(s);

the following output is generated.
The most used word is

you

How to Find whether a Word/Phrase is an Anagram of Another One

An anagram is a different combination of same characters that occur in a word or phrase. While compar-
ing whether two words/phrases are anagrams of one another or not we check for the frequencies of all
the characters in two strings. If they match, then the two strings are anagram of one another. Punctuations
and special characters are discarded. For example �Great Taste!� and �Gear at Test!� are the anagrams
of one another. While generating anagrams all the punctuations are discarded.

Strings (Database to DNA!) 203

typedef struct CharacterWithFrequency
{

char c;
int freq;
struct CharacterWithFrequency *next;

}CharacterWithFrequency;

int isAnagram(char *phrase,char *diffcomb)
{

int flag = 0;
CharacterWithFrequency *s=NULL,*s1=NULL;
CharacterWithFrequency *t=NULL,*t1=NULL;
CharacterWithFrequency cf;
CharacterWithFrequency *temp=NULL;

int anagram = 1;
int i=0,j=0;
int count=0;
if(strlen(phrase)!=strlen(diffcomb))

anagram = 0;

else
{

//Creating the histogram of characters for the first string

for(;i<strlen(phrase);i++)
{

cf.freq = 0;
cf.c = phrase[i];
for(j=0;j<strlen(phrase);j++)
{

if(phrase[i]==phrase[j])
{

cf.freq++;
}

}
if(!Contains(s1,cf.c))
{

s = push_back(s,cf);
}
count++;
if(count==1)

s1 = s;

}
count = 0;
i=0;
//Creating the histogram of characters of the second string

for(;i<strlen(diffcomb);i++)
{

cf.freq = 0;
cf.c = diffcomb[i];
for(j=0;j<strlen(diffcomb);j++)
{

if(diffcomb[i]==diffcomb[j])
{

cf.freq++;
}

}

204 Data Structures using C

if(!Contains(t1,cf.c))
{

t = push_back(t,cf);
}
count++;
if(count==1)

t1 = t;
}

}
//Voila! Now we have both the histogram of strings. So we are ready to run

//through these histograms to see if they match or not.

for(;s1!=NULL;s1=s1->next)
{

temp = t1;

//Two words which are anagram of one another
//s=doctorwho
//d-1
//o-3
//c-1
//t-1
//r-1
//w-1
//h-1
//t=torchwood
//t-1
//o-3
//r-1
//c-1
//h-1
//w-1
//d-1
for(;temp!=NULL;temp=temp->next)
{

if(s1->c==temp->c)
{

flag=1;
//Well, we have the same character in both the strings
//but their frequencies don�t match. So they are not anagram
//of one another

if(s1->freq!=temp->freq)

{
anagram = 0;

break;
}

}

}

//there is some character in one of the string
//that does not occur at all in another
if(flag==0)

{
 anagram = 0;

break;

}
}
return anagram;

}

Strings (Database to DNA!) 205

4.25 HOW TO FIND OUT THE SOUNDEX CODE FOR A GIVEN WORD

A soundex code is the phonetic code of the word. If the soundex codes of two words are same, that
means they are pronounced same way. This soundex algorithm was developed for indexing surnames in
a census.

Here is the soundex algorithm:
l Delete all occurrences of a,e,i,o,u,w,h and y from the word
l The first character of the soundex code will be the same as that of the word�s first character.
l If two consecutive characters are same, then the first one will be considered and the rest all will be

ignored.
l If the character encountered in the word is either b,f,p or v put 1 in the corresponding soundex

code of the word.
l If the character encountered in the word is either c,k,x,q,g,z,j, or s put 2 in the corresponding

soundex code of the word.
l If the character encountered in the word is either d or t put 3 in the corresponding soundex code of

the word.
l If the character encountered in the word is l put 4 in the corresponding soundex code of the word.
l If the character encountered in the word is either m or n put code 5 in the corresponding soundex

code of the word.
l If the character encountered in the word is r put 6 in the corresponding soundex code of the word.
l Find the substring of the Soundex code till the 4th character.
l If there are fewer than 4 characters in the soundex code, including the initial letter, then pad the

right of the soundex code with zeros.

//The following function returns the soundex code for a given word.

char* SoundexCode(char *word)
{

int i,j;
char temp[30];
temp[0]=word[0];
for(i=1,j=1;i<strlen(word);i++)
{

if(word[i]==word[i-1])
i++;//This is to avoid repetition of characters

if(word[i]!='a' || word[i]!='e' || word[i]!='h' ||
word[i]!='i'
 || word[i]!='o' || word[i]!='u' || word[i]!='w' ||
word[i]!='y')

{
if(word[i]=='b' || word[i]=='f' || word[i]== 'p' ||

word[i]== 'v')
{

temp[j]='1';
j++;

}
if(word[i]=='c' || word[i]=='g' || word[i]=='j'

 || word[i]=='k' || word[i]=='q' || word[i]=='s'
 || word[i]=='x' || word[i]=='z')

{
temp[j]='2';
j++;

}
if(word[i]=='d' || word[i]=='t')

206 Data Structures using C

{
temp[j]='3';
j++;

}
if(word[i]=='l')
{

temp[j]='4';
j++;

}

if(word[i]=='m' || word[i]=='n')

{
temp[j]='5';
j++;

}

if(word[i]=='r')
{

temp[j]='6';
j++;

}

}
}
temp[j]='\0';
strcpy(temp,substring(temp,0,3));
return temp;

}

How to Check whether two Words are Pronounced Same or not Using Their

Soundex Codes
int isSameSoundex(char *word,char *suspectedhomonym)
{

if(strcmp(word,suspectedhomonym)==0)
return 1;

else
return 0;

}

Here is a client code that tests two functions defined above.

int main()
{

//The soundex code will never be four characters.

//Anything beyond 4 characters are discarded.

char t[4],s[4];
strcpy(t,SoundexCode("build"));
puts(t);
strcpy(s,SoundexCode("billed"));
puts(s);
printf("%d",isSameSoundex(t,s));
getch();
return 0;

}

The output of the above client code is as follows.
b43
b43
1

Strings (Database to DNA!) 207

So �build� and �billed� both have the same soundex code b430 (Blank means zero) and that�s
because they are pronounced the same way. If you want to test the above algorithm for different strings,
visit Alan Cooper�s most extensive list of homonyms http://www.cooper.com/alan/homonym_list.html

The above algorithm works fine for almost all these strings listed here. The algorithm doesn�t work for
those homonyms that start with different letters and pronounced the same way somehow because it
retains the first letter of the word.

R E V I E W Q U E S T I O N S

1. What can be said about x from this statement x = split(�L1-333-353�,�-�);
2. What will be the output for trimleft() when applied like trimleft(�12345.23�,2);
3. How can trimright() be applied to get the whole part of a number with a decimal digit?
4. How can trimleft() be applied to get the decimal part of a number?
5. How can pad() be used to print the output in a fixed width pattern?

P R O G R A M M I N G P R O B L E M S

1. Write a function to check whether a string matches the single wildcard pattern or not.
2. Write a program to demonstrate Naïve string search algorithm. This is also known as Brute Force

Algorithm.
3. Write a program to demonstrate Karp-Robin Algorithm.
4. Write a program to demonstrate Boyer Moore string search algorithm.
5. Write a program to demonstrate Boyer Moore Horspool string search algorithm.
6. What do you mean by string distance?
7. Write a program to calculate Hamming distance of two strings.
8. Write a program to calculate the levensthian distance of two strings.
9. What do you mean by similarity of two strings?

10. Write a function ExtractDigits() that extracts the digits from a string.
11. Write a function isValidIdentifier() that accepts a string as a variable name and returns 1, if the

name can be a valid C Identifier else it returns 0.
12. Write a function isCamelCase() that returns 1, if the string passed as argument is a valid C identi-

fier written in Camel Case.
13. Write a function isPascalCase() that returns 1, if the string passed as argument is a valid C identi-

fier written in Pascal Case.
14. Write a function isAComment() that return 1, if the string passed is a valid C++ single line com-

ment or C Style single line comment. Otherwise the function should return 0.
15. Write a function GetTense() that returns the tense of the sentence that is passed as the argument.

For example, the call like GetTense(�I shall have been learning PHP next year by this time�) will
return �Future Perfect Continuous� and a call like GetTense(�I shall have finished my dinner by
then�) will return Future Perfect.

16. Write a function Metaphone() to find the metaphone of a string.

5

Recursion

Time and Again!

INTRODUCTION

Recursion as the name suggests means re occurrence of the same method. Something that is occurring

over and over again is recurrence. In this chapter we will learn about different types of recursion and

then we will see how this technique is applied to solve different types of problems starting from solving

quadratic equations to creation of recursive fractals like Serpinski triangle, Monge Sponge, etc.

5.1 DIFFERENT TYPES OF RECURSION

Binary Recursion A recursive function which calls itself twice during the course of its execution.

Linear Recursion Recursion where only one call is made to the function from within the func-

tion (thus if we were to draw out the recursive calls, we would see a straight, or linear, path).

Exponential Recursion Recursion where more than one call is made to the function from

within itself. This leads to exponential growth in the number of recursive calls.

Circularity In terms a recursion, circularity refers to a recursive function being called with the

same arguments as a previous call, leading to an endless cycle of recursion.

Mutual Recursion A set of functions which call themselves recursively indirectly by calling

each other. For example, one might have a set of two functions, is_even() and is_odd(), one defined in

terms of the other.

Nested Recursion A recursive function where the argument passed to the function is the func-

tion itself. Ackermann�s function is defined as a Nested Recursion. Q Number generation program is a

good example of Nested Recursion.

Recursive Definition A definition defined in terms of itself, either directly (explicitly using

itself) or indirectly (using a function which then calls itself either directly or indirectly).

Recursion (Time and Again!) 209

Tail Recursion A recursive procedure where the recursive call is the last action to be taken by the

function. Tail recursive functions are generally easy to transform into iterative functions.

5.2 PITFALLS OF RECURSION..

Recursion brings a mixed blessing. It can make simple work of otherwise complex and enormously

iterative tasks. It can also be a nightmare that brings the system to its knees by hogging huge amounts of

memory.

The down side of recursion starts to sink in when you realize that the functioning of the code is not

always immediately apparent on inspection, so another programmer who is unfamiliar with your code

might find it difficult to work with.

Debugging recursive routines can be maddeningly difficult. It can take great patience and skill to

have success fixing broken recursive code.

Recursive programs tend to have very �tight� code, so making modifications to an existing design can

prove difficult, even impossible. In fact, it�s often easier to rewrite a recursive function than it is to patch

in changes.

Lastly, perhaps most importantly, recursion can be a resource hog, using up precious memory re-

sources rather quickly. For systems that have scant memory resources (Such as DOS in real mode), the

programmer may elect to avoid using recursion unless there is no other choice.

Example 5.1 Write a program using recursion that finds the factorial of a number.

Solution Let�s start with a simple example. The following program calculates the factorial of a number.

int fact(int n)
{

if(n==0 || n==1)
return 1;
else

return fact(n-1)*n;
}

Example 5.2 Write a program using recursion that finds the binomial coefficient.

Solution The value of Binomial Coefficient is given explicitly by nCk = n!/(n�k)! k!

int nCk(int n,int k)
{

return fact(n)/(fact(n-k)*fact(k));
}

This function can be used in several other problems where binomial coefficient is a building block.

Notice how the recursive function fact() is being used in the function nCk().

5.3 FIBONACCI NUMBERS AND GOLDEN RATIO

Example 5.3 Write a program to find the nth Fibonacci Number.

Solution Fibonacci numbers are not a number series,

rather a rule that says add the two seeds provided and

you will get the next number and carry on these process

with two latest numbers. This series was first created by

the Italian mathematician Leonardo di Pisa, or Pisano,

known also under the name Fibonacci in 1202. It is a

deceptively simple series, but its ramifications and ap-

plications are nearly limitless.

Fig. 5.1

210 Data Structures using C

In words: you start with 0 and 1, and then produce the next Fibonacci number (Fn) by adding the two

previous Fibonacci numbers:

Fig. 5.2

Fibonacci numbers have some very interesting properties. Here are some:

Lucas� Theorem

Fm gcd Fn = F(m gcd n)

[gcd = greatest common divisor]

Cassini�s Formula

Fn+1 ◊◊◊◊◊ Fn�1 � (Fn)
2 = (�1)n

A variant

Fn�2 ◊◊◊◊◊ Fn+1 � Fn�1 ◊◊◊◊◊ Fn = (�1)n�1

Simson�s Relation

Fn+1 ◊◊◊◊◊ Fn�1 + (�1)n�1 = (Fn)
2

Shifting Property

Fm+n = Fm ◊◊◊◊◊ Fn+1 + Fm�1 ◊◊◊◊◊ Fn

#include <stdio.h>

int fibo(int num)
{
 if(num==0)
 return 0;
 if(num==1||num==2)
 return 1;
 else
 return fibo(num-1)+fibo(num-2);
}

Recursion (Time and Again!) 211

Example 5.4 Write a program that calculates the numbers of a Fibonacci type series. Write a
function that will accept three values. The first two are the seeds (Like for Fibonacci numbers the
first two are 0 and 1) and the number of terms up to which the loop rotates.

Solution

#include <stdio.h>

int fibogen(int num,int first,int second)
{
 if(num==1)
 return first;
 if(num==2)
 return second;
 else
 return fibogen(num-1,first,second)+
 fibogen(num-2,first,second);
}

If this function is called with initial values as 2, 1 respectively in place of first and second then we get

a series known as Lucas Series. First few numbers of Lucas Series are

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123 .

The relation between Lucas Numbers and Fibonacci Numbers is

L
n
 = F

n � 1
 + F

n + 1

Example 5.5 Write a program to find the greatest common divisor of two numbers, using
Euclid�s algorithm.

Solution Almost 2500 years ago, Euclid discovered an algorithm to find the greatest common factor

or the test common divisor of two numbers.

 int gcf(int x,int y)
 {
 if(y ==0)

 return x;
 else
 return gcf(y,x%y);
 }

Notice that this is a Tail Recursive Algorithm.

Example 5.6 Write a program to find the GCD using Joseph Stein�s Algorithm. This method is
also known as binary method.

Solution Euclid�s algorithm involves division and thus it is computationally expensive. A quite differ-

ent GCD algorithm specially suited for the binary number was first proposed by Joseph Stein is given by

If u and v are both even then

GCD(u,v) = 2* GCD(u/2,v/2)

If u is even and v is odd then

GCD(u,v) = GCD(u/2,v)

If u and v are both odd then u-v is even so,

GCD(u,v) = GCD(u-v,v)

212 Data Structures using C

Here is the code in C

int jsgcf(int u,int v)
{
 if(u%2==0 && v%2==0)
 return jsgcf(u/2,v/2);
 if(u%2==0 && v%2!=0)
 return jsgcf(u/2,v);
 else
 return jsgcf(abs(u-v),v);

}

5.4 RANDOM NUMBER GENERATION USING RECURSION

Example 5.7 Write a program to create a random number sequence using recursion.

Solution D.H.Lehmer came up with a scheme in 1949 to generate a pseudo random number sequence.

This is by far the most popular random number generator even today. The algorithm uses four magic

integers. They are

M, the modulus 0<m

a, the multiplier 0<=a<m

c, the increment 0<=c<m

Xo the starting value 0<=Xo<m

The desired sequence of random numbers (Xn) is obtained by

Xn+1 = (aXn + c) mod m, n>=0

This method is known as Linear Congruential Method. There are many varieties of this method.

Here is the C code.

void linrand(int a,int m,int c,int x,int n)
{
 if(n!=0)
 {
 printf("%d\n",(a*x+c)%m);
 n--;
 x = (a*x+c)%m;
 linrand(a,m,c,x,n);
 }
 else
 return;
}

Notice that the function linrand() is also tail recursive.

Example 5.8 Write a program to generate random numbers using quadratic congruent method.

Solution To do a genuine improvement of linear congruent sequence we have to make it a quadratic in

nature. An interesting quadratic method was proposed by R.R.Coveyou. In this random number genera-

tor the value of m is a power of 2. Here we have used e as the power of 2.

Here is the code to generate Coveyou sequence�

void coveyou(int a,int m,int c,int x,int n)
{
 const int eto2 = (int)pow(2,M_E);

Recursion (Time and Again!) 213

 if(n!=0)
 {
 printf("%d\n",(x*x+x)%eto2);
 n--;
 x = (x*x+x)%eto2;
 coveyou(a,m,c,x,n);
 }
 else
 return;
}

5.5 HOW TO GENERATE PSEUDO RANDOM NUMBERS(PRNs) USING

VON NUMANN�S MIDDLE SQUARING METHOD

Von Numann used one way to create random numbers. The technique is known as Middle Extraction

Technique. First a number is taken as the seed. Then that number is squared and the middle part of the

number is extracted and is used for the next seed. For example, if the starting number is 1234, then the

next seed will be middle digits of the square of 1234 which is 5227 because

12342 = 01522756

If the square of the initial seed or any seed in the process has odd number of digits then zeros are

padded to the left so that the next seed can be extracted.

This method is simple but has couple of drawbacks.

1. After some iterations the PRNs start to repeat themselves and is dependent on the initial seed. It

may be possible for different seeds we get different sequences where some numbers are frequently

occurring.

2. If all the digits in the middle suddenly become zero then the method fails to execute anymore.

Here is a C code that generates PRNs using this middle extract method:

#include <stdio.h>
#include <conio.h>
#include <string.h>
#include <stdlib.h>

int extractmiddle(char *n)
{

//12321 -> 232
int i,j=0;
char s[4];
for(i=1;;i++,j++)
{

s[j]=n[i];
if(j==3)

break;
}
s[j]='\0';
return atoi(s);

}
int von(int n)
{

214 Data Structures using C

unsigned long s = n*n;
char x[20];
ultoa(s,x,10);
return extractmiddle(x);

}

Here is a client main() function to call the above program.

int main()
{

 int i=0;
 int seed = 123;
 for(;i<40;i++)
 {

 printf("%d --> %d\n",i,seed);
 seed = von(seed);

 }

 getch();
 return 0;
}

Here is the output of the above program.

0 --> 123

1 --> 512

2 --> 621

3 --> 856
4 --> 327
5 --> 69
6 --> 761
7 --> 791
8 --> 256
9 --> 553
10 --> 58
11 --> 364
12 --> 324
13 --> 49
14 --> 401
15 --> 608
16 --> 696
17 --> 844
18 --> 123

19 --> 512
20 --> 621

21 --> 856
22 --> 327
23 --> 69
24 --> 761
25 --> 791

Recursion (Time and Again!) 215

26 --> 256
27 --> 553
28 --> 58
29 --> 364
30 --> 324
31 --> 49
32 --> 401
33 --> 608
34 --> 696
35 --> 844
36 --> 123
37 --> 512
38 --> 621
39 --> 856

The seed is chosen such that the repetition characteristics of PRNs generated through this scheme can

be well proved. If you notice the above curves and highlighted entries, you will find that each of the

PRN is repeating itself at every 18th iterations. Or in other words 1st and 18th iteration values are same,

2nd and 20th iterated values are same. (Look at the above output).

Ideally the seed should not have any zero amongst its digits, because that will kill the sequence even

faster. Here is an example output where the seed was 108:

0 --> 108
1 --> 166
2 --> 755
3 --> 700
4 --> 900
5 --> 100 (Border Line PNR)
6 --> 0
7 --> 0
8 --> 0
9 --> 0

See anything after 5th iteration is zero.

Even using nonzero digits in the initial seed doesn�t guarantee a good sequence. See the following

example output generated with seed 222.

0 --> 222
1 --> 928
2 --> 611
3 --> 733
4 --> 372
5 --> 383
6 --> 466
7 --> 171
8 --> 924
9 --> 537
10 --> 883
11 --> 796
12 --> 336
13 --> 128
14 --> 638
15 --> 70

216 Data Structures using C

16 --> 900
17 --> 100
18 --> 0
19 --> 0

5.6 HOW TO GENERATE THE ACKERMANN�S FUNCTION

Ackermann�s function is a function of two parameters whose value grows very fast.

Formal Definition:

l A(0, j) = j+1 for j ≥ 0
l A(i, 0) = A(i-1, 1) for i > 0

l A(i, j) = A(i-1, A(i, j-1)) for i, j > 0

This function grows very fast. In compiler design this function is used to check how a compiler can

handle recursion problems. Here is the code to generate Ackermann�s Number.

int ack(int m,int n)

{

 if(m==0 && n!=0)

 return n+1;

 if(n==0 && m!=0)

 return ack(m-1,n);

 if(m!=0 && n!=0)

 return ack(m-1,ack(m,n-1));

}// This is also a tail recursive function

Have you noticed the bold line above in the code? This type of calling is known as Nested Recursion

because one of the arguments in this call actually calls the ack() function again.

5.7 WHAT IS INVERSE ACKERMANN�S FUNCTION?

a(m,n) = min{i ≥ 1: A(i, Îm/n˚) > log2 n} where A(i,j) is Ackermann�s function.

The line above defines the Inverse Ackermann�s function. Unlike Ackermann�s function this function

grows very slowly. This function is also known as alpha function.

The half brackets in the above expression denote the ceiling of the value m/n. Have you noticed that

the inverse Ackermann�s Function is defined in terms of Ackermann�s function?

Can you use Ackermann�s function defined above and generate the reverse Ackermann�s Function?

5.8 HOW TO GENERATE TAK FUNCTION FOR GIVEN VARIABLES

TAK function was discovered by I. Takeuchi in 1978. This definition of the function is as follows.

TAK(x,y,z) = z , unless y > x

Else

TAK(x,y,z) = TAK(TAK(x-1,y,z), TAK(y-1,z,x), TAK(z-1,x,y))

.

Recursion (Time and Again!) 217

int TAK(int x,int y,int z)

{

if (x<=y)

 return z;

else

return TAK(TAK(x-1,y,z), TAK(y-1,z,x), TAK(z-1,x,y));

}

Both Ackermann function and TAK Functions are used as a benchmark for language with optimiza-

tion for recursion.

Example 5.9 Write a program to find the solution for Tower of Hanoi.

Solution In this function n is the number of disks. The other three variables denote the number of the

shafts that will be used as from, to and the temporary shaft number.

void hanoi(int n,int from,int to,int temp)
{

if(n==1)
printf("Move disc from %d to %d\n",from,to);

else
{

hanoi(n-1,from,temp,to);
printf("Move disc from %d to %d\n",from,to);
hanoi(n-1,temp,to,from);

}
}

Example 5.10 Write a program to achieve the following. When the user inputs any number,
show that in words. For example, if the user enters 99458 then the program will display Ninety-Nine
Thousand Four Hundred and Fifty-Eight.

Solution

#include <stdio.h>

int countdigits(int number)
{

int digits=0;
while(number!=0)
{

number/=10;
digits++;

}
return digits;

}

void Number2Words(number)
{

char *one2nine[9]=

218 Data Structures using C

{
 "ONE",
 "TWO",
 "THREE",
 "FOUR",
 "FIVE",
 "SIX",
 "SEVEN",
 "EIGHT",
 "NINE"
};

char *tens[10]=
{

 "TEN",
 "TWENTY",
 "THIRTY",
 "FOURTY",
 "FIFTY",
 "SIXTY",
 "SEVENTY",
 "EIGHTY",
 "NINETY"
};

char *teens[9]=
{

 "ELEVEN",
 "TWELVE",
 "THIRTEEN",
 "FOURTEEN",
 "FIFTEEN",

 "SIXTEEN",
 "SEVENTEEN",

 "EIGHTEEN",
 "NINETEEN"
};

char *modifiers[]={"HUNDRED","THOUSAND"};

int copy=0;
int digits;
int dig[5];
int i=0;
int isTeens=0;
int isZero=0;
int noZeros=0;
int isAlreadySet=0;

copy = number;
digits = countdigits(number);
if(number==0 && isAlreadySet==0)
{

Recursion (Time and Again!) 219

printf("ZERO");
isAlreadySet=1;

}
if(digits==1 && isAlreadySet==0)
{

printf("%s ",one2nine[number-1]);
isAlreadySet=1;

}

if(digits==2 && (number>10 && number <20) &&
isAlreadySet==0)
{

printf("%s",teens[number%10-1]);
isAlreadySet=1;

}
if(digits==2 && (number%10==0) && isAlreadySet==0)
{

/printf("%s",teens[number%10-1]);
isAlreadySet=1;

}
if(digits==2 && (number%10==0) && isAlreadySet==0)
{

printf("%s",tens[number/10-1]);
isAlreadySet=1;

}

while(number!=0)
{

dig[i]=number%10;
if(dig[i]==0 && digits>2 && isAlreadySet==0)
{

noZeros++;
isZero=1;

}
number/=10;
i++;

}
if(digits==2 && isZero==0 && copy>=21

 && copy<=99 && isAlreadySet==0)
{

printf("%s %s",tens[dig[1]-1],
 one2nine[dig[0]-1]);

isAlreadySet=1;
}
if(digits==3 && isAlreadySet==0)
{

if(dig[1]==1)
isTeens=1;

if(digits==3
 && isTeens==0

220 Data Structures using C

 && isZero==0
 && isAlreadySet==0)

{
printf("%s HUNDRED AND %s %s ",

 one2nine[dig[2]-1],
 tens[dig[1]-1],one2nine[dig[0]-1]);

isAlreadySet=1;
}
if(digits==3

 && isTeens==1
 && isZero==0
 && isAlreadySet==0)

{
printf("%s HUNDRED AND %s ",

 one2nine[dig[2]-1], teens[dig[0]%10-1]);
isAlreadySet=1;

}
if(digits==3

 && noZeros==2

 && isAlreadySet==0)
{

if(dig[0]==0 && dig[1]==0)
{

printf("%s HUNDRED ",one2nine[dig[2]-1]);
isAlreadySet=1;

}
}
if(digits==3 && noZeros==1 && isAlreadySet==0)
{

if(dig[1]==0)//102
printf("%s HUNDRED AND %s ",

 one2nine[dig[2]-1],
 one2nine[dig[0]-1]);

if(dig[0]==0)//210
printf("%s HUNDRED AND %s

 ",one2nine[dig[2]-1],
 tens[dig[1]-1]);

isAlreadySet=1;
}

}
}

int main()
{

int number=0;
do
{

int number=0;
printf("Enter a number :");
scanf("%d",&number);
if(number>100000)

Recursion (Time and Again!) 221

{
Number2Words(number/100000);
printf("LAKH ");
number=number%100000;

}
if(number>1000)
{

Number2Words(number/1000);
printf("THOUSAND ");
number=number%1000;

}
if(number>0)
{

Number2Words(number);
}

 }while(1);
}

Have you noticed that the program only has code to handle up to 3 digit number but it recursively

calls itself so that it can work properly to convert the bigger integers.

5.9 SOLVING NON-LINEAR EQUATIONS USING RECURSION

Example 5.11 Write a program to find the nth root of a number.

Solution There are n roots of the equation y = xn. Now the principal nth root of y = f (x) = A is a positive

real number x such that

xn = A.

There is an algorithm living till the time of Babylonians to get the principal root of a number.

It is given by the following recursive relation.

1 1

1
(1)k k n

k

A
x n x

n x
+ -

È ˘= - +Í ˙
Î ˚

In order to find the square root of a number n = 2 and then the above formula reduces to

1
1

2
k k

k

A
x x

x
+

Ê ˆ= +Á ˜Ë ¯

Here is the C code:

#include <stdio.h>
#include <conio.h>
#include <math.h>

double root(int A,double Xo,int n,int iter)
{

double r;
r = ((n-1)*Xo+A/pow(Xo,n-1))/n;
iter--;
if(iter==0)

222 Data Structures using C

return r;
else

r = root(A,r,n,iter);
return r;

}

int main()
{

printf("Root is :%f",root(18,4,2,20));
return 0;

}

Example 5.12 Write a Program to find
the root of a function using Newton�Raphson
Method. This method is recursive in nature.

Solution When the derivation of f (x) is a sim-

ple expression and easily found, the real roots

of f (x) = 0 can be computed rapidly by a process

called Newton-Raphson method as shown in the

above figure:

#include <stdio.h>
#include <conio.h>
#include <math.h>

double fun(double x)
{
 //Define your Function here

return pow(x,3)-x-4;
}

double dfun(double x)
{
 //Define the derivative of the function here

return 3*pow(x,2)-1;
}

double NewtonRaphson(double Xo,int iter)
{

Xo=Xo-fun(Xo)/dfun(Xo);
printf("%f\n",Xo);
iter--;
if(iter==0)

return Xo;
else

 //Tail recursive call
Xo = NewtonRaphson(Xo,iter);

return Xo;

}
int main()

Fig. 5.3

Recursion (Time and Again!) 223

{
printf("Root is : %f",NewtonRaphson(2,10));
return 0;

}

Example 5.13 Write a program to find the root of a
function using bisection method.

Solution The method of bisection to find the roots of non-

linear equations is old and trivial and in a way inefficient. If

for two values of x, a and b the two values of y, y(a) and y(b)

have different signs, then, there exists a root of f (x) between a

and b. As the name suggests, method of bisection, bisects this

span and the point of bisection replaces either a or b depend-

ing on the sign of f (x) at point of bisection. For example if

f (a) is positive and f (b) is negative then there is a root be-

tween a and b. According to bisection method the close ap-

proximation of the root is x = (a+b)/2. Now if f (x) is positive

then a will be replaced by else b will be replaced by x. If f (x)

= 0, then x is a perfect root of f (x).

#include <stdio.h>
#include <conio.h>
#include <math.h>

double fun(double x)
{
 //Define your Function here

return pow(x,3)-x-4;
}

double bisection(double a,double b, int iter)
{

double fa=fun(a);
double fb=fun(b);
double c = 0.5*(a+b);//Calculating the approximate root
if(fun(c)*fa<0)

b=c;
if(fun(c)*fb<0)

a=c;
iter--;
if(iter==0)

return c;
else

c = bisection(a,b,iter);
return c;

}

int main()
{

printf("Bisection :%f\n",bisection(1,2,10));
return 0;

}

Fig. 5.4

224 Data Structures using C

Example 5.14 Write a program to find the root
using Regula�Falsi method.

Solution The oldest method for computing the real

roots of a numerical equation is the method of false

position, or regula falsi. In this method we find two

numbers xa and xb (as shown in the figure above)

between which the root lies. These numbers should

be as close as possible since the root lies between xa

and xb the graph for y = f (x) must cross the x axis

between x = xa and x = xb and y(a) and y(b) must

have opposite signs.

Now since the portion of a smooth curve is practi-

cally straight for a short distance, it is ok to assume

that changes in f(x) is same as changes in x for a

short interval. The method of false position is based

on these principles cause it assumes as per the above

figure, that the graph f(x) is a straight line between

(a, f(a)) and (b, f(b) and it crosses the x axis at x1. But we can clearly see that x1 is not the solution. As

per the above figure x1 is still left to the root and closer to it than xa. So now xa will be replaced by x1

and the same process will follow further in a recursive manner.

//This code finds

double RegulaFalsi(double x0,double x1,int iter)
{

double x2=x0-(fun(x0)*(x1-x0))/(fun(x1)-fun(x0));
iter--;
//We might find a perfect root or

//we might end up our desired number of iterations.

//Either way we come out of the loop.
if(iter==0 || fun(x2)==0)

return x2;

else
{

if(fun(x2)>0)
x1=x2;

if(fun(x2)<0)
x0=x2;

x2=RegulaFalsi(x0,x1,iter);//Tail Recursion
}
return x2;

}

Here is a graph that shows the performance summary for these tree methods.

From this graph we can predict that almost after 5 to 6 iterations all these methods start to give the

same result. But rate of convergence towards the correct result is highest for Newton Raphson method

provided the starting point is supplied properly. From the above figure we can conclude that perform-

ances of these methods are in the order:

Bisection Method < Regula�Falsi Method < Newton�Raphson Method

Fig. 5.5

Recursion (Time and Again!) 225

Example 5.15 Write a program to find the value of a function using Inverse Quadratic Interpo-
lation.

Fig. 5.6

Solution This method is not used individually but is used in hybrid numerical in Dekker�s and Brent�s

method. The concept here, is first the inverse quadratic interpolation found at a point starting from three

initial guesses xn,xn-1 and xn-2 using Lagranges distribution. Let that point be f ^(�1) (y) then the solu-

tion for y = f (x) = 0 is given by the following equation.

xn+1 =
1 2

2 1
2 1 2 1 2 1() () () ()

n n n n

n n
n n n n n n n n

f f f f
x x

f f f f f f f f

- -
- -

- - - - - -
+

- - - -

2 1

2 1() ()

n n

n
n n n n

f f
x

f f f f

- -

- -
+

- -
Here�s the function that calculates the value of Xn+1

double inversequad(double a,double b,double c)
{

double first=0,second=0,third=0,next=0;
double ab=
 first=(fun(b)*fun(c)*a)/(((fun(a)-fun(b))*((fun(a)-fun(c)));
 second=(fun(a)*fun(c)*b)/(((fun(b)-fun(a))*((fun(b)-fun(c)));
 third=(fun(a)*fun(b)*c)/(((fun(c)-fun(a))*((fun(c)-fun(b));

226 Data Structures using C

 next = first+second+third;
 return next;
}

Note that fun() is the function that evaluates the function. You can
write your own functions.

Example 5.16 Write a program to find the root of a function using Secant Method.

Solution Newton�s formula has a basic disad-

vantage. It involves differentiation of the func-

tion being sought. A secant or a chord of a curve

is defined as a straight line that intersects the

curve at least twice. This method calculates the

root of a nonlinear equation using the secant.

See in the above figure, the secant through x0

and x1 meets the x axis at x2. This will be the

new approximation of the root of the curve. This

process continues until we reach the desired level

of accuracy. The recursive relation in the figure

above gives the n+1th approximation of the root.

As you can probably understand from the fig-

ure above that if x0 and x1 are actually close to

the actual root, the rate of convergence will be

very high. Secant method is the base for Mull-

er�s method which tries to approximate the curve

by a parabola instead of a straight line. Thus

Muller method is more accurate and its conver-

gence rate is comparable to that of Newton

Raphson�s method which is really fascinating.

Here is the C function that solves the secant method.

double SecantMethod(double xn_1, double xn, int m)
{

 double d;
d = (xn - xn_1)* fun(xn) / (fun(xn) - fun(xn_1)) ;
m--;
if(m==0)

return xn;
else
{
 xn_1 = xn;

 xn = xn - d;
 d = SecantMethod (xn_1,xn,m);
}

 return xn;
}

Fig. 5.7

Recursion (Time and Again!) 227

This method is highly dependent on the initial inputs.

Example 5.17 Write a program to find the root of an equation using Muller�s Method.

Fig. 5.8

Solution Muller�s method is a close cousin of secant method where at each iteration the curve is tried

to be mapped using a parabola that passes through the three points. xk, xk � 1 and xk � 2. Using Netwon�s

divided difference formula the curve can be approximated as the following equation below.

y = f (xk) + (x � xk) f [xk, xk �1] + (x � xk) (x � xk � 1)f [xk, xk �1, xk � 2]

where f [xk, xk �1] and f [xk, xk � 1, xk �2] denote divided differences. This can be rewritten as

y = f (xk) + w(x � xk) f [xk, xk � 1, xk �2](x � xk)
2

where

w = f [xk , xk �1] + f [xk, xk � 2] � f [xk �1, xk � 2]

The next value in the iteration process is given by the root of the quadratic equation y = 0. This yields

the recurrence relation

xk + 1 =
2

1 2

2 ()

4 () [, ,]

k
k

k k k k

f x
x

f x f x x xw w - -

-
± -

Note than xk + 1 should be one step close to the sought root than xk. So the denominator value for the

right half should be maximum. The sign + or � is chosen depending on this logic.

Here is the C code. Here we are trying to solve the same equation as above.

228 Data Structures using C

double divdiff2(double x1,double x2)
{

return (fun(x1)-fun(x2))/(x1-x2);
}

double divdiff3(double x0,double x1,double x2)
{

return (divdiff2(x2,x1)-divdiff2(x1,x0))/(x2-x0);
}

double omega(double x0,double x1,double x2)
{

return
fun(divdiff2(x2,x0))+fun(divdiff2(x2,x1))+fun(divdiff2(x1,x0));
}

double max(double a,double b)
{

return a>b?a:b;
}

double Muller(double x0,double x1,double x2,int iter)
{

double z=pow(omega(x0,x1,x2),2)-
 4*fun(x2)*fun(divdiff3(x2,x1,x0));

double x_3=x2-(2*fun(x2))/(max(omega(x0,x1,x2)
 +sqrt(z),omega(x0,x1,x2)-sqrt(z)));

iter--;
if(iter==0)

return x_3;
else
{

x0=x1;
x1=x2;
x2=x_3;
x_3=Muller(x0,x1,x2,iter);

}
return x_3;

}

int main()
{

printf("Muller :%f\n",Muller(0,1,2,10));
return 0;

}

Recursion (Time and Again!) 229

Graph comparing Newton�Raphson and Muller�s method.

Fig. 5.9

The most fascinating fact about Muller�s method is that it achieves almost the same level of conver-

gence as that of Newton-Raphson method without the need of differentiation. So from a computation

point of view, Muller�s method is the best of all these methods discussed above. Muller method acquires

up to 2 decimal place accuracy fairly quickly (maximum by 5 iterations). In the above figure we see that

values from Newton-Raphson method are slightly more but the difference between values we get from

Newton-Raphson and Muller�s method become steady after 4 iterations. If we notice carefully we will

see that Newton-Raphson method also took that time to stabilize. So we can conclude that Muller�s

method accuracy and stability is comparable with Newton-Raphson�s method and as an advantage it

doesn�t require the knowledge of derivative of the function whose roots are being sought.

5.10 PATTERN GENERATION USING RECURSION

Example 5.18 Write a program to check whether a Number is happy or not.

Solution Suppose there is a number n. If n is squared then the digits of this square number is squared

separately and added. This sum of the square of the digits becomes the new number (new n). The same

process is repeated again until we reach any of these numbers 1,4,16,20,37,42,58,89 or 145. If the sum

is 1 then we conclude that the initial number n is happy else it is not. A number which is not happy is

known as unhappy. A happy number which is also a prime number is known as happy prime like 79.

Here is the C code that checks whether a number is Happy or not.

230 Data Structures using C

#include <stdio.h>
#include <conio.h>
#include <math.h>

int count=0;

int squareextractsum(int n)
{

int s=0;
int sum=0;
if(count==1)

 s=n*n;
else

 s = n;

while(s!=0)
{

sum+=(int)pow(double(s%10),2);
s/=10;

}
return sum;

}

int isHappy(int n)
{

if(n==1)
return 1;

 if(n==4 || n==16 || n==20
 ||n==37 || n==42 || n==58
 ||n==89 || n==145)

return 0;

else
{

n=squareextractsum(n);
return isHappy(n);//Tail Recursive call

}
}

int main()
{

printf("%d \n�,isHappy(230));
return 0;

}

This will output 1 as 230 is a happy number.

Try Yourself: Try to write a program that prints all happy numbers in a given range.

Example 5.19 Write a program to generate a section number pattern.
Say there are 2 big sections in a chapter and under each big section there are 5 small sections.

Write a program for printing the pattern

Recursion (Time and Again!) 231

1.1

1.2

:

:

:

2.5

Solution Here is the C code which recursively generates the pattern:

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>

int big=0,small=0;
int i=1,j=1;
int count=0;
FILE *fp;

void generateSectionNumberFile(char *file,int bg,int s)
{

/*big = 4, small = 5
1.1
1.2
1.3
1.4
1.5

2.1
2.2
2.3
2.4
2.5

and so on
*/
fprintf(fp,"%d.%d\n",i,j);
j++;
if(j<=small)

generateSectionNumberFile(file,i,j);
if(j>small && i<big)
{

j=1;
i++;
generateSectionNumberFile(file,i,j);

}
if(i>big && j>small)

fclose(fp);

}

int main()
{

232 Data Structures using C

char file[20];
printf("Number of Big sections :");
scanf("%d",&big);
printf("Number of sections under each Big sections :");
scanf("%d",&small);
printf("Enter the file name :");
fflush(stdin);
scanf("%s",file);
fp = fopen(file,"a");
generateSectionNumberFile(file,1,1);
return 0;

}

As you can see, this function can be extended to any level of hierarchy. For example this method can

be enhanced to generate a pattern like

1.1

1.1.1

1.1.2

1.2

1.2.1

1.2.2

The output of the above program when run with 2 and 4 as the inputs for Big and small will generate

a file with pattern

1.1

1.2

1.3

1.4

2.1

2.2

2.3

2.4

5.11 HOW TO WRITE A RECURSIVE FUNCTION TO GENERATE THE

NUMBERS OF THE PASCAL TRIANGLE

It will accept two numbers, one for row and the other for column and then it will display the pascal

number at that position of the Pascal Triangle

The Pascal Triangle also known as Yanghui Triangle in China is

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

The construction of Pascal Triangle is governed by the following rule:

Each subsequent row is obtained by adding the two entries diagonally as given above.

Recursion (Time and Again!) 233

int compute_pascal(int row, int position)
{

//For matching the first column entries
if(position == 1)
{

return 1;
}
//for matching the last column entries
else if(position == row)
{

return 1;
}
//In between any row and any column
else
{

return compute_pascal(row-1, position) +
 compute_pascal(row-1, position-1);

}
}

5.12 WHAT IS THE RELATIONSHIP BETWEEN PASCAL TRIANGLE

NUMBERS AND FIBONACCI NUMBERS?

The �shallow diagonals� of Pascal�s triangle sum to

Fibonacci numbers, i.e.

1 = 1

1 = 1

2 = 1 + 1

3 = 2 + 1

5 = 1 + 3 + 1

8 = 3 + 4 + 1

and, in general,

[/2]

1
0

n

n
k

n k
F

k
+

=

-Ê ˆ
=Á ˜Ë ¯

Â

5.13 HOW TO WRITE A RECURSIVE FUNCTION TO GENERATE THE

NUMBERS OF THE BELL TRIANGLE. TO ACCEPT TWO NUMBERS, ONE

FOR ROW AND THE OTHER FOR COLUMN

The Bell Triangle is the triangle formed by Bell Numbers. This triangle looks like

This triangle is also known as Aitken�s Array or Pierce Triangle

This triangle is obtained by beginning the first row with the number one,

and beginning subsequent rows with last number of the previous row. Rows

are filled out by adding the number in the preceding column to the number

above it
int compute_bell(int row,int position)
{

if(row==1)
return 1;

Fig. 5.10

1

1 2

2 3 5

5 7 10 15

15 20 27 37 52

234 Data Structures using C

if(row == 2 && position ==1)
return 1;

else
{
 if(position == 1)

return compute_bell(row-1,row-1);
 else
 return compute_bell(row,position-1)+
 compute_bell(row-1,position-1);
 }

}

5.14 APPLICATION OF BELL NUMBERS

Bell Numbers, or Bell�s Numbers, are the sequence {1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147....}. The

numbers count the ways that N distinguishable objects can be grouped into sets if no set can be empty.

For example the letters ABC can be grouped into sets so that:

(1) A, B, and C are in three separate sets;

(2) A and B are together and C is separate;

(3) A and C are together and B is separate;

(4) B and C are together and A is separate;

(5) or A, B, and C are all together in a single set.

Thus when N = 3, there are five partitions, so the third Bell number is 5.

The Bell numbers are also the coefficients of the Maclauren expansion

2 31 2 5
1 ...

1! 2! 3!

xe x x x
e e

Ê ˆ
= + + + +Á ˜Ë ¯

5.15 HOW TO WRITE A RECURSIVE FUNCTION TO GENERATE THE

NUMBERS OF BERNOULLI TRIANGLE

It will accept two numbers, one for row and the other for column and then it will display the pascal

number at that position of the Bernoulli Triangle.

Bernoulli triangle is a triangle containing the Bernoulli numbers.

The rule to get a Bernoulli number is to sum the number above it with

the number in the previous row and previous column. For example if

you see the number 7 on the 4th row 3rd column in the triangle, you

will notice that it is nothing but the sum of 4 and 3. 4 is right above it

and 3 is in the previous column and previous row.

Here is the code that generates the Bernoulli Triangle Pattern. First a function is written that gener-

ates the Bernoulli number at any given location and then it uses a loop to print those numbers in the

pattern.
int compute_bernoulli(int row,int position)
{

if(row==1)
return 1;

if(position==1)
return 1;

if(row==2 && position ==2)
return 2;

1

1 2

1 3 4

1 4 7 8

1 5 11 15 16

1 6 16 26 31 32

Recursion (Time and Again!) 235

else
return

 compute_bernoulli(row-1,position-1)
 +compute_bernoulli(row-1,position);
}

void display_bernoulli(int rows)
{

for(i=1;i<=rows;i++)
{

for(j=1;j<=i;j++)
printf("%d ",compute_bernoulli(i,j));

printf("\n");
}

}

5.16 HOW TO WRITE A RECURSIVE FUNCTION TO GENERATE THE

NUMBERS OF CATALAN�S TRIANGLE

It will accept two numbers; one for row and the other for column and then it will display the pascal

number at that position of the Catalan�s Triangle.

Catlan�s Triangle is a triangle where each element is the sum of one above and one to the left. The last

element of each row of Catalan�s Triangle is the summation of

the previous row elements. Here is the code that generates the

Catalan�s Triangle Pattern.

First 7 rows of Catalan�s Triangle are

void display_catalan(int rows)
{

for(i=1;i<=rows;i++)
{

for(j=1;j<=i;j++)
printf("%d ",compute_catalan(i,j));

printf("\n");
}

}

int compute_catalan(int row,int position)
{

if(row==1)
return 1;

if(position==1)
return 1;

if(row==2 && position==2)
return 1;

else
{

if(row==position)//Last element
return catalan_sum(row-1);

else
return compute_catalan(row-

1,position)+compute_catalan(row,position-1);
}

}

1

1 1

1 2 2

1 3 5 5

1 4 9 14 14

1 5 14 28 42 42

1 6 20 48 90 132 132

236 Data Structures using C

int catalan_sum(int r)
{

int i=1;
int sum=0;
for(i=1;i<=r;i++)

sum+=compute_catalan(r,i);
return sum;

}

5.17 WHAT IS THE RECURSIVE RELATION THAT GENERATES

A CATALAN NUMBER?

Catalan Number follows a recursive relation among themselves as follows:

Cn + 1 = (4n + 2)Cn/ (n + 2) and C0 = 1 is the initial value.

where Cn + 1 is the n+1th Catalan Number.

Catalan number is also closely related with binomial coefficient as

2 (2)!1
for 0

1 (1)! !
n

n n
C n

n n n n

Ê ˆ
= = ≥Á ˜+ +Ë ¯

Here is the C Program that will generate nth Catalan Number:
int Catalan(int n)
{

return nCk(2*n,n)/(n+1);
}

5.18 SOLVING EULER�S POLYGON DIVISION USING A CATALAN NUMBER

Catalan Number was generated from a problem known as �Euler�s Polygon division problem�, that is of

finding in how many ways En a plane convex polygon of n sides can be divided into triangles by diagonals.

Euler first proposed it to Christian Goldbach in 1751, and the solution is the Catalan number En = Cn�2.

This above solution comes from a recurrence relation known as �Segner�s recurrence relation�:

En = E2.En � 1 + E3.En �2 + � + En � 1.E2

5.19 DYCK PATH AND CATALAN NUMBER

Fig. 5.11

Recursion (Time and Again!) 237

A Dyck Path is a staircase walk from (0, 0) to (n, n) that lies strictly below the reverse diagonal which
is inclined at 45 degree to the horizon. The number of Dyck paths of order n is given by nth Catalan
Number. See the above image to understand the concept better.

The first box in the above image corresponds to a staircase where there is only one stair. So the
number of Dyck path is 1 for n = 2 it is the second catalan number 2, and for 3 it is the third Catalan�s
Number = 5, and so on.

5.20 BALLOT PROBLEM AND CATALAN NUMBER

Suppose A and B are candidates for office and there are 2n voters, n voting for A and n for B. In how
many ways can the ballots be counted so that B is never ahead of A? The solution is a Catalan number Cn.

Please note using the function Catalan() defined above we can solve these type of problems. Catalan
numbers find their usage in several combinatorial problems.

5.21 HOW TO WRITE A RECURSIVE FUNCTION TO GENERATE THE

NUMBERS OF LOSANITSCH�S TRIANGLE

It will accept two numbers; one for row and the other for column and then it will display the pascal
number at that position of the Losanitsch�s Triangle.

Losanitsch�s triangle is a number triangle for which each term is the sum of the two numbers immediately
above it, except that, numbering the rows by n = 0, 1, 2, ... and the entries in each row by k = 0, 1, 2, ... n.

Here is a code that generates Losanitsch�s Triangle:
int compute_Losanitsch(int row,int position)
{

if(row==1)
return 1;

if(position==1)
return 1;

if(row==position)
return 1;

if(row==3 && position==2)
return 1;

if(row ==4 && (position==2 || position == 3))
return 2;

if(row==5 && (position==2 || position==4))
return 2;

if(row==5 && position==3)
return 4;

else
{

if(row%2==0 && (position==2 || position==row-1))
return compute_Losanitsch(row-

1,position)+compute_Losanitsch(row-1,position-1);
if(row%2!=0 && (position==2 || position==row-1))

return compute_Losanitsch(row-1,position);
else

return compute_Losanitsch(row-
1,position)+compute_Losanitsch(row-1,position-1);

}

}

238 Data Structures using C

void display_losanitsch(int rows)
{

for(i=1;i<=rows;i++)
{

for(j=1;j<=i;j++)
printf("%d ",compute_Losanitsch(i,j));

printf("\n");
}

}

Here is how the output looks:

1
1 1
1 1 1
1 2 2 1
1 2 4 2 1
1 3 6 6 3 1
1 3 9 12 9 1 1
1 4 12 21 21 10 2 1
1 4 16 33 42 31 12 1 1
1 5 20 49 75 73 43 13 2 1
1 5 25 69 124 148 116 56 15 1 1
1 6 30 94 193 272 264 172 71 16 2 1

Losanitsch�s triangle is given such a name after Serbian chemist Sima Lozanic who researched it in
his investigation into the symmetries exhibited by rows of paraffins.

5.22 HOW TO WRITE A RECURSIVE FUNCTION TO GENERATE THE

NUMBERS OF THE LEIBNITZ HARMONIC TRIANGLE

It will accept two numbers, one for row and the other for column and then it will display the Pascal
number at that position of the Leibnitz Harmonic Triangle
This triangle below is Leibnitz Harmonic Triangle.

1

1

1 1

2 2

1 1 1

3 6 3

1 1 1 1

4 12 12 4

1 1 1 1 1

5 20 30 20 5

In this triangle each fraction is the sum of numbers below it and the initial and final entries in the nth

row are given by 1/n.
The terms are given by the recurrences

,1

, 1, 1 , 1

1
n

n k n k n k

a
n

a a a- - -

=

= -

Recursion (Time and Again!) 239

Here is the code to generate numbers of this triangle.
double compute_Leibnitz(int row,int position)
{

if(position==1)
return (double)1/(double)row;

if(row==2 && (position==1 || position==2))
return 0.5;

else
{

return compute_Leibnitz(row-1,position-1)

 -compute_Leibnitz(row,position-1);

}
}

This function calculates Leibnitz Harmonic Number at row and position.

Example 5.20 Write a program to find the Entringer numbers using recursion.

Solution
E(n,k) = E(n,k-1) + E(n-1,n-k)

This relation gives the number of

Where, E(0,0) = 1 and E(n,0) = 0

Here is the C code to generate the Entringer numbers.
int compute_Entringer(int n,int k)
{

if(n==0 && k==0)
return 1;

if(k==0)
return 0;

else
 return compute_Entringer(n,k-1)

 +compute_Entringer(n-1,n-k);
}

Example 5.21 Write a program to display the numbers of Hofstadter Conway $10,000 Sequence.

Solution Hofstadter Conway discovered a sequence which is recursive in nature and is given by the

following equation:
A(n) = A(A(n-1)) + A(n-A(n-2))

Where A(1) = A(2) = 1

So the first few values are 1,1,2,2,3,4,4,4,5,6 etc

Here is the C code that recursively generates the numbers of Hofstadter Conway Sequence..
int compute_HConway(int n)
{

if(n==1 || n==2)
return 1;

else
//Tail Recursive Call

return compute_HConway(compute_HConway(n-1))
 +compute_HConway(n-compute_HConway(n-1));

}

void display_HConway(int n)
{

240 Data Structures using C

for(i=1;i<=n;i++)
printf("%d \n",compute_HConway(i));

}

Write functions to generate and display the numbers of the Mallows Sequences

int compute_Mallows(int n)
{

if(n==1 || n==2)
return 1;

else
return compute_Mallows(compute_Mallows(n-2))
 +compute_Mallows(n-compute_Mallows(n-2));

}

void display_Mallows(int n)
{

for(i=1;i<=n;i++)
printf("%d \n",compute_Mallows(i));

}

Example 5.22 Write a program to generate Hofstadter�s Q Sequence. These numbers are also
known as Q- Numbers.

Solution This is a recursive sequence and generated by the recurrence equation

Q(n) = Q(n-Q(n-1)) + Q(n-Q(n-2))

with Q(1) = Q(2) = 1 . The first few values are 1, 1, 2, 3, 3, 4, 5, 5, 6, 6, .

Here is the C code to generate and display the Q-number
int computeQ(int n)
{

if(n==1 || n==2)
return 1;

else
{

return computeQ(n-computeQ(n-1))
 +computeQ(n-computeQ(n-2));

}
}

void display_Q(int n)
{

f (i 1 i i)
for(i=1;i<=n;i++)

printf("%d \n",computeQ(i));
}

Example 5.23 Write a program to generate Serpinski Fractal Pattern.
Use the fact that Serpinski Triangle Pattern can be generated by using Pascal�s Triangle. In place

of each even number in Pascal�s triangle put 1 and in place of each odd number put 0 to generate the
Serpinski Triangle Pattern. Here is the code and output.

Solution
void display_serpinski(int rows)
{

int n=0;
int m=0;

Recursion (Time and Again!) 241

for(i=1;i<=rows;i++)
{

for(m=0;m<(51/2)-i;m++)
printf(" ");

for(j=1;j<=i;j++)
{

n = compute_pascal(i,j);
if(n%2==0)
{

printf("%c ",'1');
}
else
{

printf("%c ",'0');
}

}
printf("\n");

}
}

Note that we have used compute_pascal() function described above.

This program generates a pattern like

Fig. 5.12

An image of the fractal Serpinski Triangle looks like

Fig. 5.13

Can you find similarity between the generated pattern and the fractal image?

242 Data Structures using C

5.23 L-SYSTEM, RECURSION AND MORE FRACTALS

L-System is a system developed by Aristid Lindenmayer in 1968 to describe the

growth of self similar plants like fern etc. L-System is a formal grammar and recur-

sive in nature. Thus, nowadays L-System is used to generate many recursive fractals

like Koch curve, Koch snowflakes, etc.

A self similar structure can be modeled using an L-System. Every system that is

being designed using an L-System will be needed to have the following.

Alphabet Which is the building block of the L-System representation of the

fractal

Rules Which makes the fractal to grow or diminish

Constants Something that remains constant throughout the process

Initial Conditions What are the initial conditions of the process?

Special Conditions (this is optional) Is there any special condition that can modify a rule?

Lindmeyer originally tried to model the growth of an algae using the L-System as follows:

Alphabets: A B

Constants: none

Initial Condition: A

Rules: (A Æ AB), (B Æ A)

Special Condition: None

which produces:

n = 0: A

n = 1: AB

n = 2: ABA

n = 3: ABAAB

n = 4: ABAABABA

A Æ AB means A will be replaced by AB and B Æ A means B will be replaced with A.

If you notice carefully you will find that this algee growth model discussed using L-System can be

easily modeled using recursion. All we have to do is to pass the iterated string to the system.

char* algee(char start[10])
{

char temp[10];

for(int i=0,j=0;i<strlen(start);i++)
{

if(start[i]=='A')
{

temp[j]='A';
j++;
temp[j] = 'B';
j++;

}
if(start[i]=='B')
{

temp[j] = 'A';

Recursion (Time and Again!) 243

j++;
}

}
if(strcmpi(start,"ABAABABA")==0)

//The function is Tail-Recursive

return algee(start);
 }
int main()
{

puts(algee("A"));
getch();
return 0;

}

Many recursive fractals or some of their variations can be generated using this L-System.

5.24 FRACTAL GENERATION USING RECURSION

Fractals have structural self-similarity on multiple scales. That means a piece of a fractal will often look

like the whole part. Fractals are used in computational geometry for rendering realistic looking scenery

for computer games. Next to this section, an algorithm is shown how to generate terrains using fractal

algorithm.

5.25 KOCH CURVE

Generation of Koch Curve

l A Straight line is transformed

n The line is split into three equal sizes

n Middle part is removed

n Middle is replaced with two lines of the same length

(1/3 of original line)

l For each straight line in the transformed line, repeat the

process.

l At some point the changes are no longer visible (if we

keep our viewing scale constant)

The length of the curve at depth d is (4/3)^d as shown in the

figure.

5.26 KOCH SNOWFLAKE

Koch Snowflake is a fractal that starts from an equilateral triangle. Then
each arm of the equilateral triangle is subdivided into three sections as
shown in the second image above. This process continues as long as
there is no perceptible change occurs between two consecutive struc-
tures, as long as we want. The more we break the lines, the structure will
have more details.

This is a recursive process to construct such a structure. As the struc-
ture looks like a snowflake, that�s why it is called Koch Snowflake in
honor of the mathematician Helge Von Koch who first described this
pattern in 1904.

Inspired by the beauty of these fractal structures they are now used in
ornaments. Fractal ornaments are getting popularity these days.

Fig. 5.14

Fig. 5.15

244 Data Structures using C

5.27 RECURSION IN NATURAL SCENE GENERATION

Terrain Generation using Recursion

Fig. 5.16

One dimensional mid-point displacement is a great algorithm for drawing a ridgeline, as mountains

might appear on a distant horizon. Here is how it works.

Start with a straight line as shown in the figure above

Repeat for a sufficiently large number of times

{

Repeat over each line segment in the scene

{

Repeat Find the mid point of the line segment

Repeat Displace the midpoint in Y by a random amount

Repeat Reduce the range for random numbers,

}

}

How much we want to reduce the range for random numbers depends on how rough we want the

mountain to look like. The more we reduce it in each pass through the loop, the smoother the resulting

ridgeline will be.

Note two things about the above algorithm. First, it is recursive in nature; and secondly, it can create

fairly complex image with very low level details in

few simple steps.

The realization that a small, simple set of instruc-

tions can create a complex image has lead to research

in a new field known as fractal image compression.

The idea is to store the simple, recursive instructions

for creating the image rather than storing the image

itself. This works great for images which are truly

fractal in nature, since the instructions take up much

Recursion (Time and Again!) 245

less space than the image itself. Chaos and Fractals, New Frontiers of Science 3 has a chapter and an

appendix devoted to this topic and is a great read for any fractal nut in general.

Without much effort, you can read the output of this function into a paint program and come up with

something like this:

R E V I S I O N O F C O N C E P T S

Some Key Facts about Recursion

l Recursion means re-occurring of the same function or method.

l Any function can call any function.

l Some people think that main() can�t be called from any other function. That is a misconception.

Any function can be called from any function. As because main() is a function so it can be called

from any function.

l When a function calls another function and the called function in turn calls the calling function,

which is called Mutual Recursion. For example, say there is a function called Menu() that is being

called from the main() function. And from Menu() again, main () is being called. Then we can say

that main() and Menu() are mutually recursive.

l When a function calls itself then that phenomenon is called as Self Recursion. And when we say

recursion we mean Self Recursion unless otherwise mentioned.

l Recursion can be used to replace loops. That�s why it is sometimes called as virtual loop.

l Whenever recursion is used the exit, criterion should be there.

l Recursion is a good technique to generate number sequences.

l Recursion is also used to generate some recursive Fractal Pattern like Sierpinski triangle, which

can be used to model chaotic objects like clouds, etc.

l An unusual use of recursion in a definition comes from Professor Seymour Papert, Professor of

Media Technology, at MIT (The Massachusetts Institute of Technology) and the inventor of the

graphical programming language LOGO. Here are Papert�s instructions on how to make a circle.

First, take a step forward, then turn a little to the right, then make a circle. His description is a very

unusual one because it describes a circle as a process rather than as a static geometric shape. His

description is recursive because making a circle is defined in terms of making a circle. Recursion

is often used to define functions.

l Recursion is used to generate numbers sequences.

l Recursion is used to generate batrachions (A special class of curves defined only for integer se-

quence) Example includes Q � number sequence, mallows sequence.

R E V I E W Q U E S T I O N S

1. What is nth Ackermann�s number? Where n is the product of two consecutive primes starting with

1,2.

2. What is Hilbert Curve. What are the steps to create one recursively.

246 Data Structures using C

3. What is the L-System representation of Koch Snowflake?

4. What is the L-System representation of Serpinsky Triangle?

5. What is the L-System representation of Monge Sponge?

6. What is the L-System representation of Koch Curve?

P R O G R A M M I N G P R O B L E M S

1. Write a program to check whether a number is prime or not.

2. Write a program to generate prime numbers within a given range.

3. Write a program to generate al the combinations of a word.

4. Write a general algorithm to re-write a recursive algorithm in a non-recursive way.

5. Write a Program to generate Delannoy numbers given by the recurrence relation D (a, b) = D (a �

1, b) + D (a, b � 1) + D (a � 1, b � 1) with initial value D(0, 0) = 1.

6. Write a program to generate random numbers using primitive polynomials.

7. Write a program to generate random numbers using the famous blum-blum-shub recursive algo-

rithm.

8. Write a program to solve a non-linear equation using Brent�s method.

9. Rewrite the function to solve the root of a non-linear equation using Newton Raphson method.

Pass the tolerance level instead of the number of iteration.

10. Rewrite the function to solve the root of a non-linear equation using Bisection method. Pass the

tolerance level instead of the number of iteration.

11. Rewrite the function to solve the root of a non-linear equation using Regula-Falsi method. Pass the

tolerance level instead of the number of iteration.

12. Rewrite the function to solve the root of a non-linear equation using Secant method. Pass the

tolerance level instead of the number of iteration.

13. Rewrite the function to solve the root of a non-linear equation using Muller�s method. Pass the

tolerance level instead of the number of iteration.

14. Write a program to print all the anagrams of a given string.

15. Write a program to find out whether there is a path between two locations in a maze or not.

16. Write a program to find whether there is a path between two nodes in a maze or not.

17. Write a program to find the root of a non-linear equation using Brent�s method.

18. Write a program to find the highest Fibonacci number within the range INT_MAX.

19. Compare a recursive relation with Ackerman�s function.

20. Compare a recursive relation with Tak function.

21. Demonstrate how LOGO is recursive, specifically speaking tail recursive in nature.

22. Show how Koch Curve can be generated using recursion.

23. Show how Serpinsky�s triangle can be generated using recursion.

6

Stack

One upon Another

INTRODUCTION

Some real-life scenarios can be modeled easily with a first in, last out list. In these types of situations a

stack will be the ideal data structure. A stack can be designed either by using arrays or by using linked

list. The basic operations possible on a stack are popularly known as push and pop. All these operations

are described in this chapter. Stack is a simple data structure but it has tremendous usages in the software

industry. Starting from a simple postfix calculator to a complicated XML reader, stacks find their way.

All these diverse applications of this simple data structure have been discussed at length in this chapter.

6.1 MODEL A STACK AS A STRUCT

Stack organizes elements one above another. So to model a stack in C we need two variables. We can use

arrays to hold the values of the stack. The other variable will hold the number of elements currently in

the stack. So, we can use a structure to represent stack. Given below is such a structure that represents an

integer stack that can hold 10 integers.

#define MAX 10

typedef struct MyStack
{
 int data[MAX];
 int count;

}MyStack;

Here data [MAX] is an integer array that can hold 10 integers in the stack. Count is the variable that

holds the current number of elements in the stack. Typedef has been used so that from now on MyStack

can be used as a built-in data type.

248 Data Structures using C

6.2 HOW TO INITIALIZE THE STACK MODELED ABOVE

Here we use arrays internally to store the Stack. Since array index starts from zero, to indicate an empty

stack, the count variable of the stack is set to �1. After push or pop operation, the count value is modified,

and the stack is reinitialized before any further operation. A global variable is kept and that is incremented

by unity while pushing, and decreased by unity while popping elements to and from the stack.

Here the global variable is named as sc. Here is the code to initialize the stack.

int SC = �1;
void initMyStack(MyStack *st)
{
 st->count=sc;
}

By pushing we mean adding an element to the top of the stack. Until count reaches the maximum

number that the stack can hold, the elements added will be appended at the top of the stack. Pointer to

structure will be used to push an element. Here is the code for the method push(). Assume that we are

operating on the stack defined above. Here is the figure that explains the push and pop operation associ-

ated with a stack.

Fig. 6.1

int push(MyStack *st)
{
 if(st->count==MAX-1)

Stack (One upon Another) 249

 {
 printf("MyStack is full!\n");
 return 0;
 }
 else
 {
 printf("Enter the number :");
 scanf("%d",&st->data[st->count]);
 sc++;
 printf("Successfully pushed");
 return 1;
 }
}

Since the counting of the elements for the stack starts from �1 (Empty Stack), the total number of

elements in the stack when the stack is full is given by MAX � 1. This method returns 1 in case the

pushing of elements is successful, otherwise it returns 0. In case, the stack is not full, the element entered

is put at the last of the array in the location st->count.

Here the method itself asks for the element to be added at the top of the stack. But we can pass the

element to the method.

6.3 HOW TO POP THE MRA ELEMENT FROM THE ABOVE STACK

Deleting the last element from the stack is popularly known as popping of Most Recently Added(MRA)

element. If the stack is empty and we want to pop the MRA element, then the system will display the

message �Stack is empty, Underflow Error�. Otherwise it will pop the last element. from the Stack. Here

is the code to pop the last element from the stack defined above.

int pop(MyStack *st)
{

 if(st->count<0)
 printf("MyStack is Empty!\nUnderflow Error");
 else
 {
 printf("Last number is popped\n");
 sc--;
 }
 return st->data[st->count-1];
}

This method returns the popped element to the calling method.

6.4 HOW TO DISPLAY THE STACKTOP ELEMENT

The element at the stack top is of interest. To display the element at the top of the stack, we have to

display the last element of the array. Here is the code to display the stack top using the stack defined

above.

void display_MyStack_top(MyStack *st)
{
 if(st->count<0)
 printf("MyStack Empty\n");

250 Data Structures using C

 else
 printf("Top = %d\n",st->data[(st->count)-1]);
}

Now it checks whether the Stack is empty or not. If the Stack is not empty, then it displays the last

element of the array.

6.5 HOW TO SWAP THE TOP TWO ELEMENTS

Sometimes you may need to swap the top two elements of the stack. Here is the code to swap the last two

elements from our stack.

void swap(MyStack *st)
{
 if(st->count<1)
 printf("Swapping can't be done\n");
 else
 {
 int temp=st->data[st->count-1];
 st->data[st->count-1] = st->data[st->count-2];

 st->data[st->count-2] = temp;
 printf("Swapped Successfully!\n");
 }
}

If there is only one element, then the count is 0, and swapping is not possible.

6.6 PUTTING IT ALL TOGETHER USING ARRAYS

Here is the source code putting all these methods together.

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>

#define MAX 10

typedef struct MyStack
{
 int data[MAX];
 int count;

}MyStack;

MyStack ms;
MyStack *s = &ms;
int sc=-1;

void initMyStack(MyStack *);
int push(MyStack *);
void display_MyStack_top(MyStack *);
void display_MyStack(MyStack *);
int pop(MyStack *);
void swap(MyStack *);

Stack (One upon Another) 251

//Copy and paste each method�s code here that are listed above

void initMyStack(MyStack *st)
{
 st->count=sc;
}

//Now call these methods from within main as below
int main()
{
 int choice;
 do
 {
 initMyStack(s);
 printf("\n1.Push\n");
 printf("2.Pop\n");
 printf("3.MyStack Top\n");
 printf("4.Is Empty\n");
 printf("5.Swap\n");
 printf("6.Exit\n");
 printf("Choice [1-6] :");
 scanf("%d",&choice);
 switch(choice)
 {
 case 1:push(s);break;
 case 2:pop(s);break;
 case 3:display_MyStack_top(s);break;
 case 4:s->count<0?printf("Stack is empty"):printf("Stack is not
empty");break;
 case 5:swap(s);break;
 case 6:exit(0);
 }
 }while(1);
 return 0;

}

6.7 MODEL A STACK USING A LINKED LIST

The main limitation of using the array to build stack is that we have to fix the size of the array in design

time. If we use linked list to design our stack, then the size of the stack can increase or decrease in the

design time. So in real time applications whenever we need to use stack, we will model that using a

linked list. Here we have modeled an integer stack using a linked list.

typedef struct link
{
 int info;
 link *next;
}link;

This structure above represents a particular node of the linked implementation of the stack.

252 Data Structures using C

6.8 PUSHING AN ELEMENT

Fig. 6.2

When we represent the stack using a linked list, pushing an element onto the top of the stack involves

two activities. First of all, we have to create enough space using malloc() method to insert one more

node in the list. Then the �next address� of the new node is assigned with the previous last node. This is

done because stack is a LIFO list, so MRA element will be at the top. Here is the code of the function

that pushes an element on to the stack top.

Stack * push(Stack *rec)
{
 Stack *new_rec;
 printf("Enter the value to push :");
 new_rec = (Stack *)malloc(sizeof(Stack));
 scanf("%d",&new_rec->info);
 new_rec->next=rec;
 rec = new_rec;//The old is now new
 return rec;
}

This method returns the pointer to the last node. malloc() returns a void * . So it needs to be type
casted to the Stack * type.

6.9 HOW TO POP AN ELEMENT FROM THE STACK

Popping from a stack that is modeled using linked list requires the memory segment to be freed manu-
ally. The method free() is used for deleting the MRA element. Here is the code for popping the top
element from a stack designed with a linked list.

Stack * pop(Stack *rec)
{
 Stack *temp;

Stack (One upon Another) 253

 if(rec==NULL)
 printf("Stack is Empty");
 else
 {
 temp=rec->next;
 free(rec);//Freeing up memory space
 rec = temp;
 }
 return rec;
}

From this method also the pointer to the top element is returned.

6.10 HOW TO PEEP AT THE STACK TOP

Peeping at the top element of the stack requires the least amount of code. We just need to check whether

the stack is empty or not. If it is not empty, then the MRA element is shown. Here is the method.

void peep(Stack *rec)
{
 if(rec==NULL)
 printf("Stack is empty.");
 else
 printf("Stack Top Element = %d",rec->info);

}

6.11 HOW TO SWAP THE TOP TWO ELEMENTS

Swapping the top two elements involve swapping the values of the nodes. Here is the code for swapping

the top two elements of the stack.

Fig. 6.3

254 Data Structures using C

Stack * swap(Stack *rec)
{
 int temp;
 if(rec->next==NULL||rec==NULL)
 printf("Swapping can't be done. Too few elements");

 else
 {
 //Swapping the values of the top 2 nodes
 temp = (rec->next)->info;
 (rec->next)->info = rec->info;
 rec->info = temp;
 }
 return rec;//returning the pointer to the top element

}

Example 6.1 Write a program using stack to evaluate a postfix expression. Assume that the
postfix expression can only take +,-,*,/ and all the parameters are from 0 to 9. The program will work
as follows. A postfix expression will be entered from the console by the user and then the program
will calculate the value of the expression and displays that on console. But the program doesn�t check
whether the supplied postfix expression is valid or not. Model the stack

using linked list.
Algebraic expressions such as (A+B)/(C�D) have an inherent tree-

like structure. For example, the figure below is a representation of the
expression in equation (A+B)/(C�D). This kind of tree is called an ex-
pression tree.

If we travel the tree in-order we get infix notation. If we travel the tree
in post-order then we get the postfix expression. Verify that the expres-
sion tree values and the postfix expression match below.

Fig. 6.4

Fig. 6.5

Stack (One upon Another) 255

Fig. 6.6

Solution

//This shows how to use a Stack to evaluate the given postfix
//expression.

#include <stdio.h>
#include <conio.h>

#include <malloc.h>
#include <ctype.h>

typedef struct Stack
{
 int info;
 struct Stack *next;
}Stack;

Stack *start;

Stack* push(Stack *,int);
Stack* pop(Stack *);
int peep(Stack *);

int peep(Stack *rec)
{
 if(rec==NULL)
 printf("Stack is empty.");
 else
 return rec->info;
}

256 Data Structures using C

Stack * push(Stack *rec,int c)
{
 Stack *new_rec;
 new_rec = (Stack *)malloc(sizeof(Stack));
 new_rec->info=c;
 new_rec->next=rec;
 rec = new_rec;
 return rec;
}

Stack * pop(Stack *rec)
{
 Stack *temp;
 if(rec==NULL)
 printf("Stack is Empty");
 else
 {
 temp=rec->next;
 free(rec);
 rec = temp;
 }
 return rec;

}

//This method checks whether the character read is an Operator or
//not. These are the basic 4 mathematical operators. You can write
int isop(char o)
{
 if(o=='+'||o=='-'||o=='*'||o=='/')
 return 1;
 else
 return 0;
}

int main()
{
 char *postfix;
 int first=0;
 int second=0;
 int i=0;
 int result=0;
 int temp=0;
 clrscr();
 printf("Please enter a Postfix Expression :");
 scanf("%s",postfix);
 for(i=0;i<strlen(postfix);i++)
 {
 if(!isop(postfix[i]))
 {
 printf(�Enter value of %c�,postfix[i]);

Stack (One upon Another) 257

 scanf(�%d�,&temp);
 start = push(start,temp);
 }
 else
 {
 second = peep(start);
 start = pop(start);
 first = peep(start);
 start = pop(start);

 if(postfix[i]=='+')
 {

 result=0;
 result+=(first+second);
 start = push(start,result);
 }

 if(postfix[i]=='-')
 {
 result=0;
 result+=(first-second);
 start = push(start,result);
 }

 if(postfix[i]=='*')
 {
 result=0;
 result+=(first*second);
 start = push(start,result);
 }

 if(postfix[i]=='/')
 {
 result=0;
 result+=(first/second);
 start = push(start,result);
 }
 //Add your own custom defined operators
 //Like ^ for exponentiation and so on

 }
 }
 printf("Result is = %d",peep(start));
 getch();
 return 0;
}

A sample run of the program.

Please enter a Postfix Expression :ab+cd-/

Enter value of a 80

Enter value of b 20

258 Data Structures using C

Enter value of c 5

Enter value of d 1

Result is = 25

6.12 HOW TO WRITE A PARENTHESIS MATCHER USING STACK

Compilers make use of stack structures. This example shows a simple illustration of the way a stack can

be used to check the syntax of a program. It uses the stack class you have created. In the example, a stack

is used to check that the braces {and} used to mark out code

l The source file is read character by character.

l Each time a { is read an object (any object, it doesn�t matter what) is pushed onto the stack.

l Each time a } is read an object is popped from the stack.

l If the stack is empty when a } is read then there must be a missing { .

l If the stack is not empty at the end of the file then there must be a missing } .

Here is the Pseudo code for this. Assume that we are using the predefined MyStack structure.

 printf("Enter the File Name :");
 fflush(stdin);
 gets(file);
 printf("%s",file);
 FILE *fp = fopen("C:\\tezt.c","r");
 while(!feof(fp))
 {
 c = fgetc(fp);//reading character by character
 printf("%c",c);
 if(c=='{')
 push(s);
 if(c=='}')
 {
 if(isEmpty(s))

 printf("Missing {\n");
 pop(s);
 }
 }
 }
 if(!isEmpty(s))//We have reached the end of file
 printf("} Missing\n");

6.13 SWITCHBOX ROUTING PROBLEM

Example 6.2 Write a program that accepts the pin numbers of a switchbox or IC and then states

whether the pin numbers are routable or not. A switchbox is routable by that we mean that there will

be no cross connection if we connect the given pin numbers. (See Fig. 6.7.)

Solution As you can see in the figure below, the internal connection inside a IC/PCB/switchbox is

similar. Suppose we have to connect pin number 1 to pin number 4 and like that, but no overlapping is

allowed because that will cause short-circuit.

A stack can be used to find out whether a switchbox is routable or not as shown in the following figure.

Stack (One upon Another) 259

Fig. 6.7

Fig. 6.8

Here is the code in C to solve the problem using stack.

#include <stdio.h>
#include <conio.h>
#include <malloc.h>
#include <ctype.h>
#include <stdlib.h>

typedef struct Stack
{
 int info;
 struct Stack *next;
}Stack;

260 Data Structures using C

Stack *start;

void display(Stack *);
Stack* push(Stack *);
Stack* pop(Stack *);
int peep(Stack *);
Stack* swap(Stack *);

Stack * swap(Stack *rec)
{
 int temp;
 if(rec->next==NULL||rec==NULL)
 printf("Swapping can't be done. Too few elements");

 else
 {
 temp = (rec->next)->info;
 (rec->next)->info = rec->info;
 rec->info = temp;
 }
 return rec;

}
void display(Stack *rec)
{
 if(rec==NULL)
 printf("Stack is empty.");
 else
 {
 while(rec!=NULL)
 {
 printf("Info = %d Address : %u Next Address :
 %u\n",rec->info,rec,rec->next);
 rec = rec->next;
 }
 }
}

int peep(Stack *rec)
{
 if(rec==NULL)
 printf("Stack is empty.");
 else
 return rec->info;
}

int isempty(Stack *rec)
{
 if(rec==NULL)
 return 1;

Stack (One upon Another) 261

 else
 return 0;
}

Stack * push(Stack *rec,int info)
{
 Stack *new_rec;
 new_rec = (Stack *)malloc(sizeof(Stack));
 //scanf("%d",&new_rec->info);
 new_rec->info = info;
 new_rec->next=rec;
 rec = new_rec;
 return rec;
}

Stack * pop(Stack *rec)
{
 Stack *temp;
 if(rec==NULL)
 printf("Stack is Empty");
 else
 {
 temp=rec->next;
 free(rec);
 rec = temp;
 }
 return rec;

}

int main()
{
 int i;
 int pins;
 int net[]={1,2,3,4,5,6,7,4};
 printf("How many pins :");
 scanf("%d",&pins);
 for(i=0;i<pins;i++)
 {
 if(isempty(start))
 {
 start = push(start,i);
 }
 else
 {
 if(net[i]==net[peep(start)])
 {
 printf("%d",peep(start));
 start = pop(start);
 }

262 Data Structures using C

 else
 {
 start = push(start,i);
 }
 }

 }
 if(isempty(start))
 printf("Switchbox is routable");
 else
 printf("Switchbox is not routable");
 return 0;
}

Example 6.3 Write a program to find out whether a given string is a palindrome or not using a

stack. Ignore white space and other characters. Check your program with the following inputs .

�Madam I am Adam� and �was it a cat I saw� and �Level�. The program should be case insensitive.

Solution Here is the code that uses stacks to find whether the string entered is a palindrome or not.

The program skips all the white spaces. The stack is modeled using a linked list, because the string can

be of any length. Three stacks are used to perform this operation

Here is the illustration. People speak about so many palindromes. I have used one of my favorites.

Fig. 6.9

#include <stdio.h>
#include <conio.h>
#include <malloc.h>
#include <ctype.h>
#include <stdlib.h>

Stack (One upon Another) 263

typedef struct Stack
{
 char info;
 struct Stack *next;
}Stack;

Stack *start;
Stack *rstart;
Stack *cstart;

Stack* push(Stack *);
Stack* pop(Stack *);
char peep(Stack *);

int isaplha(char c)

{
 //Checking whether �c� is a alphabet or not.
 //White space is also not allowed. ASCII of space is 32
 //by writing c!=32 I mean that ASCII of c will not be 32.
 if(((c>='a' && c<='z') || (c>='A' && c<='Z')) && (c!=32))
 return 1;
 else
 return 0;
}

//This function will display the Stack top element.
char peep(Stack *rec)
{
 if(rec==NULL)
 printf("Stack is empty.");
 else
 return rec->info;
}

//This function will check whether the Stack is empty or not
int isempty(Stack *rec)
{
 if(rec==NULL)
 return 1;
 else
 return 0;
}

Stack * push(Stack *rec,char info)
{
 Stack *new_rec;
 new_rec = (Stack *)malloc(sizeof(Stack));
 new_rec->info = info;
 new_rec->next=rec;
 rec = new_rec;

264 Data Structures using C

 return rec;
}

Stack * pop(Stack *rec)
{
 Stack *temp;
 if(rec==NULL)
 printf("Stack is Empty");
 else
 {
 temp=rec->next;
 free(rec);
 rec = temp;
 }

 return rec;

}

int main()
{
 char c;
 int flag=0;
 printf("Enter the characters :");
 do
 {
 c = getche();
 if(isalpha(c))
 {
 start = push(start,c);
 cstart = push(cstart,c);
 }

 }while(c!=13);//Untill Enter is pressed

 while(!isempty(start))
 {
 rstart = push(rstart,peep(start));
 start = pop(start);
 }

 while(!isempty(rstart))
 {
 if(toupper(peep(rstart))==toupper(peep(cstart)))
 flag = 1;
 else
 {
 flag=0;
 break;
 }
 rstart = pop(rstart);

Stack (One upon Another) 265

 cstart = pop(cstart);
 }
 if(flag==1)
 printf("The string is a palindrome");
 else
 printf("The string is not a palindrome");
 return 0;
}

Try this program with the following inputs:

Mom

LiriL

Brother

Was it a cat i saw!

Madam I m Adam

A Man, A Plan, A Canal, Panama!

6.14 SAGUARO STACK

The saguaro stack or cactus stack is a kind of stack where there can be more than one stack at the top of

another stack. In a saguaro stack, one stack can�t be popped unless the stack at its top is empty. This

stack looks like the saguaro cactus. Thus it got its name.

A saguaro cactus

This type of stack can be very useful. For example say the URL entered in internet explorer contains

some illegal characters, using saguaro stack we can extract the invalid characters. Branches of this URL

stack are www , the company name and the domain(.com, .edu., .org etc..) See the figure below for more

explanations.

266 Data Structures using C

A saguaro stack can be thought as the combination of stacks. Here is the structure that is used to

represent the stack.

typedef struct MyStack
{
 int data[MAX];
 int count;

}MyStack;

typedef struct SaguaroStack
{
 MyStack Stacks[MAX];
 int count;
}SaguaroStack;

A Saguaro Stack can�t be empty until all its branches are empty.

How to Push an Item in a Saguaro Stack

int push(SaguaroStack *st,int whichStack,int whattopush)
{
 if(st->Stacks[whichStack].count==MAX)
 {
 printf("The specified Stack is full!\n");
 return 0;
 }
 else
 {

 st->Stacks[whichStack].data[st->Stacks[whichStack].count] =
whattopush;
 st->Stacks[whichStack].count++;
 sc++;
 printf("Successfully pushed");
 return 1;
 }
}

How to Pop an Item from a Saguaro Stack

int pop(SaguaroStack *st,int whichStack)
{

 if(st->Stacks[whichStack].count<0)
 printf("Specified Stack is Empty!\nUnderflow Error");
 else
 {
 printf("Last number from Stack %d is
popped\n",whichStack);
 sc--;
 }
 return st->Stacks[whichStack].data[st-
>Stacks[whichStack].count-1];
}

Stack (One upon Another) 267

6.15 HOW TO WRITE THE ALGORITHM TO USE A SAGUARO STACK TO

CHECK A WRONGLY ENTERED URL

This algorithm will work for URLs like www.yahoo.com and will not work for URL like www.google.co.in

1. Accept the URL from the user.

2. Add the characters of the URL one by one in a stack called URL.

3. Pop this URL stack 4 times and add the values to another stack known as domain Stack.

4. Now pop the URL stack till it is empty and put the values in another stack called temp.

5. Now pop the Temp stack 4 times and put the values in another stack known as WWW.

6. If the last element of the WWW stack is anything other than �.� (Dot) then the URL is not valid.

7. If any of the element of WWW stack apart from the last element is not w, then the URL is not valid.

8. If the domain stack�s last element is anything other than �.� Then the url is not valid.

9. Whatever is left in the temp stack is the company name. This can only contain alphabets numeric

digits (0�9) and �_�(Under score) or � (Hiphen) and no other characters. In case it contains any

other characters then the URL is not valid.

Here is a figure to illustrates the above algorithm.

Fig. 6.10

268 Data Structures using C

Try Yourself: Try to implement the above algorithm using linked list versions of stack described above

in this chapter. We have to use linked list because the URL name can be of any length.

Example 6.4 Write an XML Reader using Stack. The program should be able to understand

what part of the input XML string is a tag and what is the content for that particular string.

Solution Here is an example of an XML File.

<CATALOG>

<CD>

<TITLE>Empire Burlesque</TITLE>

<ARTIST>Bob Dylan</ARTIST>

<COUNTRY>USA</COUNTRY>

<COMPANY>Columbia</COMPANY>

<PRICE>10.90</PRICE>

<YEAR>1985</YEAR>

</CD>

<CD>

<TITLE>Hide your heart</TITLE>

<ARTIST>Bonnie Tyler</ARTIST>

<COUNTRY>UK</COUNTRY>

<COMPANY>CBS Records</COMPANY>

<PRICE>9.90</PRICE>

<YEAR>1988</YEAR>

</CD>

</CATALOG>

The algorithm to find out the tags and contents from the given XML string is as follows.

1. Read the string till end �1 and start pushing the characters read to a stack if the character is not �/�.

Let�s call it the xml stack.

2. If at any point while traversing the string you it is found that the next character is �/� then start

popping from the xml stack until �>� is got and push the characters read to another stack known as

content stack.

3. While pushing the elements onto the contents stack from xml stack, if �>� is encountered then

come out of the previous loop and pop the content stack.

4. Push �>� to the tag Stack.

5. Pop the stack xml until you get �<� and push them onto the tag Stack.

6. Pop the contents of the tag stack until it�s empty and show character by character.

7. Pop the contents of the contents stack until it�s empty and show character by character.

See Fig. 6.11 for further details.

Here is the C program. So you know that the program uses 3 stacks. One is known as the XML stack

that holds the total XML. The other two holds the tag and the contents within the tag respectively.

#include <stdio.h>
#include <conio.h>
#include <malloc.h>

typedef struct Stack
{
 char info;
 struct Stack *next;
}Stack;

Stack (One upon Another) 269

Stack *start;
Stack *tag;
Stack *content;

Stack* push(Stack *,char);
Stack* pop(Stack *);
char peep(Stack *);

char peep(Stack *rec)

{
 if(rec==NULL)
 printf("Stack is empty.");
 else
 return rec->info;

}

Stack * push(Stack *rec,char c)
{
 Stack *new_rec;
 //printf("Enter the value to push :");
 new_rec = (Stack *)malloc(sizeof(Stack));
 new_rec->info=c;

Fig. 6.11

270 Data Structures using C

 new_rec->next=rec;
 rec = new_rec;
 return rec;
}

Stack * pop(Stack *rec)
{
 Stack *temp;
 if(rec==NULL)
 printf("Stack is Empty");
 else
 {
 temp=rec->next;
 free(rec);
 rec = temp;
 }
 return rec;

}

int main()
{
 int i=0;
 char c;
 char string[200]="<TITLE>Empire Burlesque</TITLE> <ARTIST>Bob\
Dylan</ARTIST> <COUNTRY>USA</COUNTRY>";

 for(i=0;string[i]!='\0';i++)
 {

 if(string[i+1]!='/')
 {
 start = push(start,string[i]);
 }

 else
{

do
{

c=peep(start);
content = push(content,c);
start = pop(start);

}while(c!='>');
content = pop(content);

tag = push(tag,'>');
do
{

 c=peep(start);
tag = push(tag,c);
start = pop(start);

}while(c!='<');

Stack (One upon Another) 271

printf("\nTag is :\n");
 //Displaying the Tag Stack

while(tag!=NULL)
{

c = peep(tag);
tag = pop(tag);
printf("%c",c);

}
printf("\nContents is :\n");

 //Displaying the Contents Tag
while(content!=NULL)
{

c = peep(content);
content = pop(content);
printf("%c",c);

}
}

}
return 0;

}

The output of the above program is

Tag is :

<TITLE>

Contents is :

Empire Burlesque

Tag is :

<ARTIST>

Contents is :

Bob Dylan

Tag is:

<COUNTRY>

Contents is:

USA

Try Yourself: Go one step further and try to find out what are the children nodes of a given node.

6.16 WHAT IS AN MTFL?

MTFL : Move to front list is a special kind of list where the sought elements crawl to the front of the list.

Have you ever noticed that the last dialed number from your cell comes at the top of the dialed numbers.

So next time you want to dial the same number then you don�t have to browse through other numbers.

Similarly in word processors like MS Word, you have noticed that the last used font is loaded at the top

of the list so that you don�t have to search a long list.

Thus we understand that in this list search operation is not a passive operation like other lists. Here,

when we search an item the item comes at the front of the list.

6.17 HOW TO MODEL AN MTFL USING TWO STACKS WHICH ARE

THEMSELVES MODELED BY A LINKED LIST

The strategy to design an MTF list by two stacks involve the following steps.

1. Pop from the stack containing the list items until we encounter the item to be sought.

272 Data Structures using C

2. Pop the stack once.

4. Push these items onto the stack-top of another stack, known as temp stack.

5. When you get the item to be sought then hold it in some other variable.

6. Pop the temporary stack until it is empty and then push the elements back in the stack containing

the items.

7. After you put all the elements of the temporary stack, put the sought item back at the stack top.

Fig. 6.12

Fig. 6.13

Stack (One upon Another) 273

#include <stdio.h>
#include <conio.h>
#include <malloc.h>
#include <ctype.h>
#include <stdlib.h>

typedef struct Item
{
 int info;
 int count;
}Item;

typedef struct Stack
{
 Item it;
 struct Stack *next;
}Stack;

Stack *start;
Stack *temp;

void display(Stack *);
Stack* push(Stack *);
Stack* pop(Stack *);
void peep(Stack *);
Stack* swap(Stack *);

Stack * swap(Stack *rec)
{
 int temp;
 if(rec->next==NULL||rec==NULL)
 printf("Swapping can't be done. Too few elements");

 else
 {
 temp = (rec->next)->it.info;
 (rec->next)->it.info = rec->it.info;
 rec->it.info = temp;
 }
 return rec;
}
/*///
The Active Search Operation for MTF List
This function not only searches the List,
But also modifies the list. It pulls the sought
Item to the top of the list.
///*/
Stack* Search(Stack *rec,int info)
{

 int searchinfo;
 while(rec->it.info!=info)

274 Data Structures using C

 {
 temp=push(temp,rec->it.info);
 rec = rec->next;
 }
 searchinfo = rec->it.info;
 rec = pop(rec);

 while(temp!=NULL)
 {
 rec = push(rec,temp->it.info);
 temp = temp->next;
 }
 rec = push(rec,searchinfo);
 return rec;
}

///
void display(Stack *rec)
{

if(rec==NULL)
printf("Stack is empty.");

else
{

while(rec!=NULL)
{

printf("Info = %d Address : %u Next Address : %u\n",
rec->it.info,rec,rec->next);

rec = rec->next;
}

}
}

void peep(Stack *rec)
{

if(rec==NULL)
printf("Stack is empty.");

else
printf("Stack Top Element = %d",rec->it.info);

}

Stack * push(Stack *rec,int info)
{

Stack *new_rec;
new_rec = (Stack *)malloc(sizeof(Stack));
new_rec->it.info=info;
new_rec->next=rec;
rec = new_rec;
return rec;

}

Stack (One upon Another) 275

Stack * pop(Stack *rec)
{

Stack *temp;
if(rec==NULL)

printf("Stack is Empty");
else
{

temp=rec->next;
free(rec);
rec = temp;

}
return rec;

}

int main()
{
do
{
 int choice;
 int info;
 printf("\n1.Push\n");
 printf("2.Pop\n");
 printf("3.MyStack Top\n");
 printf("4.Is Empty\n");
 printf("5.Search\n");
 printf("6.Exit\n");
 printf("Choice [1-6] :");
 scanf("%d",&choice);
 switch(choice)
 {
 case 1: printf("Enter the info to push :");
 scanf("%d",&info);
 start = push(start,info);break;
 case 2:start = pop(start);break;
 case 3:display(start);break;
 case 4:peep(start);break;
 case 5: printf("Enter the info to search :");
 scanf("%d",&info);
 start=Search(start,info);break;
 case 6:exit(0);
 }
}while(1);

return 0;
}

Have you noticed the main difference between this list and other types of lists? In this data structure,

search operation is not a passive operation like all other types of lists. Here, whenever we search some-

thing, then the sought item comes to the front of the list. Thus, it drastically reduces the searching time

for the next time.

276 Data Structures using C

Many applications use MTF list. For example, in mobile phones the most recently dialed number

comes at the top of the dialed number list. So, next time if you want to call the same number you don�t

have to browse through your phonebook sequentially, because the number will be sent at the top of the

dialed number list.

In departmental store, this MTF list is used to find what the most sought item is in the store. It is also

used to find out what else is being sought along with the most sought item.

6.18 HOW TO FIND THE MOST SOUGHT ITEM IN A DEPARTMENTAL

STORE USING AN MTF LIST

To find out the most sought item in a departmental store, we need to use the count variable of the item

structure. Each time an item is sought we need to increase the item count by unity. Then we can write a

function that can be described as �See through MTF� which will scan count of all the elements. So the

element which has the highest count is the most sought item till then.

Here is the function code to find the most sought item in the store.

 Item MostSoughtItem(Stack *rec)

 Item MostSoughtItem(Stack *rec)
{
 int maxcount=rec->it.count;
 Item mostsought;
 Stack *crec;
 crec = rec;
 while(rec!=NULL)
 {
 if(rec->it.count>maxcount)
 maxcount=rec->it.count;
 rec=rec->next;
 }

Fig. 6.14

Stack (One upon Another) 277

 mostsought=findit(crec,maxcount);
 return mostsought;
}

Item findit(Stack *rec,int max)
{
 while(rec!=NULL)
 {
 if(rec->it.count==max)
 break;
 }
 return rec->it;
}

If you notice carefully, you will notice that the most sought item will be available at the top of the
stack always. So the peep() function only will suffice to find the most sought item in a store.

Now, to make things complicated, we may need to find out the most sought item from different
sections [ladies, gents, kids, home, etc] of a store. Then we can use a tray of stacks (May be considered
as a different version of a cactus stack), where each stack represents the sought item list for each section.
The fig. above is a pictorial representation of the phenomenon.

6.19 WHAT IS BACKTRACKING?

Backtracking is a strategy for finding solutions to constraint satisfaction problems. The term backtrack
was coined by American mathematician D. H. Lehmer in 1950s. Constraint satisfaction problems are
problems with a complete solution, where the order of elements does not matter.

The problems consist of a set of variables each of which must be assigned a value, subject to the
particular constraints of the problem. Backtracking attempts to try all the combinations in order to ob-
tain a solution. Its strength is that many implementations avoid trying many partial combinations, thus
speeding up the running-time.

6.20 HOW TO DEVELOP A BACKTRACKING ALGORITHM TO FIND A PATH

IN A MAZE USING STACK

Backtracking is a very useful concept in programming to solve problems with partial solutions. Here is
the pictorial description how to find path from a maze using stack.

1. Model a cell using the row and column, and an integer value to keep the track whether the cell is
already visited or not.

2. Create a maze of these cells.
3. Move in any direction that is possible [If a cell is not a dead end or if the cell is already visited then

the cell is not go able] and push that onto a stack and change the value of the integer is visited to 1.
That is set by default false.

4. Push until you reach a dead end.
5. If you reach a dead end pop one item at a time from the stack and put that in a variable.
6. After popping see the stack top cell.
7. If there are more cells where you can go apart from the cell at the stack-top, stop popping.
8. Start from step 3 untill you reach the destination.
There are many problems that can be solved using backtracking.
There can be many such problems which can be solved with backtracking using stack. Like

8 Queens Problem, Bishop Problem, etc.

278 Data Structures using C

Fig. 6.15 Fig. 6.16

Example 6.5 Write a program that takes as input a file name that contains directions to a place.

Each line of the file should contain text of the form

<direction-to-travel> <route � name>

For example

�north on RT 511�

Use a stack to produce instructions on how to come back from that place.

Stack (One upon Another) 279

Solution Here is the C code.
#include <stdio.h>
#include <conio.h>
#include <malloc.h>
#include <ctype.h>
#include <string.h>

typedef struct Stack
{
 char info[30];
 struct Stack *next;
}Stack;

Stack *start;

void display(Stack *);
Stack* push(Stack *,char d[]);
Stack* pop(Stack *);
char* peep(Stack *);
char* reversedirection(char *);

void display(Stack *rec)
{
 if(rec==NULL)
 printf("Stack is empty.");
 else
 {
 while(rec!=NULL)

 {
 printf("Info = %s \n",rec->info);
 rec = rec->next;
 }
 }
}

char * peep(Stack *rec)
{
 if(rec==NULL)
 return "Stack is Empty";
 else
 return rec->info;
}

Stack * push(Stack *rec,char d[])
{
 Stack *new_rec;
 new_rec = (Stack *)malloc(sizeof(Stack));
 strcpy(new_rec->info, d);
 new_rec->next=rec;
 rec = new_rec;

280 Data Structures using C

 return rec;
}

Stack * pop(Stack *rec)
{
 Stack *temp;
 if(rec==NULL)
 printf("Stack is Empty");
 else
 {
 temp=rec->next;
 free(rec);
 rec = temp;
 }
 return rec;

}

char* reversedirection(char direction[])
{

 if(direction[0]=='E')
 {
 direction[0]='W';
 direction[1]='E';
 return direction;
 }

 if(direction[0]=='W')
 {
 direction[0]='E';
 direction[1]='A';
 return direction;
 }

 if(direction[0]=='N')
 {

 direction[0]='S';
 direction[2]='U';
 return direction;

 }

 if(direction[0]=='S')
 {

 direction[0]='N';
 direction[2]='R';
 return direction;

 }

}

Stack (One upon Another) 281

int main()
{

 char file[20];
 char route[30];

 FILE *fp;
 printf("Enter the Route Direction File :");
 fflush(stdin);
 scanf("%s",file);
 fp = fopen(file,"r");
 printf("On the way there \n");
 while(!feof(fp))
 {
 fgets(route,strlen(route),fp);
 printf("%s \n",route);
 start = push(start,route);
 }

 fclose(fp);
 printf("Return Trip Guide \n");
 while(start!=NULL)
 {
 printf("%s \n",reversedirection(peep(start)));
 start = pop(start);
 }
 printf("End\n");
 return 0;

}

Here is a sample run of the program..

Enter the Route Direction File :goingthere.txt

On the way there

NORTH ON SALISBURY RD

WEST ON ROBIOUS RD

NORTH ON RT 511

WEST ON RT 150

Return Trip Guide

EAST ON RT 150

SOUTH ON RT 511

EAST ON ROBIOUS RD

SOUTH ON SALISBURY RD

End

Contents of going there file is

NORTH ON SALISBURY RD

WEST ON ROBIOUS RD

NORTH ON RT 511

WEST ON RT 150

282 Data Structures using C

R E V I S I O N O F C O N C E P T S

Some Key Facts about Stack and Terminology

1. LIFO : Last In First Out
2. MRA : Most Recently Added
3. Push : Entering one element at the Stack top
4. Pop : Deleting the MRA element
5. Swap: Swapping the top two elements of the Stack.
6. Peep: Look at the stack � top element.
7. Stack is a LIFO List. The MRA element is taken out first.
8. First element entered initially can only be extracted from a stack at the end.
9. Stack is heavily used in compiler designing and parsers. Compilers use stack internally to keep

track of the function calls.
10. Any recursive method (like the iterative root finding algorithms of polynomials) can be written as

a non-recursive algorithm using stacks.
11. Whenever you need to design a parser, the best suited data structure will be stack. See the XML

Reader code below for further clarification.
12. Stack is used to model other data structures like queues etc.
13. Recursive algorithms can be made non-recursive by using stacks.
14. To model any �Cascaded System� stack is the best data structure. By �Cascaded� I mean that

output of one system is the input to the other system. So stack can be highly used to model cas-
caded LTI (linear Time Invariant) systems in electronics.

15. To design the functional languages like LISP, Haskell etc, stack is used.
16. Browsers use stack to store different type of protocols. Whenever a new URL is entered in the

address bar, the browser match the protocol of the URL with any of the stack entries.
17. Stacks are used in games programming/word processing software to do the undo move feature.
18. Oracle uses Stacks to keep track of the transactions. So whenever we wish we can do a rollback.

This rollback is nothing but popping of the stack that holds the transactions.
19. UNIX/Linux kind of OS, uses stack to keep track of the commands issued. The same things hap-

pen when we use DosKey command in DOS.

R E V I E W Q U E S T I O N S

1. Where all you can use stack in real life?
2. Write pseudo code for basic operations on a stack that is modeled by two queues?
3. Can we have a stack of structures? Give some example where it might be needed.
4. Can we have a stack of function pointers? Where do you think this is used ?
5. There is an integer stack S then what are the following commands doing ? Assume the methods

perform as they are defined in the chapter. push(S,22) ; push(S,S.count); push(S,sin(20)-pop());
pop() ; display_Stack_top() + 5;

6. Create a stack of point structures.
7. Create an array of this stack elements.
8. How will you access the co-ordinates of a point inside such a structure?
9. Can you model a queue using two stacks ?

10. How a saguaro stack can be used in compilers ?

Stack (One upon Another) 283

11. Convert the following Infix expression to postfix a+b*(c-d^e+g*(k-l)). Show contents for both
stack and the answer in each and every step.

12. Say there is a stack called MS. And all the basic operations are defined. Predict what will be the
output of the pseudo code ? All methods are same as they are described in the chapter.

PUSH(MS, 23)

PUSH(MS, 34)

PUSH(MS, 56)

POP()

PUSH(MS,isEmpty());

DISPLAY_STACK_TOP();

P R O G R A M M I N G P R O B L E M S

1. There is a garage. This has only one entrance. So the car that is parked first can�t go out until all the
other cars that are parked after it are moved out. Model such a garage. Write a simulation program.
Use linked implementation of the stack.

2. Model a stack using two linear queue which are modeled using linked list.
3. Model a queue using two stacks which are modeled using linked list.
4. Write a program that will read an HTML file and will report for missing tags. Assume that there is

no orphan tag[Clue: An orphan tag is a tag that doesn�t require the opening tag. Example </br>]
5. One grocer needs to automate his shop. The basic problem is output of each of his calculation is

the input to the next level. He will use 4 commands �ADD�, SUBTRACT,DIVIDE,MULTIPLY
along with 2 arguments. He will write the commands in a notepad file like
(a) ADD 45 99.56 (b) SUBTRACT 34 (c) DIVIDE 2 (d) ADD 6
(e) MULTIPLY 45
So as you can see addition of 45 and 99.56 in the first statement will be the first parameter for the
next command �SUBTRACT�. So 34 will be subtracted from (45+99.56)=144.56 and so on. Write
a program using stack to calculate these type of file inputs.

6. Use the structure from the phonebook example in Structure chapter. And create an MTFList of
these structures. Instead of simple array use this MTFList to code that phonebook program.

7. Use stack to solve N queens problem on a chess board.
8. Write a function add an element to a saguaro MTF.
9. Write a function to search for an element in a saguaro MTF.

10. Write a program to convert an infix notation to postfix using stack.
11. How can the variables be swapped at the top of the stack
12. Write a program using stack to represent a cascaded system.
13. Write a program using stack to represent a one way garage system.
14. Write a program to demonstrate how �undo feature� can be enabled using stack. Re-write the

program on POS (Point of Sale Software in the Structure chapter) to hold the transactions on a
stack. If a customer says that he doesn�t want to buy an item then we can revert back.

15. Write a program for simple calculations. The latest command should be visible retrievable with the
cursor keys. For example if the program accepts the commands add, sub etc then the stack will
hold these commands as they are applied and once required it can pull up the last command.

16. Modify the program on 8. Use an MTF list to put the most used command at the top of the stack.

7

Queue
Waiting or Privileged?

INTRODUCTION

In the last chapter, we discussed about stack data structure which is a LIFO list. In this chapter we will

discuss about a list which resembles the real life FIFO(First In First Out) queues. In real life queue, the

first request is served first and the last request is served last. This type of list is known as FIFO list or

normally termed as queue. Stack is also a queue which is LIFO queue. In this chapter we will discuss

about the different operations possible on a queue and different diverse applications of this simple data

structure. A queue can be modeled using either an array or a linked list.

7.1 HOW TO MODEL A LINEAR QUEUE USING AN ARRAY

A linear queue can be implemented in several ways. First of all we will model it using a simple array. A

queue has a front and a rear. We have modeled a linear queue of character arrays. There is a structure to

keep all the necessary information about the queue. Here is the structure that we will be using for other

methods that operate on this queue. Later in this chapter when we will model the queue with the linked

list and will call it linked linear queue.

typedef struct MyQueue
{
 int front;
 int rear;
 int count;
 char MyList[MAX][MAX];
}MyQueue;

Front represents the starting index where the array starts. Rear is the rear end of the queue and count

is the number of entries in the queue at any moment of time. MyList is the array that holds the character

arrays.

Queue (Waiting or Privileged?) 285

7.2 HOW TO INITIALIZE THE LINEAR QUEUE DEFINED ABOVE

Before we start to describe the basic operations of a queue which is modeled using array the queue we

should know how the queue is initialized. Here is the code to initialize the linear queue that is modeled

above.

int f=0,r=0,c=0;
void initQ(MyQueue *qu)
{
 qu->front = f;
 qu->rear = r;
 qu->count = c;
}

7.3 HOW TO APPEND AN ELEMENT IN THE QUEUE

As this is an array based representation so before we go for appending something at the end of the queue

we should check for the availability of space. There is one method, isFull(), which checks whether the

queue is full or not. Here is the code of that method.

int isFull(MyQueue *qu)
{

if(qu->count>=MAX)
return 1;//The queue is full

else
return 0;//There is space for more entries.

}

Here we have used pointer to the structure so that the access time is less. Now here is the code to

append a new character array at the end of the queue. This is known as enqueue. The Queue defined

above maintains a list of nicknames.

Fig. 7.1

286 Data Structures using C

void appendQ(MyQueue *qu)
{

char name[10];
if(isFull(qu)==1)//There is no space for a new entry.

printf("Overflow Error!");
else
{

printf("Enter nickname of the person joining the queue :");
fflush(stdin);
gets(name);
strcpy(qu->MyList[qu->rear],name);
r++;//One new element, rear shifts one unit to the back
c++;//One new element, so count increase by unity
qu->rear = r;
qu->count = c;
printf("\nSuccessfully Appended\n");

}

}

The picture below describes the situation even better.

Fig. 7.2

7.4 HOW TO DELETE FROM A QUEUE

Deletion is only allowed at the front of a queue. Unlike stack it is a data structure where the first entry is

deleted first. That�s why it is a FIFO list. The deleting operation is commonly known as dequeue. The

deletion operation done is a LOGICAL deletion. It is not a physical deletion. To understand this concept

see one figure of the code mentioned as follows.

Queue (Waiting or Privileged?) 287

Fig. 7.3

This diagram gives a conceptual view.

Here is the programmatic dissection of the operation.

Fig. 7.4

void deleteQ(MyQueue *qu)
{

if(isEmpty(qu)==1)//There is no element in the queue to dequeue
printf("\nUnderflow error");

else
{

f++;//Next element is now the new front of the queue

288 Data Structures using C

c--;//There is one less element
qu->front = f;
qu->count = c;
printf("\nFirst person at the front of the queue

 is serviced. Next please");
}

}

Before deleting the element from the queue we need to check whether there is at all any element or

not. In case there is no element in the array, the error occurred is known as underflow error. The method

that checks whether the queue is empty or not is shown as follows.

int isEmpty(MyQueue *qu)
{

if(qu->count==0)
return 1;

else
return 0;

}

7.5 HOW TO SEARCH AN ELEMENT IN THE QUEUE

Apart from enqueue and dequeue operations, there will be certain conditions where you will need to

search a particular element. Imagine a situation some people are standing in a queue for meeting a

doctor. Suddenly somebody feels very sick and doctor wants to meet him as an urgent case. Then the

person needs to be sought in the queue.

The searching algorithm here is a linear search. Starting from the front you should move till the rear

end of the queue and check each and every element with the sought element. If the sought element is

matched then break from the loop and don�t continue searching any longer. Here is the code:

#define MAX 10
enum{NOTFOUND,FOUND};
int search_status = NOTFOUND;
int r=0,f=0,c=0;

void searchQ(MyQueue *qu)
{

int k;
char name[10];
int occur=1;
if(isEmpty(qu)==1)

printf("Nobody is there in the queue");
else
{

printf("Whom do you want to search :");
fflush(stdin);
gets(name);

 //rotating till the read end
for(k=qu->front;k<qu->rear;k++)

if(strcmpi(qu->MyList[k],name)==0)//checking
{

printf("Occurrence %d of %s is at position %d\n",
occur,name,k-qu->front+1);

Queue (Waiting or Privileged?) 289

occur++;
search_status=FOUND;

}
if(search_status==NOTFOUND)

printf("Nobody is there with this name in the
queue!");

}
}

7.6 HOW TO DISPLAY THE ELEMENTS IN A QUEUE

To view what all elements are there we need to traverse the list. Here is the code to traverse the above

queue.

void displayQ(MyQueue *qu)
{

int k;
if(isEmpty(qu)==1)

printf("\nSorry there is no one in the queue");
else
{

for(k=qu->front; k<qu->rear; k++)
printf("Name :<%s> Position is Queue :%d\n",

 qu->MyList[k],k-qu->front+1);
}

}

7.7 MODEL A QUEUE USING A LINKED LIST

The main disadvantage to model a linear queue using array is that it has a maximum number of possible

entries. You can�t insert N number of values [Where N is changing dynamically] in it. So we had a

function in the previous implementation called isFull() that was used to check whether the queue is

Fig. 7.5

290 Data Structures using C

full or not. Now the queue is modeled using a single linked list. So there is no need to check whether the

queue is full or not every time we go for a new insertion. Here, a linear queue of integer variables is

modeled. Here is the structure that represents each element of the queue.

typedef struct node
{

int data;
struct node *next;

}node;

Illustration of a queue implemented using a linked list is as follows.

7.8 HOW TO APPEND AN ITEM TO A LINKED QUEUE

Appending at the end of this linked linear queue is very simple. Here is the code for enqueue.

Fig. 7.6

node* enqueue(node *last,int info)
{

if(last==NULL)//If this is the first node for the queue
{

last = (node *)malloc(sizeof(node));
last->data = info;
last->next = NULL;
return last;

Queue (Waiting or Privileged?) 291

}
else
{

node *p = (node *)malloc(sizeof(node));
if(p)
{

last->next = p;
p->data = info;
p->next = NULL;

}
return p;

}
}

How to find the Number of Elements in a Queue

int count(node *h)//h denotes a pointer to the front of the queue
{

int numberofnodes=0;
node *p = h;
if(p==NULL)//The Queue doesn�t exist at all!

return 0;
else
{

for(;p!=NULL;p=p->next)
numberofnodes++;

return numberofnodes;
}

}
In many data structure books, you will find that they wrote two separate functions to find the size

(number of nodes) in the queue and to find out whether the queue is empty or not. That approach

increases the readability of the program. Here we are writing one function that will check whether the

list is empty or not.

int isEmpty(node *h)
{

return count(h)==0;
}

As you can see isEmpty() behaves just like a synonym to count(). These types of functions are

given a special name Wrapper Function. They are very common in computer science. More about wrap-

per functions will be discussed in the chapter on date.

7.9 HOW TO DELETE THE FRONT ITEM OF A QUEUE

Before deleting it is necessary to check whether the queue is empty or not. If there is no element then

front will be NULL. Here is the code for deleting the first entry from the queue.

node* dequeue(node *h)
{

node *x = h;//identifying the first node that has to be freed
node *p = h->next;
free(x);//freeing the memory space.
return p;//returns a pointer to the front of the queue

}

292 Data Structures using C

7.10 HOW TO SEARCH AN ELEMENT IN A QUEUE

Searching an element requires traversing the linked list from front to the rear. If the sought element

matches with any of the element of the linked list then we will break from the loop otherwise the loop

will continue. Here is the code for search.

enum {NOTFOUND,FOUND};
int searchindex(node *h,int s)
{

int search_status = NOTFOUND;
int c=0;
node *p = h;
for(;p!=NULL;p=p->next)
{{

c++;
if(p->data==s)
{

search_status = FOUND;
break;

}
}
if(search_status == FOUND)

return c;
else

return -1;
}

7.11 HOW TO DISPLAY THE ELEMENTS OF A QUEUE

Here is the code for displaying the elements of the linked linear queue. Before we try to display the

contents of the linear queue, we should check whether the list is empty or not.

void display(node *h)
{

node *p = h;
for(;p!=NULL;p=p->next)

printf("Value = %d Address %u Next
 Address %u\n",p->data,p,p->next);

}

How to Find the Front Element of a Queue

//This function returns the pointer to the front of the queue.

node* first(node *h)
{

return h;
}//Have you noticed that this function is a �wrapper method�

//This function returns the front element in the queue
int front_element(node *h)
{

return first(h)->data;
}

Queue (Waiting or Privileged?) 293

How to Find the Back Element of a Queue

//This function returns the pointer to the back of the queue.

node* last(node *h)
{

node *p = h;
for(;p->next!=NULL;p=p->next);
return p;

}

//This function returns the back element in the queue
int back_element(node *h)
{

return last(h)->data;
}

Here is the client code that uses these functions.

int showmenu()
{

int choice = 0;
puts("1.Enqueue ");
puts("2.Dequeue");
puts("3.Display Queue");
puts("4.Search Queue");
puts("5.Show the first element");
puts("6.Show the last element");
puts("7.Exit");
puts("Your choice [1-7]:");
scanf("%d",&choice);
return choice;

}

int main()

{
int val=0;
node *a=NULL,*c=NULL;
do
{

switch(showmenu())
{
case 1: puts("Enter an integer :");

 scanf("%d",&val);
 if(count(c)==0)

{
a=enqueue(a,val);
c = a;

}
else
{

a=enqueue(a,val);
}

294 Data Structures using C

break;
case 2:if(count(c)!=0)

c=dequeue(c);
 else

puts("Queue is Empty!");
 break;

case 3:display(c);
break;

case 4:puts("Enter value to search :");
 scanf("%d",&val);
 if(searchindex(c,val)!=-1)

 printf("The value is found at
 %d\n",searchindex(c,val));

 else
 puts("The value is not found in the queue");

 break;
case 5:if(count(c)!=0)

printf("Front Element :%d\n",front_element(c));
 else

puts("The Queue is Empty");
 break;

case 6:if(count(c)!=0)
printf("Back Element :%d\n",back_element(c));

 else
puts("The Queue is Empty");

 break;
case 7:exit(0);

 break;

}
}while(1);

return 0;
}

Try Yourself: Try to remove count() and use isEmpty() whenever needed.

7.12 MODEL A LINEAR QUEUE USING TWO STACKS

A Linear Queue can be modeled using two back to back queues. Here is a picture to explain the problem

Stack The rear Stack The front Stack Stack

Top Top

Fig. 7.7

Push operation to this stack is similar to enqueue operation to the queue.
Pop operation from this stack is similar to the dequeue operation from the queue. If we model the

stacks using arrays. Then they should use the same array of elements. We can make a global array of
integers as element array if we want to model a queue of integers.

Queue (Waiting or Privileged?) 295

Here are the structures that represent such a queue.

#define MAX 10

int data[MAX];

typedef struct MyStack
{

int count;
}MyStack;

typedef struct Queue
{

MyStack frontstack;
MyStack rearstack;

}Queue;

To understand this concept better, think of a plate holder. At one end you insert the plate and you can
recollect it from the front or from the back, where you kept it. Deletion is normally not allowed at the
back or rear of a linear queue. Think of a real life situation that you are in a long queue and after some
time you decide to leave, you can leave from any place of the queue. In that case, if you were not the last
person waiting in the queue, each person who was after you would have been proceeded by one place.

The code in the chapter Stack can be used. Just make the integer array data as global. Remove the
declaration from within the MyStack as done above.

To initialize this queue

Queue q;
MyStack *ptf=&q.frontstack;//Assigning address of front stack
MyStack *ptr=&q.rearstack;//Assigning address of the rear stack

To enqueue this queue is synonymous to push an element at the rear stack. Hence the code to enqueue

an element to this queue is

push(ptr);

To dequeue this queue is synonymous, to pop the stack top element from the front stack. Hence the

code to dequeue is

pop(pfr);

To display the elements of the queue, we just have to traverse the array from start to the end.

7.13 HOW TO MODEL A STACK USING TWO QUEUES

A stack allows insertion and deletion only at the top. On the other hand, a queue allows insertion at the

rear end and deletion at the front. So a stack can be modeled using two queues who are directionally

opposite. Here is an illustration for better understanding.

The structures needed to model such a stack are listed below.

char MyList[MAX][MAX];//The Global Data Source

typedef struct Mystack
{

int front;
int rear;
int count;

}Mystack;

296 Data Structures using C

typedef struct Stack
{

Mystack straight;//The straight queue
Mystack reverse;//The reverse queue

}Stack;

All the methods that we used for the Queue operations using an array will be used here to perform

basic operations on the component queues. Only the variable MyList should be made global and the

function display will change a little. The changed display method is listed.

void displayQ(Mystack *qu)
{

int k;
if(isEmpty(qu)==1)

printf("\nSorry there is no one in the stack");
else
{

for(k=qu->rear-1;k>=qu->front;k--)
printf("Name :<%s>
Position is stack :%d\n",MyList[k],k-qu->front+1);

}

}
To initialize such a stack write

Stack s;
Mystack *sqp = &s.straight;
Mystack *rqp = &s.reverse;

To push() an element at the top of the stack.

appendQ(sqp);

To pop the element at the top of the stack.

deleteQ(rqp);

Fig. 7.8

Queue (Waiting or Privileged?) 297

7.14 MODEL A CIRCULAR QUEUE USING STRUCTURE

A circular queue is a queue where the last element points to the first element. This is not much used in

real life because this hardly resembles any real life scenario. So I will

not elaborate this concept much.

Here is the structure that is used to model a circular queue.
typedef struct CirQueue
{

int count;
int front;
int rear;
char entry[MAXQ][MAXQ];

}CQ;

Here the data to be stored in the queue are character arrays.

How to Initialize the Circular Queue
void initializeq(CQ *icq)
{

icq->count = c;
icq->front = f;
icq->rear = r;

}

How to Add a String to the above Definition of the Circular Queue
void addq(char *item,CQ *cqp)
{

if(cpq->count==MAXQ)
puts("Queue is full\n");

else
{

c++;
cpq->count=c;
r = (r+1)%MAXQ;
cpq->rear = r;
strcpy(cpy->entry[cpq->rear],item);
printf("Successfully Appended ");

}
}

How to Delete the First String from the Circular Queue
void delq(CQ *cpq)
{

if(cpq->count==0)
puts("Queue is empty");

else
{

c--;
f = (f+1)%MAXQ;
cpq->count = c;
cpq->rear = f;
puts("Successfully Deleted the front item");

}
}

Fig. 7.9

298 Data Structures using C

How to Search a Particular Item in the Circular Queue
enum {NOTFOUND,FOUND};
int search_status = NOTFOUND;

void searchq(char *sc,CQ qu)
{

if(qu->count<0)
puts("Queue is empty");

else
{

int occur=1;
for(int k=qu->front;k<=qu->rear;k++)

if(strcmpi(Occurance %d of %s is at position %d\n",
occur,sc,k-qu->front+1);

occur++;
search_status=FOUND;

}
if(search_status==NOTFOUND)

puts("Searched string is not found");
}

How to Display the Circular Queue
void displayq(CQ *cpq)
{

if(cpq->count==0)
puts("Queue is empty");

else
{

for(int k=cpq->front;k<=cpq->rear;k++)
printf("<%s> Location in queue :%d\n",

cpq->entry[k],k-cpq->front+1);
}

}

7.15 MODEL A PRIORITY QUEUE USING AN ARRAY

Priority Queue is a data structure that is a close

cousin of queue data structure. Unlike queue

where the elements are added at the end, in prior-

ity queue the elements are added at the specified

location according to their priority. The priority

can be anything. Figure below shows that there

can be two types of priority queues available. One

is called a MAX-PQ where the elements are added

in the decreasing order [The first element in the

queue has the maximum priority] of their prior-

ity, and the other one is a MIN � PQ [The first

element will have the minimum priority] where

the elements are added according to increasing

priority. Fig. 7.10

Queue (Waiting or Privileged?) 299

A priority queue is a kind of queue where the elements are added according to the decreasing priority.

The priority can be anything. A typical example for the priority queue is the printer queue. In some

printer queues the job with least amount of time needed will be the highest priority element. On the other

hand in some queues it may happen that each element is given a priority. The element with the highest

priority is processed first and the lowest at the end. The numbers in the above figure denote the priori-

ties, not the actual values.

While we insert values in the pri-

ority queue that is modeled using an

array, we have to insert values in a

sorted array. Here is the code in C to

simulate a priority queue.

#include <stdio.h>
#include <conio.h>
#include <string.h>
#include <stdlib.h>

#define MAX 10

enum{NOTFOUND,FOUND};
int search_status = NOTFOUND;
int r=0,f=0,c=0;

typedef struct MyQueue
{

int front;
int rear;
int count;
char MyList[MAX][MAX];
int priority[MAX];//Priority associated with this element.

}MyQueue;

MyQueue *q;

void initQ(MyQueue *);
void appendQ(MyQueue *,char *,int);
void deleteQ(MyQueue *);
void searchQ(MyQueue *);
void displayQ(MyQueue *);
int isEmpty(MyQueue *);
int isFull(MyQueue *);

//Initializing the queue
void initQ(MyQueue *qu)
{

qu->front = f;
qu->rear = r;
qu->count = c;

}
void prioritysort(MyQueue *qu)
{

int k=0;
char temp[MAX];

Fig. 7.11

300 Data Structures using C

int tp=0;
int j;
for(j=0;j<qu->rear;j++)
{

for(k=qu->front;k<qu->rear-1;k++)
{

if(qu->priority[k]<qu->priority[k+1])
{

strcpy(temp,qu->MyList[k]);
strcpy(qu->MyList[k],qu->MyList[k+1]);
strcpy(qu->MyList[k+1],temp);

tp = qu->priority[k];
qu->priority[k] = qu->priority[k+1];
qu->priority[k+1]= tp;

}
}

}

}

void appendQ(MyQueue *qu,char *name,int priority)
{

if(isFull(qu)==1)
printf("Overflow Error!");

else
{

strcpy(qu->MyList[qu->rear],name);
qu->priority[qu->rear] = priority;
r++;
c++;
qu->rear = r;
qu->count = c;
printf("\nSuccessfully Appended\n");

}
//Sort the elemnents according to descending priority
prioritysort(qu);

}

void deleteQ(MyQueue *qu)
{

if(isEmpty(qu)==1)
printf("\nUnderflow error");

else
{

f++;
c--;
qu->front = f;
qu->count = c;
printf("\nFirst person at the front

 of the queue is serviced. Next please");
}

}

Queue (Waiting or Privileged?) 301

int isEmpty(MyQueue *qu)
{

if(qu->count==0)
return 1;

else
return 0;

}

int isFull(MyQueue *qu)
{

if(qu->count>=MAX)
return 1;

else
return 0;

}

void displayQ(MyQueue *qu)
{

int k;
if(isEmpty(qu)==1)

printf("\nSorry there is no one in the queue");
else
{

for(k=qu->front;k<qu->rear;k++)
printf("Name :<%s> Position is Queue :%d Priority :

%d\n",
qu->MyList[k],k-qu->front+1,qu->priority[k]);

}

}

void searchQ(MyQueue *qu)
{

int k;
char name[10];
int occur=1;
if(isEmpty(qu)==1)

printf("Nobody is there in the queue");
else
{

printf("Whom do you want to search :");
fflush(stdin);
gets(name);
for(k=qu->front;k<qu->rear;k++)

if(strcmpi(qu->MyList[k],name)==0)
{

printf("Occurrence %d of %s is at position %d\n",
occur,name,k-qu->front+1);

occur++;
search_status=FOUND;

}
if(search_status==NOTFOUND)

printf("Nobody is there with this name
 in the queue!");

}

}

302 Data Structures using C

void main()
{

int choice;
char name[20];
int pri=0;
MyQueue mq;
q=&mq;
initQ(q);
do
{

printf("1.Append\n");
printf("2.Service\n");
printf("3.Display\n");
printf("4.Search\n");
printf("5.Exit\n");
printf("[1-5] : choice ");
scanf("%d",&choice);
switch(choice)
{
case 1:

printf("Enter nickname of the person joining the
queue :");

fflush(stdin);
gets(name);
printf("Enter priority :");
scanf("%d",&pri);

appendQ(q,name,pri);break;
case 2:deleteQ(q);break;
case 3:displayQ(q);break;
case 4:searchQ(q);break;
case 5:exit(0);break;
}

}while(1);

}

7.16 MODEL A PRIORITY QUEUE USING A SINGLE LINKED LIST

Fig. 7.12

Queue (Waiting or Privileged?) 303

Here is the complete code that creates and maintains a priority queue using a linked list.

//This program Implements a MAX-priority queue. A max priority queue is a priority queue

//where the elements are stored in decreasing priority order.

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>

enum {NOTFOUND,FOUND};

//This structure denotes a particular element in the PQ.
typedef struct pq
{

int key;
int prio;

}pq;

//This structure denotes a node of the linked list that is used to
//represent the PQ.

typedef struct QueueNode
{

pq data;
struct QueueNode *next;

}QueueNode;

int count(QueueNode *h)
{

int numberofQueueNodes=0;
QueueNode *p = h;
if(p==NULL)

return 0;
else
{

for(;p!=NULL;p=p->next)
numberofQueueNodes++;

return numberofQueueNodes;
}

}

QueueNode* push_back(QueueNode *last,pq info)
{

if(last==NULL)
{

last = (QueueNode *)malloc(sizeof(QueueNode));
last->data = info;
last->next = NULL;
return last;

}
else

304 Data Structures using C

{
QueueNode *p = (QueueNode *)malloc(sizeof(QueueNode));
if(p)
{

last->next = p;
p->data = info;
p->next = NULL;

}
return p;

}
}

QueueNode* push_front(QueueNode *h,pq info)
{

QueueNode *p = (QueueNode *)malloc(sizeof(QueueNode));
p->next = h;
p->data = info;
return p;

}

QueueNode* first(QueueNode *h)
{

return h;
}
QueueNode* last(QueueNode *h)
{

QueueNode *p = h;
for(;p->next!=NULL;p=p->next);
return p;

}
//inserting a QueueNode at a particular location
QueueNode* insert(QueueNode *h,int location,pq info)
{

int c=0;
QueueNode *p=h;
QueueNode *r=p;
QueueNode *q=(QueueNode *)malloc(sizeof(QueueNode *));
if(location<count(h))
{

//Finding the address where to insert
for(;p!=NULL;p=p->next)
{

c++;
if(c==location)

break;
}
q->next = p->next;
p->next = q;
q->data = info;

}
return r;

}

Queue (Waiting or Privileged?) 305

//This function is same as dequeue function above.
QueueNode* pop_front(QueueNode *h)
{

//identifying the first QueueNode that has to be freed
QueueNode *x = h;
QueueNode *p = h->next;
free(x);//freeing the memory space.
return p;

}

void display(QueueNode *h)
{

QueueNode *p = h;
for(;p!=NULL;p=p->next)

printf("Value = %d Priority = %d\n",
 p->data.key,p->data.prio);

}

//This function find the maximum priority in the Priority Queue
int findmax(QueueNode *h)
{

QueueNode *p;
int max=0;
p = h;
max = p->data.prio;
while(p!=NULL)
{

if(p->data.prio>max)
{

max=p->data.prio;
}
p = p->next;

}
return max;

}
//This function find the minimum priority in the Priority Queue
//can be used to design a min priority queue
int findmin(QueueNode *h)
{

QueueNode *p;
int min=0;
p = h;
min = p->data.prio;
while(p!=NULL)
{

if(p->data.prio<=min)
{

min=p->data.prio;
}
p = p->next;

}
return min;

}

306 Data Structures using C

int showmenu()
{

int choice=0;
puts("1.Enqueue new element");
puts("2.Display PQ");
puts("3.Dequeue PQ");
puts("4.Exit");
puts("Your choice [1-4] :");
scanf("%d",&choice);
return choice;

}

int wheretokeep(QueueNode *h,pq newitem)
{

QueueNode *p = h;
int c=0;
for(;p!=NULL;p=p->next)
{

c++;
if(p->data.prio<newitem.prio)

break;
}
return c;

}

int main()
{

QueueNode *a=NULL,*c;
pq item;
int key=0,prio=0;

do
{

switch(showmenu())
{
case 1:puts("Enter new element and the priority :");

fflush(stdin);
scanf("%d %d",&key,&prio);
item.key = key;
item.prio = prio;

 //The Bolded part below performs the insertion

//When the list is Empty, the node will be added at
//the end of the queue.
if(count(a)==0)
{

 a = push_back(a, item);
 c = a;

}

Queue (Waiting or Privileged?) 307

else //If the Queue is Not Empty
{

//If the priority of the element to be
//added falls between the minimum and maximum
//priority of the queue
if(item.prio>findmin(c) &&

item.prio<findmax(c))//within the priority range
{

//wheretokeep(c,item) returns the index
//of that item present in the list, whose
//priority is just less than the priority
//of the item to be added. So
// wheretokeep(c,item)-1 denotes the location
//identified to store the current element
//being added
c = insert(c,wheretokeep(c,item)-1,item);
puts("The Queue is ");

}

//If the priority of the item being added falls
//outside the present range of the priority queue
else
{
//We are modeling a Max-Priority Queue. That means
//that the element with highest priority will be
//added at the front of the Queue and the element
//with lowest priority is added at the end of the
//queue. Findmax()
//returns the maximum priority present in the list
//Similarly findmin() returns the minimum priority
//in the queue.
 if(item.prio>findmax(a))
 c = push_front(c,item);
 if(item.prio<=findmin(a))
 a = push_back(a,item);
}

}
break;

case 2: if(count(c)!=0)
display(c);

else
puts(�The Queue is Empty�);

break;
case 3: c=pop_front(c);//dequeue

break;
case 4:exit(0);

break;
}

}while(1);
return 0;

}

Here is a sample run of the program.

1. Enqueue new element

308 Data Structures using C

2. Display PQ

3. Dequeue PQ

4. Exit

Your choice [1-4] :

1

Enter new element and the priority :

11 10

1. Enqueue new element

2. Display PQ

3. Dequeue PQ

4. Exit

Your choice [1-4] :

1

Enter new element and the priority :

12 9

1. Enqueue new element

2. Display PQ

3. Dequeue PQ

4. Exit

Your choice [1-4] :

1

Enter new element and the priority :

14 6

1. Enqueue new element

2. Display PQ

3. Dequeue PQ

4. Exit

Your choice [1-4] :

2

Value = 11 Priority = 10

Value = 12 Priority = 9

Value = 14 Priority = 6

1. Enqueue new element

2. Display PQ

3. Dequeue PQ

4. Exit

Your choice [1-4] :

1

Enter new element and the priority :

20 8

The Queue is

1. Enqueue new element

2. Display PQ

3. Dequeue PQ

4. Exit

Queue (Waiting or Privileged?) 309

Your choice [1-4] :

3

1. Enqueue new element

2. Display PQ

3. Dequeue PQ

4. Exit

Your choice [1-4] :

2

Value = 12 Priority = 9

Value = 20 Priority = 8

Value = 14 Priority = 6

1. Enqueue new element

2. Display PQ

3. Dequeue PQ

4. Exit

Your choice [1-4] :

1

Enter new element and the priority :

20 10

1. Enqueue new element

2. Display PQ

3. Dequeue PQ

4. Exit

Your choice [1-4] :

2

Value = 20 Priority = 10

Value = 12 Priority = 9

Value = 20 Priority = 8

Value = 14 Priority = 6

Try Yourself: Try to create a Min PQ (A queue where elements are stored in increasing order of their

priority. The least priority element is stored at the front and the highest priority element is stored at the

end of the PQ). Hint: Use findmin() function instead of findmax(), or you can just change some opera-

tors and it will be fine.

7.17 AN APPLICATION OF PRIORITY QUEUE�SCHEDULING APPOINTMENTS

The priority queue described above is called an explicit PQ where we can assign some values as the

priority of each object to be put in the queue. Some examples of this type of queue are a queue of print

jobs for a shared printer, a queue of jobs where execution time is the deciding factor, etc.

In this above case, the priority can be the volume of the work. The program may decide to put the

minimum volume of work at the front, or the maximum volume of work at the front.

In all these cases, we don�t give priority explicitly. Rather the program uses some predictors to find

out the location of the newly added object in the queue.

Here is an example of such an implicit PQ. This queue accepts few dates and appends them in

increasing order (i.e. the earliest date comes first, the latest comes last).

310 Data Structures using C

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <string.h>

enum {NOTFOUND,FOUND};

typedef struct DateOfAppointment
{

int day;
int month;
int year;

}DateOfAppointment ;

typedef struct Appointment
{

DateOfAppointment key;

}Appointment;

typedef struct AppointmentNode
{

Appointment data;
struct AppointmentNode *next;

}AppointmentNode;

AppointmentNode *head=NULL;

int isPast(DateOfAppointment d1,DateOfAppointment d2)
{

//returns 1 if d2 is in past that d1
if(d1.year>d2.year || (d1.year==d2.year && d1.month>d2.month)
 ||(d1.year==d2.year && d1.month==d2.month && d1.day>d2.day))

return 0;
else

return 1;
}

//this function returns 1 if both the dates are same
int isPresent(DateOfAppointment d1,DateOfAppointment d2)
{

if(d1.day == d2.day && d1.month == d2.month && d1.year == d2.year)
return 1;

else
return 0;

}

//this function returns 1 if d1 is at future of
int isFuture(DateOfAppointment d1,DateOfAppointment d2)
{

if(!isPresent(d1,d2) && !isPast(d1,d2))
return 1;

Queue (Waiting or Privileged?) 311

else
return 0;

}

int count(AppointmentNode *h)
{

int numberofAppointmentNodes=0;
AppointmentNode *p = h;
if(p==NULL)

return 0;
else
{

for(;p!=NULL;p=p->next)
numberofAppointmentNodes++;

return numberofAppointmentNodes;
}

}

AppointmentNode* push_back(AppointmentNode *last,Appointment info)
{

if(last==NULL)
{

last = (AppointmentNode *)malloc(sizeof(AppointmentNode));
last->data = info;
last->next = NULL;
return last;

}
else
{

AppointmentNode *p = (AppointmentNode
*)malloc(sizeof(AppointmentNode));

if(p)
{

last->next = p;
p->data = info;
p->next = NULL;

}
return p;

}
}

AppointmentNode* push_front(AppointmentNode *h,Appointment info)
{

AppointmentNode *p = (AppointmentNode
*)malloc(sizeof(AppointmentNode));

p->next = h;
p->data = info;
return p;

}

AppointmentNode* first(AppointmentNode *h)
{

return h;
}

312 Data Structures using C

AppointmentNode* last(AppointmentNode *h)
{

AppointmentNode *p = h;
for(;p->next!=NULL;p=p->next);
return p;

}

//inserting a AppointmentNode at a particular location
AppointmentNode* insert(AppointmentNode *h,int location,Appointment
info)
{

int c=0;
AppointmentNode *p=h;
AppointmentNode *r=p;
AppointmentNode *q=(AppointmentNode *)malloc(sizeof(AppointmentNode

*));
if(location<count(h))
{

for(;p!=NULL;p=p->next)
{

c++;
if(c==location)

break;
}
q->next = p->next;
p->next = q;
q->data = info;

}
return r;

}

AppointmentNode* pop_front(AppointmentNode *h)
{

AppointmentNode *x = h;//identifying the first AppointmentNode that
has to be freed

AppointmentNode *p = h->next;
free(x);//freeing the memory space.
return p;

}

char* toMonth(int month)
{

switch(month)
{
case 1:return "Jan";

break;

case 2:return "Feb";
break;

case 3:return "Mar";
break;

de

Queue (Waiting or Privileged?) 313

case 4:return "Apr";
break;

case 5:return "May";
break;

case 6:return "Jun";
break;

case 7:return "Jul";
break;

case 8:return "Aug";
break;

case 9:return "Sep";
break;

case 10:return "Oct";
break;

case 11:return "Nov";
break;

case 12:return "Dec";
break;

}
}

void display(AppointmentNode *h)
{

AppointmentNode *p = h;
int serial = 1;
puts("Appointment Schedule >>");
for(;p!=NULL;p=p->next)
{

printf("Appointment #%d : On %s - %d - %d\n",
serial,toMonth(p->data.key.month),
p->data.key.day,
p->data.key.year);

serial++;
}

}

int showmenu()
{

int choice=0;
puts("1.Enter new Date Of Appointment");
puts("2.Display Appointment List");
puts("3.Delete the first Appointment(Which you have already

attended)");

314 Data Structures using C

puts("4.Exit");
puts("Your choice [1-4] :");
scanf("%d",&choice);
return choice;

}

int wheretokeep(AppointmentNode *h,Appointment newappointment)
{

AppointmentNode *p = h;
int c=0;
for(;p!=NULL;p=p->next)
{

c++;
if(isPresent(newappointment.key,p->data.key))
{

c = 0;
break;

}
if(isPast(newappointment.key,p->data.key))

break;
}
return c;

}

int main()
{

AppointmentNode *a=NULL,*c;
Appointment item;
DateOfAppointment temp;
int index = 0;

int key=0,prio=0;
do
{

switch(showmenu())
{
case 1:puts("Enter Date Of Appointment [dd - mm - yyyy] :");

 fflush(stdin);
 scanf("%d %d %d",&temp.day,&temp.month,&temp.year);
 item.key = temp;
 //Assuming that the date entered is valid
 if(count(a)==0)
 {

 a = push_back(a,item);
 c = a;

 }
 else
 {

 if(isPresent(item.key,first(c)->data.key)
||isPresent(item.key,last(c)->data.key))

Queue (Waiting or Privileged?) 315

 {
puts("ERROR : AN APPOINTMENT

 ALREADY EXISTS ON THAT DATE");
 break;
 }
 if(isPast(item.key,first(c)->data.key))
 {
 c = push_front(c,item);

 break;
 }

 if(isFuture(item.key,last(c)->data.key))
 {
 c = push_back(c,item);

 break;
 }
 else
 {

 index = wheretokeep(c,item);
 if(index!=0)

c = insert(c,wheretokeep(c,item)-1,item);
 else

puts("ERROR : AN APPOINTMENT
 ALREADY EXISTS ON THAT DATE");

 break;
 }
}
break;

case 2: display(c);
 break;

case 3:c=pop_front(c);
 break;

case 4:exit(0);
 break;

}

}while(1);
return 0;

}

Here is the output of the program.

1. Enter new Date Of Appointment

2. Display Appointment List

3. Delete the first Appointment(Which you have already attended)

4. Exit

Your choice [1-4] :

1

Enter Date Of Appointment [dd - mm - yyyy] :

11 1 2009

1. Enter new Date Of Appointment

2. Display Appointment List

316 Data Structures using C

3. Delete the first Appointment(Which you have already attended)
4. Exit
Your choice [1-4] :
1
Enter Date Of Appointment [dd - mm - yyyy] :

31 12 2008
1. Enter new Date Of Appointment
2. Display Appointment List
3. Delete the first Appointment(Which you have already attended)
4. Exit
Your choice [1-4] :

2
Appointment Schedule >>
Appointment #1 : On Dec - 31 - 2008
Appointment #2 : On Jan - 11 - 2009
1. Enter new Date Of Appointment
2. Display Appointment List

3. Delete the first Appointment(Which you have already attended)
4. Exit
Your choice [1-4] :
1
Enter Date Of Appointment [dd - mm - yyyy] :
5 1 2009

1. Enter new Date Of Appointment
2. Display Appointment List
3. Delete the first Appointment(Which you have already attended)
4. Exit
Your choice [1-4] :
2

Appointment Schedule >>
Appointment #1 : On Dec - 31 - 2008
Appointment #2 : On Jan - 5 - 2009
Appointment #3 : On Jan - 11 - 2009
1. Enter new Date Of Appointment
2. Display Appointment List

3. Delete the first Appointment(Which you have already attended)
4. Exit

Your choice [1-4]:

Try Yourself: This program doesn�t check whether the entered date is a valid date or not and whether

it is in past or not. Try to protect accepting such inputs.

Notice : How the wheretokeep() function is changed here in this code.

7.18 HOW TO MODEL A DEQUE (DOUBLE-ENDED QUEUE) USING A

LINKED LIST

All the operations that are discussed above for the queue are also applicable for deque. The only addi-

tional operation that is possible on this ADT is the insertion at the front. Here is the code to push an

element at the front.

Queue (Waiting or Privileged?) 317

QueueNode* push_front(QueueNode *h,pq info)
{

QueueNode *p = (QueueNode *)malloc(sizeof(QueueNode));
p->next = h;
p->data = info;
return p;

}

Fig. 7.13

7.19 HOW TO MODEL A MOVE TO FRONT LIST (MTFL) USING A QUEUE

We have discussed MTFL at length in the Stack chapter. Using linear queue we can design the MTFL
structure easily. All the other functions defined above for queue will be applicable for MTFL also, but
only the search routine will be different. It involves two steps.

1. To find out the index of the variable.
2. Delete it from its current location.
3. To put the element in front of the queue.
Thus this search, unlike search on other data structures is an example of active function. Here is the

code that describes what has to be done when the item with value 20 is sought in the list [Let�s assume
that we are performing the search on an integer queue.]

//Here c denote the head/front of the queue
int loc = searchindex(c,20);
if(loc!=-1)
{

//delete the item from its original location in the list
c = delete_at(c,loc);
//put it at the front of the list
c = push_front(c, 20);

}

318 Data Structures using C

Fig. 7.14

7.20 HOW TO SIMULATE THE QUEUE IN FRONT OF THE CASH COUNTER

In real life, wherever there is a server and more than one clients/customers/objects/requests to be served,

then a queue is created in front of the server. In case of a bank, the server may be the bank officer

(cashier in this case) and the clients who want to deposit/withdraw money are elements of the queue.

See the figure below:

Fig. 7.15

As shown in the figure, the first person to be served is �Jacob�, next is �Joseph� and so on. When

Jacob�s request is served by the server (Cashier) then Jacob moves out of the list and �Joseph� becomes

the first in the list. Notice that customers join the queue at the end.

As the queue grows and diminish in run time, so the real life queue simulations are always done using

queues which are modeled using linked lists.

Queue (Waiting or Privileged?) 319

Here is a code that simulates the queue in a bank. and stores the simulation result in a file

queuesim.txt

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <time.h>

//Global Variables that affects the queue simulation
#define MAX_QUEUE_LENGTH 25
#define SERVER_NUMBERS 6

enum
RequestType{DEPOSIT,WITHDRAW,BALANCEENQUIRY,DRAFTMAKING,BILLPAYMENT,DIS
CUSSISSUES};
enum TypeOfQueue{FIFO,PRIO,RANDOM};

FILE *fp;

typedef struct customer
{

char name[20];
int position;//position in quee
float waittime;
enum RequestType request;

 int whichservertogo;
}customer;

typedef struct server
{

char name[20];
float servicetime;
int servicerate;
enum RequestType dealswith;

 int lengthofawaitingqueue;
}server;

server cashiers[10];
//For 10 Servers, each server will serve a maximum of 25 customers
customer Customers[MAX_QUEUE_LENGTH][SERVER_NUMBERS];
server Servers[SERVER_NUMBERS];

int WhereWillNewCustomerGo(int req)
{

int serverno=0;
int i=0;
for(i=0;i<SERVER_NUMBERS;i++)
{

if(cashiers[i].dealswith == req)

320 Data Structures using C

{
serverno = i;
break;

}
}
return serverno;

}

char* request2string(int x)
{

switch(x)
{

case 0:return "DEPOSIT";break;
case 1:return "WITHDRAW";break;
case 2:return "BALANCEENQUIRY";break;
case 3:return "DRAFTMAKING";break;
case 4:return "BILLPAYMENT";break;
case 5:return "DISCUSSISSUES";break;
default:return "DEPOSIT";break;
}

}

void CreateCustomer(int howmanyjoin)
{

int i=0;
int lastinthequeue=0;

for(i=0;i<rand()%howmanyjoin+1;i++)
{

customer newcustomer;

newcustomer.request = rand()%6;
newcustomer.whichservertogo =

WhereWillNewCustomerGo(newcustomer.request);

cashiers[newcustomer.whichservertogo].lengthofawaitingqueue++;
newcustomer.position = lastinthequeue;
fprintf(fp,

 "New Customer Request is %s and joined at the end of Queue #%d\n",

request2string(newcustomer.request),newcustomer.whichservertogo);
}

}

void ProcessCustomer()
{

int i;
//for(i=0;i<3000;i++);
for(i=0;i<SERVER_NUMBERS;i++)
{

if(cashiers[i].lengthofawaitingqueue>=1)
cashiers[i].lengthofawaitingqueue--;

}
}

Queue (Waiting or Privileged?) 321

void ShowCustomerQueues()
{

int i;
for(i=0;i<SERVER_NUMBERS;i++)
{

fprintf(fp,"cashier[%d] Deals With %s Queue Length [%d] \n",
 i,request2string(cashiers[i].dealswith),
 cashiers[i].lengthofawaitingqueue);

}
fprintf(fp,"--\n");

}

int main()
{

int i;
int c=0;
int howmanyjoin=0;

printf("How many customers join the queue :");
scanf("%d",&howmanyjoin);
fp = fopen("D:\\queuesim.txt","a");
//Server initializations
srand((unsigned)time(NULL));
for(i=0;i<SERVER_NUMBERS;i++)
{

cashiers[i].dealswith = i;
puts(request2string(i));

 cashiers[i].lengthofawaitingqueue = 0;
 }

srand((unsigned)time(NULL));
do
{

 CreateCustomer(howmanyjoin);
ProcessCustomer();
ShowCustomerQueues();
c++;

}while(c!=20);
fclose(fp);
return 0;

}

Here is a sample partial output stored in the output file:

New Customer Request is DISCUSSISSUES and joined at the end of Queue #5

New Customer Request is DISCUSSISSUES and joined at the end of Queue #5

New Customer Request is DRAFTMAKING and joined at the end of Queue #3

New Customer Request is BALANCEENQUIRY and joined at the end of Queue #2

New Customer Request is BILLPAYMENT and joined at the end of Queue #4

New Customer Request is BALANCEENQUIRY and joined at the end of Queue #2

cashier[0] Deals With DEPOSIT Queue Length [0]

322 Data Structures using C

cashier[1] Deals With WITHDRAW Queue Length [0]

cashier[2] Deals With BALANCEENQUIRY Queue Length [1]

cashier[3] Deals With DRAFTMAKING Queue Length [0]

cashier[4] Deals With BILLPAYMENT Queue Length [0]

cashier[5] Deals With DISCUSSISSUES Queue Length [1]

New Customer Request is DEPOSIT and joined at the end of Queue #0

New Customer Request is DEPOSIT and joined at the end of Queue #0

New Customer Request is DISCUSSISSUES and joined at the end of Queue #5

New Customer Request is DEPOSIT and joined at the end of Queue #0

New Customer Request is WITHDRAW and joined at the end of Queue #1

cashier[0] Deals With DEPOSIT Queue Length [2]

cashier[1] Deals With WITHDRAW Queue Length [0]

cashier[2] Deals With BALANCEENQUIRY Queue Length [0]

cashier[3] Deals With DRAFTMAKING Queue Length [0]

cashier[4] Deals With BILLPAYMENT Queue Length [0]

cashier[5] Deals With DISCUSSISSUES Queue Length [1]

New Customer Request is DISCUSSISSUES and joined at the end of Queue #5

New Customer Request is DISCUSSISSUES and joined at the end of Queue #5

New Customer Request is DEPOSIT and joined at the end of Queue #0

cashier[0] Deals With DEPOSIT Queue Length [2]

cashier[1] Deals With WITHDRAW Queue Length [0]

cashier[2] Deals With BALANCEENQUIRY Queue Length [0]

cashier[3] Deals With DRAFTMAKING Queue Length [0]

cashier[4] Deals With BILLPAYMENT Queue Length [0]

cashier[5] Deals With DISCUSSISSUES Queue Length [2]

R E V I S I O N O F C O N C E P T S

Some Key Facts about Queues and Terminologies

1. FIFO : First In First Out

2. LILO : Last In Last Out

3. FCFS : First Come First Serve

4. FCLS : First Come Last Serve

5. LCFS : Last Come First Serve

6. LCLS : Last Come Last Serve

7. RSO : Random Service Ordering

8. By queue we normally mean a FIFO/LILO/FCFS list that may not be always true. Queue elements

can be processed by any of the above technique and then the name of the queue will be prefixed

with that acronym, for example if the last element is processed first in a queue [which is nothing

Queue (Waiting or Privileged?) 323

but a stack] then we can call it a LCFS/LIFO Queue. From now on whenever we write queue, we

mean the normal queue, [i.e the FCFS/FIFO queue]

9. Deletion of items is only allowed in front of a queue.

10. Elements can only be added at the end of the queue.

11. Addition of elements is called Enqueue.

12. Queues can be implemented using either array or linked list. If we use array to create a queue the

pre-condition for the enqueue operation is to check whether the array is full or not. When we

define the queue using linked list, then this pre-operation is not needed.

13. Deletion of element at the front is called Dequeue.

14. No matter which data structure we use array or linked list to define a queue, before dequeue

operation, it should be checked, whether the queue is empty or not. If the queue is empty the

dequeue operation will fail.

15. Priority queue is a queue where elements are processed in order of their priority.

16. A Max priority queue is one where the element with highest priority is deleted/serviced first.

17. A Min priority queue is one where the element with lowest priority is deleted/serviced first.

18. A Priority Queue can be easily implemented using a heap data structure.

19. Priority Queues are used for Discrete Event Simulations.

20. A dequeue is a double ended queue, where deletions and insertion are allowed at both end.

21. Queues are used in operating systems, for controlling access to shared system resources such as

bandwidth, routers, printers, files, communication lines, disks and tapes.

22. Queues are also used for simulation of real-world situations. For instance, a new bank may want to

know how many tellers to install. The goal is to service each customer within a reasonable wait

time, but not have too many tellers for the number of customers. To find out a good number of

tellers, they can run a computer simulation of typical customer transactions using queues to repre-

sent the waiting customers.

R E V I E W Q U E S T I O N S

1. Apart from enqueue and dequeue operations can you think of other type of branching operations

in a queue.

2. Let there be a queue of names. Write the code for retrieving the first name and the last name.

3. An integer queue is there and the operations enqueue(q,item) and dequeue() operations are de-

fined on it. Can you say what will be the contents of the queue after the following commands

Enqueue(q,3) ; enqueue(q,5),enqueue(q,isEmpty()), dequeue()

4. typedef struct MyQueue

 {

 MyQueue *next;

 int value;

 }MyQueue; What is wrong in this declaration.

5. Define a structure called student, and then create a queue of 10 such students.

324 Data Structures using C

P R O G R A M M I N G P R O B L E M S

1. Write a program using queue to check whether a string is a palindrome or not. Use the same test

strings as given in stack chapter�s exercise.

2. Simulate a queue of persons in front of a ticket counter. Assume the following things. Any number

of people may join at the end of the queue. So it will be better if you use a linked list implementa-

tion. Time taken by the counter boy is one minute per person. Ask the user for how many minutes

the simulation should run. After each minute print how many people are there currently in the

queue and what is the average and worst wait time in the queue. Use pseudorandom numbers to

populate the queue.

3. Imagine yourself waiting for a movie ticket at the end of a long queue. Suddenly some people in

front of you got irritated by waiting and they decided to leave. So you get a chance to go ahead.

Write a function which simulates such a situation. Which type of queue implementation will you

prefer if you have to model this? Linked list or array implementation? Justify your answers.

4. Write a program that accepts a queue of names and returns the sorted names alphabetically.

5. Write a complete MTF implementation using Queues. You can take the help of the code written in

the chapter.

6. A certain protocol (SPP) sends packets to the end workstations. Assume that the source speed is

10 times more than that of the processing speed of the workstations. That means at a particular

point of time each workstation gets 10 times more packet than they can process. Thus, these excess

packets are overhead to the system. Assume that one source of SPP packets are being served by 5

workstations of similar capacity and processing time. Simulate such a situation. The objective of

this is to find out how many more workstations will be needed to assure that no packet wait at all.

This can be particularly useful for a cyber café.

8

Trees

Explorer to Genetics!

INTRODUCTION

Some Key Facts about Trees and Jargons

A Binary Tree

l Tree: A data structure that matches the shape of a tree.

l Node: Where the data in a tree structure are kept is called a

node.

l Root: The node from where two subsections (For Binary

Tree)/M-Subsections (for M-are tree) are connected. This is

the node from where the tree starts. Surprisingly this node is

drawn at the top. That means the tree data structure has been

drawn like a tree upside down.

l Level: The level of a node. Starting from root which has a

level 0

l Height: The length of the longest path from root to a leaf. Therefore, the leaves are all at height

zero. Height and level are antonyms as you can probably see from their definitions.

l Degree: The highest level in a tree. Degree and height are the same.

l Parent: A node�s predecessor from which it is generated. It is one level up in the tree.

l Ancestor: Synonym of parent.

l Child: A node which resides in a level below it�s parents.

l Left Sub Tree: Binary tree is a recursive structure. The left of root is also a binary tree and is

known as left sub-tree. This is valid for any node that has got a left child.

l Right Sub Tree: Binary tree is a recursive structure. The right of root is also a binary tree and is

known as right sub-tree. This is valid for any node that has got a left child.

l Left Child: The child to the left of the node seen from the viewer.

Fig. 8.1

326 Data Structures using C

l Right Child: The child to the right of the node seen from the viewer.

l Inorder Predecessor: While traversing the tree inorder, the node that comes before this one.

l Inorder Successor: While traversing the tree inorder, the node that comes after this one.

l Preorder Predecessor: While traversing the tree pre-order, the node that comes before this one.

l Preorder Successor: While traversing the tree pre-order, the node that comes after this one.

l Postorder Predecessor: While traversing the tree post-order, the node that comes before this one.

l Postorder Successor: While traversing the tree post-order, the node that comes after this one.

l Sisters: Nodes in the same level are known as sisters.

l Brothers: Synonymous to Sisters.

l Siblings: Synonymous to Brothers/Sisters.

l Cousin: Nodes who are in the same level but who has different parents.

l Uncle: In at least a level 2 complete binary tree, the cousin of parent is known as uncle to the child

nodes.

l Descendent: Synonym of Child.

l Grandchild: Child node of Child node.

l Grandparent: Ancestor of parent.

l An External Node: A node that has no children.

l An Internal Node: A node that has 2 children.

l Leaf: A node that has no child. An external node.

l Binary: A tree in which each node at the maximum can only have two children. From these chil-

dren, again other two nodes from each of these nodes can be possible.

l M-ary: A tree where each node can have a maximum of M nodes. Binary tree is a special case

where M = 2

l In a binary tree of L levels the maximum number of nodes are given by

0

2^
L

k

N k
=

= Â

l In a binary tree of height H the maximum number of nodes are given by

1

0

2^
H

k

N k
-

=

= Â

l For a binary tree of height h and nodes n h<= n<= 2^h�1

In the above picture a binary tree is shown. From the above picture we can conclude the following

statements:

l R is the root of the tree.

l A is the left child of the tree.

l B is the right child of the tree.

l C is the left child of the node A.

l D is the right child of the node A.

l E is the left child of the node B.

l F is the right child of the node B.

l A and B are sisters/brothers/siblings.

l C and D are sisters/brothers/siblings.

l E and F are sisters/brothers/siblings.

l Level of R is 0.

Trees (Explorer to Genetics!) 327

l Level of A and B is 1.

l Level of C and D is 2.

l The leaves are A, C and D because they don�t have any child.

l Height of the tree is 2.

l Degree of the tree is 2.

l A is C and D�s grandparent.

l C and D are A�s grandchildren.

8.1 WHAT ARE THE DIFFERENT WAYS TREES ARE REPRESENTED?

Representing trees with box/Venn Diagrams

8.2 WHAT IS A STRICTLY BINARY TREE?

A binary tree is called a strictly binary tree if every non-leaf node in a binary tree has non-empty left and

right sub-trees.

8.3 WHAT IS AN ALMOST COMPLETE BINARY TREE?

A binary tree of depth d is an almost complete binary tree if

l Any node at level less than d � 1 has two daughters

l For any node nd in the tree with a right descendent at level, nd

must have a left daughter and every left descendent of nd is ei-

ther a leaf at level d or has two daughters.

Here is an almost complete binary tree.

8.4 WHAT IS A COMPLETE BINARY TREE?

(ALSO KNOWN AS PERFECT BINARY TREE)

A binary tree in which every level, except possibly the deepest, is completely filled. At depth n, the

height of the tree, all nodes must be as far left as possible.

In other words, A complete binary tree of depth d is a strictly binary tree all of whose leaves are at

level d.

A
B
C

D
E

F

G
K
L

M
H

I

J

Representing Tree using Indentation

Fig. 8.2

328 Data Structures using C

Here is a complete binary tree. The second picture is deliberately used to eradicate the misconception

that binary trees need always be drawn like the first one. You should understand that its not, how it

looks, rather how conceptually oriented the tree is.

Fig. 8.3d A typically drawn complete binary tree

Fig. 8.4 A Not- So-Typically (Yet

Conceptually Correct)

Drawn Complete Binary

Tree
Fig. 8.5

Another way to define a complete binary tree geometrically is to state that a complete binary tree is a

binary tree for which if a circle is drawn with a radius of any path length, it will meet all the leaves of the

tree.

8.5 WHAT IS A WEAK BINARY TREE?

A weak binary tree is a binary tree that has got at least three or more nodes either directly beneath root

(Without any child) or in any of the sub trees.

Here are a few Weak Binary Trees

8.6 WHAT IS A STRONG BINARY TREE?

A tree can be either rooted or not rooted. In case of a not rooted the root is the only node of the tree and

Trees (Explorer to Genetics!) 329

does not have any child. A Binary tree where the root is either childless or has a couple of them, then the

tree is known as a strong binary tree. In the figure below, there are some strong binary trees.

Fig. 8.6de

Some Useful Relations

l In a complete binary tree of degree n there are 2j nodes in each level where j runs from 0 to the

degree of the tree.

l Total number of nodes in a complete binary tree is given by 2(d+1) � 1 where d is the degree of the

tree.

8.7 HOW TO MODEL A BINARY TREE USING AN ARRAY

Here a binary tree of Integers is modeled using an array of Integers.

The root of the binary tree is assumed to be the first element of the array. And the following two

theorems are followed to calculate the child locations.

l The left child will be at a location 2*j + 1 where j is the location of the main root of the binary tree

or any sub-tree of it.

l The right child will be at a location 2*j + 2 where j is the location of the main root of the binary tree

or any sub-tree of it.

How to Add the Root Value

void AddRoot(int bt[],int rootvalue)

{

bt[0]=rootvalue;

}

330 Data Structures using C

How to Add a Left Child to a Node
void AddLeftChild(int bt[], int j,int value)

//whose left child and what is the value of that

{

 bt[2*j + 1] = value;

}

How to Add a Right Child to a Node

void AddRightChild(int bt[], int j,int value)

//whose left child and what is the value of that

{

 bt [2*j + 2] = value;

}

How to Find the Parent Location from a Left Child

int GetFatherLocationFromLeftChild(int bt[],int loc)

{

return floor((double)(loc-1)/2);

}

How to Find the Parent Location from a Right Child

int GetFatherLocationFromRightChild(int bt[],int loc)

{

return floor((double)(loc-2)/2);

}

How to Find if a Child Node is Alone or Not
int IsAlone(int bt[],int j)

{

int alone = NO;

if(j%2==0)//if the number is in a even location

//Assuming a positive number Binary Tree

if(bt[j-1]==0)

alone = YES;

 if(j%2!=0)//if the number is in a odd location

//Assuming a positive number Binary Tree

 if(bt[j+1]==0)//0 means that location is blank

alone = YES;

return alone;

}

How to Find the Sister/Sibling�s Location
int GetSisterLocation(int bt[],int j)

{

if(j%2==0)//if the number is in a even location

if(IsAlone(bt,j)==NO)

return j-1;

else

if(IsAlone(bt,j)==NO)

return j+1;

else

return -1;//No Sister/Brother/Sibling

}

Trees (Explorer to Genetics!) 331

How to Find the Level of a Node in the Binary Tree

//Assuming No Duplicates

int GetLevel(int bt[],int size,int no)

{

int i;

for(i=0;i<size;i++)

if(bt[i]==no)

break;

if(i%2!=0)

//Because in the array implementation of binary tree the

 //Right children are always located at the odd places

return GetFatherLocationFromRightChild(bt,i);

else

return GetFatherLocationFromLeftChild(bt,i);

}

How to Find Degree of the Binary Tree

int Degree(int bt[],int size)

{

//if we get 2 consecutive zero we know

//that we are at the end of the bt.

int i = 0;

for(i=0;i<size;i++)

if(bt[i+1]==0 && bt[i+2]==0)

break;

if(i==0)//Root

return 0;

else

return GetLevel(bt,10,bt[i]);

}

How to Find the Location of a Number in the Tree

int GetLocation(int bt[],int size,int value)

{

int i=0;

for(i=1;i<size;i++)

if(bt[i]==value)

break;

return i;

}

How to Count the Number of Nodes in the Tree

int CountNodes(int bt[],int size)

{

int i=0;

int count=0;

for(i=0;i<size;i++)

{

count++;
if(bt[i+1]==0 && bt[i+2] == 0)

332 Data Structures using C

break;

}

return count;

}

How to Find Number of Children of a Node

int CountChildren(int bt[],int j)

{

if(bt[2*j + 1]==0 && bt[2*j+2]==0)

return 0;

if((bt[2*j+1]!=0 && bt[2*j+2]==0)

 || (bt[2*j+1]==0 && bt[2*j+2]!=0))

return 1;

if(bt[2*j+1]!=0 && bt[2*j+2]!=0)

return 2;

}

How to Count Number of Leaves in the Tree

int CountLeaves(int bt[],int size)

{

int i=0;

int leaves = 0;

for(i=0;i<size;i++)

{

if(CountChildren(bt,i)==0 && bt[i]!=0)

leaves++;

}

return leaves;

}

How to Find the Number of Parent Nodes that has a Single Child

int CountParentsWithSingleChildren(int bt[],int size)

{

 int i=0;

//The edge that connects such a parent to it�s only //child looks

like a stray brunch of the tree.

 int branches = 0;

 for(i=0;i<size;i++)

 {

 if(CountChildren(bt,i)==1)

 branches++;

 }

 return branches;

}

How to Find the Left Child Value for a Node

int GetLeftChild(int bt[],int value)

{

return GetValue(bt,2*GetLocation(bt,10,value)+1);

}

Trees (Explorer to Genetics!) 333

How to Find the Right Child Value for a Node

int GetRightChild(int bt[],int value)

{

return GetValue(bt,2*GetLocation(bt,10,value)+2);

}

How to Find whether There is a Left Child for a Node

int IsThereALeftChild(int bt[],int value)

{

int left = GetLeftChild(bt,value);

if(left!=0)

return YES;

else

return NO;

}

How to Find whether a Node is Left Child of Its Parent

There can be couple of implementation possible. The first one takes two arguments. One node is the

address and the other is the parent address. Here is the code for this algorithm.

int isLeftChild(node *n,node *p)

{

return p->leftchild == n;

}

The other one is more smart. Here we are assuming that the node contains a pointer to the node which

is its parent. Here is the implementation.

typedef struct node

{

 int data;

 struct node *leftchild;

 struct node *rightchild;

 struct node *parent;

}node;

int isLeftChild(node *n)

{

 return n->parent->leftchild == n;

}

The later version is my favourite, because it is much more readable and conceptual in nature.

8.8 HOW TO FIND WHETHER A NODE IS A RIGHT CHILD OF ITS PARENT

There can be couple of implementation possible. The first one takes two arguments. One node address

and the other is the parent address. Here is the code for this algorithm.

int isRightChild(node *n,node *p)

{

return p->rightchild == n;

}

334 Data Structures using C

The other one is more smart. Here we are assuming that the node contains a pointer to the node which

is its parent. Here is the implementation.

typedef struct node

{

int data;

struct node *leftchild;

struct node *rightchild;

struct node *parent;

}node;

int isRightChild(node *n)

{

return n->parent->rightchild == n;

}

How to Find whether There is a Right Child for a Node

int IsThereARightChild(int bt[],int value)

{

int right = GetRightChild(bt,value);

if(right!=0)

return YES;

else

return NO;

}

How to Travel to the Left Child�s Location

int GoToLeftChildsPlace(int parent)

{

return 2*parent + 1;

}

How to Travel to the Right Child�s Location

int GoToRightChildPlace(int parent)

{

return 2*parent + 2;

}

How to Model a Binary Tree using Linked List

There are two ways to represent a binary tree using a linked list. The first one modeled by the following

structure allows only one way traffic through the node. That means we can only travel from parent to the

child. There is no way we can travel back to parents and grandparents.

typedef struct node

{

int data;

struct node *leftchild;

struct node *rightchild;

}node;

Adding one more pointer to the above structure can make it two way traffic.

typedef struct node

{

int data;

Trees (Explorer to Genetics!) 335

struct node *leftchild;

struct node *rightchild;

struct node *parent;

}node;

The root has no parent. The rest all nodes in the binary tree has their parents.

How to Add a Left Child Node to any Node

void AddLeftChild(node *n,int value)

{

node *r = (node *)malloc(sizeof(node));

r->data = value;

r->leftchild = NULL;

r->rightchild = NULL;

n->leftchild = r;

}

How to Add a Left Child Node to Any Node

void AddRightChild(node *n,int value)

{

node *r = (node *)malloc(sizeof(node));

r->leftchild = NULL;

r->rightchild = NULL;

r->data = value;

n->rightchild = r;

}

8.9 HOW TO FIND THE ADDRESS OF THE SIBLING OF A NODE

If we are trying to get the sibling location from the left side of a node, then we need to get the location of

the right child of the parent node.

node* Sibling(node *n)

{

if(n->parent->leftchild->data == n->data)

return n->parent->rightchild;

if(n->parent->rightchild->data == n->data)

return n->parent->leftchild;

}

8.10 HOW TO FIND THE ADDRESS OF THE UNCLE OF A NODE

Sibling of parent node is known as Uncle node for a child node.

See how a wrapper method can be written to give a conceptual look to the code.

node* Uncle(node *n)

{

inart return Sibling(n->parent);

}

8.11 HOW TO TRAVERSE THE TREE �IN-ORDER�

Inorder traversal of the binary tree is traversing the left sub-tree, then the root and then the right sub-tree.

Now each sub-tree can have own sub-trees.

336 Data Structures using C

void inorder(node *n)

{

if(n->leftchild!=NULL)

inorder(n->leftchild);

printf("%d \t",n->data);

if(n->rightchild!=NULL)

inorder(n->rightchild);

}

How to Traverse the Tree �Pre-order�

void preorder(node *n)

{

printf("%d \t",n->data);

if(n->leftchild!=NULL)

preorder (n->leftchild);

if(n->rightchild!=NULL)

preorder (n->rightchild);

}

How to Traverse the Tree �Post-Order�

void postorder(node *n)

{

if(n->leftchild!=NULL)

postorder (n->leftchild);

if(n->rightchild!=NULL)

postorder (n->rightchild);

printf("%d \t",n->data);

}

How to Count the Number of Nodes in the Binary Tree

int CountNodes(node *n)

{

int Nodes = 0;

if(n==NULL)

Nodes = 0;

else

{

Nodes=CountNodes(n->leftchild)

 +CountNodes(n->rightchild)+1;

}

return Nodes;

}

How to Count the Number of Children a Particular Node has

int CountChildren(node *n)

{

if((n->leftchild !=NULL && n->rightchild ==NULL)

 ||(n->leftchild ==NULL && n->rightchild !=NULL))

return 1;

Trees (Explorer to Genetics!) 337

if(n->leftchild !=NULL && n->rightchild !=NULL)

return 2;

else

return 0;

}

How to Count the Number of Internal Nodes in the Binary Tree

An internal node is a node that has got two children.

int InternalNodes = 0;//A Global Variable

int CountInternalNodes(node *n)

{

if(n->leftchild!=NULL)

CountInternalNodes(n->leftchild);

if(n->rightchild!=NULL)

CountInternalNodes(n->rightchild);

if(CountChildren(n)==2)

InternalNodes++;

return InternalNodes;

}

How to Count the Number of Leaves in the Binary Tree

int CountLeaves(node *n)

{

if(n==NULL ||

 (n->leftchild == NULL && n->rightchild == NULL))

return 1;

else

//Tail Recursive call
return CountLeaves(n->leftchild)+

 CountLeaves(n->rightchild);

}

How to Find if Two Binary Trees are Same or Not

int IsSameBinaryTree(node *a,node *b)

{

if(a==NULL && b==NULL)

return 1;

 if(a!=NULL && b!=NULL)

return a->data==b->data

&& IsSameBinaryTree(a->leftchild,b->leftchild)

&& IsSameBinaryTree(a->rightchild,b->rightchild);

 if((a!=NULL && b==NULL) || (a==NULL && b!=NULL))

return 0;

}

8.12 WHAT IS A BINARY SEARCH TREE?

A binary search tree is a binary tree where the elements are ordered in such a way that the root, left and

right children follow the relationship as

338 Data Structures using C

Left child < Root < Right Child

This simple rule makes it easy to search a particular item from a binary tree.

Here is an example creation of binary search tree:

Initially

Now trying to add 5

The root is 10 and 5 is less than 10, so 5 will be the left child of 10. So after insertion of 5 in the above

BST it will look like

Now let�s say we want to add 6 to this tree. 6 is less than 10 so it will find its place in the left sub-tree

of the BST. In root of the left sub-tree is 5. 6 is greater than 5 so 6 will be the right child of 5. So after

insertion of 6 in the above BST, it will look like

The dotted line displays the path travelled by 6, before finding its place in the tree.

Now let�s say we want to put 3 in the above tree. So as 3 is less than 10 it will again go to the left sub-

tree and 3 is less than 5 so it will be the left child of 5. So the tree, after insertion of 3 will look like

The dotted line shows the path of 3 before it finds its place in the BST.

So if we add 12 the tree will look like

Trees (Explorer to Genetics!) 339

The Binary Search Tree like any other data structure can hold any type of data. We might want our

BST to hold the members of a club. So, in cases like these the mathematical symbol (i.e. �<=�,�>�) won�t

work directly and we will have to design a function that can compare two members and depending upon

a parameter, can determine who will be the left and who will be the right child of an identified parent

node.

How to Add an Element to a Binary Search Tree

//Assumes that the root is already there

void Add2BST(node *n,int value)

{

if(value <=n->data)

{

if(n->leftchild!=NULL)

Add2BST(n->leftchild,value);

else

{

node *lc = (node *)malloc(sizeof(node));

lc->rightchild=NULL;

lc->leftchild = NULL;

lc->data = value;

n->leftchild = lc;

}

 }

if(value >n->data)

{

if(n->rightchild!=NULL)

 Add2BST(n->rightchild,value);

 else

{

node *rc = (node *)malloc(sizeof(node));

rc->rightchild=NULL;

rc->leftchild = NULL;

rc->data = value;

n->rightchild = rc;

}

 }

}

How to Check if a Binary Tree is a Binary Search Tree

int isBST(node *n)

{

if(n->leftchild->data>n->data || n->rightchild->data<n->data)

return 0;

if(n->leftchild->data < n->data && n->rightchild->data >=n->data)

return 1;

else

return isBST(n->leftchild) && isBST(n->rightchild);

}

340 Data Structures using C

8.13 HOW TO SEARCH A VALUE IN A BST

Searching in a binary search tree is the most optimized operation possible on the data structure.

First the data is matched with the root node. In case there is a mismatch, we go to the left or right sub-tree

depending on whether the number is smaller than root value or greater than it or is it greater than the

root. This process rotates recursively until we travel all the nodes of the tree.

int SearchBST(node *n,int value)

{

if(n==NULL)

return 0;

else

{

//Checking with the root value

if(n->data == value)

return 1;

else

{

//If the number is greater than or equal

//We need to look in the right sub tree

//recursively for each sub-sub tree

if(n->data >= value)

return SearchBST(n->rightchild,value);

else

 //Otherwise we need to look into the left subtree
return SearchBST(n->leftchild,value);

}

}

}

How to Delete a Node from a BST

void DeleteNode(node *n)

{

 node* temp = n;

if(n!=NULL)

{

printf("deleting %d\n",n->data);

if (n->leftchild == NULL && n->rightchild!=NULL)

{

n = n->rightchild;

delete temp;

}

else

if (n->rightchild == NULL && n->leftchild!=NULL)

{

n = n->leftchild;

delete temp;

}

else

Trees (Explorer to Genetics!) 341

{

// Node has two children - get max of left subtree

temp = n->leftchild;

while (temp->rightchild != NULL)

{

temp = temp->rightchild;

}

n->data = temp->data;

DeleteNode(temp);

}

}

else

return;

}

8.14 WHAT IS THE RIGHT ROTATION ON A BST?

In a binary search tree, pushing a node N down and to the right to balance the tree. N�s left child replaces

N, and the left child�s right child becomes N�s left child.

Fig. 8.7d See the pic above to understand the Single Right Rotation

How to Rotate a Tree to the Right Once around a Node

node* SingleRightRotation(node *n)

{

node* newroot = n->leftchild;

n->leftchild = n->leftchild->rightchild;

newroot->rightchild = n;

return newroot;

}

What is the Left Rotation on a BST?

In a binary search tree, pushing a node N down and to the left to balance the tree. N�s right child replaces

N, and the right child�s left child becomes N�s right child.

342 Data Structures using C

Fig. 8.8 Double Right Rotation is nothing but two consecutive right rotations

Double Left Rotation is nothing but two consecutive left rotations

How to Rotate a Tree Once to the Left

node* SingleLeftRotation(node *n)

{

node* newroot = n->rightchild;

n->rightchild = n->rightchild->leftchild;

newroot->leftchild = n;

return newroot;

}

Note that the relative ordering of the elements does not change by these rotations. The inorder, preorder,

postorder traversing result in same sequence. I mean even after rotation the tree remains as a BST. The

balance just get better, nothing else has changed from a conceptual point of view.

8.15 SOME AREAS OF APPLICATION OF BST

1. Information Organization

2. Information Retrieval

3. Information Indexing

4. Creating Associative Containers

5. Displaying Arithmetic Expression in Different Orders

6. Spatial Indexing

7. Binary Image Representation

8. Binary Image Processing

9. Computer Graphics Polygon Rendering

10. Shadow Generation

11. Spatial Vision for Robots.

12. 3D Motion Tracking

13. Proximity Sensing Device

14. Web Browser

15. Windows Explorer

16. Shortest Path

17. Sorting (See Alphabetical Sort below)

These are just a few to name. Binary Search Tree and its variations are used in many diverse areas.

Trees (Explorer to Genetics!) 343

8.16 WHAT IS AN EXPRESSION TREE?

An exception tree is nothing but a Binary Tree which represents arith-

metic expressions.

The nodes of the tree stores the operators and the binary operands (+,-

,*,/). Binary Tree is the best data structure to store this expression,

because only the traverse of the tree in post-order can generate the

postfix notation which is needed by a postfix calculator that uses stack

data structure to calculate the result.

Some facts about Expression Tree

l Each leaf node represents an operand.

l An internal node is an operator.

l A post-order traversal is performed over the nodes.

l In a post-order traversal, each node is visited after its descendent nodes are visited.

The different orders of traversal of the above expression tree are

Post order ab+cd�/

Pre order /+ab�cd

In order a+b/c�d

How to Represent an Expression Tree as a Binary Tree

typedef struct node

{

int data;

int isOperator;

char OperatorSymbol;

struct node *leftchild;

struct node *rightchild;

}node;

void AddLeftChild(node *n,int value,char op)

{

if(value!=0)

{

node *r = (node *)malloc(sizeof(node));

r->data = value;

r->isOperator = 0;

r->OperatorSymbol = op;

r->leftchild = NULL;

r->rightchild = NULL;

n->leftchild = r;

}

else

{

node *r = (node *)malloc(sizeof(node));

r->data = 0;

r->isOperator = 1;

r->OperatorSymbol = op;

r->leftchild = NULL;

r->rightchild = NULL;

Fig. 8.9 This is an Ex-

ception Tree.

344 Data Structures using C

n->leftchild = r;

}

}

void AddRightChild (node *n,int value,char op)

{

if(value!=0)

{

node *r = (node *)malloc(sizeof(node));
r->leftchild = NULL;

r->rightchild = NULL;

r->data = value;

r->isOperator = 0;

r->OperatorSymbol = op;//just a space

n->rightchild = r;

}

else

{

node *r = (node *)malloc(sizeof(node));

r->leftchild = NULL;

r->rightchild = NULL;

r->data = 0;

r->isOperator = 1;

r->OperatorSymbol = op;

n->rightchild = r;

}

}

void postorder(node *n)

{

if(n->leftchild!=NULL)

postorder(n->leftchild);

if(n->rightchild!=NULL)

postorder(n->rightchild);

if(n->isOperator==1)

printf("%c ",n->OperatorSymbol);

if(n->isOperator==0)

printf("%d ",n->data);

}

This program generates an Expression Tree as

int main()

{

node *root = (node *)malloc(sizeof(node));

root->isOperator = 1; Fig. 8.10

Trees (Explorer to Genetics!) 345

root->OperatorSymbol = '/';

root->leftchild = NULL;

root->rightchild = NULL;

root->data = 0;//Assuming Positive Number expression tree

AddLeftChild(root,0,'+');

AddRightChild(root,0,'-');

AddLeftChild(root->leftchild,10,' ');

AddRightChild(root->leftchild,12,' ');

AddLeftChild(root->rightchild,20,' ');

AddRightChild(root->rightchild,15,' ');

postorder(root);

getch();

 return 0;

}

Example 8.1 Write a program to demonstrate Alphabetical Sorting Application of Binary Tree.

Solution The strategy to represent a dictionary by a binary search tree is as follows.
l If the word to be inserted is alphabetically backward than the root, then it will go to left child/sub-

tree
l If the word to be inserted is alphabetically forward than the root, then it will go to right child/sub-

tree
A Sample

#include <stdio.h>

#include <string.h>

#include <conio.h>

typedef struct node

{

char data[20];//The word to store per node

struct node *leftchild;

struct node *rightchild;

}node;

//Assumes that the root is already there

void Add2BST(node *n,char *value)

{

if(strcmpi(value ,n->data)<0)

{

if(n->leftchild!=NULL)

Add2BST(n->leftchild,value);

else

{

node *lc = (node *)malloc(sizeof(node));

lc->rightchild=NULL;

lc->leftchild = NULL;

strcpy(lc->data,value);

346 Data Structures using C

n->leftchild = lc;

}

 }

if(strcmpi(value,n->data)>0)

{

if(n->rightchild!=NULL)

 Add2BST(n->rightchild,value);

 else

{

node *rc = (node *)malloc(sizeof(node));

rc->rightchild=NULL;

rc->leftchild = NULL;

strcpy(rc->data,value);

n->rightchild = rc;

}

 }

}

int SearchBST(node *n,char *value)

{

if(n==NULL)

return 0;

else

{

if(n->data == value)

return 1;

else

{

if(n->data >= value)

return SearchBST(n->leftchild,value);

else

return SearchBST(n->rightchild,value);

}

}

}

void inorder(node *n)

{

if(n->leftchild!=NULL)

inorder(n->leftchild);

printf("%s \t",n->data);

if(n->rightchild!=NULL)

inorder(n->rightchild);

}

int main()

{

char word[20];

int i = 0;

node* root = (node *)malloc(sizeof(node));

strcpy(root->data,"Water");

root->leftchild = NULL;

Trees (Explorer to Genetics!) 347

root->rightchild = NULL;

for(i = 0;i<5;i++)

{

puts("Enter a word");

scanf("%s",word);

Add2BST(root,word);

}

puts("inorder");

inorder(root);

getch();

return 0;

}

This program stores 10 words as they would appear in dictionary and sort them alphabetically.

Here is a sample run of the above program:

Enter a word

Room

Enter a word

Violin

Enter a word

Sun

Enter a word

Monday

Enter a word

Bed

inorder

Bed Monday Room Sun Violin Water

Notice the words are alphabetically sorted.

8.17 WHAT IS A DECISION TREE?

A decision tree is a Tree that stores the operations to be performed if the choice selected is either

A few typical examples of a decision trees are shown here:

Fig. 8.11

348 Data Structures using C

If you notice that the edges of the tree represents the condition.

Decision tree, as the name suggests can help a confused person on the road to get back to the right track.

Decision tree can be used in any kind of problem where deduction of the solution can be done by

processing the answers of a set of interdependent questions.

l Finding a place in the citi l Finding the ideal mortgage loan

l Finding the right school for a kid l Computerized diagnosis of diseases

l Finding the right career l Adaptive testing system

And so on.

By Definition a decision tree can have n number of children per node where n represents the number

of degree of freedom (i.e. number of parameters involved) in the problem. For example answer to a

particular question like �Would you like some cold coffee?� might have responses like �Yes�, �No�, �Might

be�. So there would be 3 children for this node. But as we know that any M-ary tree (A tree where a node

can have a maximum of M children) can be redesigned using a binary tree, so all decision trees designed

for any practical purposes are essentially binary tree.

Fig. 8.12 A Multiway Decision Tree

8.18 BINARY SEARCH TREE AND GAMES

There are set of games that is played by adaptive and informed guesses. For example �Guess the Price�

game. The player is asked to guess the price of something and then if guessed right, another question is

asked. Else the player is out of the game. This can be modeled by BSTs.

Example 8.2 Write a program for Adaptive Testing using a Binary Search Tree.

Trees (Explorer to Genetics!) 349

Solution Nowadays almost all online test are adaptive. By adaptive, I mean everybody in the test

doesn�t get a single set of paper. They all get a different starting question. If they answer that question

correct, they get a harder question and if they get that wrong, they get a simpler question. This situation

can easily be replicated with a BST where the starting question will be the root of the tree and the easy

questions will go to the left sub-tree and the harder questions will find their room in the right sub-tree.

We can assign marks to each question. So, as soon as the test ends, actually in no time we can publish the

results.

Here is as structure that represents a node in such a BST.

typedef struct node

{

char question[50];

char answer[20];

int marks;

struct node* nexthard;

struct node* nextsimple;

}node;

At the start of the program, the program reads questions, their answers, marks and creates a BST.

The following details are fed to the program per node.

The Hardness Index (HI)

The question statement

The correct answer

Marks to be given for answering this question correctly.

When the user logs in the system the question from the root will be asked, and then depending upon

whether correct or wrong answers are given the user will get harder or simpler questions.

#include <stdio.h>

#include <conio.h>

typedef struct node

{

char question[50];

char answer[20];

int marks;

int HardIndex;

struct node* nexthard;

struct node* nextsimple;

}node;

//Assumes that the root is already there

//This function adds a new question to the

//tree.

void Add2BST(node *n,int HI,char q[],char a[],int m)

{

if(HI <=n->HardIndex)

{

if(n->nextsimple!=NULL)

Add2BST(n->nextsimple,HI,q,a,m);

else

{

node *lc = (node *)malloc(sizeof(node));

350 Data Structures using C

lc->nexthard=NULL;

lc->nextsimple = NULL;

lc->HardIndex = HI;

strcpy(lc->question,q);

strcpy(lc->answer,a);

lc->marks = m;

n->nextsimple = lc;

}

 }

if(HI >n->HardIndex)

{

if(n->nexthard!=NULL)

 Add2BST(n->nexthard,HI,q,a,m);

 else

{

node *rc = (node *)malloc(sizeof(node));

rc->nexthard=NULL;

rc->nextsimple = NULL;

rc->HardIndex = HI;

strcpy(rc->question,q);

strcpy(rc->answer,a);

rc->marks = m;

n->nexthard = rc;

}

 }

}

void quiz(node *n)

{

char ans[20];

printf("%s\n",n->question);

fflush(stdin);

gets(ans);

if(strcmpi(n->answer,ans)==0)

{

if(n->nexthard!=NULL)

quiz(n->nexthard);

}

else

{

if(n->nextsimple!=NULL)

quiz(n->nextsimple);

}

}

int main()

Trees (Explorer to Genetics!) 351

{

node *root = (node *) malloc(sizeof(node));

strcpy(root->question,"What is your Passport# ?");

strcpy(root->answer,"E556677");

root->HardIndex = 10;

root->marks = 10;

root->nexthard = NULL;

root->nextsimple = NULL;

Add2BST(root,8,"What is your nationality ?","Indian",3);

Add2BST(root,12,"What is your Passport's Expiry Date ?",

 "31-DEC-2020",12);

quiz(root);

getch();

return 0;

}

We can enhance this program by reading a file that stores these questions and their answers. The

program will read the details from the file and store them in a binary search tree.

8.19 HOW TO HANDLE MULTIPLE SUBJECTS IN SUCH AN ADAPTIVE TEST

Fig. 8.13

To handle multiple subjects we can design a forest of binary trees where the roots of the tree will

contain three more attributes. One link to the next subject tree, one link to the previous subject tree and

one string that tells which subject is this tree for.

Notice the above binary forest. This forest holds the binary search tree of questions for four subjects.

The right sub-trees store the harder questions and the left sub-trees store the simple questions. We can go

on adding questions this way.

We can even segregate the question even better by creating levels of this forest as shown in the figure

below later.

352 Data Structures using C

Fig. 8.14

In this illustration you can see how the roots of each level are connected to higher levels. It looks like

a lantern with fancy antennas.

We can call this type of a forest generally as mn Binary Tree Forest. Where m is the number of

subjects per level and n is the number of levels we create. We can have multiple levels holding papers of

different subjects for a university. Starting from one level we can finish on another forming an arch. I

call it a binary spider arch, because each level looks like a spider. We can have multiple such arches

Trees (Explorer to Genetics!) 353

connected together to hold the question of different subjects of different levels from different universi-

ties. Given below is an image that tries to make your understanding better.

Fig. 8.15

8.20 HOW TO CONVERT A MULTIWAY TREE TO A BINARY TREE

A Multi-way tree is nothing but a tree that can have n number of children per node. But there is a way

that we can convert any multi-way tree to a binary tree. The steps for converting are as follows

l Keep the leftmost child of any node in the multi-way tree as it is.

l Rest all the children will form the right sub-tree of the left-child node of the binary tree.

Here is an example
Note that the decision tree might have more than two children per internal node. In that case it will be

a M-ary tree which can be converted to a binary tree as shown in the picture above. This shows that
essentially all decision trees can be modeled using binary trees.

354 Data Structures using C

Fig. 8.16

8.21 WHAT IS THE BALANCE FACTOR OF A BST?

While adding the nodes in a BST depending on
their value we may end up with some kind of tree
where the left sub-tree is quite bigger than that of
right sub-tree or vice-versa. Thus the BST becomes
unstable or experience imbalance. To measure how
much imbalance a BST does have, there is an in-
dex called balancing factor. The balancing factor
of a BST is defined as the difference between the
depth of left and right sub-tree. Here is a picture
showing a highly imbalanced BST.

In this BST, the left sub-tree has 7 levels while
the right sub-tree has no level. That means this
tree�s balancing factor is 0 � 7 = �7.

If the tree has only the root, then the balancing factor is �0

If the tree has same number of levels on both the sub-trees then the balancing factor is 0

If the tree has only one level of difference between the left and right sub-tree, then the balancing

factor is 1

If the balancing factor of a tree is anything other than �1, 0 or 1, the tree is said to be imbalanced.

Thus the above tree is imbalanced.

Fig. 8.17 A highly imbalanced BST

Trees (Explorer to Genetics!) 355

How to Find the Balance Factor of a Binary Search Tree

//This function finds the depth/height/degree of the left sub tree
//while the supplied argument is the pointer to the root
int DepthLeftTree(node *n)

{

return Degree(n->leftchild);

}

//This function finds the depth/height/degree of the right sub tree
//while the supplied argument is the pointer to the root
int DepthRightTree(node *n)

{

return Degree(n->rightchild);

}

//This function returns the Balance Factor of the BST using the above
//two functions.
int BalanceFactor(node *n)

{

if(n==NULL)

return -1;//No tree exists!

else

return DepthRightTree(n)-DepthLeftTree(n);

}

How to Find if a BST is Balanced or Not

int IsBalanced(node *n)

{

if(BalanceFactor(n)==1

 || BalanceFactor(n)==0

 || BalanceFactor(n)==-1)

return 1;

else

return 0;

}

8.22 HOW TO BALANCE A BINARY SEARCH TREE

There two types of BST to balance an imbalanced Binary Search Tree.

Self-Balancing Binary Search Tree

Self-balancing binary search tree or height-balanced binary search tree is a binary search tree that

attempts to keep its degree, or the number of levels of nodes beneath the root, as small as possible at all

times, automatically. It is one of the most efficient ways of implementing associative arrays, sets, and

other data structures.

Some data structures that follow this algorithm are

l AA Tree l AVL Tree

l Red � Black Tree l Scapegoat Tree

Self-Organizing Binary Search Tree

l Splay Trees l Heap

356 Data Structures using C

Different Variations of a Heap are

l Binary Heap l Binomial Heap

l Fibonacci Heap l Pairing Heap

l Lefist Heap l Soft Heap

l Treap l Beap

l Skew Heap

Few of these data structures will be discussed here.

8.23 WHAT IS A SPLAY TREE?

A Splay tree is a Binary Search Tree, which is self-organizing. After every search in the splay tree, the

sought item is found at the root of the tree. So unlike other trees where search is a mere passive activity,

here in splay tree, searching a value is an active activity, which changes the structure of the tree. So that

the most sought item will always be available at the root of the tree. This reduces the searching time

drastically.

Splaying is done using tree rotations. Left rotation is termed as Zig and right rotation is termed as Zag.

Here is a picture that shows Zig operation:

Fig. 8.18

The above picture shows how the BST restructures itself when the number 6 is sought. Please note

two points carefully.

l After searching a value in splay tree, if the value is found then the value will occupy the new root

in the tree.

l The resulting tree still remains the same BST. I mean the traversal of the tree in any order after

splaying doesn�t differ from the original one.

Here is a picture that describes the zag operation which is basically left rotation about a node. The

nodes above this doesn�t experience any kind of change in the location in the tree.

Trees (Explorer to Genetics!) 357

Fig. 8.19

The above image shows searching of 55 in the splay tree. So, after searching 55 becomes the new root

and the BST structure maintains. See the left arrow shows what will the tree look like if we search for

55. And the other two arrows show legal steps to arrive at this final BST. Here couple of Zag operations

is performed to reach the final splayed binary search tree with the sought element at the root.

If the element being sought is at the right or left arm of the tree (i.e. edge node) then a series of zig

or zag operations would be needed to create the splay tree. But in case the sought node are somewhere

in between the trees, then a series of zig and zag operations are needed to create the splay tree.

Say we need to search for 45 in the above BST , then first one zig operation and then a series of two

zag operations would be needed to make the splayed tree with 45 at the root. On the other hand, if we

have to search 7 from the first BST above then we need a zag operation first and then series of two zig

operations.

How to Perform Zig Operation on a BST

typedef struct node

{

int data;

struct node *leftchild;

struct node *rightchild;

struct node *parent;

}node;

node* zig(node *n)

{

//Hold the parent's address

node* temp = GrandParent(n);

358 Data Structures using C

n = SingleRightRotation(n->parent);

temp->leftchild = n;

return temp;

}

How to Perform Zag Operation on a BST

node* zag(node *n)

{

//Hold the parent's address

node* temp = GrandParent(n);

n = SingleLeftRotation(n->parent);

temp->rightchild = n;

return temp;

}

8.24 WHAT IS A HEAP?

A Heap is a tree where all the children of a node are smaller to it. For exam-

ple see the image below.

To be precise, the image shown above is that of a binary heap. In a heap,

a node may have more than 2 children. But in a binary heap, they can have

only two children maximum.

There could be two types of heaps.

l Max Heap

l Min Heap

Max Heap In Max heap the parent is always greater or equal than its

children. Greater than equal to does not necessarily have to be the

mathematical symbol, because the contents of the heap are not always

numerical. The greater than or equal to or less, these all are calculated using some functions.

Say we have got two nodes A and B. A is the parent and B is the child.

Then for a Max- Heap the following condition is always satisfied.

f(A) > = f(B)

where f symbolizes the measuring function.

So in a Max Heap the maximum element will always be available at the root.

Min Heap In Min heap just the reverse of Max-Heap happens. Thus the least element is available in

the root always.

8.25 WHAT ARE THE DIFFERENT APPROACHES TO CREATE A HEAP?

There is couple of approaches to create a heap.

1. Heapify an existing tree (Not recommended)

2. Create the heap as it grows

(a) Top down approach

(b) Bottom up approach

Heapify:

l Create a binary tree as you please

l Change its contents so that it satisfies the heap condition

Fig. 8.20

Trees (Explorer to Genetics!) 359

Top-down Approach
l If the node, you are trying to insert finds its path in the heap, starting from the root then the heap

generated is known to be created by Top-down approach.

Bottom-up approach
l If the node, you are trying to insert finds its path in the heap, starting from the leaves of the heap,

then the heap generated is known to be created by Bottom-up approach.

8.26 HOW TO IMPLEMENT A BINARY HEAP USING ARRAY

Heap is actually a tree, so we can represent heap the way we did it for tree. The first element of the array

will be the root of the heap. The left and the right children will be at 2n + 1 and 2n + 2 location for the

nth node. Balancing a heap is done by swapping the elements which are out of order. The parent of the

node at location k will be found at a[floor((i � 1)/2)].

Try Yourself: Try to model a binary heap using array.

8.27 WHAT IS AN AVL TREE?

AVL Tree is a self balancing binary search tree. This is the first of

its kind. In an AVL tree, the heights of the two child subtrees of

any node differ by at most one, therefore it is also called height-

balanced. Lookup, insertion, and deletion all take O(log n) time in

both the average and worst cases. Additions and deletions may

require the tree to be rebalanced by one or more tree rotations.

The AVL tree is named after its two inventors, G.M. Adelson-

Velsky and E.M. Landis, who published it in their 1962 paper �An

algorithm for the organization of information.�

8.28 HOW TO INSERT AN ELEMENT TO AN AVL TREE

Insertion in an AVL tree is just same as inserting that in a BST. But after insertion a series of left or right

rotations are performed in order to restore the balance of the tree. In some implementations you will find

that the balance factor of a node is stored as an element of the node. That is not a good idea. In this

implementation of AVL tree, I am going to use the same node structure defined for the BST above in this

chapter.

The rotations are taking place around the root always. In some implementations you will find that

rotations are performed over the sub-trees first and then on the root. But that way we actually will spend

more time. So, in the following function rotations are done around the root.

node* Add2AVL(node *n,int data)

{

Add2BST(n,data);//Adding to the BST first

 //Adjusting the balance by performing

//Left and Right Rotation.

do

{

if(Degree(n->leftchild)>Degree(n->rightchild))

n = SingleRightRotation(n);

Fig. 8.21 This is an AVL Tree

360 Data Structures using C

else

n = SingleLeftRotation(n);

}while(!(BalanceFactor(n)!=0 || BalanceFactor(n)!=1));

return n;

}

8.29 WHAT IS A BSP TREE?

BSP is the acronym for Binary Space Partitioning. This is a method to recursively subdivide a space

into convex sets by hyperplanes. This subdivision gives rise to a representation of the scene by means of

a tree data structure known as a BSP tree. BSP tree and its variations in 2D (Known as Quad Tree), 3D

(k-d Tree) are very important data structures used in computer graphics. Later in this chapter we will

discuss about them.

At the very first, the entire area is denoted as the root of the BSP Tree. Then you go on breaking up

the places. Once you break a concave area into two convex (in the best case) or concave polygons, name

these areas and they become the children of their parents, which actually represent the entire area.

Here is a picture that shown the BSP Tree generation process.

Fig. 8.22 If you notice carefully you can find that G and F are two convex polygons.

So the generation process comes to an end.

Applications of BSP Tree

BSP Tree or its variations like Quad Tree, K-d Tree are highly applied in

l Image Processing

l Machine Vision

l Computer Graphics

l Computer Games

8.30 WHAT IS A QUAD TREE? A 2D VARIATION OF BSP

(ALSO KNOWN AS Q-TREE)?

A Quad Tree is a tree like data structure where each node has four children. Quadtrees are most often

used to partition a two dimensional space by recursively subdividing it into four quadrants or regions.

Trees (Explorer to Genetics!) 361

The regions may be square or rectangular, or may

have arbitrary shapes. They are also known as Q-

Trees.

Quad Trees are used heavily in

l Image Processing

l Spatial Indexing

l Efficient Collision Detection in 2D

l Storing Sparse Data

Generally speaking quad trees could prove to be

highly efficient to solve any problem that has got 4

or more (A multiple of 4 probably) degrees of

freedom.

How to Model a Quad Tree using C Structure
typedef struct QuadTreeNode

{

int value;

struct QuadTreeNode *Parent;

struct QuadTreeNode *NEChild;

struct QuadTreeNode *NWChild;

struct QuadTreeNode *SWChild;

struct QuadTreeNode *SEChild;

}

QuadTreeNode;

This structure models a node of the Quad Tree whose nodes hold integer values. For example this tree

can represent a quad tree which can hold block by block representation on a gray level image.

How to Add a North-East Child to This Quad Tree
void AddNEChild(QuadTreeNode* parent,int v)

{

parent->NEChild = (QuadTreeNode*)malloc(sizeof(QuadTreeNode));

parent->NEChild->value = v;

parent->NEChild->NEChild = NULL;

parent->NEChild->NWChild = NULL;

parent->NEChild->SWChild = NULL;

parent->NEChild->SEChild = NULL;

parent->NEChild->Parent = parent;//Both Way connection

}

How to Add a North-West Child to This Quad Tree
void AddNWChild(QuadTreeNode* parent,int v)

{

parent->NWChild = (QuadTreeNode*)malloc(sizeof(QuadTreeNode));

parent->NWChild->value = v;

parent->NWChild->NEChild = NULL;

parent->NWChild->NWChild = NULL;

parent->NWChild->SWChild = NULL;

parent->NWChild->SEChild = NULL;

parent->NWChild->Parent = parent;//Both Way connection

}

Fig. 8.23

362 Data Structures using C

How to Add a South-East Child to This Quad Tree

void AddSWChild(QuadTreeNode* parent,int v)

{

 parent->SWChild = (QuadTreeNode*)malloc(sizeof(QuadTreeNode));

 parent->SWChild->value = v;

 parent->SWChild->NEChild = NULL;

 parent->SWChild->NWChild = NULL;

 parent->SWChild->SWChild = NULL;

 parent->SWChild->SEChild = NULL;

 parent->SWChild->Parent = parent;//Both Way connection

}

How to Add a South-West Child to this Quad Tree
void AddSEChild(QuadTreeNode* parent,int v)

{

 parent->SEChild = (QuadTreeNode*)malloc(sizeof(QuadTreeNode));

 parent->SEChild->value = v;

 parent->SEChild->NEChild = NULL;

 parent->SEChild->NWChild = NULL;

 parent->SEChild->SWChild = NULL;

 parent->SEChild->SEChild = NULL;

 parent->SEChild->Parent = parent;//Both Way connection

}

How to Check whether a Node is a North-East Child of a Node
int isNEChild(QuadTreeNode *parent,QuadTreeNode *child)

{

return parent->NEChild == child;

}

How to Check whether a Node is a North-West Child of a Node

int isNWChild(QuadTreeNode *parent,QuadTreeNode *child)

{

return parent->NWChild == child;

}

How to Check whether a Node is a South-East Child of a Node

int isSEChild(QuadTreeNode *parent,QuadTreeNode *child)

{

return parent->SEChild == child;

}

How to Check whether a Node is a South-West Child of a Node

int isSWChild(QuadTreeNode *parent,QuadTreeNode *child)

{

return parent->SWChild == child;

}

8.31 HOW TO GET THE NORTH-EAST UNCLE OF A QUAD TREE NODE

Before we discuss the solution of this question, see the picture below to understand the relationship

between uncle and nephew.

Trees (Explorer to Genetics!) 363

Fig. 8.24

QuadTreeNode* NEUncle(QuadTreeNode *Node)

{

QuadTreeNode* p = NULL;

p = Node->Parent->Parent->NEChild;

if(p!=NULL)

if(p==Node->Parent)

return Node->Parent;

else

return p;

else

return NULL;

}

How to Get the North-West Uncle of a Quad Tree Node

QuadTreeNode* NWUncle(QuadTreeNode *Node)

{

QuadTreeNode* p = NULL;

p = Node->Parent->Parent->NWChild;

 if(p!=NULL)

if(p==Node->Parent)

return Node->Parent;

else

return p;

else

return NULL;

}

How to Get the South-East Uncle of a Quad Tree Node
QuadTreeNode* SEUncle(QuadTreeNode *Node)

{

364 Data Structures using C

QuadTreeNode* p = NULL;

p = Node->Parent->Parent->SEChild;

if(p!=NULL)

if(p==Node->Parent)

return Node->Parent;

else

return p;

else

return NULL;

}

How to get the South-West Uncle of a Quad Tree Node
QuadTreeNode* SWUncle(QuadTreeNode *Node)

{

QuadTreeNode* p = NULL;

p = Node->Parent->Parent->SWChild;

if(p!=NULL)

if(p==Node->Parent)

return Node->Parent;

else

return p;

else

return NULL;

}

8.32 HOW ARE IMAGES REPRESENTED USING A QUAD TREE?

Fig. 8.25

Trees (Explorer to Genetics!) 365

8.33 HOW TO CONVERT A QUAD TREE TO A BINARY TREE

The basic challenge to convert a quad tree to a binary tree is to reduce couple of children per node

without changing the actual representation of the quad tree.

Parts of an area that is represented by a square or rectangle can be grouped as

l North West

l North East

l South East

l South West

If we follow the above order of numbering the child of a Quad Tree node then it can be called as a

Clockwise Quad Tree.

On the other hand, if we segregate the areas like

l North West

l South West

l South East

l North East

Then we can call it as a Anticlockwise Quad Tree.

So the directions are first north or south and then east or west. Logically, then we can think of any

area as a binary tree that starts from blank (That�s the root) and then has two children, north and south.

And north and south both will have two children called east and west.

So here is a conceptual diagram of a

clockwise quad tree represented as a binary

tree.

Depending on what is our desired

resolution of a binary image, we can break

individual quarters into four quarters again

and again. Each time we go one step

forward, we get a better resolution, by

adding one more level to the binary

representation of the quad tree. The above

image is the only first level of the binary

representation. So we can say that the above image is for a

Level 1 Clockwise Binary Tree Representation of a Quad Tree

8.34 SUPERIMPOSING MULTIPLE BINARY IMAGES USING A BINARY TREE

Using the above representation of an image, we can easily superimpose two binary images, but that will

have only one condition.

l A Clockwise representation can only be superimposed with a clockwise representation

l An anticlockwise representation can only be superimposed with an anticlockwise represen-

tation

These rules are not strict though, they just simplify the operation.

Here are the two pictures and their binary pixel values.

Fig. 8.26

366 Data Structures using C

Image A

1 1 1 1 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0

1 1 1 1 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0

Looks like

Image B

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

Looks like

Trees (Explorer to Genetics!) 367

Their superimposed image is

1 1 1 1 0 0 1 0

0 0 0 1 0 0 0 1

1 0 0 1 1 0 0 0

0 0 0 1 0 1 0 0

1 1 1 1 0 0 1 0

0 0 0 1 0 0 0 1

1 0 0 1 1 0 0 0

0 0 0 1 0 1 0 0

And the superimposed image looks like

Notice carefully that the superimposing of two images are nothing but the merging of two quad trees

that represent the images.

Here is a typical example of merging two binary trees whose contents are either 1 or 0. The node with

a content 1 is shown as black and the other one with zero is shown as white.

0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 0

0 0 0 1 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 1 1 1 1 1 0

0 0 0 0 0 0 0 0

8.35 HANDWRITING RECOGNITION USING QUAD TREE

See the above 8 * 8 matrix. The first matrix shows a Handwritten 2 and the next one shows a digital

representation of it. The blank boxes represent the blank spaces.

We can represent the above matrix as a quad tree. Then by traversing we can say what number is

written.

368 Data Structures using C

The idea here is to keep a tolerance level. That means there should be more than one quad tree to

represent a handwritten number, because people�s handwriting differs a lot.

Fig. 8.27

See how the curve is represented with a quad tree.

8.36 HOW TO COMPRESS IMAGES USING A QUAD TREE

The image given below shows the gradual compressed versions of a base gray level photograph.

Fig. 8.28

Let�s assume that the first image consists of 512 different segments, then the next level of the com-

pressed image will have 256 different segments, and so on. Thus this image compression can be modeled

using a pyramid (Popularly known as Image Pyramid). The base of the pyramid holds the image with

highest resolution while the tip of the image pyramid holds the point image (Single Pixel Image) with no

resolution (Lowest Resolution).

See the illustration below. The cells at the base of the pyramid can be represented by the leaves of a

quad tree. Then the next level of the image consists of cell with values which are the mean of 4 leaves/

children.

0 0 0 0 0 0 0 0

Trees (Explorer to Genetics!) 369

Thus the size of the image is decreased and the resolution as well.

Fig. 8.29 Image Pyramid Construction of Gray Level Images

Fig. 8.30 See how the values of the leaves are used to calculate the gray level value at the

parent.

370 Data Structures using C

8.37 WHAT IS AN OCTREE?

An Octree is a variant of BSP tree like a quad tree. Octree is

a 3D cousin of quadtree. In this tree, each node can have at

the maximum of 8 children. Octrees are more often used to

partition a three-dimensional space. This tree is highly used

in computer graphics to generate solids. In games, it is used

to detect collisions in a 3D environment.

Octree is used in

l 3D Collision detection

l Computer Graphics Generation

See how each node in the octree holds the part of the

sphere and we know exactly who are the neighbors of a par-

ticular node. Every node has 8 closest neighbors.

How to Model an Octree using C Structure

typedef struct OctreeNode

{

int value;

struct OctreeNode *Up;

struct OctreeNode *Down;

struct OctreeNode *Left;

struct OctreeNode *Right;

struct OctreeNode *Front;

struct OctreeNode *Back;

}OctreeNode;

How to Add an Up Neighbor to an Octree Node

void AddUp(OctreeNode *Me, int v)

{

Me->Up = (OctreeNode *)malloc(sizeof

 (OctreeNode));
Me->Up->value = v;

Me->Up->Up = NULL;

Me->Up->Down = Me;

Me->Up->Front = NULL;

Me->Up->Back = NULL;

Me->Up->Right = NULL;

Me->Up->Left = NULL;

}

How to Add a Down Neighbor to an Octree Node

void AddDown(OctreeNode *Me, int v)

{

Me->Down = (OctreeNode *)malloc(sizeof(OctreeNode));

Me->Down->value = v;

Me->Down->Up = Me;

Me->Down->Front = NULL;

Me->Down->Back = NULL;

Me->Down->Right = NULL;

Me->Down->Left = NULL;

}

Fig. 8.31 The image above shows

construction of Octree

Fig. 8.32 Image Shows an

application of Octree

Trees (Explorer to Genetics!) 371

How to Add a Left Neighbor to an Octree Node

void AddLeft(OctreeNode *Me, int v)

{

Me->Left = (OctreeNode *)malloc(sizeof(OctreeNode));

Me->Left->value = v;

Me->Left->Up = NULL;

Me->Left->Down = Null;

Me->Left->Front = NULL;

Me->Left->Back = NULL;

Me->Left->Right = Me;

Me->Left->Left = NULL;

}

8.38 WHAT IS A TRIE?

Tries and suffix trees are the most popular data structures on words.

Tries were introduced in 1960 by Fredkin as an efficient method for

searching and sorting digital data. The name Trie came from

Information Retrieval. This is a special type of tree that stores strings

and it facilitates fast retrieval. If we notice carefully we will note that

trie is nothing but a Directed Acyclic Word Graph (DAWG). We will

understand this term in Graph Chapter. The reason, trie is the best

data structure when we need to frequently search a string from a

collection of strings, is that , the search time is O(m) where m is the

length of the string being sought. The search time is independent on

the number of strings in the collection or the length of the longest

string in the collection.

In the above trie, the words BALK, BALMY, BANAL, BANK and

BANE are stored. It is noticeable that parts of these strings are identical.

This tree is very useful for information retrieval and finds application

in the following areas. Numerous trie applications were found such as

l Dictionary Representation (Although binary tree is a better choice)

l Approximate String Matching

l Spell Checking Software

l Dynamic Key Matching (For personal identification on different online systems)

l Dynamic Hashing

l Conflict Resolution Algorithms

l Leader Election Algorithms

l IP addresses lookup

l Coding

l Polynomial Factorization

l Lempel-Ziv compression schemes, and so on

8.39 HOW TO MODEL A TRIE USING LINKED LIST

A trie can be represented easily with the linked list. Here, we will represent a trie which stores the words

starting with a particular letter. Each node of such a trie could be represented by the following structure.

The next is an array that is meant to hold the address of 26 possible children of the node.

Fig. 8.33

372 Data Structures using C

typedef struct TrieNode

{

char c;

struct TrieNode* Next[26];

}TrieNode;

8.40 HOW TO ADD A KEY TO A TRIE

This function determines what the integer equivalent of the character argument passed is. If we pass �a�

to determine, the value returned will be 0 and if we pass �z� to determine, the value returned will be 25.

int Determine(char c)

{

int i = 0;

char alphabet[] ={"abcdefghijklmnopqrstuvwxyz"};

for(i=0;i<26;i++)

if(c==alphabet[i])

return i;

}

void AddAKey(TrieNode *Root,char *Key)

{

 int i = 0;

 int j = 0;

 int index = 0;

for(i=1;i<strlen(Key);i++)

{

index = Determine(Key[i]);

if(Root->Next[index]==NULL)

{

 Root->Next[index] = (TrieNode *)malloc(sizeof(TrieNode));

Root->Next[index]->c = Key[i];

Root = Root->Next[index];

for(j=0;j<26;j++)

Root->Next[j] = NULL;

}

else

Root = Root->Next[index];

}

}

8.41 HOW TO SEARCH A KEY IN A TRIE

There are two ways by which we can search a tree. Either by passing the key being sought to the function

below or by checking characterwise, the late being more useful to the basic purpose of trie. We will

explore the later method next.
int Search(TrieNode *Root,char *Key)

{

enum {NOTFOUND,FOUND};

int index = 0;

if(Root==NULL)

return NOTFOUND;

else

{

Trees (Explorer to Genetics!) 373

for(int i=1;i<strlen(Key);i++)

{

index = Determine(Key[i]);

if(Root->Next[index]!=NULL)

Root=Root->Next[index];

else

return NOTFOUND;

}

}

return FOUND;

}

Example 8.3 Write a program that creates a Trie of few words and then allows the user to

search a Key as entered and reports whether the Key is present in the Trie or not.

Fig. 8.34

Solution

int main()

{

 int i = 0;

 char c;

 int flag = 0;

 TrieNode *Root=NULL, *Head = NULL;

 Root = (TrieNode *)malloc(sizeof(TrieNode));

 //All the words in this trie starts with a

 Root->c = 'a';

 for(i=0;i<26;i++)

 Root->Next[i]=NULL;

 Head = Root;

 //Adding few keys to the trie

 AddAKey(Root,"admen");

 AddAKey(Root,"admix");

 AddAKey(Root,"admonish");

374 Data Structures using C

 AddAKey(Root,"adobe");

 AddAKey(Root,"adopt");

 AddAKey(Root,"adore");

 AddAKey(Root,"adorn");

 AddAKey(Root,"adult");

 AddAKey(Root,"adzes");

 AddAKey(Root,"aegis");

 AddAKey(Root,"aerie");

 AddAKey(Root,"affix");
//The picture above displays the Trie created using these words

 printf("%d\n",Search(Head,"adze"));

printf("%c",Root->Next[Determine('d')]->Next[Determine('m')]

->Next[Determine('i')]->Next[Determine('x')]->c);

 puts("\nYour Key");

 //Searching the Trie for Key.

 c = getche();

 if(c=='a')

 {

 for(i=0;;i++)

 {

 c = getche();

 if(c==13)

 break;

 if(Head->Next[Determine(c)]!=NULL)

 {

 Head = Head->Next[Determine(c)];

 continue;

 }

 else

 {
 puts("\nNo such key");

 flag = 1;

 break;

 }

 }

 if(flag==1)

 puts("\nNo Such Key");

 else

 puts("\nFound the Key");

 }

 else

 puts("\nNo Such Key");

 getch();

 return 0;

}

Here are a few sample runs of the above program.

Fig. 8.35

Trees (Explorer to Genetics!) 375

As soon as �n� is keyed in, the program reports that there is no such key.

Another run,

Fig. 8.36

�adz� is a partial string, i.e. is there in the trie. So the search function is intelligent enough to find out

even a substring from the list.

8.42 HOW TO FIND WHETHER A KEY IN A TRIE CAN BE DELETED OR NOT

In order to delete a key from a trie, we need to be sure that the key exists in the trie.

But that is not enough. Even if the key exists in the trie, we can�t necessarily delete it, because the last

node can be parent of some other node.

int CanDeleteThisKey(TrieNode *Root,char *Key)

{

int index = 0;

int flag = 0;

int i = 0;

int j = 0;
//The Key doesn�t exist in the Trie
//So we can�t delete it.

if(Search(Root,Key)!=1)

{

return 0;

}

else

{

for(i=0;i<strlen(Key);i++)

{

index = Determine(Key[i]);

if(Root->Next[index]!=NULL)

Root = Root->Next[index];

else

{

flag = 1;

break;

}

}

if(flag == 0)

{

for(j=0;j<26;j++)

{

if(Root->Next[j]!=NULL)

{

flag=1;

break;

}

}

376 Data Structures using C

if(flag==1)

return 0;

else

return 1;

}

}

}

8.43 HOW TO USE A TRIE FOR SPELL CHECKING

We are all familiar with the spell check feature of Microsoft Word. We can design this with tries.

Here is a function that scans a trie of words and finds the possible

correct words for the wrong word which is wrong only at the last

letter like the above word �Fluctuatex�.

void DidYouMeanThese(TrieNode *Root,char *Key)

{

int i = 0;

int index = 0;

char temp[25];

strcpy(temp,Key);

 //The key is not there in the Trie

if(Search(Root,Key)!=1)

{

for(i=0;i<strlen(Key);i++)

{

index = Determine(Key[i]);

if(Root->Next[index]!=NULL)

Root = Root->Next[index];

else

break;

}//Now we stand at a location

//Who doesn't have a children to complete this word

for(int k=0;k<26;k++)

{

if(Root->Next[k]!=NULL)

{

for(i=0;i<strlen(Key)-1;i++)

printf("%c",Key[i]);

printf("%c\n",Root->Next[k]->c);

}

}

}

}

When this function is called like
DidYouMeanThese(Root,"fluctuatex");

We get the following result.

Try Yourself: Try to change or enhance the above function to spot spelling errors anywhere in the string.

Fig. 8.37

Fig. 8.38

Trees (Explorer to Genetics!) 377

R E V I E W Q U E S T I O N S

1. Add the following numbers to a binary tree 10,20,30,40,50,11,23,45.

2. Draw the binary tree at each step for the above question.

3. In-order traversal of a binary tree yields A, B, C, D, E. Draw the binary tree.

4. Pre-order traversal of a binary tree yields A, B, C, D, E. Draw the binary tree.

5. Post-order traversal of a binary tree yields A, B, C, D, E. Draw the binary tree.

6. What will be the balance factor of the binary tree constructed at question 1 after adding 77 to it.

7. Is 30 alone? If not what is its sibling?

8. How many uncle will 77 have after addition to the tree?

9. Write down the operations (Zig and Zag only) in sequence that will make the tree in question

number 1 after addition of 77 balanced.

10. What will be the result of one zag operation on the tree at 1 before addition of 77.

11. What do you mean by B Tree? Where are they applied?

P R O G R A M M I N G P R O B L E M S

1. Create a program to demonstrate Red Black Tree.

2. Create a program to demonstrate Heap.

3. Create a program to demonstrate B Trees.

4. Create a program to demonstrate B+ Trees.

5. Create a program to demonstrate B� Trees.

6. Create a program to demonstrate how decision trees can be used to diagnose diseases.

7. Write a function to add an element in a red black tree.

8. Write a function to delete an element from a red black tree.

9. Write a function to add an element in the AA tree.

10. Write a function to delete an element from the AA tree.

11. Write a program to demonstrate operations on a B tree.

12. Write a program to demonstrate operations on a B+ tree.

13. Write a program to demonstrate operations on a B� tree.

14. Write a program to demonstrate operations on a B* tree.

15. Write a program to demonstrate game trees.

16. Write a function to add a question to the binary spider (as mentioned in the chapter).

17. Write a function to delete a question from the binary spider.

9

Graphs
Mathematics to WAN

INTRODUCTION

In this chapter we will learn about a new data structure called graph, which is a more generalized form
of tree data structure. Graphs are probably the most efficient and most used data structure to solve the
problems in our practical life starting from finding a place in a map to analyze RNA reactions, structural
engineering strength analysis, pattern identification in an epidemic etc. In general in a problem that has
n number of parameters involved can be modeled using a graph. In this chapter the graph representation
will be discussed.

9.1 WHAT ARE THE DIFFERENT WAYS GRAPHS ARE REPRESENTED?

There are two well-known ways by which graphs are represented in the computer memory. Namely
l Adjacency Matrix
l Adjacency List
In the first approach of representation the edges in the graphs are represented as values in the matrix.

If the graph is directed, then the value of 1 at a location (i, j) indicates that there is an edge between
vertex i and vertex j.

Here is an example:

The adjacency matrix is very useful data structure for representing the graph related algorithms in
efficient ways. But the only disadvantage of this data structure is that number of vertices needs to be

mentioned at the starting of the process.

Graphs (Mathematics to WAN) 379

9.2 HOW TO ADD AN EDGE IN A GRAPH MODELED BY ADJACENCY MATRIX

To add an edge between edge i and j we need to set M(i, j) = 1 where M is the adjacency matrix of a

graph G. In this chapter we will deal with Adjacency List of Directed Graph.

int AdjMat[10][10]={0};//Adjacency Matrix of a Graph of 10 nodes

void AddEdge(int startingVertex,int endingVertex)
{

if(AdjMat[startingVertex][endingVertex]==0)
AdjMat[startingVertex][endingVertex] = 1;

}

9.3 HOW TO REMOVE AN EDGE IN A GRAPH MODELED BY ADJACENCY

MATRIX

Removing an edge from a graph is simple as adding it. We shall just have to reassign the element at i, j

to zero from 1. Here is the function that removes an edge from a graph represented by adjacency matrix.

void RemoveEdge(int startingVertex,int endingVertex)
{

AdjMat[startingVertex][endingVertex]=0;
}

9.4 WHAT IS A PATH MATRIX?

The adjacency matrix tells us whether there exists any direct path (edge) between a pair of nodes or not.

It doesn�t tell us about the availability of paths between the two nodes. A path matrix is the adjacency

matrix raised to different powers. This path matrix when created as the square of the incident matrix

denotes the number of paths between the two nodes with three nodes and so on.

How to Find whether There is a Path between Two Nodes or Not

If the values of a Path Matrix a

int PathMatrix[MAX][MAX]={0};

void GetPathMatrix2()
{

int cr = MAX;
int cc = MAX;
int i,j,k;

//loop control

for(i = 0; i < MAX; i++)
for(j = 0; j < MAX; j++)

for(k = 0; k < MAX; k++)
PathMatrix[i][j]+=AdjMat[i][k]*AdjMat[k][j];

}

9.5 HOW TO FIND WHETHER A GRAPH IS A TREE OR NOT

A graph is said to be a tree if there exists maximum one path between a pair of nodes or vertices. In other

words it can be said that a graph which is minimally connected is called a Tree.

380 Data Structures using C

int isTree(int AdjMat[MAX][MAX])
{

int i,j;
for(i=0;i<MAX;i++)

for(j=0;j<MAX;j++)
if(AdjMat[i][j]>0 && AdjMat[j][i]>0)

return 0;
return 1;

}

9.6 WHAT IS MINIMUM SPANNING TREE OF A GRAPH?

A simple graph of n vertices will have 2^n (^ denotes power) number of trees. In a weighted undirected

graph the tree that has the minimum total weight is defined as Minimum Spanning Tree because this tree

spans over all the vertices of the graph and the total cost of traveling this tree is minimal.

The red edges denote the edges of the minimum spanning tree of the graph.

There are two well-known algorithms for calculating the minimum spanning tree of a given graph.

1. Prim�s Algorithm

2. Kruskal�s Algorithm

3. Reverse Delete Algorithm

9.7 PRIM�S ALGORITHM

This algorithm was discovered in 1930 by mathematician Vojte
⁄

ch Jarník and later in 1957 by computer

scientist Robert C Prim and again re-discovered by Dijkstra in 1959. So this algorithm is also known as

DJP algorithm or Prim Jarnik Algorithm,

The algorithm works as follows.

Step 1 First an arbitary vertex is selected.

Step 2 The vertex with the minimum edge distance from the vertex selected in step 1 is found and

the edge connecting these two vertices are added as one edge of the minimum spanning tree.

Step 3 Repeat Steps 4 and 5 untill all the vertices are in the spanning tree.

Step 4 Find a vertex which has an edge of minimum edge and not already in the spanning tree.

Step 5 Add that vertex in the spanning tree.

Step 6 Now all the vertices are in the spanning tree so stop.

The figures on next page describes the minimum spanning tree (MST) creation using Prim's algo-

rithm.

Graphs (Mathematics to WAN) 381

Notice the figures carefully to understand Prim�s algorithm

First A is selected as the arbitrary vertex.

Then B is found to be the closest vertex from A, so B is added and the edge A-B becomes a part of the

MST. Later from B, D is the closest vertex and the process goes on. One thing is if both the vertices are

already in the MST, then even if their edge (Which is being considered right now) have the smaller

weight in comparison with others, will not be added to the MST, because that will cause the tree to have

a circuit and the MST will not be a tree any more.

Try Yourself: Try to implement Prim�s algorithm using Adjacency List representation of Graph

described below.

9.8 KRUSKAL�S ALGORITHM TO FIND THE MST

This algorithm is due to the american mathematician Joseph Bernard Kruskal. This algorithm is simpler

to implement than Prim�s. The algorithm works as follows.

Step 1: The edges are sorted in the ascending order.

Step 2: An empty set of edges is used to create the MST.

Step 3: The edges are traversed and being added to the MST until all the vertices in the graph are

traversed.

Step 4: MST is prepared.

The following figure shows how Kruskal algorithm works.

382 Data Structures using C

A-D and C-E both these edges have the same weight. So any of these two is selected first. In this case

we have selected A-D. Once A-D is selected, obviously the next minimum is C-E. So C-E is added as an

edge of the MST. Then the next smallest weight edge is sought and found to be D-F in this case. So D-

F is added to the MST. This process continues until all the vertices of the original graph is traversed.

Thus we get the MST.

9.9 REVERSE DELETE ALGORITHM TO FIND THE MST

This algorithm works in just the reverse way than Kruskal�s. Instead of adding the edges to an empty set,

this algorithm deletes the edges from the original graph so that any such deletion doesn't disconnect the

graph. At the end of the process we are left with the edges of the MST.

The figure on next page shows how reverse delete algorithm works.

The algorithm works as follows.

Step 1: Sort all the edges in the descending order.

Step 2: Delete edges so that the deletion doesn�t leave the graph disconnected.

Stop when deleting any further edge makes the graph disconnected.

Step 3: The remaining edges constitute the MST of the given graph.

Notice in the above figure, the highest weight edge 15 is deleted first and then the second largest

weight 11 is deleted and so on until we reach the MST. As the process deletes the highest weight first,

thus the name reverse delete.

Graphs (Mathematics to WAN) 383

How to Find the Shorted Path using Warshall�s Algorithm

int minoftwo(int a,int b)
{

if(a==b)
return a;

else
return a>b?a:b;

}
void WarshallsShortestPath(int AdjMat[MAX][MAX])
{

int i,j,k;

int Q[MAX][MAX]={0};
for(i=0;i<MAX;i++)
{

for(j=0;j<MAX;j++)
{

if(AdjMat[i][j]==0)
Q[i][j]=INF;

else
Q[i][j]= AdjMat[i][j];

}
}
for(k=0;k<MAX;k++)
{

for(i=0;i<MAX;i++)

384 Data Structures using C

{
for(j=0;j<MAX;j++)
{

Q[i][j] = minoftwo(Q[i][j],Q[i][k]+Q[k][j]);
}

}
}

}

9.10 WHAT IS A DIRECTED ACYCLIC GRAPH OR DAG?

A DAG is a directed graph with no cycles. That means for a vertex v in a
DAG there is no directed path that starts and ends on v. Here is an example
of a DAG.

In a DAG the vertex that has only edges ending on it is called a sink and
the vertex that has only edges starting from it is called a source. There can
be vertices other than these two types also. As we can see in the above
figure, vertices 7, 5, 3 are source vertices and 2, 9, 10 are sink vertices
while vertices 11 and 8 are none of these because there are edges starting
and ending on them. In the chapter on tree, the trie is a DAG where the
content of the vertices are characters.

DAGs find application in many diverse areas. To name a few
1. Bayesian Networks
2. Instruction Scheduling
3. Makefile Instructions
4. Information Categorization System as the folder in a computer network

9.11 WHAT IS TOPOLOGICAL SORTING OF A DAG?

Topological Sorting is a special way to arrange the elements of a DAG.

Topological Sorting is used to design scheduling applications where one job needs to be done first

before the other. For example, a course in calculus demands that you understand trigonometry well. So
before someone enrolls for calculus course they have to learn trigonometry. In a DAG trigonometry and
calculus can be mapped as two nodes where the edge will travel from trigonometry to calculus.

Graphs (Mathematics to WAN) 385

Given a graph the following algorithm calculates the topologically sorted ordering of graph elements.
Step 1: In Degree of each node is calculated
Step 2: All the nodes with in degree = 0 are put in a queue
Step 3: Step 4 and 5 are repeated until the queue is empty
Step 4: The front node N of the queue is removed
Step 5: The following steps are repeated for each neighbor M of node N

a. In Degree of M is reduced by 1
b. If In Degree = 0 then add M to the rear of the queue

Step 6: The Queue now has the topological ordering of the elements.
Try Yourself: Write a function that will accept a DAG and will print its topological ordering. Use
Linked Representation (Adjacency List) of Graph.

How to Find the Union of Two Graphs Represented using Matrix

void Union(int AdjMat1[MAX][MAX],int AdjMat2[MAX][MAX])
{

int AdjMatUnion[MAX][MAX];
int i,j;
for(i=0;i<MAX;i++)

for(j=0;j<MAX;j++)
AdjMatUnion[i][j]=AdjMat1[i][j] | AdjMat2[i][j];

}

How to Find the Intersection of Two Graphs Represented using Matrix

void Intersection(int AdjMat1[MAX][MAX],int AdjMat2[MAX][MAX])
{

int AdjMatUnion[MAX][MAX];
int i,j;
for(i=0;i<MAX;i++)

for(j=0;j<MAX;j++)
AdjMatUnion[i][j]=AdjMat1[i][j] & AdjMat2[i][j];

}

How to Model an Undirected Graph using Adjacency List

386 Data Structures using C

enum {NO,YES};
//This structure represents the Edge
typedef struct Edge
{

int StartingVertex;
int EndingVertex;

}Edge;
//This structure represents the Edge Collections.
typedef struct Edges
{

Edge edge;
struct Edges *next;

}Edges;

Edges *GraphEdges = NULL;

//This structure represent a vertex of the Graph
typedef struct node
{

int data;
struct node *next;

}node;

//This structure represent the entire Graph.
typedef struct GraphNode
{

int id;
GraphNode *next;
node *connections;

}GraphNode;

How to Add a New Vertex in the Graph

GraphNode* AddVertex(GraphNode *graph,int newvertex)
{
 //Not Present in the graph already

if(isVertexPresent(graph,newvertex)==0)
 {

if(graph==NULL)
{

GraphNode *newVertex
 = (GraphNode *)malloc(sizeof(GraphNode));

newVertex->id = newvertex;
newVertex->connections = NULL;
newVertex->next = NULL;
return newVertex;

}
else
{

GraphNode *newVertex
 = (GraphNode *)malloc(sizeof(GraphNode));

Graphs (Mathematics to WAN) 387

newVertex->id = newvertex;
newVertex->connections = NULL;
newVertex->next = NULL;
graph->next = newVertex;

 //Returning the last node of the graph.
return newVertex;

 }
}

}

How to Add a New Edge to the Graph

Edges* AddEdge(GraphNode *graph
 ,Edges *GraphEdges
 ,int StartingVertex
 ,int EndingVertex)
{

Edges *e = NULL;
Edge f;
if(isVertexPresent(graph,StartingVertex)==0

 && isVertexPresent(graph,EndingVertex)==0)
printf("Can't add Edge");

else
{

GetAddress(graph,StartingVertex)->connections
 = push_front(GetAddress(graph,StartingVertex)->connections,EndingVertex);

f.StartingVertex = StartingVertex;
f.EndingVertex = EndingVertex;
if(EdgeAlreadyPresent(GraphEdges,f)==NO)

GraphEdges = PushEdgeToFront(GraphEdges,f);
}
return GraphEdges;

}
//Adding an edge between vertex 2 and 3 means

//adding an edge between vertex 3 and 2 as well.

Edges* InsertEdge(GraphNode *graph
 ,Edges *GraphEdges
 ,int StartingVertex
 ,int EndingVertex)
{

GraphEdges = AddEdge(graph,GraphEdges, StartingVertex,EndingVertex);
GraphEdges = AddEdge(graph,GraphEdges,EndingVertex,StartingVertex);
return GraphEdges;

}

How to Softly Delete an Edge from a Graph

Edges* RemoveEdge(Edges *e,int StartingVertex,int EndingVertex)
{

Edges *p = e;
Edges *x = NULL;
for(;p!=NULL;p=p->next)
{

if((p->edge.StartingVertex == StartingVertex
 && p->edge.EndingVertex == EndingVertex)

||(p->edge.StartingVertex == EndingVertex
d di i))

388 Data Structures using C

 && p->edge.EndingVertex == StartingVertex))
{

p->edge.Deleted = 1;
break;

}
}
return e;

}

How to Display the Edges of a Graph
void DisplayEdges(Edges *e)
{

Edges *p = e;
for(;p!=NULL;p=p->next)

if(p->edge.Deleted!=1)
printf("%d-----%d\n",

 p->edge.StartingVertex,p->edge.EndingVertex);

}

How to Softly Delete a Vertex from a Graph
Edges* RemoveVertex(Edges *e,int Vertex)
{

Edges *p = e;
Edges *x = NULL;
for(;p!=NULL;p=p->next)
{

if(p->edge.EndingVertex == Vertex)
e = RemoveEdge(e,p->edge.StartingVertex,Vertex);

if(p->edge.StartingVertex == Vertex)
e = RemoveEdge(e,Vertex,p->edge.EndingVertex);

}

return e;
}

How to Find Whether a Vertex is Present or Not in the Graph
int isVertexPresent(GraphNode *graph,int VertexId)
{

int Found = NO;
if(graph==NULL)

return Found;
else
{

while(graph->next!=NULL)
{

if(graph->id==VertexId)
{

Found = YES;
break;

}
graph=graph->next;

}
}
return Found;

}

Graphs (Mathematics to WAN) 389

How to Find whether an Edge is Present or Not in the Graph

int ContainsEdge(GraphNode *graph, int StartingVertex,int
EndingVertex)
{

int Found = NO;
int i = 0;
GraphNode *g = graph;
node *n = g->connections;

for(;g!=NULL;g=g->next)
{

if(g->id == StartingVertex)
{

n = g->connections;
for(;n!=NULL;n = n->next)

if(n->data == EndingVertex)
{

Found = YES;
return Found;

}
}

}
return Found;

}

How to Find a List of Vertices That Have a Self-Loop around It

node* SelfLoopVertices(GraphNode *graph)
{

node *h = NULL;
int i=0;
do
{

for(i = 0;i<count(graph->connections);i++)
if(graph->connections->data == graph->id)

h = push_front(h,graph->id);
graph = graph->next;

}while(graph->next !=NULL);
return h;

}

How to Find the Degree of a Node in the Graph

//This function counts the number of nodes in the linked list.

int count(node *h)
{

int numberofnodes=0;
node *p = h;
if(p==NULL)

return 0;
else
{

for(;p!=NULL;p=p->next)
numberofnodes++;

return numberofnodes;
}

}

390 Data Structures using C

//This function calculates the degree of a node.

int Degree(GraphNode *vertex)
{

return count(vertex->connections);
}

How to Find whether a Vertex is Isolated or Not
int isIsolatedVertex(GraphNode *vertex)
{

if(Degree(vertex)==0)
return YES;

else
return NO;

}

What is a Pendant Vertex and How to find if a Vertex is a Pendant?
A vertex is called a Pendant if the degree of the vertex is unity.

int isPendant(GraphNode *vertex)
{

return Degree(vertex)==1;
}

How to Display the Graph
void display(GraphNode *graph)
{

do
{

printf("\nVertex = %d\n",graph->id);
while(graph->connections!=NULL)
{

printf("\t--%d\t",graph->connections->data);
graph->connections = graph->connections->next;

}
graph = graph->next;

}while(graph != NULL);
}

How to Find whether Vertices of a Graph are a Subset of Vertices of Another
int CompareVertices(GraphNode *a,GraphNode *b)
{

int VerticesMatch = NO;
GraphNode *temp1 = a;
GraphNode *temp2 = b;
for(;temp2!=NULL;temp2 = temp2->next)
{

for(;temp1!=NULL;temp1 = temp1->next)
{

if(temp1->id == temp2->id)
{

VerticesMatch = YES;

}
}

}
return VerticesMatch;

}

Graphs (Mathematics to WAN) 391

How to Find whether Edges of a Graph are a Subset of Edges of Another

int CompareUndirectedEdges(Edges *ea, Edges *eb)
{

Edges *ta = ea;
Edges *tb = eb;
int result = 0;
if(CountEdges(ta)>=CountEdges(tb))
{

for(;tb!=NULL;tb=tb->next)
{

for(;ta!=NULL;ta=ta->next)
if((ta->edge.StartingVertex == tb->edge.StartingVertex

 && ta->edge.EndingVertex == tb->edge.EndingVertex)
 ||(ta->edge.StartingVertex == tb->edge.EndingVertex

 && ta->edge.EndingVertex == tb->edge.StartingVertex))
result = 1;

}
}
return result;

}

How to Find whether a Graph is a Subgraph of Another Graph or not
int isSubGraph(GraphNode *a,GraphNode *b,Edges *e1s,Edges *e2s)
{

if(CountEdges(e2s)>0 && CountEdges(e1s)>0)

//If both the graphs have got edges then we shall
//have to test whether the edges and the vertices of

//the suspected subgraph is a subset of the supplied

//graph or not

return CompareVertices(a,b) && CompareUndirectedEdges(e1s,e2s);
if(CountEdges(e2s)==0)
//If there is no edge in the second graph

//or the suspected subgraph then we shall just have to
//check whether the vertices of that graph is a subset of

//the other or not

return CompareVertices(a,b);
}

392 Data Structures using C

How to Find whether a Graph is Euler or Not

If all the vertices of a graph have even degree then the graph is said to be an Euler Graph.
int isEuler(GraphNode *graph)
{

int Euler = 0;
GraphNode *p = graph;
for(;p!=NULL;p=p->next)
{

if(Degree(p)%2==0)
Euler = 1;

else
Euler = 0;

}
return Euler;

}

How to Find whether a Graph is a Complete Graph or Not

int isComplete(GraphNode *graph,Edges *GraphEdges)
{

//A Complete Graph is also known as Universal Graph or Clique
int n = Size(graph);
return CountEdges(GraphEdges) == (n*(n-1)/2);

}

9.12 HOW TO FIND WHETHER A GRAPH IS PLANER OR NOT

Graph crossing number is a number that helps to understand whether a graph is planer or not. If the

graph crossing number for a graph is zero then the graph is planer else it is not.

int GraphCrossingNumber(GraphNode *graph)
{

double n = Size(graph);
return (1/4)*floor(n/2)*floor((n-1)/2)*floor((n-2)/2)*floor((n-3)/2);

}

int isPlaner(GraphNode *graph)
{

return GraphCrossingNumber(graph)==0;
}

How to Model a Directed Weighted Graph using Structures

typedef struct Edge
{

int StartingVertex;
int EndingVertex;
int Weight;

}Edge;

typedef struct Edges
{

Edge edge;

Graphs (Mathematics to WAN) 393

struct Edges *next;

}Edges;

typedef struct Digraph
{

Edges *edges;
}Digraph;

How to Add an Edge to a Weighted Directed Graph

Edges* push_back(Edges *last,Edge e)
{

if(last==NULL)
{

last = (Edges *)malloc(sizeof(Edges));
last->edge = e;
last->next = NULL;
return last;

}
else
{

Edges *p = (Edges *)malloc(sizeof(Edges));
p->edge = e;
p->next = NULL;
last->next = p;
return p;

}
}

Edges* AddAEdge(Digraph d,int StartingVertex,int EndingVertex,int Weight)
{

Edge e;
Digraph cd = d;

e.StartingVertex = StartingVertex;
e.EndingVertex = EndingVertex;
e.Weight = Weight;
for(;cd.edges!=NULL;cd.edges=cd.edges->next)
{

if(cd.edges->edge.StartingVertex == EndingVertex
 && cd.edges->edge.EndingVertex == StartingVertex)

{
break;

}
}
d.edges = push_back(d.edges,e);

 return d.edges;
}

How to Find out the In-Degree of a Node in a Digraph

The in-degree is the number of edges that end on the given vertex.
int InDegree(Digraph d, int Vertex)
{

int degree=0;

394 Data Structures using C

Digraph cd = d;
for(;cd.edges!=NULL;cd.edges = cd.edges->next)

if(cd.edges->edge.EndingVertex == Vertex)
degree++;

return degree;
}

How to Find out the Out-Degree of a Node in a Digraph

The outdegree is the number of edges that start from the given vertex

int OutDegree(Digraph d,int Vertex)
{

int degree=0;
Digraph cd = d;
for(;cd.edges!=NULL;cd.edges = cd.edges->next)

if(cd.edges->edge.StartingVertex == Vertex)
degree++;

return degree;
}

How to Find the Number of Parallel Edges between a Pair of Nodes

int ParallelEdgesCount(Digraph d,int StartingVertex,int EndingVertex)
{

int ParallelPaths = 0;
Digraph cd = d;
for(;cd.edges!=NULL;cd.edges = cd.edges ->next)

if(cd.edges->edge.StartingVertex == StartingVertex
 && cd.edges->edge.EndingVertex == EndingVertex)

ParallelPaths++;
return ParallelPaths;

}

How to Print all the Edges That has Parallel Paths

void PrintAllParallelPaths(Digraph d)
{

Digraph cd = d;
for(;cd.edges!=NULL;cd.edges=cd.edges->next)

if(ParallelEdgesCount(d,cd.edges->edge.StartingVertex
 ,cd.edges->edge.EndingVertex)>1)

printf("%d------%d----%d\n"
 ,cd.edges->edge.StartingVertex
 ,cd.edges->edge.EndingVertex
 ,cd.edges->edge.Weight);
}

How to Find whether a Digraph is Balanced or Not

If in a directed graph the in-degree and out-degree of all the nodes are equal then the graph is said to be

balanced.

int isBalanced(Digraph d)
{

Digraph cd = d;
for(;cd.edges!=NULL;cd.edges = cd.edges ->next)

Graphs (Mathematics to WAN) 395

if(InDegree(d,cd.edges->edge.StartingVertex)
 !=OutDegree(d,cd.edges->edge.StartingVertex)

 ||InDegree(d, cd.edges->edge.EndingVertex)
 !=OutDegree(d,cd.edges->edge.EndingVertex))

return 0;
return 1;

}

How to Find whether an Edge Exists in a Digraph or Not

int DoesThisEdgeExist(Digraph d,int StartingVertex,int EndingVertex)
{

Digraph cd = d;
for(;cd.edges!=NULL;cd.edges=cd.edges->next)

if(cd.edges->edge.StartingVertex == StartingVertex
 && cd.edges->edge.EndingVertex == EndingVertex)

return 1;
return 0;

}

How to Find whether a Directed Graph is Symmetric or Not

A directed graph is said to be symmetric, if and only if, there exists an edge from every edge for each

opposite edge. For example say a and b are two vertices of a graph then if there is an edge from a to b ,

then there is also an edge from b to a.
int isSymmetric(Digraph d)
{

Digraph cd = d;
for(;cd.edges!=NULL;cd.edges=cd.edges->next)

if(DoesThisEdgeExist(d,cd.edges->edge.EndingVertex,
 cd.edges->edge.StartingVertex)==0)

return 0;
return 1;

}

How to Find whether an Edge is a Self-Loop or Not

int isThisEdgeASelfLoop(Edge e)
{

return e.StartingVertex == e.EndingVertex;
}

How to Find the Count of Self-Loops in a Digraph

int SelfLoopCount(Digraph d)
{

Digraph cd = d;
int count = 0;
for(;cd.edges!=NULL;cd.edges=cd.edges->next)

if(isThisEdgeASelfLoop(cd.edges->edge)==1)
count++;

return count;
}

How to Find whether a Digraph is Regular or Not

A balanced digraph is said to be regular if every vertex has the same in-degree and out-degree as every

other vertex.

396 Data Structures using C

int isRegular(Digraph d)
{

int regular = 0;
Digraph cd = d;
Digraph ccd = cd;
if(isBalanced(d)==1)
{

for(;cd.edges!=NULL;cd.edges = cd.edges->next)
{

for(;ccd.edges!=NULL;ccd.edges = ccd.edges->next)
{

if(InDegree(d
 ,cd.edges->edge.StartingVertex)

 ==InDegree(d,ccd.edges->edge.StartingVertex)
 && OutDegree(d

 ,cd.edges->edge.StartingVertex)
 ==OutDegree(d,ccd.edges->edge.StartingVertex)

 && InDegree(d
 ,cd.edges->edge.EndingVertex)
 ==InDegree(d,ccd.edges->edge.EndingVertex)

 && OutDegree(d

 ,cd.edges->edge.EndingVertex)
 ==OutDegree(d,ccd.edges->edge.EndingVertex))

 regular =1;
else
{

regular = 0;
return regular;

}

}
}

}
return regular;

}

9.13 BREADTH FIRST SEARCH (BFS)

In many graph algorithms the traversal of the graph in a special way is very important. There are two

ways the graph is normally traversed. They are Breadth

first search (BFS) and Depth first search (DFS). In this

section we will learn about BFS.

The general idea behind the BFS is starting at a node

and then go on exploring the neighbors of this node

untill we cover all the nodes of the graph. But we have

to make sure that a node is not traversed more than

once. This is achieved by using a queue and by using a

variable status that depicts what is the status of the

current node.

The algorithm is as follows.

Step 1: All the nodes are marked ready to be proc-

essed by assigning status = 1

This figure represents the relative order-

ing of elements being traversed in BFS of

a graph.

Graphs (Mathematics to WAN) 397

Step 2: The starting node is put in the queue and its status is changed to waiting or status = 2

Step 3: The steps 4 and 5 are repeated untill the queue is empty.

Step 4: The front element N is removed from the queue and its status is marked processed or status =

3

Step 5: All the neighbors of the queue that are in ready status are added to the rear of the queue and

their status is changed to the waiting state or status = 2.

Step 6: End. The content of the queue is the BFS.

Here is a pseudo code for BFS

The function takes three arguments

1. The graph

2. The starting node

3. The ending node

Parent[start] = -1//cause root doesn�t have any parent
Queue = enqueue(queue,start);
while (!isEmpty(Queue))

{
 int u = frontItem(Queue);
 deQueue(Queue);
 // Here is the point where we examine the u th vertex of graph
 // For example:
 if (u == end)
 return 1;
 // Look through neighbors v.
 if (parent[v] == 0)
 {
 // If v is unvisited.
 parent[v] = u;
 enqueue(v);
 }
 }
 }
 return 0;
}

Applications of BFS

l Prim�s MST algorithm.

l Dijkstra�s single source shortest path algorithm.

l Finding all connected components in a graph.

l Finding all nodes within one connected component.

l Copying Collection, Cheney�s algorithm.

l Building a web search agent.

l Finding the shortest path between two nodes u and v (in an unweighted graph).

l Testing a graph for bipartiteness.

Complexities of BFS The space and time complexity of BFS is O(|V|+|E|) where V is the size of

vertices and E is the size of edges.

Try Yourself: Using the adjacency list representation of graph described and defined above try to im-

plement a function that takes a graph and prints its nodes in BFS pattern.

398 Data Structures using C

9.14 DEPTH FIRST SEARCH (DFS)

The general idea of a depth first search is starting at a point we traverse all the neighbor nodes until we

reach an end. Once we come to an end we backtrack to start all over again starting from another neighbor

of the starting node and travel towards the new neigbors neighbors� direction, and so on. As we have to

backtrack, we use a stack unlike a queue in BFS. Otherwise the algorithm is very similar to BFS.

The algorithm is as follows

Step 1: All the nodes are initialized to status 1.

Step 2: The starting node is pushed on the stack and the status of it is changed to waiting or status = 2.

Step 3: Steps 4 and 5 are repeated until the stack is empty.

Step 4: The top node N of the stack is popped and its status is changed to processed status or status = 3.

Step 5: All the neighbors of N that are still in ready status are pushed on the Stack and their status are

changed to status = 2 or waiting.

Step 6: Done.

Applications of DFS

l Finding all connected components in a graph.

l Finding all nodes within one connected component

l Solving paths in a maze.

Complexities of DFS The space and time complexity of BFS is O(|V|+|E|) where V is the size of

vertices and E is the size of edges.

R E V I S I O N O F C O N C E P T S

Some Key Facts about Graphs

l A graph is a set of vertices(V:{v1, v2,�, vn}) and a set of edges(E:{e1, e2, �, en}) that connect

the vertices.

l A vertex is also referred as a node.

l A graph can be either non-directed or directed.

l In a non-directed graph, the edges are not directed from one vertex to the other.

l In directed graphs the edges are directed from one vertex to another.

l If in the directed graph the edges have different weights then the graph is known as Weighted

directed graph (WDG).

l An electronic circuit can be represented as a WDG.

l Degree of a node in a non-directed graph is the number of edges meet that node.

l Degree of a node in a directed graph is denoted as the sum of in-degree and out-degree.

l In-degree of a node in a directed graph is the number of edges that end on that vertex.

l Out-degree of a node in a directed graph is the number of edges that start from that node.

l The number of nodes of odd degree in a graph is always even.

l If in a graph, all the nodes have the same degree then the graph is known as a regular graph.

l A node with degree zero is called an isolated vertex.

l A node with degree one is called a pendant node.

l If in a graph any edge starts and ends on the same vertex then that vertex is said to have a self loop.

Graphs (Mathematics to WAN) 399

l Graphs that do not have a self loop are sometimes referred as Simple graph.

l If there are multiple edges in the graph that start and end on same vertices, then these edges are

known as Parallel edges.

l A tree is a minimally connected graph.

l A spanning tree of a graph is such a tree that covers all the vertices of the graph

l A minimum spanning tree is a tree that has the minimum edge weight.

R E V I E W Q U E S T I O N S

1. What do you mean by isomorphic graphs. What are the rules that makes two graphs isomorphic?

2. Prove that the maximum number of edges in a simple graph with N nodes is N (N�1)/2.

3. What can be the maximum degree of a node in a graph of N nodes.

4. Draw the graph of benzene and methane. Represent the molecules by nodes and the chemical

bonds by edges.

5. Draw the graph of any electronic circuit.

6. Draw a diagram to explain how traffic signaling can be modeled using graphs.

P R O G R A M M I N G P R O B L E M S

1. Demonstrate in a program how MST can be used in different layout design problems. For example

computer networking layout in a university or cable tv network in a locality.

2. Demonstrate in a program how an electrical network can be modeled using graphs.

3. Demonstrate in a program how a maze can be modeled using a program.

4. Write a program to implement the Kruskal�s algorithm to get the MST of a given graph.

5. Write a program to implement the Prim�s algorithm to get the MST of a given graph.

6. Write a program to implement the Reverse-delete algorithm to get the MST of a given graph.

7. Demonstrate how graphs can be used to model a pattern in a geographical survey.

8. Write a program to demonstrate how graphs can be used to map airlines ways between multiple

cities.

9. Write a program to demonstrate how graphs can be used to model electric circuits.

10. Write a program to demonstrate how graphs can be used to represent Bayesian Networks.

11. Write a program to find the minimum cabling length in a locality using minimum spanning tree

algorithm.

12. Write a program to find if there is more than one path between two vertices in a graph.

13. Write a program to find the shortest edge between every pair of vertices.

14. Write a program to find if there exists a path between two nodes where there are couples of nodes

on the path apart from the source and destination.

15. Demonstrate how graphs can be used to model a natural calamity stricken area.

10

Sorting
Micro, Macro, Mammoth

INTRODUCTION

Sorting is a very important part of computer science. Sorting is needed as part of different algorithms

and careful selection of a good sorting algorithm can really make a change in an algorithm. In this

chapter we will discuss few basic sorting algorithms and analyze their performances against each other.

Few sorting algorithms will be discussed and will be left for the reader to implement at the chapter end.

10.1 FUNCTIONS IN THIS CHAPTER

These programs can sort a sequence of numbers either in ascending or in descending order as indicated

by the last boolean field.

These functions take the arguments by value, but return the sorted array as pointer to integer. So, in

the calling function the change will not be made to the original array. What would have happened if the

functions are called by Call By Reference? The change can be stored in any integer pointer.

10.2 SORTING ALGORITHMS CLASSIFICATIONS

This figure shows an overall view of different sorting algorithms classified under broad categories.

Random sort is the group of most impractical sorting algorithms. On the other hand, hybrid sort is the

home to the algorithms that have inherited the best qualities of their cousins in other sorting families or

uses two or more algorithms as part of a single algorithm (See Fig. 10.1).

10.3 EXCHANGE SORT ALGORITHMS

Explain Bubble Sort Algorithm

Bubble sort is a comparison sorting algorithm. It compares consecutive elements one by one till

everything is sorted. This is one of the very slow algorithms. Basically the original version of bubble sort

Sorting (Micro, Macro, Mammoth) 401

is the slowest of all the comparison sort algorithms as far as the typical worst case performance is

concerned.

In case of worst case, it takes one entire pass for an element to find its right place in the sequence. So

if there are N number of elements in the un-ordered sequence, then it will take n passes to sort the

element properly. Thus, the worst case performance of bubble sort is in the square of N.

Pass 1:

(Given Sequence)

29999 30000 29998 29997 29996 29995 29994 29993 29992 29991

29999 29998 30000 29997 29996 29995 29994 29993 29992 29991

29999 29998 29997 30000 29996 29995 29994 29993 29992 29991

29999 29998 29997 29996 30000 29995 29994 29993 29992 29991

29999 29998 29997 29996 29995 30000 29994 29993 29992 29991

29999 29998 29997 29996 29995 29994 30000 29993 29992 29991

29999 29998 29997 29996 29995 29994 29993 30000 29992 29991

29999 29998 29997 29996 29995 29994 29993 29992 30000 29991

29999 29998 29997 29996 29995 29994 29993 29992 29991 30000

Fig. 10.2

Fig. 10.1

402 Data Structures using C

Pass 2:

The sequence generated at the end of Pass 1 is the input sequence to the next pass.

Look carefully below.

At the end of Pass 2 the second highest number will find its place.

Please note the sequence that is generated at the end of Pass 2.

29998 29997 29996 29995 29994 29993 29992 29991 29999 30000

Thus it will take 10 passes to sort this worst case sequence.

Table for the total number of comparisons n^2 � 2*n + 1, because in each pass there are n�1 compari-

sons made and n�1 passes needed to sort n numbers of elements.

Example 10.1 Write a program to demonstrate Bubble Sort.

Solution

enum {ASC,DSC};//Tells the function how to sort ?
enum {NO,YES};//Used as flag in the program..

int* BubbleSort(int array[],int size,int how)
{

int i=0;
int j=0;
int t;
int k=0;
//To keep a check whether the

 //array is already sorted or not.
int swapped=0;
for(i=0;i<size-1;i++)
{

swapped=0;
for(j=0;j<size-1;j++)
{

//ascending ?
if(how == ASC)
{

if(array[j]>array[j+1])
{

t = array[j];
array[j]=array[j+1];
array[j+1]=t;
swapped++;//Switched!

}
}
//descending ?
if(how == DSC)

Sorting (Micro, Macro, Mammoth) 403

{
if(array[j]<array[j+1])
{

t = array[j];
array[j]=array[j+1];
array[j+1]=t;
swapped++;

}

}
}

}
return array;

}

To call this function,

int main()
{

int *b;
//a is some integer array of 10 integers
//Sorting the array in Descending Order.
b=BubbleSort(a,10,DSC);
//Now do what you want with the sorted array b
return 0;

}

10.4 WHAT IS THE TIME COMPLEXITY OF BUBBLE SORT?

Worst Case È(n2)

Average Case -
Best Case È(n)

Although, bubblesort shares the same worst case time complexity with some of the other algorithms

like insertion sort, selection sort, etc. The average case performance of bubble sort is prohibitively low

as compared with its Q Q Q Q Q (n2) family cousins. Thus, Donald Knuth commented that this sort has nothing to

offer other than a catchy name.

Tabular Representation of Bubble Sort Performance

Number of Items Time Taken To Sort (in CTPS)

10 0

100 0

1000 0.016

10000 0.594

15000 1.031

20000 1.766

25000 2.703

30000 3.828

404 Data Structures using C

Graphical Representation of Worst-Case Bubble Sort Performance

Fig. 10.3 This graph shows the worst case performance of the switched bubble sort

It is very clear from the above graph that the bubble sort performance is quadratic in nature. Later, in

this chapter we will see how this poor performance algorithm can be modified slightly to give birth to

another algorithm known as Comb Sort which performs quick sort.

These above plot is generated for 30,000 numbers starting from 30,000 to 1 and sorted ascending.

This plot doesn�t deal with the average case, instead they deal with the worst case.

The average case performance analysis of a sorting algorithm is mathematically involved and is out

of scope of this book.

10.5 WHAT IS ODD-EVEN TRANSPOSITION SORT?

This is a variation of bubble sort where there are two alternating phases, namely, even phase and odd

phase.

Even Phase The numbers in the even locations of the array, starting from 0 shift themselves with

their immediate right neighbors.

Odd Phase The numbers in the odd locations of the array, starting from 0 shift themselves with

their immediate right neighbors.

The phases continue until we reach the totally sorted array of the elements. The first step is an even

phase sort.

Here is an example

The algorithm has QQQQQ (n2) time complexity.

Example 10.2 Write a program to demonstrate Bidirectional Bubble Sort.

Solution This is a version of bubble sort. Here in each pass the direction of sorting is changed alterna-

tively. This sort is also known as cocktail shaker sort, shaker sort, ripple sort, shuttle sort and happy

hour sort. This sort improves the performance of the bubble sort.

Sorting (Micro, Macro, Mammoth) 405

Fig. 10.4

int* BidirectionalBubbleSort(int MyArray[],int size,int how)
{

int i=0;
int j=0;
int t=0;
int k=0;
int p=0;
int swapped=0;
int s=0;
for(p=0;p<size-1;p++)
for(i=0;i<size-1;i++)
{

if(i%2==0)
{

for(j=0;j<size-1;j++)
{

if(how == ASC)
{

if(MyArray[j]>MyArray[j+1])
{

t = MyArray[j];
MyArray[j]=MyArray[j+1];
MyArray[j+1]=t;
swapped++;

}
}
if(how == DSC)
{

if(MyArray[j]<MyArray[j+1])
{

406 Data Structures using C

t = MyArray[j];
MyArray[j]=MyArray[j+1];
MyArray[j+1]=t;
swapped++;

}

}
}

if(i%2!=0)
{

for(j=size-1;j>=0;j--)
{

if(how == ASC)
{

if(MyArray[j]>MyArray[j+1])
{

t = MyArray[j];
MyArray[j]=MyArray[j+1];
MyArray[j+1]=t;
swapped++;

}
}
if(how == DSC)
{

if(MyArray[j]<MyArray[j+1])
{

t = MyArray[j];
MyArray[j]=MyArray[j+1];
MyArray[j+1]=t;
swapped++;

}

}
}

}
}

}
return MyArray;

}

10.6 WHAT IS THE TIME COMPLEXITY OF BIDIRECTIONAL BUBBLE SORT?

Worst Case È(n
2
)

Average Case -

Best Case È(n)

Sorting (Micro, Macro, Mammoth) 407

Tabular Representation of Bidirectional Bubble Sort Performance

Number of Items Time Taken To Sort (in CTPS)

10 0

100 0

1000 0

10000 0.265

15000 0.422

20000 0.734

25000 1.141

30000 1.656

Graphical Representation of Bidirectional Bubble Sort Performance

Fig. 10.5

The steeper curve shows the Bubble sort. So, you can clearly see that bidirectional bubble sort is way

faster than simple bubble sort. Now, we will discuss about a sorting algorithm called Comb Sort, that is

developed by a slight modification of bubble sort. But worst case performance of comb sort is way better

than that of bubble sort.

Example 10.3 Write a program to demonstrate Comb Sort (also known as Doboseiwicz Sort).

Solution Before we discuss about comb sort, we need to learn a well-known problem of bubble sort.

The problem is known as Turtles and Rabbits.

Turtles and Rabbits

The large values at the beginning of a sequence takes not much time to reach their correct positions in

408 Data Structures using C

the list when the list is being sorted in an ascending order by bubble sort. These large values are known

as rabbits.

On the other hand, the smaller values at the end of the sequence takes longer to crawl up to the front

(assuming that we are doing an ascending sort). These values are known as turtles.

They take more time to crawl up to their correct position in an ascending sequence, because in bubble

sort the comparison is always done between two consecutive (with a distance or gap 1) elements.

To combat this Turtle-n-Rabbits problem, Stephen Lacey and Richard Box came up with an algo-

rithm, called Comb sort. In 1980, Doboseiwicz also invented the same algorithm. So, it is also known as

Doboseiwicz sort. In comb sort, the comparison between the two elements is done but with a longer gap

between them, instead of one unlike bubble sort.

This helps the rabbits to jump to the end of the list faster and it kills the turtles at the end easily. Comb

sort does this by resetting the gap between the two values of the list. The update gap function below does

that. Richard and Stephen proved that a shrink factor (by which factor the gap between two elements to

compare reduces) of 1.3 gives satisfactory results.

With a shrink factor of 1.3, there are only three possible ways for the list of gaps to end: (9,6,4,3,2,1),

(10,7,5,3,2,1) , (11,8,6,4,3,2,1). Only the last of these endings kills all turtles before the gap becomes 1.

Therefore, significant speed improvements can be made if the gap is set to 11 whenever it becomes

either 9 or 10. This variation of comb sort is called Comb Sort 11.

int update_gap(int gap)
{
 gap = (gap * 10) / 13;
 if(gap == 9 || gap == 10)
 gap = 11;

if(gap < 1)
return 1;

return gap;

}

int* CombSort(int array[],int size)
{

int temp=0;
int i=0;
int gap = size;
int swapped;
do
{

swapped = NO;
gap = update_gap(gap);
for(i=0;i< size - gap;i++)
{

if(array[i] > array[i + gap])
{

//Moving the Turtle to the top

//Helping the Rabbits go bottom
swapped = YES;
temp = array[i];
array[i] = array[i + gap];

Sorting (Micro, Macro, Mammoth) 409

array[i + gap] = temp;
}

}

}while (gap > 1 || swapped);//Tells you when to stop!

return array;//returns the sorted array.
}

10.7 WHAT IS THE TIME COMPLEXITY OF COMB SORT?

Worst Case È(n

log n)

Average Case È(n

log n)

Best Case È(n

log n)

Tabular Representation of Comb Sort Performance

Number of Items Time Taken To Sort (in CTPS)

10 0

100 0

1000 0

10000 0

15000 0

20000 0.016

25000 0

30000 0.015

Graphical Representation of Worst-Case Comb Sort Performance

Fig. 10.6

410 Data Structures using C

Notice: How a small change can lead to high performance

Comb sort worst case performance is comparative with more complex and speedy algorithms like quick

sort or flash sort.

10.8 INSERTION SORT ALGORITHMS

Example 10.4 Write a program to demonstrate Straight Insertion Sorting.

Solution Straight insertion sorting is the simplest in-situ (Read in-place) sorting algorithm. An in-situ

algorithm is a sorting algorithm where the element finds its place in the sorted sequence without any

kind of comparison or exchange.

Starting from I = 2 up to the ith element, the elements are placed in place. Then the counter is

incremented and the elements find their place.

Initial values

44 55 12 42 94 18 06 67

I = 2 55 44 12 42 94 18 06 67

I = 3 12 44 55 42 94 18 06 67

And so on

I = 7 06 12 18 42 44 55 94 67

I = 8 06 12 18 42 44 55 67 94

int* InsertionSort(int array[],int size,int how)
{

int i;
int j;
int value;
for(i=1;i<size;i++)
{

value = array[i];
if(how==ASC)
{

for(j=i-1;j>=0 && value<array[j];j--)
array[j+1]= array[j];

array[j+1]=value;
}
if(how==DSC)
{

for(j=i-1;j>=0 && value>array[j];j--)
array[j+1]= array[j];

array[j+1]=value;
}

}
return array;

}

10.9 WHAT IS THE TIME COMPLEXITY OF INSERTION SORT?

Worst Case È(n
2
)

Average Case -

Best Case È(n)

Sorting (Micro, Macro, Mammoth) 411

Tabular Representation of Insertion Sort Performance

Number of Items Time Taken To Sort (in CTPS)

10 0

100 0

1000 0

10000 0.250

15000 0.156

20000 0.219

25000 0.296

30000 0.344

Graphical Representation of Worst Case Performance of Straight Insertion Sort

Fig. 10.7

This curve is clearly much more steeper than the previous graph. This proves that insertion sort is

better than bubble sort as the number of elements increases. But for smaller amount of elements we can

choose any of these two and it doesn�t make any interpretable difference.

10.10 COMPARISON WITH THE IDEAL O(N^2) CURVE

Insertion Sort, normally means, the straight insertion sort, not any other variant of it.

Example 10.5 Write a program to demonstrate Binary Insertion Sorting.

Solution The obvious development over the straight insertion sort is an algorithm that finds the in-situ

location of the element. Binary search is a better way to search an item from a sorted list. If you notice

carefully, you will find that in straight insertion sort, the destination sequence, in which the new item has

to be inserted is already sorted. Therefore, we can use binary search to find its in-situ location.

So as the algorithm uses binary search to find the new in-situ location of the item being inserted thus

the name binary insertion is justified.

412 Data Structures using C

Fig. 10.8

int* BinaryInsertionSort(int array[],int size)
{

int i=0;
int j=0;
int left=0;
int right=0;
int middle=0;
int temp=0;
for(i=1;i<size;i++)
{

temp = array[i];
left = 0;
right = i;
while(left<right)
{

middle = (left+right)/2;
if(temp>=array[middle])

left = middle+1;
else

right = middle;
}
for(j=i;j>left;--j)
{

temp = array[j-1];
array[j-1]=array[j];
array[j]=temp;

}
}
return array;

}

Sorting (Micro, Macro, Mammoth) 413

10.11 WHAT IS THE TIME COMPLEXITY OF BINARY INSERTION SORT?

Worst Case È(n
2
)

Average Case È(n
2
)

Best Case È(n

log n)

Tabular Representation of Binary Insertion Sort Performance

Number of Items Time Taken To Sort

10 0

100 0

1000 0

10000 0.265

15000 0.203

20000 0.282

25000 0.375

30000 0.453

Graphical Representation of Binary Insertion Sort Performance

Fig. 10.9

If you notice carefully, then you will understand that binary insertion sort will also have a O(n^2) time

complexity.

10.12 PROBLEMS WITH INSERTION SORT: SHIFTING

Although insertion sort looks very intuitive, it is not a very good algorithm because in case of a very

414 Data Structures using C

large sequence the insertion of an element in a sub-sequence involves a very expensive operation called

shifting.

Selection sort, is a sorting algorithm that addresses this issue.

To combat the problem of shifting there is a version of insertion sort popularly known as Library Sort

due to its similarity to shifting books on a library shelf.

10.13 EXPLAIN THE LIBRARY SORT ALGORITHM

(ALSO KNOWN AS GAPPED INSERTION SORT)

Suppose a librarian were to store his books alphabetically on a long shelf, starting with the A�s at the left

end, and continuing to the right along the shelf with no spaces between the books until the end of the Z�s.

If the librarian acquired a new book that belongs to the B section, once he finds the correct space in the

B section, he will have to move every book over, from the middle of the Bs all the way down to the Zs in

order to make room for the new book. This is an insertion sort. However, if he were to leave a space after

every letter, as long as there was still space after B, he would only have to move a few books to make

room for the new one. This is the basic principle of the Library Sort.

The only disadvantage of this algorithm is the requirement of the extra space of order O(n).

Example 10.6 Write a program to demonstrate Shell Sort.

Solution This is a variation of insertion sort, discovered by D.L.Shell in 1959.

First of all elements which are 4 position apart are grouped and sorted separately. This process is

called a 4 Sort. In the following example of eight items, each group contains exactly 2 elements. After

this first pass, the elements are re-grouped into the groups with elements two position apart. Then they

are sorted again. This process is known as 2-sort. Finally, in a third pass all elements are sorted in an

ordinary sort or 1-sort.

4-Sort yields

2-Sort yields

1 Sort yields

612 18 42 44 55 67 94

Fig. 10.10

Sorting (Micro, Macro, Mammoth) 415

int* ShellSort(int array[],int size)
{

int temp;
int span;
int i;
int swapped;
span = size/2;
do
{

do
{

swapped=0;
for(i=0;i<size-span;i++)
{

if(array[i]>array[i+span])
{

temp=array[i];
array[i]=array[i+span];
array[i+span]=temp;
swapped=1;

}
}

}while(swapped);
}while(span=span/2);
return array;

}

10.14 WHAT IS THE TIME COMPLEXITY OF SHELL SORT?

Worst Case È(n
1.5

)

Average Case È(n
2
)

Best Case È(n)

Tabular Representation of Shell Sort Performance

Number of Items Time Taken To Sort

10 0

100 0

1000 0

10000 0

15000 0

20000 0

25000 0.016

30000 0

You can see that the worst-case performance of shell sort is comparable to that of quick sort.

416 Data Structures using C

Graphical Representation of Worst-Case Shell Sort Performance

Fig. 10.11

10.15 SELECTION SORT ALGORITHMS

Example 10.7 Write a program to demonstrate Straight Selection Sorting.

Solution This method is based on the following principle:

1. Select the minimum element in a sub-sequence.

2. Exchange it with the first element.

int* SelectionSort(int MyArray[],int length, int how)
{

int i,j,min,minat;
if(how == ASC)
{

for(i=0;i<length-1;i++)
{

minat=i;
min=MyArray[i];

 for(j=i+1;j<length;j++)
 {

 if(min>MyArray[j])
 {

 minat=j;
 min=MyArray[j];

 }
 }
 int temp=MyArray[i] ;
 MyArray[i]=MyArray[minat];

Sorting (Micro, Macro, Mammoth) 417

 MyArray[minat]=temp;
}

}
else
{

for(i=0;i<length-1;i++)
{

minat=i;
min=MyArray[i];

for(j=i+1;j<length;j++)
{

 if(min<MyArray[j])
 {

 minat=j;
 min=MyArray[j];

 }
 }
 int temp=MyArray[i] ;
 MyArray[i]=MyArray[minat];
 MyArray[minat]=temp;

}
}

return MyArray;
}

10.16 WHAT IS THE TIME COMPLEXITY OF SELECTION SORT?

Worst Case È(n
2
)

Average Case È(n
2
)

Best Case È(n
2
)

Tabular Representation of Selection Sort Performance

Number of Items Time Taken To Sort

10 0

100 0

1000 0.015

10000 0.391

15000 0.593

20000 0.985

25000 1.484

30000 2.078

418 Data Structures using C

Graphical Representation of Selection Sort Performance

Fig. 10.12

It is very clear from the graph that the performance of selection sort is also quadratic but it is better

than the bubble sort.

We may conclude that straight selection sort is to be preferred over straight insertion sort although in that

10.17 WHAT IS BINGO SORT?

Bingo Sort is a variation of selection sort that repeatedly looks through the remaining items to find the

greatest item moving all items with that value to their final location. This is more efficient if there are

many duplicate values.

To see why it is more efficient, consider one value. Selection sort does one pass through remaining

items for each item moved. Bingo sort does two passes for each value (not item): one pass to find the

next biggest value, and one pass to move every item with that value to its final location. Thus if on

average there are more than two items with each value, bingo sort may be faster.

10.18 HYBRID SORT ALGORITHMS

Any sorting algorithm that uses two or more algorithms to sort the elements of a sequence is called a

hybrid sort. One such example is J-Sort.

10.19 WHAT IS J-SORT?

J Sort is a sorting algorithm that uses strand sort for fewer than 40 elements and shuffle sort for more

than 40 elements. So J Sort is basically strand sort for an array of 40 elements or less and it is a hybrid of

two sorting algorithms strand sort and shuffle sort for more than 40 elements.

Try Yourself: Implement J Sort for arbitrary list of numbers. Use linked lists.

Sorting (Micro, Macro, Mammoth) 419

10.20 DIVIDE-N-CONQUER SORTING ALGORITHMS

In this section those sorting techniques will be discussed that use a divide and conquer strategy to sort

the array by splitting the array in many sub lists.

10.21 HOW TO WRITE A FUNCTION TO DEMONSTRATE QUICK SORT

The name of this sorting algorithm is really justified. Quick sort algorithm was developed by C.A.R.

Hoare that, on average makes O(n log n) Comparisons to sort n elements. However in the worst case it

makes QQQQQ(n2) comparisons. Typically, Quick sort is way faster than its O(n log n) family cousins. But this

is not a stable algorithm.

Quick sort follows the Divide-and-Conquer strategy like merge sort. Thus, Quick sort is v

1. It picks up an element from the list. The element is known as pivot.

2. Re order the elements so that the elements which are less than the pivot comes before it and the rest

elements which are greater than the pivot comes next to it. After this partitioning, pivot will find its

final place in the list.

3. Recursively perform tasks 1 and 2 for the sub lists of smaller and larger numbers.

int* QuickSort(int array[],int first,int last)
{

int temp;
int low,high,pivot;
low = first;
high = last;
pivot = array[(first+last)/2];
do
{

while(array[low]<pivot)
low++;

while(array[high]>pivot)
high--;

if(low<=high)
{

temp = array[low];
array[low++] = array[high];
array[high--]=temp;

}
}while(low<=high);
if(first<high)

QuickSort(array,first,high);
if(low<last)

QuickSort(array,low,last);
return array;

}

10.22 WHAT IS THE TIME COMPLEXITY OF QUICK SORT?

Worst Case È(n
2
)

Average Case È(n

log n)

Best Case È(n

log n)

420 Data Structures using C

Tabular Representation of Quick Sort Performance

Number of Items Time Taken To Sort

10 0

100 0

1000 0

10000 0

15000 0

20000 0

25000 0

30000 0.016

10.23 HOW TO SELECT THE PIVOT IN QUICK SORT

Selecting the pivot is a very important activity as far as the performance of Quick sort is concerned. In

some implementations the first element of the list is chosen as the pivot. In some implementations the

median of the first three or three randomly chosen number is selected as pivot. This implementation is

called Sample Sort.

According to research, if the pivot is selected to be the middle element of the list, then the Quick sort

performance is optimal.

If the array is almost sorted, quick sort takes longer than expected and often goes out to perform by

lower speed algorithms. To avoid this, sometimes the entries are scrambled before those are fed to quick

sort.

Example 10.8 Write a program to demonstrate Merge Sort.

Solution

void MergePass(int array[],int top,int size,int bottom)
{

int temp[100];
int f = top;
int s = size + 1;
int t = top;
int upper;
while(f<=size && s<=bottom)
{

if(array[f]<=array[s])
{

temp[t]=array[f];
f++;

}
else
{

temp[t]=array[s];
s++;

}
t++;

}
if(f<=size)
{

Sorting (Micro, Macro, Mammoth) 421

{
for(;f<=size;f++)
{

temp[t]=array[f];
t++;

}
}
else
{

for(;s<=bottom;s++)
{

temp[t]=array[s];
t++;

}
}
for(upper=top;upper<=bottom;upper++)
{

array[upper]=temp[upper];
}

}

int* MergeSort(int array[],int m,int n)
{

int mid;
if(m!=n)
{

mid = (m+n)/2;
MergeSort(array,m,mid);
MergeSort(array,mid+1,n);
MergePass(array,m,mid,n);

}
return array;

}

10.24 WHAT IS THE TIME COMPLEXITY OF MERGE SORT?

Worst Case O(n log n)

Average Case -
Best Case O(n log n)

Example 10.9 Write a program to demonstrate Stooge Sort.

Solution

int* StoogeSort(int array[],int start,int end)
{

int temp=0;
int t;

if(end-start==1)
{

422 Data Structures using C

if(array[end]<array[start])
{

temp = array[end];
array[end]=array[start];
array[start]=temp;

}
}
if(end-start>1)
{

t = (end-start+1)/3;
StoogeSort(array,start,end-t);
StoogeSort(array,start+t,end);
StoogeSort(array,start,end-t);

}

return array;
}

10.25 WHAT IS THE TIME COMPLEXITY OF STOOGE SORT?

Worst Case È(n
2.7

)

10.26 DISTRIBUTION SORTING ALGORITHMS

These algorithms deals with the numbers by first sorting them into different regions and then sort the

individual regions and then concatenate. Which number will land up to which place is strictly part. That

way, merge sort is a special type of distribution sort.

10.27 BUCKET SORT

Bucket sort is a specialization of pigeonhole sort. It works by partitioning the numbers in the array by a

finite number of buckets. Each bucket is then sorted individually either by using a different algorithm or

by using bucket sort. Bucket sort runs in linear time O(n).

This figure gives an idea how bucket sort works.

Fig. 10.13

Bucket sort works as follows:

Set up an array of initially empty buckets the size of the range.

Go over the original array, putting each object in its bucket.

Sort each non-empty bucket.

Put elements from non-empty buckets back into the original array.

To find out which number will go in which bucket a function can be written like

msbits(x, k) which will return the k most significant digit of x.

Sorting (Micro, Macro, Mammoth) 423

Fig. 10.14

Try Yourself: Use jagged linked list to store the numbers as shown above. Then sort each linked list

separately and then merge them into one linked list sequentially to obtain the sorted numbers.

10.28 PERFORMANCE COMPARISONS OF THE SORTING ALGORITHMS

WITH O (n^2) TIME COMPLEXITY

Fig. 10.15

424 Data Structures using C

From the graph, which is produced with the values from the tables above, we can easily conclude that
binary insertion sort is clearly the best algorithm of all those that are compared here and bubble sort is
definitely the worst. From the graph, fortunately we can see a clear demarcation of performance of these
sorting algorithms.

So, as far as the worst case performance is concerned these sorting algorithms have the following
relationship.

Bubble Sort < Selection Sort < Cocktail Sort < Insertion Sort < Binary Insertion Sort
But we have seen earlier that how a slight modification in the bubble sort could generate algorithms

like comb sort that is equal to quick sort as far as the worst case is considered.
Shell sort, comb sort, quick sort has almost the same performance curve. In the beginning of this

chapter the sort algorithms are classified according to the technique of operations. They can also be
classified according to their performance or time complexity. Broadly there are two groups. Algorithms
with worst case time complexity QQQQQ(n2) and algorithms with time complexity QQQQQ(n log n). Clearly, the
algorithms with QQQQQ(n log n) is better than their QQQQQ(n2) cousins.

10.29 PERFORMANCE COMPARISONS OF THE SORTING ALGORITHMS

WITH O (n log n) TIME COMPLEXITY

Clearly, quick sort is the best of the three. For a certain range heap and merge behave the same way.

But after that threshold, merge sort out-performs heap sort due to the heavy recursion overhead in the

later.

Fig. 10.16

10.30 BOGO SORT AND FRIENDS

Bogo sort is probably the most inefficient sorting technique one rational human being could ever imag-

ine. Bogo sort uses two steps to sort the elements of the array.

1. It throws the number randomly.

2. Checks whether the numbers are in order or not.

3. If they are not in order then it generates another randomization of them.

4. The above steps continue till the array is sorted.

Sorting (Micro, Macro, Mammoth) 425

Due to its tremendous inefficiency it is jokingly called stupid sort, bozo sort, blort sort, monkey sort,

random sort and drunk man sort.

Bozo sort (a Variation of Stupid Sort) Bozo sort is another sorting algorithm based on

the random numbers. If the list is not in order, it picks two items at random and swaps them, then checks

to see if the list is sorted. It also faces the same pseudo-random problems as bogosort�it may never

terminate.

10.31 TREE SORT

Binary Tree can be used to sort numbers very easily. Suppose we have to sort numbers 170, 45, 75, 90,

2, 24, 802 , 66 then we can create a binary tree with these numbers as shown in Fig. 10.17.

Fig. 10.18Fig. 10.17

Now if we traverse the tree in-order as shown by the broken

line in Fig. 10.18

we will get the numbers sorted in increasing order as

2, 24, 45, 66, 75, 90, 170, 802.

On the other hand, if we traverse the tree using post order as

shown by the broken line in the Fig. 10.19, we will get the num-

bers in decreasing order as

802, 170, 90, 75, 66, 45, 24, 2

10.32 LEXICOGRAPHIC SORT

 Before we understand what is Lexicographic sort, we need to

understand what is Lexicographic order.

Fig. 10.19

Lexicographic Order A d-tuple is a sequence of d keys (k1,k2,k3, � , kd) where key ki is said

to be the ith dimension of the tuple.

Lexicographic Sort Let Ci be the comparator that compares two tuples by their ith dimension.

Let StableSort(S,C) be a stable sorting algorithm that uses comparator C.

Lexicographic sort sorts d tuples in lexicographic order by executing StableSort algorithm d times

once per dimension.

Lexicographic sort runs in O(dT(n)) time where T(n) is the stable sort time complexity.

426 Data Structures using C

An example

Input tuple sequence (7,4,6) (5,1,5) (2,4,6) (2,1,4) (3,2,4)

Pass 1: (2,1,4) (3,2,4) (5,1,5) (7,4,6) (2,4,6)

Pass 2: (2,1,4) (5,1,5) (3,2,4) (7,4,6) (2,4,6)

Pass 3: (2,1,4) (2,5,6) (3,2,4) (5,1,5) (7,2,4)

10.33 RADIX SORT

Radix Sort is a special type of Lexicographic that uses bucket sort as the StableSort algorithm. Radix

sort is applicable to tuples where the keys in each dimension i are integers in the range [0 to N�1]

Radix Sort can be of different types depending on the digit on which the sorting is being performed.

When the sorting is performed on the Most Significant Digit then the sorting is known as MSD Radix

Sort. On the other hand, when the sorting is done on the least significant bit then the sorting is known as

Least Significant Bit Radix Sort.

Let�s say we have a list of numbers like

120, 340,43,2,304,502,230,1

If we extend the above numbers for 3 digits, then the numbers are

120,340,043,002,304,502,230,001

So, after sorting the Most Significant Digit we get

502,340,304,230,120,43,2,1

Please note that only after first pass the numbers are sorted in descending order. This has happened

due to the special nature of this sequence. Radix sort uses bucket sort as the stable sorting algorithm.

10.34 ADDRESS CALCULATION SORT USING HASHING

If we can calculate the location of a value from a set of variables to sort from, then there will be no

involvement of comparison of one value with the other. Thus the program will be faster because there

will be no comparisons involved. We can use hash functions to calculate the locations of a value. In

applying a hashing function to the sorting process, a particular kind of hashing function will be required.

Let us assume that we have a hashing function H with the property

x1 < x2, implies that H(x1) <= H(x2)

A function which exhibits this property is called a non-decreasing or order preserving, hashing func-

tion. When such a function is used to hash a particular key into a particular number to which some

previous keys have already been hashed (That is a collision occurs) then the new key is placed in the set

of colliding records so as to preserve the order of the keys. The result of hashing and inserting the

sample keys using a non decreasing hashing function in which all keys in the ranges 1�20, 21�40, 41�

60, 61�80 and 81�100 are each hashed into a different set as sorting proceeds. This is shown in the

following figure

42, 23, 74, 11, 65, 57, 94, 36, 99, 87, 70, 81, 61

A general algorithm for this sorting process follows:

1. Initialized hash entries to NULL.

2. Repeat through step 4 while there are still input records.

3. Input a hash record.

4. Insert table into appropriate linked list.

5. Concatenate the non-empty linked lists into one.

Sorting (Micro, Macro, Mammoth) 427

Fig. 10.20

428 Data Structures using C

10.35 APPLICATION OF SORTING

Sorting is one of the most fundamental processes that are involved in all the computer programs in one
way or the other. Here are some generic areas where sorting is the key to the solution.
l Clustering l Finding the greatest scorer in the online pool competition
l Business clustering l Finding the largest shape when their dimensions are given
l Finding shortest path l Finding the largest file in the hard disk
l Finding the most wanted DVD in l Detecting cancer cells by statistical analysis

the city

10.36 WHAT IS CLUSTERING?

Clustering is an operation to group a set of elements depending on the value of a particular parameter.
For example, we want to find out what is the number of college students who studies data structure. So,
the subject being studied is the parameter and the students who studies that form the cluster. So, a loose
definition of clustering could be the process of organizing objects into groups whose members are
similar in some way.

Sorting is the key to clustering. Suppose we have a set of student records and we have to cluster them.
We can write a program that would interactively find the clusters of all the different subjects, for exam-
ple, a cluster of data structure students, a cluster of numerical methods, students, etc.

10.37 BUSINESS CLUSTERING

There are always some stakeholders for a business. If the business performs well, then their stakeholders
will also gain from it. For example, the better be the tourism business the better the transportation
business because the transportation is a supporting business to tourism. Government of a nation may
want to find what is the business that can grow together.

Business clustering is a technique that uses sorting to find out several numerical values (For example,
share prices) that tell about the prosperity of a company to find out what other business is also growing/
has the potential to grow along with it.

10.38 FINDING THE SHORTEST PATH

This is one of the most used examples and used by GPS enabled car driving assistants. For example, if
you want to go to a place in a city from a hotel in the same city. There could be n number of ways to reach
that point. You calculate the Euclidian distance between them and store them in an array and find the
shortest path length.

10.39 FINDING THE MOST WANTED DVD IN THE CITY

A DVD supplying company may want to find out what is most wanted by their customers in a city. They
could easily post a survey in the local online newspaper. Readers could vote online. Depending on the
polling results, the most wanted DVD in the city can be found. These type of problems are very obvious
applications of sorting and Merge Sort is one of the most suited algorithms for these types of activities,
because the user base is large so we will probably get more response than could be loaded in a computer
memory. External sorting techniques could be used.

10.40 FINDING THE GREATEST ONLINE SCORER IN THE ONLINE POOL

COMPETITION

Suppose, few people are playing online pool from different geographical locations and their scores are
being constantly monitored and stored in a database. At the end of the game if a user clicks �Find Rank�

Sorting (Micro, Macro, Mammoth) 429

button, all the player data will be sorted and the user�s position will be displayed amongst the playing

members. This is done by sorting the players by their score.

10.41 FINDING THE LARGEST SHAPE WHEN THEIR DIMENSIONS ARE GIVEN

A surveyor finds it difficult to calculate the area and perimeter of all the shapes that he measures on the

fly. So, he writes back the dimensions measured on a flat file. The sorting application program reads that

and finds out what shape has the maximum area/volume.

R E V I S I O N O F C O N C E P T S

Some Key Facts about Sorting and Terminology

l Sorting:

n In computer science and related fields (probably everything under the sun) sorting normally

means to order a set of variables either in ascending or in descending order.

n This means ordering a set of elements.

n Supposedly, 25% of all CPU cycles are spent sorting.

l Sorting is fundamental to most other algorithmic problems, for example, binary search.

l Many different approaches lead to useful sorting algorithms, and these ideas can be used to solve

many other problems.

l CTPS: Clock Ticks Per Second

n This is a measure of how many CPU clock ticks occur within a second.

n For different system the CTPS will be different.

l Stable: A sort algorithm is said to be stable, if it reserves the relative order of records with equal

keys.

l Spatial Complexity:

n This discusses about

� Does a particular algorithm use prohibitive amount of memory?

� Is the target hardware ok as far as memory is concerned?

n Massive Spatial Complexity is not a big issue in PCs but when we are coding for embedded

software.

l Time Complexity:

n Time Complexity of an algorithm is the measure of the time it takes to complete a set of tasks.

n There are few ways to quantify this measure. One of them is to use functional notation like

Big O and Omega.

l Big O: This is a notation to denote the time complexity.

n In sorting the operations being performed depend on the number of entries in the array or

sequence.

n So if it is found that the sorting algorithms take a time that is proportional to the number of

elements then the time complexity of the algorithm is given by QQQQQ(n) and in case we see that

the time complexity is directly proportional to the square of the number of elements being

sorted then the time complexity is QQQQQ(n^2).

l Best Time Complexity Possible: QQQQQ(n) because one needs to travel all the elements of the list at

least once.

430 Data Structures using C

l Worst Time Complexity Possible QQQQQ(n2)

l External Sorting:
n Sometimes the data to sort becomes so large that it becomes difficult to load the entire data in

the computer memory to sort them. In such cases external storage devices like tape drive, etc.
are used.

n Merge sort is typically used for external sorting.
l Parallel Sorting: In a system with multiple processors, the operations could be distributed easily

between multiple processors. Suppose there are n number of operations to be performed in order
to sort a sequence and there are p number of processors. So each processor will be loaded with
n/p number of operations and ideally it will take n time less time.

R E V I E W Q U E S T I O N S

1. What is the time complexity of strand sort?
2. What is the time complexity of J-Sort?
3. What is the time complexity of shuffle sort?
4. Does the time complexity of Quick Sort depends on the pivot?
5. Is Quick sort a good algorithm to use if the array is almost sorted?
6. Which one is better 1000N or O(n^2)?

P R O G R A M M I N G P R O B L E M S

1. How does quick sort perform if the data is almost sorted?
2. Write a program to demonstrate MSD Radix Sort. The program should be able to sort numbers of

n digits, where n may be any arbitrarily long or short.
3. Write a program to demonstrate LSD Radix Sort. The program should be able to sort numbers of

n digits, where n may be any arbitrarily long or short.
4. Write a program to demonstrate Counting Sort Algorithm.
5. Discuss the algorithm for 2-way Merge Sort.
6. Create a program to do a performance analysis of all these sorting algorithms and find out the best

sorting algorithm for a given sequence of integers.
7. Prove the time complexity of Insertion Sort.
8. Write a program to find the top 10 rented CDs in a CD library.
9. Write a program to find the business cluster. Assume that a share value chart is given where the

company names and their share prices are written. All you have to do is to identify the companies
that have some relation in share prices.

10. Write a program to demonstrate J Sort.
11. Write a program to demonstrate Bucket Sort.
12. Write a program to demonstrate Polyphase Merge Sort.
13. Compare their performance on a graph.
14. Compare all the sorting algorithm discussed on a single graph.

11

Hashing
Accident or Choice?

INTRODUCTION

In computer science searching for a particular string from a pool of strings is an activity that is very

common. So far whatever searching algorithm we studied, the fastest ever was O(m) where m is the

length of the string being sought. This could be intuitively the optimal search time complexity, because

one must have to look through all the characters of a string to declare a match from a pool of strings. But

in some programming language, we can use associative arrays to store key value pair (which is also

shown in the Map chapter of this book) so that search can be done in O(1) time. In programming

languages that do not support in-built associative arrays, like C, Hashing let us create a map where each

string/value is mapped to a reproducible unique key by a function known as Hashing function. A Hash

function takes data of arbitary size using a perfect Hash function H() we can map x to y as y = H(x). such

that for no values of x1 and x2, H(x1) = H(x2).

Some features that are desirable are as follows:

y = H(x) should be one directional so that the reverse cannot be reproduced.

H(x1) and H(x2) will not be same ever.

11.1 CONCEPT OF COLLISION AND ITS RESOLUTION

Almost all Hash functions in use are imperfect that means we might end up a situation where H(x1) =

H(x2) when x1 and x2 are different.

When such an occasion occurs, this is termed as collision. There are several ways a collision can be

prevented. One way is called �Open Addressing� and the other is called �Separate Chaining�.

In terms of collision the philosophy is �first come, first serve�. So the item that is hashed first will get

the location in the hash table first. We have to do rehash with the second and subsequent values that

collide with the already hashed element. The following example illustrates everything.
It might also happen that the generated hash code of the new string is out of the hash table maximum

range. Say 149 in this case. Then we need to start looking at the front of the Hash Table. This scheme of

432 Data Structures using C

Fig. 11.1

collision resolution is known as Linear Probing. Due to the hash function that calculates the location of
the element in the array derives it the result in linear time.

This collision resolution technique is known as Linear Probing. The name is due to the linear time it
takes to travel across the hash table before an initially collided string finds its home.

There is another technique to combat collision which is known as Separate Chaining.
In this technique all collided items are added at the end of a linked list whose header is plugged at the
hashed location in the hash table. The following illustration makes it clear.

Fig. 11.2

Hashing (Accident or Choice?) 433

The advantage of separate chaining is that we can store multiple values but the disadvantage is we

need additional storage and the linked list maintenance overhead.

11.2 SOME KEY FACTS AND JARGONS ABOUT HASHING

Hashing It is the trick of organizing data elements by encoding them and it finds applications from

design of associative containers like dictionary to cryptography.

Hash Function A hash function is a reproducible way to convert some data into some sort of

digital fingerprint.

Hash Table A hash table is nothing but a map (For understanding map, read the chapter on map

after ADT) where the locations of a newly added entry is determined by the hash functions.

Load Factor This is the measure of how much loaded a hash table is at a certain time. The measure

is given by the ratio of occupied cells and number of total cells in the hash tables. Typically when the

load factor falls to ½ then the size of the hash table is doubled.

Hash List As the name suggests it is a list of hash codes.

Hash Tree This is a tree of hash codes of different data blocks of a file. Mainly used in p2p

network to verify the authenticity of a media. Hash trees are mostly designed binary.

Hash Chain This is hash of hash of hash and so on of a given key. This technique was first

discovered by Leslie Lamport. This hashing technique is normally used for OTP generations.

OTP (One Time Password) This is a scheme where passwords are generated using hash chains.

Collision When two elements are hashed to the same location on a hash table.

Collision Free Hashing This is a hashing function that doesn�t map any two entries to the

same hash code.

One Way Hash Function This is a cryptographic hash function that is a collision free hash for

which calculation of inverse hash function is computationally infeasible. For example,

If y = H(x) and H is a one way hash function, then it is not possible to find a function G such that

G(y) = x. or in other words G = H(�1)

Coalesced Hashing This is a scheme to handle collisions using the best approach of open ad-

dressing and separate chaining.

Universal Hashing A hashing method in which hashing functions are generated randomly at

runtime so that no particular set of keys is likely to produce a bad distribution of elements in the hash

table. Because the hash functions are generated randomly, even hashing the same set of keys during

different executions may result in different measures of performance.

Bloom Filter This is a hash table of k different entries where each entry is mapped to the table

using a different hash function. So in total there will be k different hash functions to map k different

entries.

How to Demonstrate Linear Probing Technique on Integer

#include <stdio.h>
#include <conio.h>

434 Data Structures using C

//Definition of our Hash Function
#define HASH(x) x%10

//Maximum number of elements that the Hash Table can hold.
#define MAX 10

int Values[MAX];
int LinearProbedPosition(int number)
{

int HashedIndex = HASH(number);
int n = 0;
if(Values[HashedIndex]==0)

return HashedIndex;
else
{

do
{

HashedIndex++;
if(Values[HashedIndex]==0)

return HashedIndex;
else

continue;
}while(HashedIndex!=MAX-1);

if(HashedIndex==MAX)
{

HashedIndex=0;
do
{

n++;
HashedIndex++;

}while(Values[HashedIndex]!=0 || n!=MAX-1);
if(n!=MAX-1)

return HashedIndex;
else

return -1;
}

}
}

int main()
{

int n = 0;
int number;
while(n!=MAX)
{

number = 0;
printf("Enter number :");
scanf("%d",&number);
Values[LinearProbedPosition(number)]=number;
n++;

Hashing (Accident or Choice?) 435

Values[LinearProbedPosition(number)]=number;
n++;

}
for(n=0;n<MAX-1;n++)

printf("%d\n",Values[n]);
getch();
return 0;

}

The main disadvantage of this linear probing method is that we can�t store more than the array can

hold. So, once the array is full then no elements can be added to it. But the advantage of this system is

that the method is very simple and doesn�t require extra space for storing the numbers mapped to the

same location; unlike separate chaining method that will be described next.

How to Demonstrate Quadratic Probing

Quadratic probing is a method to rehash the collided number. In quadratic probing the ith hash value of

the number x is given by

h(x,i) = h(x) + c1 * i + c2 * i2 (mod m)

For example

h(x,i) = h(x) + i + i2 (mod m)

Then the probe sequence will be h(x), h(x)+1, h(x)+3, h(x)+6 etc for m = 2^n

It has been found that for c1 = c2 = ½ all the values for hashing are distinct in the range [0 to m�1]

11.3 HOW TO DEMONSTRATE THE SEPARATE CHAINING METHOD FOR

HASHING ELEMENTS IN A HASH TABLE

To remove the disadvantage of the linear probing method

we create a linked list of numbers to be attached for each

node in the hash table. Once the cell in the hash table is

filled then the numbers will be pushed in the linked list as-

sociated with the hash table cell.

#include <stdio.h>
#include <malloc.h>
#include <conio.h>

#define HASH(x) x%10 //A Very simple Hash
 function which uses module
#define MAX 10

typedef struct node
{

int data;
struct node *next;

}node;

typedef struct number
{

node *list;
int data;

Fig. 11.3

436 Data Structures using C

int count;
}number;

number Numbers[MAX];

node* push_front(node *last,int data)
{

if(last==NULL)
{

last = (node *)malloc(sizeof(node));
last->data = data;
last->next = NULL;
return last;

}
else
{

node *p = (node *)malloc(sizeof(node));
p->data = data;
p->next = last;
return p;

}
}

int main()
{

int number;
int hashedindex;
do
{

number = 0;
hashedindex = 0;
printf("Enter number ");
scanf("%d",&number);
hashedindex=HASH(number);
if(Numbers[hashedindex].data==0)

Numbers[hashedindex].data = number;
else
{

Numbers[hashedindex].list =
push_front(Numbers[hashedindex].list,number);
Numbers[hashedindex].count++;

}

}while(number!=0);

for(hashedindex=0;hashedindex<MAX;hashedindex++)
{

printf("%d->",Numbers[hashedindex].data);

Hashing (Accident or Choice?) 437

for(;Numbers[hashedindex].list!=NULL;
 Numbers[hashedindex].list
 = Numbers[hashedindex].list->next)

printf("%d-",Numbers[hashedindex].list->data);
printf("<Total Count=%d>",Numbers[hashedindex].count+1);
printf("\n");

}

getch();
return 0;

}
This is a sample run of the above program.

Fig. 11.4

Note that the searching in a hash table mapped with separate chaining is very simple because the

location to look for a search item will always be the same as its hashed location. So we might write a

wrapper function search as follows.

int SearchItem(int s)
{

return HASH(s);
}

11.4 WHAT IS COALESCED HASHING?

Both of the above methods to resolve collision has some disadvantages as discussed above.

Coalesced Hashing is a technique that tries to blend the advantages of both linear probing and separate

chaining.

438 Data Structures using C

Here are the steps that coalesced follows to hash

an element in a hash table.

1. The hash code of the element is calculated

2. If the location in the hash table that is mapped

isn�t blank then the search ends there and the

element is entered there.

3. If the location is already occupied then the

search is carried starting from the front of the

hash table to find out a blank space.

4. Once the blank space is found the item is placed

there and a pointer is attached to it from this

location to the original hashed location. This

approach gives the benefits of using both the

approach Linear Probing and Separate Chain-

ing.

Note in the above picture how the elements are

hashed in the hash table.

How to Demonstrate Coalesced Hashing (Linked Hashing)

#include <stdio.h>
#include <malloc.h>
#include <conio.h>
#define MAX 10
#define HASH(X) X%MAX

typedef struct Cell
{

int location;
struct Cell *next;

}Cell;

typedef struct Node
{

int data;
Cell *nextcells;

}Node;

Node nodes[20]={0};

Cell* push_front_Cell(Cell *last,int loc)
{

if(last==NULL)
{

last = (Cell *)malloc(sizeof(Cell));
last->location = loc;
last->next = NULL;
return last;

}
else
{

Cell *p = (Cell *)malloc(sizeof(Cell));
l i l

Fig. 11.5

Hashing (Accident or Choice?) 439

p->location = loc;
p->next = last;
return p;

}

}

void AddToHashTable(int x)
{

int i = 0;
int index = HASH(x);

 //We assume that the Hash Table will only contain non-zero entries.
if(nodes[index].data == 0)
{

//If the Hashed location is free,
 //add the element there

nodes[index].data = x;
nodes[index].nextcells = NULL;

}
else
{

for(i=0;i<MAX;i++)
{

if(nodes[i].data == 0)
{

//This is the first empty cell
nodes[i].data = x;
//Associate the original location with the
//hashed location
nodes[index].nextcells =
push_front_Cell(nodes[index].nextcells,i);
break;

}

}
}

}

void display_locations(Cell *front)
{

Cell *h = front;
for(;h!=NULL;h=h->next)

printf("%d-",h->location);
}

void display()
{

int i = 0;
for(i=0;i<MAX;i++)
{

printf("We are at %d\n",i);
printf("Value in this cell = %d\n",nodes[i].data);

 puts("Other values which were hashed to this cell are at
the locations ");

440 Data Structures using C

display_locations(nodes[i].nextcells);
printf("\n");

}
}

int main()
{

int i;
int v[]={11,22,33,91,10,13};
for(i=0;i<6;i++)
{

AddToHashTable(v[i]);
}
display();
getch();
return 0;

}

The output of the above program is as shown below.

Fig. 11.6

How to Search an Item from a Coalesced Hashed Table

int Search(int s)
{

Cell *temp;
int i;
for(i=0;i<MAX;i++)

Hashing (Accident or Choice?) 441

{
if(nodes[i].data==s)

return i;
else
{

//Not found in the cell,
 //Lets search in the node�s chain

temp = nodes[i].nextcells;
for(;temp!=NULL;temp=temp->next)

if(nodes[temp->location].data == s)
return temp->location;

}
}

}

11.5 WHAT ARE THE VARIATIONS OF COALESCED HASHING (LINKED

HASHING)?

The method described above is known as Standard Coalesced Hashing.

The method where the collided item is placed right next to the hashed location in the table like linear

probing, is known as �Early Insertion Standard Coalesced Hashing� or EISCH. A generaralization of

the standard coalesced Hashing method which we call general coalesced hashing, adds extra positions

to the hash table that can be used for list nodes in the case of collisions but not for initial hash locations.

Unlike the situation with standard coalesced hashing, the EISCH method yields worse retrieval times,

than if elements are added, at the end of the chain in general coalesced hashing. A combination of these

two techniques called �Varied Insertion Coalesced Hashing� yield the best results.

11.6 WHAT IS A HASH CHAIN AND WHAT IS ITS UTILIZATION FOR OTP?

Hash Chain as the name suggests is a chain of hashes.

Basically this can be viewed as a cascaded system where

the output of one hash function is the input to another.

Typically the same hash function is used to generate hash

chains. The number of levels is known as the degree of

the chain. For example

h(h(h(h(h(h(x))))))

is a Hash Chain of degree 6. This is normally written using a short hand notation as h^6(x). Hash Chains

can be used to generate one time passwords.

This scheme was first suggested by Leslie Lompert to generate One Time Passwords (OTPs). OTP is

a special way in security where the passwords are usable only one time. The system generates the

passwords and sends them to users through handheld wireless devices as shown in the figure above.

The user is given a password and every time say h^n() th hash code is saved in the database and

matched against the nth hash code of the supplied password that user typed.

The main advantage of OTP is that even if some hacker sees the last password and types that in, that

is not going to work. As once the nth hash code is matched then the password will be the n�1th hash code

and will be given to the legal user. Thus OTP assures better security than that of static password.

How to Demonstrate Hash Chain and OTP Generation

#include <stdio.h>

442 Data Structures using C

#include <conio.h>
#include <string.h>

#define HASH(x) x+1//A very simple hash function

char spass[11]={"8923781234"};

int ToInt(char c)
{

char digs[]={"1234567890"};
int i;
for(i=0;i<10;i++)

if(c==digs[i])
return i;

}

char ToChar(int i)
{

char digs[]={"1234567890"};
return digs[i];

}
char* h(char pass[11])
{

int i;
char temp[11];

for(i=0;i<10;i++)
temp[i]=

 ToChar(HASH(ToInt(pass[i]))>=10?0:HASH(ToInt(pass[i])));
temp[i]='\0';
return temp;

}

int main()
{

char t[11];
strcpy(t,h(spass));
puts(t);
strcpy(t,h(t));
puts(t);
strcpy(t,h(t));
puts(t);
strcpy(t,h(t));
puts(t);
strcpy(t,h(t));
puts(t);
strcpy(t,h(t));
puts(t);
strcpy(t,h(t));
puts(t);
getch();
return 0;

}

Hashing (Accident or Choice?) 443

The output of this program is as shown below

9034892345
0145903456
1256014567
2367125678
3478236789
4589347890
5690458901

Try Yourself: Try to improve the hash function that operates on the digits of the number so that even if

a hacker gets to see few passwords in series, it still remain difficult to decode the generating sequence.

11.7 HOW IS A HASH TREE USED TO CHECK THE DATA INTEGRITY OF A

MEDIA DOWNLOADED FROM A PEER-TO-PEER (P2P) NETWORK

Fig. 11.7

In a peer-to-peer (a.k.a P2P) network as shown in the figure above each peer is connected with every

other peer which makes it possible for faster downloads and sharing programs easy. To check the data

integrity of the data read from a peer�s disk is verified against a pre-evaluated source. This checking is

done using Hash Trees.

Before we discuss how this can be done using hash trees, let�s have a close look at what is a hash

Tree. A Hash Tree is nothing but the tree of hash codes of k-grams of a document or media or some kind

of data which can be broken into sequential k grams.

Suppose we are downloading a story through a p2p network from a peer�s system and �This is a

sample text� is a line in the story. To check the data integrity the hash sum of the k grams are first

calculated. Hash Sum is nothing but the sum of the hash codes of each consecutive k grams. For exam-

ple, the first box from the left in level 1 hash sum is the summation of hash codes H(�Th�) and

H(�hi�) where H is the hash function being operated on the k grams.

444 Data Structures using C

Thus this calculation progresses until we get one value which is known as Top Hash. To check the

data integrity of data being read from a unknown source in a p2p network, the top hash for that source is

compared with that of the reliable source and if they match then we conclude that the unknown source�s

data is ok to download because it has passed the data integrity test. Otherwise the data is not good.

R E V I E W Q U E S T I O N S

1. What do you mean by adding salt to the password?

2. Name a few cryptographic hash functions and discuss their typical applications.

3. What is the time complexity for looking up an entry in linearly probed hash map?

4. What is the time complexity for looking up an entry in quadratically probed hash map?

5. What is the time complexity for adding an element in a hash map using linear probing?

6. Which hashing technique is better for a growing list. Justify your answer.

P R O G R A M M I N G P R O B L E M S

Implement a data integrity checker using hash trees. Use k-grams function defined in the chapter on

strings.

12

ADT

Delivered Inbuilt Plumbing!

12.1 THE BLACK-BOX CONCEPT

We have used the sqrt() function to find the root of a number. But we probably didn�t give any deeper

thought to the implementation logic of this function. There are many different ways the sqrt() func-

tion can be implemented. All that bothers a client code programmer is the result and the input to the

function. As long as these two remain same, nobody bothers much about the implementation logic

inside. Programmers use this as a black box.

12.2 ADT

ADT is an acronym for Abstract Data Type. An ADT is nothing but the model of a real life entity, may

be existent may be imaginary entity. Mathematically speaking an ADT is a data structure that supports

some operations which can be thought of either straight simple mathematical operations or is a combina-

tion of Mathematical and Boolean Operations.

For example, Linked List is an ADT because

l It allows mathematical operations (Like Add an Element, Delete an Element, etc)

l It allows Boolean operations (Check if an element is present or not etc)

l It hides the implementation from its users.

Please recall that in the linked list chapter, once you define a linked list of integers, and say

push_back(list, 10), 10 will be added at the end of the list. As a programmer you need not bother

what is the implementation logic of push_back(), just like the sqrt() example at the start of this

Chapter. Thus the implementation of linked list shows abstraction capabilities (i.e. Hiding the actual

implementation from the application programmers).

So we can conclude that ADT has the following properties.

l It shows abstraction capabilities (For more information of abstraction from a programming per-

spective, please refer to a good text on Object Oriented Programming)

l It allows Mathematical and/Or Boolean Operation

446 Data Structures using C

Increased usage of ADT in programs has few great advantages,
l It increases the readability of the program.
l It increases the flexibility of the program.
l It allows creating re-usable building blocks for more complex logic implementation. For example,

once the Linked List ADT is defined, creating a Binary Search Tree(BST) ADT would be an easy
task, because the BST is built with linked list ADT.

12.3 ADT DESIGN IN C

To define an ADT in C, the most basic building block could be either a C Structure or an array. Rest all
Data Structures can be built from these. C does not have any ADT apart from Array. In C++ Standard
Template Library (STL) there are a lot of ADT.

12.4 DESIGNING YOUR OWN ADT

An ADT constitute of data or attributes and methods/functions/procedures. Methods can be broadly
classified into two categories, namely

l Active Methods
n Methods that change the data of the ADT

l Passive Methods
n Methods that doesn�t affect the data of the ADT

Passive Methods can be classified into two other categories.
l Accessor Methods

n Accessor Methods are methods that are used to access the elements of the ADT. They just
access the data. They don�t change the data. Thus they are passive method.

l Predictors/Search Methods (In some Self Organizing ADTs like MTF List, the �Search� method is
not a �Passive Method�. It not only searches an item, but also puts the item at the front of the list.
In such cases the search method is not a Passive Method)
n A Predictor is a method that returns true or false depending on any particular given evaluation

criterion for all items in the ADT.
Active Methods can also be of the following types
l Methods to add new element in the ADT
l Methods to delete existing element in the ADT
l Methods to update existing element in the ADT.
When designing an ADT, you need to know what you want that ADT to contain? What will be the

operations needed on the data of the ADT? The answer to the first question will tell you about the data
of the ADT and the answer to the second question gives the idea of the operations, methods of the ADT.

Let�s take the example of the Linked List functions described in the linked list chapter.

push_back()

l This method puts an element at the end of the list.

l Active method.

l A kind of add operation.

push_front()

l This method puts an element at the front of the list.

l Active method.

l A kind of add operation.

ADT (Delivered Inbuilt Plumbing!) 447

pop_back()

l This method deletes the last element of the list.

l Active method.

l A kind of delete operation.

pop_front()

l This method deletes the first element of the list.

l Active method.

l A kind of delete operation.

delete_at()

l This is a method that deletes the element at the given location.

l A kind of delete operation.

delete_range()

l This method deletes a range of elements.

l A kind of Delete Operation.

delete_alternate()

l This method deletes alternate elements from the list.

l A kind of delete operation.

front_element()

l This method gets the first element of the list.

l A kind of the accessor method.

back_element()

l This method gets the last element of the list.

l A kind of the accessor method.

get_value()

l This method gets the value of the nth element in the list.

l A kind of accessor method.

frequency()

l This method gets the number of occurrences of an element in the list.

l A kind of accessor method and of statistical importance.

findmax()

l This method gets the maximum integer in the integer linked list.

l A variation of the accessor method and of statistical importance.

findmin()

l This method gets the minimum integer in the integer linked list.

l A variation of the accessor method and of statistical importance.

swap()

l This method swaps two nodes contents.

l A kind of update operation.

448 Data Structures using C

swap_head_tail()

l This method swaps the first and the last element of the list.

l A kind of update operation.

merge()

l This method merges two linked list.

l A kind of update operation.

count()

l This method counts the number of nodes in the linked list.

l This is an accessor operation.

In the next chapters Date, Map and Currency we will learn how to define our own ADTs as and when

required.

R E V I E W Q U E S T I O N S

1. What type of method is push()?

2. What type of method is peek() at stack top?

3. What type of method is enqueue()?

4. What type of method is deque()?

5. What type of method is displayQueue() which displays a queue?

6. What do you mean by a Heterogeneous Container?

7. What kind of method can change the content of a container?

P R O G R A M M I N G P R O B L E M S

1. Create an ADT �Dictionary� that will have methods for the following operations

(a) To add a word to it (b) List all the words starting with a letter

(c) Search for a word (d) Delete a word

(e) Update a word

2. Create an ADT �Bag� that will be able to hold element of different types. And will have methods

for the following operations

(a) Adding an element to the bag (b) Deleting an element from the bag

(c) Updating an element in the bag (d) Searching an element in the bag

(e) Finding out the type of the element in the bag

3. What is the type of the method push_front() in linked list?

4. What is the type of the method pop() in stack?

5. What is the type of the method pop_back() in linked list?

6. What is the type of the method pop_front() in linked list?

7. What is the type of the method search() in MTF?

8. What is the type of the method in find_first_if() method in linked list?

9. Create a program to demonstrate binary tunnel (Refer Chapter on Tree. A Binary Tunnel is noth-

ing but a linked list of Binary Spider).

13

Date

Today was Tomorrow!!

INTRODUCTION

Date is an integral part of any solution that we develop. Many programming languages offer

APIs(Application Programming Interfaces) to deal with the dates. There is a built-in data structure in

Turbo C called date, (discussed about this structure in structure chapter). Actually, this structure is used

in the today() function (that will be discussed in this chapter) which will return the day of week for

today. The functions described in this chapter are written using Turbo C 3.5. So it is recommended to use

Turbo C 3.5 or Higher to compile and Test these functions

The structure used to represent date objects is
typedef struct Date
{

int day;
int month;
int year;

} Date;

Only in the function today() the built-in system structure date is used. In this chapter we will learn

how to design date related functions and how to use them to solve different real world problems. At the

end of the chapter we will learn how to interact with the built-in structure date to deal with system date.

How to Check whether a Year is a Leap Year or Not

enum{NO,YES};
int isleapyear(int year)
{

int leap = NO;
if(((year%4==0) && (year%100!=0)) || (year%400==0))

leap = YES;
return leap;

}

450 Data Structures using C

Please notice that how the function uses enum variables to increase the readability of the code.

Here is a call to this function

int x = isleapyear(2008);
if(x==1)

printf(�Leap Year�);
else

printf(�Non Leap Year�);

This will print Leap Year to the console as 2008 is a leap year.

How to Find the Date of Tomorrow of any Date

Date tomorrow(Date d)
{

switch(d.month)
{

case 1://Jan
case 3://Mar
case 5://May
case 7://July
case 10://Oct
case 8:if(d.day<31)//Aug

 d.day++;
else//If day is 31, ie, last day
{

//Then move tomorrow will be
//the first day of the next month
d.day = 1;
d.month++;

}
break;

case 12:if(d.day<31)
 d.day++;
 else//If we are on the last day of the year
 {
 //Tomorrow will be
 //first January of the next year
 d.month = 1;
 d.day = 1;
 d.year++;
 }
 break;

case 2:if(isleapyear(d.year))
 {

 //in case leap year
 if(d.day<29)

 d.day++;
 else
 {

 //we are in March
 d.day=1;
d h 3

Date (Today was Tomorrow!!) 451

 d.month=3;
 }

 }
 else//The year is not leap year
 {

 if(d.day<28)//the day is less than 28
//one more day to go
d.day++;
//we are on 28th Feb of a non leapyear

 else
 {

//we are in March
d.day=1;
d.month=3;

 }
 }
 break;
case 4://April
case 6://June
case 9://September
case 11:if(d.day<30)//November

 d.day++;
 else
 {

d.day = 1;
d.month++;

 }
 break;

 }
 return d;
}

Here is a typical call to the function.

//Here we want to find tomorrow of 28th Feb 2008 which is leap year.

Date d,td;
d.day = 28;
d.month = 2;
d.year = 2008;
td = tomorrow(d);
printf(�Tomorrow of %d-%d-%d is %d-%d-
%d�,d.day,d.month,d.year,td.day,td.month,td.year);

The output of this code snippet will be

Tomorrow of 28-2-2008 is 29-2-2008

How to Find the Date of Yesterday of any Date

Date yesterday(Date d)
{

switch(d.month)
{
case 1: if(d.day>1)

d.day--;

452 Data Structures using C

else
{

//If standing on 1st January
//we want to find what was yesterday
//then yesterday will be 31st December
//the previous year.
d.day=31;
d.month=12;
d.year--;

}
break;

//Finding yesterday for a date in March
//if it is not the first date of the month
//we just slide backward otherwise
//we need to check whether the year is leap year?
//If the year is leap year then previous day of March
//first will be 29th Feb else it will be 28th Feb.
case 3: if(d.day>1)

 d.day--;
else
 {

if(isleapyear(d.year))
{

d.day=29;
d.month=2;

}
else
{

d.day=28;
d.month=2;

}
 }
 break;

case 2://Feb
case 5://May
case 7://July
case 8://Aug
case 10://Oct
case 12:if(d.day>1)

d.day--;
else//we reached the first date of the month
{

//The previous month�s last day is 30
d.day=30;
d.month--;

}
break;

case 4://April
case 6://June
case 9://September
//Havn�t we reached the start of the month

11 i 1

Date (Today was Tomorrow!!) 453

case 11:if(d.day>1)
d.day--;

else//we are at the start of the month
{

//the last month had 31 days.
d.day=31;
d.month--;

}
break;

}
return d;

}

How to Calculate the Difference of Days between Two Dates in the Same Year

int daysbetween(Date d1,Date d2)
{

int diff=0;
int i=0;
diff+=d2.day-d1.day;//Initial day difference
for(i=d1.month;i<d2.month;i++)
{

//If month is Jan, March, May, July, Aug,
// October or December, add 31 to the difference
if(i==1 || i==3 || i==5 || i==7 || i==8

 || i== 10 || i==12)
diff+=31;

//February and Leap Year, add 29 days
if(i==2 && isleapyear(d1.year))

diff+=29;
else
//February and not leap year, add 28 days

diff+=28;
//rest all months, i.e,
///April, June, September and November
//add 30
if(i==4 || i==6 || i==9 || i==11)

diff+=30;
}
return diff;

}

Please note that this function calculates the difference of days between two dates in a year. This

function serves as a basic building block of other date related functions.

Try This: How can you change this function so that it tells the difference between two dates in different

or same years.

13.1 HOW TO FIND THE DAY OF WEEK (SUN, MON, ETC)

The normal strategy to solve this problem is to find the day difference between the two particular dates,

454 Data Structures using C

i.e. target date and source date. Target date is the date for what we want to know the dayofweek and

Source Date is the date which we use for reference, and then dividing the total with 7. The remainder of

this division tells you the day of week for that date starting from the day of week of the source/base date.

First January 1900 was Monday. So if the remainder is 2, then the target date is Wednesday, (which is 2

days ahead from Monday).

But this above process is time consuming. It involves multiplication by 365.

A different approach is used in this function. Please look into the screenshots of windows calendar

carefully.

Showing 10-Jun-2006 Showing 10-Jun-2007

Date (Today was Tomorrow!!) 455

Have you noticed from the above screenshots that a par-
ticular day, shifts towards right as the year increases. When
we go from one non-leap-year to a leap-year then the day of
week of a particular shifts two days towards right by two
units. See the change for the transformation 2007 to 2008
and 2011 to 2012.

So by the above theory, we can calculate what will the day
of week for first January of any given year without any mul-
tiplication, just by adding 1 and 2 and shifting that many
days towards right starting from Monday, as 1-January-1900
was Monday.

Suppose we have to find out the day of week for the date
10-Jun-2014.

Then first by using the above formula, we have to find the day of week for the date 1-Jan-2014. and
then adding the days difference using daysbetween() function defined above.
int dayofweek(Date d)
{

Date t;
int i;
int sum=0;
for(i=1900;i<d.year;i++)
{

if(isleapyear(i))
sum+=2;

else
sum++;

}
t.day = 1;
t.month = 1;
t.year = d.year;
sum+=daysbetween(t,d);
return sum%7;

}

This function returns 1 for Tuesday and so on till 5 for Saturday, 0 or 7 for Monday, and rest all values
returned are interpreted as Sunday.

How to Show the Day of the Week in String
char* daystring(int dow)
{

char *d;
switch(dow)
{

case 1:strcpy(d,"Tuesday");break;
case 2:strcpy(d,"Wednesday");break;
case 3:strcpy(d,"Thursday");break;
case 4:strcpy(d,"Friday");break;
case 5:strcpy(d,"Saturday");break;
case 7:
case 0:strcpy(d,"Monday");break;
default:strcpy(d,"Sunday");break;

}
return d;

}

456 Data Structures using C

This function will be used to display the Day of Week in Human readable format.

Here is a call

Date d;
d.day = 12;
d.month = 6;
d.year = 2006;
printf(�%d-%d-%d is %s�,d.day,d.month,d.year,daystring(dayofweek(d)));

This code snippet will display

12-6-2006 is Monday

The screenshot proves the answer.

13.2 HOW TO FIND THE DATE OF THE NEXT NTH SUNDAY, FROM A

GIVEN DATE

//Given a day in string format, this function returns the corresponding DAYOFWEEK as //an integer

int resolvedow(char *day)
{

int dow=0;
if(strncmpi(day,"Tuesday",strlen(day))==0)

dow = 1;
if(strncmpi(day,"Wednesday",strlen(day))==0)

dow = 2;
if(strncmpi(day,"Thursday",strlen(day))==0)

dow = 3;
if(strncmpi(day,"Friday",strlen(day))==0)

dow = 4;
if(strncmpi(day,"Saturday",strlen(day))==0)

dow = 5;
if(strncmpi(day,"Sunday",strlen(day))==0)

dow = 6;
return dow;

}
//This function returns the date of Nth X day starting from
//a particular date. For example, if we want to find the 5th

Date (Today was Tomorrow!!) 457

//Monday starting from 20-OCT-2006 then the call to this
//function will be like
//Date d,d1;
//d.day = 20;
//d.month = 10;
//d.year = 2006
//d1 = nextNthXday(d,5,�Mon�);//OK
//d1 = nextNthXday(d,5,�Monday�);//Ok
//d1 = nextNthXday(d,5,�Mo�);//Ok
//The function is case insensitive.
//You have to write those many characters for the day of
//week, as many as needed to differentiate from others.
//Like in the above case if we write �Mo� for Monday the
//function understands what we mean. We need not Write the
//entire day of week string.
//The above call returned d1.day = 20, d.month = 11,
//d.year = 2006

//Here are two screenshots of windows calendar

Look into the screenshots and count the 5th Monday starting from 20-OCT-2006 and see whether the

program calculated it right as 20-NOV-2006.

458 Data Structures using C

Date nextNthXday(Date d,int N,char *day)
{

Date counter;
int total = 0;
//Initializing loop counter to the starting date.
counter.day = d.day;
counter.month = d.month;
counter.year = d.year;

for(;;counter=tomorrow(counter))
{

 if(resolvedow(daystring(dayofweek(counter)))
==resolvedow(day))

total++;
if(total==N)//are we on the target date

break;
}
return counter;//return the date

}

13.3 HOW TO FIND THE DATE OF THE PREVIOUS NTH SUNDAY, FROM A

GIVEN DATE

Here is the function. Notice carefully that there is only one word difference in the whole function.

Instead of tomorrow, we have to use yesterday, because we are going backwards unlike the previous

case where we were going towards right in timeline.

Date prevNthXday(Date d,int N,char *day)
{

Date counter;
int total = 0;
counter.day = d.day;
counter.month = d.month;
counter.year = d.year;

for(;;counter=yesterday(counter))
 { //Change

 //integer comparison is much
 //faster than string
 if(resolvedow(daystring(dayofweek(counter)))

==resolvedow(day))
total++;

if(total==N)
break;

}
return counter;

}

Date (Today was Tomorrow!!) 459

13.4 WRAPPER FUNCTIONS: INCREASES THE READABILITY OF YOUR CODE

These above two functions can be used from within various wrapper functions. A Wrapper function is a

function which calls a complicated function using some hardcoded values to return some specific values.

Suppose I want to find what will be the date of the next Friday, I can write like

Next_Friday_date = nextNthXday(current_date,1,�Fri�);

But here I have to give 3 variables to the function, which I disliked. So I have written few wrapper

functions to find the immediate next Xday and immediate past Xday. Where X represents DAYOFWEEK

(SUN,MON, etc).

Date nextSUNDAY(Date d)
{

return nextNthXday(d,1,"Sun");
}

Date lastSUNDAY(Date d)
{

return prevNthXday(d,1,�SuN�);
}

And so on for other days of the week.

How to Find the DAYOFWEEK for a Particular Date in the Previous Year

int prevyearsameday(Date d)
{

d.year--;//Lets go back one year
return dayofweek(d);

}

How to Find the DAYOFWEEK for a Particular Date in the Next Year

int nextyearsameday(Date d)
{

d.year++;
return dayofweek(d);

}

Example 13.1 Find the DAYOFWEEK for a particular date in the next month? Let me clarify the

question. Suppose we are on 22-APR-2006, and we want to find the DAYOFWEEK of 22-MAY-2006.

Solution Here is the code.

//This function returns the last date of the month of the
//date object passed to it as argument.
//For example
//if we call
//Date d;
//d.day = 2;
//d.month = 2;
//d.year = 2008
//So if we call lastday() like
//printf(�Last date of Feb 2008 is %d-%d-%d\n�
//,lastday().day,lastday().month,lastday().year);
//Then the output will be
//Last date of Feb 2008 is 29-2-2008

460 Data Structures using C

Date lastday(Date d)
{

switch(d.month)
{

case 1:
case 3:
case 5:
case 7:
case 8:
case 10:
case 12:d.day=31;

break;
case 2:if(isleapyear(d.year))

d.day=29;
 else

d.day=28;
 break;

case 4:
case 6:
case 9:
case 11:d.day=30;

 break;
 }
 return d;

}

int nextmonthsameday(Date d)
{

//Lets hold the day before tomorrow overrides it
int x = d.day;
//We have to go to the next month
//so that is nothing but tomorrow() of
//the last date of the current month
//or the month passed.
d = tomorrow(lastday(d));
d.day = x;//lets reassign the original day
return dayofweek(d);//returns DAYOFWEEK as integer

}

Example 13.2 Sometimes we have to find the date of the nth X day in the next/previous month.

For example the clerk at the bank may tell you, �Sorry Sir, We are not able to do this today, could you

please come on second saturday next month?� Now you will start thinking what will be the date. Here

is the code that may help you.

Solution

Date nextmonthNthXday(Date d,int N,char *day)
{

return nextNthXday(tomorrow(lastday(d)),N,day);
}

Date (Today was Tomorrow!!) 461

Now let me explain how to call this function. Suppose now it is October and you want to find 3rd

Friday of November of the same year. You need to pass any date in October so the function can find the

first date of November.

Date d;
d.day = 4;//The day, Any day between the range of days
d.month = 10;//The month you are in
d.year = 2001;

//Now call the function
d = nextmonthNthXday(d,3,�Friday�);
//d will contain the date of the third Friday in November
//the same year

You might have already understood that as we discussed above we can write some Wrapper functions

here also.

How to Find the Last X Day of the Next Month

Date nextmonthlastXday(Date d,char *day)
{

//There can be maximum 5 weeks
//in a month and the last
//X day may fall on this last
Date t[5];
d = tomorrow(lastday(d));
t[0] = nextNthXday(d,1,day);
t[1] = nextNthXday(d,2,day);
t[2] = nextNthXday(d,3,day);
t[3] = nextNthXday(d,4,day);
t[4] = nextNthXday(d,5,day);
if(t[4].month == d.month)

return t[4];
else

return t[3];
}

How to Find the First X Day of the Next Month

//This function can be used to answer queries like

//what will be the date of the first Monday next month and so

Date nextmonthfirstXday(Date d,char *day)
{

d = tomorrow(lastday(d));
return nextNthXday(d,1,day);

}

How to Find the DAYOFWEEK of 29th February of all the Leap Years in a

given Range

We have written a function to find whether a year is leap year or not, and we have also written a function

to return the DAYOFWEEK of a day. Now how to combine these two functions to write a function that

will accept two arguments as starting and ending year. And it displays all those years which are leap year

and also tells the DAYOFWEEK of 29th February on those years.

462 Data Structures using C

Here is the code of the function

void displayleapyears(int s,int f)
{

Date d;
int i=0;
d.day=29;
d.month = 2;

for(i=s;i<=f;i++)
if(isleapyear(i))
{

d.year = i;
printf("%d 29-FEB-%d will be %s\n"
,i,i,daystring(dayofweek(d)+1));

}
}

When called like

displayleapyears(2006,2080) ;

it generates the following output

2008 29-FEB-2008 will be Friday

2012 29-FEB-2012 will be Wednesday

2016 29-FEB-2016 will be Monday

2020 29-FEB-2020 will be Saturday

2024 29-FEB-2024 will be Thursday

2028 29-FEB-2028 will be Tuesday

2032 29-FEB-2032 will be Sunday

2036 29-FEB-2036 will be Friday

2040 29-FEB-2040 will be Wednesday

2044 29-FEB-2044 will be Monday

2048 29-FEB-2048 will be Saturday

2052 29-FEB-2052 will be Thursday

2056 29-FEB-2056 will be Tuesday

2060 29-FEB-2060 will be Sunday

2064 29-FEB-2064 will be Friday

2068 29-FEB-2068 will be Wednesday

2072 29-FEB-2072 will be Monday

2076 29-FEB-2076 will be Saturday

2080 29-FEB-2080 will be Thursday

How to Find whether a Date is in Past Compared to Another Date

int isPast(Date d1,Date d2)
{

//returns 1 if d2 is in past that d1
if(d1.year>d2.year

Date (Today was Tomorrow!!) 463

 || (d1.year==d2.year && d1.month>d2.month)
 ||(d1.year==d2.year && d1.month==d2.month

 && d1.day>d2.day))
return 0;

else
return 1;

}

How to Check whether Two Dates are Same or Not

//this function returns 1 if both the dates are same
int isPresent(Date d1,Date d2)
{

if(d1.day == d2.day && d1.month == d2.month
 && d1.year == d2.year)

return 1;
else

return 0;
}

How to Check whether a Date is in Future in Respect to Another Date

//this function returns 1 if d1 is at future of
int isFuture(Date d1,Date d2)
{

if(!isPresent(d1,d2) && !isPast(d1,d2))
return 1;

else
return 0;

}

How to Get the Particular Date After or Before a Number of Days

Let me explain this. Suppose we are on 2-Jan-2007, and we want to find what will be the date after 90

days or before 60 days. This function helps to solve these type of problems.

Date adddays(Date d,int N)
{
 int c=0;
 Date counter;
 counter.day = d.day;
 counter.month = d.month;
 counter.year = d.year;
 if(N>0)//We are going to the future

 for(;c<N;c++,counter=tomorrow(counter));
 else

 for(;c<abs(N);c++,counter=yesterday(counter));
 return counter;
}

To call this function,

Date d;
d.day = 1;

464 Data Structures using C

d.month = 2;
d.year = 2002;
d = adddays(d,20);
printf(�%d-%d-%d\n�, d.day,d.month,d.year);

This will print 21-2-2002

Try Yourself: Try calling this function with such inputs so that there is a migration between years in

both directions.

How to Get the Particular Date After or Before a Number of Months

Let me explain this. Suppose we are on 2-Jan-2007, and we want to find what will be the date after 9

months or before 14 months. By month, I mean 30 days. This function helps to solve these types of

problems.

Date addmonths(Date d,int N)
{
 return adddays(d,N*30);
 return d;
}

Notice, how the adddays() function us being used.

How to Get the Particular Date After or Before a Number of Years

Let me explain this. Suppose we are on 2-Jan-2007, and we want to find what will be the date after 9

years or before 14 years.

Date addyears(Date d,int N)
{

d.year+=N;
return d;

}

13.5 INTERACTION WITH THE SYSTEM BUILT IN Date STRUCTURE

As discussed in Chapter 2: Structures, and in the front of this chapter, the date structure is built in. There

are two functions getdate() and setdate() to read and write system time. As the ultimate motto for this

API design is abstraction of core logic from application programmers, so a function named today() is

introduced as a wrapper of getdate(). Here is the code.

Date today()
{
 Date td;//Our Date structure
 struct date d;//System date structure

 getdate(&d);//getting the date
 td.year = d.da_year;
 td.day = d.da_day;
 td.month = d.da_mon;
 return td;
}

Date (Today was Tomorrow!!) 465

So if we want to get today�s date we need not write getdate anymore we can write like
printf(�Today�s date is %d-%d-
%d\n�,today().day,today().month,today().year);

This approach increases the readability of the code.

Now let�s write another interface for setting the system date.

void setsystemdate(Date d)
{

 struct date reset;
 reset.da_year = d.year;
 reset.da_day = d.day;
 reset.da_mon = d.month;
 setdate(&reset);

}

This above function will reset the system date. BE VERY CAREFUL TO RUN THIS. ALWAYS

USE A FUTURE DATE TO TEST THIS. IN CASE YOU USE SOME PAST DATE, SOME IMPOR-

TANT FILES CAN BE MISSING FROM YOUR DISK.

13.6 INTERACTION WITH THE REAL WORLD

Till now we have created date objects from within our code. But in the real life this will happen only

rarely. There we shall have to interact with the outer world and we shall have to accept dates as strings.

Then we shall have to tokenize them. If you have ever worked with Oracle you know that there is a date

function called to_date() that takes two strings. First one describes the date as a string and the second

one tells the function in which format the date is entered. Let me explain this a little more. If I say the

date is 10-2-1978 then it may refer to October 2nd 1978 or 10th February 1978. So the phenomenon

creates an ambiguity. That is where the format string comes to help.

 The format strings will be like

l dd-mm-yyyy

l mm-dd-yyyy

l dd-mon-yyyy

l mon-dd-yyyy

l yyyy-mon-dd

l mon-yyyy-dd

l dd-yyyy-mm //Not that popular though

l Only a number telling the number of the date in the year (For example, if I say 35th Day of the year,

it will always represent the date 4th February and so on)

Here is the function code for to_date.
int tomonth(char *mon)
{

if(strncmpi(mon,"Jan",3)==0)
return 1;

if(strncmpi(mon,"Feb",3)==0)
return 2;

if(strncmpi(mon,"Mar",3)==0)
return 3;

if(strncmpi(mon,"Apr",3)==0)
return 4;

if(t i("M " 3) 0)

466 Data Structures using C

if(strncmpi(mon,"May",3)==0)
return 5;

if(strncmpi(mon,"Jun",3)==0)
return 6;

if(strncmpi(mon,"Jul",3)==0)
return 7;

if(strncmpi(mon,"Aug",3)==0)
return 8;

if(strncmpi(mon,"Sep",3)==0)
return 9;

if(strncmpi(mon,"Oct",3)==0)
return 10;

if(strncmpi(mon,"Nov",3)==0)
return 11;

if(strncmpi(mon,"Dec",3)==0)
return 12;

}

Date to_date(char *date,char *f)
{

int i;
char *formats[]

={
 "dd-mm-yyyy",//2-3-2004
 "mm-dd-yyyy",//4-3-2004

 "dd-mon-yyyy",//2-oct-1976
 "mon-dd-yyyy",//july-31-1978
 "yyyy-mon-dd",//1966-Oct-20
 "mon-yyyy-dd",//Sep-1989-21

 //365-2005, This is the last date of the year
 "NUM-yyyy"

};
Date d;
char *p;
int dayofyear=0;
for(i=0;i<6;i++)

if(strcmpi(formats[i],f)==0)
break;

switch(i)
{

case 0:p=strtok(date,"-");
 d.day = atoi(p);
 p = strtok(NULL,"-");
 d.month = atoi(p);
 d.year = atoi(strtok(NULL,"-"));
 break;
case 1:p=strtok(date,"-");
 d.month = atoi(p);
 p = strtok(NULL,"-");
 d.day = atoi(p);
 d.year = atoi(strtok(NULL,"-"));
 break;

Date (Today was Tomorrow!!) 467

case 2:p=strtok(date,"-");
 d.day = atoi(p);
 p = strtok(NULL,"-");
 d.month = tomonth(p);
 d.year = atoi(strtok(NULL,"-"));
 break;
case 3:p=strtok(date,"-");
 d.month = tomonth(p);
 p = strtok(NULL,"-");
 d.day = atoi(p);
 d.year = atoi(strtok(NULL,"-"));
 break;
case 4:p=strtok(date,"-");
 d.year = atoi(p);
 p = strtok(NULL,"-");
 d.month = tomonth(p);
 d.day = atoi(strtok(NULL,"-"));
 break;
case 5:p=strtok(date,"-");
 d.month = tomonth(p);
 p = strtok(NULL,"-");
 d.year = atoi(p);
 d.day = atoi(strtok(NULL,"-"));
 break;
case 6:p=strtok(date,"-");
 dayofyear = atoi(p);
 p = strtok(NULL,"-");
 d.year = atoi(p);
 d.day = 1;
 d.month = 1;
 d = adddays(d,dayofyear-1);
 break;

}
return d;

}

Here is how to call this function.

Date d = to_date(�2006-DEC-31�,�yyyy-mon-dd�);

This will create the date as d.day = 31, d.month = 12 and d.year = 2006.

Date d = to_date(�365-2005�,�nuM-yyyy�);

This will create the date as d.day = 31, d.month = 12 and d.year = 2005

R E V I E W Q U E S T I O N S

1. What is the function that compares two dates.
2. How will you find the total difference in days between 2nd October 1972 and 31st October 2007.
3. How will you find how many Thursdays are there between 2nd October 1980 and 2nd October 2007
4. How will you find how many months between 1st January 2005 and 1st January 2008 have 5

Sundays?
5. Someone is born on 29th February 2000 then when should she celebrate her 16th birthday? What

will be the day of week for her 20th birthday?

468 Data Structures using C

P R O G R A M M I N G P R O B L E M S

1. Accept a list of dates from the user and return only Sundays.
2. Couple on Longest Holiday Problem: There is a couple. Let�s name them Jack and Jill. Jack�s

company works in shifts and for a particular year Jack finds that he will get holidays on second
Saturday and Third Sunday every month. On the other hand, the company where Jill works has a
fixed holiday list for each employee. Jill�s company keep closed for every Saturday and Sunday.
Accept the holiday (say thanksgiving day) list of Jill�s company. Now with all this information can
you write a program that will tell them the date in a year they should plan to enjoy the longest
holiday together?

3. Ask the user his date of birth and then tell the day of week of his birthday.
4. Ask the user his date of birth and then calculate his age and display that in �You are walking on

earth for past X year Y months and Z days�.
5. A museum is kept closed on every 3rd Friday if the year is a Leap Year. Else it is kept closed on

every 2nd Friday starting from first January. Saturday and Sunday are by default holidays. One very
old artwork had been stolen from that museum in the year 1996. Police have arrested a person who
is telling that someone from the museum helped him. There are 4 curators of the museum. They
work in a rotational shift starting from the first person on 1st January. Can you write a program to
help police identify the guilty curator ? [Hint: The person working longest can be the culprit.]

6. There is some improvement. Police now got the information that the man was seen in and around
museum starting from July to September. Now accordingly modify your program written for 5.

7. Using the dayofweek() function described in the text and other functions as you may need, can you
write a program that will print a customized calendar. A customized calendar is a calendar where
the user can set what is the range of dates that he wants to see. For example, in UNIX there is a
command cal. If you write cal 2067 then it will print the whole calendar for 2067. If you write cal
10 2067 then it will display the calendar for October 2067. If you just write cal it will display the
current month�s calendar. Can you write such a command based program? Use PgUp, PgDn to
scroll vertically or you can use arrow keys.

8. Write a wrapper function to find the next Sunday.
9. Write a wrapper function to find the previous Thursday.

10. Write a function to find the date of last Sunday of a year.
11. Write a function to find the date of the first Monday of a year.
12. Write a function to accept two dates in string format. Pass them to to_date() function and then

check whether there are N Sundays between them or not. [N will be provided.]
13. Write a function nextFriday() that will return the next Friday.
14. Write a function nextMonthsFridays() that will return the Fridays of the next month as a date array
15. Write a function Fridays() that will return all the Fridays of the year passed as argument.
16. Write a function GetBDaysDOW() that will accept two years as arguments and a date as birthday

and will return the Date of Week of birthdays in all those years inclusive of the two.
17. Write a function Age() that accepts two dates and returns the time passed between these two in

terms of years, months and days.
18. Write a function Older() that accepts two birthdates and return 0 or 1 depending upon which is older.
19. Write a function Younger()that accepts two birthdates and return 0 or 1 depending upon which is younger.
20. Write a function Get5WeeksMonths() that will accept a year and return the months that has 5 week

for that particular year.

21. Write a function to_string() that will be complementary to to_date().

14

Map
Phonebook, Dictionary,

Cryptography

INTRODUCTION

Map is the name given to any table that stores a key-value pair. A value from the map is accessed using
a key. The map doesn�t allow duplicate keys. The key of the map can be of any data type. The value of
the map can be of any data type. A multimap is a map or maps.

A Map doesn�t allow duplicate entries, but a multimap does because it actually stores the duplicate
values on different maps. Maps are good if they are array implemented, because in that case they offer
O(1) time complexity. C does not have associative arrays as built in data structure. Maps are used to
design associative arrays in C. Associative arrays or maps find application in many real life problems
from a simple synonym antonym mapping to a complex random block ciphering.

In this chapter we will first learn how to declare a map and then will discuss about the diverse usage
of this data structure. A map is basically a structure with couple of elements, one represents the key and
the other represents the value.

About the Methods in This Chapter The methods described in this chapter are close
cousins of the methods defined in the linked list chapter. Here the map is defined using the linked list.

14.1 HOW TO REPRESENT A MAP

Here a map has been designed using a linked list of buddy structures. The value in the key-value pair
that are stored in a map could be anything. Here a buddy structure is stored as the value and each buddy
is associated with a key.

470 Data Structures using C

typedef struct Buddy
{

char name[20];
char phone[11];

}Buddy;

//Node of the Map
typedef struct node
{

Buddy pal;//value
int key;//key
struct node *next;

}node;

How to Add a Buddy at the End of the Buddy List

node* push_back(node *last,Buddy pal,int key)
{

if(last==NULL)
{

last = (node *)malloc(sizeof(node));
last->pal = pal;
last->key = key;
last->next = NULL;
return last;

}
else
{

//creating enough space for a Buddy!
node *p = (node *)malloc(sizeof(node));
if(p)
{

last->next = p;
p->pal = pal;
p->key = key;
p->next = NULL;

}
return p;

}
}

How to Add a Buddy at the Front of the Buddy List

node* push_front(node *h,Buddy pal,int key)
{

node *p = (node *)malloc(sizeof(node));
p->next = h;
p->pal = pal;
p->key = key;
return p;

}

Map (Phonebook, Dictionary, Cryptography) 471

How to Delete the Last Buddy in the List

//Delete the last node
node* pop_back(node *h)
{

node *p = h;
node *r = p;
for(;;)
{

if(p->next->next==NULL)
{

free(p->next->next);
p->next = NULL;
break;

}
p=p->next;

}
return r;

}

How to Delete the First Buddy in the List

//deletes the first element
node* pop_front(node *h)
{

//identifying the first node that has to be freed
node *x = h;
node *p = h->next;
free(x);//freeing the memory space.
return p;

}

How to Delete a Buddy/Map Entry at a Particular Index

node* delete_at(node *h,int location)
{

int c=0;
node *p=h;
node *r=p;
node *x;
if(location<count(h))
{

//loop till we find the location
for(;p!=NULL;p=p->next)
{

c++;
//human readabale location
//if you want to delete the fifth element
//it is actually the fourth in the list
//so human readable location is 5
//but actual location is 4
if(c==location-1)

break;
}

472 Data Structures using C

 //Identify which memory location to free
x = p->next;
p->next = p->next->next;
//free that location
free(x);

}

return r;
}

How to Delete a Range of Buddies/Map Entries

//deletes a particular range of elements
node* delete_range(node *h,int start,int finish)
{

node *p=h;
int c=0;
int k=0;
for(c=start,k=0;c<=finish;c++,k++)

delete_at(h,c-k);
return p;

}

How to Delete Alternate Entries of Buddies/Map Entries

//deletes alternate elements from the list
node* delete_alternate(node *h,int start,int finish)
{

node *p=h;
int c=0;
for(c=start;c<=finish;c++)

delete_at(h,c);
return p;

}
Notice carefully, how delete at has been used from inside delete_alternate

How to Get the First Friend/Entry in the Buddy List/Map

node* first(node *h)
{

return h;
}

//returns the front element of the list
Buddy front_element(node *h)
{

return first(h)->pal;
}

How to Get the Last Friend/Entry in the Buddy List/Map

node* last(node *h)
{

node *p = h;
for(;p->next!=NULL;p=p->next);

Map (Phonebook, Dictionary, Cryptography) 473

return p;
}

//returns the back element of the list
Buddy back_element(node *h)
{

return last(h)->pal;
}

How to Count the Number of Buddies in the List

int count(node *h)
{

int numberofnodes=0;
node *p = h;
if(p==NULL)

return 0;
else
{

for(;p!=NULL;p=p->next)
numberofnodes++;

return numberofnodes;
}

}

How to Replace a Particular Entry in the Map

node* replace(node *h,int location,Buddy pal)
{

int c=0;
node *p=h;
node *r=p;
node *q=(node *)malloc(sizeof(node *));
if(location<count(h))
{

//
for(;p!=NULL;p=p->next)
{

c++;
if(c==location-1)

break;
}

q = p->next;
q->next = p->next->next;
q->pal = pal;

}
return r;

}

How to Swap Two Contents of the Map at two Different Locations

//This function swaps any two elements in the list
node* swap(node *h,int loc_a,int loc_b)

474 Data Structures using C

{
 Buddy temp;
 node *p=h;
 temp = get_address(h,loc_a)->pal;
 p=replace(p,loc_a,get_value(h,loc_b));
 p=replace(p,loc_b,temp);
 return p;
}

How to Swap Head and Tail of a Map

//This function swaps the head and the tail
//or the front and the back element of the list
node* swap_head_tail(node *h)
{

node *p = h;
Buddy temp = p->pal;
p->pal = back_element(h);
for(;p->next!=NULL;p=p->next);
p->pal = temp;
return p;

}

14.2 HOW TO DEFINE A PREDICATOR OVER A MAP AND USE IT FROM A

CLIENT

A predicator is a function that returns true or false depending on some condition.

//This is a client display function
//that iterates through the map
//and checks if the buddy satisfies the
//condition (The name starts with a S) or not
//If the buddy satisfies, then it will display
//the buddy details. Else it will not display
//the buddy�s name and number.
void display_if(node *h)
{

node *p = h;
for(;p!=NULL;p=p->next)
//Refer the function startsWith in Chapter on String

if(startsWith(p,�S�))
printf("Key %d Name %s Phone %s\n ",p->key,

 p->pal.name, p->pal.phone);

}

14.3 HOW TO KNOW WHO IS WHO�S FRIEND FROM THE BUDDY LIST

From the above buddy list representation it is not possible to know if some buddy of your phonebook is
also a buddy to another person in the list. To maintain this we can keep an array of integers that will store
the keys of a buddy�s pals. The structure will change like

typedef struct node

Map (Phonebook, Dictionary, Cryptography) 475

{
Buddy pal;
int key;
int pals[10];
struct node *next;

}node;

The pals array will store the keys of the persons who are friend to this buddy.
The above implementation could prove to be handy in many different situations.
For example, we can write a function like this

Buddy[] GetPalsOfThisBuddy(int BuddyKey)
{

 //This function will return an array of Buddy

 //Structures that will represent the Buddies
 //For the buddy whose Key is supplied.

}

14.4 HOW TO DESIGN A RANDOM CIPHER ENCODER USING A MAP

Cipher Text is the product of a mathematical operation (Mostly Linear Translation) over a plain text. For
example a � +1 Cipher of a text� moves all the characters in the text to its right by one character. If we
get z it makes it a (i.e. Circular, when we go out of alphabet, we start from beginning , z + 1 = a and so
on).

A cipher text generated like this is highly prone to hacking risks because computers are incredibly
fast on checking all these additive, subtractive ciphers and decode them..

One way to protect our strings is to encrypt it with a random cipher. Random Cipher is a technique
that replaces a whole word with a totally different pattern or sequence of characters. So that the Hacker
will never have the slightest clue about what is going on.

Say the word, random will be replaced by the pattern �4A&$)<�
So we can store the words and their equivalent Random cipher replacements in a map.
When a string will be given to us, we can just stroll through the string and replace the words (Keys in

the map) with their Random Cipher Encoded Values. (values in the map). To decode such an encrypted
string we just use a map with reversed key value pair. Articles and prepositions would also be part of the
map. For verbs, to represent the past tense, the mapped value will be concatenated with #$ for example
the value for Like is say �J8*p� then an instance of �liked� in the original string will be replaced with
�J8*p#$�.

To make things worse for the hacker we can do an additive or subtractive (or some kind of linear
ciphering) over the generated encoded string from the first pass.

The below application uses the following maps
Now if we convert the string
I had a plate of Pasta. I liked. I will have again.
we will get,

@ T#@ I*@F2 O% ^^&tZ. @ (x)21#$. @ mul2 Y^&k 89GjU.

Assuming single space between words.
Notice the #$ is appended due to past tense.

476 Data Structures using C

Key Value

* A
** An
*** The
U&9 Has
Y^&k Have
T#@ Had
(x)21 Like
^^&tZ Pasta
Qxzm*iiz Normally
mul2 Will
89GjU Again
I*@F2 Plate
@ I

O% Of

Decryption Map

Key Value

A *
An **
The ***
Has U&9
Have Y^&k
Had T#@
Like (x)21
Pasta ^^&tZ
Normally Qxzm*iiz
Will mul2
Again 89GjU
Plate I*@F2
I @

Of O%

Encryption Map

14.5 APPLICATION OF MAP OF MAPS

A phonebook is designed using a map given earlier in this chapter. We can change the code so that
multiple user will access it. First, we will define the above map that will be used for the phonebook and
then we will describe another map that will hold a pointer to the phonebook map and a string key. It will
look like

typedef struct Buddy
{
 char name[20];
 char phone[11];
}Buddy;

//Node of the Map
typedef struct node
{
 Buddy pal;//value
 int key;//key
 struct node *next;
}node;

typedef struct MultiMapNode
{
 string key;
 node* BuddyList
 struct MultiMapNode *next;
}MultiMapNode;

Here string in the above structure denotes the identification of the phonebook. This way we can write
a program to make room for multiple people to store their phonebook.

Map (Phonebook, Dictionary, Cryptography) 477

14.6 MULTILANGUAGE WORD MAP

Famous lines are translated in many languages. A simple multimap structure can be used to store the
synonyms of a word, in different languages. Each map will demonstrate a map for translation from one
language to the other. For example the first map will map words from English to Spanish the second
from English to Portuguese, and so on. Now if a word is given in any language, without any more
information the program will be able to tell the following two informations

1. Which language is it from (assuming the word is from any of these three languages)
2. What is its meaning
If you want to extend you could do that by adding maps for synonyms and antonyms and homonyms

(if any exists for the given word)
Suppose the word �Dama� is entered. We

will seek the word list in the English2Spanish
map. Looking at it we can find out that Dama
means Lady in Spanish. Now to know its
synonym in Portuguese we have to go to the
English2Portuguese map and return the value
of the pair whose key is Lady. English is the
common language kept in the two maps.
Similarly, when someone says �Noite� you
look into English2Spanish map and find no
match. Then you search English2Portuguese
map and find that �Noite� means �Night� in
Portuguese. Now if you want to find out what
is the Spanish synonym of �Noite� you need
to go back to English2Spanish map and get
the value for the key �Night�.

This approach could be quite useful for
simple sentence translation from one lan-
guage to an other.

But as the sentence becomes bigger, grammar of different languages differs almost unpredictably. So
for Big sentence this could not be used.

Another Typical Application of this approach is to translate cheque amount written in one language
to the other. For example a German will write
Zwanzig Fünf Tausend neun hundert und siebzig acht
For
Twenty Five Thousand nine hundred and seventy eight

But if you have the map that maps one to hundred and the conjunctions like and etc., then you can
easily map the German words to English.

14.7 KEY INTERLINKED MAP (KIM)

If in a map the keys are interlinked then that map can be called as Key
Interlinked Map or KIM. There can be many ways that a key of a map is
related to the other part of it. A very easy way to relate a key to another, is
to create the value of the current the key of the other. For example the fol-
lowing map holds the name of few individuals as key, value pair. The key
value holds the employee�s name and the value holds his/her boss�s name.

So from this map we can say that Joan is two levels up than Sam.

Employee Manager

Sam Otto
Joan Kim
Otto Joan

Kim John

478 Data Structures using C

Try Yourself: Create such a KIM of names and once a name is entered, return the name of the manager
of the manager of the employee�s name supplied.

R E V I E W Q U E S T I O N S

1. What do you mean by map or maps? How can that be used to solve different association problems
in different industry.

2. What is the time complexity of search function in a map?
3. What is the time complexity of insert function in a map?
4. What is the time complexity to look up in an interlinked map?

P R O G R A M M I N G P R O B L E M S

1. How can we implement a dictionary using maps where for each word, meaning, synonyms, anto-
nyms will be stored. A word can have many antonyms and synonyms. So you might consider using
linked list to store them.

2. Implement a new data structure called SortedDictionary where the entries will be added according
to the sorted key values. For example an entry (Key=�City� Value=�O�Fallon�) will be followed
by an entry (Key=�BigCity� Value=�St. Louis�). That means St. Louis will appear before O�Fallon
in the map.

3. Implement a word translator with the concepts described in the chapter. Try to use SortedDictionary.
This will save you time for search.

4. How will you implement a one to many map? Let�s visualize an example of one to many mapping.

As shown in the figure, an author might have written N number of books. So when storing the
Author�Book couple in a map, that map becomes a �One to Many� map, because in this case the
author (Which is a single Key, Maps to different Books). In the text we discussed about Maps with
no duplicate keys.

5. Write a function to add an entry in an interlinked map.
6. Write a function to delete an entry in an interlinked map.
7. Write a program to implement English to Spanish Numeric Translation.
8. Write a program to demonstrate how maps can be used to represent if�else blocks effectively.
9. Write a program that uses the concept of program 4 and extend the idea to show the premium of an

insurance.
10. Write a program to demonstrate how a map can be used to represent in a decision tree.
11. Write a program to demonstrate how a map can be used to represent basic political atlas.

15

Currency
No Primitive Please!

INTRODUCTION

Currencies need special attention in any program as they can�t be efficiently represented using the primi-

tive data types like float or double. All present relational database systems like Oracle, SQL Server,

MySQL etc. support Currency Data Type. Creating a new currency data type for each currency is a good

programming practice because it gives the program much more professional look and the code becomes

much more readable and easily understandable. For example to represent the salary of an employee in

USA, we can write USD salary, which makes much more sense rather than just writing float salary. So

we should not use primitive data types when we know that the variable that we are going to deal with

will/may have some other behaviors than that of a primitive data type which though at a first look might

seem to be a close match.

In this chapter we will discuss how we can create different currency data type using primitive C

building blocks (read structures) and then we will write different functions that will be operating on

these currency data types.

How to Model USD Currency as a Structure

typedef struct USD
{

int dollars;
float cents;

}USD;

How to Add Two Amounts in USD

USD Add(USD amount_1, USD amount_2)
{

USD temp;

480 Data Structures using C

temp.dollars = amount_1.dollars + amount_2.dollars;
temp.cents = amount_1.cents + amount_2.cents;

if(temp.cents>100)
{

temp.cents = temp.cents - 100;
temp.dollars+=1;

}//Highest possible cent amount is
 //98 cents in any addition.

return temp;
}

How to Convert a String to a Corresponding USD Amount

#include <string.h>
#include <conio.h>
#include <ctype.h>

USD StringToUSD(char amount[])
{

//$3,44,500
USD temp;
double dbldollaramount;
int intdollaramount;
char samount[15];
int i = 0;
int j=0;
for(i=0;i<strlen(amount);i++)
{

if((amount[i]!='$' && amount[i]!=',')
&& (toascii(amount[i])>=48
|| toascii(amount[i])<=57
|| amount[i]=='.'))

{
samount[j]=amount[i];
j++;

}

}
samount[j]='\0';
dbldollaramount = atof(samount);
temp.dollars = dbldollaramount;
intdollaramount = dbldollaramount;
temp.cents = dbldollaramount�intdollaramount;
temp.cents*=100;
return temp;

}

See how this function is called from a client code (A client code is a code that calls another code. For

example we will call this function from main function then main function is the client code for this

function)

Currency (No Primitive Please!) 481

int main()
{

USD a = StringToUSD("$45.78 USD");
USD b = StringToUSD("$78.99 USD");
USD c = Add(a,b);
printf("%d Dollars %.0f Cents",c.dollars ,c.cents);
getch();

return 0;
}

The output of the above program is

124 Dollars 77 Cents

Note how clean the code looks. And the StringToUSD is a very versatile function. I have given all

kind of dirty inputs to it but it successfully constructs the USD object correctly every time. I have tried

the following conversions.

int main()
{

USD a = StringToUSD("$13,560.23 United States Dollars");
printf(" The amount + 1 Dollar = %d Dollars %.0f

 Cents",a.dollars + 1,a.cents);
getch();

return 0;
}

The output of the above program is

The amount + 1 Dollar = 13561 Dollars 23 Cents

See how the StringToUSD() function commas.

Try Yourself: Modify the StringToUSD() function such that it returns a structure called result contain-

ing a USD object and a character array. The character array will store the conversion comment, stating

whether it is successful or not. So the calling of this function will look like

typedef struct Result
{

USD amount;
Char *comment;

}Result;

Result StringToUSD(char *string)
{

Result result_of_this_conversion;

// Place your code here
// Populate the elements of the result structure.

Return result_of_this_conversion;
}

So while calling this function we can write

Result Conversion = StringToUSD(�$12,569.45 US Dollars�);
if(strcmpi(Conversion.Comments,�Successful�)==0)

482 Data Structures using C

{
//Do whatever you want with the converted amount
//Conversion.amount

}
else
{

//Find out what exactly has happened by checking
//the result comment

 //and tell the user where exactly he/she went wrong.
}

How to Check if Two USD Amounts are Equal or Not

int isEqual(USD a, USD b)
{

return a.dollars==b.dollars && a.cents == b.cents;
}

Try to give the function cascaded input (A Cascaded input is an input generated in a system from

another system) like

USD b;
b.dollars = 44;
b.cents =24;
if (isEqual (Add(StringToUSD(�$40.24�),StringToUSD($4.00�))
 ,b) = = 1)
{

//Do Something
}

else
{

//Do Something else
}

How to Check if One USD is Greater than the Other

enum {NO,YES}; //an Enum type variable is used to make the code more readable.

int isGreater(USD a,USD b)
{

int Greater = NO;

if(a.dollars>b.dollars)
Greater = YES;

if(a.dollars == b.dollars)
{

if(a.cents>b.cents)
Greater = YES;

}

return Greater;
}

How to Check if One USD is Lesser than the Other

enum {NO,YES};
//an Enum type variable is used to make the code more readable.

Currency (No Primitive Please!) 483

int isLesser(USD a,USD b)
{

int Lesser = NO;

if(a.dollars<b.dollars)
Lesser = YES;

if(a.dollars == b.dollars)
{

if(a.cents<b.cents)
Lesser = YES;

}

return Lesser;
}

Let�s define few other structures depicting some other currencies.

How to Model GBP Currency as a Structure

typedef struct GBP
{

int pound;
float penny;

}GBP;

How to Model Euro Currency as a Structure

typedef struct Euro
{

int eurodollars;
float eurocents;

}Euro;

How to Find the Highest USD Amount from a Series Supplied

USD GetMeMax(USD amounts[],int size)
{

int i;
USD GreatestAmount = amounts[0];
for(i=1;i<size;i++)
{

if(isGreater(amounts[i],GreatestAmount)==1)
GreatestAmount = amounts[i];

}
return GreatestAmount;

}

How to Find the Least USD Amount from a Series Supplied

USD GetMeMin(USD amounts[],int size)
{

int i;
USD LeastAmount = amounts[0];
for(i=1;i<size;i++)
{

484 Data Structures using C

{
if(isLesser(amounts[i],LeastAmount)==1)

LeastAmount = amounts[i];

}
return LeastAmount;

}

A Client Code that Uses the Above Methods (Putting It Together)

int main()
{

USD amounts[] =
 {
 StringToUSD("$45.23"),
 StringToUSD("$244.22 Dollars"),
 StringToUSD("$12,441.19 Dollars")
 };//Carefully notice how the array is initialized!

USD max = GetMeMax(amounts,3);
USD min = GetMeMin(amounts,3);

printf("Greatest amount is %d Dollars and %.0f
Cents\n",max.dollars,max.cents);
printf("Least amount is %d Dollars and %.0f
Cents\n",min.dollars,min.cents);

getch();

return 0;
}

The output of the above client program is

Greatest amount is 12441 Dollars and 19 Cents

Least amount is 45 Dollars and 23 Cents

15.1 A PRACTICAL APPLICATION: GETTING THE LOWEST BID AMOUNT

Suppose you are hired by a bidding company to find out what is the lowest bid amount from a list of

amounts collected online. Now there lies a challenge. When you are allowing your user base to enter the

amount in whatever way they please, you need to make sure that finally the amounts are stored correctly.

We can convert the amount entered by them with their names or web login credentials (LoginID and

password). And store these details in a flat file. Now we can read that file and store the values in an array

of structure (That will depict a bid, with the identification of the client who bid that amount and the

amount).

Here is the structure to store a Bid:

typedef struct Bid
{

Char UserID[10];
Char Password[10];
USD BidAmount;

}

Currency (No Primitive Please!) 485

Here is the approach that reads the bids from a flat file (A notepad file is sometimes referred as a flat

file, to distinguish it from other file structures) which has the following format.

UserID Password BidAmount

Read from File

Using strtok () function or some other function extract the tokens user id, password and the bid amount

and then store them in an array of bid like

strcpy(bids[i].UserID,/* Put the first token here */);
strcpy(bids[i].Password, /* Put the second token here */);
bids[i].BidAmount = StringToUSD(/* Put the third token here */);

Once you have the bid array created, you can find what is the least bid amount by a code like

USD LowestBidAmount = bids[i].BidAmount;

//Assuming there are 10 rows in the file./for 10 clients
for(i=1;i<10;i++)
{

if(bids[i] .BidAmount<LowestBidAmount)
{

LowestBidAmount = bids[i].BidAmount;
}

}

Now that you have the LowestBidAmount, you can tell who proposed this lowest bill just by strolling

the list once more.

for(i=1;i<10;i++)
{

if(bids[i].BidAmount==LowestBidAmount)
{

printf(�User ID = %s �,bids[i].UserID);
}

}

After you define other currencies like USD, say GBP, EURO etc, then we can even handle the above
problem with multiple type of currencies. What I mean is we can find out the max or min amount from
a list of amounts in different currencies.

15.2 HOW TO CONVERT USD TO GBP AND VICE VERSA

Currency conversion is probably the most performed operation on any currency ever modeled.
A typically ideal programmatic conversion from one currency to another follows the following set of

techniques.
l Decide to have a base currency.
l Declare constants that stores the conversion rates from this currency to others.
l Use these conversion constants across the program.
l When the rates change, we just need to change these programming constants.

Here is an example.

#define USD2GBP 0.517505
#define USD3EUR 0.764435

GBP USD2GBP(USD amount)
{

GBP temp;

486 Data Structures using C

float t = amount.dollars + amount.cents/100;
t*=USD2GBP;
int ct = t;
temp.pound = ct;
temp.penny = t - ct;
temp.penny*= 100;
return temp;

}

Rates are taken from www.xe.com

The reverse would be similar, to find the equivalent USD amount for an amount given in GBP

Here is the function that will perform this conversion:
USD GBP2USD(GBP amount)
{

USD temp;
float t = amount.pound + amount.penny/100;
t/=USD2GBP;
int ct = t;
temp.dollars = ct;
temp.cents = t - ct;
temp.cents*= 100;
return temp;

}

Similar methods can be written for other currencies.
Try Yourself: Accept a list of Conversion Requests in the following format:

10 GBP to USD
2.4 USD to EURO
22.23 EURO to GBP

And output as

10 GBP = x Dollars and y cents

And so on..

15.3 HOW TO CONVERT USD TO GBP AND VICE VERSA DATEWISE

The conversion rates vary datewise. So we might want to use different rates for different dates. In this
way we can even compare performance of a currency with respect to others over a span of time. To
represent such changing rate, a map whose keys are date and values as conversion rates can be used.

The entries of the map would be objects of the structure

typedef struct Rate
{

Date d;
double USD2GBP;
double USD2EURO;
//and so on

}Rate;

Currency (No Primitive Please!) 487

R E V I E W Q U E S T I O N S

1. What will be the output of the following code snippet?

if(isLesser(stringtoUSD(�$145.34�),USD2GBP(stringtoUSD(�123�)))
puts(�Share price increased�);

else
puts(�Oh! No! the price is still the same�);

2. If we want to find out the equivalent GBP amount for a USD amount for different conversion rates

using a function then how will the function signature look like?

3. x = stringToUSD(�$6000.45�).dollars; What can you conclude about the data type

of x from this statement.

P R O G R A M M I N G P R O B L E M S

1. Write a program that will read a list of amounts in USD and GBP and will return the maximum

amount.

2. Write a program that will read a list of amounts in USD and GBP and will return the minimum

amount.

3. Write a program that will read a list of bidding amounts associated with a bidder name. A Bidder

can put multiple bids though. The program should output the bidder with the least bid amount.

Assume that the bidding amounts can be either in USD or in GBP. If nothing is mentioned then the

amount is in USD.

4. Create a currency Euro.

5. Create a currency Lira.

6. Create a currency Peso.

7. Create a currency Rubble.

8. Create a currency AUD.

9. Write a function that will convert from USD to any of these as passed as argument.

10. Write a function to find out the maximum amount from a list of amounts in all such currencies.

11. Write a function to find out the minimum amount from a list of amounts in all such currencies.

16

File Handling
Seed, Save, Share

INTRODUCTION

Whatever we do in our real life, we need to store the details in hard drives for future purposes. Starting
from storing the transaction details for a pizza outlet to music storage for ipod Nano, every bit of re-
search is being affected by how we can store the information in the disk. Files are also used heavily in
game programming. One such example is described at the end of this chapter. Reading a file and analyzing
the words in it, we can classify the document. �Google News� is a great example of this technique. In
this chapter we will discuss about the library functions that C offers for file handling. After that we will
discuss how files can be used to solve many diverse problems, which are very similar in one aspect. All
these problems have a need for data storage in some way or the other.

It is advised that you read chapter on string before you go ahead with this chapter because we will use
some functions written in String chapter here in this chapter. Anyways, you can continue and whenever
you find the references, jump to chapter on Strings for instant clarifications.

16.1 WHAT IS FILE?

FILE is a built-in structure that represents the file in C. In C any file is a stream of characters. To do any
kind of operation on a FILE in C, we need to create a FILE pointer that will be the indicator of the FILE.

Example 16.1 Write a program to demonstrate fopen(), fclose(), fputc() and fgetc().

Solution fopen() opens a file in different mode namely r (read mode) , w (write mode) and a (append
mode). If the file does not exist and we open it in �a� mode then the file will be created before writing. If
we open an existing file in w mode then the existing file will be overwritten. The �r� mode is used to read
the file starting from the first character. fopen() takes the FILE pointer parameter to stroll through the file.
Fopen() signature is shown in the box below.

File Handling (Seed, Save, Share) 489

fclose() signature is shown in the box below.

fputc() signature is shown in the box below.

fgetc() signature is shown in the box below.

#include <stdio.h>
#include <conio.h>

int main()
{
 FILE *fp;
 char c;
 fp = fopen("C:\\test.txt","w");
 do
 {
 c = getche();//Reading a character from the screen
 if(c==13)//Let the loop run till we hit �Enter�
 break;
 else
 //Let�s put the character in the file
 //pointed by FILE pointer fp
 fputc(c,fp);
 }while(1);
 fclose(fp);
 puts("File written!");
 fp = fopen("C:\\test.txt","r");
 puts("This is what you have written in the file");
 while(!feof(fp))
 {
 //Getting characters one by one from the text file

 //and displaying them on the console
 putc(fgetc(fp),stdout);
 }

 fclose(fp);

 getch();
 return 0;

}

Example 16.2 Write a program to demonstrate fgets() and fputs().

490 Data Structures using C

Solution fgets() signature is shown in the box below.

fputs() signature is shown in the box below

#include <stdio.h>
#include <conio.h>

int main()
{
 FILE *fp;
 char line[80];
 fp = fopen("C:\\test.txt","w");
 fputs("Water can flow and it can crash.\n",fp);
 fputs("Be water my friend!",fp);
 fclose(fp);
 fp = fopen("C:\\test.txt","r");
 while(!feof(fp))
 {
 fgets(line,81,fp);
 puts(line);

 }
 fclose(fp);
 getch();
 return 0;

The output of this program will be

Example 16.3 Write a program to demonstrate fprintf() and fscanf().

Solution fprintf() signature is shown below in the box.

fscanf() signature is shown below in the box

File Handling (Seed, Save, Share) 491

#include <stdio.h>
#include <conio.h>

int main()
{
 FILE *fp;
 int count = 0;
 char name[20];
 int age = 0;
 fp = fopen("C:\\test.txt","w");
 do
 {
 fflush(stdin);
 puts("Enter name and age of the person ");
 scanf("%s%d",name,&age);
 fprintf(fp,"%s\t%d\n",name,age);
 count++;

 }while(count!=3);

 fclose(fp);

 fp = fopen("C:\\test.txt","r");
 while(!feof(fp))
 {
 fscanf(fp,"%s\t%d\n",name,&age);
 printf("%s\t%d\n",name,age);
 }
 fclose(fp);
 getch();
 return 0;
}

The same pattern is

used to read and write

This is a sample run output of the above program.

Example 16.4 Write a program to demonstrate the use of fseek() and ftell().

Solution fseek() is a function that allows us to move forward or backward from the three different

locations (beginning of the file, current location of the file pointer and the end of the file) in the file.

Here is the function signature of the fseek().

492 Data Structures using C

the origin is from where we want to travel. It can have either of these three set integer values 0, 1

or 2.

If the origin is SEEK_SET that means we want to move from beginning of the file.

If the origin is SEEK_CUR that means we want to move from current location in file.

If the origin is SEEK_END that means we want to move from end of file.

Ftell() returns the current value of the position indicator of the _File pointer. For binary streams, the

value returned corresponds to the number of bytes from the beginning of the file. For text streams, the

value is not guaranteed to be the exact number of bytes from the beginning of the file, but the value

returned can still be used to restore the position indicator to this position using fseek.

Here is a program that measures the size of a file using these two functions.

#include <stdio.h>

int main ()
{
 FILE * fp;
 long size;

 fp = fopen("test.txt","rb");//Assume that the file exists

 fseek (fp, 0, SEEK_END);
 size=ftell (fp);
 fclose (fp);
 printf ("Size of test.txt: %ld bytes.\n",size);

 return 0;
}

16.2 WHAT DOES THE FUNCTION rewind() DO

This function is a wrapper function. If sometime while reading the file, we want to start all over again

from the starting of the file, then we can call this function. The box below shows the signature of this

function.

rewind() is basically same to a call to fseek(fp,0L,SEEK_SET);

How to Write a Function wcl() to Find the Line Count of a File

int wcl(char *filename)
{
 int count = 1;

File Handling (Seed, Save, Share) 493

 FILE *fp;
 fp = fopen(filename,"r");
 //The loop will rotate till the end of the file
 while(!feof(fp))
 {
 //Are we done with this line?

 //If yes then the line counter needs to be
//increased by unity

 if(fgetc(fp)=='\n')
 count++;
 }
 fclose(fp);
 return count++;//Return the total line count
}

How to Write a Function wcw() to Find the Word Count of a File

Assuming that the words in the text file are separated by blank spaces,

int wcw(char *filename)
{
 int count = 0;
 char word[20];
 FILE *fp;
 fp = fopen(filename,"r");
 while(!feof(fp))
 {
 //reading a word
 fscanf(fp,"%s",word);
 count++;
 }
 fclose(fp);
 return count;
}

How to Write a Function wcc() to Find the Word Count of a File

int wcc(char *filename)
{

int count = 0;
FILE *fp;
fp = fopen(filename,"r");
while(!feof(fp))
{
 fgetc(fp);
 count++;
}
fclose(fp);
return count++;

}

494 Data Structures using C

How to Write a Function Client Code that Uses These Three Functions

int main()
{
 printf("Lines = %d Word = %d Characters =

%d\n",wcl("C:\\test.txt"),wcw("C:\\test.txt"),wcc("C:
\\test.txt"));
 getch();
 return 0;
}

The contents of the file C:\\test.txt was this

When the client program is run, we get the following output

How to Simulate UNIX head Command

This function prints the first number of lines passed to it as a parameter.

void head(char *filename,int number)
{
 int count = 0;
 char line[81];
 FILE *fp;
 fp = fopen(filename,"r");
 while(!feof(fp))
 {
 fgets(line,81,fp);
 count++;
 puts(line);
 if(count==number)
 break;
 }
 fclose(fp);
}

Here is a client code to call the function.

int main()
{

File Handling (Seed, Save, Share) 495

head("C:\\test.txt",2);
getch();
return 0;

}
test.txt contains these lines

And the output of the client code is

which are the first two lines of the text file test.txt.

How to Simulate UNIX tail Command

void tail(char *filename,int number)
{
 int count = 0;
 char line[81];
 //See how the wcl function is being used to calculate the

//number of lines in the file. Whenever writing a new function

//we should keep in mind that the function can be used as a

//building block.

 int totalnumberoflines = wcl(filename);
 int startingnumber = totalnumberoflines � number + 1;
 FILE *fp;
 fp = fopen(filename,"r");
 while(!feof(fp))
 {
 fgets(line,81,fp);
 count++;
 if(count>=startingnumber)
 puts(line);

 }
 fclose(fp);

}

Notice the bolded part that shows how the wcl() function is being used to calculate the total number

of lines in the file which is the central part of the tail() function.

496 Data Structures using C

Here is a client code to test the tail() function

int main()
{
 tail("C:\\test.txt",2);
 getch();
 return 0;
}

The content of test.txt was the following lines

And the output of the above client code is

which are the last 2 lines of the file test.txt.

16.3 HOW TO SIMULATE UNIX cat COMMAND

This function appends the contents of the source file at the end of the destination file.

 void cat(char *destinationfile,char *sourcefile)

 void cat(char *destinationfile,char *sourcefile)
{
 FILE *fp1 = fopen(destinationfile,"a");
 FILE *fp2 = fopen(sourcefile,"r");
 fputc('\n',fp1);
 while(!feof(fp2))
 {
 fputc(fgetc(fp2),fp1);
 }
 fclose(fp1);
 fclose(fp2);
}

There are two files line1.txt and line2.txt whose contents are as follows.

File Handling (Seed, Save, Share) 497

Line1.txt Line2.txt

Here is a client code that concatenates these two files.

int main()
{
 cat("C:\\line1.txt","C:\\line2.txt");
 getch();
 return 0;
}

and here is the content of line1.txt after this main() is

executed.

Try Yourself: Write a wrapper function that will use this

cat() function to concatenate more file contents at the

end of one target file. The signature of your wrapper

function should be like cat(char *targetfilename,
String *files)

The second argument is a linked list of filenames that

represents the source files.

16.4 HOW TO SIMULATE UNIX grep COMMAND WITH EXACT MATCH

This function returns 1 if the pattern is a substring of the string.

int DoesItExist(char *string,char *pattern)
{

//strstr() returns the pointer that marks the start of pattern

//in string. So if pattern exist as a substring in string then

//strstr(string,pattern) will not return a NULL pointer.
return strstr(string,pattern)!=NULL?1:0;

}

This function prints all the lines of the file where searchstring is found to be part of the line.

void grep(char *filename,char *searchstring)
{

char line[81];
FILE *fp = fopen(filename,"r");
while(!feof(fp))
{

fgets(line,81,fp);
//Is the sought string a substring of

//the line read?
i i i i

498 Data Structures using C

if(DoesItExist(line,searchstring))
puts(line);

}

fclose(fp);
}

Here is a client code to test this function.

int main()
{

grepv("C:\\line1.txt","You");
getch();
return 0;

}

The content of the file line 1.txt

The demo program will print only those lines where the word �You� is present. The output of the

program is shown below.

16.5 HOW TO SIMULATE UNIX Grep COMMAND FOR SWITCH �V

This function searches for all those lines in the text file that doesn�t have the search string as part of it.

This is basically the complimentary version of grep.

void grepv(char *filename,char *searchstring)
{

char line[81];
FILE *fp = fopen(filename,"r");
while(!feof(fp))
{

fgets(line,81,fp);
if(!DoesItExist(line,searchstring))
puts(line);

}

fclose(fp);
}

Here is a client code that calls this function.

int main()
{

grepv("C:\\line1.txt","You");
getch();
return 0;

}

The content of line1.txt is

File Handling (Seed, Save, Share) 499

The above client code is written to get those lines where �You� is not present. The output of the program

is shown below.

How to Print Those Lines of a Text File that Contain a Word Starting with

a Given Prefix

void greps(char *filename,char *searchstring)
{

char word[20];
char line[81];
char cline[81];

int found = 0;
FILE *fp = fopen(filename,"r");
while(!feof(fp))
{

found = 0;
String *h=NULL;
strcpy(line,"");
strcpy(cline,"");
fgets(line,81,fp);
//making a copy of the line.

//because at the end of the split
//the line variable will be lost.
strcpy(cline,line);
h = split(line);

//h now contains all the words in line.
for(;h!=NULL;h=h->next)
{

//checking whether a word starts with the searchstring
if(startsWith(h->s,searchstring)==1)
{

found = 1;
break;

}
}
if(found==1)

puts(cline);
}

fclose(fp);
}

How to Print Those Lines of a Text File that Contain a Word Ending with a

given Suffix

void grepe(char *filename,char *searchstring)

500 Data Structures using C

{
char word[20];
char line[81];
char cline[81];

int found = 0;
FILE *fp = fopen(filename,"r");
while(!feof(fp))
{

found = 0;
String *h=NULL;
strcpy(line,"");
strcpy(cline,"");
fgets(line,81,fp);
//Holding the copy of the line
//in another container. Otherwise when
//we copy the next
strcpy(cline,line);
h = split(line);//Refer the split function in string chapter
for(;h!=NULL;h=h->next)
{

//Refer the endsWith function in the string chapter

if(endsWith(h->s,searchstring)==1)
{

found = 1;
break;

}
}
if(found==1)

puts(cline);
}

fclose(fp);
}

How to Print Those Lines of a Text File that do not Contain a Word

Starting with a Given Prefix

void grepsv(char *filename,char *searchstring)
{

char word[20];
char line[81];
char cline[81];
int found = 0;
FILE *fp = fopen(filename,"r");
while(!feof(fp))
{

found = 0;
String *h=NULL;
strcpy(line,"");
strcpy(cline,"");

File Handling (Seed, Save, Share) 501

fgets(line,81,fp);
strcpy(cline,line);
h = split(line);
for(;h!=NULL;h=h->next)
{

if(startsWith(h->s,searchstring)==1)
{

found = 1;
break;

}
}
if(found==0)

puts(cline);
}

fclose(fp);
}

How to Print Those Lines of a Text File That do not Contain a Word

Ending with a Given Suffix

void grepev(char *filename,char *searchstring)
{

char word[20];
char line[81];
char cline[81];

int found = 0;
FILE *fp = fopen(filename,"r");
while(!feof(fp))
{

found = 0;
String *h=NULL;
strcpy(line,"");
strcpy(cline,"");
fgets(line,81,fp);
strcpy(cline,line);

h = split(line);
for(;h!=NULL;h=h->next)
{

if(endsWith(h->s,searchstring)==1)
{

found = 1;
break;

}
}
if(found==0)//Notice the change

puts(cline);
}
fclose(fp);

}

502 Data Structures using C

How to Print Those Lines of a File That Contain a Word or a Phrase that

Matches a Particular Pattern Represented by Asterisk Wildcard Notation

void wildgrep(char *filename,char *searchstring)
{

char line[50];
char cline[50];
String *toks = NULL;
FILE *fp = fopen(filename,"r");
while(!feof(fp))
{

toks = NULL;
fgets(line,50,fp);
strcpy(cline,line);
//Notice how these string functions are used heavily here
toks = split(line," ");
for(;toks!=NULL;toks=toks->next)
{

if(wildCharMatch(toks->s,searchstring)==1)
puts(cline);

}

}

fclose(fp);
}

The sonnet.txt file content is as shown below.

When called by the following client code,

int main()
{

wildgrep("C:\\sonnet.txt","*am*");
getch();
return 0;

}

File Handling (Seed, Save, Share) 503

the above function gives the following output

because the pattern *am* matches with �am� and �same�.

16.6 HOW TO PRINT THOSE LINES OF A FILE THAT CONTAIN A WORD

THAT SOUNDS LIKE A GIVEN WORD

void wildgrep(char *filename,char *searchstring)
{

char line[50];
char cline[50];
String *toks = NULL;
FILE *fp = fopen(filename,"r");
while(!feof(fp))
{

toks = NULL;
fgets(line,50,fp);
strcpy(cline,line);
//Notice how these string functions are used heavily here
toks = split(line," ");
for(;toks!=NULL;toks=toks->next)
{

//refer chapter on string for isSameSoundex() function.

if(isSameSoundex(toks->s,searchstring)==1)
puts(cline);

}

}

fclose(fp);
}

16.7 HOW TO REPLACE A CHARACTER IN A FILE WITH ANOTHER

CHARACTER

The strategy is to involve a temporary file that will hold the new character version of the old file. After

the temporary file is created, we just rename it to the original file and delete the original file.

void trc(char *filename,char oldchar,char newchar)
{

char c;
char temp[20];
FILE *fp = fopen(filename,"r");
FILE *fw = tmpfile();

 tmpnam(temp);
fw = fopen(temp,"a");
while(!feof(fp))

504 Data Structures using C

{
c = fgetc(fp);
if(c==oldchar)

fputc(newchar,fw);
else

fputc(c,fw);
}
fclose(fp);
fclose(fw);
unlink(filename);
rename(temp,filename);

}

Before the call to this function the contents of

line1.txt was as given in the first figure

After the call to tr() as in the client code below

int main()
{

trc("C:\\line1.txt",'Y','Z');
getch();
return 0;

}

the content of line1.txt becomes as shown

alongside,

16.8 HOW TO REPLACE A WORD IN A FILE WITH ANOTHER WORD

This function replaces a word in a text

file with another given word. The

program uses two temporary files for

this purpose. The function works as

follows.

Lines are read one by one from the

source file where the word needs to

be replaced. The lines are then writ-

ten to a temporary file one by one and

the words are read from these lines. If

any of the word read from these words

match with the word to be replaced,

then the new word is written in an-

other temporary file. Otherwise the

words from these lines are written. At

the end the second temporary file is

renamed by the original file�s name and the original file is deleted. Thus we get a new file where the

word is replaced with another one.

void trw(char *filename,char* oldword,char *newword)
{

char word[20];

File Handling (Seed, Save, Share) 505

char temp[20];
char temp2[20];
char line[80];
FILE *fp = fopen(filename,"r");
FILE *fw = tmpfile();
FILE *fw2 = tmpfile();
tmpnam(temp);
tmpnam(temp2);
//Creating the first temporary file
fw = fopen(temp,"a");

while(!feof(fp))
{

//Creating the second temporary file
fw2 = fopen(temp2,"w");
fgets(line,81,fp);
fprintf(fw2,"%s",line);
fclose(fw2);
fw2 = fopen(temp2,"r");
while(!feof(fw2))
{

fscanf(fw2,"%s ",word);
if(strcmpi(word,oldword)==0)

fprintf(fw,"%s ",newword);
else

fprintf(fw,"%s ",word);
}
fprintf(fw,"\n");
fclose(fw2);

}
fclose(fp);
fclose(fw);
unlink(filename);
rename(temp,filename);

}

16.9 HOW TO COMPARE TWO TEXT FILES LINE BY LINE

This function prints all those lines where two files are different:

void diff(char *file_1,char *file_2)
{

char linef1[81];
char linef2[81];
//Opening first file
FILE *fp1 = fopen(file_1,"r");
//Opening the second file
FILE *fp2 = fopen(file_2,"r");
while(!feof(fp1))
{

fgets(linef1,81,fp1);//reading line from the first file

506 Data Structures using C

fgets(linef2,81,fp2);//reading line from the second file
if(strcmpi(linef1,linef2)!=0)//If they are different

printf("%s # %s\n",linef1,linef2);

}
}

Contents of line1.txt is Contents of line2.txt is

When called by the client code below

int main()
{

diff("C:\\line1.txt","C:\\line2.txt");
getch();
return 0;

}
we get the below output.

16.10 HOW TO PRINT SAME LINES OF TWO FILES

This function will print only those lines that are same in both the files. This is just the complement of the

diff function. Note the naming convention of complement functions. diff() and diffv() differs by only a

�v� at the end which is the short form of negative because diffv() = !diff():

void diffv(char *file_1,char *file_2)
{

char linef1[81];
char linef2[81];
FILE *fp1 = fopen(file_1,"r");
FILE *fp2 = fopen(file_2,"r");
while(!feof(fp1))
{

fgets(linef1,81,fp1);//reading the line from file 1
fgets(linef2,81,fp2);//reading the line from file 2
if(strcmpi(linef1,linef2)==0)//Are the lines same?

printf("%s = %s\n",linef1,linef2);

}
}

File Handling (Seed, Save, Share) 507

16.11 HOW TO COPY A FILE FROM A SOURCE TO A DESTINATION

This function copies the content of the sourcefile to the target file.

void cp(char *sourcefile,char *targetfile)
{

FILE *sfp = fopen(sourcefile,"r");
FILE *tfp = fopen(targetfile,"w");
while(!feof(sfp))
{

//reading a character from source file

//and putting that in the target file
fputc(fgetc(sfp),tfp);

}
fclose(sfp);
fclose(tfp);

}

Example 16.5 Write a program to autocorrect the indentation of a badly written C code.

Solution Programs that correct the indentation of a program are known as Code�Beautifier.

typedef struct Line
{

char s[50];
int spaceatfront;
struct Line *next;
struct Line *prev;

}Line;

Line* push_back_Line(Line *last,char *s,int space)
{

if(last==NULL)
{

last = (Line *)malloc(sizeof(Line));
strcpy(last->s,s);
last->spaceatfront = space;
last->next = NULL;
last->prev = NULL;
return last;

}
else
{

Line *p = (Line *)malloc(sizeof(Line));
last->next = p;
p->spaceatfront = space;
p->prev = last;

strcpy(p->s,s);
p->next = NULL;

508 Data Structures using C

return p;
}

}

int AssignSpace(Line *l)
{

int count = 0;
l = l->prev;
for(;l!=NULL;l=l->prev)

if(startsWith(l->s,"if")==1
 ||startsWith(l->s,"for")==1
 ||startsWith(l->s,"{")==1)

count+=l->spaceatfront+4;
return count;

}

int AssignSpaceForElse(Line *l)
{

l = l->prev;
for(;l!=NULL;l=l->prev)

if(startsWith(l->s ,"if")==1)
break;

return l->spaceatfront;
}

int main(int argc,char *argv[])
{

char line[50];
FILE *fp = fopen("C:\\badcode.txt","r");
FILE *fg = fopen("C:\\goodcode.txt","w");

int count = 0;
int i = 0;
Line *h=NULL,*hc=NULL,*hc2=NULL;
while(!feof(fp))
{

fgets(line,50,fp);
h = push_back_Line(h,line,0);
count++;
if(count==1)

hc = h;
}
hc2= hc;
fclose(fp);

for(;hc->next!=NULL;hc=hc->next)
{

if(startsWith(hc->s,"if")==1 || startsWith(hc->s,"for")==1)

File Handling (Seed, Save, Share) 509

{
hc->spaceatfront = AssignSpace(hc);

for(i=0;i<hc->spaceatfront;i++)
fprintf(fg,"%c",' ');

}
if(startsWith(hc->s,"else")==1)
{

hc->spaceatfront = AssignSpaceForElse(hc);

for(i=0;i<hc->spaceatfront;i++)
fprintf(fg,"%c",' ');

}
else
{

if(hc->prev!=NULL)
{
 hc->spaceatfront = AssignSpace(hc);

for(i=0;i<hc->spaceatfront;i++)
fprintf(fg,"%c",' ');

}
}
fprintf(fg,"%s\n",hc->s);

}

fclose(fg);
getch();

return 0;
}

Here is the badly indented code on which this

indenter was run.

After the program is run, the generated good indented code looks as below.

Example 16.6 Write a program to find out whether a C++ program uses STL or not?

Solution STL is the acronym for Standard Template Library. This library holds some generic data

structures and algorithm. A student might want to scan through the c/c++ codes that he has on his hard

510 Data Structures using C

drive for the programs written with STL. The following functions scans a program file and returns 1 if

the program uses STL else it returns 0.

int isSTL(char *filename)
{

FILE *fp = fopen(filename,"r");
char word[20];
while(!feof(fp))
{

fscanf(fp,"%s",word);
//If any of the listed header is found in the

//program listing then the program uses STL
if(strcmp(word,"<list>")==0
|| strcmp(word,"<vector>")==0
|| strcmp(word,"<map>")==0
|| strcmp(word,"<set>")==0
|| strcmp(word,"<algorithms>")==0
|| strcmp(word,"<queue>")==0
|| strcmp(word,"<stack>")==0
|| strcmp(word,"<deque>")==0)

return 1;
}
fclose(fp);

}

int main()
{

printf("STL Indicator = %d\n",isSTL("C:\\prog.txt"));
getch();
return 0;

}

Example 16.7 Write a program to find out whether a console based program is written in C/

C++, Java, C# or Visual Basic.

Solution To identify whether a program is written in C,C++,Java or Visual Basic it will be enough and

sufficient to look at the main() function/sub-signature lines.

int isCorCPP(char *filename)
{

int isC = 0;
FILE *fp = fopen(filename,"r");
char line[81];
while(!feof(fp))
{

fgets(line,81,fp);

//These are the forms of legal main() functions in C or C++
if(startsWith(line,"main")==0
 || strcmp(line,"int main()")==0

|| strcmp(line,"int main(void)")==0
|| strcmp(line,"void main()")==0
|| strcmp(line,"void main(void)")==0

File Handling (Seed, Save, Share) 511

|| strcmp(line,"void main(int argc,char *argv[])")==0
|| strcmp(line,"int main(int argc,char *argv[])")==0
|| strcmp(line,"int main(void){")==0
|| strcmp(line,"void main(){")==0
|| strcmp(line,"void main(void){")==0
|| strcmp(line,"void main(int argc,char *argv[]){")==0
|| strcmp(line,"int main(int argc,char *argv[]){")==0)

{
isC = 1;
break;

}
}
fclose(fp);
return isC;

}

int isJava(char *filename)
{

int isJ = 0;
FILE *fp = fopen(filename,"r");
char line[81];
while(!feof(fp))
{

fgets(line,81,fp);
//This is the only legal form of main() in Java
if(startsWith(line,"public static void main")==1)
{

isJ = 1;
break;

}
}
fclose(fp);
return isJ;

}

int isCSharp(char *filename)
{

int isCS = 0;
FILE *fp = fopen(filename,"r");
char line[81];
while(!feof(fp))
{

fgets(line,81,fp);
//This is the only legal form of Main() in C#
if(startsWith(line,"static void Main")==1)
{

isCS = 1;

512 Data Structures using C

break;
}

}

fclose(fp);
return isCS;

}

int isVB(char *filename)
{

int VB = 0;
FILE *fp = fopen(filename,"r");
char line[81];
while(!feof(fp))
{

fgets(line,81,fp);

//This is the only legal form of Main() in VB
if(startsWith(line,"Sub Main()")==1)

{
VB = 1;
break;

}
}

fclose(fp);
return VB;

}

Example 16.8 Write a program that will read a notepad file which will contain the definition of

an entity like Bank Account, Student, etc., and then generate the code for creating a single linked list

of this type. The program should also write the structure definitions.

Solution

typedef struct Entry
{

char datatype[10];
char variablename[256];
struct Entry *next;

}Entry;

Entry* push_back_Entry(Entry *last,Entry e)
{

if(last==NULL)
{

last = (Entry *)malloc(sizeof(Entry));
strcpy(last->datatype ,e.datatype);
strcpy(last->variablename , e.variablename);
last->next = NULL;
return last;

}

File Handling (Seed, Save, Share) 513

else
{

Entry *p = (Entry *)malloc(sizeof(Entry));
last->next = p;
p->next = NULL;
strcpy(p->datatype ,e.datatype) ;
strcpy(p->variablename , e.variablename) ;
return p;

}
}

int main()
{
 char line[50];
 int count=0;

char rec[20];
Entry *ens = NULL,e;

Entry *cens = NULL,*cens2=NULL,*cens3=NULL,*cens4 = NULL;
String *h = NULL;
String *hc = NULL;
String *toks = NULL;

 FILE *fp = fopen("C:\\rec.txt","r");
FILE *fw = fopen("C:\\code.txt","w");
while(!feof(fp))
{

fgets(line,50,fp);
h = push_back_String(h,line);
count++;
if(count == 1)

hc = h;
}
fclose(fp);
count = 0;
strcpy(rec,hc->s);
hc = hc->next;
for(;hc!=NULL;hc=hc->next)
{

toks = split(hc->s," ");
strcpy(e.datatype , toks->s);
strcpy(e.variablename , toks->next->s);
ens = push_back_Entry(ens,e);
count++;
if(count == 1)

cens = ens;
}
cens2 = cens;
cens3 = cens;
cens4 = cens;

fprintf(fw,"typedef struct %s",rec);
fprintf(fw,"\n{\n");
for(;cens4!=NULL;cens4=cens4->next)

fprintf(fw,"%s %s;\n",cens4->datatype
 ,cens4->variablename);

fprintf(fw,"\n}");

514 Data Structures using C

fprintf(fw,"%s;\n\n\n\n",rec);
//push_back generation
fprintf(fw,"%s* push_back(%s *last",rec,rec);
for(;cens->next!=NULL;cens=cens->next)

fprintf(fw,",%s %s",cens->datatype,cens->variablename);
fprintf(fw,",%s %s)\n",cens->datatype,cens->variablename);
fprintf(fw,"{\n");
fprintf(fw,"\tif(last==NULL)");
fprintf(fw,"\n\t{");
fprintf(fw,"\n\t\tlast = (%s *)malloc(sizeof(%s));",rec,rec);

fprintf(fw,"\n\t\tlast->next = NULL;");
for(;cens2!=NULL;cens2=cens2->next)
{

if(strstr(cens2->datatype,"char *")!=NULL ||

 strstr(cens2->datatype,"char*")!=NULL)
fprintf(fw,"\n\t\tstrcpy(last->%s, %s);"

 ,cens2->variablename,cens2->variablename);
else

fprintf(fw,"\n\t\tlast->%s = %s;"
,cens2->variablename,cens2->variablename);

}
fprintf(fw,"\n\t\treturn last;");
fprintf(fw,"\n\t}");
fprintf(fw,"else");
fprintf(fw,"\n{");
fprintf(fw,"\n\t%s *p = (%s *)malloc(sizeof(%s));",rec,rec,rec);
fprintf(fw,"\n\t p->next = NULL;");
fprintf(fw,"\n\t last->next = p;");

for(;cens3!=NULL;cens3=cens3->next)
{

if(strstr(cens3->datatype,"char *")!=NULL
 || strstr(cens3->datatype,"char*")!=NULL)

fprintf(fw,"\n\t\tstrcpy(p->%s, %s);"
,cens3->variablename,cens3->variablename);

else
fprintf(fw,"\n\t\tp->%s = %s;",cens3-

>variablename,cens3->variablename);
}
fprintf(fw,"\n\t\treturn p;");
fprintf(fw,"\n\t}");

fprintf(fw,"\n}");
fclose(fw);
getch();
return 0;

}

The above program takes the following notepad as input.

File Handling (Seed, Save, Share) 515

and it generates the following code as output:

The beauty of this program is that we can make it read any record and it will create a flawless
push_back() method for that particular type. This saves a lot of coding effort.

Example 16.9 Write a program to check whether content of a file is a sonnet or not.

Solution A sonnet is a song of 14 or more lines where alternate lines end with a rythmic word. Here is
a Perfect Sonnet (Def: Total number of matching pair or lines is half that of the total lines of the poem)
by Horatio R Palmer.

Angry words! O let them never
From the tongue unbridled slip
May the heart�s best impulse ever
Check them ere they soil the lip
Love one another thus saith the Savior
Children obey the Father�s blest command
Love each other, love each other
�Tis the Father�s blest command
Love is much too pure and holy
Friendship is too sacred far
For a moment�s reckless folly
Thus to desolate and mar
Angry words are lightly spoken
Bitterest thoughts are rashly stirred
Brightest links of life are broken
By a single angry word

This function extracts a substring from the given string, starting from index start till the index reaches end.
char* substring(char *string,int start,int end)
{

char temp[30];
int i,j;
for(i=start,j=0;i<=end;i++,j++)

temp[j] = string[i];
temp[j] = '\0';
return temp;

}

516 Data Structures using C

This function returns 1 if two lines passed to it can be identified by two matching sonnet lines. For
example from the above sonnet, �Angry words are lightly spoken� and �Brightest links of life are

broken� are two matching sonnet lines.
int isSonnetLines(char *a,char *b)
{

if(strcmp(a,b)==0)
return 1;

if(strcmp(substring(a,strlen(a)-3,strlen(a)-1)
 ,substring(b,strlen(b)-3,strlen(b)-1))==0)

return 1;

if(strcmp(substring(a,strlen(a)-2
 ,strlen(a)-1),substring(b,strlen(b)-2,strlen(b)-1))==0)

return 1;

if(a[strlen(a)-1]==b[strlen(b)-1])
return 1;

else
return 0;

}

There are many styles of sonnet writing. The above example was written by following one such style.
The client code below uses the above two functions. It reads a text file and displays a message reporting
whether the text file content is a sonnet or not. If you notice carefully the above sonnet contains 16 lines
and 8 matching pair of sonnet lines. This has been captured in the following client code.

int main()
{

String* Lines = NULL,*CLines = NULL,*CLines2=NULL;
int count = 0;
int total = 0;
char line[81];

FILE *fp = fopen("C:\\sonnet.txt","r");
while(!feof(fp))
{

fgets(line,81,fp);
Lines = push_back_String(Lines,line);
count++;
if(count==1)

CLines = Lines;
}
fclose(fp);
CLines2 = CLines;
count=0;
//Reading the total number of lines in the Sonnet
for(;CLines2!=NULL;CLines2=CLines2->next)

total++;
//Finding matching sonnet line pairs
for(;CLines->next->next!=NULL;CLines=CLines->next)
{

if(isSonnetLines(CLines->s,CLines->next->next->s)==1)
 count++;

}

printf("Count = %d Total = %d\n",count,total);

File Handling (Seed, Save, Share) 517

//Sonnets are always of even number of lines. So there will be half
 //the number of lines matching sonnet lines. So for the perfect

//sonnet like the above one count will always be half the total
//number of lines. There are different styles of sonnets that might
//have couple of lines of mismatch from a perfect sonnet style. So
//the following logic accomodates that.
if(count==total/2 || count == total/2 -1 || count == total/2-2)

puts("It is a Sonnet.");
else

puts("It is not a Sonnet.");

getch();
return 0;

}

Try Yourself: The Italian Style Sonnets don�t match the pattern taken as the example here. Write a

program to check whether a Sonnet is an Italian Style Sonnet or not.

File handling I/O function details: Please refer Online Learning Center Slides for more Theoretical

details on the file handling I/O functions.

Example 16.10 Write a program that

reads a notepad file that contains geometrical

measures of different shapes in a delimited

format.

Solution The program will calculate the area,
perimeter and volume of the shapes as and when
applicable and list them on the console. The pro-
gram should be able to handle Rectangle, Right
Angled Triangle, Squares and Spheres. Here is
a sample input file to the program.

typedef struct Shape
{

//This will store description like Square-20
//(This means a square of length 20)
char Description[50];
double Area;
double Perimeter;
double Volume;//If applicable, I mean if the shape is 3D

 struct Shape *next;
}Shape;

//This puts a Shape at the end of a Shape Linked List
Shape* push_back_Shape(Shape *last,Shape s)
{

if(last==NULL)
{

last = (Shape *)malloc(sizeof(Shape));
last->next = NULL;
strcpy(last->Description , s.Description);
last->Area = s.Area;
last->Perimeter = s.Perimeter ;
last->Volume = s.Volume;

t l t

518 Data Structures using C

return last;
}

else
{

Shape *p = (Shape *)malloc(sizeof(Shape));
p->next = NULL;
last->next = p;
strcpy(p->Description,s.Description);
p->Area = s.Area;
p->Perimeter = s.Perimeter;
p->Volume = s.Volume ;
return p;

}
}

int main()
{

int count = 0;
int x,y,z;
String *l=NULL,*cl = NULL;
String *toks = NULL;
Shape s;
Shape *sl = NULL,*csl = NULL;
FILE *fp = fopen("C:\\surv.txt","r");
char line[30];
while(!feof(fp))
{

fgets(line,81,fp);
l = push_back_String(l,line);
count++;
if(count==1)

cl = l;
}
fclose(fp);
count = 0;
for(;cl!=NULL;cl=cl->next)
{

x=0;
y=0;
z=0;
strcpy(s.Description,cl->s);
//Is it a Rectangle?
if(startsWith(cl->s,"Rec")==1)
{

toks = split(cl->s,"-");
x = atof(toks->next->s);
y = atof(toks->next->next->s);

s.Area = x*y;
s.Volume = 0;
s.Perimeter = 2*(x+y);
sl = push_back_Shape(sl,s);
count++;

File Handling (Seed, Save, Share) 519

if(count==1)
csl = sl;

}

//Is it a Triangle?
if(startsWith(cl->s,"Tri")==1)
{

toks = split(cl->s,"-");
x = atof(toks->next->s);
y = atof(toks->next->next->s);
z = atof(toks->next->next->next->s);

//Assuming Right Angled Triangles
s.Area = 0.5 * x * y * z;
s.Volume = 0;
s.Perimeter = x + y + z;
sl = push_back_Shape(sl,s);
count++;
if(count==1)

csl = sl;
}

//Is it a Circle?
if(startsWith(cl->s,"Cir")==1)
{

toks = split(cl->s,"-");
x = atof(toks->next->s);
//Assuming Right Angled Triangles
s.Area = 3.14159 * x * x;

 s.Volume = 0;
s.Perimeter = 2 * 3.14159 * x;//integer estimate
sl = push_back_Shape(sl,s);
count++;
if(count==1)

csl = sl;
}
//Is it a sphere?
if(startsWith(cl->s,"Sph")==1)
{

toks = split(cl->s,"-");
x = atof(toks->next->s);
//Assuming Right Angled Triangles
s.Area = 4/3 * 3.14159 * x * x;
s.Volume = 4/3 * 3.14159 * x * x * x;
s.Perimeter = 2* 3.14159 * x;
sl = push_back_Shape(sl,s);
count++;
if(count==1)

csl = sl;
}

}

520 Data Structures using C

fp = fopen("C:\\survmes.txt","w");
for(;csl!=NULL;csl=csl->next)

fprintf(fp,"%s-%f-%f-%f\n"
 ,csl->Description
 ,csl->Area

 ,csl->Perimeter
 ,csl->Volume);

fclose(fp);
puts("Done");

getch();
return 0;

}

The above program generates the following output.

The surveyor can just collect the information and use this above program to generate this �-� delim-
ited notepad file which can be exported to excel.

Here is the Function That Finds the Shape That Has the Maximum Area
Shape* MaxArea(Shape *shapes)
{

Shape *cs = shapes,*ccs = shapes;
double maxArea = cs->Area;
for(;cs!=NULL;cs=cs->next)
{

if(cs->Area>maxArea)
maxArea = cs->Area;

}

for(;ccs!=NULL;ccs=ccs->next)
if(ccs->Area==maxArea)

return ccs;
}

Here is the Function That Finds the Shape That has the Minimum Area

Shape* MinArea(Shape *shapes)
{

Shape *cs = shapes,*ccs = shapes;
double minArea = cs->Area;
for(;cs!=NULL;cs=cs->next)
{

if(cs->Area<minArea)
minArea = cs->Area;

}

File Handling (Seed, Save, Share) 521

}

for(;ccs!=NULL;ccs=ccs->next)
if(ccs->Area==minArea)

return ccs;

}

Here is the Function That Finds the Shape That has the Maximum Perimeter

Shape* MaxPerimeter(Shape *shapes)
{

Shape *cs = shapes,*ccs = shapes;
double MaxPerimeter = cs->Area;
for(;cs!=NULL;cs=cs->next)
{

if(cs->Perimeter>MaxPerimeter)
MaxPerimeter = cs->Area;

}

for(;ccs!=NULL;ccs=ccs->next)
if(ccs->Perimeter==MaxPerimeter)

return ccs;

}

Here is the Function That Finds the Shape That has the Minimum Area
Shape* MinArea(Shape *shapes)
{

Shape *cs = shapes,*ccs = shapes;
double minArea = cs->Area;
for(;cs!=NULL;cs=cs->next)
{

if(cs->Area<minArea)
minArea = cs->Area;

}

for(;ccs!=NULL;ccs=ccs->next)
if(ccs->Area==minArea)

return ccs;

}

Here is the Function That Finds the Shape That has the Minimum Perimeter

Shape* MinPerimeter(Shape *shapes)
{

Shape *cs = shapes,*ccs = shapes;
double minPerimeter = cs->Area;
for(;cs!=NULL;cs=cs->next)
{

if(cs->Perimeter<minPerimeter)
minPerimeter = cs->Area;

}

for(;ccs!=NULL;ccs=ccs->next)
if(>P i t i P i t)

522 Data Structures using C

if(ccs->Perimeter==minPerimeter)
return ccs;

}

Here is the Function that Finds the Shape That has the Minimum Volume

Shape* MinVolume(Shape *shapes)
{

Shape *cs = shapes,*ccs = shapes;
double minVol = cs->Volume;
for(;cs!=NULL;cs=cs->next)
{

if(cs->Volume<minVol)
minVol = cs->Volume;

}

for(;ccs!=NULL;ccs=ccs->next)
if(ccs->Volume==minVol)

return ccs;
}

Try Yourself: Use the functions MaxArea(),MaxPerimeter(),MaxVolume(), MinArea(),
MinPerimeter() and MinVolume() listed above so that the surveyer can type commands to get
the max volume, min area of a list of shapes. The commands will be mav,miv,maa,mia,map,mip
where mav stands for maximum volume and so on. The user should be able to give the commands like
Survey mav(�shapes.txt�) where shapes.txt is the file that contains shape description
like surv.txt shown above.

Example 16.11 Write a program to send a file to the connected printer.

Solution This program works only in Turbo C++ compilers.
#include <stdio.h>

int main()
{

FILE *fp = fopen("C:\\sonnet.txt","r");
while(!feof(fp))
{

fprintf(stdprn,"%c", fgetc(fp));
}
fclose(fp);

return 0;
}

Example 16.12 Write a program that will

read an XML file as shown below and will create

a rough database table schema from that which

can be basis for further development.

Solution The following program reads the above
XML file and outputs the table creation SQL query.

int main()
{

int count = 0;
int index = 0;

File Handling (Seed, Save, Share) 523

char size[6];
char type[10];
char tag[20];
String *XML_Schema = NULL;
String *CXML_Schema = NULL;

String *xmls = NULL,*cxmls = NULL;
String *toks = NULL;
FILE *fp = fopen("C:\\code.txt","r");
char line[81];
while(!feof(fp))
{

fgets(line,81,fp);
xmls = push_back_String(xmls,line);
count++;
if(count==1)

cxmls = xmls;

}
fclose(fp);
count = 0;
for(;cxmls!=NULL;cxmls=cxmls->next)
{

toks = split(cxmls->s,">");
if(strchr(toks->s,'<')!=NULL)
{

index = strchr(toks->s,'<')-toks->s+1;

 strcpy(tag,substring(toks->s,index
 ,strlen(toks->s)));

//printf("Tag = %s\n",tag);
if(strchr(tag,'/')==NULL)
{

XML_Schema =
 push_back_String(XML_Schema,tag);

count++;
if(count==1)
{

CXML_Schema = XML_Schema;

}

}

 //Assuming there is a Grand Mother Tag, like Catalog
 //which can serve as the database
 //name in SQL Server.

else
{

CXML_Schema= CXML_Schema->next;
printf("create table NewXMLSchema(");
for(;

 CXML_Schema->next!=NULL

524 Data Structures using C

 ;CXML_Schema=CXML_Schema->next)
{

printf("%s
 varchar(100),\n",CXML_Schema->s);

}

printf("%s varchar(100));",CXML_Schema->s);

break;
}

}
}
getch();
return 0;

}

When run with the above sample XML, the program outputs the following query to create the corre-
sponding table schema in SQLserver.

This screenshot shows that the generated query is bugfree and executes in SQL Server Express Edi-

tion successfully.

16.12 FILE HANDLING IN CONSOLE-BASED GAMES

Now we will demonstrate application of text files in console based games. The program below allows
the user to play Sokoban. It is an old Japanese strategy game. Originally developed by a company called
Thinking Rabbit in Japan in 1980. This game own game of the year award at that time. The basic
philosophy of the game is very simple. In Japanese �Sokoban� means �Warehouse keeper�. All you
have to do is to push all the boxes ($) to the goal squares (.) by giving commands to sokoban (@). If
sokoban (The player) is on a goal square then the symbol of the goal square will be changed to (+). But
you can�t do the following.

File Handling (Seed, Save, Share) 525

(a) Can�t make sokoban(@) or boxes($) move past the walls (#) of the shop.
(b) Can�t push two or more boxes together.
(c) Can�t pull any box.

In all the cases above, the game will terminate ! You can make your sokoban move by all the four
cursor keys or by l (left), r(right), u (up), d(down). Or by 2 ,4 ,6 ,8 as in the mobile phones. The places
where you should place the boxes($) are known as goal squares and are denoted by full stop(.). While
your sokoban moves over a goal square it takes the shape of plus sign (+) and when a box is placed over
a goal square it becomes an star(*).

The program reads the map files of the warehouses from the notepad files and loads
them.

The game has 71 levels. If you want to play any particular level just press g. The
program will ask you to enter the level you want to play. After you enter the number the
program will load the map file you requested and be ready to accept your commands.

In case you need any help simply press ? and you will have all the online help on your

screen.
Here is a typical Map file that are read from Notepad Files. The # denotes the bor-

der/walls of the warehouse.

/*This program implements the old japanese game sokoban*/
/*This prpgram will only compile and run on Turbo C++ 3.5 or more under DOS*/

/*Header File inclusions*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <process.h>
#include <conio.h>
#include <dos.h>

#define Musik sound(490);delay(30);nosound();

/*------------------------Function declarations-----------------------------*/
/*Shows Menu for the User*/
void Show_Menu();
/*avoid blinking*/
void no blink please(int,int,int,int);

/*draws walls*/
void draw_walls(int[],int[],int);
/*draws goals*/
void draw_goals(int[],int[],int);
/*draw boxes*/
void draw_boxes(int[],int[],int[],int [],int);
/*checks for collision*/
int check_collision(int[],int[],int[],int[],int,int,int,int);
/*checks for sokoban on goal*/
int issokoban_on_goal(int,int,int[],int [],int);
/*are all the boxes properly placed*/
int is_goal_reached(int,int,int[],int [],int);
/*wheather there is any box or not ? */
int is_any_box_there(int [],int[],int,int,int);
/*Checks if the box is movable to up or not ?*/

526 Data Structures using C

int is_movable_to_up(int,int,int[],int[],int);
/*Checks if the box is movable to down or not ?*/
int is_movable_to_down(int,int,int[],int[],int);
/*/*Checks if the box is movable to left or not ?*/
int is_movable_to_left(int,int,int[],int[],int);
/*Checks if the box is movable to right or not ?*/
int is_movable_to_right(int,int,int[],int[],int);
/***/

/************** Global Variable ****************/
/*Holds the Map File Identification number*/
int counter=0;
/*--*/
/************************* MAIN PROGRAM STARTS HERE *************************/
int main()
{

/*Holds names of the map files*/
char *Mapfile[72]={

 "soko001.txt",
 "soko002.txt",
 "soko003.txt",
 "soko004.txt",
 "soko005.txt",
 "soko006.txt",
 "soko007.txt",
 "soko008.txt",
 "soko009.txt",
 "soko010.txt",
 "soko011.txt",
 "soko012.txt",
 "soko013.txt",
 "soko014.txt",
 "soko015.txt",
 "soko016.txt",
 "soko017.txt",
 "soko018.txt",
 "soko019.txt",
 "soko020.txt",
 "soko021.txt",
 "soko022.txt",
 "soko023.txt",
 "soko024.txt",
 "soko025.txt",
 "soko026.txt",
 "soko027.txt",
 "soko028.txt",
 "soko029.txt",
 "soko030.txt",
 "soko031.txt",
 "soko032.txt",
 "soko033.txt",
 "soko034.txt",
 "soko035.txt",
 "soko036.txt",
 "soko037.txt",
 "soko038.txt",
" k 039 "

File Handling (Seed, Save, Share) 527

 "soko039.txt",
 "soko040.txt",
 "soko041.txt",
 "soko042.txt",
 "soko043.txt",
 "soko044.txt",
 "soko045.txt",
 "soko046.txt",
 "soko047.txt",
 "soko048.txt",
 "soko049.txt",
 "soko050.txt",
 "soko051.txt",
 "soko052.txt",
 "soko053.txt",
 "soko054.txt",
 "soko055.txt",
 "soko056.txt",
 "soko057.txt",
 "soko058.txt",
 "soko059.txt",
 "soko060.txt",
 "soko061.txt",
 "soko062.txt",
 "soko063.txt",
 "soko064.txt",
 "soko065.txt",
 "soko066.txt",
 "soko067.txt",
 "soko068.txt",
 "soko069.txt",
 "soko070.txt",
 "soko071.txt"

 };
FILE *fp;
int flag=0;//return value of check_collision() is stored
int w;//stores index number of the box sokoban is currently pushing
char ch;// stures character that are read from the map file
char Commands[100];//Command keys are stored for Undo
int NumberOfMoves=0;//Number of moves are stored here
/*goal_x[] and goal_y[] stores the co_ordinate values
 of the goal_squares('.') of the current map file*/
int goal_x[10],goal_y[10],
/*walls_x[] and walls_y[] stores the co_ordinate values
 of the boundaries('#') of the current map file*/
 walls_x[500],walls_y[500],
/*sbx[] and sby[] stores the co_ordinate values
 of the boxes('$') of the current map file*/
 sbx[10],sby[10],
 /*skx,sky store the x and y co-ordinates of the
 sokoban's initial position in the map*/
 skx,sky,
 /*loop variables*/
 i=0,j=0,l=0;
/*clears the screen*/
clrscr();
/*Hides Cursor*/

528 Data Structures using C

_setcursortype(_NOCURSOR);
/*Loads one Map_File after another */
for(;counter<71;)
{

/*Open a map file for reading*/
fp=fopen(Mapfile[counter],"r");
do
{

/*Scans a character at a time*/
fscanf(fp,"%c",&ch);
printf("%c",ch);

if(ch=='.')//is it a goal_square
{

//stores the co-ordinates of the goal_squares
goal_x[i]=wherex();
goal_y[i]=wherey();
i++;

}

if(ch=='@')//is it sokoban itself
{

//stores the co-ordinates of the
//sokoban
skx=wherex();
sky=wherey();

}

if(ch=='$')//is it a box
{

//stores the
//co-ordinates of the boxes
sbx[j]=wherex();
sby[j]=wherey();
j++;

}

if(ch=='#')//if it is a boundary element
{

//stores the
//co-ordinates of the boundary walls
walls_x[l]=wherex();
walls_y[l]=wherey();
l++;

}

}while(!feof(fp));//continues untill the EOF is reached

clrscr();
do
{

//is the sokoban pushing against wall or
//is it pushing a box against a wall
flag=check_collision
(walls_x,walls_y,sbx,sby,w,l,skx,sky);
if(flag==0)//No Collision
{

gotoxy(30,18);
i tf("S k b P iti (%d %d)" k k)

File Handling (Seed, Save, Share) 529

printf("Sokoban Position : (%d,%d)",skx,sky);
gotoxy(30,20);
printf("Level : %d",counter+1);
gotoxy(30,22);
printf("Number of Moves : %d",NumberOfMoves);
gotoxy(15,24);
printf("Press Spacebar to jump to Next Level and Q/E to

exit");
//is sokoban pushing any box ?
w=is_any_box_there(sbx,sby,skx,sky,j);
//draws the walls
draw_walls(walls_x,walls_y,l);
//draws the goals
draw_goals(goal_x,goal_y,i);
//draws the boxes with proper sign
draw_boxes(sbx,sby,goal_x,goal_y,j);
//checks if the sokoban is on a goal_square
Show_Menu();
if(issokoban_on_goal(skx,sky,goal_x,goal_y,j))
{

gotoxy(skx,sky);
printf("+");//sokoban player is on a goal square

}
else
{

gotoxy(skx,sky);
printf("@");

}
//Checks if the boxes are properly placed
//on the goal squares
if(is_goal_reached(sbx[w],sby[w],goal_x,goal_y,j))
{

gotoxy(sbx[w],sby[w]);
printf("*");//box is on a goal square

}
ch=getch();
//Up arrow key or U or u or 8 to move up
if(ch==72||toupper(ch)=='U'||ch=='8')
{

Musik;
no_blink_please(skx,sky,sbx[w],sby[w]);
sky--;//sokoban moves one step down
//is sokoban tries to move a box
//if yes what is the box index ?
w=is_any_box_there(sbx,sby,skx,sky,j);
//Sokoban is trying to push a box
//let's see if it is movable or not in
//that direction or not
if(w!=-1&&!is_movable_to_up(skx,sky,sbx,sby,j))
{

clrscr();
gotoxy(20,15);
printf("Game Over ! Sokoban pushed two boxes

together!");
getch();
exit(0);

}

530 Data Structures using C

//There is a box sokoban tries to move
//and it is movable !!
if(w!=-1)
{

//Sokoban pushes it one step down
sby[w]=sky-1;
NumberOfMoves++;

}
//sokoban is not pushing any box
//it is simply moving
else

NumberOfMoves++;
}

//Down arrow key or D or d or 2 to move down
if(ch==80||toupper(ch)=='D'||ch=='2')
{

Musik;
no_blink_please(skx,sky,sbx[w],sby[w]);
sky++;
w=is_any_box_there(sbx,sby,skx,sky,j);
if(w!=-1&&!is_movable_to_down(skx,sky,sbx,sby,j))
{

clrscr();
gotoxy(20,15);
printf("Game Over ! Sokoban pushed two boxes

together!");
getch();
exit(0);

}
if(w!=-1)
{

sby[w]=sky+1;
NumberOfMoves++;

}
else

NumberOfMoves++;
}
//Left arrow key or L or l or 4 to move left
if(ch==75||toupper(ch)=='L'||ch=='4')
{

Musik;
no_blink_please(skx,sky,sbx[w],sby[w]);
skx--;
w=is_any_box_there(sbx,sby,skx,sky,j);
if(w!=-1&&!is_movable_to_left(skx,sky,sbx,sby,j))
{

clrscr();
gotoxy(20,15);
printf("Game Over !

 Sokoban pushed two boxes together!");
getch();
exit(0);

}
if(w!=-1)
{

sbx[w]=skx-1;
NumberOfMoves++;

File Handling (Seed, Save, Share) 531

}
else

NumberOfMoves++;
}
//Right arrow key or R or r or 6 to move right
if(ch==77||toupper(ch)=='R'||ch=='6')
{

Musik;
no_blink_please(skx,sky,sbx[w],sby[w]);
skx++;
w=is_any_box_there(sbx,sby,skx,sky,j);
if(w!=-1&&!is_movable_to_right(skx,sky,sbx,sby,j))
{

clrscr();
gotoxy(20,15);
printf("Game Over ! Sokoban pushed two boxes

together!");
getch();
exit(0);

}
if(w!=-1)
{

sbx[w]=skx+1;
NumberOfMoves++;

}
else

NumberOfMoves++;
}

if(tolower(ch)=='g')//Jumps to load a requested map
{

int level;
gotoxy(30,20);
_setcursortype(_SOLIDCURSOR);
printf("Enter Level :");
scanf("%d",&level);
counter=level-1;
if(counter<=-1||counter>=71)
{

clrscr();
gotoxy(20,22);
printf("No Such Map File!!");
getch();
//Map file Id
//is re initialized
//to starting Map file
counter=0;
main();

}
main();

}
//? for Help on sokoban
if(ch=='?') //Help
{

gotoxy(25,4);
printf("-------------- H E L P ------------------");
gotoxy(25,5);

532 Data Structures using C

printf("Use Arrow Keys or L/R/U/D or 4-8-6-2 to move
sokoban");

gotoxy(25,6);
printf("Sokoban can't push two box together");
gotoxy(25,7);
printf("Sokoban can't walk over a box or walls");
gotoxy(25,8);
printf("Sokoban can't move or dislodge a box from a

corner");
gotoxy(25,9);
printf("Press Enter to return to game");
gotoxy(25,10);
printf("Press ? to See HELP again");
getch();

}

if(ch==8)//backspace
{

counter--;
main();

}
if(ch==32)//Spacebar is pressed
 //to load the next map file
{

counter++;
main();

}
//Press 'Q'/'q'/'E'/'e' to quit
if(toupper(ch)=='Q'||toupper(ch)=='E')

exit(0);
}

//if collision occurs then Game is Over
else
{

clrscr();
gotoxy(20,15);
printf("Game Over ! Sokoban or the Box hit the walls !!");
getch();
exit(0);
main();

}
 } while(1);//Always true
 }
getch();

return 0;
}

/************************** MAIN PROGRAM ENDS HERE ************************/

16.13 FUNCTION DEFINITIONS

Function : draw_walls()

 =======================
/*Draws the outside boundary of the map*/
/*--*/

File Handling (Seed, Save, Share) 533

void draw_walls(int walls_x[],int walls_y[],int bound)
{

for(int b=0;b<bound;b++)
{

gotoxy(walls_x[b],walls_y[b]);
printf("#");

}
}

/***

Function : draw_goals()
 =======================
/*Draws the goal square of the map*/
/*---*/
void draw_goals(int goal_x[],int goal_y[],int bound)
{

for(int b=0;b<bound;b++)
{

gotoxy(goal_x[b],goal_y[b]);
printf(".");

}
}
/**

Function : draw_boxes()

 =======================
 Draws the boxes of the map with appropriate sign
 $ for all the boxes not yet reached any goal_squares
 and * for all of those who reached any of the goal_squares
/*---*/
void draw_boxes(int sbx[],int sby[],int goal_x[],int goal_y[],int bound)
{

for(int b=0;b<bound;b++)
{ if(is_goal_reached(sbx[b],sby[b],goal_x,goal_y,bound))

{
gotoxy(sbx[b],sby[b]);
printf("*");

}
else
{

gotoxy(sbx[b],sby[b]);
printf("$");

}
}

}

/*/***

Function : check_collision()
 =======================
/*Checks whether a collision between sokoban and wall
 or box and wall has occurred or not and also checks
 that if the sokoban is trying to move two sokobans at the same time*/
/*---*/
i i i i i

534 Data Structures using C

int check_collision(int walls_x[],int walls_y[],
 int sbx[],int sby[],int box_index,
 int walls_bound,int sokoban_x,int sokoban_y)

{
int status=0;
for(int b=0;b<walls_bound;b++)
{

if((sokoban_x==walls_x[b]&&sokoban_y==walls_y[b])||
 (sbx[box_index]==walls_x[b]&&sby[box_index]==walls_y[b]))
 {

status=1;
break;

 }
}
return status;

}

/*/***

Function : issokoban_on_goal()

 ==============================

/*Checks if the sokoban is on any goal_square or not
 if yes it automatically changes to a '+' sign
 else it travels as a '@'*/
/*--*/
int issokoban_on_goal(int skx,int sky,int goal_x[],int goal_y[],int bound)
{

int status=0;
for(int loop=0;loop<bound;loop++)
{

if(skx==goal_x[loop]&&sky==goal_y[loop])
{

status=1;
break;

}
else

status=0;
}

 return status;
}

/*/***

Function : is_goal_reached()

 ===========================
/*Checks if the box sokoban is currently pushing reaches any of
 the given goal_squares of the map or not.*/
/*--*/
int is_goal_reached(int box_x,int box_y,int goal_x[],int goal_y[],int bound)
{

int flag=0;

File Handling (Seed, Save, Share) 535

for(int loop=0;loop<bound;loop++)
{

if(box_x==goal_x[loop]&&box_y==goal_y[loop])
{

flag=1;
break;

}
}

return flag;
}

/**

Function : is_any_box_there()

 =============================
/*Returns the index number of the box sokoban is trying to push
i i i i i i
if it exists, else return -1 to indicate that sokoban is not
pushing any box.*/
/*---*/

int is_any_box_there(int sbx[],int sby[],int skx,int sky,int bound)
{

int position=-1;//No box is being pushed by sokoban
for(int loop=0;loop<bound;loop++)
{

if(skx==sbx[loop]&&sky==sby[loop])
{

position=loop;
break;

}
}

return position;
}

/*/***

Function : is_movable_to_up()

 =============================
/*Checks if the box sokoban is push can be shifted upward or not*/
/*--*/
int is_movable_to_up(int sokoban_x,int sokoban_y,int sbx[],int sby[],int bound)
{

int status=1;
for(int loop=0;loop<bound;loop++)
{

if(sokoban_y-1==sby[loop]&&sokoban_x==sbx[loop])
{

status=0;
break;

}
}
return status;

}
/*/***

536 Data Structures using C

Function : is_movable_to_down()

 =============================
/*Checks if the box sokoban is push can be shifted downward or not*/
/*---*/
int is_movable_to_down(int sokoban_x,int sokoban_y,

 int sbx[],int sby[],int bound)
{

int status=1;
for(int loop=0;loop<bound;loop++)
{

if(sokoban_y+1==sby[loop]&&sokoban_x==sbx[loop])
{

status=0;

break;
}

}
return status;

}
/*/***

Function : is_movable_to_left()
 =============================
/*Checks if the box sokoban is push can be shifted towards left or not*/
/*---*/
int is_movable_to_left(int sokoban_x,int sokoban_y,

 int sbx[],int sby[],int bound)
{

int status=1;
for(int loop=0;loop<bound;loop++)
{

if(sokoban_x-1==sbx[loop]&&sokoban_y==sby[loop])
{

status=0;
break;

}
}
return status;

}

/*/***

Function : is_movable_to_right()
 ================================
/*Checks if the box sokoban is push can be shifted towards right or not*/
/*--*/

int is_movable_to_right(int sokoban_x,int sokoban_y,int sbx[],int sby[],int bound)
{

int status=1;
for(int loop=0;loop<bound;loop++)
{

if(sokoban_x+1==sbx[loop]&&sokoban_y==sby[loop])
{

status=0;
break;

}
}
return status;

File Handling (Seed, Save, Share) 537

}

/*This function shows the menu*/
void Show_Menu()
{

gotoxy(25,4);
printf("---------------- User Menu ------------------------ ");
gotoxy(25,5);
printf("Use Arrow Keys or L/R/U/D or 4-8-6-2 to move sokoban");
gotoxy(25,6);
printf("L/l/4/Left arrow key to move sokoban LEFT");
gotoxy(25,7);
printf("R/r/6/Right arrow key to move sokoban RIGHT");
gotoxy(25,8);
printf("U/u/8/Up arrow key to move sokoban UP");
gotoxy(25,9);
printf("D/d/2/Down arrow key to move sokoban DOWN");
gotoxy(25,10);
printf("g/G to load a particular map file");
gotoxy(25,11);
printf("m/M to see the number of moves till now");
gotoxy(25,12);
printf("? for HELP ");

}

/*This function avoids blinking*/
void no_blink_please(int sokoban_x,int sokoban_y,

 int box_x,int box_y)
{

gotoxy(sokoban_x,sokoban_y);
printf(" ");
gotoxy(box_x,box_y);
printf(" ");

}

The map files will be available from OLC

R E V I E W Q U E S T I O N S

1. Which of the following statements will make us loose the previous content of file abc.txt
(a) FILE *p = fopen(�abc.txt�,�r�) (b) FILE *p = fopen(�abc.txt�,�w�);
(c) FILE *p = fopen(�abc.txt�,�w+�); (d) FILE *p = fopen(�abc.txt�,�a�);

2. Which file input/output function allows the formatted file output.
3. Which of the following can take the variable number of arguments

(a) fprintf() (b) fgets() (c) scanf() (d) vprintf()
4. What does the function ftell() do?
5. Can we check whether the file we are trying to open already exists or not? If yes, how?
6. Which of the following statements is/are false

(a) fseek() returns an integer
(b) SEEK_SET sets the location of the pointer to the current position
(c) __FILE__ returns the name of the file name we are currently on
(d) rewind() is a wrapper function

7. What is a File?
8. What could be different modes of opening a file?

538 Data Structures using C

9. What are the differences between w+ and w mode?
10. What are the difference between a and w mode?
11. Where is the mode wb stands for?

P R O G R A M M I N G P R O B L E M S

1. Write a program to demonstrate the use of fread and fwrite.
2. Write a program to offer a command line version of cp where multiple target files can be given as input.
3. Write a program to offer a command line version of cat where multiple target files can be given as input.
4. Write a program that accepts an HTML file and reports any missing tag.
5. Update the above program to accommodate the allowance for Orphan Tags. A tag is called orphan

tag when the starting tag end is not required. For example </br> is an orphan tag. It doesn�t require
a opening tag.

6. Write a program that accepts a list of strings along with some kind of parent child relationship and
creates a XML file from it.

7. Write a program that simulates an online banking experience using multiple files for maintaining
users personal and their bank account details. The bank account generation should be automatic.

8. Write a program that simulates a share index monitoring system. There will be different files that
users can point to for the application. These files will contain the share information of different
companies in a delimited file [Hint: Use String structure and split() funcition]

9. Write a program to simulate a model of a toll-plaza automation. There are different charges for
different types of vehicles. These charges can be modified. Be creative with functionalities. More
you offer the better. One direction is to provide a report for vehicles per day and the total toll tax earned.

10. Write a program to read a VB code from a notepad file and change the variable names according to
a given variable naming guideline.

11. Write a program that will read a document and will encrypt it.
12. Write a program that will decrypt the above encrypted file.
13. Write a program to read a C program and print the interdependency of the functions.
14. Write a program to read a file and then generate all the k-grams of it. Keep a provision such that k

can be supplied by the user.
15. Write a program to read a delimited file with the following pattern as shown in the figure below.

After reading create separate files that will hold the users in different domains. If the above file is
given to the program as input the following two files should be generated.

Note the file name is same as the domain name.
16. Write a function that will calculate which domain has the maximum users.
17. Write a function that will calculate which domain has maximum popularity among teenagers.
18. Write a function that will show trend of gender preference of domain names in decreasing order.

Appendix A
Project Ideas!

�Everything begins with an idea!�

�Earl Nightingale

�Great ideas often receive violent opposition from mediocre minds.�

�Albert Einstein

�Ideas not coupled with action never become bigger than the brain cells they occupied.�

 �Arnold H. Glasgow

IDEA #1: IDENTIFYING A SET

The idea here is to create sets of different objects. The program will ask the user to enter a few names of

related objects and then it will first tell what is that object and then will list a few more objects of that set.

For example, if the user enters guitar then the program should first output that �Guitar is an object of

stringed musical instrument� and then list a few more stringed musical instruments, for example, �Elec-

tric Guitar�, �Hawaiian Guitar�, �Harp�, �Sitar�, �Sarod� , �Mandolin�, etc.

[Hint]: Create a trie to store the strings and fetch from there. If a string is matched against Musical

Instrument Trie then the string is a musical instrument and so on.

IDEA #2: ATM

Imagine that you have been hired by a bank to design a software to plug into their ATM machine.

Customers will key in their card number and PIN. The customer base of the bank is very large. So you

might want to store them in a special way/format for minimum retrieval time. Once the customer keys in

proper card number and PIN then the screen will show four options

Withdraw Cash

Deposit Cash

Balance Check

540 Appendices

Mini Statement

Exit

These operations should be the same as they behave in ATMs. For example, if I want to withdraw 23.50,

it should not allow me. Because the ATM can only dispatch currency notes in the denomination of 10 or

multiples of 10.

Keep a provision in your program to change the denomination of currency to make the program

universal. Different countries have different currency denominations.

IDEA #3: LINE EDITOR

Create an editor like vi or sam or pico in UNIX using linked lists. A line editor is nothing but a linked

list of lines, where lines are nothing but a linked list of words, and words are nothing but a linked list of

characters. So, create different structures to represent character, word and line and add different func-

tions to support normal editing experience.

IDEA #4: POS(POINT OF SALE) FULLY CUSTOMIZABLE

Almost every store these days are computerized and maintain a small program known as POS (Point of

Sale), that allows then to check out items for customers. Create a POS program that can be customized

for any kind of store starting from a shoe store to a departmental chain like WAL-MART. The following

are the minimum desired feature of the POS software. Moreover, you will be creative logically, more

good.

The program will allow for credit card payment. (You might want to use the credit card validation

program in the chapter on String) .

The user (The counter person) will enter the product code and the system will verify the product code

and will produce a go ahead signal. The system will calculate the total amount and show it on the screen.

Once payment is made the system will generate a bill listing all the item description and their price.

The system will maintain a transaction log for 3 months in case a customer comes back and want to

exchange something with a valid bill.

IDEA #5: CUSTOMIZED ADDRESS BOOK WITH LITTLE SQL SUPPORT

When more than one person uses a computer it is not judicial to use the windows address book for

storing personal friend details. Create a program to allow the users to create different user ids and

passwords and maintain their own personal friend list/scrap book etc. The program will have a predefined

set of fields for storing details of friends. Once a new user is created, then the program will ask the user

to add columns to the address book. Suppose the predefined fields are �Name�, �Address�,

�Phone�,�Email� and �Blog Site�. Now a new user is created and he doesn�t want to enter �Blog Site�

details for his friends. So the columns he adds for his very own customized address book are Name,

Address, Phone and Email. These program will encrypt the passwords and store the user id/password

combo in one file and the details of friends in separate files.

While searching the program we need to support little SQL feature. The program should only support

�Where <column_name> = �value� feature

Search can be like

Select name, phone from friends where name = �sam� and in these sort of cases the query will only

print the column which were mentioned, as here name and phone. If we give a �*� then all the columns

should be printed as in SQL like

Select * from friends where name = �sam�

Appendix A (Project Ideas!) 541

IDEA #6: CREATION OF MAGIC SQUARES

Write a program that accepts a number and create a magic square as NxN matrix. A Magic Square is a

square that sums to the same number in all directions. The magic square for 3 is

8 1 6

3 5 7

4 9 2

IDEA #7: DETECTION OF PLAGIARISM

Sometimes students are found to copy from different source files without the prior permission of the

author or the publisher. This activity is illegal as per the law for protecting the intellectual property is

concerned. This type of activity is commonly referred as Plagiarism and the person who performs this

act is known as Plagiarist.

There are several techniques to detect whether a suspected document is from a plagiarist or not. But

most of them are copyrighted. We will discuss about a topic called �Winnowing.� The plagiarism in-

volved document can be a combination from so many different documents. So, searching for string

match in all those documents is practically not feasible. Winnowing avoids this by a smart hashing

technique.

The idea behind winnowing lies in the fact that every document, no matter how big it is has a close to

unique digital fingerprint (Which is a combination of k-gram hash codes) that makes it different from

other documents.

Here are the steps for winnowing.

1. Remove all the white space and punctuation from the text.

2. Create k grams of the lines.

3. Hash those k gram words.

4. Take Hash code of N blocks and that constitutes the digital fingerprint of the document.

Latter prepare the fingerprint of the suspected document and match them. If they match then the

document is really from a plgiarist otherwise it is the original work of its author.

IDEA #8: DYNAMIC ADAPTIVE QUIZ SYSTEM (DAQS)

Create a program that will allow users to load quiz papers in a delimited notepad file. The notepad file

542 Appendices

will be of such format that the program knows which question to ask next, if the answer is correct and if

it is wrong. (You might want to refer the binary spider data structure described in chapter on trees).

At the end of the quiz the program should create a report telling how many questions are answered

correct and how many questions are answered wrong.

IDEA #9: SIMPLE ENGLISH TO C CODE GENERATOR (SETCOGEN)

This is probably going to be the most difficult and fun-to-achieve project. The idea is that the user will

write the requirement in plain and structured English and the program will convert it to a C code. Here

is an example �English Program� that a layman might write.

Ask �What is the radius�

Calculate area

Print �Area of the Circle is�

The output will be the following C code.

#include <stdio.h>

#include <conio.h>

int main()

{

 int radius = 0;

 printf(�What is the radius �);

 scanf(�%d�,&radius);

 printf(�Area of the Circle is %f\n�,3.14159*radius*radius);

 getch();

 return 0;

}

IDEA #10: DETECTING AUTHOR�S GENDER (DAG)

If you notice carefully, you will find that men and women use very disjoint sets of words to express the

same feeling or experience. This fact can be helpful to detect the gender of the author. Women use more

pronouns while men use more nouns. Work of women authors are more involved while that of male

authors are informative. Women do not use the definite article very often, while that is a very prominent

characteristic of male authors. There are so many such features that help us distinguish male and female

authors.

Steps for this project

Step #1: Collect samples of male and female writings for the same topic.

Step #2: Distinguish between their writing style and try to extract features.

Step #3: Design an algorithm that will use the features from step two to detect the gender of an author�s

gender.

Step #4: Feed different inputs to your algorithm and see how it performs.

Step #5: Keep track of all the incidents where your algorithm fails and where it successfully detects the

gender of the author. Plot a graph to test the success rate of your algorithm.

Appendix B
Bibliography

Books are the bees which carry the quickening pollen from one to another mind.

 �James Russell Lowell

l Donald E. Knuth, The Art of Computer Programming (vols I, II and III)

l Jeffrey Esacov, Tom Weiss, Data Structures�An Advanced Approach using C,

Prentice Hall Software Series

l Yedidyah Langsam, Moshe J. Augenstein, Aaron M. Tenenbaum, Data Structures using C and

C++, PHI

l Niklaus Wirth, Algorithms + Data Structures = Programs, PHI

l Mark Allen Weiss, Data Structure and Problem Solving using C++, Addison Wesley Longman

l Norsingh Deo, Graph Theory with Applications to Engineering and Computer Science, PHI

l Graham A. Stephen, String Searching Algorithms, World Scientific

l Fred S. Roberts, Graph Theory and its Applications to Problems of Society

l Seymour Lipschutz, Theory and Problems of Data Structures, TMH

l Jean-Paul Trembly, Paul G. Sorenson, An Introduction to Data Structures with Application.

l Brian W. Kernighan, Dennis M. Ritchie, The C Programming Language

l Ivor Horton, Beginning C++ the complete language, Wrox

l Tod Golding, Professional .NET 2.0 Generics, Wrox

l James B. Scarborough, Numerical Mathematical Analysis, Oxford & IBH Publishing Co.

l Nick Parlante, Linked List Basics

l Sanjay Goswami, Susmita Sur Kolay, Virtual Molecular Computing, Emulating DNA Molecules

l Bart, Preneel, Analysis and Design of Cryptographic Hash Functions

Index

a Hyperbola 78

a Parabola 74

A variant 210

abstraction capabilities 445

Accessor Methods 446

Ackermann�s Function 216

Active

Methods 446

Search Operation 273

AddAEdge 394

adddays 463

AddEdge 379, 387

addmonths 464

Address Calculation Sort using Hashing 426

AddVertex 386

addyears 464

Adjacency

List 378, 385

Matrix 378

ADT 445

ADT Design in C 446

Aitken�s Array 233

An

External Node 326

Internal Node 326

Anagram 202

Ancestor 325

appendQ 300

Application of Sorting 428

apply 3D Arrays 8

Array 1

Array

Elements 4

Using Pointer 2

associative arrays 469

autocorrect the indentation 507

AVL Tree 359

back_element() 447

Balance Factor 354

Ballot Problem 237

Bayesian Networks 384

Bell Triangle 233

Bidirectional Bubble Sort 404

Bidirectional Bubble Sort Performance 407

Big O 429

Binary 326

Binary

Insertion Sort Performance 413

Insertion Sorting 411

Recursion 208

Binary Search Tree 337

Bingo Sort 418

Binomial Coefficient 209

bisection method 223

Black-Box Concept 445

Bloom Filter 433

Bogo Sort and friends 424

Bowley�s Index Number 26

Bozo sort 425

Breadth First Search (BFS) 396

Brothers 326

546 Index

BSP Tree 360

Bubble Sort Algorithm 400

Bucket Sort 422

Business Clustering 428

C-Style String 165

Cash Counter 318

Cassini�s Formula 210

cat 496

Catalan�s Triangle 235

check_collision() 533

Child 325

chord of a curve 226

Cipher Text 54

Circularity 208

Coalesced Hashing 433, 437

Collision 433

collision and Its resolution 431

Collision Free Hashing 433

Comb Sort 407

Comb Sort Performance 409

CompareUndirectedEdges 391

CompareVertices 390, 391

Complete Binary Tree 327

Complex Number 85

Complexity of

Bidirectional Bubble Sort 406

Binary Insertion Sort 413

Bubble Sort 403

Insertion Sort 410

Merge Sort 421

Quick Sort 419

Shell Sort 415

Cone 77

ContainsEdge 389

count 389

count() 448

CountEdges 391

countWords 185

Cousin 326

cp 507

create a rough database table schema 522

CTPS 429

Currency 479

Cylinder 76

DAG 384

Date 63, 449

DAY of WEEK 453

daysbetween 453

daystring 455

Decision Tree 347

decrypt 188

Degree 325, 390

degree of the chain 441

delete_alternate() 447

delete_at() 447

delete_range() 447

deleteQ 300

DeleteWords 186

Depth First Search (DFS) 398

Deque 316

dequeue 286

Descendent 326

diff 505

diffv 506

Directed Acyclic 384

Discrete Event Simulations 323

display 390

DisplayEdges 388

displayleapyears 462

displayQ 301

displaystring 190

Distribution Sorting Algorithms 422

Divide-n-Conquer 419

Doboseiwicz Sort 407

DoesItExist 497

DoesThisEdgeExist 395

Double Linked List 107

draw_boxes() 533

draw_goals() 533

draw_walls() 532

Drawn Complete Binary Tree 328

Dyck Path 236

Elements of the Array 3

Ellipse 75

encrypter 55

enqueue 285

Entringer Numbers 239

enum 70

Euclid�s algorithm 211

Exchange Sort 400

Exponential Recursion 208

Expression Tree 343

External Sorting 430

External Variables 5

factorial 209

FCFS 322

Index 547

fclose() 488

FCLS 322

fflush 94

fgetc() 488

fgets() 489

Fibonacci Numbers 209

FIFO 322

FIFO(First In First Out) 284

File 63

File Handling 488

File Handling in Console-Based Games 524

Finding the Most Wanted DVD in the City 428

Finding the Shortest Path 428

findmax() 447

findmin() 447

first in, last out list 247

fopen() 488

fprintf() 490

fputc() 488

fputs() 489

frequency() 447

front_element() 447

fscanf() 490

Gapped Insertion Sort 414

get_value() 447

GetPathMatrix2 379

Grandchild 326

Grandparent 326

GraphCrossingNumber 393

Graphs 378

Greatest Online Scorer 428

grep 497

grepe 499

grepev 501

greps 499

grepsv 500

grepv 498

Hadamard product 31

Hash

Chain 433

Function 433

List 433

Table 433

Tree 433, 443

Hashing 431, 433

Hashing function 431

head 494

Heap 358

Height 325

HHI Index 46

Hofstadter Conway $10,000 Sequence 239

Hybrid Sort 418

InDegree 394

Information Categorization 384

Inorder Predecessor 326

Inorder Successor 326

InsertEdge 387

Insertion Sort Algorithms 410

Instruction Scheduling 384

Intersection 385

inverse Ackermann�s Function 216

Inverse of a Square Matrix 34

Inverse Quadratic Interpolation 225

is_any_box_there() 535

is_goal_reached() 534

is_movable_to_down() 536

is_movable_to_left() 536

is_movable_to_right() 536

is_movable_to_up() 535

isAnagram 203

isBalanced 394

isComplete 392

isCorCPP 510

isCSharp 511

isEmpty 301

isEuler 392

isFull() 285

isFuture 463

isIsolatedVertex 390

isJava 511

isleapyear 449

isPast 462

isPendant 390

isPlaner 393

isPrefix 179

isPresent 463

isRegular 396

isSameSoundex 206

issokoban_on_goal() 534

isSonnetLines 516

isSTL 510

isSubGraph 391

isSubsequence 181

isSuffix 180

isSymmetric 395

isThisEdgeAselfLoop 395

isTree 380

548 Index

IsValidCheckDigit 196

isVB 512

isVertexPresent 386, 388

J-Sort 418

Joseph Stein�s Algorithm 211

Key Interlinked Map 477

kgrams 193

Koch Curve 243

Koch Snowflake 243

Kronecker product 32

Kruskal�s Algorithm to find 381

Lagrange�s Interpolation 21

Largest Shape 429

Laspeyre�s Index Number 26

lastday 460

LCFS 322

LCLS 322

Leaf 326

Left Child 325

Left Sub Tree 325

LeibniTz Harmonic Triangle 238

Level 325

Lexicographic Order 425

Lexicographic Sort 425

Library Sort 414

LIFO 282

LIFO queue 284

LILO 322

Linear

Congruential Method 212

Probing 432

Probing Technique 433

Queue 284

Recursion 208

linked linear queue 284

Linked List 105

Load Factor 433

Losanitsch�s Triangle 237

Lucas� Theorem 210

M-ary 326

Makefile Instructions 384

Map 469

Mapfile 526

Marshall�Edward Index Number 27

Matrix Multiplication 30

Max Heap 358

MAX-PQ 298

Merge Sort 420

merge() 448

MIN � PQ 298

Min Heap 358

Minimum Spanning Tree 380

MostUsedWord 202

MRA 282

MTFL 271

Muller�s Method 227

Multiway Tree 353

Mutual Recursion 208

Nested Recursion 208

Newton-Raphson Method 222

Newton�s Forward Difference Interpolation 20

nextmonthfirstXday 461

nextmonthlastXday 461

nextmonthNthXday 460

nextmonthsameday 460

nextNthday 458

nextyearsameday 459

Node 325

Not- So-Typically 328

Number is happy or not 229

Octree 370

Odd-Even Transposition Sort 404

One Time Passwords 441

One Way Hash Function 433

Open Addressing 431

OTP 433

Paasche�s Index Number 26

pad 192

padleft 190

padright 191

Palindrome 13

Parallel Sorting 430

Parent 325

Parenthesis Matcher 258

Pascal Triangle 232

Passive Methods 446

PathMatrix 379

Peep 282

Peirce Triangle 233

Perfect Binary Tree 327

Performance Comparisons of the Sorting

Algorithms 423, 424

Phonebook Simulation 86

Index 549

Pitfalls of Recursion 209

Pivot in Quick Sort 420

Polygon using Point Structure 64

pop 247

pop_back() 446

pop_front() 447

postfix 247

postfix expression 254

Postorder Predecessor 326

Postorder Successor 326

Predictors/Search Methods 446

Prefix of a String 179

Preorder Predecessor 326

Preorder Successor 326

prevNthday 458

prevyearsameday 459

Prim�s Algorithm 380

PrintAllParallelPaths 394

Priority Queue 298

Prism 78

push 247

push_back 189

push_back() 446

push_front() 446

Q Sequence 240

Q-tree 360

Quad Tree 360

quadratic congruent method 212

Quadratic Probing 435

querystring 87

Queue 284

Quick Sort 419

Quick Sort Performance 420

Radix Sort 426

Random Cipher Encoder 475

Random Number Generation using Recursion 212

Recursion 208

Recursive Definition 208

Regression Line on X or Y 23

Regula-Falsi Method 224

RemoveEdge 379, 387

RemoveVertex 388

resolvedow 456

Reverse Delete Algorithm 382

rewind() 492

Right Child 326

Right Sub Tree 325

Root 325

RSO 322

Saguaro Stack 265

Scheduling Appointments 309

searchQ 301

secant 226

Secant Method 226

SEEK_CUR 492

SEEK_END 492

SEEK_SET 492

Selection Sort Algorithms 416

SelfLoopCount 395

selfLoopVertices 389

SentenceCase 200

Separate Chaining 431, 432, 435

Serpinski Triangle 240

setsystemdate 465

Shell Sort 414

Shell Sort Performance 415

Shifting Property 210

showmenu 94

Siblings 326

Simson�s Relation 210

Simulate 318

Single Linked List 106

Sisters 326

Sokoban 524

Sorting 400

Soundex 205

SoundexCode 205

Spatial Complexity 429

Spell Checking 376

Splay Tree 356

Splaying 356

split 184

Stable 429

Stack 247

Stacktop Element 249

startsWith 182

Stooge Sort 421

stpcpy() 170

Strassen�s algorithm 30

strcat() 168

strchr() 176

strcmp() 169

strcmpi() 169

strcpy() 170

strcspn() 177

strdup() 178

Strictly Binary Tree 327

550 Index

String Initialization 166

StringToUSD 480

strlen() 168

strlwr() 172

strncat() 169

strncmp() 169

strncmpi() 170

strncpy() 171

strnset() 175

Strong Binary Tree 328

strrev () 174

strset() 175

strspn() 177

strstr() 176

strtok() 178

Structures 61

strupr() 172

Stupid Sort 425

Subsequence of a String 181

substring 190

Suffix of a String 180

Swap 121, 250

swap() 447

swap_head_tail() 447

Switchbox Routing Problem 258

tail 495

Tail Recursion 209

Tail Recursive Algorithm 211

TAK Function 216

the Bernoulli Triangle 234

Time 63

Time

Complexity 429

Complexity of Comb Sort 409

Complexity of Stooge Sort 422

to_date 466

today() 464

Toeplitz matrix 38

ToggleCase 200

Tokenizer 44

tomonth 465

Tomorrow 450

Top Hash 444

Topological Sorting 384

Tower of Hanoi 217

Transpose of a Matrix 34

trc 503

Tree 325

Tree Sort 425

Trees 325

Trie 371

trimleft 190

trimright 190

trw 504

Turtles and Rabbits 407

Two Elements 250

Two-dimensional Array 3

typedef 61

Uncle 326

Union 385

Universal Hashing 433

Upper Triangular 35

USD Currency 479

Von Numann�s Middle Squaring Method 213

Warshall�s Algorithm 383

wcc() 493

wcl() 492

wcw() 493

Weak Binary Tree 328

What is Clustering 428

wheretokeep 314

wildCharMatch 183

wildgrep 502

WordFrequency 201

WordHistogram 201

wordWrap 187

Worst Case

Performance of Straight Insertion Sort 411

Bubble Sort Performance 404

Comb Sort Performance 409

Wrapper Function 291

yesterday 451

Zag 356

Zig 356

	Title
	Contents
	1 Array
	2 Structures
	3 Linked List
	4 Strings
	5 Recursion
	6 Stack
	7 Queue
	8 Trees
	9 Graphs
	10 Sorting
	11 Hashing
	12 ADT
	13 Date
	14 Map
	15 Currency
	16 File Handling
	Appendix A
	Appendix B
	Index

